
Rachid Guerraoui, Lúıs Rodrigues

Abstractions for Distributed
Programming

(Preliminary Draft)

December 23, 2003

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

To whom it might concern.

V

Preface

This manuscript aims at offering an introductory description of distributed
programming abstractions and of the algorithms that are used to implement
them under different distributed environments. The reader is provided with
an insight on the fundamental problems in distributed computing, knowl-
edge about the main algorithmic techniques that can be used to solve these
problems, and examples of how to apply these techniques when building dis-
tributed applications.

Content

In modern computing, a program usually executes on several processes: in
this context, a process is an abstraction that may represent a computer, a
processor within a computer, or simply a specific thread of execution within
a processor. A fundamental problem in devising such distributed programs
usually consists in having the processes cooperate on some common task. Of
course, traditional centralized algorithmic issues, on each process individually,
still need to be dealt with. The added difficulty here is about achieving a
robust form of cooperation, despite failures or disconnections of some of the
processes.

Had no notion of cooperation been required, a distributed program would
simply consist of a set of detached centralized programs, each running on a
specific process, and little benefit could be obtained from the availability of
several machines in a distributed environment. It was the need for cooperation
that revealed many of the fascinating problems addressed by this manuscript,
problems that would have otherwise remained undiscovered. The manuscript,
not only exposes the reader to these problems but also presents ways to solve
them in different contexts.

Not surprisingly, distributed programming can be significantly simplified
if the difficulty of robust cooperation is encapsulated within specific abstrac-
tions. By encapsulating all the tricky algorithmic issues, such distributed
programming abstractions bridge the gap between network communication
layers, usually frugal in terms of reliability guarantees, and distributed ap-
plication layers, usually demanding in terms of reliability.

The manuscript presents various distributed programming abstractions
and describes algorithms that implement these abstractions. In a sense, we
give the distributed application programmer a library of abstraction interface
specifications, and the distributed system builder a library of algorithms that
implement the specifications.

The algorithms we will study differ naturally according to the actual ab-
straction they aim at implementing, but also according to the assumptions
on the underlying distributed environment (we will also say distributed sys-
tem model), i.e., on the initial abstractions they take for granted. Aspects
such as the reliability of the links, the degree of synchrony of the system,
whether a deterministic or a randomized (probabilistic) solution is sought,
have a fundamental impact on how the algorithm is designed. To give the
reader an insight of how these parameters affect the algorithm design, the
manuscript includes several classes of algorithmic solutions to implement the
same distributed programming abstractions.

A significant amount of the preparation time of this manuscript was de-
voted to preparing the exercises and working out their solutions. We strongly
encourage the reader to work out the exercises. We believe that no reasonable
understanding can be achieved in a passive way. Many exercises are rather
easy and can be discussed within an undergraduate teaching classroom. Some
exercises are more difficult and need more time.

The manuscript comes with a companion set of running examples imple-
mented in the Java programming language, using the Appia protocol com-
position framework. These examples can be used by students to get a better
understanding of the implementation details not covered in the high-level
description of the algorithms. Instructors can use these protocol layers as a
basis for practical exercises, by suggesting students to perform optimizations
on the code provided, to implement variations of the algorithms for different
system models, or to design applications that make use of these abstractions.

Presentation

The manuscript is written in a self-contained manner. This has been made
possible because the field of distributed algorithms has reached a certain level
of maturity where details, for instance about the network, can be abstracted
away when reasoning about the distributed algorithms. Elementary notions of
algorithmic, first order logics, programming languages and operating systems
might be helpful, but we believe that most of our abstraction specifications
and algorithms can be understood with minimal knowledge about these no-
tions.

The manuscript follows an incremental approach and was primarily built
as a textbook for teaching at the undergraduate level. It introduces basic
elements of distributed computing in an intuitive manner and builds sophis-
ticated distributed programming abstractions on top of more primitive ones.

VIII

Whenever we devise algorithms to implement a given abstraction, we consider
a simple distributed system model first, and then we revisit the algorithms in
more challenging models. In other words, we first devise algorithms by mak-
ing strong assumptions on the distributed environment and then we discuss
how to weaken those assumptions.

We have tried to balance intuition and presentation simplicity, on one
hand, with rigour, on the other hand. Sometimes rigour was impacted, and
this might not have been always on purpose. The focus is indeed on abstrac-
tion specifications and algorithms, not on calculability and complexity. There
is indeed no theorem in this manuscript. Correctness arguments are given
with the aim of better understanding the algorithms: they are not formal
correctness proofs per see. In fact, we tried to avoid Greek letters and mathe-
matical notations: references are given to papers with more formal treatment
of some of the material presented here.

Organization

• In Chapter 1 we motivate the need for distributed programming abstrac-
tions. The chapter also presents the programming notations used in the
manuscript to describe specifications and algorithms.

• In Chapter 2 we present different kinds of assumptions about the underly-
ing distributed environment. Basically, we present the basic abstractions on
which more sophisticated ones are built. This chapter should be considered
as a reference throughout other chapters.

The rest of the chapters are each devoted to one family of related abstrac-
tions, and to various algorithms implementing them.

• In Chapter 3 we introduce specific distributed programming abstractions:
those related to the reliable delivery of messages that are broadcast to a
group of processes. We cover here issues such as how to make sure that a
message delivered by one process is delivered by all, despite the crash of
the original sender process.

• In Chapter ?? we discuss storage abstractions which encapsulate simple
forms of distributed memory objects with read-write semantics. We cover
here issues like how to ensure that a value written (stored) within a set
of processes is eventually read (retrieved) despite the crash of some of the
processes.

• In Chapter 5 we address the consensus abstraction and describe algorithms
that have a set of processes decide on a common value, based on some initial
values, despite the crash of some of the processes.

IX

• In Chapter 6 we consider ordering abstractions. In particular, we discuss
how consensus can be used to ensure totally ordered delivery of messages
broadcast to a group of processes. We also discuss how such an abstrac-
tion makes it easy to implement sophisticated forms of shared distributed
objects, beyond read-write storage objects.

• In Chapter 7 we gather what we call coordination abstractions, namely,
leader election, terminating reliable broadcast, non-blocking atomic com-
mit and group membership.

References

We have been exploring the world of distributed computing abstractions
for more than a decade now. During this period, we were influenced by
many researchers in the field of distributed computing. A special mention
to Leslie Lamport and Nancy Lynch for having posed fascinating problems
in distributed computing, and to the Cornell school, including Ken Birman,
Tushar Chandra, Vassos Hadzilacos, Prasad Jayanti, Robert van Renessee,
Fred Schneider, and Sam Toueg, for their seminal work on various forms of
distributed agreement.

Many other researchers have directly or indirectly inspired the material of
this manuscript. We did our best to reference their work throughout the text.
Most chapters end with a historical note. This intends to trace the history
of the concepts presented in the chapter, as well as to give credits to those
who invented and worked out the concepts. At the end of the manuscript, we
reference other manuscripts for further readings on the topics, and mention
major technical conferences in the area for the latest research results.

Acknowledgements

We would like to express our gratitude to our undergraduate and graduate
students from the Swiss Federal Institute of Technology in Lausanne (EPFL)
and the University of Lisboa (UL), for serving as reviewers of preliminary
drafts of this manuscript. Indeed they had no choice and needed to prepare
their exams anyway. But they were indulgent toward the bugs and typos
that could be found in earlier versions of the manuscript as well as associated
slides, and they provided useful feedback.

Partha Dutta, Corine Hari, Ron Levy, Petr Kouznetsov and Bastian
Pochon, PhD students at the Distributed Programming Laboratory of the
Swiss Federal Institute of Technology in Lausanne (EPFL) at the time of
writing this manuscript, as well as Filipe Araújo, and Hugo Miranda, PhD
students at the Distributed Systems Laboratory of the University of Lis-
boa (UL), suggested many improvements to the algorithms presented in the
manuscript.

X

Finally, we would like to thank all several of our colleagues who were
kind enough to read and comment earlier drafts of this book. These in-
clude Lorenzo Alvisi, Carole Delporte, Hugues Fauconnier, Pascal Felber,
Felix Gaertner, Anne-Marie Kermarrec, Fernando Pedone, Michel Raynal,
and Marten Van Steen.

Rachid Guerraoui and Lúıs Rodrigues

XI

Contents

1. Introduction . 1
1.1 Motivation . 1
1.2 Distributed Programming Abstractions . 2

1.2.1 Inherent Distribution . 4
1.2.2 Distribution as an Artifact . 6

1.3 The End-to-end Argument . 7
1.4 Software Components . 8

1.4.1 Composition Model . 8
1.4.2 Programming Interface . 10
1.4.3 Modules . 11

2. Basic Abstractions . 15
2.1 Distributed Computation . 16

2.1.1 Processes and Messages . 16
2.1.2 Automata and Steps . 16
2.1.3 Liveness and Safety . 18

2.2 Abstracting Processes . 19
2.2.1 Process Failures . 19
2.2.2 Lies and Omissions . 19
2.2.3 Crashes . 20
2.2.4 Recoveries . 21

2.3 Abstracting Communication . 23
2.3.1 Link Failures . 24
2.3.2 Fair-loss Links . 25
2.3.3 Stubborn Links . 26
2.3.4 Perfect Links . 27
2.3.5 Processes and Links . 29

2.4 Timing Assumptions . 30
2.4.1 Asynchronous System . 30
2.4.2 Synchronous System . 32
2.4.3 Partial Synchrony . 33

2.5 Failure Detection . 34
2.5.1 Abstracting Time . 34
2.5.2 Perfect Failure Detection . 35

2.5.3 Eventually Perfect Failure Detection 36
2.5.4 Eventual Leader Election . 38

2.6 Distributed System Models . 42
2.6.1 Combining Abstractions . 42
2.6.2 Performance . 43

Exercises . 44
Corrections . 45
Historical Notes . 47

3. Reliable Broadcast . 49
3.1 Motivation . 49

3.1.1 Client-Server Computing . 49
3.1.2 Multi-participant Systems . 50

3.2 Best-Effort Broadcast . 50
3.2.1 Specification . 51
3.2.2 Fail-Stop/ Fail-Silent Algorithm: Basic Multicast 51

3.3 Regular Reliable Broadcast . 52
3.3.1 Specification . 52
3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast 53
3.3.3 Fail-Silent Algorithm: Eager reliable Broadcast 54

3.4 Uniform Reliable Broadcast . 56
3.4.1 Specification . 56
3.4.2 Fail-Stop Algorithm: All Ack URB 56
3.4.3 Fail-Silent Algorithm: Majority Ack URB 58

3.5 Logged Best-Effort Broadcast . 59
3.6 Logged Uniform Broadcast . 61

3.6.1 Specification . 61
3.6.2 Fail-Recovery Algorithm: Uniform Multicast with Log . 61

3.7 Probabilistic Broadcast . 62
3.7.1 Limitation of Reliable Broadcast 63
3.7.2 Epidemic Dissemination . 64
3.7.3 Specification . 64
3.7.4 Algorithm: Eager Probabilistic Broadcast 65
3.7.5 Algorithm: Lazy Probabilistic Broadcast 67

Exercises . 70
Corrections . 71
Historical Notes . 75

4. Shared Memory . 77
4.1 Introduction . 77

4.1.1 Motivation . 77
4.1.2 Overview . 78
4.1.3 Completeness and Precedence . 80

4.2 Regular register . 81
4.2.1 Specification . 82

XIV

4.2.2 Fail-Stop Algorithm: Read-One-Write-All Regular Reg-
ister . 83

4.2.3 Fail-Silent Algorithm: Majority-Voting Regular Register 84
4.3 Atomic Registers . 87

4.3.1 Specification . 88
4.3.2 Transformation: From (1,1) Regular to (1,1) Atomic . . 90
4.3.3 Transformation: From (1,1) Atomic to (1,N) Atomic . . 93
4.3.4 Fail-Stop Algorithm: Read-One-Write-All (1,N) Atomic

Register . 96
4.3.5 Fail-Silent Algorithm: Majority-Voting (1,N) Atomic

Register . 96
4.4 (N,N) Atomic Register . 98

4.4.1 Specification . 98
4.4.2 From (1,N) atomic to (N,N) atomic registers 99
4.4.3 Fail-Stop Algorithm: Read-All-Write-All (N,N) Atomic

Register . 101
4.4.4 Fail-Silent Algorithm: Majority Voting (N,N) Atomic

Register . 102
4.5 Logged Registers . 104

4.5.1 Specifications . 104
4.5.2 Algorithms . 105

Exercises . 109
Corrections . 110
4.6 Historical Notes . 113

5. Consensus . 115
5.1 Regular Consensus . 115

5.1.1 Specifications . 115
5.1.2 A Flooding Algorithm . 115
5.1.3 A Hierarchical Algorithm . 118

5.2 Uniform Consensus . 119
5.2.1 Specification . 119
5.2.2 A Flooding Uniform Consensus Algorithm 121
5.2.3 A Hierarchical Uniform Consensus Algorithm 121

5.3 Asynchronous Consensus Algorithms . 124
5.3.1 The Round-About Consensus Algorithm 125
5.3.2 Overview . 125
5.3.3 Round-About Consensus in Shared Memory 126
5.3.4 Round-About Consensus in Message Passing 128
5.3.5 The Traffic-Light Consensus Algorithm. 130

5.4 Consensus in the Crash-Recovery Model 133
5.4.1 Specifications . 133
5.4.2 The Crash-Recovery Round-About Consensus Algo-

rithm . 133
5.5 Randomized Consensus . 134

XV

5.5.1 Specification . 135
5.5.2 A randomized Consensus Algorithm 136

Exercises . 140
Corrections . 141
Historical Notes . 144

6. Ordering . 145
6.1 Regular Reliable Causal Order Broadcast 145

6.1.1 Specification . 146
6.1.2 Fail-Stop Algorithm: No-Waiting Causal Broadcast . . . 146
6.1.3 Fail-Stop Algorithm: Waiting Causal Broadcast 149

6.2 Uniform Reliable Causal Order Broadcast 151
6.2.1 Specification . 151
6.2.2 Fail-silent Algorithms . 151

6.3 Uniform Total Order Broadcast . 151
6.3.1 Specification . 152
6.3.2 Fail-silent Algorithm: Sequenced Sets 152

6.4 Logged Total Order Broadcast . 156
6.4.1 Specification . 156
6.4.2 Fail-Recovery Algorithm: Redo Total Order Broadcast 157

Exercises . 159
Corrections . 159
Historical Notes . 162

7. Coordination . 163
7.1 Terminating Reliable Broadcast . 163

7.1.1 Intuition . 163
7.1.2 Specifications . 164
7.1.3 Algorithm . 164

7.2 Non-blocking Atomic Commit . 166
7.2.1 Intuition . 166
7.2.2 Specifications . 167
7.2.3 Algorithm . 167

7.3 Leader Election . 169
7.3.1 Intuition . 169
7.3.2 Specification . 170
7.3.3 Algorithm . 170

7.4 Group Membership . 171
7.4.1 Intuition . 171
7.4.2 Specifications . 171
7.4.3 Algorithm . 172

7.5 Probabilistic Group Membership . 174
Exercises . 176
Corrections . 177
Historical Notes . 181

XVI

8. Further Reading . 183

XVII

1. Introduction

This chapter first motivates the need for distributed programming abstrac-
tions. Special attention is given to abstractions that capture the problems
that underly robust forms of cooperations between multiple processes in a
distributed system, such as agreement abstractions. The chapter then ad-
vocates a modular strategy for the development of distributed programs by
making use of those abstractions through specific Application Programming
Interfaces (APIs).

