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Abstract

In this paper we present Rollerchain, a novel Distributed Hash Table that o↵ers e�cient data
storage through the combination of gossip-based and structured overlay networks. The unstruc-
tured component maintains clusters of fully connected nodes, where each cluster acts as a virtual
node in the structured component. This architecture simplifies the management of data replication
and balances the load among nodes in the system. We have implemented a prototype of Roller-
chain that we have used to experimentally validate its performance against other state of the art
solutions.
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joao.paiva@ist.utl.pt, jc.leitao@fct.unl.pt, ler@ist.utl.pt
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Abstract. In this paper we present Rollerchain, a novel Distributed
Hash Table that o↵ers e�cient data storage through the combination of
gossip-based and structured overlay networks. The unstructured compo-
nent maintains clusters of fully connected nodes, where each cluster acts
as a virtual node in the structured component. This architecture sim-
plifies the management of data replication and balances the load among
nodes in the system. We have implemented a prototype of Rollerchain
that we have used to experimentally validate its performance against
other state of the art solutions.

1 Introduction

Distributed Hash Tables (DHTs) [1,2,3,4] are structured overlays, i.e., overlays
where nodes organize themselves into a predefined topology that supports rout-
ing. As a result, DHTs can e�ciently map a key to a peer active in the system
(named the key owner). This functionality allows to implement store/lookup
operations of key/value data pairs in a distributed and scalable manner. On
top of this basic functionality it is possible to build several types of large-scale
distributed applications and services, such as resource-location [5], publish sub-
scribe [6], multicast [7], distributed storage [8], among others [9,10]. As in any
other system, in DHTs nodes can voluntarily join, leave, or simply fail. Fur-
thermore, in open large-scale systems, these membership changes can happen at
a fast pace, a phenomenon known as churn [11]. To avoid key/value pairs from
being lost when a node leaves, they need to be replicated in the DHT. Therefore,
key replication is a fundamental aspect of the DHT operation.

The cost of replication has been closely analysed in [12], which shows that
the enforcement of data replication degrees accounts for a significant part of
the bandwidth consumption in a distributed storage system and e↵ectively lim-
its the amount of data that can be stored in a DHT. Therefore, the design of
DHTs topologies and replication strategies that mitigate these costs is a mat-
ter of extreme practical relevance. This paper addresses exactly this problem.
As we show in the evaluation section, our architecture can achieve significant
savings when compared to previous solutions from the literature. Furthermore,
these gains are not achieved by sacrificing or trading o↵ fault-tolerance. On the
contrary, experimental results show that our architecture, maintains the keys
reachable even under heavy churn while previous approaches fail to preserves
data availability in such conditions.



The problem of replicating key-data pairs in DHTs has been tackled using
three main strategies. One consists in keeping copies of the data in r neighbours
(typically the r successors in the DHT ring) of the key owner [1,2,10]. Other
consists of adding salt to the key to deterministically store the value in r other
nodes on the DHT [9,13,14,15]. In Path Replication [7], replicas are created as a
result of query processing, by caching the results in the nodes that forwarded
the query. A cost comparison of some of these approaches was presented in [16].
Later in the text we provide arguments that highlight the limitations of these
approaches (the bandwidth consumption that results from these limitations is
quantified in our experimental work). Finally, there is a recently proposed fourth
alternative that integrates strongly consistent consensus-based replication with
DHTs. Scatter [17] is a key-value storage with support for data replication, that
relies on Paxos [18] for maintaining a DHT ring composed of strongly consistent
replication groups.

In this paper we present an alternative implementation strategy to build
a topology similar to that of Scatter [17]. We have named our implementation
Rollerchain. Contrary to Scatter, that heavily relies on consensus to implement
every operation, and therefore has higher signalling costs and may block under
heavy churn, Rollerchain heavily relies on gossip-based mechanisms. This alter-
native is interesting, because gossip-based approaches have proven to be a reli-
able strategy to cope with scenarios where pure structured approaches fail [19].
While Rollerchain provides weaker guarantees, by using a robust gossip scheme
and a clever topology maintenance, we show in the evaluation that it is able to
avoid the loss of keys even under heavy churn despite its best-e↵ort model.

The rest of this paper is organized as follows. Section 2 discusses related
work in more detail. Section 3 provides a brief overview on the building blocks
of our solution, Section 4 describes the operation of Rollerchain, and Section 5
presents the results obtained through extensive experimental evaluation. Finally,
Section 6 concludes the paper.

