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We describe an architecture of an enterprise-
level storage control system that addresses
the issues of storage management for storage
area network (SAN) -attached block devices in
a heterogeneous open systems environment.
The storage control system, also referred to
as the “storage virtualization engine,” is built
on a cluster of Linux®-based servers, which
provides redundancy, modularity, and
scalability. We discuss the software
architecture of the storage control system and
describe its major components: the cluster
operating environment, the distributed I/O
facilities, the buffer management component,
and the hierarchical object pools for
managing memory resources. We also
describe some preliminary results that
indicate the system will achieve its goals of
improving the utilization of storage resources,
providing a platform for advanced storage
functions, using off-the-shelf hardware
components and a standard operating
system, and facilitating upgrades to new
generations of hardware, different hardware
platforms, and new storage functions.

Storage controllers have traditionally enabled main-
frame computers to access disk drives and other stor-
age devices.1 To support expensive enterprise-level
mainframes built for high performance and reliabil-
ity, storage controllers were designed to move data
in and out of mainframe memory as quickly as pos-
sible, with as little impact on mainframe resources
as possible. Consequently, storage controllers were
carefully crafted from custom-designed processing

and communication components, and optimized to
match the performance and reliability requirements
of the mainframe.

In recent years, several trends in the information
technology used in large commercial enterprises have
affected the requirements that are placed on stor-
age controllers. UNIX** and Windows** servers have
gained significant market share in the enterprise. The
requirements placed on storage controllers in a UNIX
or Windows environment are less exacting in terms
of response time. In addition, UNIX and Windows
systems require fewer protocols and connectivity op-
tions. Enterprise systems have evolved from a sin-
gle operating system environment to a heteroge-
neous open systems environment in which multiple
operating systems must connect to storage devices
from multiple vendors.

Storage area networks (SANs) have gained wide ac-
ceptance. Interoperability issues between compo-
nents from different vendors connected by a SAN fab-
ric have received attention and have mostly been
resolved, but the problem of managing the data
stored on a variety of devices from different vendors
is still a major challenge to the industry. At the same
time, various components for building storage sys-
tems have become commoditized and are available
as inexpensive off-the-shelf items: high-performance
processors (Pentium**-based or similar), commu-
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nication components such as Fibre Channel switches
and adapters, and RAID2 (redundant array of inde-
pendent disks) controllers.

In 1996, IBM embarked on a program that eventu-
ally led to the IBM TotalStorage* Enterprise Stor-
age Server* (ESS). The ESS core components include
such standard components as the PowerPC*-based
pSeries* platform running AIX* (a UNIX operating
system built by IBM) and the RAID adapter. ESS also
includes custom-designed components such as non-
volatile memory, adapters for host connectivity
through SCSI (Small Computer System Interface)
buses, and adapters for Fibre Channel, ESCON* (En-
terprise Systems Connection) and FICON* (Fiber
Connection) fabrics. An ESS provides high-end stor-
age control features such as very large unified caches,
support for zSeries* FICON and ESCON attachment
as well as open systems SCSI attachment, high avail-
ability through the use of RAID-5 arrays, failover pairs
of access paths and fault-tolerant power supplies, and
advanced storage functions such as point-in-time
copy and peer-to-peer remote copy. An ESS control-
ler, containing two access paths to data, can have
varying amounts of back-end storage, front-end con-
nections to hosts, and disk cache, thereby achieving
a degree of scalability.

A project to build an enterprise-level storage con-
trol system, also referred to as a “storage virtualiza-
tion engine,” was initiated at the IBM Almaden Re-
search Center in the second half of 1999. One of its
goals was to build such a system almost exclusively
from off-the-shelf standard parts. As any enterprise-
level storage control system, it had to deliver high
performance and availability, comparable to the
highly optimized storage controllers of previous gen-
erations. It also had to address a major challenge
for the heterogeneous open systems environment,
namely to reduce the complexity of managing stor-
age on block devices. The importance of dealing with
the complexity of managing storage networks is
brought to light by the total-cost-of-ownership (TCO)
metric applied to storage networks. A Gartner re-
port4 indicates that the storage acquisition costs are
only about 20 percent of the TCO. Most of the re-
maining costs are related, in one way or another, to
managing the storage system.

Thus, the SAN storage control project targets one
area of complexity through block aggregation, also
known as block virtualization.5 Block virtualization
is an organizational approach to the SAN in which
storage on the SAN is managed by aggregating it into

a common pool, and by allocating storage to hosts
from that common pool. Its chief benefits are effi-
cient and flexible usage of storage capacity, central-
ized (and simplified) storage management, as well
as providing a platform for advanced storage func-
tions.

A Pentium-based server was chosen for the process-
ing platform, in preference to a UNIX server, because
of lower cost. However, the bandwidth and memory
of a typical Pentium-based server are significantly
lower than those of a typical UNIX server. Therefore,
instead of a monolithic architecture of two nodes (for
high availability) where each node has very high
bandwidth and memory, the design is based on a clus-
ter of lower-performance Pentium-based servers, an
arrangement that also offers high availability (the
cluster has at least two nodes).

The idea of building a storage control system based
on a scalable cluster of such servers is a compelling
one. A storage control system consisting only of a
pair of servers would be comparable in its utility to
a midrange storage controller. However, a scalable
cluster of servers could not only support a wide range
of configurations, but also enable the managing of
all these configurations in almost the same way. The
value of a scalable storage control system would be
much more than simply building a storage control-
ler with less cost and effort. It would drastically sim-
plify the storage management of the enterprise stor-
age by providing a single point of management,
aggregated storage pools in which storage can eas-
ily be allocated to different hosts, scalability in grow-
ing the system by adding storage or storage control
nodes, and a platform for implementing advanced
functions such as fast-write cache, point-in-time copy,
transparent data migration, and remote copy.

In contrast, current enterprise data centers are of-
ten organized as many islands, each island contain-
ing its own application servers and storage, where
free space from one island cannot be used in another
island. Compare this with a common storage pool
from which all requests for storage, from various
hosts, are allocated. Storage management tasks—
such as allocation of storage to hosts, scheduling re-
mote copies, point-in-time copies and backups,
commissioning and decommissioning storage—are
simplified when using a single set of tools and when
all storage resources are pooled together.

The design of the virtualization engine follows an
“in-band” approach, which means that all I/O re-
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quests, as well as all management and configuration
requests, are sent to it and are serviced by it. This
approach migrates intelligence from individual de-
vices to the network, and its first implementation is
appliance-based (which means that the virtualization
software runs on stand-alone units), although other
variations, such as incorporating the virtualization
application into a storage network switch, are pos-
sible.