A concrete simple example API is also given to illustrate the notation and
event-based invocation scheme used throughout the manuscript to describe
the algorithms that implement our abstractions. The notation and invocation
schemes are very close to those we have used to implement our algorithms in
our Appia protocol framework.

1.1 Motivation

Distributed computing has to do with devising algorithms for a set of pro-
cesses that seek to achieve some form of cooperation. Besides executing con-
currently, some of the processes of a distributed system might stop operating,
for instance by crashing or being disconnected, while others might stay alive
and keep operating. This very notion of partial failures is a characteristic of
a distributed system. In fact, this can be useful if one really feels the need
to differentiate a distributed system from a concurrent system. It is usual to
quote Leslie Lamport here:

“A distributed system is one in which the failure of a computer you
did not even know existed can render your own computer unusable”.

When a subset of the processes have failed, or got disconnected, the chal-
lenge is for the processes that are to still operating to synchronize their
activities in a consistent way. In other words, the cooperation must be made
robust to tolerate partial failures. This makes distributed computing quite
hard, yet extremely stimulating, problem. As we will discuss in detail later
in the manuscript, due to several factors such as the asynchrony of the un-
derlying components and the possibility of failures in the communication

infrastructure, it may be impossible to accurately detect process failures,
and in particular distinguish a process failure from a network failure. This
makes the problem of ensuring a consistent cooperation even more difficult.
The challenge of researchers in distributed computing is precisely to devise
algorithms that provide the processes that remain operating with enough con-
sistent information so that they can cooperate correctly and solve common
tasks.

In fact, many programs that we use today are distributed programs.
Simple daily routines, such as reading e-mail or browsing the web, involve
some form of distributed computing. However, when using these applica-
tions, we are typically faced with the simplest form of distributed computing:
client-server computing. In client-server computing, a centralized process, the
server, provides a service to many remote clients. The clients and the server
communicate by exchanging messages, usually following a request-reply form
of interaction. For instance, in order to display a web page to the user, a
browser sends a request to the WWW server and expects to obtain a response
with the information to be displayed. The core difficulty of distributed com-
puting, namely achieving a consistent form of cooperation in the presence of
partial failures, may be revealed even by using this simple form of interaction.
Going back to our browsing example, it is reasonable to expect that the user
continues surfing the web if the site it is consulting fails (by automatically
switching to other sites), and even more reasonable that the server process
keeps on providing information to other client processes, even when some of
them fail or got disconnected.

The problems above are already difficult to deal with when distributed
computing is limited to the interaction between two parties, such as in the
client-server case. However, there is more to distributed computing than
client-server computing. Quite often, not only two, but several processes need
to cooperate and synchronize their actions to achieve a common goal. The
existence of not only two, but multiple processes does not make the task of
distributed computation any simpler. Sometimes we talk about multi-party
interactions in this general case. In fact, both patterns might coexist in a
quite natural manner. Actually, a real distributed application would have
parts following a client-server interaction pattern and other parts following a
multi-party interaction one. This might even be a matter of perspective. For
instance, when a client contacts a server to obtain a service, it may not be
aware that, in order to provide that service, the server itself may need to re-
quest the assistance of several other servers, with whom it needs to coordinate
to satisfy the client’s request.

1.2 Distributed Programming Abstractions

Just like the act of smiling, the act of abstraction is restricted to very few
natural species. By capturing properties which are common to a large and sig-

2

nificant range of systems, abstractions help distinguish the fundamental from
the accessory and prevent system designers and engineers from reinventing,
over and over, the same solutions for the same problems.

From The Basics. Reasoning about distributed systems should start by ab-
stracting the underlying physical system: describing the relevant components
in an abstract way, identifying their intrinsic properties, and characterizing
their interactions, leads to what is called a system model. In this book we
will use mainly two abstractions to represent the underlying physical system:
processes and links.

The processes of a distributed program abstract the active entities that
perform computations. A process may represent a computer, a processor
within a computer, or simply a specific thread of execution within a pro-
cessor. To cooperate on some common task, the processes might typically
need to exchange messages using some communication network. Links ab-
stract the physical and logical network that supports communication among
processes. It is possible to represent different realities of a distributed system
by capturing different properties of processes and links, for instance, by de-
scribing the different ways these components may fail. Chapter 2 will provide
a deeper discussion on the various distributed systems models that are used
in this book.

To The Advanced. Given a system model, the next step is to understand
how to build abstractions that capture recurring interaction patterns in dis-
tributed applications. In this book we are interested in abstractions that
capture robust cooperation problems among groups of processes, as these
are important and rather challenging. The cooperation among processes can
sometimes be modelled as a distributed agreement problem. For instance, the
processes may need to agree if a certain event did (or did not) take place,
to agree on a common sequence of actions to be performed (from a number
of initial alternatives), to agree on the order by which a set of inputs need
to be processed, etc. It is desirable to establish more sophisticated forms of
agreement from solutions to simpler agreement problems, in an incremental
manner. Consider for instance the following problems:

• In order for processes to be able to exchange information, they must ini-
tially agree on who they are (say using IP addresses) and some common
format for representing messages. They might also need to agree on some
reliable way of exchanging messages (say to provide TCP-like semantics).
• After exchanging some messages, the processes may be faced with sev-

eral alternative plans of action. They may then need to reach a consensus
on a common plan, from all alternatives, and each participating process
may have initially its own plan, different from the plans of the remaining
processes.
• In some cases, it may be only acceptable for the cooperating processes to

take a given step if all other processes also agree that such a step should

3

take place. If this condition is not met, all processes must agree that the
step should not take place. This form of agreement is utmost importance
in the processing of distributed transactions, where this problem is known
as the atomic commitment problem.
• Processes may need not only to agree on which actions they should execute

but to agree also on the order by which these action need to be executed.
This form of agreement is the basis of one of the most fundamental tech-
niques to replicate computation in order to achieve fault-tolerance, and it
is called the total order problem.

This book is about mastering the difficulty underlying these problems,
and devising abstractions that encapsulate such problems. In the following,
we try to motivate the relevance of some of the abstractions covered in this
manuscript. We distinguish the case where the abstractions pop up from the
natural distribution of the abstraction, from the case where these abstractions
come out as artifacts of an engineering choice for distribution.

1.2.1 Inherent Distribution

Applications which require sharing or dissemination of information among
several participant processes are a fertile ground for the emergence of dis-
tributed programming abstractions. Examples of such applications are in-
formation dissemination engines, multi-user cooperative systems, distributed
shared spaces, cooperative editors, process control systems, and distributed
databases.

Information Dissemination. In distributed applications with information
dissemination requirements, processes may play one of the following roles:
information producers, also called publishers, or information consumers, also
called subscribers. The resulting interaction paradigm is often called publish-
subscribe.

Publishers produce information in the form of notifications. Subscribers
register their interest in receiving certain notifications. Different variants of
the paradigm exist to match the information being produced with the sub-
scribers interests, including channel-based, subject-based, content-based or
type-based subscriptions. Independently of the subscription method, it is very
likely that several subscribers are interested in the same notifications, which
will then have to be multicast. In this case, we are typically interested in hav-
ing subscribers of the same information receiving the same set of messages.
Otherwise the system will provide an unfair service, as some subscribers could
have access to a lot more information than other subscribers.

Unless this reliability property is given for free by the underlying infras-
tructure (and this is usually not the case), the sender and the subscribers
may need to coordinate to agree on which messages should be delivered.

4

For instance, with the dissemination of an audio stream, processes are typ-
ically interested in receiving most of the information but are able to toler-
ate a bounded amount of message loss, especially if this allows the system
to achieve a better throughput. The corresponding abstraction is typically
called a best-effort broadcast.

The dissemination of some stock exchange information might require a
more reliable form of broadcast, called reliable broadcast, as we would like
all active processes to receive the same information. One might even require
from a strock exchange infrastructure that information be disseminated in an
ordered manner. The adequate communication abstraction that offers order-
ing in addition to reliability is called total order broadcast. This abstraction
captures the need to disseminate information, such that all participants can
get a consistent view of the global state of the disseminated information.

In several publish-subscribe applications, producers and consumers in-
teract indirectly, with the support of a group of intermediate cooperative
brokers. In such cases, agreement abstractions might be useful for the coop-
eration of the brokers.

Process Control. Process control applications are those where several soft-
ware processes have to control the execution of a physical activity. Basically,
the (software) processes might be controlling the dynamic location of an air-
craft or a train. They might also be controlling the temperature of a nuclear
installation, or the automation of a car production system.

Typically, every process is connected to some sensor. The processes might
for instance need to exchange the values output by their assigned sensors and
output some common value, say print a single location of the aircraft on the
pilot control screen, despite the fact that, due to the inaccuracy or failure
of their local sensors, they may have observed slightly different input val-
ues. This cooperation should be achieved despite some sensors (or associated
control processes) having crashed or not observed anything. This type of co-
operation can be simplified if all processes agree on the same set of inputs for
the control algorithm, a requirement captured by the consensus abstraction.

Cooperative Work. Users located on different nodes of a network might
cooperate in building a common software or document, or simply in setting-
up a distributed dialogue, say for a virtual conference. A shared working
space abstraction is very useful here to enable effective cooperation. Such
distributed shared memory abstraction is typically accessed through read and
write operations that the users exploit to store and exchange information. In
its simplest form, a shared working space can be viewed as a virtual register
or a distributed file system. To maintain a consistent view of the shared
space, the processes need to agree on the relative order among write and read
operations on that shared board.

Distributed Databases. These constitute another class of applications
where agreement abstractions can be helpful to ensure that all transaction

5

managers obtain a consistent view of the running transactions and can make
consistent decisions on the way these transactions are serialized.

Additionally, such abstractions can be used to coordinate the transaction
managers when deciding about the outcome of the transactions. That is, the
database servers on which a given distributed transaction has executed would
need to coordinate their activities and decide on whether to commit or abort
the transaction. They might decide to abort the transaction if any database
server detected a violation of the database integrity, a concurrency control
inconsistency, a disk error, or simply the crash of some other database server.
An distributed programming abstraction that is useful here is the atomic
commit (or commitment) form of distributed cooperation.

1.2.2 Distribution as an Artifact

In general, even if the application is not inherently distributed and might
not, at first glance, need sophisticated distributed programming abstractions,
distribution sometimes appears as an artifact of the engineering solution to
satisfy some specific requirements such as fault-tolerance, load-balancing , or
fast-sharing .

We illustrate this idea through replication, which is a powerful way to
achieve fault-tolerance in distributed systems. Briefly, replication consists in
making a centralized service highly-available by executing several copies of it
on several machines that are presumably supposed to fail independently. The
service continuity may be ensured despite the crash of a subset of the ma-
chines. No specific hardware is needed: fault-tolerance through replication is
software-based. In fact, replication might also be used within an information
system to improve the read-access performance to data by placing it close to
the processes where it is queried.

For replication to be effective, the different copies must be maintained
in a consistent state. If the state of the replicas diverge arbitrarily, it does
not make sense to talk about replication anyway. The illusion of one highly-
available service would fail and be replaced by that of several distributed
services, each possibly failing independently. If replicas are deterministic,
one of the simplest manners to guarantee full consistency is to ensure that
all replicas receive the same set of requests in the same order. Typically, such
guarantees are enforced by an abstraction called total order broadcast and
discussed earlier: the processes need to agree here on the sequence of messages
they deliver. Algorithms that implement such a primitive are non-trivial,
and providing the programmer with an abstraction that encapsulates these
algorithms makes the design of replicated components easier. If replicas are
non-deterministic, then ensuring their consistency requires different ordering
abstractions, as we will see later in the manuscript.

After a failure, it is desirable to replace the failed replica by a new com-
ponent. Again, this calls for systems with dynamic group membership ab-

6

straction and for additional auxiliary abstractions, such as a state-transfer
mechanism that simplifies the task of bringing the new replica up-to-date.

1.3 The End-to-end Argument

Distributed Programming abstractions are useful but may sometimes be dif-
ficult or expensive to implement. In some cases, no simple algorithm is able
to provide the desired abstraction or the algorithm that solves the problem
can have a high complexity, e.g., in terms of the number of inter-process com-
munication steps and messages. Therefore, depending on the system model,
the network characteristics, and the required quality of service, the overhead
of the abstraction can range from the negligible to the almost impairing.

