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Abstract—GPUs have traditionally focused on streaming ap-
plications with regular parallelism. Over the last years, though,
GPUs have also been successfully used to accelerate irregular
applications in a number of application domains by using fine
grained synchronization schemes.

Unfortunately, fine-grained synchronization strategies are no-
toriously complex and error-prone. This has motivated the
search for alternative paradigms aimed to simplify concurrent
programming and, among these, Transactional Memory (TM) is
probably one of the most prominent proposals.

This paper introduces CSMV (Client Server Multiversioned),
a multi-versioned Software TM (STM) for GPUs that adopts
an innovative client-server design. By decoupling the execution
of transactions from their commit process, CSMV provides two
main benefits: (i) it enables the use of fast on chip memory to
access the global metadata used to synchronize transaction (ii)
it allows for implementing highly efficient collaborative commit
procedures, tailored to take full advantage of the architectural
characteristics of GPUs.

Via an extensive experimental study, we show that CSMV
achieves up to 3 orders of magnitude speed-ups with respect to
state of the art STMs for GPUs and that it can accelerate by up
to 20× irregular applications running on state of the art STMs
for CPUs.

Index Terms—Multi-Version Concurrency Control, Synchro-
nization, GPU, Transaction, Transactional Memory

I. INTRODUCTION

Over the last years we have witnessed a growing interest
in using GPUs to accelerate applications with irregular access
patterns, such as graph applications [1], machine learning [2],
indexes [3], [4] and other concurrent data structures [5]. These
applications generate data-dependent access patterns over
shared mutable data, which poses a notoriously complex and
error-prone problem: how to efficiently synchronize concurrent
memory accesses issued by the 1000s of threads supported by
modern GPUs. In fact, traditional synchronization approaches,
based either on fine-grained locking or lock-free schemes,
are known to be very hard to reason about and verify, being
prone to a number of subtle concurrency bugs like deadlocks,
livelocks, and data-races.

Transactional Memory (TM) [6] has emerged as an attrac-
tive alternative synchronization paradigm that can dramatically
simplify the development of concurrent applications via the
intuitive and familiar abstraction of atomic transactions [7].
When using TM, programmers only need to demarcate which
code blocks need to be executed atomically, delegating to
the TM implementation the responsibility of how to achieve

atomicity. Over the last two decades, a large number of
TM implementations, in hardware, software and combinations
there of, have been proposed in the literature, initially targeting
multi-core CPUs [8]–[12] and, more recently, GPUs [13]–[17].

In this work we present a novel Software Transactional
Memory (STM) algorithm that we named CSMV (Client-
Server Multi-Versioned). When compared to existing (S)TM
solutions, CSMV has a number of innovative features.

1) CSMV tackles what we argue to be the most critical
source of inefficiency of existing TM designs for GPUs: their
reliance on expensive atomic operations, e.g., Compare-And-
Swap (CAS), that operate on off-chip memory (global memory
in CUDA terminology). Such a design, inherited by TM
algorithms originally conceived for CPUs, generate prohibitive
overheads when adopted in GPUs supporting thousands of
concurrent threads, as we will show experimentally. CSMV
departs from this conventional design by adopting, for the
first time in the TM literature, a client-server architecture. In
more detail, CSMV delegates the most expensive phases of the
commit logic to a dedicated kernel that executes on a single
Streaming Multiprocessor (SM using CUDA terminology) and
that acts like a server responsible for determining the outcome
(commit/abort) of the transactions. The remaining threads,
which act like clients, are instead in charge of generating
transactions and executing their logic. This design provides
a number of key benefits. Not only does it avoid atomic
operations targeting global memory, allowing them to operate
instead on the fast scratchpad memory (shared memory in
CUDA terminology) available on GPUs. It also enables the
design of a novel cooperative validation scheme that leverages
the efficient communication mechanisms available in GPUs to
coordinate the activities of threads within the same warp.

2) In order to enhance the efficiency of its client-server design,
CSMV introduces innovative client-side pre-validation and
write-back mechanisms, which bring two key advantages: (i)
alleviating the server load, by shifting to the client side part
of the commit logic and (ii) enabling the server to “batch” the
commit of the transactions generated by the same client warp,
which reduces the frequency with which server threads need
to resort to using atomic operations.

3) CSMV is the first software implementation of a multi-
versioned (MV) concurrency control algorithm for GPUs. The
advantages of MV approaches have been long studied both in



the database and TM communities [18]–[20]. By maintaining
multiple versions of data items, MV schemes guarantee that
transactions can always access a snapshot of data, possibly
recurring to older versions, which reflects the state of the
system at some specific moment in time (typically the be-
ginning of the transaction [21]). This allow to execute read-
only transactions extremely efficiently, namely sparing them
from any instrumentation and validation overhead, while also
avoiding to ever block or abort concurrent update transactions.
As a result, MV schemes shine in workloads, frequently
found in realistic applications [20], which include frequent
long-running read-only transactions that, with single versioned
TMs, would be doomed to suffer from (or generate) frequent
aborts, or to block update transactions for unacceptably long
periods of time.

We evaluated CSMV using both synthetic workloads and
a realistic application, MemcachedGPU [22], comparing it
to a state of the art single versioned STM (PR-STM [16],
[17]) and to a “conventional” multi-versioned implementation,
which we call JVSTM-GPU, obtained by porting to GPU the
algorithm of JVSTM, a state of the art MV STM for CPUs.
Our experiments highlight that CSMV can achieve up to 20×
speed-ups when compared to other state of the art STMs for
CPU in irregular applications and up to 1000× when compared
to state of the art of single versioned STMs for GPUs.