2 Related Work

2.1 Data Replication on DHTs

Neighbour Replication (also known as leaf set replication) keeps copies of each
key in the r neighbours of the key owner. A significant advantage of Neigh-
bour Replication is that when its neighbours change, the key owner may trigger
the creation of new replicas. Since each node keeps a di↵erent set of replicas,
bookkeeping becomes costly if one attempts to use a flexible scheme where the
number of replicas fluctuates. Therefore, most schemes use some variant of eager
replication, where replicas have to be created when nodes fail and moved when
nodes join. This becomes very expensive in terms of bandwidth as demonstrated
in [12]. Furthermore, depending on the routing scheme used in the DHT, Neigh-
bour Replication may not perform a fair load distribution, as some replicas are
more likely to be hit by queries. Multi-Publication stores r replicas of each data
item in di↵erent positions of the DHT. Then, some mutual monitoring scheme



needs to be implemented to detect the departure/failure of a node containing
a replica and subsequently restore the replication degree. The main advantage
of Multi-Publication is that it o↵ers very good load balancing properties, as
multiple queries may be diverted to di↵erent regions of the DHT. On the other
hand, monitoring becomes extremely expensive, because it needs to use DHT
routing and a node may be forced to monitor a di↵erent set of nodes for each
object that it stores. Other interesting data replication strategies for DHTs can
be found in [20] and [21]. Although also relying on cluster-based techniques,
these works rely on algorithms that impose additional restrictions to topologies,
making them less flexible and limiting their scalability.

Finally, a number of recently proposed overlays take a di↵erent approach
to replication [17,22]. These overlays create self-contained replication groups of
nodes which act as single nodes in the DHT. Routing is performed at the group
level and not at the physical node level, allowing the system to fine-tune the
replication sets. So, even though they are based on consistent hashing (and hence
metadata-less approaches), these overlays allow to decouple the management of
replication from management of the overlay topology. In Group-based DHTs,
each node is a logical entity, materialized by a replica group of variable size.
Contrary to classical DHTs where each node has a pre-determined location in
the network (depending on its identifier), in these approaches nodes can join any
existing replica group. All members of each group coordinate to act as a single
node in a higher layer, defining a DHT. Since replication is decoupled from the
DHT layer, the replication degree of individual groups can vary without a↵ecting
the DHT’s structure. As a result, consistent hashing is used to place data items
into groups, and data is then replicated among all nodes that belong to that
group. Our paper provides an alternative implementation of this approach.

2.2 Load Balancing on DHTs

Our work leverages on the data replication to improve load balancing. One fun-
damental problem in DHTs is that node’s identifiers or, most likely, keys, may
not be uniformly distributed in the address space. As a result, some nodes will
be required to maintain (and answer queries for) many items while others may
be relatively o✏oaded. A common technique to circumvent this problem is to
use virtual servers [8,23]. In this technique, each physical node joins the DHT
using multiple identities; each identity represents a virtual node maintained by
that physical node. On the other hand, having multiple virtual identities re-
quires each node to maintain more routing information and monitoring more
overlay neighbours, which may impose an excessive overhead. Also, this strategy
amplifies the e↵ect of churn, as the departure of a single physical node causes
the simultaneous failure of multiple virtual servers. Other approaches rely on
making a guided choice of node identifiers at join time, to select positions in
the Identifier ring such that the load is evenly distributed among all nodes. In
order to achieve this, works such as [24] and [25] use probes in the system to
determine the best identifier to use. These schemes allow to balance the load of



object storage among all nodes in the system without requiring additional rout-
ing information, by increasing the cost of join operations. However, they may
create a non-uniform distribution of nodes in the identifier space, which hinders
the performance of some routing algorithms.

2.3 Combining Structured and Unstructured Overlays

As previously mentioned, our solution relies on the combination of structured
and gossip-based overlay mechanisms. Some previous systems have already ex-
plored this idea, although with di↵erent goals and, as a result, with solutions that
are structurally quite di↵erent from Rollerchain. The work by Ghodsi et al. [19]
makes the case for combining gossip-based and structured networks, and dis-
cusses several examples of successful synergies between both designs. This work
claims that through this symbiosis, the current state of the art on DHTs can be
improved with new overlay designs that o↵er better reliability, lower bandwidth
costs, or better geometry. Inspired by the work of [26], in [27], Maniymaran et
al. present an approach that follows this design principle and combines two over-
lays, a DHT and a interest-based unstructured overlay, at a cost similar to that
of building a single one. Kelips [4] is a DHT structured using virtual nodes com-
posed of several physical peers. Unlike Rollerchain, each of these nodes know at
least one contact in every other virtual node, creating an one-hop DHT. Kelips
supports e�cient lookups, but it does not present any solution for data replica-
tion and each node stores a pointer to every object owned by its virtual node,
a property that severely limits its scalability. Concurrently to our work [28], [29]
proposes an architecture inspired on similar principles; however Rollercain uses
di↵erent techniques to perform joins, merges, and to maintain the routing table.