Faced with performance constraints, the application designer may be
driven to mix the relevant logic of the abstraction with the application logic,
in an attempt to obtain an optimized integrated solution. The intuition is
that such a solution would perform better than a modular approach, where
the abstraction is implemented as independent services that can be accessed
through well defined interfaces. The approach can be further supported by a
superficial interpretation of the end-to-end argument: most complexity should
be implemented at the higher levels of the communication stack. This argu-
ment could be applied to any distributed programming.

However, even if, in some cases, performance gains can be obtained by
collapsing the application and the underlying layers, such an approach has
many disadvantages. First, it is very error prone. Some of the algorithms
that will be presented in this manuscript have a considerable amount of
difficulty and exhibit subtle dependencies among their internal components.
An apparently obvious “optimization” may break the algorithm correctness.
It is usual to quote Knuth here:

“Premature optimization is the source of all evil”

Even if the designer reaches the amount of expertise required to mas-
ter the difficult task of embedding these algorithms in the application, there
are several other reasons to keep both implementations independent. The
most important of these reasons is that there is usually no single solution
to solve a given distributed computing problem. This is particularly true be-
cause the variety of distributed system models. Instead, different solutions
can usually be proposed and none of these solutions might strictly be supe-
rior to the others: each might have its own advantages and disadvantages,
performing better under different network or load conditions, making differ-
ent trade-offs between network traffic and message latency, etc. To rely on
a modular approach allows the most suitable implementation to be selected
when the application is deployed, or even commute in run-time among dif-
ferent implementations in response to changes in the operational envelope of
the application.

7

Encapsulating tricky issues of distributed interactions within abstractions
with well defined interfaces significantly helps reason about the correctness
of the application and port it from one system to the other. We strongly
believe that, in many distributed applications, especially those that require
many-to-many interaction, building preliminary prototypes of the distributed
application using several abstraction layers can be very helpful.

Ultimately, one might indeed consider optimizing the performance of the
final release of a distributed application and using some integrated prototype
that implements several abstractions in one monolithic peace of code. How-
ever, full understanding of each of the inclosed abstractions in isolation is
fundamental to ensure the correctness of the combined code.

1.4 Software Components

1.4.1 Composition Model

Notation. One of the biggest difficulties we had to face when thinking about
describing distributed algorithms was to find out an adequate way to repre-
sent these algorithms. When representing a centralized algorithm, one could
decide to use a programming language, either by choosing an existing popular
one, or by inventing a new one with pedagogical purposes in mind.

On the other hand, there have indeed been several attempts to come
up with distributed programming languages, these attempts have resulted
in rather complicated notations that would not have been viable to describe
general purpose distributed algorithms in a pedagogical way. Trying to invent
a distributed programming language was not an option. Had we had the time
to invent one and had we even been successful, at least one book would have
been required to present the language.

Therefore, we have opted to use pseudo-code to describe our algorithms.
The pseudo-code assumes a reactive computing model where components of
the same process communicate by exchanging events: an algorithm is de-
scribed as a set of event handlers, that react to incoming events and may
trigger new events. In fact, the pseudo-code is very close to the actual way
we programmed the algorithms in our experimental framework. Basically, the
algorithm description can be seen as actual code, from which we removed all
implementation-related details that were more confusing than useful for un-
derstanding the algorithms. This approach will hopefully simplify the task
of those that will be interested in building running prototypes from the de-
scriptions found in the book.

A Simple Example. Abstractions are typically represented through ap-
plication programming interfaces (API). We will informally discuss here a
simple example API for a distributed programming abstraction.

To describe this API and our APIs in general, as well as the algorithms
implementing these APIs, we shall consider, throughout the manuscript, an

8

Component B

Events

Events

Events

Component A

Figure 1.1. Composition model

asynchronous event-based composition model. Every process hosts a set of
software modules, called components. Each component is identified by a
name, characterized by a set of properties, and provides an interface in the
form of the events that the component accepts and produces in return. Dis-
tributed Programming abstractions are typically made of a collection of com-
ponents, at least one on every process, that are supposed to satisfy some
common properties.

Software Stacks. Components can be composed to build software stacks,
at each process: each component represents a specific layer in the stack. The
application layer is on the top of the stack whereas the networking layer is
at the bottom. The layers of the distributed programming abstractions we
will consider are in the middle. Components within the same stack commu-
nicate through the exchange of events, as illustrated in Figure 1.1. A given
abstraction is typically materialized by a set of components, each running at
a process.

According to this model, each component is constructed as a state-
machine whose transitions are triggered by the reception of events. Events
may carry information such as a data message, a group view, etc, in one or
more attributes. Events are denoted by 〈 EventType, att1, att2, . . . 〉.

Each event is processed through a dedicated handler by the process (i.e.,
the corresponding component). The processing of an event may result in new
events being created and triggered on the same or on other components. Every
event triggered on a component of the same process is eventually processed,
unless the process crashes. Events from the same component are processed
in the same order they were triggered. Note that this FIFO (first-in-first-
out) order is only enforced on events exchanged among local components in
a given stack. The messages among different processes may also need to be

9

ordered according to some criteria, using mechanisms orthogonal to this one.
We shall address this inter-process communication issue later in the book.

We assume that every process executes the code triggered by events in
a mutually exclusive way. Basically, the same process does not handle two
events concurrently. Once the handling of an event is terminated, the process
keeps on checking if any other event is triggered.

The code of each component looks like this:

upon event 〈 Event1, att1
1, att2

1, . . . 〉 do
something
// send some event
trigger 〈 Event2, att1

2,att2
2, . . . 〉;

upon event 〈 Event3, att1
3, att2

3, . . . 〉 do
something else
// send some other event
trigger 〈 Event4, att1

4, att2
4, . . . 〉;

This decoupled and asynchronous way of interacting among components
matches very well the requirements of distributed applications: for instance,
new processes may join or leave the system at any moment and a process must
be ready to handle both membership changes and reception of messages at
any time. Hence, a process should be able to concurrently handle several
events, and this is precisely what we capture through our component model.

1.4.2 Programming Interface

A typical interface includes the following types of events:

• Request events are used by a component to request a service from another
component: for instance, the application layer might trigger a request event
at a component in charge of broadcasting a message to a set of processes in
a group with some reliability guarantee, or proposing a value to be decided
on by the group.
• Confirmation events are used by a component to confirm the completion of

a request. Typically, the component in charge of implementing a broadcast
will confirm to the application layer that the message was indeed broadcast
or that the value suggested has indeed been proposed to the group: the
component uses here a confirmation event.
• Indication events are used by a given component to deliver information

to another component. Considering the broadcast example above, at every
process that is a destination of the message, the component in charge of
implementing the actual broadcast primitive will typically perform some

10

processing to ensure the corresponding reliability guarantee, and then use
an indication event to deliver the message to the application layer. Simi-
larly, the decision on a value will be indicated with such an event.

A typical execution at a given layer consists of the following sequence of
actions. We consider here the case of a broadcast kind of abstraction, e.g.,
the processes need to agree on whether or not to deliver a message broadcast
by some process.

1. The execution is initiated by the reception of a request event from the
layer above.

2. To ensure the properties of the broadcast abstraction, the layer will send
one or more messages to its remote peers using the services of the layer
below (using request events).

3. Messages sent by the peer layers are also received using the services of
the underlying layer (through indication events).

4. When a message is received, it may have to be stored temporarily until
the adequate reliability property is satisfied, before being delivered to the
layer above (using a indication event).

This data-flow is illustrated in Figure 1.2. Events used to deliver informa-
tion to the layer above are indications. In some cases, the layer may confirm
that a service has been concluded using a confirmation event.

Layer n
(receive)

(deliver)

indicationrequest

request indication

Layer n−1

Layer n+1

Figure 1.2. Layering

1.4.3 Modules

Not surprisingly, the modules described in this manuscript perform some
interaction with the correspondent modules on peer processes: after all, this
is a manuscript about distributed computing. It is however also possible to
have modules that perform only local actions.

11

Module:

Name: Print (lpr).

Events:

Request: 〈 lprPrint, rqid, string 〉: Requests a string to be printed. The
token rqid is an identifier of the request.

Confirmation:〈 lprOk, rqid 〉: Used to confirm that the printing request
with identifier rqid succeeded.

Module 1.1 Interface of a printing module.

Algorithm 1.1 Printing service.

Implements:
Print (lpr).

upon event 〈 lprPrint, rqid, string 〉 do
print string;
trigger 〈 lprOk, rqid 〉;

To illustrate the notion of modules, we use the example of a simple print-
ing module. This module receives a print request, issues a print command
and provides a confirmation of the print operation having been achieved.
Module 1.1 describes its interface and Algorithm 1.1 its implementation. The
algorithm is supposed to be executed by every process pi.

To illustrate the way modules are composed, we use the printing module
above to build a bounded printing service. The bounded printer only accepts
a limited, pre-defined, number of printing requests. The bounded printer
also generates an indication when the threshold of allowed print requests is
reached. The bounded printer uses the service of the (unbounded) printer
introduced above and maintains a counter to keep track of the number of
printing requests executed in the past. Module 1.2 provides the interface of
the bounded printer and Algorithm 1.2 its implementation.

To simplify the presentation of the components, we assume that a special
〈 Init 〉 event is generated automatically by the run-time system when a
component is created. This event is used to perform the initialization of the
component. For instance, in the bounded printer example, this event is used
to initialize the counter of executed printing requests.

As noted above, in order to provide a given service, a layer at a given
process may need to execute one or more rounds of message exchange with the
peer layers at remote processes. The behavior of each peer, characterized by
the set of messages that it is capable of producing and accepting, the format
of each of these messages, and the legal sequences of messages, is sometimes
called a protocol. The purpose of the protocol is to ensure the execution of
some distributed algorithm, the concurrent execution of different sequences of

12

Module:

Name: BoundedPrint (blpr).

Events:

Request: 〈 blprPrint, rqid, string 〉: Request a string to be printed. The
token rqid is an identifier of the request.

Confirmation:〈 blprStatus, rqid, status 〉: Used to return the outcome of
the printing request: Ok or Nok.

Indication:〈 blprAlarm 〉: Used to indicate that the threshold was
reached.

Module 1.2 Interface of a bounded printing module.

Algorithm 1.2 Bounded printer based on (unbounded) print service.

Implements:
BoundedPrint (blpr).

Uses:
Print (lpr).

upon event 〈 Init 〉 do
bound := PredefinedThreshold;

upon event 〈 blprPrint, rqid, string 〉 do
if bound > 0 then

bound := bound-1;
trigger 〈 lprPrint, rqid, string 〉;
if bound = 0 then trigger 〈 blprAlarm 〉;

else
trigger 〈 blprStatus, rqid, Nok 〉;

upon event 〈 lprOk, rqid 〉 do
trigger 〈 blprStatus, rqid, Ok 〉;

steps that ensure the provision of the desired service. This manuscript covers
several of these distributed algorithms.

To give the reader an insight of how design solutions and system-related
parameters affect the algorithm design, the book includes four different
classes of algorithmic solutions to implement our distributed programming
abstractions, namely: fail-stop algorithms, where processes can fail by crash-
ing but the crashes can be reliably detected by all the other processes; fail-
silent algorithms where process crashes cannot always be reliably detected;
crash-recovery algorithms, where processes can crash and later recover and
still participate in the algorithm; randomized algorithms, where processes
use randomization to ensure the properties of the abstraction with some
known probability.

13

These classes are not disjoint and it is important to notice that that we
do not give a solution from each class to every abstraction. First, there are
cases where it is known that some abstraction cannot be implemented from
an algorithm of a given class. For example, the coordination abstractions we
consider in Chapter 7 do not have fail-silent solutions and it is not clear either
how to devise meaningful randomized solutions to such abstractions. In other
cases, such solutions might exist but devising them is still an active area of
research. This is for instance the case for randomized solutions to the shared
memory abstractions we consider in Chapter ??.

Reasoning about distributed algorithms in general, and in particular
about algorithms that implement distributed programming abstractions, first
goes through defining a clear model of the distributed system where these al-
gorithms are supposed to operate. Put differently, we need to figure out what
basic abstractions the processes assume in order to build more sophisticated
ones. The basic abstractions we consider capture the allowable behavior of
the processes and their communication links in the distributed system. Before
delving into concrete algorithms to build sophisticated distributed program-
ming abstractions, we thus need to understand such basic abstractions. This
will be the topic of the next chapter.

14

2. Basic Abstractions

Applications that are deployed in practical distributed systems are usually
composed of a myriad of different machines and communication infrastruc-
tures. Physical machines differ on the number of processors, type of proces-
sors, amount and speed of both volatile and persistent memory, etc. Com-
munication infrastructures differ on parameters such as latency, throughput,
reliability, etc. On top of these machines and infrastructures, a huge variety
of software components are sometimes encompassed by the same application:
operating systems, file-systems, middleware, communication protocols, each
component with its own specific features.

One might consider implementing distributed services that are tailored
to specific combinations of the elements listed above. Such implementation
would depend on one type of machine, one form of communication, one dis-
tributed operating system, etc. However, in this book we are interested in
studying abstractions and algorithms that are relevant for a wide range of
distributed environments. In order to achieve this goal we need to capture
the fundamental characteristics of various distributed systems in some basic
abstractions, and on top of which we can later define other more elaborate,
and generic, distributed programming abstractions.

This chapter presents the basic abstractions we use to model a distributed
system composed of computational entities (processes) communicating by ex-
changing messages. Two kinds of abstractions will be of primary importance:
those representing processes and those representing communication links. Not
surprisingly, it does not seem to be possible to model the huge diversity of
physical networks and operational conditions with a single process abstrac-
tion and a single link abstraction. Therefore, we will define different instances
for each kind of basic abstraction: for example, we will distinguish process ab-
stractions according to the types of faults that they may exhibit. Besides our
process and link abstractions, we will introduce the failure detector abstrac-
tion as a convenient way to capture assumptions that might be reasonable
to make on the timing behavior of processes and links. Later in the chapter
we will identify relevant combinations of our three categories of abstractions.
Such a combination is what we call a distributed system model.