There have been other efforts in the industry to build
scalable virtualized storage. The Petal research proj-
ect from Digital Equipment Corporation6 and the
DSM** product from LeftHand Networks, Inc.7 both
incorporate clusters of storage servers, each server
privately attached to its own back-end storage. Our
virtualization engine prototype differs from these de-
signs in that the back-end storage is shared by all
the servers in the cluster. VERITAS Software Corpo-
ration8 markets Foundation Suite**, a clustered vol-
ume manager that provides virtualization and stor-
age management. This design has the virtualization
application running on hosts, thus requiring that the
software be installed on all hosts and that all hosts
run the same operating system. Compaq (now part
of Hewlett-Packard Company) uses the Versastor**
technology,9 which provides a virtualization solution
based on an out-of-band manager appliance control-
ling multiple in-band virtualization agents running
on specialized Fibre Channel host bus adapters or
other processing elements in the data path. This
more complex structure amounts to a two-level hi-
erarchical architecture in which a single manager ap-
pliance controls a set of slave host-resident or switch-
resident agents.

The rest of the paper is structured as follows. In the
next section, we present an overview of the virtual-
ization engine, which includes the hardware config-
uration, a discussion of the main challenges facing
the software designers, and an overview of the soft-
ware architecture. In the following four sections we
describe the major software infrastructure compo-
nents: the cluster operating environment, the distrib-
uted I/O facilities, the buffer management compo-
nent, and the hierarchical object pools. In the last
section we describe the experience gained from im-
plementing the virtualization engine and present our
conclusions.

Overview of the virtualization engine

The virtualization engine is intended for customers
requiring high performance and continuous avail-

ability in heterogeneous open systems environments.
The key characteristics of this system are: (A) a sin-
gle pool of storage resources, (B) block I/O service
for logical disks created from the storage pool, (C)
support for advanced functions on the logical disks
such as fast-write cache, copy services, and quality-
of-service metering and reporting, (D) the ability to
flexibly expand the bandwidth, I/O performance, and
capacity of the system, (E) support for any SAN fab-
ric, and (F) use of off-the-shelf RAID controllers for
back-end storage.

The virtualization engine is built on a standard Pen-
tium-based processor planar running Linux**, with
standard host bus adapters for interfacing to the SAN.
Linux, a widely used, stable, and trusted operating
system, provides an easy-to-learn programming envi-
ronment that helps reduce the time-to-market for
new features. The design allows migration from one
SAN fabric to another simply by plugging in new off-
the-shelf adapters. The design also allows the Pen-
tium-based server to be upgraded as new microchip
technologies are released, thereby improving the
workload-handling capability of the engine.

The virtualization function of our system decouples
the physical storage—as delivered by RAID control-
lers—from the storage management functions, and
it migrates those functions to the network. Using such
a system, which can perform storage management
in a simplified way over any attached storage, is dif-
ferent from implementing storage management func-
tions locally at the disk controller level, the approach
used by EMC Corporation in their Symmetrix** or
CLARiiON** products10 or Hitachi Data Systems in
their Lightning and Thunder products.11

Aside from the basic virtualization function, the vir-
tualization engine supports a number of additional
advanced functions. The high-availability fast-write
cache allows the hosts to write data to storage with-
out having to wait for the data to be written to phys-
ical disk. The point-in-time copy allows the capture
and storing of a snapshot of the data stored on one
or more logical volumes at a specific point in time.
These logical volumes can then be used for testing,
for analysis (e.g., data mining), or as backup. Note
that if a point-in-time copy is initiated and then some
part of the data involved in the copy is written to,
then the current version of the data needs to be saved
to an auxiliary location before it is overwritten by
the new version. In this situation, the performance
of the point-in-time copy will be greatly enhanced
by the use of the fast-write cache.
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The remote copy allows a secondary copy of a logical
disk to be created and kept in sync with the primary
copy (the secondary copy is updated any time the
primary copy is updated), possibly at a remote site,
in order to ensure availability of data in case the pri-
mary copy becomes unavailable. Transparent data mi-
gration is used when adding, removing, or rebalanc-
ing load to back-end storage. When preparing to add
or remove back-end storage, data are migrated from
one device to another while remaining available to
hosts. The transparent data migration function can
also be used to perform back-end storage load bal-
ancing by moving data from highly utilized disks to
less active ones.

Hardware configuration. Figure 1 shows the config-
uration of a SAN storage system consisting of a SAN
fabric, two hosts (a Windows NT** host and a UNIX
host), three virtualization engine nodes, and two
RAID controllers with attached arrays of disks.

Each virtualization engine node (abbreviated as VE
node) is an independent Pentium-based server with
multiple connections to the SAN (four in the first
product release), and either a battery backup unit
(BBU) or access to an uninterruptible power supply

(UPS). The BBU, or the UPS, provides a nonvolatile
memory capability that is required to support the
fast-write cache and is also used to provide fast per-
sistent storage for system configuration data. The VE
node contains a watchdog timer, a hardware timer
that ensures that a failing VE node that is not able
(or takes a long time) to recover on its own will be
restarted.

The SAN consists of a “fabric” through which hosts
communicate with VE nodes, and VE nodes commu-
nicate with RAID controllers and each other. Fibre
Channel and the Gigabit Ethernet are two of sev-
eral possible fabric types. It is not required that all
components share the same fabric. Hosts could com-
municate with VE nodes over one fabric, while VE
nodes communicate with each other over a second
fabric, and VE nodes communicate with RAID con-
trollers over a third fabric.

The RAID controllers provide redundant paths to their
storage along with hardware functions to support
RAID-5 or similar availability features.2 These con-
trollers are not required to support extensive cach-
ing and would thus be expensive, but access to their
storage should remain available following a single

Figure 1 A SAN storage control system with three VE nodes
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failure. The storage managed by these RAID control-
lers forms the common storage pool used for the vir-
tualization function of the system. The connection
from the RAID controller to its storage can use var-
ious protocols, such as SCSI (Small Computer Sys-
tem Interface), ATA (Advanced Technology Attach-
ment), or Fibre Channel.

Challenges for the software designers. Distributed
programs are complex; designing and testing them
is hard. Concurrency control, deadlock and starva-
tion avoidance, and especially recovery after fail-
ure—these are all areas of great complexity.

Enterprise-level storage control systems must deliver
high performance. Because the hardware platform
can be easily assembled by any potential competitor
and because high performance is a baseline require-
ment in the industry—I/O wait time is a major com-
ponent of elapsed time for many host applica-
tions—it is not acceptable to trade processing power
for additional layers of software. In addition, it is
highly desirable that, as the workload increases, the
system response time stays in the linear region of
the performance curve (response time vs workload).
In other words, we try to avoid the rapid deterio-
ration of the performance when the workload in-
creases beyond a critical point.

