
Applied Soft Computing 129 (2022) 109607

I

2

1

f
a
g
m
s
t

g
m

d
r
(

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Stochastic simulated annealing for directed feedback vertex set
Luís M.S. Russo ∗, Daniel Castro, Aleksandar Ilic, Paolo Romano, Ana D. Correia
NESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

a r t i c l e i n f o

Article history:
Received 17 November 2021
Received in revised form 26 August 2022
Accepted 1 September 2022
Available online 13 September 2022

Keywords:
Feedback vertex set
Maximum directed acyclic graph
Simulated annealing
Cycle detection heuristic
Complexity theory

a b s t r a c t

The minimum feedback vertex set problem consists in finding the minimum set of vertices that should
be removed in order to make the graph acyclic. This is a well known NP-hard optimization problem
with applications in various fields, such as VLSI chip design, bioinformatics and transaction processing.
In this paper, we explore the complementary problem in directed graphs, i.e., how to construct
the maximum directed acyclic graph (max-DAG). We show that the max-DAG problem is Poly-APX
complete, which implies that even trying to obtain approximation algorithms for this problems is likely
to be unfeasible. In light of these considerations, we introduce a new algorithmic solution, based on
Simulated Annealing (SA), which combines techniques such as kernelization, efficient data-structures,
novel heuristics to initialize the search process, a global re-structuring procedure, and a neighbor re-
ordering technique to speed-up the local search step. We present an extensive experimental study
that validates the key design and implementation choices undertaken in our proposal and compares
it to state of the art SA-based solutions Galinier et al. (2013) and Tang et al. (2017). The proposed
algorithm provides significant performance gains by obtaining feedback vertex sets up to 13.3× closer
to the optimal solution in a wide variety of synthetic and real-world graphs.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Permanent link to reproducible Capsule: https://doi.org/10.
4433/CO.1016608.v1.

. Introduction

In this paper, we study the Feedback Vertex Set (FVS) problem
or directed graphs. An FVS consists of vertices that belong to
ny cycle of the graph. Note that removing an FVS from the
raph makes it acyclic. In this work, we focus on determining the
aximum sub-graph that is a Directed Acyclic Graph (DAG). As
uch, we consider the dual formulation of the FVS, in particular
he dual of finding the minimum FVS.

This problem has applications in several areas, including pro-
ram verification [1], bioinformatics and biology [2,3], statistical
echanics [4], deadlock resolution [5], Bayesian inference [6] and

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
∗ Corresponding author.

E-mail addresses: luis.russo@tecnico.ulisboa.pt (L.M.S. Russo),
aniel.castro@ist.utl.pt (D. Castro), aleksandar.ilic@inesc-id.pt (A. Ilic),
omano@inesc-id.pt (P. Romano), ana.duarte.correia@tecnico.ulisboa.pt
A.D. Correia).
ttps://doi.org/10.1016/j.asoc.2022.109607
568-4946/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
VLSI chip design [7]. For example, efficient solutions to this prob-
lem are important for hardware synthesis [8], where cyclic com-
binational relations should not occur among streaming sources
and sinks (such as the one illustrated in Fig. 1). Such cycles result
in undesirable behaviors or un-synthesizable designs. Recently, a
novel approach for modeling automated storage/retrieval systems
was proposed by Gharehgozli et al. [9], which relies on high
multiplicity asymmetric traveling salesman problem with FVS to
sequence the storage and retrieval requests to minimize their
completion time.

Our main motivation is the application to concurrency control
of transactional systems, such as Transactional Memory (TM)
systems [10] and databases [11] — in which case, the induced
DAG and underlying topological order can be exploited to ensure
that concurrent execution is equivalent to a serial one.

The FVS problem is NP-Hard [12–14] and a survey on approx-
imation algorithms was given by Festa et al. [7]. In this paper, we
follow the approach started by Galinier et al. [15] of applying a
local search technique in a Simulated Annealing (SA) algorithm.
We also consider the improvements by Tang et al. [16]. The ap-
proach proposed herein advances the existing SA-based methods
by using a new fast heuristic to determine whether a vertex can
be safely added to the current configuration without generating
cycles. We discuss in detail data structures and optimization
techniques that guarantee the efficiency of this approach. This
stochastic selection is significantly faster than state of the art
approaches that rank all possible transitions.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2022.109607
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109607&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.24433/CO.1016608.v1
https://doi.org/10.24433/CO.1016608.v1
https://doi.org/10.24433/CO.1016608.v1
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:luis.russo@tecnico.ulisboa.pt
mailto:daniel.castro@ist.utl.pt
mailto:aleksandar.ilic@inesc-id.pt
mailto:romano@inesc-id.pt
mailto:ana.duarte.correia@tecnico.ulisboa.pt
https://doi.org/10.1016/j.asoc.2022.109607
http://creativecommons.org/licenses/by/4.0/

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607
The extensive experimental evaluation shows that the pro-
posed approach is capable of finding feedback vertex sets up
to 13.3× closer to the optimal, in a variety of real-world and
synthetic graphs when compared to state of the art solutions
based on SA.

The remainder of this article is structured as follows:

• We start with an initial pre-processing step, Section 3, which
separates the initial graph into Strongly Connected Compo-
nents (SCCs). This acts as a form of kernelization. In some
graphs the resulting components are so small that this initial
step largely solves the problem, or it makes it possible to
apply combinatorial approaches, such as Branch and Bound
(BB). We also propose a hybrid algorithm that selects be-
tween SA and BB, thus obtaining a result that is the best of
both worlds.
• We review the complexity of the underlying problem. In

particular, we review its NP-Complete classification, see
Theorem 1. The main objective of this revision is to estab-
lish that the max-DAG problem is Poly-APX-complete, see
Corollary 1. This result implies that even trying to obtain
approximation algorithms for this problem is likely to be
unfeasible. Instead, we discuss several techniques that ob-
tain good practical results. In particular, we propose a local
search procedure and highlight some of its limitations.
• We discuss several data structure design and implementa-

tion choices, see Section 5.1. In particular, we show how to
represent a DAG such that the local optimization procedure
of adding a vertex or removing vertices can be implemented
efficiently. Our implementation of this procedure, uses splay
trees and several speedup techniques. We also discuss tech-
niques for choosing the initial state and for allocating search
time among smaller sub-graphs, which culminates in the
aforementioned hybrid algorithm. We also use a global re-
structuring procedure and a neighbor re-ordering heuristic
to boost the performance of the local search procedure.
• We present extensive experimental results in Section 6,

based both on real world graphs and on synthetic graphs,
which evaluate the relative performance of these algorithms
and compare them to state of the art solutions based on SA.
The experimental results also validate several of the data
structure design and implementation choices. In particular,
when compared to the other SA algorithms, our algorithm
finds feedback vertex sets up to 13.3× closer to the optimal
in a wide variety of graphs. Moreover, we investigate the
impact of the temperature parameter in the performance of
our SA algorithm. Our results show that choosing relatively
cold temperatures tends to yield better results (i.e., quick
convergence to global optima) in the majority of the graphs
tested. However a hotter temperature setting can be bene-
ficial in dealing with an adversarial class of graphs, which
we designed to challenge approaches based on local search
methods.

The remainder of this paper is structured as follows: Section 2
formulates the max-DAG problem; Section 3 provides a general
overview of the proposed algorithmic contributions; Section 4
gives some background on the SA algorithm, along with a liter-
ature survey and an NP-Complete classification of the max-DAG
problem; Section 5 discusses an efficient implementation of the
proposed approach. The results of extensive experimental cam-
paign are reported in Section 6. Section 7 concludes the paper
and elaborates future research directions.
2

Fig. 1. Illustration of the max-DAG problem.

2. Problem formulation

In the context of graph theory the problem described in Sec-
tion 1 can be modeled as the problem of identifying a set of
vertices such that the corresponding induced sub-graph is a DAG.
For an introduction, or recapitulation, on the concepts and al-
gorithms of this section see [17–19]. Our problem deals with
directed graphs, however in Section 5 we consider a problem
which uses undirected graphs. To avoid confusion we use the let-
ter G to represent undirected graphs and GD to represent directed
graphs. A graph is supported by a set of vertices V . In Fig. 1(a) we
show an example of a graph GD with V = {a, b, c, d, e, f , g, h, i, j}.
Furthermore, a graph is characterized by a set of edges ED. Each
edge points from a vertex u to a vertex v. The graph in Fig. 1(a)
includes, among others, the edges (a, c), (c, b) and (b, a). This
particular sub-set of edges forms a cycle.

Our goal is to select a sub-set of vertices V ′ such that the
induced sub-graph contains no cycles. Hence the above cycle
implies that our sub-set V ′ cannot simultaneously contain the
nodes a, b and c. It may, for example, contain a and b, but in
that case it cannot contain c. Note that the induced sub-graph
G′D contains all the edges (u, v) ∈ ED such that u and v are in V ′
and (u, v) is in ED. We are interested in determining the largest
such set V ′. The graph in Fig. 1(b) illustrates an example of a set of
vertices V ′ that is a maximum for the given graph GD. In summary,
our goal is to find a maximum sub-DAG of a directed graph GD =

(V , ED), such that the sub-DAG is obtained by removing vertices
that are contained in cycles. It may not be immediately clear that
the set V ′ shown in Fig. 1(b) is a maximum, but it is simple to
check that it is maximal, i.e., that no vertex can be added to the
current configuration without creating a cycle. The configurations
that are maximal but not actually a maximum are also known as
local maxima.

Note that the set of selected vertices V ′ is the complement of
a FVS [12], i.e., V \ V ′ is a feedback vertex set. The interception
between a feedback vertex set V \ V ′ and a cycle of GD is always
non-empty, for any cycle. In particular for the cycle {a, b, c} we
have that c ∈ V \ V ′. Another problem that is closely connected
to the one we consider is the Maximum Induced Forest (MIF),

which instead considers an undirected graph G and searches for

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

i

a
p
t
V

n

Fig. 2. Illustration of SCC isolation. Original graph GD on top and graph of
solated SCCs on bottom.

n induced sub-graph that is a tree. This latter problem generally
roduces smaller solutions. For example if we ignore the direc-
ions of the edges in Fig. 1, in both graphs, then the solution
′
= {a, b, d, g, h, i, j} is also an induced forest. However if we

instead assume that the original graph contained the edge (h, d)
then the set V ′ would no longer be an induced forest. This latter
set V ′ is a valid DAG. In our exposition we focus on DAGs instead
of forests.

3. Algorithmic approach

Our approach uses mainly concepts related to directed acyclic
graphs. We first use an algorithm that identifies SCCs. Recall that
for any two vertices u and v in the same SCC there should exist
both a path from u to v and a path from v to u. Such an algorithm
allows us to, potentially, partition the original graph GD into a
collection of smaller graphs, its SCCs. If the resulting graphs are
small enough then even combinatorial algorithms can be applied.
This is in essence a simple form of kernelization. In particular we
used the algorithm by Tarjan [20]. Other efficient algorithms exist
see Sharir [21] and Cormen, Leiserson, Rivest and Stein [22]. These
algorithms require only linear time, O(V + E).

This process discards all the edges across different SCCs and
keeps only the edges where both vertices belong to the same
SCC. An example of this procedure is shown in Fig. 2. The graph
in Fig. 2(b) contains only edges inside a component. The edges
across SCCs can be safely discarded, as the SCC definition implies
that these edges are not involved in cycles.

Another fundamental operation in the algorithms we con-
sider is the identification of cycles. As explained in Section 2 we
can identify that a given configuration V ′ is maximal by testing
whether it is possible to add a vertex v to V ′ so that the resulting
induced sub-graph is still a DAG. A Depth First Search (DFS) can
be used to determine whether a graph contains a cycle and to
identify the nodes involved in the cycle in case it exists. However
this procedure requires a complete scan of the graph which is
 s

3

time consuming for an operation that is used extensively in the
algorithm. Hence we propose an heuristic approach based on
the notion of topological sort of a DAG. As far as we are aware
this heuristic is original, and fundamental contribution of our
approach.

Such topological orderings can always be obtained from a DAG
and consist in arranging the vertices of V ′ in a line, such that
every edge (u, v) ∈ ED, with u, v ∈ V ′, points from left to right.
Examples of these orderings are shown in Fig. 3. Figure contains
three DAGs. Consider only the vertices labeled 0 to 6 and the
edges drawn by dashed arrows. The graphs are drawn according
to the topological order, as can be verified by the fact that all the
dashed edges point from left to right.

At each step in the algorithm we consider a set of vertices V ′
as a state. This state must always be a DAG, i.e., the sub-graph
induced by V ′ can never contain a cycle. Our goal is to modify this
state until it reaches the global maximum configuration. Hence at
each step we choose a vertex v from V \ V ′ and test whether the
sub-graph induced by V ′ ∪ {v} is still a DAG. If so v can be safely
added to V ′, otherwise v is part of at least one cycle in the induced
sub-graph.

If it is safe to add v to V ′ this process can be executed without
further decisions. Otherwise the situation is more complex. If
we are running a greedy algorithm then the vertex v is always
rejected, which means that it is not added to V ′. Conversely the SA
approach considers whether it is worth to discard some vertices
I(v) of V ′ so that v can be accepted. This decision depends on how
many vertices need to be removed from V ′. Hence it is necessary
to determine a sub-set I(v) such that the sub-graph induced by
(V ′\I(v))∪{v} is a DAG. Ideally I(V) should be as small as possible.
Assume for now that we can obtain such a set I(v). The choice
the SA procedure must ponder is whether v gets rejected and
V ′ is kept intact or whether v is accepted, in which case V ′ is
replaced by (V ′ \ I(v)) ∪ {v}. The SA decides by considering the
value ∆E = 1−|I(v)|. In each step the algorithm is allowed a limit
ℓ that specifies how much energy the current state can afford to
change. If ℓ ≤ ∆E then the modification is allowed, meaning that
the candidate v is accepted, even though this might decrease the
size of the current DAG, when ℓ < 0. Otherwise the candidate v
is rejected. The value ℓ is determined by the current temperature
value t and a random number, chosen uniformly from the interval
[0, 1]. Over time the value of the temperature decreases which
means that accepting lower values of ∆E becomes progressively
unlikely. A precise description is given in Section 4.

In this section we instead focus on how to effectively deter-
mine I(v). This is again an instance of the maximum sub-DAG
problem. Even though we can execute a depth first search, or
Tarjan’s algorithm, to identify which vertices are involved in
cycles it is not immediately clear which ones should be removed.
Hence, we use an heuristic approach, which is also faster than
the O(|V | + |ED|) time bound required by a DFS. Note that an
O(|ED|) time bound for a single decision of the algorithm is too
expensive. The heuristic requires O(V log V) time, more precisely
an O(d(v) log V) worst case time bound, where d(v) represents the
degree of the candidate node.1

The trade-off is that to increase speed, the decision is not pre-
cise, meaning that it overestimates the set I(v). Crucially though
the guarantee that the sub-graph induced by (V ′ \ I(v))∪ {v} is a
DAG is always valid. The imprecision means that sometimes can-
didates are rejected because they were pessimistically analyzed
and in reality could have been accepted without decreasing the
current solution. We use several approaches to mitigate this con-
sequence. The simplest method, when employing this heuristic in

1 In directed graphs there is both in-degree and out-degree, respectively the
umber of edges (u, v) ∈ ED and (v, u) ∈ ED for some u. By degree we mean the
um of both these values.