This chapter also contains our first module descriptions, used to specify
our basic abstractions, as well as our first algorithms, used to implement these

abstractions. The specifications and the algorithms are rather simple and
should help illustrate our notation, before proceeding in subsequent chapters
to more sophisticated specifications and algorithms.

2.1 Distributed Computation

2.1.1 Processes and Messages

We abstract the units that are able to perform computations in a distributed
system through the notion of process. We consider that the system is com-
posed of N uniquely identified processes, denoted by p1, p2, . . . , pN . Some-
times we also denote the processes by p, q, r. The set of system processes is
denoted by Π. Unless explicitly stated otherwise, it is assumed that this set
is static (does not change) and processes do know of each other.

We do not assume any particular mapping of our abstract notion of pro-
cess to the actual processors, processes, or threads of a specific machine or
operating system. The processes communicate by exchanging messages and
the messages are uniquely identified, say by their original sender process us-
ing a sequence number or a local clock, together with the process identifier.
Messages are exchanged by the processes through communication links. We
will capture the properties of the links that connect the processes through
specific link abstractions, and which we will discuss later.

2.1.2 Automata and Steps

A distributed algorithm is viewed as a distributed automata, one per process.
The automata at a process regulates the way the process executes its compu-
tation steps, i.e., how it reacts to a message. The execution of a distributed
algorithm is represented by a sequence of steps executed by the processes.
The elements of the sequences are the steps executed by the processes in-
volved in the algorithm. A partial execution of the algorithm is represented
by a finite sequence of steps and an infinite execution by an infinite sequence.

It is convenient for presentation simplicity to assume the existence of a
global clock, outside the control of the processes. This clock provides a global
and linear notion of time that regulates the execution of the algorithms. The
steps of the processes are executed according to ticks of the global clock:
one step per clock tick. Even if two steps are executed at the same physical
instant, we view them as if they were executed at two different times of our
global clock. A correct process is one that executes an infinite number of
steps, i.e., every process has an infinite share of time units (we come back
to this notion in the next section). In a sense, there is some entity (a global
scheduler) that schedules time units among processes, though the very notion
of time is outside the control of the processes.

16

A process step consists in receiving (sometimes we will be saying deliver-
ing) a message from another process (global event), executing a local com-
putation (local event), and sending a message to some process (global event)
(Figure 2.1). The execution of the local computation and the sending of a
message is determined by the process automata, i.e., the algorithm. Local
events that are generated are typically those exchanged between modules of
the same process at different layers.

Process

(receive)

incoming message outgoing message

(send)

internal computation

(modules of the process)

Figure 2.1. Step of a process

The fact that a process has no message to receive or send, but has some
local computation to perform, is simply captured by assuming that messages
might be nil, i.e., the process receives/sends the nil message. Of course, a
process might not have any local computation to perform either, in which
case it does simply not touch any of its local variables. In this case, the local
computation is also nil.

It is important to notice that the interaction between local components of
the very same process is viewed as a local computation and not as a commu-
nication. We will not be talking about messages exchanged between modules
of the same process. The process is the unit of communication, just like it is
the unit of failures as we will discuss shortly below. In short, a communica-
tion step of the algorithm occurs when a process sends a message to another
process, and the latter receives this message. The number of communica-
tion steps reflects the latency an implementation exhibits, since the network
latency is typically a limiting factor of the performance of distributed algo-
rithms. An important parameter of the process abstraction is the restriction
imposed on the speed at which local steps are performed and messages are
exchanged.

Unless specified otherwise, we will consider deterministic algorithms. That
is, for every step performed by any given process, the local computation
executed by the process and the message sent by this process are uniquely
determined by the message received by the process and its local state prior
to executing the step. We will also, in specific situations, describe randomized
(or probabilistic) algorithms where processes make use of underlying random
oracles to choose the local computation to be performed or the next message
to be sent, among a set of possibilities.

17

2.1.3 Liveness and Safety

When we devise a distributed algorithm to implement a given distributed
programming abstraction, we seek to satisfy the properties of the abstraction
in all possible executions of the algorithm, i.e., in all possible sequences of
steps executed by the processes according to the algorithm. These properties
usually fall into two classes: safety and liveness. Having in mind the dis-
tinction between these classes usually helps understand the abstraction and
hence devise an adequate algorithm to implement it.

• Basically, a safety property is a property of a distributed algorithm that
can be violated at some time t and never be satisfied again after that time.
Roughly speaking, safety properties state that the algorithm should not
do anything wrong. To illustrate this, consider a property of perfect links
(which we will discuss in more details later in this chapter) that roughly
stipulates that no process should receive a message unless this message was
indeed sent. In other words, processes should not invent messages out of
thin air. To state that this property is violated in some execution of an
algorithm, we need to determine a time t at which some process receives a
message that was never sent.
More precisely, a safety property is a property that whenever it is violated
in some execution E of an algorithm, there is a partial execution E ′ of E
such that the property will be violated in any extension of E ′. In more
sophisticated terms, we would say that safety properties are closed under
execution prefixes.
Of course, safety properties are not enough. Sometimes, a good way of
preventing bad things from happening consists in simply doing nothing. In
our countries of origin, some public administrations seem to understand
this rule quite well and hence have an easy time ensuring safety.
• Therefore, to define a useful abstraction, it is necessary to add some liveness

properties to ensure that eventually something good happens. For instance,
to define a meaningful notion of perfect links, we would require that if a
correct process sends a message to a correct destinator process, then the
destinator process should eventually deliver the message. To state that such
a property is violated in a given execution, we need to show that there is
no chance for a message to be received.
More precisely, a liveness property is a property of a distributed system
execution such that, for any time t, there is some hope that the property
can be satisfied at some time t′ ≥ t. It is a property for which, quoting
Cicero:

“While there is life there is hope”.

In general, the challenge is to guarantee both liveness and safety. (The
difficulty is not in talking, or not lying, but in telling the truth). Indeed, useful
distributed services are supposed to provide both liveness and safety proper-
ties. Consider for instance a traditional inter-process communication service

18

such as TCP: it ensures that messages exchanged between two processes are
not lost or duplicated, and are received in the order they were sent. As we
pointed out, the very fact that the messages are not lost is a liveness prop-
erty. The very fact that the messages are not duplicated and received in the
order they were sent are rather safety properties. Sometimes, we will con-
sider properties that are neither pure liveness nor pure safety properties, but
rather a union of both.

2.2 Abstracting Processes

2.2.1 Process Failures

Unless it fails, a process is supposed to execute the algorithm assigned to
it, through the set of components implementing the algorithm within that
process. Our unit of failure is the process. When the process fails, all its
components are supposed to fail as well, and at the same time.

Process abstractions differ according to the nature of the failures that
are considered. We discuss various forms of failures in the next section (Fig-
ure 2.2).

Omissions

Crashes

Arbitrary
Crashes&recoveries

Figure 2.2. Failure modes of a process

2.2.2 Lies and Omissions

A process is said to fail in an arbitrary manner if it deviates arbitrarily from
the algorithm assigned to it. The arbitrary fault behavior is the most general
one. In fact, it makes no assumptions on the behavior of faulty processes,
which are allowed any kind of output and in particular can send any kind
of messages. These kinds of failures are sometimes called Byzantine (see the
historical note at the end of this chapter) or malicious failures. Not surpris-
ingly, arbitrary faults are the most expensive to tolerate, but this is the only
acceptable option when an extremely high coverage is required or when there
is the risk of some processes being indeed controlled by malicious users that
deliberately try to prevent correct system operation.

19

An arbitrary fault need not be intentional and malicious: it can simply
be caused by a bug in the implementation, the programming language or
the compiler, that causes the process to deviate from the algorithm it was
supposed to execute. A more restricted kind of fault to consider is the omis-
sion (Figure 2.2). An omission fault occurs when a process does not send
(resp. receive) a message it is supposed to send (resp. receive), according to
its algorithm.

In general, omission faults are due to buffer overflows or network conges-
tion. Omission faults result in lost messages. With an omission, the process
deviates from the algorithm it is supposed to execute by dropping some mes-
sages that should have been exchanged with other processes.

2.2.3 Crashes

An interesting particular case of omissions is when a process executes its
algorithm correctly, including the exchange of messages with other processes,
possibly until some time t, after which the process does not send any message
to any other process. This is what happens if the process for instance crashes
at time t and never recovers after that time. It is common to talk here about
a crash failure (Figure 2.2), and a crash stop process abstraction. With this
abstraction, a process is said to be faulty if it crashes. It is said to be correct
if it does never crash and executes an infinite number of steps. We discuss in
the following two ramifications underlying the crash-stop abstraction.

• It is usual to devise algorithms that implement a given distributed program-
ming abstraction, say some form of agreement, provided that a minimal
number F of processes are correct, e.g., at least one, or a majority. It is
important to understand here that such assumption does not mean that
the hardware underlying these processes is supposed to operate correctly
forever. In fact, the assumption means that, in every execution of the al-
gorithm making use of that abstraction, it is very unlikely that more than
a certain number F of processes crash, during the lifetime of that very ex-
ecution. An engineer picking such algorithm for a given application should
be confident enough that the chosen elements underlying the software and
hardware architecture make that assumption plausible. In general, it is
also a good practice, when devising algorithms that implement a given
distributed abstraction under certain assumptions to determine precisely
which properties of the abstraction are preserved and which are violated
when a specific subset of the assumptions are not satisfied, e.g., when more
than F processes crash.
• Considering a crash-stop process abstraction boils down to assuming that

a process executes its algorithm correctly, unless it crashes, in which case
it does not recover. That is, once it crashes, the process does never per-
form any computation. Obviously, in practice, processes that crash can in
general be rebooted and hence do usually recover. It is important to notice

20

that, in practice, the crash-stop process abstraction does not preclude the
possibility of recovery, nor does it mean that recovery should be prevented
for a given algorithm (assuming a crash-stop process abstraction) to be-
have correctly. It simply means that the algorithm should not rely on some
of the processes to recover in order to pursue its execution. These processes
might not recover, or might recover only after a long period encompassing
the crash detection and then the rebooting delay. In some sense, an algo-
rithm that is not relying on crashed processes to recover would typically be
faster than an algorithm relying on some of the processes to recover (we will
discuss this issue in the next section). Nothing prevents, however, recovered
processes from getting informed about the outcome of the computation and
participate in subsequent instances of the distributed algorithm.

Unless explicitly stated otherwise, we will assume the crash-stop process
abstraction throughout this manuscript.

2.2.4 Recoveries

Sometimes, the assumption that certain processes never crash is simply not
plausible for certain distributed environments. For instance, assuming that a
majority of the processes do not crash, even only long enough for an algorithm
execution to terminate, might simply be too strong.

An interesting alternative as a process abstraction to consider in this case
is the fail-recovery one; we also talk about a fail-recovery kind of failure
(Figure 2.2). We say that a process is faulty in this case if either the pro-
cess crashes and never recovers, or the process keeps infinitely crashing and
recovering. Otherwise, the process is said to be correct. Basically, such a pro-
cess is eventually always (i.e., during the lifetime of the algorithm execution
of interest) up and operating. A process that crashes and recovers a finite
number of times is correct.

According to the fail-recovery abstraction, a process can indeed crash, in
this case the process stops sending messages, but might later recover. This can
be viewed as an omission fault, with one exception however: a process might
suffer amnesia when it crashes and looses its internal state. This significantly
complicates the design of algorithms because, upon recovery, the process
might send new messages that contradict messages that the process might
have sent prior to the crash. To cope with this issue, we sometimes assume
that every process has, in addition to its regular volatile memory, a stable
storage (also called a log), which can be accessed through store and retrieve
primitives.

Upon recovery, we assume that a process is aware that it has crashed
and recovered. In particular, a specific 〈 Recovery 〉 event is supposed to be
automatically generated by the run-time environment in a similar manner to
the 〈 Init 〉 event, executed each time a process starts executing some algo-
rithm. The processing of the 〈 Recovery 〉 event should for instance retrieve

21

the relevant state of the process from stable storage before the processing of
other events is resumed. The process might however have lost all the remain-
ing data that was preserved in volatile memory. This data should thus be
properly re-initialized. The 〈 Init 〉 event is considered atomic with respect to
recovery. More precisely, if a process crashes in the middle of its initialization
procedure and recovers without having processed the 〈 Init 〉 event properly,
the process should redo again the 〈 Init 〉 procedure. On the other hand, if
the 〈 Init 〉 event was processed entirely, then the process must handle the
〈 Recovery 〉 event instead.

In some sense, a fail-recovery kind of failure matches an omission one if
we consider that every process stores every update to any of its variables in
stable storage. This is not very practical because access to stable storage is
usually expensive (as there is a significant delay in accessing it). Therefore,
a crucial issue in devising algorithms with the fail-recovery abstraction is to
minimize the access to stable storage.

We discuss in the following three important ramifications underlying the
fail-recovery abstraction.

