Protocolos em Redes de Dados Aula 13 Mobilidade

Luís Rodrigues

FCUL

2004-2005

Protocolos em Redes de Dados

Luís Rodrigues

bumario

Mobile IP

Micro-mobilida

Pv6

Redes ad hoc

Sumário

Mobile IP

Micro-mobilidad

Pv6

Redes ad ho

- ► Mobile IP.
- ► Encaminhamento em redes ad hoc

IVIICro-mobilidade

. . .

Redes ad noc

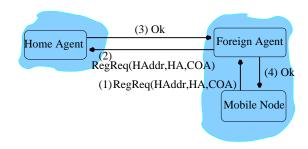
Resumo

Permitir que um nó esteja sempre acessível usando o mesmo endereço, independentemente da sua localização física.

- Problema:
 - O endereço IP possui um componente que identifica a "rede".
 - Se um nó muda de rede, tem de mudar necessariamente de endereço.

PVO

ricaes aa ric


- O nó móvel designa-se por (surpresa!), "Mobile Node" (MN).
- O endereço pelo qual o MN é conhecido designa-se por "Home Address".
- Quando um MN se liga numa rede hospedeira, obtém um endereço temporário, designado por "Care-of-address" (COA).
- Um nó que tenta comunicar com o MN designa-se por "Corresponding Node" (CN).

IPv6

Redes ad hoc

- A arquitectura utiliza dois novos componentes:
 - Um agente na rede de origem do MN, designado por "Home Agent" (HA).
 - ► Um agente na rede hospedeira, designado por "Foreign Agent" (FA).

Registo de localização

Protocolos em Redes de Dados

Luís Rodrigues

Sumário

Mobile IP

Micro-mobilidad

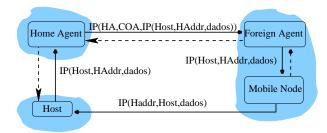
IPv6

Redes ad ho

Pv6

Redes ad hoc

- Quando se liga numa rede hospedeira descobre um FA.
 - Os FA anunciam-se periodicamente (nos "router advertisement").
 - Os FA indicam os COA disponíveis.
- regista-se no FA, fornecendo a sua identificação e a identificação do seu HA.
- O FA contacta o HA do MN como parte de autenticação do pedido de registo, regista o COA do MN no HA, e confirma o registo ao MN.


iviicro-mobilidad

IPv6

Redes ad hoc

- O CN envia os pacotes para o Home Address do MN.
- O Home Agent recebe os pacotes (ou através de proxy ARP ou instalando o HA no gateway) destinados ao MN.
- Os pacotes são re-encaminhados para o FA através de um túnel.
- ▶ O FA extrai o pacote original e envia-o ao MN através de um protocolo do nível de comunicação de dados.

Comunicação

Protocolos em Redes de Dados

Luís Rodrigues

Sumário

Mobile IP

Micro-mobilidad

IPvb

Redes ad

11 00

ixeues au iii

- Os pacotes do MN para o Corresponding Node (CN) poderiam (em princípio) ser enviados directamente para o CN, utilizando como endereço de origem o Home Address do MN.
 - Nota: o FA assume o papel de "default router" para o MN.
 - Só assim se assegura total transparência para o CN.
- Fluxo assimétrico dos pacotes (também conhecido por "dogleg routing" ou "triangle routing").

PVO

Redes ad hoc

Resumo

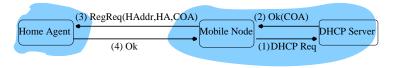
Limitação prática:

- A maioria dos sistemas autónomos filtra pacotes à saída, eliminando pacotes cujo endereço de origem não pertença a uma rede do SA.
- Isto permite limitar alguns tipos de ataques de segurança (por exemplo, negação de serviço).
- Para contornar esta limitação, os pacotes do MN para o CN podem ter de ser enviados por um túnel até ao HA, antes de serem de novo injectados na rede.