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

t
t
A
t
i
f

b
i
c
o
t
p

W
b
b
i
d
f
f
t

m
c
w

Fig. 3. Illustration of topological orderings and vertex evaluation for three different graphs.
i
w
c
a
e
I
w
t
s

i
t

he SA algorithm, is to choose a higher temperature parameter, as
his gives more slack to vertices that would otherwise be rejected.
more efficient method is to reorganize the current DAG so that

he decision becomes more precise. This is a costly operation and
mproving the precision for a node v might decrease the precision
or other nodes. Hence we use reorganization sparingly.

The procedure is the following. Since the sub-graph induced
y V ′ is a DAG we keep it sorted, by some topological ordering,
.e., using a bijection s : V ′ ↦→ {0, . . . , |V ′| − 1}. Whenever a
andidate node v is being evaluated we determine the positions
f the incoming and outgoing edges. Precisely we determine
he maximum position of the incoming edges and the minimum
osition of the outgoing edges as follows:

• max(v) = max{s(u) | u ∈ V ′, (u, v) ∈ ED}
• min(v) = min{s(u) | u ∈ V ′, (v, u) ∈ ED}

henever max(v) < min(v) the candidate vertex v is safe,
ecause v is not involved in any cycle in V ′ ∪ {v}. Hence v can
e safely added to V ′. On the other hand when max(v) ≥ min(v)
t may be the case that v is part of some cycle. We do not exactly
etermine whether it actually is part of some cycle. Instead we
ocus on identifying a set I(v), of incompatible nodes, such that
or V ′ \ I(v) the corresponding values max(v) and min(v) respect
he desired max(v) < min(v) inequality.

A simple choice for I(v) are the vertices u of V ′ for which
in(v) ≤ s(u) ≤ max(v) and (v, u) ∈ ED. In Section 5.1 we
onsider a more general processes to obtain I(v), for simplicity

e will, for now, restrict our attention to this choice. Fig. 3

4

llustrates this choice. The edges linking vertices in V ′ are drawn
ith dashed gray lines. The edges between nodes of V ′ and the
andidate node v are drawn with solid black lines. The vertices
re labeled directly with the s(v) values. Fig. 3 illustrates three
xamples. In Fig. 3(a) we have that max(v) = 2 < 3 = min(v).
n this example it is safe to add v to V ′. In this case the node v

ill become position 3 = min(v) in the topological ordering and
he nodes in positions that were greater than or equal to 3 are
hifted up by one value.
The graph in Fig. 3(b) shows an example of a valid cycle

dentification. This graph is similar to the top graph except that
he edges (v, 2) and (4, v) had their directions swapped. In this
middle example we have that min(v) = 2 ≤ 4 = max(v). In this
case the annealing procedure needs to make a choice. We have
that I(v) = {2, 3}, because these nodes are less than or equal to
4 = max(v) and the edges (v, 2) and (v, 3) are part of the graph. If
the choice is to include v then the nodes 2 and 3 must be removed
before v is added. This consequence is highlighted by the gray
background of these nodes.

The graph in Fig. 3(c) illustrates a situation where the heuristic
incorrectly flags a cycle. Inserting the vertex v in this graph
causes no problems, but the heuristic incorrectly claims there
is a problem with the resulting configuration. This graph is in
all similar to the middle graph, except that the edge (3, 4) was
removed. If in this case the SA algorithm decides to accept v

this implies that the vertices 2 and 3 get removed, although this
was not necessary. Note that node 4 is not restricted by any of
edges in the sub-graph and might just as well be located before

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

m
s
a
a
t
p

n
A
r
i
i
e
r
F
u
t
P
i
t
a
a
b

4

o
i
t
T
n
l
i
p

Table 1
Notation summary.
Symbol Definition

GD A directed graph.
G An undirected graph.
V The set of vertexes of G. When used in arithmetic

expressions, such as log V , it means the size of this set.
E The set of edges of G.
∆E The energy variation in one step of the SA algorithm.
V ′ ⊆ V A subset of vertexes, usually the current SA state. The

size of this set corresponds to the energy of the state.
u, v ∈ V Some vertexes.
s Current topological order of V ′ .
I(v) The set of vertexes of V ′ that form cycles with vertex v.
T The current temperature of the SA. Starts at Thot and ends

at Tcold .
α Cooling rate that is used to reduce T linearly.
ℓ The limit on ∆E established by the current random

number p.

node 0 in the topological order, in which case the candidate node
v would have no problems being accepted and its acceptance
would entail no removals. However the selection procedure is not
able to reach this conclusion, instead it behaves as in the middle
case. This is a necessary trade-off for the fast performance of the
decision heuristic we propose. Moreover if the nodes 2 and 3
do get removed they can latter be tested for re-insertion, which
would then not identify a cycle and allow the nodes to return to
the current state.

4. Background

This section provides some background information about the
ax-DAG problem. Hence it may be partially, or completely,
kipped in an initial read. First we recall how the SA and BB
lgorithms work, Section 4.1. We then survey the state of the
rt literature on the directed FVS problem, Section 4.2. We finish
his section by giving our complexity analysis of the max-DAG
roblem, Section 4.3.
A reader familiar with SA can easily skip Section 4.1, as the

ecessary notation is summarized in Table 1, also a quick look at
lgorithm 1 might help. We use no concepts from the BB algo-
ithm in our approach, it is only used as a baseline comparison
n the experimental evaluation in Section 6. Our presentation
s self contained, hence the survey in Section 4.2 is given for
xploratory reasons, and to frame our work in context. It is not
equired reading to obtain an understanding of our approach.
inally the analysis we present in Section 4.2 gives some further
nderstanding into the nature of the max-DAG problem. In par-
icular we will establish that the problem is NP-complete and
oly-APX-complete. This validates our the need for an approx-
mating probabilistic technique such as SA since it is unlikely
hat there exists a polynomial time algorithms that can solve or
pproximate this problem, with a constant or poly logarithmic
pproximation ratio. However it is a theoretical analysis and can
e safely skipped by the pragmatic reader.

.1. Search recapitulation

The SA algorithm is shown in Algorithm 1. The current state
f the algorithm is represented by a sub-set of vertices V ′ which
n the generic algorithm starts off as the empty set ∅. The initial
emperature is set to Thot and the final temperature is set to
cold. The number of iterations to execute is given as argument
. The temperature is stored in a variable T and is decreased
inearly. It is possible to update the temperature less frequently,
.e., once in each b iterations, for some batch value b. For sim-
licity we omit this process. Also choosing appropriate values for
5

the temperature is a tricky business, as seen in Section 6. In our
setup we found it simpler to specify temperatures from a limit
ℓ and a probability value p and inverting the formula in line 6,
i.e., T = ℓ/ log2((1/p)− 1).

At each iteration the algorithm selects a random number uni-
formly at random from the interval [0, 1]. This value is stored
in the variable p, see line 5. This value is used to define the
minimum delta value, stored in variable ℓ. A modification to
V ′ is only accepted if it changes the number of vertices by at
least ℓ. The SA algorithm uses the notion of energy. For our
application the energy is the current number of elements in V ′.
Let us consider a few values of p to gain some insight into the
algorithm. When p is 1/2 the resulting value of ℓ is 0. This
means that modifications to V ′ for which inserting v implies
removing only one other vertex are accepted half the time. Note
that this occurs independently of the temperature value T and is
a deliberate decision, since we could have chosen to compute ℓ

as −T × log2(p) if this was not intended. This is in contrast with
the greedy algorithm which never accepts modifications that do
not improve the current solution V ′.

Our implementation guarantees that p is never 0 or 1 as this
would cause issues in the computation of ℓ, moreover its has
no impact on the algorithm as these two numbers are a zero
measure sub-set of [0, 1]. Still it may occur that the value of ℓ

obtained is larger than 1, which is not possible because at most
we add one new vertex to V ′ the vertex v. Hence the number
of vertices can never increases by more than 1. Since this is an
unreasonable value of ℓ we truncate its value back to 1 if the
original computation is larger. Note also that the computation
of the value d, in line 6, might yield negative values, in which
case transitions that reduce the size of the current solution V ′
are allowed.

Given a value of ℓ we then execute the procedures described
in Section 3. First we choose a vertex v uniformly at random from
V \V ′, in line 10. Then we search for a set of incompatible vertices
I(v), such that ℓ ≤ ∆E = 1 − |I(v)|. This is done as explained in
Section 5.1 to avoid using more than O((2− ℓ) log V) time when
no such set exists. In that case the Verify procedure fails and no
modification is performed. Otherwise the corresponding set I(v)
is identified and the current solution V ′ is updated.

Let us also recall the BB algorithm. Essentially the BB algorithm
consists in checking all the possible sets V ′ ⊆ V to determine if
the corresponding induced sub-graph is a DAG, and among the
sets with this property the algorithm determines the largest one.
Note that this is a big search space, if there are n nodes in V ,
i.e., |V | = n, then there are 2n possible sub-sets V ′ ⊆ V . This
search space is organized in a tree shape to make the search
effective and allow for pruning.

The tree organization means that a set V ′ is only tested if
V ′ = V ′′ ∪ {v}, for some node v and the set V ′′ was previously
tested and was verified to induce a DAG. This gives an initial
pruning because the converse of this property is that if the set
V ′′ does not induce a DAG then the set V ′ does not need to be
tested. The caveat with this heuristic is that the set V ′ can be
decomposed into V ′′ ∪ {v} with several different choices of V ′′
and v. Just because V ′ is not tested according to one configuration
it does mean that it is guaranteed not to be tested. The exact
condition is the following: if the set V ′ is such that for any set
V ′′ such that V ′ = V ′′ ∪ {v}, for some vertex v, and the sub-graph
induced by V ′′ is not a DAG then the set V ′ is never tested by the
BB algorithm, because it is guaranteed not to induce a DAG. What
we mean by never tested is that the set is not even generated and
therefore adds no time at all to the algorithm’s execution time.

Note however that considering all the decompositions V ′′∪{v}
is harder to organize if we focus on the set V ′′, instead it is easier
to focus on the vertex v. To organize the search we order the set

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

V
k
w
l
s
ℓ

p
s
t
o
t
V
c

input : ⟨G, Thot , Tcold, n⟩
output: ⟨V ′⟩

1 V ′ ← ∅ ;
2 T ← T0 ;
3 α← (Thot − Tcold)/n ;
4 for i = 1 to n do
5 p← Random(0, 1) ;
6 ℓ← T × log2((1/p)− 1) ;
7 if ℓ > 1 then
8 ℓ← 1 ;
9 end

10 v← SelectFrom(V \ V ′) ; /* Choose a vertex
uniformly at random. */

11 if Verify(V ′, v, ℓ) then
12 ; /* Executes only when ℓ ≤ ∆E = 1− |I(v)| */
13 I(v)← Identify(V ′, v) ; /* Retrieves the set

I(v) */
14 V ′ ← (V ′ \ I(v)) ∪ {v} ; /* Update State */
15 end
16 T ← T − α ;
17 i← i+ 1 ;
18 end
19 return V ′ ;

Algorithm 1: Pseudo code for the simulated annealing
algorithm.

, i.e., have V = {v1, v2, . . . , vn}. This order can be arbitrary but is
ept fixed during the execution of the algorithm. With this order
e can define the order of a sub-set V ′, which is the value of the

argest index i such that vi ∈ V ′. More precisely we say that the
et V ′ has order ℓ if for any vi ∈ V ′ we have that i ≤ ℓ. This order
is related to the depth d of the set V ′ in the search tree, more
recisely if a set V ′ has order ℓ then all occurrences of V ′ in the
earch tree have depth d ≥ ℓ. The depth is used in the search
ree to select which vertex to consider next. For example, if V ′
ccurs at some depth d and the induced sub-graph is a DAG then
he search further considers the sets V ′ at depth d+1 and the set
′
∪ {vd+1} at depth d + 1. This is illustrated with the recursive

all in lines 6 and 9 of Algorithm 2.

1 BranchAndBound(V ′, d, b)
2 if |V ′| > b then
3 b = |V ′|
4 end
5 if b < |V ′| + n− d− 1 then
6 b =BranchAndBound(V ′, d+ 1, b) ;
7 end
8 if b < |V ′| + n− d and V ′ ∪ {vd+1} induces a DAG then
9 b =BranchAndBound(V ′ ∪ {vd+1}, d+ 1, b) ;

10 end
11 return b
Algorithm 2: Pseudo code for the Branch and bound
algorithm.

Another important heuristic is the bound b. The idea is that
during the search we keep track of the size of the best solution
found so far, in variable b. This allows us to discard parts of the
search space that cannot contain solutions that are better than
the current best value. If b < |V ′|+n−d then the descendants of
the current set V ′ can still obtain a solution that is better than the
current best value b, in particular if all the vertices vi with i > d
can be inserted into V ′ and still induce a DAG. On the other hand if
6

this condition is false than this portion of the search space can be
trimmed because not even this extreme case will yield a solution
better than the current best bound b. This is the condition we
check in line 9. The condition in line 6 uses a similar logic but is
a bit tighter because we are considering a solution without the
vertex vd+1. As final important observation note that testing the
condition that V ′ ∪ {vd+1} in line 8 is done by executing a DFS on
the induced sub-graph and therefore requires at most O(|V |+|E|)
time.

4.2. Related work

As mentioned in the Introduction in this paper we considered
the directed FVS problem, even though our approach explored
the complementary max-DAG problem. Hence we will review
the history on this problem. Both the directed and undirected
versions are known to be NP-Complete [13].

When the graph G is undirected, there are several results about
the feedback vertex set problem, such as an exact algorithms for
finding a minimum FVS in a graph on n vertices in O(1.9053n)
time [23] and in O(1.7548n) time [24]. There is also a poly-
nomial time 2-approximation algorithm for the minimum feed-
back vertex set problem [25]. The first parameterized algorithms,
by Bodlaender [26] and Downey and Fellows [27], obtained a
O(17k4!nO(1)) running time for the parameterized feedback vertex
set problem in undirected graphs.

Bar-Yehuda and Geiger [6] presented several approximation
strategies. However they rely either on problem constraints (e.g.,
see Chitnis et al. [28],Even [29] for parameterized FVS) or only
apply to specific families of graphs (e.g., see Lokshtanov et al. [30],
Papadopoulos and Tzimas [31],Wang et al. [32] for approximation
algorithms for specific graph families).

In the case of directed graphs known results can be divided
into exhaustive search approaches and heuristic approaches. The
first result that improved the O(2n) barrier was by Razgon [33],
which obtained an O∗(1.9977n) time bound. Like us their ap-
proach focused mainly on the complementary maximum induced
DAG problem. This algorithm was improved by Chen et al. [34],
that proposed a fixed-parameter algorithm for this problem with
an O(4kk!nO(1)) time bound.