• One way to alleviate the need for accessing any form of stable storage
is to assume that some of the processes do never crash (during the life-
time of an algorithm execution). This might look contradictory with the
actual motivation for introducing the fail-recovery process abstraction at
the first place. In fact, there is no contradiction, as we explain below. As
discussed earlier, with crash-stop failures, some distributed programming
abstractions can only be implemented under the assumption that a certain
number of processes do never crash, say a majority the processes participat-
ing in the computation, e.g., 4 out of 7 processes. This assumption might
be considered unrealistic in certain environments. Instead, one might con-
sider it more reasonable to assume that at least 2 processes do not crash
during the execution of an algorithm. (The rest of the processes would in-
deed crash and recover.) As we will discuss later in the manuscript, such
assumption makes it sometimes possible to devise algorithms assuming the
fail-recovery process abstraction without any access to a stable storage. In
fact, the processes that do not crash implement a virtual stable storage
abstraction, and this is made possible without knowing in advance which
of the processes will not crash in a given execution of the algorithm.
• At first glance, one might believe that the crash-stop abstraction can also

capture situations where processes crash and recover, by simply having
the processes change their identities upon recovery. That is, a process that
recovers after a crash, would behave, with respect to the other processes,
as if it was a different process that was simply not performing any action.
This could easily be done assuming a re-initialization procedure where,
besides initializing its state as if it just started its execution, a process
would also change its identity. Of course, this process should be updated
with any information it might have missed from others, as if indeed it did

22

not receive that information yet. Unfortunately, this view is misleading as
we explain below. Again, consider an algorithm devised using the crash-
stop process abstraction, and assuming that a majority of the processes
do never crash, say at least 4 out of a total of 7 processes composing the
system. Consider furthermore a scenario where 4 processes do indeed crash,
and process one recovers. Pretending that the latter process is a different
one (upon recovery) would mean that the system is actually composed of
8 processes, 5 of which should not crash, and the same reasoning can be
made for this larger number of processes. This is because a fundamental
assumption that we build upon is that the set of processes involved in
any given computation is static and the processes know of each other in
advance. In Chapter 7, we will revisit that fundamental assumption and
discuss how to build the abstraction of a dynamic set of processes.
• A tricky issue with the fail-recovery process abstraction is the interface be-

tween software modules. Assume that some module at a process, involved
in the implementation of some specific distributed abstraction, delivers
some message or decision to the upper layer (say the application) and
subsequently the process hosting the module crashes. Upon recovery, the
module cannot determine if the upper layer (i.e., the application) has pro-
cessed the message or decision before crashing or not. There are at least
two ways to deal with this issue.

1. One way is to change the interface between modules. Instead of delivering
a message (or a decision) to the upper layer, the module may instead
store the message (decision) in a stable storage that is exposed to the
upper layer. It is then up to the upper layer to access the stable storage
and exploit delivered information.

2. A different approach consists in having the module periodically deliver-
ing the message or decision to the application until the latter explicitely
asks for stopping the delivery. That is, the distributed programming
abstraction implemented by the module is in this case responsible for
making sure the application will make use of the delivered information.

2.3 Abstracting Communication

The link abstraction is used to represent the network components of the
distributed system. We assume that every pair of processes is connected by
a bidirectional link, a topology that provides full connectivity among the
processes. In practice, different topologies may be used to implement this
abstraction, possibly using routing algorithms. Concrete examples, such as
the ones illustrated in Figure 2.3, include the use of a broadcast medium
(such as an Ethernet), a ring, or a mesh of links interconnected by bridges
and routers (such as the Internet). Many implementations refine the abstract
network view to make use of the properties of the underlying topology.

23

(a) (b) (c)

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

(d)

Figure 2.3. The link abstraction and different instances.

We assume that messages exchanged between processes are uniquely iden-
tified and every message includes enough information for the recipient of a
message to uniquely identify its sender. Furthermore, when exchanging mes-
sages in a request-reply manner among different processes, the processes have
means to identify which reply message is a response to which request message.
This can typically be achieved by having the processes generating (random)
timestamps, based on sequence numbers or on local clocks. This assump-
tion alleviates the need for explicitly introducing these timestamps in the
algorithm.

2.3.1 Link Failures

In a distributed system, it is common for messages to be lost when transiting
through the network. However, it is reasonable to assume that the probability
for a message to reach its destination is non-zero. Hence, a natural way to
overcome the inherent unreliability of the network is to keep on retransmitting
messages until they reach their destinations.

In the following, we will describe different kinds of link abstractions: some
are stronger than others in the sense that they provide more reliability guar-
antees. All three are point-to-point link abstractions, i.e., they support the
communication between pairs of processes. (In the next chapter, we will be
defining broadcast communication abstractions.)

We will first describe the abstraction of fair-loss links, which captures the
basic idea that messages might be lost but the probability for a message not
to be lost is non-zero. Then we describe higher level abstractions that could
be implemented over fair-loss links using retransmission mechanisms to hide
from the programmer part of the unreliability of the network. We will more
precisely consider stubborn and perfect link abstractions. As we pointed out
earlier, unless explicitly stated otherwise, we will be assuming the crash-stop
process abstraction.

We define the properties of each of our link abstractions using two kinds
of primitives: send and deliver. The term deliver is privileged upon the more
general term receive to make it clear that we are talking about a specific link

24

Module:

Name: FairLossPointToPointLinks (flp2p).

Events:

Request: 〈 flp2pSend, dest, m 〉: Used to request the transmission of
message m to process dest.

Indication: 〈 flp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

FLL1: Fair loss: If a message m is sent infinitely often by process pi to
process pj , and neither pi or pj crash, then m is delivered infinitely often
by pj .

FLL2: Finite duplication: If a message m is sent a finite number of times
by process pi to process pj , then m cannot be delivered an infinite number
of times by pj .

FLL3: No creation: If a message m is delivered by some process pj , then
m has been previously sent to pj by some process pi.

Module 2.1 Interface and properties of fair-lossy point-to-point links.

abstraction to be implemented over the network: a message might typically
be received at a given port of the network and stored within some buffer, then
some algorithm will be executed to make sure the properties of the required
link abstraction are satisfied, before the message is actually delivered. When
there is no ambiguity, we might however use the term receive to mean deliver.

A process invokes the send primitive of a link abstraction to request the
sending of a message using that abstraction. When the process invokes that
primitive, we say that the process sends the message. It might then be up to
the link abstraction to make some effort in transmitting the message to the
destinator process, according to the actual specification of the abstraction.
The deliver primitive is invoked by the algorithm implementing the abstrac-
tion on a destinator process. When this primitive is invoked on a process p
for a message m, we say that p delivers m.

2.3.2 Fair-loss Links

The interface of the fair-loss link abstraction is described by Module 2.1.
This consists of two events: a request event, used to send messages, and an
indication event, used to deliver the messages. Fair-loss links are characterized
by the properties FLL1-FLL3.

Basically, the fair loss property guarantees that a link does not system-
atically drop any given message. Therefore, if neither the sender nor the
recipient crashes, and if a message keeps being re-transmitted, the message is
eventually delivered. The finite duplication property intuitively ensures that
the network does not perform more retransmission than those performed by

25

Module:

Name: StubbornPointToPointLink (sp2p).

Events:

Request: 〈 sp2pSend, dest, m 〉: Used to request the transmission of mes-
sage m to process dest.

Indication:〈 sp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

SL1: Stubborn delivery: Let pi be any process that sends a message m to
a correct process pj . If pi does not crash, then pj eventually delivers m an
infinite number of times.

SL2: No creation: If a message m is delivered by some process pj , then m
was previously sent to pj by some process pi.

Module 2.2 Interface and properties of stubborn point-to-point links.

Algorithm 2.1 Stubborn links using fair-loss links.

Implements:
StubbornPointToPointLink (sp2p).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 sp2pSend, dest, m 〉 do
while (true) do

trigger 〈 flp2pSend, dest, m 〉;

upon event 〈 flp2pDeliver, src, m 〉 do
trigger 〈 sp2pDeliver, src, m 〉;

the processes themselves. Finally, the no creation property ensures that no
message is created or corrupted by the network.

2.3.3 Stubborn Links

We define the abstraction of stubborn channels in Module 2.2. This abstrac-
tion hides lower layer retransmission mechanisms used by the sender process,
when using actual fair loss links, to make sure its messages are eventually
delivered by the destinator processes.

Algorithm 2.1 describes a very simple implementation of stubborn links
over fair-loss ones. We discuss in the following the correctness of the algorithm
as well as some performance considerations.

26

Correctness. The fair loss property of the underlying links guarantees that, if
the destinator process is correct, it will indeed deliver, infinitely often, every
message that was sent by every process that does not subsequently crashes.
This is because the algorithm makes sure the sender process will keep on
sp2pSending those messages infinitely often, unless that sender process itself
crashes. The no creation property is simply preserved from the underlying
links.

Performance. The algorithm is clearly not performant and its purpose is pri-
marily pedagogical. It is pretty clear that, within a practical application, it
does not make much sense for a process to keep on, and at every step, send-
ing messages infinitely often. There are at least three complementary ways
to prevent that and hence make the algorithm more practical. First, the
sender process might very well introduce a time delay between two sending
events (using the fair loss links). Second, it is very important to remember
that the very notion of infinity and infinitely often are context dependent:
they basically depend on the algorithm making use of stubborn links. After
the algorithm making use of those links has ended its execution, there is no
need to keep on sending messages. Third, an acknowledgement mechanism,
possibly used for groups of processes, can very well be added to mean to a
sender that it does not need to keep on sending a given set of messages any-
more. This mechanism can be performed whenever a destinator process has
properly consumed those messages, or has delivered messages that semanti-
cally subsume the previous ones, e.g., in stock exchange applications when
new values might subsume old ones. Such a mechanism should however be
viewed as an external algorithm, and cannot be integrated within our algo-
rithm implementing stubborn links. Otherwise, the algorithm might not be
implementing the stubborn link abstraction anymore.

2.3.4 Perfect Links

With the stubborn link abstraction, it is up to the destinator process to check
whether a given message has already been delivered or not. Adding, besides
mechanisms for message retransmission, mechanisms for duplicate verifica-
tion helps build an even higher level abstraction: the perfect link one, some-
times also called the reliable channel abstraction. The perfect link abstraction
specification is captured by the “Perfect Point To Point Link” module, i.e.,
Module 2.3. The interface of this module also consists of two events: a request
event (to send messages) and an indication event (used to deliver messages).
Perfect links are characterized by the properties PL1-PL3.

Algorithm 2.2 describes a very simple implementation of perfect links over
stubborn ones. We discuss in the following the correctness of the algorithm
as well as some performance considerations.

Correctness. Consider the reliable delivery property of perfect links. Let m
be any message pp2pSent by some process p to some process q and assume

27

Module:

Name: PerfectPointToPointLink (pp2p).

Events:

Request: 〈 pp2pSend, dest, m 〉: Used to request the transmission of
message m to process dest.

Indication:〈 pp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

PL1: Reliable delivery: Let pi be any process that sends a message m to
a process pj . If neither pi nor pj crashes, then pj eventually delivers m.

PL2: No duplication: No message is delivered by a process more than once.

PL3: No creation: If a message m is delivered by some process pj , then
m was previously sent to pj by some process pi.

Module 2.3 Interface and properties of perfect point-to-point links.

Algorithm 2.2 Perfect links using stubborn links.

Implements:
PerfectPointToPointLinks (pp2p).

Uses:
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 pp2pSend, dest, m 〉 do
trigger 〈 sp2pSend, dest, m 〉;

upon event 〈 sp2pDeliver, src, m 〉 do
if m 6∈ delivered then

trigger 〈 pp2pDeliver, src, m 〉;
else delivered := delivered ∪{m};

that none of these processes crash. By the algorithm, process p sp2pSends m
to q using the underlying stubborn links. By the stubborn delivery property
of the underlying links, q eventually sp2pDelivers m () m at least once and
hence pp2pDelivers it. The no duplication property follows from the test per-
formed by the algorithm before delivering any message: whenever a message
is sp2pDelivered and before pp2pDelivering that message. The no creation
property simply follows from the no creation property of the underlying stub-
born links.

28

Performance. Besides the performance considerations we discussed for our
stubborn link implementation, i.e., Algorithm 2.1, and which clearly apply
to the perfect link implementation of Algorithm 2.2, there is an additional
concern related to maintaining the ever growing set of messages delivered at
every process, provided actual physical memory limitations.

At first glance, one might think of a simple way to circumvent this issue
by having the destinator acknowledging messages periodically and the sender
acknowledging having received such acknowledgements and promising not
to send those messages anymore. There is no guarantee however that such
messages would not be still in transit and will later reach the destinator
process. Additional mechanisms, e.g., timestamp-based, to recognize such
old messages could however be used.

2.3.5 Processes and Links

Throughout this manuscript, we will mainly assume perfect links. It may
seem awkward to assume that links are perfect when it is known that real
links may crash, lose and duplicate messages. This assumption only captures
the fact that these problems can be addressed by some lower level protocol.
As long as the network remains connected, and processes do not commit
an unbounded number of omission failures, link crashes may be masked by
routing. The loss of messages can be masked through re-transmission as we
have just explained through our algorithms. This functionality is often found
in standard transport level protocols such as TCP. These are typically sup-
ported by the operating system and do not need to be re-implemented.

The details of how the perfect link abstraction is implemented is not rele-
vant for the understanding of the fundamental principles of many distributed
algorithms. On the other hand, when developing actual distributed applica-
tions, these details become relevant. For instance, it may happen that some
distributed algorithm requires the use of sequence numbers and message re-
transmissions, even assuming perfect links. In this case, in order to avoid
the redundant use of similar mechanisms at different layers, it may be more
effective to rely just on weaker links, such as fair-loss or stubborn links. This
is somehow what will happen when assuming the fail-recovery abstraction of
a process, as we will explain below.

Indeed, consider the reliable delivery property of perfect links: if a process
pi sends a message m to a process pj , then, unless pi or pj crashes, pj even-
tually delivers m. With a fail-recovery process abstraction, pj might indeed
deliver m but crash and then recover. If the act of delivering is simply that of
transmitting a message, then pj might not have had the time to do anything
useful with the message before crashing. One alternative is to define the act
of delivering a message as its logging in stable storage. It is then up to the
receiver process to check in its log which messages it has delivered and make
use of them. Having to log every message in stable storage might however
not be very realistic for the logging being a very expensive operation.

29

The second alternative in this case is to go back to the fair-loss assump-
tion and build on top of it a retransmission module which ensures that the
receiver has indeed the time to perform something useful with the message,
even if it crashes and recovers, and without having to log the message. The
stubborn delivery property ensures exactly that: if a process pi sends a mes-
sage m to a correct process pj, and pi does not crash, then pj delivers m from
pi an infinite number of times. Hence, the receiver will have the opportunity
to do something useful with the message, provided that it is correct. Remem-
ber that, with a fail-recovery abstraction, a process is said to be correct if,
eventually, it is up and does not crash anymore.