Arquitectura alternativa

Protocolos em Redes de Dados

Luís Rodrigues


Sumário

Mobile IP

Micro-mobilidad

IPv6

Redes ad hoo

- 00

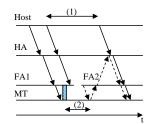
Redes ad noc

- O FA é um componente lógico, que pode executar-se no próprio MN.
 - Solução designada por "co-located COA".
- Permite que um nó móvel obtenha o COA por outro meio (por exemplo DHCP) e depois contacte o HA directamente.

IPVO

Redes ad no

- O processo de alteração de rede hospedeira designa-se por hand-off.
- Quando suportado pelo Mobile IP, designa-se também por macro-mobilidade.
- ▶ Limitações:
 - O processo de obtenção e registo do novo COA pode ser demorado.
 - Entretanto os pacotes enviados para o antigo COA perdem-se.
 - Pode afectar seriamente as ligações de dados activas, sobretudo os fluxos multimédia.


Sumário

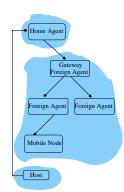
Mobile IP

Micro-mobilidade

IPv6

Redes ad I

- (1) Intervalo em que MT permanece incontactável pelo Host
- (2) Intervalo em que o MT está incontactável na rede hospedeira (≥ 0)
- Objectivo Encontrar mecanismos que aproximem (1) de (2)


IPvb

Redes ad hoc

- Extensões ao Mobile-IP que permitem reduzir o tempo de hand-off dentro do mesmo sistema autónomo.
 - Requerem a utilização de componentes adicionais.
 - No limite, podem exigir encaminhamento especializado em todo o sistema autónomo (por exemplo, Hawaii).

Mobile IP Hierárquico

- Exemplo simples de suporte à micro-mobilidade.
- Em vez de existir um único FA, estabelece-se uma hierarquia de FA (tipicamente em árvore).
- A raiz da árvore de FA faz a fronteira da rede hospedeira com o resto do mundo.
 - O MN regista-se num FA folha, que por sua vez se regista no FA de nível seguinte, etc.
 - O FA raiz regista-se no HA.

Protocolos em Redes de Dados

Luís Rodrigues

Sumár

Mobile IP

Micro-mobilidade

IFVO

Redes ad hoo

Kesumo

Pvb

Redes ad hoc

- Quando o nó móvel faz um hand-off dentro do mesmo sistema autónomo, este só é visível, no pior caso, para o FA raiz e nunca para o HA.
 - Vantagens: menor latência na reconfiguração.
 - Desvantagens: maior número de túneis.

IPv6

Redes ad hoc

Kesumo

- Pressupõe-se que todos os nós possuem suporte para Mobile IP.
 - Já não necessita de ser transparente para o CN.
 - Permite optimizar o hand-off.
 - Normaliza um conjunto de extensões opcionais ao Mobile IP para IPv4.

IPv6

Redes ad hoc

- Os pacotes do MN para o CN são enviados usando o COA como endereço de origem. O Home Address é enviado num "extension header"
- Os vários componentes devem manter uma cache da localização do MN: isto permite ao CN enviar os pacotes directamente para o MN e evitar o "triangle routing" para a maioria dos pacotes.

IPv6

ledes ad hoc

- O maior espaço de endereçamento, permite a auto-configuração do COA e elimina a necessidade de existir um FA.
- Várias extensões no âmbito da segurança (com utilização de IPsec).
- Os túneis não são baseados em encapsulamento, mas sim na utilização da opção "Routing Header" do IPV6.

vedes ad 1100

Kesumo

- Cada nó mantém uma cache que faz a tradução entre o Home Address e o COA dos nós móveis com os quais comunica.
- Cada entrada possui um prazo de validade e indica qual foi o número de sequência da mensagem que criou a entrada.
- As entradas são actualizadas por informação de controlo designada por "Binding Update".
- O nó móvel deve memorizar qual a última actualização que enviou para cada correspondente.