As for the heuristic approaches Galinier, Lemamou and Bouzidi
[15] were the first to propose the application of simulated an-
nealing to this problem. The version we propose uses the same
principles as their solution, which some important variations.
In the local optimization strategy by Galinier et al. [15] only
two positions are ever considered for the new vertex v before
min(v) or after max(v). Instead in our solution we show how to
scan in between configurations, at no asymptotic extra time, see
Section 5.2. Another important contribution of our approach is
the insight into the temperature selection. In our experimental
results we observed that for this kind of problem cold tempera-
tures obtained much better performance than reasonably hotter
ones. Hence whereas Galinier et al. [15] used a geometric cooling
schedule we chose a linear one. This allowed us to transition
from hot to cold at a slower pace, while avoiding both extreme
conditions. In a too hot scenario the algorithm tends to diverge
from the optima. A strictly cold search behaves essentially as
the greedy algorithm, which obtained a reasonable performance.
However the tuned SA algorithm with linear cooling obtained
even better performance. Another significant difference is that
our approach is stochastic, meaning that we do not evaluate all
potential candidate vertices v to determine which one is the
best for the next step. Instead a vertex not yet in V ′ is chosen
uniformly at random. The rational for this decision is that a bad
vertex that is part of the current configuration will quickly be
pressured to leave in future moves. Moreover this allows us to

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

(

f
e
e

T
c
t
o
T
t
w

4

p
s
n
o
w
d

k
i
l
t
i
D
e
t
d
i
r
o

a
r
i
o
i
i
G

a
t
i
i

o
w
k
F
a
a
s

m
w
f
i

s
r
V
G
a
H
a
c

V
t
o
T
a

a
a
w
i
t
S
p
a
a
c
s
I
s
i

C
P

P
s
i
m

t
r
u
t
B
s
d
C
s
p

Fig. 4. Construction of a directed graph (Fig. 4(b)) from an undirected one
Fig. 4(a)).

ocus on the performance of this procedure, for which we use
fficient data structures to obtain around O(d(v) log V) time, or
ven better if the vertex gets rejected.
A recent improvement to the SA approach was proposed by

ang, Feng and Zhong [16]. They propose a way to order the
andidate vertices so that the vertex v that gets selected is closer
o the global optimum. This solution strictly improved the SA
f Galinier et al. [15] and was tested in our comparison, see
able 6. Again our stochastic approach with dedicated data struc-
ures allowed us to quickly include or discard vertices, therefore
e obtained better results.

.3. Complexity analysis

First we show that the problem at hand is NP-complete. Our
roof is essentially a recap of the proof that the feedback vertex
et problem is NP-Complete, given by Karp [12]. However we
eed to recall this reduction for the Poly-APX-complete result
f Corollary 1. In this case we consider the sub-DAG problem,
hich given a graph GD = (V , ED) and an integer k consists in
etermining if there is a set of vertices V ′ of size k such that the

sub-graph induced by V ′ is a DAG.

Theorem 1. The Sub-DAG problem is NP-complete.

Proof. First we show that the Sub-DAG ∈ NP. For a given graph
G = (V , ED), we consider a sub-set V ′ ⊆ V of vertices as a
certificate. First we check if V ′ contains exactly k elements, where

is the desired number of vertices specified by the Sub-DAG
nstance at hand. This requires only O(V ′) time if V ′ is given as a
inked list or O(V) if it is given as an array of booleans. Verifying
hat the induced sub-graph is a DAG amounts to checking that
t does not contain cycles. This can be solved by executing a
FS on the sub-graph and checking that it does not contain back
dges. The resulting algorithm requires O(V ′ + ED) time, when
he structure that identifies the sub-set V ′ takes O(1) time to
etermine if a vertex v is in V ′ or not. An array of booleans
ndexed over V suffices. Hence in total a verification algorithm
equires O(V +E) time and space, which is polynomial in the size
f the input.
Next we show that Max-DAG is NP-Hard. For this goal we use
reduction from the Independent-Set problem. Given an undi-

ected graph G = (V , E) the Independent-Set problem consists
n determining whether there exists a set of vertices V ′ ⊆ V ,
f size k, such that the induced sub-graph contains no edges,
.e., for any {u, v} ∈ E it cannot be that both the vertices exist
n V ′, i.e., either u /∈ V ′ or v /∈ V ′. Given an instance graph
= (V , E), of the Independent-Set problem, we need to build
7

n instance GD = (VD, ED) of the Sub-DAG problem. We illustrate
his reduction in Fig. 4. The given undirected graph G is shown
n Fig. 4(a). The set of vertices {1, 3, 5, 7} is an example of an
ndependent set in this graph.

For this process we need to construct GD to be a representation
f G as a directed graph. In essence for every edge {u, v} ∈ E we
ill add two edges (u, v) and (v, u) to ED. The set of vertices is
ept unaltered, i.e., VD = V . We illustrate this construction in
ig. 4. The graph in Fig. 4(b) is directed, which is indicated by the
rrows at the end of the edges. This construction yields |VD| = |V |
nd |ED| = 2|E| and therefore can be obtained in linear time and
pace.
To finish the reduction we require that the sub-DAG to deter-

ine in GD should also have size k. Hence to finish this reduction
e claim that it is possible to find an independent set of size k

or G if and only if it is possible to find a sub-DAG with k vertices
n GD.

We start by showing that if there is an independent set of
ize k in G then there is a sub-DAG with k vertices in GD. The
eduction is trivial. Given that V ′ is an independent set of G then
′ is also a DAG in GD, because the sub-graph induced by V ′ in
D contains no edges. Assume by contradiction that (u, v) ∈ ED is
n edge in the sub-graph induced by V ′, then u ∈ V ′ and v ∈ V ′.
ence by construction {u, v} must also be an edge in E, which is
contradiction because V ′ should be an independent set but it
ontains u and v and the edge {u, v} exists in E.
Finally we need to show that if we obtain some set of vertices
′
⊆ VD such that the induced sub-graph of GD is a DAG then

he set V ′ is an independent set in G. Let {u, v} ∈ E be an edge
f G then (u, v) and (v, u) are edges of ED, which form a cycle.
herefore either u /∈ V ′ or v /∈ V ′, otherwise the DAG contained
cycle. Hence V ′ is an independent set. □

This complexity condition seems to imply that a pragmatic
pproach to the problem either consists in studying exponential
lgorithms or polynomial time approximation algorithms. As we
ill show in Corollary 1 however even this second hypothesis is

nfeasible, unless P=NP. This Corollary is the consequence of on
wo main considerations. On the one hand the Max Independent
et is Poly-APX-complete. On the other hand the reduction em-
loyed in Theorem 1 is extremely robust and therefore qualifies
s an approximation preserving reduction. Specifically it qualifies
s an S-reduction, namely the strictest of several alternatives
onsidered by Crescenzi [35], which preserve several member-
hip conditions. The approximation ratio is equal in the Max
ndependent Set and in max-DAG, because it is exactly the same
ub-set V ′ from the same set of vertices V , only the set of edges
s modified.

orollary 1. The max-DAG problem is Poly-APX-complete under
TAS-reductions.

roof. Clearly max-DAG is in Poly-APX. An algorithm which
imply chooses one vertex v of V runs in polynomial time and
s a |V | approximation to max-DAG, because the maximum DAG
ust be a sub-set V ′ of V .
To show that max-DAG is Poly-APX-complete we note that

he Max Independent Set is Poly-APX-complete under PTAS-
eductions, see Bazgan, Escoffier and Paschos [36]. Hence we
se the reduction in Theorem 1 to reduce Max Independent Set
o max-DAG. Note that S-reductions are also PTAS-reductions.
ecause the composition of a PTAS-reduction and an S-reduction
till is a PTAS-reduction, we only need to confirm that the re-
uction in Theorem 1 is an S-reduction. Using the notation of
rescenzi [35] we need to describe a function g that transforms
olutions of max-DAG into solutions of Max Independent Set, in
olynomial time, and preserves the solution measure. Formally

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

m

a

p
p
d
a

o
t
p

e
s
m
d
E
n
V
t
t
t

s
t
u
e
w
t
n
a
c
V
p
o
i
i
b
i
m
o
a

5

t
r
c

5

m
i
V
a
f
n
t

o
t
o
O
t
b
o
f
s
S
t
t
G
t
L
v

w

s
n

t
i
o

b

A(x, g(x, y)) = mB(f (x), y). This is trivial because a set of vertices
V ′ that induces a DAG as a sub-graph of the transformed instance
GD = f (x) is also an independent set in the original graph G = x,
s shown in the proof of Theorem 1. Hence g(x, y) = V ′, for

y = V ′. Moreover the measure values in these problems are the
number of vertices in the set V ′. Therefore the necessary equality
simplifies to mA(x, g(x, y)) = |V ′| = mB(f (x), y). □

Even though it is unlikely that Max Independent Set can be ap-
roximated to a ratio better than polynomial in polynomial time,
olynomial time approximation algorithms do exist for bounded
egree graphs. In particular a simple greedy algorithm obtains
(δ + 2)/3 approximation ratio, for a graph with maximum

degree δ. Moreover the same algorithm is also guaranteed an
approximation ratio of (d + 2)/2, where d is the average degree
f the graph. See Halldórsson and Radhakrishnan [37]. Hence
his algorithm strongly influences our approach to the max-DAG
roblem.
The algorithm works as follows: we start with an initially

mpty independent set V ′ = ∅ and an instance graph G. At each
tep we choose the vertex v with minimum degree, i.e., d(v) =
in{d(v′) | v′ ∈ V }, where d(v) represents the degree of v. By
egree we mean the size of its neighbor set N(v) = {u | {v, u} ∈
}. The vertex v is added to V ′ and removed, along with its
eighbors, from the set V . Precisely set V ′ ← V ′ ∪ {v} and
← V \ ({v} ∪ N(v)). Likewise the set E is cleaned from edges

hat connect vertices that no longer exist in V . The algorithm
erminates when the set V becomes empty. Note that at each step
he set V ′ is an independent set.

Consider a simulated annealing approach to the Independent
et problem. A simple algorithm, similar to the greedy one, is
he following. Start with an empty set V ′, but keep the graph G
nmodified. At each step a vertex v is allowed into V ′ if there is no
dge {u, v} ∈ E such that u ∈ V ′. Such a vertex u is incompatible
ith v. On the other hand if such incompatible vertices u do exist
he annealing algorithm counts how many of them exist. If this
umber is not too big and the temperature and the random choice
llow for it the vertex v may be added into V ′ anyway. In which
ase all the incompatible vertices u first need to be removed from
′. Note that like in the greedy algorithm the degree of a node v
lays an important role on whether it is allowed in the solution
r note. A node v for which d(v) is big is unlikely to be allowed
nto V ′ because it is likely to have incompatible nodes in V ′. Even
f a node with a high degree is allowed into V ′ at some step it will
e pressured out because all its neighbors are incompatible with
t. This algorithm is very similar to the one we propose for the
ax-DAG problem, except that in our case a property violation
ccurs when the vertex to add is part of a cycle, not just part of
n edge.

. Methodology

In this section we will explain how to efficiently implement
he decision heuristic described in Section 3 and also a global
e-organizing procedure that mitigates the limitations of the de-
ision heuristic.

.1. DAG data structures

Let us now discuss which data structures can be used to imple-
ent the decision heuristic described in Section 3. As explained

n that section we aim to maintain a representation of the set
′ of vertices, such that the induced sub-graph is a DAG. As the
nnealing algorithm proceeds vertices get added and removed
rom V ′. Moreover for the local search heuristic procedure it is
ecessary to keep this set ordered, by some topological order of
he DAG. Given these constraints we choose to store the vertices
8

f V ′ in a Binary Search Tree (BST). In particular we used splay
rees in our implementation. Any binary search tree provides the
perations necessary for our algorithm, but a BST with worst case
(log V) guarantees would be ideal, such as AVL’s or Red–Black
rees. Splay trees might suffer from the occasional worst case
ad performance, but they provide amortized time guarantees
f several desirable time bounds. Given that our algorithm per-
orms a sequence of operations the amortized time bounds are
ufficient. Single operation worst case guarantees are not crucial.
toring the sequence of nodes in a BST has the added advantage
hat whenever a node is added or removed the new positions of
he nodes are obtained automatically. To map from a vertex of
to the corresponding node in the splay tree we simply store

he corresponding node in the structure that represents a vertex.
ikewise each node may also store a pointer to its corresponding
ertex.
Consider again the example at the top of Fig. 3. In this case

e have that max(v) = 2 < 3 = min(v) and therefore it is safe
to add the node v to the set V ′′. This consists in inserting the
vertex v into the splay tree so that it becomes the new vertex at
position 3. Hence the previous vertex at position 3 becomes the
vertex at position 4, the previous vertex at position 4 becomes the
vertex at position 5 and so on. This is obtained with the insertion
operation in O(log n) amortized time in splay trees. To determine
the current position of a vertex it is enough to store the current
sub-tree size in each node of the splay tree.

Whenever a node needs to be removed from the set V ′ it
is removed from the splay tree. Consider for example the cases
in the middle and bottom of Fig. 3. In these cases the nodes at
position 2 and 3 need to be removed from the splay tree. After
this operation, and before the node v is inserted, the node that
was at position 4 becomes the node that is at position 2, the node
that was at position 5 becomes the node that is at position 3 and
so on.

We can now focus on the exact procedure we use for the local
search heuristic. According to the description in Section 3 we
need to determine min(v) and max(v). To determine min(v) we
need to visit the neighborhood of v, i.e., all the vertices u ∈ V ′
uch that there exists an edge (v, u) ∈ ED. Actually we only
eed the neighborhood in the sub-graph induced by V ′. However,

because our graph GD is represented in an adjacency list, we
actually end up traversing the complete neighborhood of v to
obtain the necessary nodes u. For each node u that is a neighbor
of v, i.e., for each edge (v, u) we first check if u ∈ V ′, by checking
if u is currently in the splay tree. If so, we then determine its
position in the topological order. This is actually the size of the
left sub-tree of node u, since looking up node u involves a splay
operation that pulls it to the root of the tree. In fact looking up u is
slightly tricky, because the splay tree is ordered by the topological
order. Therefore this process is not computed as a search over the
tree, instead we keep an array that for each node u ∈ V keeps
he information of whether the node is in the tree or not, and
f so where is it in the tree. To be absolutely precise each node
f the splay tree is represented by a struct node, that contains

pointers to the left and right sub-trees and to the parent tree.
These structs are allocated all at once, at the beginning of the
algorithm. They are kept in an array that contains exactly |V |
elements, each one corresponding to a node u ∈ V . We also keep a
pointer to the root of the splay tree. If a given struct is pointed
to by the root pointer or has a non NULL parent pointer then it is
in V ′, because it is part of the splay tree. Otherwise it is not in V ′,
ecause it is not part of the splay tree. In either case the struct

is allocated. Whenever the struct, corresponding to node u, is
in the splay tree, we splay it to the root of the tree and use the
size of the resulting left sub-tree to determine its position in the
topological order. Note that this representation wastes a bit of

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

s
a
i
s
N
i
p

o
s
t
V
o
o
k
i
s
g
i
t

S
m
f
O
t
t
r
t
f
m
u
d
m
i
I
o
m
w

w
c
t
t

pace, since full struct node space is used even for nodes that
re not in the splay tree. On the other hand we save one level of
ndirection that would exist in an alternative that used an array of
ingle pointers to these struct node elements, which would be
ULL when the node was not in the splay tree. Saving a level of
ndirection usually yields better cache performance and the space
enalty in this case is not too steep, particularly when V ′ is large.
Hence we can determine min(v) by computing the minimum

f all the position values obtained in the procedure we just de-
cribed. Likewise we need to compute a similar process to obtain
he value max(v). This time we need to determine the nodes u ∈
′ such that (u, v) ∈ ED. The process is essentially similar to the
ne we described for min(v), except that this time v is a neighbor
f u and not the other way around. This means that we also must
eep an adjacency list representation of the transposed graph GT

n memory. This representation is created when the algorithm
tarts, along with the adjacency list representation of the original
raph GD. Hence, during a verification procedure this information
s readily available. Algorithm 3 gives a succinct description of
his computation.