Interestingly, Algorithm 2.1 implements stubborn links over fair loss ones
also with the fail-recovery abstraction of a process; though with a different
meaning of the very notion of a correct process. This is clearly not the case
for Algorithm 2.2, i.e., this algorithm is not correct with the fail-recovery
abstraction of a process.

2.4 Timing Assumptions

An important aspect of the characterization of a distributed system is related
with the behaviour of its processes and links with respect to the passage of
time. In short, determining whether we can make any assumption on the
existence of time bounds on communication bounds and process (relative)
speeds is if primary importance when defining a model of a distributed sys-
tem. We address some time-related issues in this section and then suggest
the failure detector abstraction as a meaningful way to abstract useful timing
assumptions.

2.4.1 Asynchronous System

Assuming an asynchronous distributed system comes down to not making any
timing assumption about processes and channels. This is precisely what we
have been doing so far, i.e., when defining our process and link abstractions.
That is, we did not assume that processes have access to any sort of physical
clock, nor did we assume there are no bounds on processing delays and also
no bounds on communication delay.

Even without access to physical clocks, it is still possible to measure the
passage of time based on the transmission and delivery of messages, i.e., time
is defined with respect to communication. Time measured this way is called
logical time.

The following rules can be used to measure the passage of time in an
asynchronous distributed system:

• Each process p keeps an integer called logical clock lp, initially 0.

30

e1 e2

p2

p3

p1

(a)

e1

p2

p3

p1

e2

(b)

e1

p2

p3

p1

e2

(c)

Figure 2.4. The happened-before relation.

• Any time an event occurs at process p, the logical clock lp is incremented
by one unit.
• When a process sends a message, it timestamps the message with the value

of its logical clock at the moment the message is sent and tags the message
with that timestamp. The timestamp of event e is denoted by t(e).
• When a process p receives a message m with timestamp lm, p increments

its timestamp in the following way: lp = max(lp, lm) + 1.

An interesting aspect of logical clocks is the fact that they capture cause-
effect relations in systems where the processes can only interact through
message exchanges. We say that an event e1 may potentially have caused
another event e2, denoted as e1 → e2 if the following relation, called the
happened-before relation, applies:

• e1 and e2 occurred at the same process p and e1 occurred before e2 (Fig-
ure 2.4 (a)).
• e1 corresponds to the transmission of a message m at a process p and e2

to the reception of the same message at some other process q (Figure 2.4
(b)).
• there exists some event e′ such that e1 → e′ and e′ → e2 (Figure 2.4 (c)).

It can be shown that if the events are timestamped with logical clocks,
then e1 → e2 ⇒ t(e1) < t(e2). Note that the opposite implication is not true.

As we discuss in the next chapters, even in the absence of any physical
timing assumption, and using only a logical notion of time, we can imple-
ment some useful distributed programming abstractions. Many abstractions
do however need some physical timing assumptions. In fact, even a very
simple form of agreement, namely consensus, is impossible to solve in an
asynchronous system even if only one process fails, and it can only do so by
crashing (see the historical note at the end of this chapter). In this prob-
lem, which we will address later in this manuscript, the processes start, each
with an initial value, and have to agree on a common final value, out the
initial values. The consequence of this result is immediate for the impossibil-
ity of deriving algorithms for many agreement abstractions, including group
membership or totally ordered group communication.

31

2.4.2 Synchronous System

Whilst assuming an asynchronous system comes down not to make any physi-
cal timing assumption on processes and links, assuming a synchronous system
comes down to assuming the following three properties:

1. Synchronous processing. There is a known upper bound on processing
delays. That is, the time taken by any process to execute a step is always
less than this bound. Remember that a step gathers the delivery of a
message (possibly nil) sent by some other process, a local computation
(possibly involving interaction among several layers of the same process),
and the sending of a message to some other process.

2. Synchronous communication. There is a known upper bound on message
transmission delays. That is, the time period between the instant at which
a message is sent and the time at which the message is delivered by the
destination process is less than this bound.

3. Synchronous physical clocks. Processes are equipped with a local physical
clock. There is a known upper bound on the rate at which the local
physical clock from a global real time clock (remember that we make here
the assumption that such a global real time clock exists in our universe,
i.e., at least as a fictional device to simplify the reasoning about the
processes, but this is not accessible to the processes).

In a synchronous distributed system, several useful services can be pro-
vided, such as, among others:

• Timed failure detection. Every crash of a process may be detected within
bounded time: whenever a process p crashes, all processes that did not
crash, detect the crash of p within a known bounded time. This can be
achieved for instance using a heartbeat mechanism, where processes peri-
odically exchange (heartbeat) messages and detect, within a limited time
period, the crash of processes that have crashed.
• Measure of transit delays. It is possible to measure the delays spent by

messages in the communication links and, from there, infer which nodes
are more distant or connected by slower or overloaded links.
• Coordination based on time. One can implement a lease abstraction that

provides the right to execute some action that is granted for a fixed amount
of time, e.g., manipulating a specific file.
• Worst case performance. By assuming a bound on the number of faults

and on the load of the system, it is possible to derive worst case response
times for a given algorithm. This allows a process to know when a message
it has sent has been received by the destination process (provided that the
latter is correct). This can be achieved even if we assume that processes
commit omission failures without crashing, as long as we bound the number
of these omission failures.

32

• Synchronized clocks. A synchronous system makes it possible to synchro-
nize the clocks of the different processes in such a way that they are never
apart by more than some known constant δ, known as the clock synchro-
nization precision. Synchronized clocks allow processes to coordinate their
actions and ultimately execute synchronized global steps. Using synchro-
nized clocks makes it possible to timestamp events using the value of the
local clock at the instant they occur. These timestamps can be used to
order events in the system.
If there was a system where all delays were constant, it would be possible to
achieve perfectly synchronized clocks (i.e., where δ would be 0). Unfortu-
nately, such a system cannot be built. In practice, δ is always greater than
zero and events within δ cannot be ordered. This is not a significant prob-
lem when δ can be made small enough such that only concurrent events
(i.e., events that are not causally related) can have the same timestamp.

Not surprisingly, the major limitation of assuming a synchronous system
is the coverage of the system, i.e., the difficulty of building a system where
the timing assumptions hold with high probability. This typically requires
careful analysis of the network and processing load and the use of appropriate
processor and network scheduling algorithms. Whilst this might be feasible
for some local area networks, it might not be so, or even desirable, in larger
scale systems such as the Internet. In this case, i.e., on the Internet, there
are periods where messages can take a very long time to arrive to their
destination. One should consider very large values to capture the processing
and communication bounds. This however would mean considering worst
cases values which are typically much higher than average values. These worst
case values are usually so high that any application based on them would be
very inefficient.

2.4.3 Partial Synchrony

Generally, distributed systems are completely synchronous most of the time.
More precisely, for most systems we know of, it is relatively easy to define
physical time bounds that are respected most of the time. There are however
periods where the timing assumptions do not hold, i.e., periods during which
the system is asynchronous. These are periods where the network is for in-
stance overloaded, or some process has a shortage of memory that slows it
down. Typically, the buffer that a process might be using to store incoming
and outgoing messages might get overflowed and messages might thus get lost,
violating the time bound on the delivery. The retransmission of the messages
might help ensure the reliability of the channels but introduce unpredictable
delays. In this sense, practical systems are partially synchronous.

One way to capture the partial synchrony observation is to assume that
the timing assumptions only hold eventually (without stating when exactly).

33

This boils down to assuming that there is a time after which these assump-
tions hold forever, but this time is not known. In a way, instead of assuming a
synchronous system, we assume a system that is eventually synchronous. It is
important to notice that making such assumption does not in practice mean
that (1) there is a time after which the underlying system (including applica-
tion, hardware and networking components) is synchronous forever, (2) nor
does it mean that the system needs to be initially asynchronous and then only
after some (long time) period becomes synchronous. The assumption simply
captures the very fact that the system might not always be synchronous, and
there is no bound on the period during which it is asynchronous. However,
we expect that there are periods during which the system is synchronous,
and some of these periods are long enough for an algorithm to terminate its
execution.

2.5 Failure Detection

2.5.1 Abstracting Time

So far, we contrasted the simplicity with the inherent limitation of the asyn-
chronous system assumption, as well the power with the limited coverage
of the synchronous assumption, and we discussed the intermediate partially
synchronous system assumption. Each of these make some sense for spe-
cific environments, and need to be considered as plausible assumptions when
reasoning about general purpose implementations of high level distributed
programming abstractions.

As far as the asynchronous system assumption is concerned, there is no
timing assumptions to be made and our process and link abstractions di-
rectly capture that case. These are however clearly not sufficient for the syn-
chronous and partially synchronous system assumptions. Instead of augment-
ing our process and link abstractions with timing capabilities to encompass
the synchronous and partially synchronous system assumptions, we consider
a separate kind of abstractions to encapsulates those capabilities. Namely,
we consider failure detectors. As we will discuss in the next section, failure
detectors provide information (not necessarily fully accurate) about which
processes are crashed. We will in particular introduce a failure detector that
encapsulates timing assumptions of a synchronous system, as well as failure
detectors that encapsulate t timing assumptions of a partially synchronous
system. Not surprisingly, the information provided by the first failure detec-
tor about crashed processes will be more accurate than those provided by
the others. More generally, the stronger are the timing assumptions we make
on the distributed system, i.e., to implement the failure detector, the more
accurate that information can be.

There are at least two advantages of the failure detector abstraction, over
an approach where we would directly make timing assumptions on processes

34

Module:

Name: PerfectFailureDetector (P).

Events:

Indication: 〈 crash, pi 〉: Used to notify that process pi has crashed.

Properties:

PFD1: Eventual strong completeness: Eventually every process that
crashes is permanently detected by every correct process.

PFD2: Strong accuracy: No process is detected by any process before it
crashes.

Module 2.4 Interface and properties of the perfect failure detector.

and links. First, the failure detector abstraction alleviates the need for ex-
tending the process and link abstractions introduced earlier in this chapter
with timing assumptions: the simplicity of those abstractions is preserved.
Second, and as will see in the following, we can reason about failure detector
properties using axiomatic properties with no explicit references about phys-
ical time. Such references are usually very error prone. In practice, except
for specific applications like process control, timing assumptions are indeed
mainly used to detect process failures, i.e., to implement failure detectors:
this is exactly what we do.

2.5.2 Perfect Failure Detection

In synchronous systems, and assuming a process crash-stop abstraction,
crashes can be accurately detected using timeouts. For instance, assume that
a process sends a message to another process and awaits a response. If the
recipient process does not crash, then the response is guaranteed to arrive
within a time period equal to the worst case processing delay plus two times
the worst case message transmission delay (ignoring the clock drifts). Using
its own clock, a sender process can measure the worst case delay required to
obtain a response and detect a crash in the absence of such a reply within
the timeout period: the crash detection will usually trigger a corrective pro-
cedure. We encapsulate such a way of detecting failures in a synchronous
system through the use of a perfect failure detector abstraction.

Specification. The perfect failure detector outputs, at every process, the
set of processes that are detected to have crashed. A perfect failure detector
can be described by the accuracy and completeness properties of Module 2.4.
The act of detecting a crash coincides with the triggering of the event crash
(Module 2.4): once the crash of a process p is detected by some process q,
the detection is permanent, i.e., q will not change its mind.

Algorithm. Algorithm 2.3 implements a perfect failure detector assuming
a synchronous system. Communication links do not lose messages sent by a

35

Algorithm 2.3 Perfect failure detector with perfect links and timeouts.

Implements:
PerfectFailureDetector (P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π;

upon event 〈 TimeDelay 〉 do
∀pi∈Π :

if pi 6∈ alive then
trigger 〈 crash, pi 〉;

alive := ∅;
∀pi∈Π : trigger 〈 pp2pSend, pi, [Data, heartbeat] 〉;

upon event 〈 pp2pDeliver, src, [Data, heartbeat] 〉 do
alive := alive ∪ {src};

correct process to a correct process (perfect links) and the transmission period
of every message is bounded by some known constant, in comparison to which
the local processing time of a process, as well as the clock drifts, are negligible.
The algorithm makes use of a specific timeout mechanism initialized with a
timeout delay chosen to be large enough such that, within that period, every
process has enough time to send a message to all, and each of these messages
has enough time to be delivered at its destination. Whenever the timeout
period expires, the specific TimeDelay event is triggered.

Correctness. Consider the strong completeness property of a perfect failure
detector. If a process p crashes, it stops sending heartbeat messages and no
process will deliver its messages: remember that perfect links ensure that no
message is delivered unless it was sent. Every correct process will thus detect
the crash of p.

Consider now the strong accuracy property of a perfect failure detector.
The crash of a process p is detected by some other process q, only if q does not
deliver a message from p after a timeout period. This can only happen if p has
indeed crashed because the algorithm makes sure p must have otherwise sent
a message and the synchrony assumption implies that the message should
have been delivered before the timeout period.

2.5.3 Eventually Perfect Failure Detection

Just like we can encapsulate timing assumptions of a synchronous system
in a perfect failure detector abstraction, we can similarly encapsulate timing

36

assumotions of a partially synchronous system within an eventually perfect
failure detector abstraction.

Specification. Basically, the eventually perfect failure detector abstraction
guarantees that there is a time after which crashes can be accurately detected.
This captures the intuition that, most of the time, timeout delays can be
adjusted so they can accurately detect crashes. However, there are periods
where the asynchrony of the underlying system prevents failure detection to
be accurate and leads to false suspicions. In this case, we talk about failure
suspicion instead of detection.

More precisely, to implement an eventually perfect failure detector ab-
straction, the idea is to also use a timeout, and to suspect processes that
did not send heartbeat messages within a timeout delay. Obviously, a suspi-
cion might be wrong in a partially synchronous system. A process p might
suspect a process q, even if q has not crashed, simply because the timeout
delay chosen by p to suspect the crash of q was too short. In this case, p’s
suspicion about q is false. When p receives a message from q, and p will if
p and q are correct, p revises its judgement and stops suspecting q. Process
p also increases its timeout delay: this is because p does not know what the
bound on communication delay will eventually be; it only knows there will
be one. Clearly, if q now crashes, p will eventually suspect q and will never
revise its judgement. If q does not crash, then there is a time after which
p will stop suspecting q, i.e., the timeout delay used by p to suspect q will
eventually be large enough because p keeps increasing it whenever it commits
a false suspicion. This is because we assume that there is a time after which
the system is synchronous.