Deadlock and starvation, either at a single VE node
or involving several VE nodes, are to be avoided. Host
data written to the virtualization engine system must
be preserved, even in case of failure. Specifically, fol-
lowing the completion of a write request from a host
to the storage control system, the data must remain
safe even after one failure. A well-designed storage
control system tries to keep data safe wherever pos-
sible even when multiple failures occur.

The hardware platform for the system may change
over time. Over the life of the storage control sys-
tem, it is possible that other hardware platforms may
become more cost effective, or for some other rea-
son it may become advantageous to change the hard-
ware platform. The software architecture for the stor-
age control system should be able to accommodate
such change. The architecture should also allow for
changes in function: new functions are added, old
functions are removed.

Software architecture. In order to address the chal-
lenges just discussed, we made several fundamental
choices regarding the software environment, as fol-
lows.

Linux was chosen as the initial operating system (OS)
platform and POSIX** (Portable Operating System
Interface) was chosen as the main OS services layer
for thread, interthread, and interprocess communi-
cation services. Linux is a well known and stable OS,
and its environment and tools should present an easy
learning curve for developers. POSIX is a standard

interface that will allow changing the OS with a rel-
atively small effort.

The software runs almost all the time in user mode.
In the past, storage controller software has gener-
ally run in kernel mode or the equivalent, which
meant that when a software bug was encountered,
the entire system crashed. Entire critical perfor-
mance code paths, including device driver code
paths, should run in user mode because kernel-model
user-mode switches are costly. In pursuing this ex-
ecution model, debugging is faster because OS re-
covery from a software bug in user mode is much
faster than rebooting the OS. Also, user-mode pro-
grams can be partitioned into multiple user-mode
processes that are isolated from each other by the
OS. Then failure of a “main” process can be quickly
detected by another process, which can take actions
such as saving program state—including modified
host data—on the local disk. For performance rea-
sons, the execution of I/O requests is handled in one
process via a minimum number of thread context
switches and with best use of L1 and L2 caches in
the processor.

The code that runs in kernel mode is mainly the code
that performs initialization of hardware, such as the
Fibre Channel adapter card, and the code that per-
forms the initial reservation of physical memory from
the OS. Most of the Fibre Channel device driver runs
in user mode in order to reduce kernel-mode/user-
mode switching during normal operation.

Figure 2 illustrates the main components of the vir-
tualization engine software. The software runs pri-
marily in two user-mode processes: the External

The software runs almost
all the time in user mode

in order to reduce
kernel-mode/user-mode

switching.
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Configuration Process (on the left in Figure 2) and
the I/O Process (on the right in Figure 2). During nor-
mal operation, the I/O Process could occasionally run
in kernel mode, mainly when some part of a phys-
ical page needs to be copied to another physical page.

On a so-chosen VE node within a cluster, the Exter-
nal Configuration Process supports an administrator
interface over an Ethernet LAN (local-area network).
This interface receives configuration requests from
the administrator and the software coordinates the
processing of those requests with the I/O process on
all VE nodes. The External Configuration Process is
responsible for error reporting and for coordinat-
ing repair actions. In addition, the External Config-
uration Process on each VE node monitors the health
of the I/O Process at the VE node and is responsible
for saving nonvolatile state and restarting the I/O Pro-
cess as needed.

The I/O Process is responsible for performing inter-
nal configuration actions, for serving I/O requests
from hosts, and for recovering after failures. The soft-
ware running in the I/O Process consists of Internal
Configuration and RAS (reliability, availability, and
serviceability) and the distributed I/O facilities (shown
on the right in Figure 2); the rest of the modules are
referred to as the infrastructure (shown in the mid-
dle of Figure 2). The use of the “distributed” attribute
with an I/O facility means that the I/O facility com-
ponents in different nodes cooperate and back each
other up in case of failure.

The infrastructure, which provides support for the
distributed I/O facilities, consists of the cluster oper-
ating environment and services, the message-passing
layer, and other infrastructure support, which in-
cludes buffer management, hierarchical object pool
management, tracing, state saving, and so on. The
message-passing layer at each VE node enables clus-
ter services as well as I/O facilities to send messages
to other VE nodes. Embedded in the messaging layer
is a heartbeat mechanism, which forms connections
with other VE nodes and monitors the health of those
connections.

The virtualization I/O facility presents to hosts a view
of storage consisting of a number of logical disks,
also referred to as front-end disks, by mapping these
logical disks to back-end storage. It also supports the
physical migration of back-end storage. The fast-
write cache I/O facility caches the host data; write
requests from hosts are signaled as complete when
the write data have been stored in two VE nodes. The

back-end I/O facility manages the RAID controllers
and services requests sent to back-end storage. The
front-end I/O facility manages disks and services SCSI
requests sent by hosts.

The major elements of the architecture that will be
covered in detail in succeeding pages are: the clus-
ter operating environment, which provides config-
uration and recovery support for the cluster, the I/O
facility stack, which provides a framework for the dis-
tributed operation of the I/O facilities, buffer man-
agement, which provides a means for the distributed
facilities to share buffers without physical copying,
and hierarchical object pools, which provide dead-
lock-free and fair access to shared-memory resources
for I/O facilities.

The cluster operating environment

In this section we describe the cluster operating envi-
ronment, the infrastructure component that manages
the way VE nodes join or leave the cluster, as well
as the configuration and recovery actions for the clus-
ter.

Basic services. The cluster operating environment
provides a set of basic services similar to other high
availability cluster services such as IBM’s RSCT (Re-
liable Scalable Cluster Technology) Group Ser-

Figure 2 The software architecture of a VE node
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vices.12,13 These services are designed to keep the
cluster operating as long as a majority of VE nodes
can all exchange messages.14

Each VE node communicates its local view (the set
of other VE nodes with which it can exchange mes-
sages) to its neighbors using a protocol known as a
link state protocol. 15 Thus, each VE node maintains
a database containing the local views of all VE nodes
it knows about. When a connection is discovered or
lost, the local view is updated.

At times, the database of views changes in such a
way that views on VE nodes are not all consistent.
Then the cluster undergoes a partitioning so that all
VE nodes in a partition have consistent views. The
algorithm used for partitioning guarantees that as
soon as a set of VE nodes have a consistent database
of views—which will happen once the network sta-
bilizes—all these nodes arrive at the same conclu-
sion concerning membership in a partition.

Next each node tries to determine whether the par-
tition that includes itself is the new cluster. There
are three possible cases.