1 GetMax(GT , V ′, v)
2 M = −∞
3 for u ∈ NT (v) do
4 if u ∈ V ′ and s(u) > M then
5 M = s(u)
6 end
7 end
8 return M
9

10 GetMin(G, V ′, v)
11 m = +∞
12 for u ∈ N(v) do
13 if u ∈ V ′ and s(u) < m then
14 m = s(u)
15 end
16 end
17 return m
Algorithm 3: Pseudo code to compute the max(v) and
min(v) values. Recall that s represents the current topological
ordering of V ′.

imulated-annealing optimizations. Note that when max(v) <
in(v) there is no alternative to the previous procedure. There-

ore there is little opportunity to obtain a better bound than
(V log V) time or more precisely O(d(v) log V), where d(v) is
he degree of v, obtained by summing both the in-degree and
he out-degree. However for most verification procedures the
esulting situation is min(v) ≤ max(v). In these cases we need
o determine the set I(v) described in Section 3. This is straight-
orward to obtain by first computing max(v) and then computing
in(v). The computation of min(v), iterates over all the nodes
∈ V ′ such that an edge (v, u) exists. For each such node we

etermine its position s(u). To determine min(v) we compute the
inimum among the s(u) values. Since max(v) is already known

t is possible to determine which of the nodes u are actually in
(v). Whenever a node u ∈ V ′ is considered in the computation
f min(v), because an edge (v, u) exists, we also check if s(u) ≤
ax(v). If this condition is verified we have that u ∈ I(v). Hence
e can determine I(v) in the same O(d(v) log V) time bound.
The case when min(v) ≤ max(v) can be very frequent (e.g.,

hen we have already identified a maximal solution or are very
lose to it), hence it is worthwhile to try to improve it. Notice
hat computing a large set I(v) only to have it be rejected by
he simulated annealing process amounts to redundant work.
9

The annealing decision depends only on the size of I(v). At each
step the simulated annealing algorithm determines a value ℓ,
which depends on the current temperature and a random value
p, chosen uniformly from [0, 1]. Whenever ℓ ≤ ∆E = 1 − |I(v)|
the transition is accepted, otherwise it is rejected. Hence accepted
transitions usually occur for negative values of ℓ, in fact, the
largest value of ℓ that is significant for this problem is 1. Any
other positive values of ℓ results in rejected transitions. Therefore
our generation procedure never generates positive values larger
than 1. Generating the value ℓ is fast, i.e., O(1) time. Therefore
we generate the ℓ value before computing the set I(v). This has
the advantage that we do not need to compute the complete
set I(v). As soon as we identify enough elements in I(v) so
that the inequality with ℓ is no longer valid, we can abort the
identification procedure and the corresponding transition. Hence
our goal is to obtain an O((2 − ℓ) log V) time bound for each
verification process that fails. Our method is not guaranteed to
obtain this bound all the time. We improve the best case time to
this bound and show that our solution is effective in practice.

Our technique involves several nuances, which we will now
explain and simultaneously obtain more general selections of
incompatible sets I(v). First we store the necessary nodes in BSTs,
sorted by their position in the topological order. This makes it
easy and efficient to obtain the min(v) and max(v) values, or their
current best approximations. Precisely we consider the set of
nodes out(v) = {u ∈ V ′|(v, u) ∈ ED} and in(v) = {u ∈ V ′|(u, v) ∈
ED}, which can be used to obtain the min(v) and max(v) values
respectively. Consider the middle example in Fig. 3. In this case
we have out(v) = {2, 3, 6} and in(v) = {0, 4}, yielding min(v) =
2 and max(v) = 4 respectively. As before if we have max(v) = 4
computed first then identifying I(v) can be obtained by searching
for 4 in the BST that contains the representation of out(v). This
allows us to divide the set out(v) in two, the set I(v) = {2, 3} of
elements that are smaller than or equal to 4 and the set {6}which
contains safe nodes larger than 4. This computation is supported
in BSTs, either by simply counting the number of elements less
than or equal to 4, or by actually splitting the tree in two. We also
use splay trees to store the in(v) and out(v) sets, which provides
a simple implementation of both these operations.

An additional optimization that we use is the following. As-
sume that we know that max(v) = 4, and that we are in a
situation where the simulated annealing has decided that ℓ = 0.
In this case the transition will be rejected because 0 = ℓ >

−1 = 1 − 2 = 1 − |I(v)| = ∆E. Hence the order in which
we process out(v) matters. If we obtain out(v) as 6, 3, 2 then
only after we receive the number 2 can we reject the transi-
tion. On the other hand if we receive out(v) as 2, 3, 6 we can
reject the transition immediately after receiving the number 3
and therefore there is no need to process the number 6. In this
case it is only one number but in general this approach reduces
the number of vertices processed from d(v) to 2 − ℓ. For this
early termination to be effective we need two conditions. We
need to search for max(v) in the intermediate configuration of
out(v), i.e., this search is executed every time a new node u of
out(v) is identified. We need the nodes in out(v) to be obtained
according to the current topological order of the V ′, s. This second
condition amounts to keeping the adjacency list of a node v

sorted according to the topological order, s. In general we cannot
guarantee this requirement, since this order potentially changes
with every step of the annealing algorithm and updating all the
corresponding adjacency lists would amount to more work than
what this optimization saves. Hence our approach is simple and
pragmatic. Each time a verification operation is executed in node
v a prefix of its adjacency list is traversed, namely to obtain
out(v). This prefix could be the whole list. At the end of the

verification procedure this prefix of the adjacency list is sorted,

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607
Fig. 5. Schematic representation of incompatibility sets.
according to the current topological order, and is used to over-
write the current configuration of this prefix in the adjacency list.
Hence at the end of each verification procedure the corresponding
prefix of the list is guaranteed to be in the correct order. This
optimization guarantees that in a subsequent verification of node
v the corresponding adjacency list is obtained according to the
topological order. This reduces the amount of nodes that are
processed in the second verification from O(d(v)) to O(2 − ℓ),
provided the topological order has not changed much meanwhile
and that the second ℓ value does not imply scanning a larger
prefix. Even thought this optimization is not always effective it
a can be implemented with no extra time overhead and it does
improve the performance in practice, see Section 6.

Note that the adjacency list of v will contain nodes u that
are not in V ′, i.e., there are nodes u ∈ V \ V ′ for which edges
(v, u) ∈ ED exist. These nodes are placed at the end of the prefix
reordering we described. Also note that an inorder traversal of
the BST containing the partial configuration of out(v) provides the
nodes in the topological ordering which is necessary for the prefix
overwrite. Hence no extra sorting is actually necessary.

Thus far in our explanation we assumed that the whole set
in(v) is processed before the set out(v) is considered. This is not
actually the case, as such a procedure would not actually obtain
O((2− ℓ) log V) time, because of its dependency on the in-degree
of v. Note that to obtain this bound we also need to reorganize a
prefix of the adjacency list of the transposed graph GT . This time
to keep it in reverse topological order. This is, likewise, done by
using the reverse inorder sequence of the BST storing the in(v)
set.

5.2. Determining the set I(v)

We will now describe the general procedure we use to deter-
mine the set I(v). Consider again the situation in the middle graph
of Fig. 3. In case the value ℓ is 0 the set I(v) = {2, 3} is rejected
by the verification procedure, because it contains two elements
and the maximum size allowed is one. However this rejection is
excessive. We could have chosen I(v) = {4}, which contains only
one element and therefore would be accepted by the verification
procedure. Recall that in this example we have out(v) = {2, 3, 6}
and in(v) = {0, 4}. This means that we need to consider a wider
range of incompatibility sets. Given an integer k we consider the
set I(v, k), which consists of the nodes u ∈ out(v) such that
s(u) < k and the nodes u ∈ in(v) such that k ≤ s(u). Recall that in
our exposition the nodes are being identified by their s(u) values.
Hence we have that in our running example I(v, 7) = {2, 3, 6},
where these nodes are obtained from out(v). The incompatibility
set we have considered so far is I(v,max(v) + 1) = I(v, 5) =
{2, 3}. Consider instead the set I(v, 2) = {4}. This set contains
only elements from in(v) and is smaller. Clearly we could also
have considered the sets I(v, 4) = {2, 3, 4} and I(v, 3) = {2, 4},
which actually contain vertices from both sets out(v) and in(v).
However these incompatibility sets have more than one element.

A schematic representation of these sets is shown in Fig. 5.

10
We need a general procedure to determine if there is some
set I(v, k) such that ℓ ≤ ∆E = 1 − |I(v, k)|. Our procedure
works by interleaving the iteration of the adjacency lists of v in
GD and in GT , i.e., we alternate between considering the nodes u
because there is an outward edge of v, (v, u) ∈ ED, and because
there is an inward edge into v, (u, v) ∈ ED. Whenever appropriate
these vertices are added to the corresponding BST, the one for
out(v) and the one for in(v) respectively. In general the search
proceeds while there is at least one value of k for which ℓ ≤

∆E = 1−|I(v, k)|. Note that we can compute the value |I(v, k)| in
O(log V) amortized time using splay trees. Hence the verification
procedure keeps track of an interval [a, b], such that any value
of k for which the desired condition holds must belong to this
interval. This interval is initialized with a = 0 and b = |V |. This
matches the fact that initially the BSTs are empty and therefore all
current I(v, k) are also empty. Whenever the process considers a
node u ∈ V ′ that is a neighbor of v, i.e., (v, u) ∈ ED, then the value
of b may need to be decreased. For example suppose that ℓ = 0
in the middle graph of Fig. 3 that we are currently considering.
Assume that we first consider the nodes 3 and 4, which are added
to the BSTs corresponding to out(v) and in(v) respectively. At this
point the values of a and b are still the initial values. Therefore
the corresponding interval is still [0, 7]. Now assume that the
algorithm needs to process the node u = 2. At this point the set
I(v, 7) contains, at least, the vertices 2 and 3. Therefore the value
of b needs to decrease. To decrease this value we consider all the
currently known positions of out(v). In this case we have {2, 3}.
Therefore b is reduced to 3. The number of elements known to be
inside I(v, 4) is computed. This value is two, therefore we need
to further reduce b to 2. The number of elements known to be
inside I(v, 2) is one. Hence b = 2. Now assume that we need to
process the node u = 0. After this new node is added to in(v) the
number of elements known to be in I(v, a) = I(v, 0) is at least
two. Therefore we need to increase the value of a. Increasing an
index is slightly different from decreasing, because this time we
consider the set of known positions in in(v) increased by 1, i.e., in
this example {1, 5}. Hence we increase a to 1. Again we verify that
the set I(v, 1) is known to have at most one element and therefore
a is kept at value 1. Hence at this point our current search interval
[a, b] is [1, 2]. The search can still proceed because this interval
is not empty. Hence assume that the search now processes node
u = 6. This node is added to the BST corresponding to out(v), but
has no impact in the value of I(v, 2). Hence the value b is kept
unaltered. An illustration of the procedure we just described is
shown in Fig. 6. Fig. 6(a) shows the reduction of position b and
Fig. 6(b) the increase of position a.

At this point there are no more nodes to consider. Therefore
the search terminates. The search ended with 1 = a ≤ b = 2.
Hence the verification process accepts the transition and node v

will be added to V ′. However an incompatibility set must first be
removed from V ′. We can only use I(v, 1) or I(v, 2), in general
we can use any integer in [a, b]. To maximize the size of the sub-
DAG it is best to minimize the number of nodes that need to be

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

5

i
t

Fig. 6. Schematic representation of range reduction [a, b]. Fig. 6(a) shows how to reduce value b and Fig. 6(b) how to increase value a.
removed. Hence we search for some integer k ∈ [a, b] such that
|I(v, k)| is as small as possible. We use the increasing operation
described in the previous paragraph. The pseudo-code for this
process in given in Algorithm 4.

This scan requires O(d(v) log V) time instead of O((1 + b −
a) log V). On the other hand whenever the interval [a, b] becomes
empty during the verification procedure, because at some point
we have b < a, the verification procedure terminates immedi-
ately by rejecting the transition. When all the known nodes in
in(v) are greater than all the known nodes in out(v) it is only
necessary to process O(2−ℓ) nodes to reach this rejecting verdict.
This is the reason our optimization technique tries to maintain
the adjacency lists of G sorted according to the topological order
and the adjacency lists of GT in reverse topological order.

1 Verify(V ′, v, ℓ)
2 a = −∞
3 b = +∞
4 while a ≤ b and
5 there are unprocessed vertexes in N(v) or NT (v) do
6 Pick the next u in N(v) and update out(v)
7 or pick the next u in NT (v) and update in(v)
8 while |I(v, a)| > 1− ℓ and a ≤ b do
9 a = Next element in in(v)

10 end
11 while |I(v, b)| > 1− ℓ and a ≤ b do
12 b = Previous element in out(v)
13 end
14 end
15 if a < b then
16 return k ∈ [a, b] that minimizes |I(v, k)|
17 end
18 return False

Algorithm 4: Pseudo code to determine I(v, k).

.3. Optimizing the initial state

In this section we describe a simple algorithm to select the
nitial state of the annealing process. We adapt an approxima-
ion algorithm for Vertex Cover. Usually the initial state of the
11
annealing process is an empty set. Still it is possible to start the
process at any other set V ′, provided the corresponding induced
sub-graph is a DAG. Hence it is possible to use a simple and fast
algorithm to choose this initial configuration, which the annealing
process further improves. In Section 4.3 we showed that the max-
DAG problem is Poly-APX-complete, see Corollary 1. This fact
results from a reduction of the Independent Set problem. There-
fore we are not focusing on an approximation algorithm for the
max-DAG, but for its complement the directed feedback vertex
set problem. The complement of an Independent Set is a Vertex
Cover. Polynomial time algorithms that obtain a 2 approximation
to VC are known, see Cormen, Leiserson, Rivest and Stein [22]
or Garey and Johnson [13] or Papadimitriou and Steiglitz [38].
We adapt this algorithm to pick an initial state for our annealing
algorithm.

Given a graph GD = (V , ED) and an ordering of the vertices
s : V ′ ↦→ {0, . . . , |V ′| − 1} we can classify edges as forward or
backward. An edge (u, v) ∈ ED is a backward edge iff s(u) ≥ s(v).
Otherwise it is a forward edge. Recall that s is a bijection. Notice
that this classification is not an intrinsic to an edge, because it is
influenced by the ordering. Different orderings provide different
classifications.

For our objectives the consequence of this classification is that
the graph GD is a DAG iff there is some ordering such that no
edge is backward. Hence our approximation approach consists
in removing vertices from GD so that the resulting graph has no
backward edges.

Consider the set of backwards edges Bs ⊆ ED and let V ′′ be a
vertex cover of the graph composed of these edges, i.e., the graph
given by (V , Bs). Note that the notion of vertex cover is usually
defined on undirected graphs so assume that after we classify the
edges its direction is ignored. Precisely, by a set cover we mean
a set of vertices V ′′ such that for any backward edge (u, v) ∈ Bs
at least one of the vertices must be in V ′′, i.e., u ∈ V ′′ or v ∈ V ′′.