3 Rollerchain Overview and Building Blocks

Rollerchain dynamically manages the replication groups by combining features
of unstructured and structured overlay networks in an integrated design. More
specifically, Rollerchain builds a DHT where each (virtual) node is materialized
by a small group of peers, the size of which depends on the replication degree, R.
These groups are neither static nor defined a priori. Instead, they are dynamically
created and maintained by the unstructured component. Acting collaboratively,
peers on each virtual node share among themselves the information required to
maintain the DHT topology and the data stored by their virtual node. The un-
structured component of Rollerchain is responsible for creating and maintaining
the virtual nodes. Some of its mechanisms are inspired by Overnesia, an unstruc-
tured overlay that aggregates peers in clusters [30]. The structured component of
Rollerchain runs the DHT maintenance algorithms. For self-containment, before
describing the operation of Rollerchain in detail, we provide a brief overview
of Overnesia and of the Chord DHT [1], whose architectures have inspired our
design.



Overnesia Overnesia [30] is an unstructured overlay network where nodes self-
organize into fully connected clusters which, in turn, are highly and randomly
connected among themselves. The target size of these clusters can be configured
by the application to a given targetClusterSize value. However, the cost of en-
suring that every generated cluster produced by the protocol has exactly the
same size in highly dynamic and open environments can be prohibitively high.
To overcome this challenge, Overnesia instead ensures that the size of clusters is
distributed between minClusterSize and maxClusterSize, with a predominance
of clusters with the targetClusterSize (evidently,minClusterSize < targetCluster-
Size < maxClusterSize). Each Overnesia cluster is assigned a random identifier
that is known by all elements of that cluster. A gossip-based anti-entropy mech-
anism, in which elements of each cluster periodically and randomly exchange
messages among themselves, is employed to ensure that cluster members con-
verge on a consistent view of the cluster membership, despite concurrent joins
and failures in the system. Furthermore, this process is used to provide a mini-
mal amount of coordination required to increase the diversity of external links
maintained by di↵erent cluster members. Note that Overnesia does not o↵er any
DHT support. As a result, the way links are established among clusters does
not take any sort of routing requirements into account, other than attempting
to maximize the connectivity of the network.

Chord Chord [1] is a widely known DHT that organizes nodes in a ring-like
topology. It places objects in specific nodes of the ring using consistent hashing.
Chord’s ring is created by sorting nodes by their identifier modulus the size
of the identifier space. Its maintenance is mostly proactive, such that each node
keeps a predecessor and a successor node through periodic maintenance routines.
More specifically, each node N periodically queries its successor S in order to
obtain the predecessor P of S (naturally, in a stable scenario, we should have
P = N); should P 6= N be a node with an identifier in the interval ]N id;S id[,
N will then switch its successor pointer to node P . After this update, N informs
P that it is now P ’s predecessor. This simple routine allows the ring to converge
and remain connected even in face of concurrent entry and departure of nodes.
Even though Chord’s ring would su�ce for any node to reach any other node
in the overlay, routing messages exclusively through this ring would be very
ine�cient. Thus, Chord’s protocol includes an e�cient routing mechanism: each
Chord node maintains a Finger Table, from which it selects the closest node
on the ring to route messages towards their destination. As the Finger Table
contains pointers to nodes which are at exponentially increasing distances from
the node’s position in the ring, this mechanism allows Chord to route messages
in log(N) network hops, where N is the total number of nodes (since the overlay
distance to the destination can be halved with each hop).



4 Rollerchain Operation

4.1 Definitions and Basic Operation

We opted to preserve the nomenclature of the original Chord paper, where each
peer is denoted a node. Therefore, in Rollerchain, each peer is called a physical
node, or pnode for short. The unstructured component of Rollerchain aggregates
pnodes in clusters. All pnodes that belong to the same cluster cooperate to be-
have collectively as a logical virtual node, or vnode. A vnode is a fully connected
cluster of pnodes with a fluctuating size around R (the replication factor) that
act as a single node in the structured layer. To facilitate the coordination among
pnodes in the same vnode, an anti-entropy gossip-based protocol is executed
among them. This protocol allows pnodes to exchange information required for
the operation of Rollerchain (which we will incrementally describe), including
the membership of the vnode and key/value pairs maintained by its members.
Also, to simplify coordination among vnode members in several Rollerchain pro-
cedures, the member with the lowest process identifier in each vnode acts as the
vnode leader. Occasionally, it may happen that more than a single pnode sees
itself as the vnode leader. This does not a↵ect the correctness of Rollerchain,
as the leader is only used to reduce the signalling costs of the algorithms. Sim-
ilarly, if no pnode sees itself as the leader, this only delays the progress of the
algorithms until the anti-entropy procedure enables one of the members to see
itself as the leader. Virtual nodes establish virtual links among themselves to
create a logical ring. A virtual link between vnode A and B is materialized by
establishing links among pairs of pnodes (ai, bj) where ai 2 A ^ bj 2 B. The
algorithm for establishing and maintaining virtual links is described later in the
text. Fig.1 provides a visual representation of Rollerchain’s architecture.