II. RELATED WORK

Multiversioning concurrency control. MV concurrency con-
trol schemes have been long investigated in the literature both
in the database [21], [23], [24] and TM community [18], [25],
[26]. From a theoretical standpoint, the key benefit of MV
approaches are: i) Read-Only Transactions (ROTs) can execute
without ever aborting, as they are guaranteed to always observe
a consistent snapshot by resorting to “older” versions; ii) for
analogous reasons, update transactions are never blocked or
aborted by concurrent ROTs. From a pragmatical perspective,
MV schemes are well-known to provide superior performance
in workloads characterized by long-running read-only work-
loads [20], [27], which are prone to suffer from starvation
in single-versioned approaches (due to the high likelihood
to conflict with concurrent update transactions). A survey
dissecting a number of existing multi-version STMs can be
found in the work by Keidar and Perelman [18]. We also
provide a detailed description of a state of the art MV STM,
namely JVSTM [25], in Section III-A.

When compared to existing MV algorithms, CSMV adopts
a unique client-server design and a number of associated
optimizations (e.g., client-side pre-validation and server-side
collaborative validation). Such a design aims to take advan-
tage of the architectural characteristics of GPU systems, in
particular their massive parallelism and the availability of
both (i) fast communication channels among the threads in
the same block via on chip memory and (ii) high latency
global communication channels via off chip memory, whose
throughput is strongly affected by the locality of accesses
within the same warp.

STMs for GPUs. To the best of our knowkledge, Cederman
et al. [13] were the first to propose the use of TM in GPUs. In
more detail, they introduced two alternative single-versioned
software TM (STM) implementations, whose algorithms can
be seen as a relatively straightforward porting of TM designs
previously proposed for multi-core CPUs (e.g., [28], [29]).

Xu et al. [14] later proposed a single-versioned STM for
GPUs that combines time-based validation [9] (which is fast
but prone to spurious aborts) with value-based validation [11]
(which is accurate but more expensive). Also in this case,
the design is strongly inspired to STM algorithms previously
proposed in the CPU domain [8], [9]. Holey and Zhai [15]
investigated alternative single-versioned STM designs, evaluat-
ing for the first time in GPUs the use of approaches, originally
proposed for CPUs, that rely on visible vs invisible reads and
eager vs lazy conflict detection. The most recent STM for GPU
that we are aware of is PR-STM [17], which also uses a single
versioned, encounter-based locking design (analogously to one
of the solutions presented by Holey and Zhai [15]) extended
with a contention management strategy [30] aimed at reducing
the likelihood of aborts in contention prone workloads.

Compared to these solutions, CSMV has a number of unique
features: CSMV is the first STM for GPUs to adopt a multi-
versioned concurrency control and a client-server design that
spares from the overhead imposed by the use of atomic
operations (e.g., CAS) operating on global memory (enabling
instead the use of scratchpad memory). As we will show
experimentally in Section IV, thanks to these features, CSMV
achieves up to more than one order of magnitude speedups
when compared to state of the art STM system like PR-
STM [17].

HTMs for GPUs. While the works just mentioned above rely
on software based approaches, some TM proposals for GPUs
assume ad hoc hardware supports [31]–[34]. By leveraging
hardware mechanisms, these approaches can alleviate, or even
totally avoid, some sources of overhead that are inherent to
software-based designs (e.g., instrumenting read and write
accesses). However, unlike CSMV, these proposal cannot be
employed on existing GPUs given their reliance on custom
hardware mechanisms. Among these solutions, it is worth
highlighting the proposal by Chen et al. [34], which, to the
best of our knowledge, represents the only MV GPU TM
proposed in the literature. Besides being a hardware-based
implementation, this solution adopts a weaker consistency
level (Snapshot Isolation [35]) than the one typically assumed
by TM systems and by CSMV (Opacity [36]).

Concurrency in GPUs. While GPUs have traditionally fo-
cused on applications with regular parallelism, irregular appli-
cations in a range of domains (including machine learning [2],
graph manipulations [1], dynamic programming [37], data
structures [3]–[5]) have been accelerated using fine-grained
locking schemes. Simplifying and optimizing the execution of
fine-grained synchronization are some of the key motivations
at the basis of the independent thread scheduling introduced
by NVIDIA since the Volta architecture [38].



In the literature on optimizing fine-grained locking, the
idea of exploiting scratchpad memory is not new [37], [39].
Among these works, the solution that is more closely related
to CSMV is the work by Wang et al [39]. This work proposed
to delegate the execution of critical sections on GPUs to
dedicated server thread blocks, which can then synchronize
the access to the critical sections they are responsible for via
scratchpad memory. The remaining (i.e., synchronization-free)
code of the application is executed by client thread blocks
that communicate (i.e., submit requests for executing critical
sections) via a communication library that makes efficient
use of off chip/global memory by employing optimizations
that reduce the overhead of message passing operations and
that promote coalesced memory accesses. CSMV applies
and specializes this client-server execution model in order
to accelerate the commit process of a multi-versioned STM
scheme. This raises a number of new challenges, such as how
to alleviate the server load by shifting to the client-side part of
the commit logic and how to effectively parallelize the server-
side commit procedure.

III. CSMV

This section is devoted to presenting the design of CSMV.
We do so in an incremental fashion, by first surveying, in
Section III-A, the algorithm used by JVSTM, a state of the
art multi-versioned STM for CPUs [20], [25]. This allows us
to pinpoint the main sources of inefficiencies that arise when
adopting a MV STM designed for CPUs on GPUs, and to
justify the key design choices at the basis of CSMV. Finally,
Section III-B presents the mechanisms that CSMV employs in
order to address the shortcomings of existing TM designs.