Our observation is that the sub-graph induced by V \ V ′′ is a
DAG. This can easily be established. If this graph contained a cycle
then at least some edge (u, v) in that cycle would be a backward
edge and therefore either u or v would be in V ′′, which would cut
the cycle.

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

t
t
o
r
o
c
o

6

m
f

f
d
a
s
n
u
c
a
c

t
e

S
w
e
2
n
T
s
l
a
T
a
s
1

6

e

g
i
v
t
s
(
t
c
i
l
b
c
N
f
a

c
d
p
i

We use a 2 approximation algorithm to obtain V ′′ in O(V + E)
time. This does not guarantee that we obtain a 2 complement
approximation of the max-DAG problem. The reason being that
the vertex cover we obtain depends on s. Hence to obtain a 2
complement approximation we would need to check all possible
such orderings, which is impractical. Instead we use the ordering
provided by Tarjan’s algorithm. We show in our experimen-
tal study (Section 6.3) that the resulting algorithm can be far
from a 2 complement approximation. Still the resulting max-DAG
approximation is usually good.

Another approach for selecting the initial state for V ′ is to
execute a BB algorithm with a fixed number of iterations, see
Section 4.1 for a brief description of this algorithm. We refer to
this algorithm approach as the hybrid algorithm in Section 6.
This approach has a worst complexity bound than the heuristic
algorithm we have just described. However, as we will show in
the next section, it is very effective in practise for two reasons.
First and most importantly the underlying SCCs are most of the
time small, which makes approaches such as BB feasible. This
has the added benefit that, contrary to SA, the BB algorithm may
actually terminate. The SA algorithm never knows whether it
has reached the global optimum, whereas BB does, given enough
time. For small SCCs this is very likely to occur. The second
important consequence of this hybrid approach, is that it provides
a more efficient time allocation among SCCs, because all SCCs get
an initial short slot of time. If the SCC is simple enough, this slot
of time may actually be enough for BB to find an optimal solution,
hence, the underlying BB algorithm terminates early, avoiding
hogging the CPU unnecessarily. Otherwise the time bound is
exceeded and the SCC passes to the SA phase.

5.4. Ordering reset

Resetting the search state is a technique that is sometimes
combined with simulated annealing searches to avoid getting
stuck in local maxima. In general a new random state is chosen
and the procedure continues from there. A global reset where
the current solution is discarded did not proved to be useful,
in the graphs we tested. When the SA algorithm got stuck in a
local maxima, because these maxima where highly probable, the
restarts did not obtain better results. Otherwise the SA algorithm
did not get stuck and therefore it was not necessary to employ
restarts. Still we did found ordering resets to be useful in miti-
gating the shortcomings of the local search procedure described
in Section 3. As mentioned in that section we keep a topological
ordering s of the DAG induced by V ′. It is this ordering s that
we reset. Hence after a certain amount of operations we use an
algorithm to determine another topological ordering of V ′. This
algorithm is a modified DFS and therefore requires at most O(V+
E) time. This reset is executed only after 2× (V + E) vertices are
tested. This means that essentially the reset operations amortize
to a constant time overhead for each vertex v that is tested.

The reordering algorithm is the standard algorithm that sorts
he vertices by decreasing finishing times, the only modification
hat we perform was to try to choose the restarts close to regions
f the graph that have already been discovered. There is some
andomness involved in the process, namely to avoid always
btaining the same ordering. In particular we randomly choose to
ompute the DFS on G or in GT and do not always use the same
rder for the neighbors of a vertex.

. Experimental evaluation

In this section we evaluate the previously described algorith-
ic techniques. More precisely, this study aims to answer the
ollowing main questions:

12
1. How does the temperature parameter affects the perfor-
mance of the SA-based approach (Section 6.2)?

2. How effective is the heuristic proposed in Section 5.3 in
identifying a high quality initial solution (Section 6.3)?

3. How does the graph complexity affects the performance
of combinatorial approaches, and for which graph sizes do
SA-based approaches outperform them (Section 6.4)?

4. How does the proposed SA approach perform in a wide
variety of both synthetic graphs (Section 6.2, Sections 6.3
and 6.4) and real-world graphs (Sections 6.5 and 6.6)?

5. How does the proposed SA algorithm compares against
alternative algorithmic approaches (Section 6.6)?

To answer these questions we developed two baselines. The
irst one is a BB approach (see Section 4 for implementation
etails). Despite BB does not exploring the entire set of solutions,
s it prunes paths that are deemed to not improve the current
olution, it is a combinatorial approach and still requires expo-
ential time. The second baseline is a Greedy approach, which,
nlike our SA algorithm presented in Section 3, never explores
onfigurations that reduce the quality of the current solution
nd, as we will show further in our evaluation, is thus prone to
onverge to local optima instead of the global optimum.
Furthermore we compare the solution we proposed against

wo state-of-the-art approaches also based on SA, i.e., Galinier
t al. [15] and Tang et al. [16].
All algorithms were implemented in C/C++, including the prior

A-based solutions (Galinier et al. [15] and Tang et al. [16]) for
hich we used the original implementation provided by Tang
t al. [16]. All experiments were executed in a Intel Xeon (E5-
660v4 @ 2.00 GHz) dual socket server with 64 GB of RAM, run-
ing Ubuntu 18.04 LTS with kernel versions 4.15.0-144-generic.
he graphs are read from a file, where the first line contains the
ize of the graph (number of vertices and edges) and the following
ines contain the adjacency lists. If not stated otherwise, we test
t least 28 samples for each combination of algorithm and graph.
he scatter plots present all the points collected from each sample
nd the box/whiskers plots present statistics from aggregating all
amples (from top to bottom): maximum, 90% percentile, median,
0% percentile and minimum.

.1. Graphs used in this experimental study

This section describes the various types of graphs used in our
valuation study.
Torus graphs. The torus graphs are defined according to a

iven parameter s. The set of vertices consists of pairs of modulo
ntegers, i.e., V = {(i, j) | i, j ∈ N0 ∧ i, j < s} = Zs × Zs Each
ertex (i, j) has exactly two edges, an edge to (i+1, j) and another
o (i, j + 1). Note that we assume that the arithmetic is modulo
, therefore if i + 1 = s then the destination vertex is actually
0, j). Due to this, there exists a cycle for each column j. Likewise
here are a set of edges to (i, 0), when j + 1 = s. These edges
reate cycles for each line i. Hence to obtain a DAG sub-graph V ′
t is necessary to exclude at least one vertex per column and at
east one vertex per line. In short, a total of s vertices (that could
e visually seen as a diagonal) need to be excluded in order to
onstruct the max-DAG. Fig. 7(a) depicts an example for s = 3.
ote that the arrangement of the vertices matches the previous
ormula. One can see that a set containing 1 vertex per column
nd 1 per line is a minimum feedback vertex set of that graph.
Greedy adverse graphs. The second class of graphs that we

onsider are Greedy adverse graphs (gag) that are synthetically
esigned to serve as hard/adversarial problems for greedy ap-
roaches. More in detail, these graphs are designed as presented
n Fig. 7. These graphs are designed to contain k local optima and

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

d
v

o
F
l
w
f
a

t
o
o
D
t
[

a
a
p
l
w
l
a
T
s
o

t
u
T
w
t
(
a
t
i
t
o
a
b
v
c
m
c
t
e
T
a
h
c

Fig. 7. Fig. 7(a) depicts a Torus (tor) graph with s = 3. The minimum feedback vertex set must contain one vertex per column and one vertex per line (e.g., the
iagonal). Figs. 7(b) and 7(c) illustrates how the gags are constructed. Note that edges in the gag are bi-directional. The max-DAG in gags is composed by all the
ertices in the global optimum.
t
a

T
m
m
t
f
r
w
(
a
b
b
n

s
D
m
F
t
s
m
y
t
t
(

m
A
n
c
c
m
u
t
w
—
a
T
e
e
(
r
m
c
c

ne global optimum, depicted respectively above and below in
ig. 7(b) and 7(c). Each of k local optima is a set of l vertices,
abeled in the figure as lji where i ∈ [0, l − 1] and j ∈ [0, k − 1],
ith no edges among them. The global optimum is composed by
× l vertices, labeled in the figure as gi where i ∈ [0, f × l − 1]
lso with no edges among them.
The parameter d is used to control the degree of adversity of

he graph to greedy algorithms, which corresponds to the number
f vertices that need to be discarded from the local optimum in
rder to include one vertex of the global optimum (and attain a
AG). To ensure this, each vertex lji is bidirectionally connected
o the vertices with identifiers g(i+d′)+f ′×l mod f×l, where f ′ ∈
0, f − 1], d′ ∈ [0, d − 1]. Vertices from different local optima
re also bidirectionally connected, i.e., a vertex lji is connected to
ll vertices lmi , m ∈ [0, k− 1],m ̸= j. Thus, a DAG constructed by
icking vertices from the local optima cannot contain more than
vertices. Fig. 7 provides two examples of this class of graphs,
here we have set l = 2, f = 2, d = 2, k = 1 (Fig. 7(b)) and
= 2, f = 2, d = 1, k = 2 (Fig. 7(c)). Note that these graphs,
s for the case of the torus graphs, have known global optima.
his knowledge can be exploited to evaluate how far away the
olutions output by the algorithms being evaluated are from the
ptimum solution.
Conflict graphs of TM applications. In our evaluation (Sec-

ions 6.5 and 6.6) we also make use of graphs obtained when
sing real-world applications, namely applications that rely on
M to regulate concurrent access to shared data. In the following
e explain more in detail the TM applications used and how
he graphs were generated. The transaction abstraction in TM
and in databases [39]) is used to encapsulate a set of memory
ccesses (i.e., reads/writes) generated by concurrent threads and
hat need to be executed with atomic semantics [40] (i.e., intu-
tively, equivalently to having taken place instantaneously). If two
ransactions concurrently access the same memory regions, and
ne of the accesses is a write operation, then the two transactions
re said to conflict. The conflict relations among transactions can
e naturally encoded using a, so called, conflict graph, whose
ertices are represented by transactions and whose edges encode
onflict relations between pairs of transactions. One of the funda-
ental results in the theory of transactional computing is that a
oncurrent execution history of a set of transactions is guaranteed
o be serializable, i.e., explicable via a corresponding a sequential
xecution, iff the corresponding conflict graph is acyclic [41].
hus, solving the FVS problem for a transaction conflict graph
llows for identifying the minimum number of transactions that
as to be aborted in order to ensure that the corresponding
oncurrent execution is serializable.
 [

13
The TM graphs adopted in this study were constructed using
races of read-/write-sets produced during the execution of two
pplications: TPC-C [42] and Genome [43].
TPC-C [42] is a benchmark originally proposed for On-Line

ransaction Processing (OLTP) in database systems. This bench-
ark portrays the activity of a wholesale supplier and includes a
ix of five concurrent different transactions operating over nine

ables. In this study we set the distribution of transactions as
ollows: 45% New Order, 43% Payment and 4% of each of the
emaining transactions (Order Status, Delivery and Stock Level),
e also set the number of warehouses to 1 (tpcc graph) and 30
tpcc30 graph). For our study, we use a porting of TPC-C to oper-
te in a TM environment, which maintains the tables prescribed
y the TPC-C benchmark via in-memory data-structures. This TM-
ased TPC-C implementation has been already used to evaluate a
umber of TM implementations [44,45].
Genome is one of the benchmarks of the STAMP benchmark

uite [43] for TM systems. Genome analyzes a large number of
NA segments and matches them, using the Rabin–Karp string
atching algorithm, to reconstruct the original source genome.
irstly, a set of unique segments is created. Afterwards, each
hread tries to remove a segment from a global pool of unmatched
egments and add it to its partition of currently matched seg-
ents. By means of using transactions, threads can concurrently,
et safely, add to the set of unique segments and remove from
he global pool of unmatched segments. We set the parameters of
his benchmark as follows -g16384 (number of nucleotides) -s64
sampled nucleotides) -n1048576 (number of segments).

We used TinySTM [46] as our TM implementation and instru-
ented it to log into a file the read and write set of transactions.
fterwards, we process these logs to generate the graphs. The
umber of vertices in the graphs correspond to the number of
oncurrent threads used in the benchmark. In order to collect the
onflict graphs, we let each thread execute a transaction opti-
istically (i.e., without conflict detection at the TinySTM level)
ntil they all reach commit time. At this point we log to file
he read-set and write-set of all the concurrent transactions —
hich we use offline to generate an instance of a conflict graph
and rely on the TinySTM commit time logic to resolve conflicts

nd abort/restart, if needed, conflicting transactions. Note that
inySTM commit logic does not use a graph-based approach to
nsure consistency, but a simple/lightweight heuristic that, unlike
xact solutions of the FVS problem, can generate spurious aborts
i.e., unnecessarily abort transactions). Yet, graph-based concur-
ency control mechanisms that adopt a transaction execution
odel analogous to the one used in our work to extract the
onflict graphs (and rely on FVS/max-DAG algorithms to resolve
onflicts) do exist in the recent literature in the area Ding et al.

11].

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607
Fig. 8. Finding the max-DAG for a torus graph. Higher is better. Simulated annealing works better using colder temperatures in this class of graphs. As shown, SA
hottest drops the quality of the solution due to the temperature being set excessively high. The Greedy approach does not search for solutions that may reduce the
quality of the solution, hence, being prone to be locked in some non-optimal solution. The temperatures used can be found in Table 3. The left y-axis shows the
normalized quality of the obtained solutions w.r.t. the best possible solution, while the right y-axis shows the size of the current solution.
Table 2
Graphs generated using TM-based applications.

tpcc tpcc30 genome (1) genome (2)

Total number
of vertices

4096 4096 4096 4096

Total number of edges 4745007 715937 4200 50218
Number of complete SCCs 19 129 3139 586
Number of non-complete
SCCs

1 3 124 1

Tot. no. vertices in
non-complete SCCs

1876 2401 564 3033

Tot. no. edges in
non-complete SCCs

37707 453547 1253 36092

Avg. densitya of
non-complete SCCs

0.01071983 0.02823978 0.00461070 0.00392473

Std. Dev. density of
non-complete SCCs

N/A 0.37376849 0.1368112469 N/A

aThis value is a weighted average of all the non-complete SCCs in the graph (i.e., SCCs with more
vertices have higher weight).
Table 2 reports the characteristics of four graphs, two gener-
ated using TPC-C and two using Genome, which we are going to
use in the rest of this evaluation study. The four graphs were gen-
erated using 4096 concurrent threads, which yields graphs that
contain 4096 vertices. As we can see by the data in the table, these
graphs are quite heterogeneous for what concerns the number of
SCCs that they contain (ranging from 20 to more than 3000), as
well as for the characteristics of their SCCs. In particular, these
graph contains a significant number of complete SCCs, which are
composed either by clusters of mutually conflicting transactions
or by individual transactions that did not develop any conflict.
The table reports information also describing the characteristics
of the non-complete SCCs included in these graphs. By the data
in the table, we note that the topologies of non-complete SCCs
vary significantly, when evaluated in terms of total number of
vertices and edges that they contain, as well as based on their
average density, where we define as density of an SCC the ratio
between the number of edges in that SCC divided by the number
of edges of a complete SCC with the same number of vertices
(i.e., |V |2 − |V |)

Note that this class of graphs does not have a priori known
solutions. Hence, in Section 6.5 we will report the time that
a given algorithm takes to reach (or surpass) the best solution
identified by any run of any algorithm.