1. The set of VE nodes in the partition is not a ma-
jority of the previous set. Then the VE node stalls
in order to allow the cluster to operate correctly.

2. The set of VE nodes in the partition as viewed by
our VE node is a majority, but other VE nodes in
the partition have a different idea of what the par-
tition is. This might be the case during network
transient conditions, and the cluster will stall un-
til the network has become stable.

3. The set of VE nodes in the partition as viewed by
our VE node is a majority,12 and all other VE nodes
in the partition agree. The partition becomes the
new cluster.

Communication among the VE nodes of the cluster
involves the cluster boss, the lowest numbered VE
node in the cluster, who controls the broadcast of
messages called events, which are distributed
throughout the cluster in a two-phase protocol.
Events, which can originate at any VE node, are first
sent to the boss. The boss collects and orders the
events, and then distributes them to all VE nodes in
the cluster.

VE nodes provide I/O service under a lease, which
must be renewed if the VE node is to continue ser-
vice. The receipt of any event by a VE node implies
the renewal of its lease to provide service on behalf

of the cluster (e.g., service I/O requests from host)
for a defined amount of time. The cluster boss en-
sures that all operating VE nodes of the cluster re-
ceive events in time for lease renewal. The boss also
monitors VE nodes for lease expiration, when VE
nodes stop participating in the voting protocol for
new events, and in order to inject appropriate VE
node events into the system to inform the I/O facil-
ities about VE nodes that have changed availability
state.

Replicated state machines. The cluster operating
environment component has the task of recovery in
case of failure. Recovery algorithms for distributed
facilities are typically complex and difficult to design
and debug. Storage controllers add another layer of
complexity as they often manage extensive nonvol-
atile (persistent) state within each VE node.

System designers find it convenient to view a distrib-
uted system as a master and a set of slaves. The mas-
ter sets up the slaves to perform their tasks and mon-
itors them for correct operation. In the event of an
error, the master assesses the damage and controls
recovery by cooperating with the functioning slaves.
The master is distinguished by its holding complete
information for configuring the system, also referred
to as the state. The slaves, in contrast, hold only a
part of that information, which each slave receives
from the master.

Therefore, in designing recovery algorithms for a dis-
tributed facility, one can think of the job as design-
ing a set of algorithms to operate in the master when
slaves fail, with another set of algorithms to operate
in the slaves when the master fails. Of these two, the
second set is more difficult. Generally the slaves are
not privy to the entire master state, although each
slave might have a portion of that state. Often the
algorithms entail the nomination of a new master
and must deal with failures that occur during the
transition period where a new master is taking con-
trol.

If the master cannot fail, then the job is much eas-
ier. For that reason, we decided to create a “virtual”
master that cannot fail using a method derived from
the work of Leslie Lamport16 and involving a con-
cept known as a replicated state machine (RSM). An
RSM can be viewed as a state machine that operates
identically on every VE node in the cluster. As long
as a majority of VE nodes continues to operate in
the cluster, the RSM algorithms—which run on ev-
ery VE node in the cluster—also continue to oper-
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ate. If, following a failure, a majority of VE nodes
is no longer available, then the RSMs do not get any
new stimulus and the VE nodes are suspended until
a majority of VE nodes is once again available.

For the RSMs to operate correctly, the initial state
must be the same on all VE nodes in the cluster, all
VE nodes must process the same stimuli in the same
order, and all VE nodes must process the stimuli in
exactly the same way. The cluster operating environ-
ment ensures that the cluster state is correctly ini-
tialized on a VE node when it joins the cluster, that
stimuli are collected, ordered, and distributed to all
VE nodes in the cluster, and that stimuli that have
been committed to the cluster are guaranteed to be
processed on each VE node in the cluster—even
through a power failure—for all VE nodes that re-
main in the cluster. The cluster operating environ-
ment also ensures the consistency of the persistent
cluster state on all operating VE nodes. A distrib-
uted I/O facility can leverage this function by storing
as much of its persistent meta-data (e.g., system con-
figuration information) in cluster state as is possible
without impacting performance goals (updating that
information is not fast). Meta-data stored in this way
are automatically maintained through error and
power failure scenarios without the distributed I/O
facility being required to supply any additional al-
gorithms to assure the maintenance of the meta-data.

The main uses of RSMs are for configuration and re-
covery. Therefore, their operation does not impact
system performance during normal servicing of I/O
requests. A stimulus presented to an RSM is referred
to as an event. An event, the only type of input to
RSMs, can be associated with a configuration task or
with a recovery task. Normal processing of I/O re-
quests from hosts does not generally involve process-
ing of events.

RSMs and I/O facilities. Figure 3 illustrates an I/O
facility in a three-VE-node cluster. Each distributed
I/O facility has two distinct sets of modules.

First, the I/O modules (shown at the bottom of Fig-
ure 3) process I/O requests. This is the code that runs
virtually all the time in normal operation.

Second, the modules in the cluster control path (in
the middle of Figure 3) comprise the RSM for the
distributed I/O facility. They listen for events, change
cluster state, and take action as required by com-
municating with the I/O modules.

RSMs and I/O modules do not share data structures.
They only communicate through responses and
events. When an I/O module wishes to communicate
with an RSM, it does so by sending an event (labeled
“proposed event” in Figure 3). When an RSM wishes
to communicate with an I/O module, it does so by
means of a response (blue arrows in Figure 3) sent
through a call gate (gray in Figure 3).

Recalling the model of a replicated state machine,
an RSM operates on each VE node as if it is a master
commanding the entire set of VE nodes. An RSM may
be programmed, for example, to command VE node
X to take action Q in some circumstance. In reality
a state machine response is implemented as a func-
tion call that is conditionally invoked according to
the decision of a call-gate macro, with the effect in
this example that the response Q only reaches the
I/O modules on VE node X. Although the RSM at each
VE node attempts to make the response, the func-
tion of the call gate is to ensure that only the I/O mod-
ules on specified VE nodes receive the response from
the RSM. The decision is determined at a VE node
answering the following questions.

Is the response being sent to this VE node? Remem-
ber that the same RSM code operates on all VE nodes.
If only node X is to perform an action, the call gate
must block the function from being called on all
nodes other than node X.

Is this node on line? The I/O modules on a node may
not act on events that occurred while it was not an
on-line cluster member and therefore not holding
a lease.

Is the RSM code executing in the second execution
phase? Each event is dispatched two times to each
RSM, each time pointing to a different copy of clus-
ter state. This algorithm, by maintaining two copies
of the cluster state, only one of which is modified at
a time, allows rollback, or roll-forward, to an event-
processing boundary in the event of power failure.
The call gate ensures that responses are seen at most
once by I/O modules even though each event is pro-
cessed twice by each RSM.