An eventually perfect failure detector can be described by the accuracy
and completeness properties (EPFD1-2) of Module 2.5. A process p is said to
be suspected by process q whenever q triggers the event suspect(pi) and does
not trigger the event restore(pi).

Algorithm. Algorithm 2.4 implements an eventually perfect failure detector
assuming a partially synchronous system. As for Algorithm 2.3, we make use
of a specific timeout mechanism initialized with a timeout delay. The main
difference here is that the timeout delay increases whenever a process realizes
that it has falsely suspected a process that is actually correct.

Correctness. The strong completeness property is satisfied as for of Algo-
rithm 2.3. If a process crashes, it will stop sending messages, will be suspected
by every correct process and no process will ever revise its judgement about
that suspicion.

Consider now the eventual strong accuracy property. Consider the time
after which the system becomes synchronous, and the timeout delay becomes
larger than message transmission delays (plus clock drifts and local processing
periods). After this time, any message sent by a correct process to a correct
process is delivered within the timeout delay. Hence, any correct process that

37

Module:

Name: EventuallyPerfectFailureDetector (3P).

Events:

Indication: 〈 suspect, pi 〉: Used to notify that process pi is suspected to
have crashed.

Indication: 〈 restore, pi 〉: Used to notify that process pi is not suspected
anymore.

Properties:

EPFD1: Eventual strong completeness: Eventually, every process that
crashes is permanently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is sus-
pected by any correct process.

Module 2.5 Interface and properties of the eventually perfect failure detector.

was wrongly suspecting some correct process will revise its suspicion and no
correct process will ever be suspected by a correct process.

2.5.4 Eventual Leader Election

Often, one may not need to detect which processes have failed, but rather
need to agree on a process that has not failed and that may act as the
coordinator in some steps of a distributed algorithm. This process is in a
sense trusted by the other processes and elected as their leader. The leader
detector abstraction we discuss here provides such support.

Specification. The eventual leader detector abstraction, with the proper-
ties (CD1-2) stated in Module 2.6, and denoted by Ω, encapsulates a leader
election algorithm which ensures that eventually the correct processes will
elect the same correct process as their leader. Nothing precludes the possibil-
ity for leaders to change in an arbitrary manner and for an arbitrary period
of time. Once a unique leader is determined, and does not change again, we
say that the leader has stabilized. Such a stabilization is guaranteed by the
specification of Module 2.6.

Algorithms. With a crash-stop process abstraction, Ω can be obtained di-
rectly from 3P. Indeed, it is is enough to trust the process with the highest
identifier among all processes that are not suspected by 3P. Eventually, and
provided at least one process is correct, exactly one correct process will be
trusted by all correct processes.

Interestingly, the leader abstraction Ω can also be implemented with the
process fail-recovery abstraction, also using timeouts and assuming the sys-
tem to be partially synchronous. Algorithm 2.5 describes such implemen-
tation assuming that at least one process is correct. Remember that this
implies, with a process fail-recovery abstraction, that at least one process

38

Algorithm 2.4 Eventually perfect failure detector with perfect links and timeouts.

Implements:
EventuallyPerfectFailureDetector (3P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π;
suspected := ∅;

upon event 〈 TimeDelay 〉 do
∀pi∈Π :

if pi 6∈ alive then
suspected := suspected ∪ {pi};
trigger 〈 crash, pi 〉;

else
if pi ∈ suspected then

suspected := suspected \ {pi};
TimeDelay := TimeDelay + ∆;
trigger 〈 restore, pi 〉;

alive := ∅;
while (true) do
∀pi∈Π : trigger 〈 pp2pSend, pi, [Data, heartbeat] 〉;

upon event 〈 pp2pDeliver, src, [Data, heartbeat] 〉 do
alive := alive ∪ {src};

Module:

Name: EventualLeaderDetector (Ω).

Events:

Indication: 〈 trust, pi 〉: Used to notify that process pi is trusted to be
leader.

Properties:

CD1: Eventual accuracy: There is a time after which every correct process
trusts some correct process.

CD2: Eventual agreement: There is a time after which no two correct
processes trust different processes.

Module 2.6 Interface and properties of the eventual leader detector.

does never crash, or eventually recovers and never crashes again (in every ex-
ecution of the algorithm). It is pretty obvious that, without such assumption,
no algorithm can implement Ω with the process fail-recovery abstraction.

In Algorithm 2.5, every process pi keeps track of how many times it
crashed and recovered, within an epoch integer variable. This variable, rep-

39

resenting the epoch number of pi, is retrieved, incremented, and then stored
in stable storage whenever pi recovers from a crash. Process pi periodically
sends to all a heartbeat message together with its current epoch number. Be-
sides, every process pi keeps a list of potential leader processes, within the
variable possible. Initially, at every process pi, possible contains all processes.
Then any process that does not communicate in a timely manner with pi is
excluded from possible. A process pj that communicates in a timely manner
with pi, after having recovered or being slow in communicating with pi, is
simply added again to possible, i.e., considered a potential leader for pi.

Initially, the leader for all processes is the same and is process p1. After
every timeout delay, pi checks whether p1 can still be the leader. This test
is performed through a function select that returns one process among a set
of processes, or nothing if the set is empty. The function is the same at all
processes and returns the same process (identifier) for the same given set
(alive), in a deterministic manner and following the following rule: among
processes with the lowest epoch number, the process with the lowest index is
returned. This guarantees that, if a process pj is elected leader, and pj keeps
on crashing and recovering forever, pj will eventually be replaced by a correct
process. By definition, the epoch number of a correct process will eventually
stop increasing.

A process increases its timeout delay whenever it changes a leader. This
guarantees that, eventually, if leaders keep changing because of the timeout
delay being too short with respect to communication delays, the delay will
increase and become large enough for the leader to stabilize when the system
becomes synchronous.

Correctness. Consider the eventual accuracy property and assume by con-
tradiction that there is a time after which a correct process pi permanently
trusts the same faulty process, say pj . There are two cases to consider (re-
member that we consider a fail-recovery process abstraction): (1) process pj
eventually crashes and never recovers again, or (2) process pj keeps crashing
and recovering forever.

Consider case (1). Since pj crashes and does never recover again, pj will
send its heartbeat messages to pi only a finite number of times. By the no
creation and finite duplication properties of the underlying links (fair loss),
there is a time after which pi stops delivering such messages from pi. Even-
tually, pj will be excluded from the set (possible) of potential leaders for pi
and pi will elect a new leader.

Consider now case (2). Since pj keeps on crashing and recovering forever,
its epoch number will keep on increasing forever. If pk is a correct process,
then there is a time after which its epoch number will be lower than that
of pj . After this time, either (2.1) pi will stop delivering messages from pj ,
and this can happen if pj crashes and recovers so quickly that it does not
have the time to send enough messages to pi (remember that with fail loss
links, a message is guaranteed to be delivered by its destinator only it is sent

40

Algorithm 2.5 Eventually leader election with fail-recovery processes, fair loss

links and timeouts .

Implements:
EventualLeaderDetector (Ω).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 Init 〉 do
leader := p1;
possible := Π;
epoch := 0;

upon event 〈 Recovery 〉 do
retrieve(epoch);
epoch := epoch + 1;
store(epoch);

upon event 〈 TimeDelay 〉 do
if leader 6= select(possible) then

TimeDelay := TimeDelay + ∆;
leader := select(possible);
trigger 〈 trust, leader 〉;

possible := ∅;
while (true) do
∀pi∈Π : trigger 〈 flp2pSend, pi, [Data, heartbeat,epoch] 〉;

upon event 〈 flp2pDeliver, src, [Data, heartbeat,epc] 〉 do
possible := possible ∪ {(src, epc)};

infinitely often), or (2.2) pi delivers messages from pj but with higher epoch
numbers than those of pk. In both cases, pi will stop trusting pj .

Process pi will eventually trust only correct processes.
Consider now the eventual agreement property. We need to explain why

there is a time after which no two different processes are trusted by two
correct processes. Consider the subset of correct processes in a given execu-
tion S. Consider furthermore the time after which (a) the system becomes
synchronous, (b) the processes in S do never crash again, (c) their epoch
numbers stop increasing at every process, and (d) for every correct process
pi and every faulty process pj , pi stops delivering messages from pj , or pj ’s
epoch number at pi gets strictly larger than the largest epoch number of S’s
processes at pi. By the assumptions of a partially synchronous system, the
properties of the underlying fair loss channels and the algorithm, this time
will eventually be reached. After it does, every process that is trusted by a
correct process will be one of the processes in S. By the function select all
correct processes will trust the same process within this set.

41

2.6 Distributed System Models

A combination of (1) a process abstraction, (2) a link abstraction and (3)
(possibly) a failure detector abstraction defines a distributed system model.
In the following, we discuss four models that will be considered throughout
this manuscript to reason about distributed programming abstractions and
the algorithms used to implement them. We will also discuss some important
properties of abstraction specifications and algorithms that will be useful
reasoning tools for the following chapters.

2.6.1 Combining Abstractions

Clearly, we will not consider all possible combinations of basic abstractions.
On the other hand, it is interesting to discuss more than one possible com-
bination to get an insight on how certain assumptions affect the algorithm
design. We have selected four specific combinations to define four different
models studied in this manuscript. Namely, we consider the following models:

• Fail-stop. We consider the crash-stop process abstraction, where the pro-
cesses execute the deterministic algorithms assigned to them, unless they
possibly crash, in which case they do not recover. Links are considered to
be perfect. Finally,we assume the existence of a perfect failure detector
(Module 2.4). As the reader will have the opportunity to observe, when
comparing algorithms in this model with algorithms in the three other
models discussed below, making these assumptions substantially simplify
the design of distributed algorithms.
• Fail-silent. We also consider here the crash-stop process abstraction to-

gether with perfect links. Nevertheless, we do not assume here a perfect
failure detector. Instead, we might rely on the eventually perfect failure
detector (3P) of Module 2.5 or on the eventual leader detector (Ω) of
Module 2.6.
• fail-recovery. We consider here the fail-recovery process abstraction, ac-

cording to which processes may crash and later recover and still participate
in the algorithm. Algorithms devised with this basic abstraction in mind
have to deal with the management of stable storage and with the difficul-
ties of dealing with amnesia, i.e., the fact that a process might forget what
it might have done prior to crashing. Links are assumed to be stubborn
and we might rely on the eventual leader detector (Ω) of Module 2.6.
• Randomized. We will consider here a specific particularity in the process

abstraction: algorithms might not be deterministic. That is, the processes
might use a random oracle to choose among several steps to execute. Typ-
ically, the corresponding algorithms implement a given abstraction with
some (hopefully high) probability.

It is important to notice that some of the abstractions we study cannot
be implemented in all models. For example, the coordination abstractions

42

we consider in Chapter 7 do not have fail-silent solutions and it is not clear
either how to devise meaningful randomized solutions to such abstractions.
For other abstractions, such solutions might exist but devising them is still an
active area of research. This is for instance the case for randomized solutions
to the shared memory abstractions we consider in Chapter 4.

2.6.2 Performance

When we present an algorithm that implements a given abstraction, we an-
alyze its cost mainly using two metrics: (1) the number of messages required
to terminate an operation of the abstraction, and (2) the number of com-
munication steps required to terminate such an operation. When evaluating
the performance of distributed algorithms in a fail-recovery model, besides
the number of communication steps and the number of messages, we also
consider (3) the number of accesses to stable storage (also called logs).

In general, we count the messages, communication steps, and disk accesses
in specific executions of the algorithm, specially executions when no failures
occur. Such executions are more likely to happen in practice and are those
for which the algorithms are optimized. It does make sense indeed to plan
for the worst, by providing means in the algorithms to tolerate failures, and
hope for the best, by optimizing the algorithm for the case where failures
do not occur. Algorithms that have their performance go progressively down
when the number of failures increass are sometimes called gracefully degrading
algorithms.

Precise performance studies help select the most suitable algorithm for a
given abstraction in a specific environment and conduct real-time analysis.
Consider for instance an algorithm that implements the abstraction of perfect
communication links and hence ensures that every message sent by a correct
process to a correct process is eventually delivered by the latter process. It
is important to notice here what such a property states in terms of timing
guarantees: for every execution of the algorithm, and every message sent in
that execution, there is a time delay within which the message is eventu-
ally delivered. The time delay is however defined a posteriori. In practice
one would require that messages be delivered within some time delay de-
fined a priori, for every execution and possibly every message. To determine
whether a given algorithm provides this guarantee in a given environment,
a careful performance study needs to be conducted on the algorithm, taking
into account various parameters of the environment, such as the operating
system, the scheduler, and the network. Such studies are out of the scope of
this manuscript. We indeed present algorithms that are applicable to a wide
range of distributed systems, where bounded loads cannot be enforced, and
where infrastructures such as real-time are not strictly required.

43

Exercises

Exercise 2.1 Explain when (a) a fail-recovery model, and (b) an asyn-
chronous model where any process can commit omission failures, are similar?

Exercise 2.2 Does the following statement satisfy the synchronous process-
ing assumption: on my server, no request ever takes more than one week to
be processed?

Exercise 2.3 Can we implemenz a perfect failure detector if we cannot
bound the number of omission failures? What if this number is bounded but
unknown? What if processes that can commit omission failures commit a
limited and known number of such failures and then crash?

Exercise 2.4 In a fail-stop model, can we determine a priori a time period,
such that, whenever a process crashes, all correct processes suspect this process
to have crashed after this period?