Other graphs used in previous works. Finally, in Section 6.6,
in which we compare with previous SA-based solutions, namely,
the works of Galinier et al. [15] and Tang et al. [16], we employ
the data sets originally used in those works, which can be found
14
Table 3
Temperatures used in gag and tor graphs.
Designation
in plots

Initial Final

∆E p T ∆E p T

Hottest 2 0.1 0.861 1 0.001 0.112
Hotter 1 0.009747 0.176 1 0.0001 0.0814
Hot 1 0.0078 0.167 1 0.00008 0.0793
Warm 1 0.00585 0.158 1 0.00006 0.0768
Cold 1 0.000001 0.0528 1 0.00000001 0.0391

The temperature T decays linearly during the execution and it is calculated
in function of ∆E and p as follows: T = ∆E/(log2(1/p)− 1). More details on
simulated annealing can be found in Section 4

in Pardalos et al. [47], as well as the above described graphs
generated by TM applications.

6.2. Tuning the temperature

We start by evaluating the impact of the temperature in SA
algorithm when used in large scale torus and greedy adverse
graphs. To this end, we consider five different settings for the
temperature, whose parameters are defined in Table 3.

Fig. 8 reports the results obtained with the Torus graphs when
setting the scale parameter s to 128 (Fig. 8(a)) and 512 (Fig. 8(b)).
In addition to the SA algorithm presented in this work, we include
in these figures also the BB approach, — an exact method (see Sec-
tion 4) that requires exponential time — and a greedy algorithm

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

(

t
(
h
i
s
t
s
c
f
g

r
w
a
t
C
l
‘
r
t

Table 4
Greedy adverse graph (l = 32, f = 4, d = 5 and k = 11).

Time interval

[0 s,1 s[[1 s, 5 s[[5 s, 20 s]

<l =l >l =g <l =l >l =g <l =l >l =g

SA hottest 0.050 0.709 0.100 0.141 0 0 0 1 0 0 0 1
SA hotter 0.032 0.794 0.143 0.031 0 0.810 0 0.190 0 0.825 0 0.175
SA hot 0.035 0.787 0.142 0.036 0 0.810 0 0.190 0 0.821 0 0.179
SA warm 0.033 0.786 0.149 0.032 0 0.807 0 0.193 0 0.816 0 0.184
SA cold 0.035 0.767 0.162 0.036 0 0.783 0 0.217 0 0.812 0 0.188
Greedy 0.394 0.455 0.151 0 0.285 0.533 0.182 0 0.283 0.532 0.185 0
BB 0.006 0.994 0 0 0 1 0 0 0 0.885 0.115 0

The table contains the distribution of solutions over time (80 samples), organized as follows: <l, solutions worse than local optima; =l,
solutions at some local optimum; >l, solutions better than local but worse than global optimum; and, =g, global optimum solutions.
g
t
t
c
l
b

p
p
S
i

a
s
i

that never explores configurations that would lower the quality
of the current solution.

The results show that the setting of the temperature can
impact significantly the quality of the obtained solution and that,
for the hottest considered configuration, the convergence speed
can be quite severely hindered. In fact, in torus graphs, colder
temperatures provide the best results, strongly outperforming
every other alternative.

The BB method runs out of memory in the largest scale Torus
(Fig. 8(b)) and is stuck in a solution that is approximately 4% from
away from global optimum in the smaller scale Torus (Fig. 8(a)).
In both graphs, the Greedy solution, as expected, is trapped in a
local minimum that is approximately 6%/4% away from the global
optimum for the small/large scale torus graph, respectively.

Besides the Torus graph, we also experimented using different
temperatures with the greedy adverse graph, whose results are
shown in Table 4. This gag as the following settings: l = 32, f =
4, d = 5, k = 11. We collected the current DAG size over execu-
tion time and reported the distribution of solutions worse than
local optima (<l), at some local optimum (=l), better than the
local but worse than the global optimum (>l), and at the global
optimum (=g). The results are then split in 3 time intervals, from
the start of the run until 1 s, 1 s to 5 s and after 5 s until the end of
the run (at ∼20 s). For a given solution, and a given time interval,
the larger the probability mass that is concentrated on top quality
configurations (i.e., closer to =g) the better the performance of
the algorithm. We marked with a gradient of colors the column
=g to better visualize the quality of the returned DAGs. Color
green indicates that the global optimum is identified with high
probability, while yellow and red indicate lower probabilities
i.e., the algorithms are reporting inferior solutions).

Let us first focus on the period [5 s, 20 s[. By using ‘‘hottest’’
emperature settings, the SA identifying the global maximum
=g) in all the runs (hence, probability 1 is reported). Indeed, SA
ottest had already identified the global maximum in all the runs
n the [1 s, 5 s[interval. Conversely, SA with colder temperature
ettings is more likely to converge to some local optimum. In
he case of SA cold, 81.2% of the obtained solutions had the
ame quality as some local optimum (=l). Greedy also quickly
onverges into some local optimum (=l). However, differently
rom SA algorithms, Greedy was not capable of obtaining the
lobal optimum.
In the period [0 s, 1 s[, one can see that all SA approaches

eport approximately the same distribution. The reason, as we
ill show in the next section, is the initialization process, which,
t least in this type of graphs, tends the increase the likelihood
hat the local search process becomes trapped into local minima.
older temperatures have more difficulties in ‘‘escaping’’ from
ocal minima (Greedy never finds the global optimum), while the
‘hottest’’ temperature, which will accept exploring solutions of
elatively lower quality, succeeds in avoiding this issue. The dis-
ribution in the [1 s, 5 s[interval is not much different from then
15
one in [5 s, 20 s[, which indicates that the different algorithms
have already converged.

6.3. Choice of the initial solution

In Section 5.3 we proposed to adopt as initial solution a
configuration obtained via a 2-approximation of the vertex cover.
Fig. 9 illustrates the trade-offs associated with such initialization
method in SA and Greedy, which are compared against solutions
that start constructing the max-DAG from a single vertex (se-
lected at random). The plots are obtained two Torus graphs of
different scales (s = 128 and s=512). The plots clearly show that
the algorithms initialized with this heuristic manage to identify
higher quality solutions in a shorter period of time. It is also
interesting to observe that in Greedy, which is not allowed to
drop the quality of its current solution, the adoption of this
initialization strategy, although beneficial in the short term, may
degrade the final solution.

In Fig. 9(a) ‘‘Greedy (no init)’’ manages to surpass ‘‘Greedy’’
with initialization after ≈15 s, as ‘‘Greedy (no init)’’. In the larger
raph (Fig. 9(b)) such effect is only observed after much more
han 15 min, which is the time allowed for each of the samples
o run, i.e., it is visible that the ‘‘Greedy (no init)’’ still has not
onverged to some maximal solution. However, if the time is
imited, as in this case, the initialization may provide significant
enefits.
To conclude the study on the solution initialization, Table 5

resents a study on the same instance of a greedy adverse graph
resented in the previous section. We will now focus on the
A hottest, SA cold and Greedy approaches, with and without
nitialization.

Analogously to the Torus graphs, the initialization in theGreedy
pproach has the adverse effect of hampering the quality of the
olutions to which Greedy converse. In fact, after 5 s, Greedy
dentifies solutions with quality better than a local optimum (>l)
with probability 0.185, while ‘‘Greedy noinit’’ 63.4% of the times.
A similar pattern can be observed also in the other time intervals,
i.e., [0 s, 1 s[and [1 s, 5 s[, which indicates that the Greedy
approach has a higher probability to converges quickly to some
solution and to remain stuck with that solution until the end of
the run. Recall that, as explained in Section 6.1, this type of graphs
is constructed in such a way that, in order to increase the quality
of the solution identified in the long term, it is necessary to accept
in the short term solutions of lower quality — which makes the
performance of greedy algorithms particularly sensitive to the
choice of the initial configuration.

Although the initialization step is not affecting SA hottest, it
does affect SA cold. SA cold without initialization obtains the
global optimum 37.7% of the times, while SA cold only obtains
the global optimum 18.8% of the times. This can be explained
by considering that colder temperatures are less prone to accept

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

p
i
i

Table 5
Same graph as in Table 4 (gag l = 32, f = 4, d = 5, k = 11).

Time interval

[0 s,1 s[[1 s, 5 s[[5 s, 20 s]

<l =l >l =g <l =l >l =g <l =l >l =g

Hottest noinit 0.056 0.666 0.134 0.144 0 0 0 1 0 0 0 1
Hottest 0.050 0.709 0.100 0 0 0 0 1 0 0 0 1
Cold noinit 0.040 0.563 0.312 0.086 0 0.576 0 0.424 0 0.623 0 0.377
Cold 0.035 0.767 0.162 0.036 0 0.783 0 0.217 0 0.812 0 0.188
Greedy noinit 0.318 0.110 0.571 0 0.251 0.119 0.631 0 0.247 0.119 0.634 0
Greedy 0.394 0.455 0.151 0 0.285 0.533 0.182 0 0.283 0.532 0.185 0

Added the variants without initialization (solutions start from any vertex and then construct the DAG).
Fig. 9. Finding the max-DAG for a torus graph (note that time in x-axis is in logscale). The proposed initialization method allows for effectively enhancing the initial
erformance of the algorithm with both SA cold and Greedy. With Greedy, the initialization methods leads to a degradation of the quality of the final configuration
dentified algorithm for the smaller scale graph (Fig. 9(a)). Conversely, the time taken by SA cold to reach the global optimum is roughly unchanged with or without
nitialization.
Fig. 10. Time taken by different algorithms to identify the optimal solution (note
the logscale for the y-axis). At 49 vertices (tor_7), BB is clearly slower than SA.

lower quality configurations (i.e., thus being more prone to be-
come stuck in a local minimum) and, as already discussed for the
case of Greedy, the proposed initialization heuristic tends, with
this graph, to increase the likelihood to remain trapped in local
minima.

6.4. Evaluation of SA, BB and greedy algorithms on small scale
graphs

As we will see in the next section, in real-world applications
the target graphs are often composed by a number of SCCs that
have heterogeneous sizes. In the TM applications considered in
16
Section 6.5, for instance, the corresponding conflict graphs tend
to contain a small number of large SCCs (containing several
thousands of vertices) and a much larger number of relatively
small SCC (i.e., with less than 16 vertices).

Motivated by this observation, in the following we evaluate
the performance of the SA, BB and Greedy algorithms with graphs
that have a smaller scale than the ones considered so far.

We start by presenting the solutions obtained in small graphs
by SA, BB and Greedy algorithms. Fig. 10 presents the perfor-
mance of the different algorithms for the torus graph from s = 2
up to s = 7. As shown in this figure, BB is capable of finding the
optimal solution in time comparable with the other algorithms
for s < 7, with the exception of SA cold, which provides the
optimal solution in less time for s > 3. For example, SA cold
takes ∼ 60× less time than BB in s = 6, but BB takes a similar
amount of time to discover the optimal solution when compared
with SA hottest. It is worth noting that in this scenario (where the
problem is tractable), BB has the advantage of knowing when to
stop (i.e., whether it has already identified the global optimum),
while the other algorithms only stop after having exhausted their
time budget.

Fig. 11(a) depicts the obtained solutions for a torus with s =
16. In this scenario, BB takes a considerable amount of time to
complete its execution (≈17 min), and, as one can see, early
truncating the BB execution may result in poor solutions (below
the quality of SA or Greedy). SA and Greedy manage to get to the
optimal solution under ≈1 s.

Fig. 11(b) considers a gag with 32 vertices in which the d
parameter is set to a relatively high value, i.e., 3. Recall that this
parameter controls how likely it is for Greedy or SA approaches
with cold temperature to be trapped in local optima. As expected,
in these settings, SA with the hottest temperature settings is the

best performing solution; SA cold and Greedy are the 2nd best

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

w
c

6

f

i
S
t
t
b
t
i
v
b
v
O
m
—

s
c
o
u
c
o
i
t
e
f
i
o
o
i
F
s
c
t
h
t

l
i

Fig. 11. BB takes a considerable amount of time to get to the optimal solution even in modest size graphs. The temperatures used for SA can be found in Table 3.
m
a
b
p
a
w

t
u
w
t
H
u
a

6

p
F

c
e
j
o

performing solutions, achieving similar performances. BB is by far
the worst solution.

Overall, the results discussed in this study clearly show that
hile, on the one hand, BB does not scale, it can actually be quite
ompetitive with small scale graphs.

.5. Conflict graphs generated by TM applications

In this section we evaluate SA cold and BB in graphs collected
rom TM workloads, described in Section 6.1.

Given that, as already mentioned when presenting the table
n Table 2, these graphs contain a significant number of complete
CCs (i.e., SCCs in which each vertex is connected to every other in
he same SCC), we included in all tested algorithms an optimiza-
ion that detects in constant time whether an SCC is complete
efore starting to execute the actual optimization algorithm. To
his end, we simply verify whether the number of edges (|E|)
n the SCC equals |V |2 − |V | (where |V | denotes the number of
ertices in the graph). This is possible since in this scenario it can
e excluded the existence of edges that start and end in the same
ertex (a transaction can only conflict with another transaction).
nce a complete SCC is identified, the optimal solution of the
ax-DAG problem for that SCC is trivially anyone of its vertices
sparing the cost of running any optimization algorithm.
Besides the SA cold and BB already evaluated in the previous

ections, we also created a hybrid approach that combines both SA
old and BB. All algorithms are given a budget, i.e., a fixed number
f operations to execute. In the case of SA cold, the budget is
sed to interpolate the linear decay of temperature and in the
ase of BB it is used to stop the computation after that number of
perations have been done (a timeout is also possible). The key
dea behind Hybrid is to first execute BB with a small budget (in
hese experiments 128 operations per SCC) and then continue the
xecution using SA with an initial solution computed by BB. In
act, SA cold can only stop after having exhausted its budget, as
t does not store any state of previous solutions and has no way
f knowing how far away the current solution is from the optimal
ne. On the other hand, BB can determine exactly when to stop, as
t either explores the solution space or bounds bad configurations.
or this reason, if an SCC is simple enough for BB, then BB will
top much earlier than SA cold. However, if some SCC is too
omplex, then BB will probably take much longer (exponential
ime) than SA cold to reach a ‘‘good enough’’ solution. With the
ybrid approach we aim to strike a good trade-off between these
wo algorithms.

Fig. 12 presents a study on graphs generated from TM work-
oads. The absolute number of vertices in the current solution
s reported on the right y-axis, whereas the left y-axis reports
17
the quality of the current solution normalized to the best solu-
tion (i.e., the largest DAG found across all solutions). The x-axis
presents the time that the solution takes to reach the solution
quality in the y-axis.