The I/O facility stack

A VE node accepts I/O requests from hosts, i.e., re-
quests for access to front-end disks. The I/O facil-
ities in the I/O Process are responsible for servicing
these requests. Figure 4 shows the I/O facilities at a
VE node arranged in a linear configuration (we re-
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fer to it as the stack). The I/O requests arrive at the
leftmost I/O facility and are then handed over from
facility to facility, and each facility processes the I/O
request as required according to the particulars of
the request, usually involving a command (e.g., read,
write) and a front-end disk. Each I/O facility in the
stack has the same API (application programming in-
terface) to the facility on either side of it except for
the end points of the stack. In fact an I/O facility is
not aware of the type of its adjacent facilities. Rel-
ative to an I/O facility, its neighbor on the left is its
IOClient, while its neighbor on the right is its
IOServer.

The stack configuration offers a number of advan-
tages. The interfacing between facilities is simplified

because each facility interfaces with at most two other
facilities. Some testing can be performed even be-
fore all the facilities are implemented, while the sym-
metry of the stack configuration makes debugging
easier. Additional facilities can be added simply by
insertion in the stack. Testing the implementation
is simplified when using scaffolding consisting of a
dummy front end that generates requests and a
dummy back end that uses local files rather than
SAN-attached disks.

The I/O facilities are bound into the stack configura-
tion at compile time. The symmetry of the stack con-
figuration does not imply that the placement of the
various facilities is arbitrary. In fact each I/O facility
is assigned a specific place in the stack. The front-

Figure 3 An I/O facility in a three-VE-node cluster
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end facility serves specifically as a SCSI target to hosts
acting as SCSI initiators, while the back-end facility
serves as a SCSI initiator to back-end storage devices,
that is, the SCSI targets. The point-in-time copy fa-
cility is placed to the right of the fast-write cache fa-
cility, so that host write requests would be serviced
by the fast-write cache without needing extra I/O that
might be required by the point-in-time-copy of the
source to target.

There are three types of interfaces between I/O fa-
cilities. The first is for use by I/O modules and in-
volves submission of I/O requests and transfer of data
(shown in the second and third rows of arrows in Fig-
ure 4). A SCSI request received by the front-end fa-
cility is handed over to its IOServer, and so on down
the stack. For example, a read request for noncached
data is handed over by each I/O facility to its IOServer
all the way to the back-end facility, which sends a
SCSI request over the SAN fabric to a SCSI target.

A second interface, involving events as input to RSMs,
is for communicating the availability of front-end or
back-end resources (shown in the top row of arrows
in Figure 4). An I/O facility’s RSM receives a disk-
path event (an event signaling the availability of a
disk on a specific VE node) from its IOServer, and
sends to its IOClient a disk-path event that signals
its ability to service I/O requests targeted to the spec-
ified disk on the specified VE node. For example, if
a back-end disk is removed from the system, then
the virtualization I/O facility must identify all front-
end disks that make use of that back-end disk, and,
for each of these front-end disks, it must inform its
IOClient that all the corresponding disk paths are
unavailable. It does so by issuing an appropriate disk-
path event to its IOClient.

The third type of interface is for servicing front-end
disk configuration requests (bottom two rows of ar-
rows in Figure 4). Front-end disk configuration re-

Figure 4 The I/O facility stack and the interactions between stack elements
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quests come from the Internal Configuration and
RAS component, but it is up to the I/O facilities to
properly sequence the servicing of these requests.
Some requests, such as front-end disk creation and
termination, are handled by the virtualization facil-
ity. It processes the request by issuing an appropri-
ate front-end disk event to its IOClient, which per-
forms the action required and passes the same event
to its IOClient, and so on until the left edge of the
stack is reached.

Other configuration requests, such as the initiation
of a point-in-time copy, are given to the point-in-
time copy facility by Internal Configuration and RAS.
The point-in-time copy facility issues a sequence of
front-end disk configuration events to its IOClient,
which are passed on until the top of the stack is
reached. For example, triggering a point-in-time copy
includes flushing modified data for a point-in-time
source and discarding all data for a point-in-time tar-
get. These activities are asynchronous in nature and
therefore a set of events are passed “down” (right)
the I/O stack to signal asynchronous completion of
a front-end disk configuration request.

Thus, the use of the stack structure to configure I/O
facilities results in a simplified API between neigh-
boring facilities and the flexibility to insert new func-
tion into the stack, or to remove function from the
stack.

Buffer management

The virtualization engine has the capability to move
host data (data read or written by the host) through
without performing any memory-to-memory copy

operations within the VE node. Prior to starting the
I/O Process, the operating system loads the memory
manager kernel module and instructs it to allocate
real pages from memory for the use of the I/O Pro-
cess. Then the I/O Process starts. Its memory man-
ager allocates the appropriate number of real pages,
and takes over the management of this resource.
From that point on, the memory manager kernel
module is idle, unless the I/O Process must perform
a move or a copy that involves a physical page (a
relatively rare occurrence under normal workload).

The host data handled by the VE nodes, as well as
the meta-data, are held in buffers. These buffers are
managed using IOB (I/O buffer) data structures and
page data structures. The IOB contains pointers to
up to eight-page data structures, as well as pointers
to be used for chaining of IOBs when longer buffers
are needed. The page data structure includes, in ad-
dition to a 4096-byte payload, a reference count
whose use is described below. When I/O facilities in
the stack communicate, only IOB pointers to data
pages are passed (instead of the actual data) from
I/O facility to I/O facility. This avoids copying of host
data within the VE node.

There are times when two or more I/O facilities need
to simultaneously operate on the same host data. Us-
ing Figure 5 as an example, when a host writes data
to a VE node, both the remote copy and the fast-write
cache I/O facilities may need to operate upon those
data. The remote copy facility allocates an IOB A and
starts the data transfer from the host. Once the data
are in the buffer (pages 0 through 7), the remote copy
starts forwarding the data to the secondary location
in another VE node, and in parallel submits an I/O

Figure 5 An example of buffer allocation involving two IOB’s and eight-page data structures with associated reference counts
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request for writing pages 0 through 7 to the fast-write
cache. The fast-write cache allocates IOB B, which
now needs to point to the data to be handled. Be-
cause the data are already in memory, the pointers
of B are simply cloned—set so that both A and B
point to the same pages—and the reference counts
of page structures 0 through 7 are incremented. The
two I/O facilities now operate independently on
shared buffer pages as long as neither one writes
again into any of the pages. If, however, a write to
a page that has a reference count greater than one
occurs, then the buffer management allocates the I/O
facility its own page by physically copying the con-
tents of the page to a new page (the page was re-
served when the IOB was cloned) and setting its IOB
to point to the new page. Reference counts are ap-
propriately adjusted for the pages involved in the op-
eration.