A. Dissecting a MV STM for CPUs: JVSTM

This section aims to pinpoint the key factors that hinder
the efficiency of MV STM algorithms originally proposed for
CPUs, when straightforwardly adopted in GPUs. To this end,
we consider the algorithm employed by JVSTM [20], a state of
the art MV STM for CPUs, which can be seen as an archetype
of this class of systems.

Data structures. In JVSTM each shared object is encapsulated
within a Versioned Box (VBox), which stores the list of
existing versions for that object along with the timestamps
of the transaction that generated them.

JVSTM relies on two globally shared data structures: i) a
global (logical) time stamp (GTS), which is read by trans-
actions upon their start to establish which snapshot they
should observe and that is incremented whenever an update
transaction commits; ii) a list, called the Active Transaction
Record (ATR), that stores, for each (recently) committed
update transaction, (a) the timestamp they obtained upon
commit and (b) the set of VBoxes they updated.

Transaction execution. When a transaction T starts it estab-
lishes which snapshot it should observe by reading the GTS
(which, we recall, keeps track of how many update transactions
committed so far). For T to read an object, T must lookup

the most recent version of the VBox that was created before
T started, i.e., the version tagged with the largest timestamp
smaller than T ’s timestamp. Transactions that, upon their start,
are declared to be read-only do not need to keep track of the
objects they read, since the above mechanism guarantees that
they will always observe a consistent snapshot.

Update transactions, conversely, store a reference to each
VBox they read in a thread-local list, called read-set, for
later validation. Analogously, write operations are tracked in
a different thread-local list, called write-set. As such, both
read and write operations are invisible in JVSTM, i.e., not
detectable by other concurrent transactions.

Commit process. Read-only transactions are, as mentioned,
guaranteed to read a consistent snapshot and simply skip the
commit phase. The commit process of an update transaction
T entails the following phases:

1) Validation: T determines whether any of the transactions
in the ATR that committed after T started updated any
of the items read by T — in such case, T aborts.

2) Insertion in ATR: T attempts to insert its own record
as the next entry in the ATR via a CAS operation. If
the CAS succeeds, T adds its own entry to the ATR
and moves on to the write-back phase. If the CAS fails,
two scenarios are plausible: i) one or more transactions
finalized their commit during T ’s validation — in which
case T validates against them and tries again to insert
itself in the ATR; ii) some transaction T ’ inserted its
entry in the ATR and is still in its write-back phase —
in which case T waits for T ’ to complete its write-back
phase and tries again to insert its own entry in the ATR.

3) Write-back: T adds a new version to all the VBoxes that
it updated. Next, it increases the GTS, making its writes
visible to freshly starting transactions, and flags its entry
in the ATR to signal its write-back phase as completed
— which is equivalent conceptually to releasing a lock
on the ATR.

Key challenges arising in GPUs. The adoption of the above
described MV STM algorithm in GPUs raises two key chal-
lenges.
i) Inefficient access to global data structures. Storing the GTS
and ATR in global memory would be the most straightforward
approach to enable device-wide access to these data structures.
However, such an approach would also introduce several
major sources of inefficiency. First, both these data structures
are frequently modified (i.e., whenever an update transaction
successfully commits). Furthermore, during validation, trans-
actions generate a large number of read accesses to the ATR (to
extract the write-sets of concurrently committed transactions)
that are unlikely to be coalesced for two reasons: 1) threads
in the same warp are prone to diverge, since they process
independent transactions; 2) even if they do not diverge, they
are expected to be concurrently accessing the same ATR
entries and not contiguous ones, e.g., non-diverging threads
in the pre-validation phase need to validate against the same
set of concurrent update transactions and will access, in lock-



Fig. 1: High-level overview of the architecture of CSMV.

step, the same entry of the ATR. Finally, contention on the lock
protecting the ATR is strongly exacerbated in GPUs, due to the
massive parallelism that they support compared to CPUs: this
has a detrimental impact on the efficiency of atomic operations
(CAS) needed to acquire the lock and further amplifies the
overhead associated with accessing it via global memory.

ii) Limited parallelism. Except for the validation phase, all the
remaining phases (insertion in the ATR and write-back) of the
commit process are executed sequentially, i.e. after acquiring
a global lock. While this might be acceptable in CPUs 1, in
massively parallel GPUs the negative impact on performance
due to these sequential phases is strongly amplified — as
by Amhdal’s law, the larger the potential for parallelism, the
larger the impact on performance due to executing the same
sequential code.

B. Description of CSMV design

CSMV builds on the JVSTM algorithm and extends it
with the following mechanisms that operate in synergy to
address the challenges identified in Section III-A. Before
discussing the internals of the CSMV’s design we overview
its programming interface.

CSMV programming interface. CSMV exposes a very sim-
ilar programming interface to the ones used by MV-STMs on
CPUs. Specifically CSMV inherits from JVSTM the abstrac-
tion of VBoxes, as the base data-structure to encapsulate mul-
tiple versions of user-defined data types (e.g., integers, arrays,
etc.). Essentially, with CSMV programmers only need to: i)
identify shared data items to be accessed transactionally and
“wrap” them within VBoxes and ii) demarcate atomic code
blocks, i.e., transactions, within CUDA kernels and annotate
read/writes to shared data items. The CSMV library masks
away from the programmer all the complexity associated with

1This problem has been at least partially addressed in a later versions of
JVSTM [25], which uses a helping scheme to accelerate the execution in
the critical section. However, this solution was only to be effective if (update)
transactions read or write a large number of objects — otherwise, the overhead
imposed by the helping mechanism outweighs the benefits it provides.

the management of transactions and of activating the (server)
kernel responsible for validating and committing transactions
(which is described next).