The top plots show graphs from TPC-C with different workload
configurations. On the top-left plot, the hybrid approach manages
to reach the best solution faster than the other two solutions. The
low BB performance is due to its poor efficiency when processing
complex SCCs, SA cold is significantly better than BB and appears
to be slowly approaching hybrid. The top-right plot tells a similar
story, but in this case SA cold obtains, between ∼ 20 and ∼ 50
illiseconds, better solutions than Hybrid. Similar effects can
lso be observed in the bottom-left plot. Hybrid is the overall
est performing solution, being outperformed only in the initial
hases of some runs by SA cold. However, in this case, the SCCs
re much simpler to solve, which makes BB more competitive
hen compared to the previously analyzed scenarios.
Finally, the bottom-right plot shows the importance of tuning

he budget parameter of the Hybrid algorithm. Because Hybrid
ses an initial budget of 128 operation to obtain an early solution
ith BB, which, in this case, is a too short budget, Hybrid fails
o obtain a good solution to initialize SA cold with. In this case,
ybrid behaves very similarly to SA cold, which is actually good
p to the ∼ 9 minutes point. Soon after this point, the ‘‘pure’’ BB
pproach finally finds a better solution.

.6. Comparison with other SA-based algorithms in the literature

To the best of our knowledge there exist two works that
roposed simulated annealing algorithms to solve the minimum
VS problem, namely, Galinier et al. [15] and Tang et al. [16].
We obtained the original code from Tang et al. [16], which

ontained also the implementation of the approach by Galinier
t al. [15]. Both these algorithms are implemented in C/C++,
ust like the solution presented in this paper. Besides the graphs
f Tang et al. [16] (data set was collected by Pardalos et al. [47]2),

we also evaluate all the considered solutions using the TM conflict
graphs presented in Section 6.1.

We start by reporting in Table 6 the average and standard
deviation over 28 runs of the number of vertices included in
the solution by each solution on each considered graph (one
graph per row). The input graph is shown in the leftmost column
of Table 6. The results reported in Table 6 were obtained by
allocating a fixed amount of time, namely 1 s, to each solution. In
this case we are considering the FVS problem, recall that smaller

2 Publicly available at http://mauricio.resende.info/data/

http://mauricio.resende.info/data/

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

T

n
t
w
e
t
c

t
t
e
d
t
α

Fig. 12. Study on graphs created from Transactional Memory (TM) transaction dependencies (Read/Writes and Write/Write conflicts) in commonly used applications.
he TM implementation used is TinySTM by [46]. All graphs have 4096 vertices and a variable number of complete/non-complete SCCs and edges.
umerical values imply better quality solutions. In this table,
he last 4 rows correspond to the TM graphs (see Section 6.1),
hereas the other rows correspond to graphs originally used to
valuate the solution by Tang et al. [16]. For these graphs, the
able reports only the number of vertices and edges that they
ontain.
The SA approach proposed in this work is configured with

he cold and warm temperatures shown in Section 6.2. As for
he approaches by Galinier et al. [15] and Tang et al. [16], we
mploy the default parametrization defined in the code. In more
etails, Galinier et al. [15] has two parameters to control the
emperature, namely, the initial temperature, T0, and a parameter,
, that regulates the geometric decay over time. T0 is set to 0.6

and α to 0.99. Tang et al. [16] has an extra parameter for the prob-
ability distribution that controls how often a move (i.e., a possible
modification to the current DAG) is picked. This parameter, θ , is
set to 5. There are two other parameters to control the number
of iterations. The parameter for the number of trials is set to
5× |V |. These algorithms repeat a trials step until their solutions
stop improving. However, given that we are using a time limit as
stop condition, to ensure a fair comparison, the parameter that
regulates how many times the trials step need to be repeated is
set to infinity (i.e. until the program receives a timeout).

Table 6 shows that ‘‘SA cold’’ and ‘‘Hybrid’’ yield FVSs that
are, in absolute sizes, smaller consistently smaller than all the
considered baselines (except for the smallest considered graph,
where the differences are anyway negligible). Considering the
average of all graphs, SA cold obtains FVSs 23.4% smaller when
compared to Tang et al. [16], with the largest gains achieved in
18
the graph |V |, |E| = 1000, 3000, where the Hybrid and SA cold
produce approximately 2×% larger FVSs. Regarding the remaining
approaches, SA cold obtains FVSs 28.2% smaller than Galinier et al.
[15], 11.2% when compared to Greedy, 15.5% when compared to
SA warm and has very similar FVSs to Hybrid (< 0.01% difference
on average across all graphs).

Fig. 13 provides us with a different perspective on the perfor-
mance of the compared solutions, by reporting the distribution of
the percentage of distance from optimum (where the optimum is
defined as the best solution identified by any algorithm) achieved
by each solution when considering three different time budgets,
namely 10 ms, 100 ms and 1 s. Unlike the data in Table 6, which
reports data on the absolute sizes of the FVS identified by each
algorithm, the plot in Fig. 13 allows us to estimate how far away
each approach is relatively to an idealized exact solution. This
perspective allows for clearly visualizing the benefits provided by
the approach presented in this work across different time scales
and considering different statistical indicators. More in detail,
for the time limits 10 ms, resp., 100 ms and 1 s, SA cold is on
average closer to the minimum FVS by a factor of 1.4×, resp.,
9.3× and 13.3× than the solution by Tang et al. [16]. Similar gains
are observed also comparing the solution quality at different
percentile levels. For instance, considering the 95-th percentile,
the relative improvement of SA cold vs Tang et al. [16] is 1.6×,
9.6×, and 10.8× better at 10 ms, 100 ms and 1 s, respectively.

7. Conclusions and further work

In this paper we studied the feedback vertex set problem
in directed graphs. We approached the problem from its dual

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607
Table 6
The table reports the average size of the FVS identified by the algorithms of [15], [16], SA warm, SA Cold and hybrid with a 1 s time limit.
The smallest average FVS size is marked in green , the maximum is marked in red . The algorithms are given 1 s to output the result.

Graph Galinier et al. Tang et al. Greedy SA warm SA cold Hybrid

|V |, |E| Avg dev Avg dev Avg dev Avg dev Avg dev Avg dev

50,100 3.0 0 3.0 0 3.6 0.49 4.1 0.94 3.1 0.30 3.1 0.22
50,150 11.3 0.64 9.5 0.50 11.2 1.01 11.6 0.92 9.8 0.70 9.8 0.54
50,200 17.3 0.70 15.5 0.50 15.3 1.67 15.8 1.44 13.2 0.40 13.0 0
50,250 21.6 0.86 19.0 0.50 20.4 1.31 20.8 1.34 17.4 0.57 17.5 0.80
50,300 24.1 0.54 21.9 0.30 23.3 1.10 22.2 1.60 19.2 0.40 19.2 0.40
50,500 33.0 0.67 31.2 0.36 30.9 0.91 31.2 1.83 28.1 0.30 28.1 0.30
50,600 35.6 0.49 34.4 0.48 35.5 1.16 35.6 1.36 32.0 1.02 31.6 0.74
50,700 36.8 0.40 35.1 0.44 35.8 1.41 36.2 1.44 33.3 0.43 33.5 0.80
50,800 38.3 0.64 37.9 0.36 38.7 0.78 38.2 1.81 34.1 0.30 34.1 0.22
50,900 38.8 0.43 38.1 0.30 39.5 0.59 38.7 1.93 36.1 0.30 36.1 0.30
100,200 12.4 0.48 10.1 0.22 10.4 0.66 13.0 1.48 9.9 0.79 10.0 0.80
100,300 29.0 0.95 24.0 0.74 22.6 1.39 24.4 2.03 17.6 0.66 18.1 0.86
100,400 38.5 0.87 32.8 0.87 28.8 1.50 30.7 2.17 23.8 0.68 24.1 0.83
100,500 49.0 0.74 43.2 0.93 39.9 1.84 40.9 1.92 33.7 0.79 33.8 0.83
100,600 55.1 0.74 49.5 0.59 43.2 1.12 47.0 2.66 38.0 0.89 38.3 1.00
100,1000 70.5 0.80 67.0 0.74 61.4 1.74 62.0 2.26 54.4 0.73 54.7 0.71
100,1100 71.9 0.96 68.1 0.70 64.5 1.40 63.5 2.42 55.7 0.78 55.8 0.87
100,1200 74.0 0.59 70.6 0.73 65.4 1.93 66.3 2.26 57.8 0.89 58.7 1.01
100,1300 75.5 0.59 72.5 0.97 67.7 1.31 68.8 2.46 61.5 1.12 61.2 0.87
100,1400 76.3 0.71 73.6 0.49 68.9 2.02 69.5 2.66 61.7 1.06 61.7 0.95
500,1000 84.2 1.44 59.1 2.17 42.3 1.52 52.4 3.62 36.9 2.06 36.0 1.34
500,1500 174.0 2.87 128.9 2.97 87.1 3.25 99.5 5.82 72.2 2.03 73.0 2.47
500,2000 238.2 2.48 196.4 2.22 129.7 3.55 148.8 5.56 112.1 1.88 112.0 2.20
500,2500 281.4 2.60 243.4 2.85 166.8 3.86 183.7 6.57 144.6 2.06 143.4 3.07
500,3000 314.6 2.06 278.2 3.20 203.0 4.27 215.0 5.47 172.8 2.51 173.6 2.91
500,5000 379.9 1.76 357.5 2.71 286.4 4.83 293.7 3.69 248.6 2.82 248.8 2.91
500,5500 391.1 1.47 371.1 1.40 301.7 4.29 310.6 5.54 264.6 2.29 264.5 3.09
500,6000 398.3 1.52 381.2 1.90 311.5 3.49 318.5 5.51 277.7 2.33 276.0 3.49
500,6500 403.9 2.90 389.8 1.08 323.1 4.74 330.1 7.47 288.2 1.77 288.4 3.04
500,7000 410.7 1.42 398.3 1.26 336.3 4.26 342.3 5.25 297.5 2.62 297.6 2.22
1000,3000 372.7 3.10 287.8 3.25 169.9 3.66 207.9 7.47 149.8 3.87 149.0 2.93
1000,3500 438.6 4.57 347.0 3.79 205.7 5.22 247.3 5.64 183.3 3.21 184.0 3.13
1000,4000 493.5 4.46 400.5 3.53 254.2 5.62 289.9 9.44 216.9 3.58 214.4 2.65
1000,4500 543.4 4.23 459.0 4.14 303.4 5.86 328.5 8.80 254.0 3.63 254.0 3.91
1000,5000 583.3 3.51 501.1 5.42 332.2 6.34 364.3 9.24 284.0 3.22 284.4 3.26
1000,10000 779.9 2.68 732.4 3.28 569.5 5.06 585.6 8.94 496.1 4.81 496.5 3.22
1000,15000 844.3 2.26 818.0 2.12 675.8 5.74 691.0 10.3 607.8 3.65 607.4 2.82
1000,20000 880.2 1.46 860.8 2.45 738.0 4.34 756.6 9.97 678.2 3.96 675.3 3.37
1000,25000 901.3 1.58 888.0 1.34 780.6 3.41 797.7 7.59 725.8 3.25 724.0 4.36
1000,30000 916.4 1.31 906.7 1.31 809.0 4.65 834.1 6.90 763.0 3.16 762.8 3.39
Genome (1) 745.0 3.02 690.6 3.28 668.0 4.98 683.7 5.44 656.7 1.28 655.1 0.30
Genome (2) 2902.6 12.5 2593.3 10.6 2291.0 4.99 2368.2 10.9 2245.3 3.60 2247.9 4.02
TPCC 3962.4 0.48 3961.6 0.49 3960.5 0.50 3961.6 0.74 3960.1 0.30 3960.1 0.22
TPCC30 3907.9 1.37 3902.4 0.80 3900.1 0.22 3902.2 1.42 3900.0 0 3900.2 0.36
Fig. 13. Distribution of obtained feedback vertex sets (FVS). The different algorithms are given 10 ms, 100 ms and 1 s to solve the problem. The boxplot show the
5%, 25%, median, 75% and 95% percentiles. Compared against the solutions proposed by Galinier et al. [15] (labeled as Galinier) and Tang et al. [16] (labeled as Tang).
19

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607

f
w
n

L
W
p
p
t
w
w
c
s
a
i
f
i
r
g
t
a
i
t
e

s
t
i
r
g
g
m
t
h
h

o
s
a
p
t
l
p

t
I
i
u
a
o

t
o
b
w
S
o
w

s
v
a
i
S
y
t

t
D
E
g
q
t
i
s

D

c
t

D

A

u

f
r
P
a

R

ormulation, the maximum induced sub-DAG (max-DAG), which
e showed to be Poly-APX-complete. Therefore, unless P = NP ,
o approximation algorithm exists.
We considered the simulated annealing approach by Galinier,

emamou and Bouzidi [15] and proposed several improvements.
e tested the resulting prototypes, which validated these pro-
osals. We started by studying the limitations of the local search
rocedure by Galinier, Lemamou and Bouzidi [15], which some-
imes rejects local transitions, even though the resulting graph
ould still be a DAG. This motivated our stochastic approach
here nodes are chosen uniformly at random from available
andidates, as opposed to the approach of considering all the pos-
ible transitions and ranking them, as used by Galinier, Lemamou
nd Bouzidi [15] and Tang, Feng and Zhong [16]. Our rationale
s that the annealing process itself already has the property of
orcing ‘‘bad’’ vertices out of the current configuration. Therefore,
t does not seem sensible to invest a significant amount of time
anking the vertices to guarantee that the chosen transition is
ood. A good evidence of this removal of bad vertices at work is
he difference in performance of SA algorithm versus the greedy
lgorithm. The greedy algorithm never allows for removals from
ts configuration. Therefore it never removes bad vertices. Hence
he gap in performance between these algorithms allows us to
stimate the effect of the removal of bad vertices by SA.
To further mitigate the limitation of the heuristic we con-

idered higher temperatures and ordering resets. Overall, higher
emperatures did not yield good results. Our extensive exper-
mental results showed that this particular problem generally
equires very cold temperatures in the large majority of tested
raphs. In fact we tested this hypothesis by using greedy al-
orithms, which do not allow for vertex removal. The perfor-
ance of these greedy algorithms was in general worse than

he simulated annealing approach, but much better than SA with
igher temperatures. We also used ordering resets to mitigate the
euristic bias.
We used efficient data structures to maintain the topological

rdering, namely splay trees. This reduced the time of a stochastic
tep from linear in the number of vertices to logarithmic. We
ctually pushed this approach further by noticing that at low tem-
eratures most transitions are rejected and therefore optimized
he testing procedure even further by re-ordering the adjacency
ists to match the current topological order. This yielded a fast
rocedure for transition rejection.
Another important component, at least in some graphs, was

he initial reduction of the graph into connected components.
n some cases the impact of this pre-processing step was so
mportant that the resulting graphs could simply be solved by
sing a simple branch and bound approach. We thus proposed
hybrid approach that generally selected the best algorithm and
btained the best performance, at least with the tested inputs.
We evaluated our prototype extensively in order to validate

hese design decisions and finally also compared it against state
f the art implementations [15,16]. Our algorithm obtains feed-
ack vertex sets up to 13.3× closer to the optimal solution in a
ide variety of graphs when compared to the state of the art
A algorithms. The results show that in general our algorithms
btained significant improvements particularly for larger graphs,
here they are most relevant.
As future work, we are currently integrating the resulting

oftware into a transactional memory system [10,45] and in-
estigating the algorithm’s suitability for efficient parallelization
cross several working threads. We are also working on improv-
ng the effectiveness of the order reset sub-routine, mentioned in
ection 5.4, as improving this particular process seems likely to
ield even better solutions, albeit at the cost of extra processing

ime.