When an I/O facility has no further use for a buffer
(e.g., the remote copy facility finishes the writing of
data to a secondary location), it frees it. The refer-
ence count for each page in the freed buffer is dec-
remented. When the reference count for a page be-
comes zero, that page can be returned to the pool
of available pages. It is therefore possible, for ex-
ample, that the fast-write cache might free pages 0
through 5 in Figure 5, such that among the pages
pointed to by an IOB some may be shared (pages 6
and 7 in Figure 5) by other IOBs, while other pages
are not shared (pages 0 through 5), leaving the state
of the two IOBs and page data structures as shown.

The power of this buffer management technique lies
in allowing multiple I/O facilities to share host data—
for the most part without performing physical cop-
ies—without requiring special protocols between I/O
facilities to coordinate that sharing.

Hierarchical object pools

Within a VE node, there are a number of memory-
related entities that I/O facilities need for perform-
ing their tasks. Host data handled by I/O facilities are
stored in pages linked into buffers and managed with
IOBs. Also needed are control blocks for work in pro-
gress, cache directory control blocks, and harden-
ing rights (see below).

When a power failure occurs, nonvolatile memory
in a VE node is implemented by spooling pages of
memory to a local disk. Given that battery backup
systems that provide the power supply for the backup
have enough power for spooling only a subset of the

entire memory, I/O facilities must ensure that only
the data that need to be preserved through power
failures (e.g., modified host data or persistent
meta-data), get spooled to the local disk. To accom-
plish this, an I/O facility must reserve a hardening right
for each page that needs to be preserved through a
power failure.

All these memory-related resources are known as
memory objects, or simply objects. It would be pos-

sible to statically allocate each I/O facility a set of ob-
jects for its exclusive use. However, it would then be
possible that in some I/O facilities many objects might
be idle, while in others some objects would be in short
supply. It is better to use objects where they are most
needed, although this must be balanced against the
effort to prevent deadlock and starvation. We dis-
cuss here the technique we developed, and empir-
ically validated, to enable the sharing of these ob-
jects.

In our system, different streams of work arrive at a
VE node from various places. Host requests arrive
from a set of hosts, work requests also arrive from
partner VE nodes. Deadlock may occur if concur-
rent work processes successfully reserve some, but
not all, of the objects they require, and if work item
A is waiting for an object held by B, while A holds
an object B is waiting for. Deadlock prevention can
be difficult to achieve when multiple distributed fa-
cilities are competing for objects, and when the many
possible execution paths exhibit a wide range of pos-
sible reservation sequences for those objects.

Starvation occurs when some streams of work have
access to objects to the detriment of other streams
whose progress is impeded by lack of objects, usu-
ally due to unfairness in the allocation policies in the
system.

The virtualization engine hierarchical object pool was
designed to allow the I/O facilities to share objects
while satisfying a set of goals. First, each I/O facility

To ensure the spooling of a page
of memory to disk in case

of power failure, an I/O facility
must reserve a hardening right

for the page.
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should be able to have its execution paths—and in
particular the sequence by which objects are reserved
and unreserved—to be deadlock free, independent
of execution paths in other I/O facilities. (This allows
the design of each facility to be independent of other
I/O facilities.) Second, objects should be quickly made
available to more “active” streams while ensuring
that processing of all streams in the VE node is “mak-
ing progress” (and thus avoid starvation). Last, ob-
jects should be distributed throughout the system
such that balanced performance is experienced by
all active streams of work, i.e., prevent starvation.

Object pools, regardless of type, support the follow-
ing operations: (1) reserve guarantees the right to use
an object from the specified pool, (2) allocate allo-
cates an object from the specified pool, (3) free frees
an object and returns it to the pool from which it
was allocated, and (4) unreserve returns the guaran-
teed right to use an object in the specified pool.

This resource allocation scheme splits object man-
agement into two primitive pairs: reserve/unreserve
and allocate/free. The first pair deals with object ac-
counting without any allocation or deallocation of
objects. The advantage of this scheme is that objects
can be allocated but unreserved, e.g., pages of mem-
ory can hold data in the hope of a cache hit but can
be reclaimed if they are required somewhere else.

Objects of a specific type are placed into hierarchies
of object pools as shown in a simplified example in

Figure 6. For each object type (e.g., buffers) there
is a base pool (such as the I/O buffer base pool in Fig-
ure 6) into which all objects of that type are initially
placed. For each object type there is only one base
pool. Figure 6 shows three base pools (bottom lay-
er).

From each base pool a hierarchy of child pools can
be created, as demonstrated in the middle and up-
per layers in Figure 6. A child pool, with the excep-
tion of a compound pool to be described below, has
only one parent: either a base pool or another child
pool. In order to service reservation and allocation
requests, a child pool reserves and allocates objects
from its parent, who in turn may have to reserve and
allocate from its parent. As a base pool gets low on
objects used to satisfy reservations, it calls on its child
pools and so on up the hierarchy to reclaim (i.e., free
and unreserve) objects so as to make them available
in the pools that are low. This way objects can dynam-
ically migrate to work streams in need of memory
resources.

A compound pool is a special type of child pool that
aggregates objects from different parents—base
pools or child pools—so that a request involving mul-
tiple object types can be satisfied from a compound
pool in a single step. Thus, the compound pool en-
ables faster servicing of object requests. It is also the
best way to aggregate objects in order to feed lines
of credit (see below). Figure 6 shows five child pools,
one of which is a compound pool (top layer).

Figure 6 A hierarchy of object pools
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An I/O facility may create a child object pool from
a base pool or from another child pool. It may also
create multiple child pools from the same base pool.
This might be indicated, for example, when the fa-
cility needs a different pool for each VE node that
might be feeding it work. For the discussion below,
we point out that a child pool reserves objects from
its parent in order to satisfy reservation requests from
clients.

A child pool has three important attributes. The anti-
deadlock threshold, specified by the I/O facility when
creating a child pool, is the minimum number of ob-
jects that a child pool must have reserved to it. When
creating a child pool, if that number of objects can-
not be reserved from its parent, then the pool cre-
ation fails. The value of the antideadlock threshold
should be picked to be at least the maximum num-
ber of objects that might be required for any one
work item. It is expected that an object reservation
necessary for processing of a work item will be per-
formed “atomically” from each pool, and if the work
item requires reservations of objects from multiple
pools, the object reservation requests will be per-
formed in a fixed order; this fixed order will apply
to object reservation requests made by all work items.
As long as this sequence is followed, no work item
will wait indefinitely to reserve a set of objects from
a child pool. Since each facility creates its own set
of child pools—each pool with a specified anti-
deadlock threshold—no facility can completely
starve another facility.