Client-server architecture. As already mentioned, one of the
key factors hindering performance is the need to frequently
access global metadata maintained in off chip memory. In
order to enable the manipulation of global metadata via
fast scratchpad memory, CSMV adopts a logical client-server
architecture, which is illustrated in Fig. 1.

Specifically, one of the available Streaming Multiprocessors
(SMs) executes a specialized kernel that handles solely the
commit phase; the remaining SMs runs the client kernel that
is responsible for generating and executing the transactional
logic (as well as any non-transactional code). Upon reaching
the commit call for a transaction T , the client kernel uses an
efficient/high-throughput message passing library to transmit
to the server kernel (via off-chip memory) T ’s read-set and
write-set and request it to determine: i) T ’s final outcome
(commit/abort) and ii) in case T committed, the timestamp
reflecting its serialization order in the ATR, which we call
CTS (commit timestamp).

The server-side warps are organized as follows: one warp
is designated as Receiver Warp and the remaining ones as
Worker Warps, as shown in the right part of Fig. 1 (inside the
Server SM). The receiver warp is responsible for listening for
new requests coming from the clients and dispatching them to
the workers. The worker warps are responsible for the actual
execution of the commit logic (except the write-back phase,
see next) and for notifying the clients of the transactions’
outcome.

Note that this design introduces the latency of a bi-
directional communication between client and server along
the critical path of execution of transactions. However, it
allows for maintaining the ATR in the scratchpad memory: this
accelerates both the transaction validation and its insertion in
the ATR, increasing the maximum throughput achievable by
these critical phases. As we will show experimentally, given
the throughput-oriented nature of GPUs, this trade-off pays off



enabling substantial throughput gains.

Client-side write-back. As already mentioned, CSMV of-
floads the write-back phase to the client side. Note that the
write-back phase is executed in JVSTM after acquiring the
lock on the ATR. Thus, shifting this phase to the client allows
not only for alleviating the load on the server. It also reduces
the duration of the sequential part of the commit process,
allowing the server kernel to attain higher parallelism levels.

Note that, from the perspective of correctness, allowing
the write-back phase to be executed concurrently by multiple
client threads raises a non-trivial issue: the order with which
the clients apply their updates should not contradict the order
with which their corresponding transactions are serialized in
the ATR. We tackle this issue as follows:

1) We extend the transaction validation to check also for
write-write conflicts, which precludes the possibility that
two concurrent transactions can ever update an item in
common. In turn, this prevents that the updates applied
by two concurrent clients executing their write-back
phases can ever contradict the serialization order defined
by the ATR. As a matter of fact, realistic existing
workloads tend to have no “blind writes” (if a transaction
writes a data item, it also reads it) [19], in which
case the existence of a write-write conflict between two
transactions implies also a read-write conflict. In such
a case, extending the validation to detect also write-
write conflicts does not introduce any additional aborts.
Indeed, if one can a priori exclude (e.g., via static code
analysis techniques) the possibility of blind writes, this
additional validation step can be safely omitted.

2) Once a client completes the write-back for a transaction
T , we let it increment the GTS (which effectively makes
the transaction’s updates externally visible) only when
the write-back of all the transactions serialized before T
has completed, i.e., when T.CTS = GTS − 1. This
ensures that, if a transaction, upon its start, obtains
a snapshot associated with some value of GTS, all
the update transactions included in that snapshot have
completed their write-back phases.

Client-side pre-validation. In order to streamline the server-
side commit process, the transactions that execute within the
same warp on the client side are validated to detect any intra-
warp conflict. To this end, we exploit warp-level primitives
(e.g., shuffle operations) to efficiently exchange the read-sets
and write-sets of the transactions within the same warp. This
pre-validation phase ensures that the batch of transactions
submitted by a client warp to the server have no mutual
conflicts, which allows the server to focus solely on checking
between conflicts among concurrent transactions generated by
different client warps.

Batched ATR insert. The client-side pre-validation opens a
new opportunity to optimize the insertion of the transactions in
the ATR. Since the transactions processed by the same client
warp are guaranteed not to conflict among themselves and are
submitted as a single batch to the server, their insertion in the
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Fig. 2: Comparison with alternative STM designs (Bank).

ATR can be performed at once for all of them. This brings
three main benefits: i) it lower the frequency of manipulation
of the ATR via CAS, which in turn reducing the likelihood of
contention among concurrent CAS operations; ii) it amortizes
the overhead of lock acquisition across all the transactions
generated by the same client warp.

In more detail, we designed the message-passing protocol
between client and server to ensure that a worker warp in the
server is requested to concurrently process a batch of trans-
actions generated by the same client warp. After validating
the batch, a leader thread is responsible for reserving (via
a single CAS) space in the ATR to insert the transactions
being processed by the entire worker warp. Once the CAS
succeeds, the leader notifies the rest of the warp. Each thread
then proceeds with the insertion of a different transaction in
the corresponding pre-reserved slot in the record.

Note that we exploit the fact that transactions of the same
client warp are processed in batched mode on the server side
also to further optimize the client-side write back phase: since
the committed transactions of the same warp are assigned
consecutive commit timestamps by the server, the client warp
can make the updates of all its committed transactions publicly
visible all at once, instead of individually. This is achieved by
incrementing the GTS only once by a factor N , where N is
the number of committed transactions in the batch, rather than
N times by a factor 1.