Fig. 1. Rollerchain’s Architecture: At the DHT level vnodes form a ring. Each vnode
is composed of several pnodes.



4.2 The Unstructured Layer

The unstructured layer of Rollerchain is an overlay composed of virtual nodes,
where each vnode stores key/value pairs replicated by all of its members. This
replication not only increases the resilience of data, but also allows pnodes to
share the load of answering queries for objects stored in the associated vnode.
When joining the unstructured layer, a pnode starts a random walk in the net-
work, which probes suitable clusters to join. As one of Rollerchain’s goals is to
balance the load among the virtual nodes that compose the system, the new pn-
ode chooses the most heavily loaded virtual node found in the random walk to
join the network. We define the load of a vnode as the number of key/value pairs
it stores, normalized to the number of pnodes it is composed of. This mechanism
causes heavily loaded virtual nodes to attract new members in order to share
their load.

When a vnode leader detects that its vnode has become too large, it starts
a division procedure to halve the vnode into two others with the same size.
This division serves not only to reduce the costs of replicating data among its
members, but also to reduce the number of objects each member stores. When
dividing, the position of the vnode in the identifier ring is critical for the good
performance of the system. If the joining vnode just selected a new random
identifier as it happens in Overnesia, it would discard all of its data, rejoin
the DHT and receive new data from its new successor. Thus, to improve the
e�ciency of the structured layer, when a virtual node is divided in Rollerchain,
one of the newly generated vnodes keeps the identifier of the original vnode (to
avoid inducing artificial churn in the structured overlay) and the other generates
an identifier that allows it to become the owner of half of the original vnode’s
key/value pairs.

A vnode merge occurs when the vnode leader detects that its vnode’s size
is dangerously below the target replication degree. The merge prevents objects
from being lost by integrating the vnode with its successor. The vnode leader
obtains its successor vnode’s membership and broadcasts it to its neighbours,
which then change their vnode identifier.

4.3 The Structured Layer

The structured layer of Rollerchain is a double-linked ring composed of virtual
nodes provided by the unstructured layer. As described earlier, the vnode iden-
tifiers are selected to promote the load balancing of the number of objects stored
by each vnode. Therefore, vnode identifiers are not uniformly distributed in the
identifier space. In typical DHTs (such as Chord [1], Pastry [2] or Kademlia [3]),
node identifiers are assumed to be uniformly distributed in the identifier space.
Thus, typical DHT routing mechanisms cannot be applied to Rollerchain. To
ensure e�cient routing in Rollerchain’s identifier space under these conditions,
each vnode in Rollerchain has a virtual link to its immediate successors and
one finger table with log(N) rows, containing virtual links to distant vnodes in
the ring. As it happens in DHTs such as Chord [1] or Viceroy [31], each row in



the routing table represents an exponentially larger jump than the previous row.
However, whereas in these solutions the larger jumps refer to the identifier space,
in Rollerchain each row in the routing table represents an exponentially larger
jump in the number of virtual nodes on the ring. When vnodes are distributed
uniformly in the ring, both schemes generate similar routing tables. However,
if some areas of the identifier space have more vnodes, these will appear more
frequently in Rollerchain’s routing tables, whereas in typical DHTs they would
have the same probability regardless of the density of those regions. It is im-
portant to notice that even though this routing scheme ensures that our system
can route messages logarithmically with the number of vnodes, other routing
mechanisms, such as those based on Skipnets [32] or the work presented in [33],
could also be employed.

4.4 Layer Interoperation

Virtual Link Creation As described before, virtual nodes cooperate to create
a Ring-based DHT. To preserve the logical ring, and to support e�cient routing,
each virtual node maintains a virtual link to other virtual nodes in the ring. More
precisely, a virtual link needs to be maintained to each di↵erent virtual node in
the finger table (including the successor). Virtual links between two vnodes,
say VA and VB , need to be materialized by links between individual members of
these vnodes (Fig. 2a). For fault-tolerance and load balancing, these links should
be distributed evenly among these members. For instance, consider a vnode VA

that has n members and a vnode VB also with n members. It would be highly
undesirable to have a singe pnode ak from VA to have n links to each member
of VB (Fig. 2b). It would be equally undesirable if all nodes in VA establish a
link to the same pnode bk in VB (Fig. 2c). The ideal solution would be to have
each pnode ai 2 VA to have a link to a di↵erent pnode bi 2 VB (Fig. 2d). In
this way, each pnode would be required to maintain a single link and the virtual
link would be materialized by n independent physical links. Additionally, this
ensures that n� 1 physical links between VA and VB would still be alive after a
single pnode failure/departure.