The antibottleneck threshold, also specified by the I/O
facility when creating the pool, is the number of ob-
jects that, if allocated to a stream of work items,
should sustain reasonable throughput. Once a child
pool starts receiving object reservation requests from
the I/O facility that created it, it over-reserves from
its parent with the intention of quickly increasing up
to the antibottleneck threshold the number of ob-
jects reserved to that pool. After the number of ob-
jects reserved to the pool reaches that threshold, the
child pool will allow more reservations to accumu-
late in that pool if requested by the I/O facility, but
it will not continue to over-reserve. In the reverse
direction, a child pool will readily allow the number
of objects reserved to it to bleed down to the anti-
bottleneck threshold but will generally require pe-
riods of inactivity to occur before allowing reserva-
tions to a pool to diminish below the antibottleneck
threshold limit.

The quota, an optional attribute assigned by the I/O
facility during creation, is the maximum number of
objects that can be reserved to a pool by any one
client. Setting a quota on child pools ensures that
no stream of work can accumulate objects such that
other streams of work suffer too much.

An I/O facility uses the antideadlock threshold at-
tribute of the child pools it creates to guarantee that
each work item it services will eventually get access
to the objects it needs for the work item to make
progress. The I/O facility also uses the antibottleneck
attribute of the child pools it creates to enable its
various stream of work items (also referred to as work
streams) to progress at a satisfactory rate when all
areas of the VE node are in heavy usage, and it uses
the quota attribute to ensure that its work stream
does not starve work streams occurring in other I/O
facilities. Last, the adaptive reservation and reclaim-
ing algorithms that operate along an object hierar-
chy in a VE node promote the redistribution of shared
object types when the activity level of various work
streams changes such that the more active work
streams gain access to more of the shared objects.

The object pool mechanism governs use of objects
within a VE node. An extension of this mechanism
involving lines of credit is used for object manage-
ment involving partner VE nodes in the cluster, as
described below.

Lines of credit. It is often the case that an I/O facility
on one VE node requires its peer on another VE node
to perform some work on its behalf. For example,
suppose the fast-write cache facility on one VE node
(such as VE node N in Figure 7) needs its peer on
another VE node (such as VE node M in Figure 7)
to receive and hold newly written data from a host.
In such a case, starvation or deadlock can occur not
only within a VE node, but also between VE nodes.
In fact designing distributed I/O facilities to be dead-
lock- and starvation-free is one of the more difficult
challenges that confronts the designer.

Some distributed systems are designed in such a way
that they can occasionally become deadlocked dur-
ing normal operation. Such systems often deal with
deadlocks through detection and restarting of dead-
locked threads. Those systems perform satisfacto-
rily if the deadlocks occur infrequently. Object dead-
locks in the virtualization engine could happen more
frequently because the probability of lock collision
is higher. Consequently, we designed the virtualiza-
tion engine software to be deadlock-free. Toward this
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end the object pool facility was extended to service
other VE nodes through lines of credit as described
below. In addition, we made sure that chains of work
requests for other VE nodes are never circular (e.g.,
VE node A sends a type of work request to VE node
B, causing B to send a work request to C, causing
C to send a work request to A). Circular work re-
quests would violate the object pool rule that a work
item reserves atomically from any given pool.

A virtualization engine line of credit is based on the
concept of a credit provider such as VE node M in
Figure 7 (an I/O facility’s role of servicing remote
work requests from its peers at other VE nodes) and
a credit consumer such as VE node N in Figure 7 (an

I/O facility’s role of requesting work by peers at other
VE nodes). The credit provider “exports” objects
from object pools to peers on one or more other VE
nodes in the form of credits, which the consumer can
then reserve in order to guarantee access to the re-
quired object (often a compound object) on the other
VE node.

Typically a credit provider sets up a compound pool
(such as the pool shaded blue in Figure 7) contain-
ing objects that might be needed to serve work items
from another VE node. That pool is then bound to
a line of credit (such as the bottom line of credit in
VE node M in Figure 7) to be used by the consumer
(such as VE node N in Figure 7). The line of credit
is established between two nodes as follows.

The consumer sets up a base pool to hold credits
and binds that pool to a specific line of credit for
objects provided at a specified other VE node. When
a consumer VE node (such as VE node M in Figure
7) joins the cluster, the provider VE node (such as
VE node N in Figure 7) and the consumer activate
the line of credit via a messaging protocol between
the two VE nodes, and thus the line of credit is es-
tablished. Thereafter, when the consumer wishes the
provider to perform work on its behalf, it first re-
serves a credit from its corresponding base pool (such
as the pool in VE node M at the top of Figure 7).
When that work item is completed on the provider
VE node (using a compound object such as one taken
from the blue shaded object pool in VE node N in
Figure 7) and a response is sent to the consumer VE
node, the consumer VE node unreserves the credit
back to the appropriate base pool (such as the pool
in VE node M at the top of Figure 7).

The objects in the object pool that is bound to a pro-
vider credit pool are assigned values for the anti-
bottleneck, antideadlock, and quota attributes to reg-
ulate usage of those pools in the same way as the
other object pools in the VE node. Therefore the
number of objects reserved at any point in time to
perform work between any provider/consumer pair
of VE nodes varies adaptively, depending on the flow
of work between that provider/consumer pair on the
two VE nodes, the flow of work between other
provider/consumer pairs on the two VE nodes, and
the antideadlock thresholds, antibottleneck thresh-
olds, and quotas set on the object pools for each.

In our system, lines of credit are currently used pri-
marily by three I/O facilities: fast-write cache, remote
copy, and point-in-time copy. These three are the

Figure 7 A compound child pool connected to a line of 
 credit for use by another VE node
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distributed I/O facilities that have internode proto-
cols that operate actively during processing of I/O re-
quests. For example, the fast-write cache implements
distributed cache coherency via its internode pro-
tocols, and the lines of credit are used to regulate
object usage resulting from those protocols. The
other distributed I/O facilities have only infrequent
need for internode protocols, and in those cases the
cluster event system was chosen instead as an easy-
to-use mechanism for implementing those protocols.

Preliminary results and conclusions

The virtualization engine system has been imple-
mented and has gone through extensive function val-
idation tests for over a year. Testing was conducted
in a product test lab on dozens of test stands on con-
figurations ranging from two through eight VE nodes,
multiple hosts, and multiple RAID controllers. Func-
tional testing confirmed that the system does improve
the utilization of storage resources and that it pro-
vides a platform for advanced storage functions.