Collaborative validation. Validation is definitely the most
computationally intensive operation of the commit phase ex-
ecuted on the server-side, since, recall, it requires checking
for any intersection between the read-set and write-set of the
transaction being validated and the write-set of (a potentially
large number) of concurrently committed updated transactions.

Optimizing the validation phase is thus crucial to maximize
server side performance. To this end, we designed a collabo-
rative validation scheme that aims at increasing the locality of
accesses to off-chip memory by promoting coalesced memory
accesses. Specifically, instead of having each thread of a
worker warp validate a distinct transaction independently (as



TABLE I: Breakdown of the main commit phases for JVSTM-GPU and CSMV (in miliseconds) (Bank)

JVSTM-GPU CSMV
%ROTs Total Valid. Rec. Insert Write-back Divergence Total Wait server Pre-Val. Valid. Rec. Insert Write-back Divergence

1 47.082 25.550 2.111 0.224 21.308 2.050 0.612 0.036 1.376 0.021 0.005 0.021
10 41.627 22.268 1.914 0.200 19.159 1.735 0.399 0.033 1.278 0.020 0.005 0.020
25 33.441 17.328 1.599 0.164 15.949 1.075 0.026 0.028 1.001 0.015 0.004 0.016
50 19.176 9.385 1.035 0.100 9.691 0.204 0.002 0.022 0.173 0.003 0.003 0.004
75 7.475 3.256 0.509 0.046 4.173 0.042 0.001 0.012 0.026 0.001 0.001 0.002
90 1.058 0.088 0.162 0.011 0.959 0.011 0 0.005 0.004 0 0.001 0.001
99 0.560 0.004 0.015 0.001 0.555 0.001 0 0 0 0 0 0.001

Total/Wasted time per TX (ms)
%ROTs CSMV PR-STM JVSTM-GPU

Total Wasted Total Wasted Total Wasted
1 4.05 1.92 80 30 80 33

10 3.99 1.59 631 108 72 29
25 3.66 0.91 1717 380 59 23
50 3.41 0.037 2635 448 38 12
75 4.54 0.003 4098 458 19 3.46
90 5.26 0.001 8846 4252 8.47 0.035
99 5.79 0.000 5410 0 8.32 0.001

TABLE II: Total time and wasted time for a transaction. (in
milliseconds) (Bank)

typically done in STMs for CPUs), we let them cooperatively
validate the same transaction as follows. Each thread t in a
worker warp targets the same entry, noted et of the read-
set and write-set of a validating transaction T ; each thread
is then responsible for checking where et is included in the
write-set of any concurrently committed transaction. Recall
that the write-sets of committed transactions are maintained in
the server-side on-chip scratchpad memory, whereas the read-
sets and write-sets of validating transactions are maintained
in the off-chip memory (since they need to be transmitted by
the client to the server). As such, the proposed collaborative
validation scheme ensures that the accesses performed by all
the workers in the same warp target the same element et
residing on the off-chip memory.

IV. EVALUATION

This section presents the results of an experimental study
that aims at answering the following main questions:

• How competitive is CSMV when compared to state
of the art STMs for GPUs and CPUs and in which
type of workloads can it achieve the largest speed-ups?
(Section IV-B)

• To what extent do the various mechanisms leveraged
by CSMV contribute to enhance its efficiency? (Sec-
tion IV-C)

• How does the memory consumption of CSMV vary as
a function of the number of (transactional) data items
versions that it maintains? (Section IV-D)

A. Experimental setup

We evaluate CSMV by using two benchmarks: the Bank
benchmark [28] and MemcachedGPU [22].

The Bank benchmarks, as the name suggests, simulates the
activities of a bank that maintains a number of accounts with
a given initial balance. This benchmarks generates two types
of transactions: (i) update transactions that transfer a random
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amount of money between two bank accounts; (ii) ROTs, that
read all the accounts and compute the total balance of the
simulated bank.

MemcachedGPU [22], [40] builds on Memcached, a popular
in memory object caching system, that it accelerates via
the use of GPU. MemcachedGPU was initially accelerated
using a lock-based synchronization [22] and later on [40]
adapted to make use of a STM. The mutable shared state
of this benchmark is an n-way set associative cache with
an LRU replacement policy. We use keys/values of 16B/32B,
respectively. MemcachedGPU provides two methods, namely
GET/PUT, that are used to retrieve/store a value in the cache
and that are wrapped, respectively, within read-only/update
transactions. Given a 〈key, value〉 pair, the key is hashed
to a set, which is then scanned to find a matching key
and retrieve/set the corresponding value (for GETs/PUTs,
respectively), updating the LRU metadata of the corresponding
slot. Since transactions scan the ways of a set until they
find a matching key, this benchmark generates transactions
that read a variable number of items, upper bounded by
the cache associativity value. Update transactions, in addition
to scanning the set for a matching key also issue 4 write
operations to update the key’s metadata. In order to mimic
a realistic workload, analogously to what done in the original
evaluation of MemcachedGPU, we access the key space via
a Zipfian distribution and generate 99.8% of GET operations
(i.e., ROTs in this STM-based implementation), as suggested
by the work of Atikoglu et al. [41] .

We evaluate CSMV and the other STMs for GPUs using
a machine equipped with an Nvidia GeForce GTX 1080 Ti



TABLE III: Breakdown of the main commit phases for JVSTM-GPU and CSMV (in microseconds) (Memcached).