In order to quickly achieve an even distribution of links among members
of a vnode, the vnode leader (the pnode with the smallest identifier), say a0,
coordinates a procedure of virtual link creation. This procedure is used when a
vnode leader updates the virtual links of its vnode, particularly during vnode
division and vnode finger update. We assume that when the virtual link creation
procedure is invoked, a0 is aware of at least one member bk 2 VB . The leader
a0 starts by requesting bk to return the current snapshot of VB ’s membership;
we recall that there is an anti-entropy procedure running inside each vnode that
keeps such information up-to-date. Knowing the full membership of VA and VB ,
the leader a0 assigns links among VA and VB in a round-robin manner, until all
pnodes of VA and VB are connected to some pnode in the other vnode (note
that Fig. 2 is an over simplification of reality, as VA and VB generally do not
have the exact same number of pnodes). Finally, this mapping is propagated to
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(a) (b)
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Fig. 2. Management of virtual links among vnodes.

all members of VA. Each individual pnode ak then initiates the establishment of
link(s) to its corresponding pnode(s) in VB .

Virtual Node Maintenance The membership of a vnode may change as pn-
odes join and leave the overlay. As it is crucial for the connectivity of Rollerchain
that its ring remains connected despite membership dynamics, such changes
require adjustments to the link assignments that materialize the virtual links
maintained by each vnode to its successor and predecessor nodes. 1 Consider
first the result of a join operation on virtual node VA by pnode ak. The pnode
may help in materializing the virtual links maintained by the virtual node VA.
To this purpose, and for each virtual link, pnode ak will attempt to “alleviate”
the load of some other members of VA, by serving as endpoint of some of their
links. This can be achieved as follows. The information exchanged in the anti-
entropy protocol includes the number of forward and backward links maintained
by each pnode for a given virtual link. Therefore, ak can select a node that has
more forward or backward links than the majority of the remaining pnodes and
connects to one of their endpoints. When the other pnode finds out about ak’s
links, it closes the redundant link. On the other hand, if ak finds that the num-
ber of links is perfectly balanced, the new node just creates a redundant link
at random. Consider now the case where a pnode leaves a vnode. The physical
links established by that pnode will break. This means that pnodes on the other
endpoint of those links will perform the link re-distribution described in the pre-
vious paragraph. Finally, consider the case where multiple join and leaves occur
in succession. If joins and leaves are perfectly interleaved, a (physical) link is

1 Note that there is no need to adjust the remaining virtual links in the finger table
as those are non-essential to maintain overlay connectivity.



lost in each leave but a new link is created in each join, and the number of links
that materializes the virtual link between two vnodes remains constant. How-
ever, if bursts of leaves or joins occur, the balance may no longer be preserved.
When, as a result of the anti-entropy procedure, the vnode leader detects heavy
imbalance in the link distribution for some virtual link, it triggers a re-balance
procedure. This rebalance procedure consists of sending a balanced mapping of
physical links for the virtual link to the pnodes causing the imbalance, so that
they may adjust their links accordingly.

Virtual Node Division Vnode division is performed in such way that the
two new resulting vnodes have similar size and load. For this purpose, one of
the vnodes preserves the identifier of the original vnode and the other vnode
becomes its predecessor, by assuming an identifier that causes it to become the
owner of half of the key/value pairs of the original vnode. This allows Rollerchain
to dynamically adapt to the distribution of keys in the identifier space. Virtual
node division is controlled by the leader of the original vnode, that sends a
message to all members with the identifiers of the new vnode, the membership
of each vnode, and a new assignment for the virtual links maintained between
them. This division procedure ensures that the new vnodes are neighbours in
the DHT, what contributes to savings in the number of keys moved during this
operation, as nodes will only have to locally discard object/key pairs.