20
CRediT authorship contribution statement

Luís M.S. Russo: Conceptualization, Algorithm design, Proto-
ype development, Formal analysis, Writing, Funding acquisition.
aniel Castro: Prototype development, Data Curation, Writing,
xperimental evaluation. Aleksandar Ilic: Conceptualization, Al-
orithm optimization, Experimental results analysis, Funding ac-
uisition, Writing, Supervision. Paolo Romano: Conceptualiza-
ion, Algorithm optimization, Experimental results analysis, Fund-
ng acquisition, Writing, Supervision. Ana D. Correia: Algorithm
urvey and review, Experimental results analysis.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

We thank Tang, Feng and Zhong [16] that kindly allowed us to
se their implementation.
The work reported in this article was supported by national

unds through Fundação para a Ciência e a Tecnologia (FCT) with
eference UIDB/50021/2020 and project NGPHYLO
TDC/CCI-BIO/29676/2017 and EuroHPC Joint Undertaking grant
greement No 956213 (SparCity).

eferences

[1] P.D. Seymour, Packing directed circuits fractionally,Vol. 15,no. 2, Springer
Science and Business Media LLC, 1995, pp. 281–288, http://dx.doi.org/10.
1007/bf01200760.

[2] J. Aracena, L. Cabrera-Crot, L. Salinas, Finding the fixed points of a boolean
network from a positive feedback vertex set, Bioinformatics 37 (8) (2020)
1148–1155, http://dx.doi.org/10.1093/bioinformatics/btaa922.

[3] J.G.T. Zañudo, G. Yang, R. Albert, Structure-based control of complex
networks with nonlinear dynamics, Proc. Natl. Acad. Sci. 114 (28) (2017)
7234–7239, http://dx.doi.org/10.1073/pnas.1617387114.

[4] F. Pan, P. Zhou, H.-J. Zhou, P. Zhang, Solving statistical mechanics on sparse
graphs with feedback-set variational autoregressive networks, Phys. Rev.
E 103 (2021) 012103, http://dx.doi.org/10.1103/PhysRevE.103.012103.

[5] Y.-C. Chow, W. Kostermeyer, K. Luo, Efficient techniques for deadlock res-
olution in distributed systems, in: 1991 the Fifteenth Annual International
Computer Software & Applications Conference, IEEE Computer Society,
1991, pp. 64–65.

[6] R. Bar-Yehuda, D. Geiger, Approximation algorithms for the feedback ver-
tex set problem with applications to constraint satisfaction and Bayesian
inference, SIAM J. Comput. 27 (4) (1998) 942–959, http://dx.doi.org/10.
1137/S0097539796305109.

[7] P. Festa, P.M. Pardalos, M.G.C. Resende, Feedback set problems, Springer
US, 1999, pp. 209–258, http://dx.doi.org/10.1007/978-1-4757-3023-4_4.

[8] M.-A. Daigneault, J.P. David, Automated synthesis of streaming transfer
level hardware designs, ACM Trans. Reconfigurable Technol. Syst. 11 (2)
(2018) http://dx.doi.org/10.1145/3243930.

[9] A. Gharehgozli, C. Xu, W. Zhang, High multiplicity asymmetric travel-
ing salesman problem with feedback vertex set and its application to
storage/retrieval system, European J. Oper. Res. 289 (2) (2021) 495–507,
http://dx.doi.org/10.1016/j.ejor.2020.07.038.

[10] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, L. Rodrigues, On speculative
replication of transactional systems, J. Comput. System Sci. 80 (1) (2014)
257–276, http://dx.doi.org/10.1016/j.jcss.2013.07.006.

[11] B. Ding, L. Kot, J. Gehrke, Improving optimistic concurrency control through
transaction batching and operation reordering, Proc. VLDB Endow. 12 (2)
(2018) 169–182, http://dx.doi.org/10.14778/3282495.3282502.

[12] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller,
J.W. Thatcher, J.D. Bohlinger (Eds.), Springer US, 1972, pp. 85–103, http:

//dx.doi.org/10.1007/978-1-4684-2001-2_9.

http://dx.doi.org/10.1007/bf01200760
http://dx.doi.org/10.1007/bf01200760
http://dx.doi.org/10.1007/bf01200760
http://dx.doi.org/10.1093/bioinformatics/btaa922
http://dx.doi.org/10.1073/pnas.1617387114
http://dx.doi.org/10.1103/PhysRevE.103.012103
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb5
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb5
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb5
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb5
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb5
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb5
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb5
http://dx.doi.org/10.1137/S0097539796305109
http://dx.doi.org/10.1137/S0097539796305109
http://dx.doi.org/10.1137/S0097539796305109
http://dx.doi.org/10.1007/978-1-4757-3023-4_4
http://dx.doi.org/10.1145/3243930
http://dx.doi.org/10.1016/j.ejor.2020.07.038
http://dx.doi.org/10.1016/j.jcss.2013.07.006
http://dx.doi.org/10.14778/3282495.3282502
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

L.M.S. Russo, D. Castro, A. Ilic et al. Applied Soft Computing 129 (2022) 109607
[13] M.R. Garey, D.S. Johnson, Computers and intractability, in: A Guide to the,
1979.

[14] M. Yannakakis, Node-and edge-deletion NP-complete problems, ACM Press,
1978, http://dx.doi.org/10.1145/800133.804355.

[15] P. Galinier, E.A. Lemamou, M.W. Bouzidi, Applying local search to the
feedback vertex set problem, J. Heuristics 19 (2013) 797–818.

[16] Z. Tang, Q. Feng, P. Zhong, Nonuniform neighborhood sampling based sim-
ulated annealing for the directed feedback vertex set problem, IEEE Access
5 (2017) 12353–12363, http://dx.doi.org/10.1109/ACCESS.2017.2724065.

[17] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to algorithms,
third edition, third ed., The MIT Press, 2009.

[18] R. Sedgewick, K. Wayne, Algorithms (Fourth Edition Deluxe), Addison-
Wesley, 2016.

[19] T. Roughgarden, Algorithms Illuminated (Part 1), in: Algorithms Illumi-
nated, Soundlikeyourself Publishing, 2017.

[20] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput.
1 (2) (1972) 146–160, http://dx.doi.org/10.1137/0201010.

[21] M. Sharir, A strong-connectivity algorithm and its applications in data
flow analysis, Comput. Math. Appl. 7 (1) (1981) 67–72, http://dx.doi.org/
10.1016/0898-1221(81)90008-0.

[22] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to algorithms,
MIT Press, 2009.

[23] I. Razgon, Exact computation of maximum induced forest, in: L. Arge,
R. Freivalds (Eds.), Algorithm Theory – SWAT 2006, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 160–171.

[24] F.V. Fomin, S. Gaspers, A.V. Pyatkin, Finding a minimum feedback vertex
set in time O(1.7548n), in: H.L. Bodlaender, M.A. Langston (Eds.), Pa-
rameterized and Exact Computation, Springer Berlin Heidelberg, 2006, pp.
184–191.

[25] V. Bafna, P. Berman, T. Fujito, A 2-approximation algorithm for the
undirected feedback vertex set problem, SIAM J. Discrete Math. 12 (3)
(1999) 289–297, http://dx.doi.org/10.1137/s0895480196305124.

[26] H.L. Bodlaender, On disjoint cycles, in: G. Schmidt, R. Berghammer (Eds.),
Graph-Theoretic Concepts in Computer Science, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1992, pp. 230–238.

[27] R. Downey, M. Fellows, Fixed parameter tractability and completeness, in:
Congressus Numerantium, Vol. 87, 1992, pp. 191–225.

[28] R. Chitnis, M. Cygan, M. Hajiaghayi, D. Marx, Directed subset feedback
vertex set is fixed-parameter tractable, ACM Trans. Algorithms 11 (4)
(2015) http://dx.doi.org/10.1145/2700209.

[29] G. Even, An 8-approximation algorithm for the subset feedback vertex set
problem, SIAM J. Comput. 30 (4) (2000) 1231–1252, http://dx.doi.org/10.
1137/S0097539798340047.

[30] D. Lokshtanov, P. Misra, J. Mukherjee, F. Panolan, G. Philip, S. Saurabh,
2-approximating feedback vertex set in tournaments, in: Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA, 2020, pp.
1010–1018, http://dx.doi.org/10.1137/1.9781611975994.61.

[31] C. Papadopoulos, S. Tzimas, Polynomial-time algorithms for the subset
feedback vertex set problem on interval graphs and permutation graphs,
in: R. Klasing, M. Zeitoun (Eds.), Fundamentals of Computation Theory,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, pp. 381–394.
21
[32] F.-H. Wang, C.-J. Hsu, J.-C. Tsai, Minimal feedback vertex sets in directed
split-stars, Networks 45 (4) (2005) 218–223, http://dx.doi.org/10.1002/net.
20067.

[33] I. Razgon, Computing Minimum Directed Feedback Vertex Set
In O∗(1.9977n), World Scientific, 2007, http://dx.doi.org/10.1142/
9789812770998_0010.

[34] J. Chen, Y. Liu, S. Lu, B. Ośullivan, I. Razgon, A fixed-parameter algorithm
for the directed feedback vertex set problem, Vol. 55, no.5, Association for
Computing Machinery (ACM), 2008, pp. 1–19, http://dx.doi.org/10.1145/
1411509.1411511.

[35] P. Crescenzi, A short guide to approximation preserving reductions, in:
Proceedings of Computational Complexity. Twelfth Annual IEEE Confer-
ence, IEEE Comput. Soc, 1997, pp. 262–273, http://dx.doi.org/10.1109/ccc.
1997.612321.

[36] C. Bazgan, B. Escoffier, V.T. Paschos, Completeness in standard and dif-
ferential approximation classes: Poly-(D)APX- and (D)PTAS-completeness,
Theoret. Comput. Sci. 339 (2–3) (2005) 272–292, http://dx.doi.org/10.1016/
j.tcs.2005.03.007.

[37] M.M. Halldórsson, J. Radhakrishnan, Greed is good: Approximating inde-
pendent sets in sparse and bounded-degree graphs, Algorithmica 18 (1)
(1997) 145–163, http://dx.doi.org/10.1007/bf02523693.

[38] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, Courier Corporation, 1998.

[39] R. Ramakrishnan, J. Gehrke, Database Management Systems, third ed.,
McGraw-Hill, Inc., New York, NY, USA, 2002.

[40] R. Guerraoui, M. Kapalka, On the correctness of transactional memory,
in: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, - PPoPP ’08, ACM Press, New York, New
York, USA, 2008, p. 175, http://dx.doi.org/10.1145/1345206.1345233.

[41] C.H. Papadimitriou, The serializability of concurrent database updates, J.
ACM 26 (4) (1979) 631–653, http://dx.doi.org/10.1145/322154.322158.

[42] Transaction Processing Performance Council, TPC-C benchmark revision
5.11.0, in: Transaction Processing Performance Council, 2018.

[43] C.C. Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford trans-
actional applications for multi-processing, in: 2008 IEEE International
Symposium on Workload Characterization, IEEE, Seattle, WA, USA, 2008,
pp. 35–46.

[44] P. Felber, S. Issa, A. Matveev, P. Romano, Hardware read-write lock
elision, in: Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys ’16, Association for Computing Machinery, New York, NY,
USA, 2016, http://dx.doi.org/10.1145/2901318.2901346.

[45] D. Castro, P. Romano, J. Barreto, Hardware transactional memory meets
memory persistency, J. Parallel Distrib. Comput. 130 (2019) 63–79, http:
//dx.doi.org/10.1016/j.jpdc.2019.03.009.

[46] P. Felber, C. Fetzer, P. Marlier, T. Riegel, Time-based software transactional
memory, IEEE Trans. Parallel Distrib. Syst. 21 (2010) 1793–1807.

[47] P.M. Pardalos, T. Qian, M.G.C. Resende, A greedy randomized adaptive
search procedure for the feedback vertex set problem, J. Combin. Optim.
2 (1998) 399–412.

http://refhub.elsevier.com/S1568-4946(22)00656-1/sb13
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb13
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb13
http://dx.doi.org/10.1145/800133.804355
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb15
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb15
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb15
http://dx.doi.org/10.1109/ACCESS.2017.2724065
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb17
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb17
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb17
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb18
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb18
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb18
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb19
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb19
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb19
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1016/0898-1221(81)90008-0
http://dx.doi.org/10.1016/0898-1221(81)90008-0
http://dx.doi.org/10.1016/0898-1221(81)90008-0
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb22
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb22
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb22
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb23
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb23
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb23
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb23
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb23
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb24
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb24
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb24
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb24
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb24
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb24
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb24
http://dx.doi.org/10.1137/s0895480196305124
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb26
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb26
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb26
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb26
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb26
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb27
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb27
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb27
http://dx.doi.org/10.1145/2700209
http://dx.doi.org/10.1137/S0097539798340047
http://dx.doi.org/10.1137/S0097539798340047
http://dx.doi.org/10.1137/S0097539798340047
http://dx.doi.org/10.1137/1.9781611975994.61
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb31
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb31
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb31
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb31
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb31
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb31
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb31
http://dx.doi.org/10.1002/net.20067
http://dx.doi.org/10.1002/net.20067
http://dx.doi.org/10.1002/net.20067
http://dx.doi.org/10.1142/9789812770998_0010
http://dx.doi.org/10.1142/9789812770998_0010
http://dx.doi.org/10.1142/9789812770998_0010
http://dx.doi.org/10.1145/1411509.1411511
http://dx.doi.org/10.1145/1411509.1411511
http://dx.doi.org/10.1145/1411509.1411511
http://dx.doi.org/10.1109/ccc.1997.612321
http://dx.doi.org/10.1109/ccc.1997.612321
http://dx.doi.org/10.1109/ccc.1997.612321
http://dx.doi.org/10.1016/j.tcs.2005.03.007
http://dx.doi.org/10.1016/j.tcs.2005.03.007
http://dx.doi.org/10.1016/j.tcs.2005.03.007
http://dx.doi.org/10.1007/bf02523693
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb38
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb38
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb38
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb39
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb39
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb39
http://dx.doi.org/10.1145/1345206.1345233
http://dx.doi.org/10.1145/322154.322158
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb42
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb42
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb42
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb43
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb43
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb43
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb43
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb43
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb43
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb43
http://dx.doi.org/10.1145/2901318.2901346
http://dx.doi.org/10.1016/j.jpdc.2019.03.009
http://dx.doi.org/10.1016/j.jpdc.2019.03.009
http://dx.doi.org/10.1016/j.jpdc.2019.03.009
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb46
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb46
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb46
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb47
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb47
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb47
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb47
http://refhub.elsevier.com/S1568-4946(22)00656-1/sb47

	Stochastic simulated annealing for directed feedback vertex set
	Code metadata
	Introduction
	Problem formulation
	Algorithmic approach
	Background
	Search recapitulation
	Related work
	Complexity analysis

	Methodology
	DAG data structures
	Determining the set I(v)
	Optimizing the initial state
	Ordering reset

	Experimental evaluation
	Graphs used in this experimental study
	Tuning the temperature
	Choice of the initial solution
	Evaluation of SA, BB and greedy algorithms on small scale graphs
	Conflict graphs generated by TM applications
	Comparison with other SA-based algorithms in the literature

	Conclusions and further work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