The hardware components assembled for the virtu-
alization engine product are, as intended, almost ex-
clusively standard parts. There was more work than
initially expected in selecting a processing platform
with the right mixture of I/O bandwidth, processing
power, footprint, and power requirements. However,
the right platform was identified after careful bal-
ancing of product goals against components avail-
able in the market.

We required our Fibre Channel driver to run in user
mode, and the Fibre Channel ports to be able to both
send and receive packets from hosts (which act as
SCSI initiators that originate SCSI requests), RAID con-
trollers (which act as SCSI targets that service SCSI
requests), and other VE nodes (which act as SCSI tar-
gets when they receive messages and as SCSI initi-
ators when they send messages). Because these two
requirements could not be satisfied by the typical Fi-
bre Channel driver, we needed to adapt the source
code provided by a Fibre Channel adapter manu-
facturer and build additional software around it. This
means that we will not be able to simply install an
already-available driver if and when we move to an-
other type of SAN adapter, and instead we will need
to plan for a minor software development effort in
order to make the transition. Although not ideal, we
think the performance benefits justify this approach.

During the course of the project we have upgraded
to new generations of hardware (e.g., server, Fibre

Channel adapter) with little effort. We consider this
evidence that product release cycles will be short,
because we will be able to leverage the newest hard-
ware available with minimal effort.

The only hardware component developed for the
project was a small unit that included a hardware
watchdog timer and interface logic to a front panel.
The development of this hardware was kept out of
the critical path of the project and was only a small
part of the development effort.

There have been relatively few surprises concerning
the hardware platform. Storage controller develop-
ment projects commonly experience large setbacks
due to problems with the hardware designed for the
product or even problems with the standard ASICs
(application-specific integrated circuits). Although
there have been instances when unexpected hard-
ware behavior required some work-around solution,
these have been relatively minor efforts.

The performance of the system has met or exceeded
the goals set for it at the beginning of the develop-
ment effort, with less effort than expected for this
type of project. In part this is because the use of off-
the-shelf components has eliminated possible problems
associated with the development of new hardware. In
addition, the continuous advances in technology toward
better and faster components has, at times, compen-
sated for suboptimal choices made during the de-
sign process.

Linux has been a good choice for an OS. There have
been some problems due to the fact that Linux is
evolving quickly. Bugs have been uncovered in a few
areas, but these have been worked around. The de-
cision to run most of the critical software in user
mode meant that no modifications to the Linux ker-
nel were needed, which has helped with testing and
the legal process preceding the launch of the prod-
uct. In addition, the virtualization engine’s use of
Linux and POSIX was limited to the thread and shared
lock libraries, starting up the VE node and other ap-
plications, the Ethernet driver, and the TCP/IP (Trans-
mission Control Protocol/Internet Protocol) stack.
This has lowered risk of encountering a Linux prob-
lem and has also enhanced the adaptability of the
code to other platforms.

User-mode programming has been much easier to
debug than kernel-mode programming. During test-
ing, the user program has often terminated abruptly,
but the operating system rarely hung or failed, and
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gathering system state data and traces has been eas-
ier.

The isolation between user-mode processes in a VE
node has been particularly beneficial. For example,
a bug in the I/O Process does not affect the External
Configuration Process. The External Configuration
Process is thus able to successfully harden modified
host data and system state and then reinvoke the I/O
Process. In addition, during recovery from error, by
having one user-mode process monitor another, the
probability of losing both copies of modified host
data is minimized.

The replicated state machine model has been a very
useful tool for implementing the distributed recov-
ery function, particularly for formulating recovery
strategies and algorithms and for storing state data.
One of the more challenging tasks of implementing
the recovery function was to get right the sequence
in which the I/O modules are updated with the most
current RSM data during the many different recov-
ery scenarios.

The design of the I/O facilities based on a stack con-
figuration is beneficial for several reasons. First, it
allowed the development and testing of I/O facilities
to be done in phases. Second, it allowed the design
and development work of the I/O facilities to be par-
titioned to multiple teams, some at remote locations.
Third, it will facilitate the incorporation of additional
functionality and the reuse of software components
in other projects.

The buffer management techniques and the object
pool architecture have also aided in the development
of the I/O facilities. The design of each I/O facility
could proceed independently due to the transpar-
ency of the object management scheme.

There is ongoing work to deal with recovery in the
face of programming errors inside a replicated state
machine. When this happens, all VE nodes succumb
to the same error and may end up attempting to re-
start endlessly. We are focusing our efforts on cre-
ating separate domains of cluster state and, through
a human-guided process, allowing the less essential
domains to become quiescent so that the cluster may
recover.

The software architecture could be further improved
by an API between Internal Configuration and RAS
and the I/O facilities. Currently specialized interfaces
are defined between specific I/O facilities and Inter-

nal Configuration and RAS. However, system flex-
ibility would be enhanced if, based on such an API,
choices could be made at compilation, or at run time,
about which I/O facilities interact with which config-
uration actions.

Further work would also be desirable in creating
common mechanisms to aid synchronization between
I/O facility peers on separate VE nodes. We have re-
alized that when I/O facility peers need to switch op-
erating mode, the switching must be accomplished
in two phases: in the first phase to inform all the VE
nodes that the other VE nodes are also ready to
switch, and in the second phase to perform the switch.
This synchronization mechanism should be built into
the infrastructure in order to facilitate the implemen-
tation of a distributed algorithm for I/O facilities.

During testing, some problems came up concerning
the design of the I/O facility stack, specifically con-
cerning how the handling of I/O requests by an I/O
facility has to change when availability of back-end
or front-end disks change (for example, when an I/O
facility may forward I/O requests and when it must
hold back those requests). Some subtle behavioral
requirements were not well understood at first, which
led to some integration problems and required that
the API specification be clarified.

We have described the architecture of an enterprise-
level storage control system that addresses the issues
of storage management for SAN-attached block de-
vices in a heterogeneous open systems environment.
Our approach, which uses open standards and is con-
sistent with the SNIA (Storage Networking Industry
Association) storage model,17 involves an appliance-
based in-band block virtualization process in which
intelligence is migrated from individual devices to
the storage network. We expect the use of our stor-
age control system will improve the utilization of stor-
age resources while providing a platform for ad-
vanced storage functions. We have built our storage
control system from off-the-shelf components and,
by using a cluster of Linux-based servers, we have
endowed the system with redundancy, modularity,
and scalability.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group, Mi-
crosoft Corporation, Intel Corporation, LeftHand Networks, Inc.,
Veritas Software Corporation, Hewlett-Packard Company, Li-
nus Torvalds, EMC Corporation, or IEEE.
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