Virtual Node Merge In a steady-state scenario, vnodes are stable, as new
pnodes tend to replace failed/departed pnodes. However, as a result of multiple
leaves and failures, the size of a vnode may become below the desired replication
level for the key/value pairs. This happens when a vnode has very few keys in
proportion to its number of members while other vnodes remain heavily loaded
in the system. Since the join procedure looks for vnodes that are highly loaded,
in order to o↵er a better load balancing, a vnode with few keys (and therefore,
not heavily loaded) may be disregarded by joining pnodes. When a vnode size
becomes too small, it is merged with its successor. This ensures that all nodes
that are part of the two merging vnodes retain their key/value pairs. The anti-
entropy in the resulting vnode will ensure that those keys will be later replicated
by all remaining members. Similarly to other mechanisms, the merge is started by
the leader of the merging vnode. In highly dynamic environments, di↵erent nodes
may see themselves as the leaders of the same vnode, and send out conflicting
orders regarding vnode division or merge. However, the system is designed to
tolerate these scenarios, as a merge order always supersedes a division order.
Thus, even though such orders may create temporary inconsistencies (which
are unavoidable in large asynchronous systems), the topology will eventually
converge to a correct configuration.

4.5 Key/Value Pairs Replication

The replication of key/value pairs among the members of a vnode is performed
using a combination of eager and lazy replication schemes. When a key/value



pair is inserted in a vnode, eager replication is used. The pnode that receives
the request uses a best e↵ort application-level multicast primitive to replicate
the pair among the other members of its vnode. Subsequently, replicas are main-
tained using a lazy replication scheme that leverages on the anti-entropy proto-
cols executed among vnode members. Processes include a hash of the keys they
own for their current interval of responsibility in the anti-entropy messages. If
(as a result of an anti-entropy exchange) a pnode discovers that its hash di↵ers
from that of a neighbour, they exchange their full list of keys, so that both pro-
cesses may request their missing key/value pairs from each other. To maintain
the correct keys at each vnode, each pnode periodically checks the keys it stores.
When a pnode detects it is storing objects for which the keys should be owned
by its successor (the keys are between its vnode identifier and its successor vn-
ode identifier) or its predecessor (the keys are not between its identifier and its
predecessor identifier), it transfers the content to the correct vnode and deletes
it locally. The data is sent to a pnode in the other vnode, which in turn sends
the hash of its keys to all the remaining elements of its vnode, so that they may
request their missing key/value pairs (if any). As it happens with other replica-
tion mechanisms for which there is no master copy of the data (e.g. [34]), this
mechanism does not provide strong consistency among the replicas. The anti-
entropy mechanism running in each vnode guarantees that eventually all nodes
will locally store all the key/value pairs.

4.6 DHT routing

DHT routing in Rollerchain is similar to Chord routing with some twists. Log-
ically, lookups follow virtual nodes, using the virtual links maintained in the
vnode’s finger table. In reality, lookups are implemented by individual pnodes.
When the lookup arrives at a pnode, it uses its own finger table to select a pnode
to be the next hop for the lookup. If the pnode cannot contact the next hop,
the lookup is re-routed to another pnode in its own vnode, which attempts to
forward the lookup using one of its own links. This is similar to the re-route
mechanisms used by DHTs that have routing tables with alternate paths (for
instance, Pastry [2]). Due to the redundancy in the virtual link maintenance, it
becomes very hard to undermine routing in Rollerchain. As it happens in Chord,
all lookups end in the predecessor of the key, which return their successor as the
owner of the key. In Rollerchain, when lookups reach one pnode in the prede-
cessor vnode of the target key, it returns a random successor pnode (we recall
that each pnode knows the composition of its successor vnode through the anti-
entropy protocol). This allows the query load to be equally distributed by all
nodes despite some (possibly temporary) imbalance in incoming links.

5 Evaluation

In this section we present experimental results that validate the design of Roller-
chain. All results reported in this paper were obtained using the Peersim simula-
tor [35] event-based engine. The system was populated with 50.000 objects and



is composed of 10.000 nodes. To extract comparative measures, we used Chord
with the Neighbour Replication scheme and Chord with Multi-Publication (as
described earlier). We evaluate the performance of Rollerchain in terms of band-
width e�ciency and load balancing.

5.1 Experimental Parameters

All Chord configurations used a replication factor of 7 (in Neighbour Replica-
tion, each key is replicated in the owner and in 6 of its successors). Rollerchain
was configured with a minClusterSize of 3 and a maxClusterSize 8, which we
experimentally determined results in vnodes being composed, on average, by 7
pnodes. This means the average replication factor of all replication techniques is
the same. Furthermore, Rollerchain’s routing table size was set to 11, to ensure
that both protocols have a similar number of (distinct) fingers, creating routes
with the same number of hops (15 on average). The anti-entropy mechanism of
Rollerchain was also executed as often as the replication maintenance routines of
the other replication schemes. The results presented are the average of, at least,
5 individual simulations for each scenario.