JVSTM-GPU CSMV
ways Total Valid. Rec. Insert Write-back Divergence Total Wait server Pre-Val. Valid. Rec. Insert Write-back Divergence

4 823.3 295.7 0.987 0.017 526.6 9.34 0.009 0.279 8.564 0.014 0.023 0.452
8 835.5 308.9 0.965 0.018 525.6 10.80 0.010 0.305 9.971 0.010 0.024 0.477

16 865.5 344.2 0.922 0.019 520.4 11.95 0.010 0.376 11.029 0.009 0.025 0.498
32 935.3 390.0 0.842 0.023 544.5 18.55 0.008 0.540 17.460 0.009 0.025 0.509
64 1094.9 504.7 0.751 0.014 589.4 30.92 0.009 0.873 29.495 0.009 0.024 0.509

128 1298.2 670.0 0.594 0.020 627.6 53.14 0.012 1.533 51.047 0.006 0.023 0.515
256 1364.1 830.3 0.406 0.025 533.4 127.64 0.012 2.907 124.185 0.012 0.023 0.504

TABLE IV: Total and wasted time for a transaction (in
milliseconds) (Memcached).

Total/Wasted time per TX (ms)
ways JVSTM-GPU CSMV PR-STM

Total Wasted Total Wasted Total Wasted
4 0.844 0 0.027 0 0.016 0
8 0.878 0.001 0.048 0.003 0.039 0

16 0.950 0 0.088 0.007 0.113 0
32 1.139 0.001 0.168 0.012 0.407 0
64 1.446 0.001 0.326 0.025 1.615 0

128 1.981 0.001 0.635 0.050 8.021 0
256 2.540 0.001 1.288 0.116 38.510 0

(GP102 micro architecture, 28 SMs, 11 GB of RAM, CUDA
v10.0), an i7-2600k CPU and 8GB of RAM. When evaluating
STMs for CPUs we use a machine equipped with an Intel Xeon
CPU E5-2648L v4 (14 cores/28 hardware thread, 1.80GHz),
32 GB of RAM, running openjdk 1.8.0 292 and Ubuntu
18.04LTS.

To ensure a fair comparison, we configure all the STMs for
GPUs to use the same number of thread blocks and threads
per block, namely 28 (i.e., as many as the number of available
SM in our GPU) and 64, respectively. When testing STMs for
CPUs, we use as many threads as available hardware threads.
All the reported results were obtained as the average of at
least 3 runs. We also compute the standard deviation between
different runs, however the values obtained were very small
and thus the respective error bars are barely visible. As such,
we chose to not to report them for plots of this section.

The code of CSMV and all of the benchmarks used
in this study are available at https://github.com/DMRNunes/
csmv-gpu-stm.

B. Comparison with state of the art STMs

This section is devoted to comparing the performance of
CSMV with the following STM implementations:

1) PR-STM [16], a state of the art single versioned STM
for GPUs that uses invisible reads, encounter time
locking and a priority-based contention management
(Section II);

2) JVSTM [25], a state of the art STM for CPUs that,
analogously to CSMV, adopts a MV scheme (Section II,
Section III-A) and as such it allows us to compare the
performance of multi-versioned STM implementations
for GPU and CPU;

3) a MV STM for GPUs, which we refer to as JVSTM-
GPU, which we obtained by directly porting the JVSTM
algorithm to CUDA and that can be also regarded as a

variant of CSMV from which we have removed all of
the GPU-oriented algorithmic optimizations described in
Section III-B.

Bank benchmark. Figure 2a reports the performance of all the
above mentioned baselines with the Bank benchmark, which
we configured to maintain 6k accounts. In these settings,
conflicts among update transactions have a relatively low
probability to occur, compared to the likelihood of conflicts
between update and read-only transactions.

On the x-axis we vary the percentage of ROTs and report
on the y-axis the throughput.

The plot in Figure 2 shows that CSMV is consistently the
best performing solution for all the considered values of the
percentage of ROTs, with peak gains of around three orders
of magnitude with respect to PR-STM in read-dominated
workloads and of around 20× with respect to JVSTM-GPU
and JVSTM in update-dominated workloads. Let us analyze
more in depth the reasons underlying the performance gains
of CSMV.

As already mentioned, the largest speed-ups with respect to
PR-STM can be observed in correspondence of the largest
considered percentages of ROTs (90% and 99%). Looking
at the plot in Figure 2b, which reports the abort rate as a
function of the percentage of ROTs we can conclude that
there are indeed two main factors contributing to CSMV’s
superior performance w.r.t. PR-STM: (i) Due to its single
version nature, PR-STM is unable to avoid contention be-
tween read-only and update transactions (unlike CSMV). As
a consequence, when the workload comprises 90% of ROTs,
these are likely to run concurrently and conflict with some
update transaction, suffering of frequent aborts. (ii) Even in
absence of contention between ROTs and update transactions,
PR-STM incurs large instrumentation and validation overheads
when processing long ROTs, which, conversely, CSMV avoids
thanks to its MV scheme. This phenomenon is clearly visible
When the percentage of ROTs is set to 99%: in these settings
the abort rate for PR-STM is close to 0, given that the
likelihood of concurrency (and, thus, contention) with update
transactions is very low. Yet, the speed-up achieved by CSMV
vs PR-STM remains massive (approx. 1000×). This result can
be explained by analyzing the data in Table II, which reports
the average total execution time and the wasted time (due to
aborts) for a transaction. As we can see, with 99% of ROTs,
the wasted time is 0 for both CSMV and PR-STM. However,
the total execution time is approximately 1000 times larger
in PR-STM, which, unlike CSMV, needs to track the read