IPv6

Redes ad hoc

- Um MN, ao mudar de COA, pode enviar actualizações para:
 - O seu HA (obrigatório).
 - Os CNs activos.
 - O último encaminhador por omissão: este pode re-encaminhar os pacotes que entretanto receber para minimizar a perda de pacotes durante hand-off.

Sumário

lobile IP

Micro-mobilidade

Pv6

Redes ad hoc

- Redes ad hoc: redes em que não existe uma infra-estrutura fixa de suporte à comunicação.
 - O encaminhamento é feito com a colaboração de todos os nós da rede.
- Dois grandes tipos de cenários:
 - Redes ad hoc de nós com mobilidade.
 - Redes de sensores.

Pv6

Redes ad hoc

- Vasta gama de soluções descritas na literatura.
- Solução óptima depende de vários factores como: a métrica que se pretende optimizar (latência, energia, etc.), o padrão de movimento, a duração da rede, os gastos de energia em cada operação, etc.
 - Ainda é cedo para saber qual o protocolo que virá a ter maior implantação.

Sumário

Aobile IP

Micro-mobilidade

Pv6

Redes ad hoc

- Um exemplo de um protocolo reactivo:
 - Cria estado de encaminhamento apenas quando é solicitada a comunicação.
 - ▶ Pressupõe que apenas alguns dos nós estarão a comunicar e que a topologia muda frequentemente, pelo que não se justifica manter rotas que não são usadas por nenhum nó.

²v6

Redes ad hoc

- Se um nó não tem uma rota para um alvo, inícia uma fase de descoberta.
- ► A rede é inundada com um pedido de rota (route request).
- Quando o pedido é encaminhado, o identificador do nó intermédio é acrescentado à mensagem.

Micro-mobili

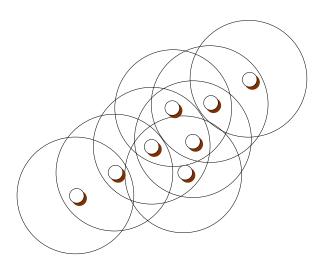
Pv6

Redes ad hoc

- Quando o pedido chega ao alvo, este pode extrair o caminho do pacote.
 - ▶ É enviada uma resposta com este caminho (route reply).
 - Se a rede for simétrica, o próprio caminho pode ser usado no sentido inverso.
 - Caso contrário, é necessário começar um processo idêntico para descobrir a rota inversa (embora agora se indique já o caminho numa das direcções, ou seja o conteúdo do "route reply" é incluído no novo "route request").

Redes ad hoc

- Os nós que encaminham a resposta (route reply) fazem cache do caminho até ao alvo.
- Outros nós vizinhos que escutem estes pacotes, actualizam também as suas caches.
 - ▶ É possível que, deste modo, fiquem a conhecer rotas alternativas para o mesmo destino.
- Quando a resposta chega ao emissor, este fica com uma rota explicita para o alvo.
- Os pacotes de dados s\(\tilde{a}\) enviados usando rotas explicitas (indicadas pelo emissor).


IPv6

Redes ad hoc

lesumo

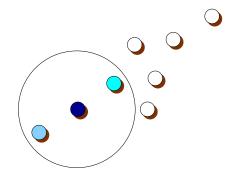
- Quando um nó recebe um pedido de rota, caso tenha já uma entrada na cache para o alvo, responde de imediato.
 - ▶ Isto reduz o tempo de obtenção de rotas.