5.2 Communication Overhead under Churn

In order to demonstrate the advantages of Rollerchain in terms of objects trans-
ferred between nodes and the impact of combining two overlays, this section
presents experimental results for the communication overhead of each system
in a (highly) dynamic scenario. To this end, we have conducted experiments as
follows. All overlays were initialized by having nodes join the system one at a
time. After a stabilization period, churn was induced for 10.000 consecutive sim-
ulation steps (one step corresponds to up to 5 Round Trip Times). In each step,
c nodes were concurrently removed and c new nodes were added (c is dubbed
churn rate). We performed experiments with churn rates of 1, 10, and 100. By
using increasing churn rates we can assess how each overlay and each replication
scheme responds to increasing dynamics in system membership.

Objects transferred between nodes

One of the main goals of Rollerchain is to take advantage of its flexible replication
degree to reduce the bandwidth required to maintain objects available when
compared with previous solutions. Table 1 shows the average number of objects
transferred per node during the course of the simulation and the percentage of
objects reachable at the end of the simulations for the same churn rate.

We first direct the reader’s attention to the c = 1 scenario, where all topolo-
gies are able to preserve the reachability of all keys. In the remaining scenarios,
Neighbour Replication and Multi-Publication’s results are a↵ected by the loss
of keys; these are discussed further ahead in the text. For c = 1, it is clear
that Rollerchain transfers significantly less objects than the other replication



Table 1. Number of objects moved per node vs Percentage of objects reachable at the
end of the simulations

c = 1 c = 10 c = 100
Rollerchain 38.0/ 100.0% 40.2/ 100.0% 44.6/ 98.2%
Neighbour Replication 77.0/ 100.0% 93.0/ 94.1% 0.85/ 0.0%
Multi-Publication 88.5/ 100.0% 31.3/ 10.2% 0.22/ 0.0%

techniques. This happens because in Rollerchain most data transfers are useful,
i.e., they are used to recover the target replication degree. In the competing ap-
proaches, many data transfers have no impact on reliability, they are performed
exclusively to preserve some replication-topological constraint (such as to keep
replicas close to the key owner) with no benefit on data availability.

When a node joins Chord, it must receive all the objects it will own and one
replica of each object its R � 1 neighbours own. Being Ot the total number of
objects stored in the system and N the size of the network, on average each
node join will cause the transfer of (Ot/N) ⇥ R objects. Conversely, a node
failure triggers the creation of (Ot/N)⇥R new replicas. The combined e↵ect of
a failure followed by a join causes 2 ⇥ (Ot/N) ⇥ R data transfers. Rollerchain
avoids creating new copies of data immediately after a failure. By construction,
joins happen in vnodes that have lost members and replicas are created to restore
the replication degree at that time.

In any of the schemes, the minimum number of objects transferred per joining
node would be (Ot/N) ⇥ R (i.e., 35 in our setting). Rollerchain’s results are
close to this value, whereas Neighbour Replication’s results are closer to 70,
which matches the expected results as discussed above. Naturally, none of the
architectures achieves the theoretical minimum given that under churn, transient
routing inconsistencies lead to data being replicated at wrong locations (and
later discarded). This e↵ect is particularly noticeable for Multi-Publication, as
this scheme relies heavily on overlay routing to perform replication.

We now discuss the results for higher churn rates. Frequent changes in the
network topology cause havoc in the replica maintenance schemes of Neighbour
Replication and Multi-Publication, due to the increasing number of routing in-
consistencies. In fact, Multi-Publication loses a large number of objects during
the simulation, for c = 10. This e↵ect is also observed for Neighbour Replication,
for c = 100. Since objects are lost, the number of moved objects decreases (obvi-
ously, the number of moved objects in this case can no longer be compared with
Rollerchain, where most objects are still reachable in these conditions). Roller-
chain is much more robust, as the DHT topology remains stable. Still, under
heavy churn, even in Rollerchain, new nodes become unable to perfectly replace
the failed ones, inducing occasional changes in the structured layer through di-
visions and merges of virtual nodes, some minimal data loss (less than 2%), and
some performance degradation.



Overlay maintenance costs

Figures 3 and 5 show the bandwidth consumption resulting from the two re-
maining sources of overhead: i) the signalling costs of the monitoring protocols
that are required to preserve the replication degree (Figure 3); and ii) the costs
associated with maintaining the overlay topology (Figure 5).
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Fig. 3. Replication signalling costs per node, considering 128bit keys.