https://github.com/DMRNunes/csmv-gpu-stm
https://github.com/DMRNunes/csmv-gpu-stm
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accesses of ROTs and undergo expensive validations.
Focusing on the comparison with JVSTM-GPU, we can

appreciate the benefits deriving from CSMV’s GPU-oriented
design. In this case the larger speed-ups are observed in the
presence of a larger fraction of update transactions. This is
expected, given that these two systems manage ROTs in the
same way, while adopting different mechanisms to regulate the
commit process of update transactions. The reason underlying
the performance gains of CSMV w.r.t. JVSTM-GPU in update
intensive workloads can be found again in Table I: with
1% ROTs, the total transaction execution time with JVSTM-
GPU is about 20× larger than with CSMV, since the latter
can substantially accelerate the commit process of update
transactions as shown by the data reported in Table I. This
table provides a break-down of the execution times of the main
phases of the commit process for CSMV and JVSTM-GPU.
The first observation that can be drawn is that the total commit
time for JVSTM-GPU is approximately 23× larger than for
CSMV when considering the same scenario of 1% ROTs. This
gap is due to two dominant causes: (i) the validation time,
which in JVSTM-GPU incurs the cost of accessing the ATR,
accounting for about 50% of the commit latency and taking
20× longer than in CSMV; (ii) the time during which threads
block due to warp divergence, which in JVSTM-GPU accounts
for almost 45% of the time, being instead negligible for CSMV
thanks to its GPU-optimized design, that is developed to take
advantage of the SIMT execution.

Finally, the comparison with JVSTM highlights that, thanks
to CSMV’s design, it is possible to take advantage of GPUs
to accelerate also challenging irregular applications running
on state of the art STMs for CPUs by up to approx. 20×/10×
in update/read dominated workloads, respectively.

MemcachedGPU. We configure MemcachedGPU to have a
total capacity of 1M items and conduct a sensitivity study
by varying its geometry. Specifically, we vary the cache
associativity from 4 to 256. Recall that this has a direct
impact on the maximum number of elements read by the

transactions that encapsulate both GETs and PUTs operations
(Section IV-A).

Figure 3 compares the performance of CSMV with all
the previously considered baselines, except JVSTM (which
we omit since we do not have access to a JVSTM-based
implementation of MemcachedGPU). Also in these settings,
CSMV achieves substantial gains with respect to PR-STM
as the size of the ROTs (i.e., the number of ways) increase,
namely up to approx. 15× when using 256 ways. The analysis
of the data reported in Table IV allows us to conclude that
the main source of inefficiency for PR-STM is not contention
among transactions (the abort rate and wasted time are close
to 0 for all solutions in this scenario), but rather the large
overhead imposed by PR-STM’s read-tracking and validation
mechanisms (see Total time for PR-STM in Table IV).

We also observe that the performance gains versus PR-STM
diminish as the number of ways decreases, causing transac-
tions to accordingly access a smaller number of elements.
Indeed, as the number of ways drop to 4, PR-STM outperforms
CSMV by approx. 60%. This is expectable, keeping in mind
that CSMV, as typical of MV scheme, is optimized for long
running ROTs.

Finally, when compared with JVSTM-GPU, CSMV is con-
sistently faster, with throughput gains that range from ap-
prox. 50× (4 ways) to approx. 2× (256 ways). This trend
can be explained by considering that the smaller the number
of ways, the shorter the ROTs, the larger the relative impact
on throughput from update transactions — for which CSMV,
as already mentioned when discussing the Bank benchmark,
employs a much more efficient commit procedure. This obser-
vation is also confirmed by the data in Table III, that reports
detailed information on the execution times of the main phases
of the commit procedure with JVSTM-GPU and CSMV.
Also this benchmark confirms the effectiveness of CSMV’s
design in accelerating the validation phase of conventional
MV algorithms, especially in high throughput scenarios (i.e.,
small number of ways). In such cases, in fact, the number of
concurrently committed transactions that need to be considered
during validation naturally increases if, as in this case, the
%ROTs remains constant. This, on the one hand, exacerbates
the scalability limitations of JVSTM-GPU, while, on the other
hand, amplifying the throughput gains enabled by CSMV’s
optimized commit logic.

C. Impact of optimizations

As already mentioned, CSMV makes uses of a number of
mechanisms designed to take advantage of the architectural
characteristics of GPUs and enhance efficiency. In this section
we present a study that aims at evaluate their impact and
interplay.

To this end we consider two variants of CSMV, which
we obtained by disabling, in an incremental fashion, different
mechanisms at the core of CSMV’s design.

The first variant that we consider is obtained by disabling
the collaborative validation mechanism. We shall refer to this
variant as CSMV-NoCV. We then derive a second variant,



TABLE V: Memory occupied by transactional data items when using PR-STM and CSMV configured to use a different number
of versions. Below, CSMV nv indicates CSMV using n versions.

PR-STM CSMV 2v CSMV 3v CSMV 4v CSMV 7v CSMV 8v CSMV 10v CSMV 10v
Tx. Data Size [KB] 23.45 117 164 211 258 398 492 492

Throughput [TXs/sec] 2.04E+02 2.55E+05 3.49E+05 3.69E+05 3.69E+05 3.69E+05 3.68E+05 3.68E+05
Abort rate [%] 45.21 45.77 6.38 0.31 0.15 0.14 0.15 0.15

called CSMV-onlyCS, by disabling from CSMV-NoCV the
Batched ATR Insert, the client-side pre-validation and the
client-side write-back. As such, CSMV-onlyCS can be also
regarded as a variant of CSMV that preserves only the
client-server design, while disabling any other complementary
mechanism proposed in this work.