DSR: descoberta de rotas (1/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumári


Mobile IP

Micro-mobilidade

Pv6

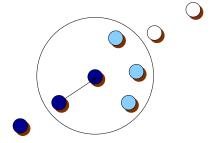
Redes ad hoc

DSR: descoberta de rotas (2/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilidade

Pv6

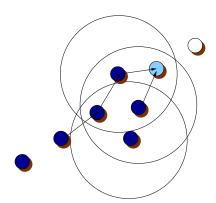
Redes ad hoc

DSR: descoberta de rotas (3/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilida

Pv6

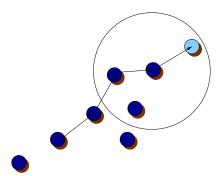
Redes ad hoc

DSR: descoberta de rotas (4/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobili

Pv6

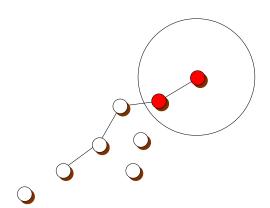
Redes ad hoc

DSR: descoberta de rotas (5/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilida

Pv6

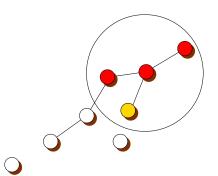
Redes ad hoc

DSR: descoberta de rotas (6/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilio

°v6

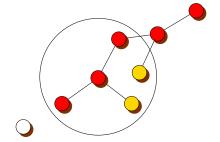
Redes ad hoc

DSR: descoberta de rotas (7/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilidae

Pv6

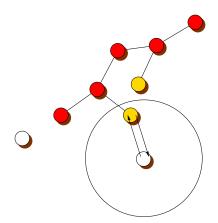
Redes ad hoc

DSR: descoberta de rotas (8/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilida

Pv6

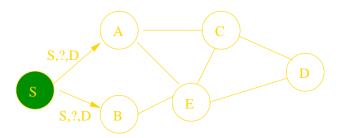
Redes ad hoc

DSR: descoberta de rotas (9/9)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilio

Pv6

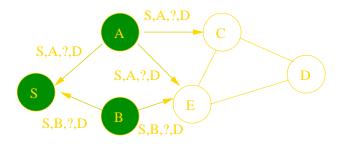
Redes ad hoc

DSR: descoberta de rotas II (1/4)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilida

IPv6

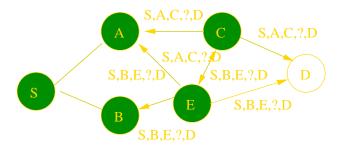
Redes ad hoc

DSR: descoberta de rotas II (2/4)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilidad

Pv6

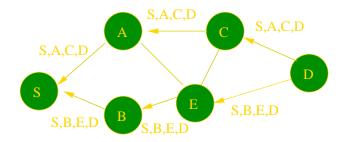
Redes ad hoc

DSR: descoberta de rotas II (3/4)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário


Mobile IP

Micro-mobilid

Pv6

Redes ad hoc

DSR: descoberta de rotas (4/4)

Protocolos em Redes de Dados

Luís Rodrigues

Sumário

Mobile IP

Micro-mobilidad

Pv6

Redes ad hoc

Sumário

Aobile IP

Micro-mobilida

Pv6

Redes ad hoc

- Se devido a uma falha ou ao movimento uma das ligações no percurso se quebra, é enviada uma mensagem de erro até a fonte.
 - Em paralelo, se existir na cache um percurso alternativo até ao destino, este é usado para tentar encaminhar o pacote.
- Esta mensagem apaga a entrada na cache de todos os nós por onde passa.
- ▶ A fonte tenta criar uma nova rota até ao destino.

Pv6

Redes ad hoc

- O DSR usa tipicamente encaminhamento na origem para os pacotes de dados.
 - Permite distribuir a carga por diferentes caminhos.
 - Obriga a incluir o percurso no cabeçalho das mensagens.
 - ▶ Pode representar uma sobrecarga excessiva.
- A última versão prevê a utilização de identificadores de fluxo para reduzir o tamanho dos cabeçalhos.
 - Cada fluxo é identificado pelo endereço de origem, endereço de destino e um identificador de fluxo escolhido pela fonte.

/lobile IP

Micro-mobilio

1 00

Redes ad ho

- ► Mobile IPv4.
- ► Mobile IPv6.
- DSR.