The costs of maintaining replication in Rollerchain are not significantly dif-
ferent from those of Neighbour Replication. In both protocols, each node has to
gossip with a limited number of neighbours (one in the case of Rollerchain, as
each pnode gossips with only one other neighbour on each round, and R � 1 in
the case of Neighbour Replication). Also, in both cases, the message contains
only a simple hash of the node’s data. Multi-Publication’s costs are at least two
orders of magnitude higher. This results from the periodic lookups that a node
is required to perform for every key it owns. These lookups are routed in the
overlay and incur in multiple message exchanges. In fact, when considering only
the periodic replication mechanisms, Multi-Publication requires a node to mon-
itor R� 1 nodes in the overlay for each key it stores. Since the replica nodes for
each object are distributed in the overlay using consistent hashing, the larger
the system is the less likely it is that di↵erent objects are replicated in the same
node. Thus, even in stable topologies (with no node joins or leaves), the num-
ber of neighbours each node has to contact increases with the network size, the
number of objects, and their replication degree. This property severely limits
the scalability of Multi-Publication (as Figure 4 shows).

When considering the topology maintenance overhead (Figure 5), it can be
observed that Rollerchain is more expensive than the other two techniques. Such
results are not surprising, as Rollerchain combines design elements of two over-
lays. Still, these costs are in the same order of magnitude of competing ap-
proaches, and relatively small when compared with the costs of replication dis-
cussed above. For example, considering a churn rate of c = 1, if objects have
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Fig. 4. Average number of nodes contacted by nodes running multi-publication, con-
sidering R = 10.
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Fig. 5. Topology signalling costs per node.

a size of 5MB (the typical size for audio files), each node in Rollerchain will
require 190MB of bandwidth to move objects; whereas each node using Neigh-
bour Replication would consume approximately 385MB of bandwidth. In fact,
for a system with the number of objects and replication degree considered in
this section, the overall costs of Rollerchain are below those of Neighbour Repli-
cation for object sizes greater than 6.7KB. Finally, the increase in bandwidth
consumption by Rollerchain under higher churn rates can be explained by the
occurrence of merge and division operations, which require additional coordina-
tion among peers, but also make the operation of the overlay more robust as
discussed earlier.



Table 2. Statistics for number of queries answered per node. Table presents average
(AVG), minimum (MIN), maximum (MAX) and standard deviation (STDDEV) for
Uniform (U) and Zipf (Z) distributions.

MIN AVG MAX STDDEV(K)

U
Rollerchain 212 500 739 116
Neighbour Repl. 22 500 1907 241
Multi-Publication 37 500 1684 203

Z
Rollerchain 210 500 0.739⇥ 103 116
Neighbour Repl. 0 500 1774⇥ 103 20782
Multi-Publication 0 500 444⇥ 103 4496

5.3 Load Balancing

To evaluate the load balancing capacity of Rollerchain, we have conducted exper-
iments with stable topologies (i.e., while no join or leave operations occurred).
This decouples the load balancing properties from other aspects of the overlay
operation. We assigned keys to 50.000 objects following two distributions: i) uni-
form and ii) Zipf with a 1.25 skew. The uniform random distribution provides a
baseline of comparison, while the Zipf distribution illustrates operation in sce-
narios where a portion of the identifier space becomes overloaded. Subsequently,
100 queries per object were triggered at random nodes to achieve a grand total
of 5.000.000 queries.

Table 2 presents the resulting number of queries answered by each individual
peer in the overlay. One can observe that the variance of the results obtained
with Rollerchain is smaller than with the competing strategies. In Rollerchain,
most nodes have approximately the same load. In fact, even the highest loaded
node in Rollerchain only has 50% more load than the average; with Neighbour
Replication, this value rises to 280%.

We now compare the results obtained with the Uniform (U) and the Zipf
(Z) key distributions. We highlight that the results obtained for Rollerchain in
the Zipf scenario are very similar to those obtained in the Uniform scenario.
This shows that Rollerchain’s dynamic partitioning of the data can adapt to
extremely skewed datasets, making it oblivious to the key distribution in the
identifier space. This makes Rollerchain suitable for supporting applications that
use non-uniform distributions of keys. Multi-Publication performs better than
Neighbour Replication under the Zipf distribution. However, due to the lack
of mechanisms to adapt the distribution of objects among nodes, the skew in
the load imposed across nodes is, at least, one order of magnitude above that
achieved by Rollerchain.

6 Conclusions

This paper proposes a novel combination of gossip-based mechanisms and struc-
tured overlays to generate a DHT of virtual nodes, where each virtual node is



materialized by a set of physical nodes. The resulting system can save a sig-
nificant amount of bandwidth consumption when maintaining replication under
churn: Our solution, named Rollerchain, has proved experimentally to be more
robust than competing approaches. As future work, we plan to explore new
data persistence models to apply in Rollerchain, allowing applications to specify
di↵erent replication requirements for each particular object.
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