We report in Figure 4 the throughput obtained by these two
variants of CSMV using the Bank benchmark, with the same
workload settings considered in Section IV-B. We include in
the plots also CSMV and JVSTM-GPU. We omit reporting
the abort rates, since the abort rates of both variants are very
similar to those of CSMV (which we have already shown in
Figure 2b).

The data in Figure 4 allows us to draw two main conclu-
sions:

• The collaborative validation scheme (which is disabled
in CSMV-NoCV), has the strongest performance im-
pact, especially in update-intensive workloads. That is
explainable by considering that in workloads dominated
by ROTs, it is expected that during validation it will be
necessary to check for conflicts against a reduced number
of transactions in the ATR (recall that ROTs bypass the
commit phase and are not registered in the ATR).

• The employment of a “vanilla” client-server architecture,
i.e., without the contribution of the additional mech-
anisms presented in Section III-B (which corresponds
to CSMV-onlyCS) achieves worse performance than a
straightforward porting of a design originally conceived
for CPUs, namely JVSTM-GPU. Overall this confirms
the relevance of the proposed optimization mechanisms,
demonstrating the importance of employing them in a
synergistic fashion.

D. Memory Consumption

In this section, we evaluate the memory utilization of CSMV
compared to a single-version STM, PR-STM. For CSMV, we
vary the number of versions that each VBox stores, from 2 up
to 10 versions stored.

We report in Table V the size occupied by the transactional
data items for PR-STM and CSMV, along with the respective
throughput and abort rate for the Bank benchmark, with the
same settings considered in Section IV-B, in particular the
workload that includes 90% ROTs.

Being a multi-versioned STM, CSMV stores multiple ver-
sions of transactional data items, and as such, it is expected
that it uses a larger amount of memory to accommodate for
all the transactional objects when compared to a single-version
STM. The memory consumption of CSMV grows linearly with
the number of versions stored: per each data item of size X

bytes, CSMV needs to store 4+(sizeof(X)+4)×#versions
bytes, where the first 4 bytes are used to store internal
VBOX metadata (head and tail pointers for the version list)
while the remaining size is used to store #versions pairs of
〈value,commitTS〉 (commitTS being the commit timestamp of
the transaction that produced that version).

Another thing that is possible to observe from Table V is
the effect the number of versions stored has on the abort rate
for the transactions. This occurs because as fewer versions are
stored per VBox, the sooner older versions are replaced by
more recent ones in memory. Active transactions with an old
timestamp might not find a sufficiently old version of a given
data item, i.e. a version that was already present in memory at
the start of the transaction, and would therefore be forced to
abort (and restart). Note however than even with this increased
abort rate and a respective decrease in the performance of this
variant of CSMV, the throughput obtained is still superior to
the achieved by PR-STM.

V. CONCLUSIONS AND FUTURE WORK

This paper presented CSMV, a multi-versioned STM for
GPUs that adopts an innovative design tailored to take ad-
vantage of the unique architectural characteristics of these
massively parallel, throughput-oriented computing devices.

To the best of our knowledge, CSMV is the first TM in the
literature to adopt a client-server architecture that decouples
transaction execution from the commit process. Such a design
provides two substantial benefits: (i) it allows for accessing the
global metadata required to synchronize transaction execution
via fast on-chip memory; (ii) it enables the implementation of
highly efficient collaborative validation schemes, designed to
take full advantage of the SIMT execution model and intra-
warp communication primitives of GPUs. Further, CSMV
introduces a number of algorithmic and system-level opti-
mizations that operate in synergy to enhance the efficiency of
the commit procedure by: (i) offloading crucial phases of the
commit logic to the client-side and (ii) reduce the frequency
with which the commit resorts to employing expensive syn-
chronization primitives.

Our experimental study highlighted that CSMV can achieve
up to 3 orders of magnitude speed-ups with respect to state
of the art STMs for GPUs, as well accelerating by up to 20×
irregular applications running on state of the art STMs for
CPUs.

This work paved the way for a number of interesting
research lines that we intend to pursue in our future work.

• The centralized nature of the server imposes an upper
bound on the scalability of this method. As already
discussed in Section IV, on current GPU architectures, a



centralized approach, like the one of CSMV, does provide
significant speed-ups with respect to traditional/CPU-
inspired approaches in which, conversely, the commit
phase is completely decentralized. However, a single
server has a limit on the number of worker warps that
it can support which in turn limits how many clients’
requests can be handled simultaneously. Further, using
a single sever/SM under-utilizes the scratchpad memory
globally available in the entire GPU. This in turn limits
the ATR capacity and can lead to spurious aborts in
workloads dominated by transactions that update a large
number of data items.
These issues could be clearly resolved by adopting a
commit scheme that relies on multiple servers, each active
on a different SM. However, this raises the non-trivial
issue of how to coordinate and synchronize the commit
logic activities (transaction validation and manipulations
of the ATR) that take place concurrently in different SMs.

• CSMV was developed and tested using a Pascal GPU, a
microarchitecture that was first released in 2016. Since
then, there have been significant advances for Nvidia
GPUs, namely the Volta, Turing and Ampere microarchi-
tectures. Evaluating CSMV on more recent GPU archi-
tectures would not only allow us to study the sensitivity
of its performance to different microarchitectural designs,
but also to leverage the improvements and new features of
the newer models to improve the performance of CSMV.

• An interesting feature of CUDA that was not explored
in this work is the CUDA cooperative groups. This
extension allows to exert tighter control on the granularity
at which threads can communicate, which may allow for
simplifying and accelerating parts of the current CSMV
logic.
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