Exercise 2.5 In a fail-stop model, which of the following properties are
safety properties:

1. eventually, every process that crashes is eventually detected;
2. no process is detected before it crashes;
3. no two processes decide differently;
4. no two correct processes decide differently;
5. every correct process decides before X time units;
6. if some correct process decides, then every correct process decides.

Exercise 2.6 Consider any algorithm A that implements a distributed pro-
gramming abstraction M using a failure detector D that is assumed to be
eventually perfect. Can A violate the safety property of M if failure detector
D is not eventually perfect, e.g., D permanently outputs the empty set?

Exercise 2.7 Specify a distributed programming abstraction M and an al-
gorithm A implementing M using a failure detector D that is supposed to
satisfy a set of properties, such that the liveness of M is violated if D does
not satisfy its properties.

44

Corrections

Solution 2.1 When processes crash, they lose the content of their volatile
memory and they commit omissions. If we assume (1) that processes do have
stable storage and store every update on their state within the stable storage,
and (2) that they are not aware they have crashed and recovered, then the
two models are similar. 2

Solution 2.2 Yes. This is because the time it takes for the process (i.e. the
server) to process a request is bounded and known: it is one week. 2

Solution 2.3 It is impossible to implement a perfect failure detector if the
number of omissions failures is unknown. Indeed, to guarantee the strong
completeness property of the failure detector, a process p must detect the
crash of another one q after some timeout delay. No matter how this delay
is chosen, it can however exceed the tranmission delay times the number of
omissions that q commits. This would lead to violate the strong accuracy
property of the failure detector. If the number of possible omissions is known
in a synchronous system, we can use it to calibrate the timeout delay of the
processes to accurately detect failures. If the delay exceeds the maximum
time during which a process can commit omission failures without having
actually crashed, it can safely detect the process to have crashed. 2

Solution 2.4 No. The perfect failure detector only ensures that processes
that crash are eventually detected: there is no bound on the time it takes for
these crashes to be detected. This points out a fundamental difference be-
tween algorithms assuming a synchronous system and algorithms assuming
a perfect failure detector (fail-stop model). In a precise sense, a synchronous
model is strictly stronger. 2

Solution 2.5

1. Eventually, every process that crashes is eventually detected. This is a
liveness property; we can never exhibit a time t in some execution and
state that the property is violated. There is always the hope that even-
tually the failure detector detects the crashes.

2. No process is detected before it crashes. This is a safety property. If a
process is detected at time t before it has crashed, then the property is
violated at time t.

3. No two processes decide differently. This is also a safety property, because
it can be violated at some time t and never be satisfied again.

4. No two correct processes decide differently. If we do not bound the num-
ber of processes that can crash, then the property turns out to be a
liveness property. Indeed, even if we consider some time t at which two
processes have decided differently, then there is always some hope that,

45

eventually, some of the processes might crash and validate the property.
This remains actually true even if we assume that at least one process is
correct.
Assume now that we bound the number of failures, say by F < N − 1.
The property is not anymore a liveness property. Indeed, if we consider a
partial execution and a time t at which N−2 processes have crashed and
the two remaining processes, decide differently, then there is not way we
can extend this execution and validate the property. But is the property
a safety property? This would mean that in any execution where the
property does not hold, there is a partial execution of it, such that no
matter how we extend it, the property would still not hold. Again, this
is not true. To see why, Consider the execution where less than F − 2
processes have crashed and two correct processes decide differently. No
matter what partial execution we consider, we can extend it by crashing
one of the two processes that have decided differently and validate the
property. To conclude, in the case where F < N − 1, the property is the
union of both a liveness and a safety property.

5. Every correct process decides before X time units. This is a safety prop-
erty: it can be violated at some t, where all correct processes have ex-
ecuted X of their own steps. If violated, at that time, there is no hope
that it will be satisfied again.

6. If some correct process decides, then every correct process decides. This
is a liveness property: there is always the hope that the property is sat-
isfied. It is interesting to note that the property can actually be satisfied
by having the processes not doing anything. Hence, the intuition that a
safety property is one that is satisfied by doing nothing might be mis-
leading.

2

Solution 2.6 No. Assume by contradiction that A violates the safety prop-
erty of M if D does not satisfy its properties. Because of the very nature of
a safety property, there is a time t and an execution R of the system such
that the property is violated at t in R. Assume now that the properties of
the eventually perfect failure detector hold after t in a run R′ that is similar
to R up to time t. A would violate the safety property of M in R′, even if
the failure detector is eventually perfect. 2

Solution 2.7 An example of such abstraction is simply the eventually per-
fect failure detector. 2

46

Historical Notes

• In 1978, the notions of causality and logical time were introduced in proba-
bly the most influential paper in the area of distributed computing: (Lam-
port 1978).
• In 1982, In (Lamport, Shostak, and Pease 1982), agreement problems were

considered in an arbitrary fault-model, also called the malicious or the
Byzantine model.
• In 1984, algorithms which assume that processes can only fail by crash-

ing and every process has accurate information about which process
has crashed have been called fail-stop algorithms (Schneider, Gries, and
Schlichting 1984).
• In 1985, it was proved that, even a very simple form of agreement, namely

consensus, is impossible to solve with a deterministic algorithm in an asyn-
chronous system even if only one process fails, and it can only do so by
crashing (Fischer, Lynch, and Paterson 1985).
• In 1987, the notions of safety and liveness were considered and it was

shown that any property of a distributed system execution can be viewed
as a composition of a liveness and a safety property (?; Schneider 1987).
• In 1988, intermediate models between the synchronous and the asyn-

chronous model were introduced to circumvent the consensus impossibil-
ity (Dwork, Lynch, and Stockmeyer 1988).
• In 1989, the use of synchrony assumptions to build leasing mechanisms was

explored (Gray and Cheriton 1989).
• In 1996 (Chandra and Toueg 1996; Chandra, Hadzilacos, and Toueg 1996),

it was observed that, when solving consensus, timing assumptions where
mainly used to detect process crashes. This observation led to the defi-
nition of an abstract notion of failure detector that encapsulates timing
assumptions. The very fact that consensus can be solved in eventually syn-
chronous systems (Dwork, Lynch, and Stockmeyer 1988) is translated, in
the parlance of (Chandra, Hadzilacos, and Toueg 1996), by saying that
consensus can be solved even with unreliable failure detectors.
• In 2000, the notion of unreliable failure detector was precisely defined (Guer-

raoui 2000). Algorithms that rely on such failure detectors have been called
indulgent algorithms in (Guerraoui 2000; Dutta and Guerraoui 2002).

47

3. Reliable Broadcast

This chapter covers the specifications of a family of agreement abstractions:
broadcast communication abstractions. These are used to disseminate infor-
mation among a set of processes. Roughly speaking, these abstractions cap-
ture a weak form of coordination coordination among processes, as processes
must agree on the set of messages they deliver. We study here different vari-
ants of such abstractions. These differ according to the level of reliability
they guarantee. For instance, best-effort broadcast guarantees that all correct
processes deliver the same set of messages if the senders are correct. Stronger
forms of reliable broadcast guarantee this agreement even if the senders crash
while broadcasting their messages.

We will consider six related abstractions: Best-Effort Broadcast, Regular
Reliable Broadcast, Uniform Reliable Broadcast, Logged Best-Effort Broad-
cast, Logged Uniform Broadcast and Probabilistic Broadcast. For each of
these abstractions, we will provide one or more algorithms implementing it,
in order to cover the different models addressed in this book (fail-stop, fail-
silent, fail-recovery and randomized).

3.1 Motivation

3.1.1 Client-Server Computing

In traditional distributed applications, interactions are often established be-
tween two processes. Probably the most representative of this sort of inter-
action is the now classic client-server scheme. According to this model, a
server process exports an interface to several clients. Clients use the inter-
face by sending a request to the server and by later collecting a reply. Such
interaction is supported by point-to-point communication protocols. It is ex-
tremely useful for the application if such a protocol is reliable. Reliability
in this context usually means that, under some assumptions (which are by
the way often not completely understood by most system designers), mes-
sages exchanged between the two processes are not lost or duplicated, and
are delivered in the order in which they were sent. Typical implementations
of this abstraction are reliable transport protocols such as TCP. By using a
reliable point-to-point communication protocol, the application is free from

dealing explicitly with issues such as acknowledgments, timeouts, message
re-transmissions, flow-control and a number of other issues that become en-
capsulated by the protocol interface. The programmer can focus on the actual
functionality of the application.

3.1.2 Multi-participant Systems

As distributed applications become bigger and more complex, interactions
are no longer limited to bilateral relationships. There are many cases where
more than two processes need to operate in a coordinated manner. Consider,
for instance, a multi-user virtual environment where several users interact in
a virtual space. These users may be located at different physical places, and
they can either directly interact by exchanging multimedia information, or
indirectly by modifying the environment.

It is convenient to rely here on broadcast abstractions. These allow a pro-
cess to send a message within a group of processes, and make sure that the
processes agree on the messages they deliver. A naive transposition of the
reliability requirement from point-to-point protocols would require that no
message sent to the group would be lost or duplicated, i.e., the processes agree
to deliver every message broadcast to them. However, the definition of agree-
ment for a broadcast primitive is not a simple task. The existence of multiple
senders and multiple recipients in a group introduces degrees of freedom that
do not exist in point-to-point communication. Consider for instance the case
where the sender of a message fails by crashing. It may happen that some
recipients deliver the last message while others do not. This may lead to an
inconsistent view of the system state by different group members. Roughly
speaking, broadcast abstractions provide reliability guarantees ranging from
best-effort, that only ensures delivery among all correct processes if the sender
does not fail, through reliable that, in addition, ensures all-or-nothing deliv-
ery semantics even if the sender fails, to totally ordered that furthermore
ensures that the delivery of messages follow the same global order, and ter-
minating which ensures that the processes either deliver a message or are
eventually aware that they will not never deliver the message. In this chap-
ter, we will focus on best-effort and reliable broadcast abstractions. Totally
ordered and terminating forms of broadcast will be considered later in this
manuscript.

3.2 Best-Effort Broadcast

A broadcast abstraction enables a process to send a message, in a one-shot
operation, to all the processes in a system, including itself. We give here the
specification and algorithm for a broadcast communication primitive with a
weak form of reliability, called best-effort broadcast.

50

Module:

Name: BestEffortBroadcast (beb).

Events:

Request: 〈 bebBroadcast, m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 bebDeliver, src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

BEB1: Best-effort validity: If pi and pj are correct, then every message
broadcast by pi is eventually delivered by pj .

BEB2: No duplication: No message is delivered more than once.

BEB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.1 Interface and properties of best-effort broadcast.

3.2.1 Specification

With best-effort broadcast, the burden of ensuring reliability is put only on
the sender. Therefore, the remaining processes do not have to be concerned
with enforcing the reliability of received messages. On the other hand, no
guarantees are offered in case the sender fails. More precisely, best-effort
broadcast is characterized by the properties BEB1-3 depicted in Module 3.1.
BEB1 is a liveness property whereas BEB2 and BEB3 are safety proper-
ties. Note that broadcast messages are implicitly addressed to all processes.
Remember also that messages are uniquely identified.

3.2.2 Fail-Stop/ Fail-Silent Algorithm: Basic Multicast

We first provide an algorithm that implements best effort multicast using
perfect links. This algorithm works both for fail-stop and fail-silent assump-
tions. To provide best effort broadcast on top of perfect links is quite simple.
It suffices to send a copy of the message to every process in the system, as
depicted in Algorithm 3.1 and illustrated by Figure 3.1. As long as the sender
of the message does not crash, the properties of perfect links ensure that all
correct processes will deliver the message.

Correctness. The properties are trivially derived from the properties of per-
fect point-to-point links. No duplication and no creation are safety properties
that are derived from PL2 and PL3. Validity is a liveness property that is
derived from PL1 and from the fact that the sender sends the message to
every other process in the system.

Performance. The algorithm requires a single communication step and ex-
changes N messages.

51

Algorithm 3.1 Basic Multicast.

Implements:
BestEffortBroadcast (beb).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 bebBroadcast, m 〉 do
forall pi ∈ Π do // Π is the set of all system processes

trigger 〈 pp2pSend, pi,m 〉;

upon event 〈 pp2pDeliver, pi,m 〉 do
trigger 〈 bebDeliver, pi,m 〉;

p1

p2

p3

p4

bebBroadcast

bebDeliver

bebDeliver

bebDeliver

bebDeliver

Figure 3.1. Sample execution of Basic Multicast algorithm.

3.3 Regular Reliable Broadcast

Best-effort broadcast ensures the delivery of messages as long as the sender
does not fail. If the sender fails, the processes might disagree on whether
or not to deliver the message. Actually, even if the process sends a message
to all processes before crashing, the delivery is not ensured because perfect
links do not enforce delivery when the sender fails. We now consider the case
where agreement is ensured even if the sender fails. We do so by introducing
a broadcast abstraction with a stronger form of reliability, called (regular)
reliable broadcast.

3.3.1 Specification

Intuitively, the semantics of a reliable broadcast algorithm ensure that correct
processes agree on the set of messages they deliver, even when the senders
of these messages crash during the transmission. It should be noted that a
sender may crash before being able to transmit the message, case in which no
process will deliver it. The specification is given in Module 3.2. This extends
the specification of Module 3.1 with a new liveness property: agreement.

52

Module:

Name: (regular)ReliableBroadcast (rb).

Events:

Request: 〈 rbBroadcast, m 〉: Used to broadcast message m.

Indication: 〈 rbDeliver, src,m 〉: Used to deliver message m broadcast by
process src.

Properties:

RB1: Validity: If a correct process pi broadcasts a message m, then pi
eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

RB4: Agreement: If a message m is delivered by some correct process pi,
then m is eventually delivered by every correct process pj .

Module 3.2 Interface and properties of reliable broadcast.

3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast

To implement regular reliable broadcast, we make use of the best-effort ab-
straction described in the previous section as well as the perfect failure de-
tector module introduced earlier in the manuscript. This is depicted in Algo-
rithm 3.2.

To rbBroadcast a message, a process uses the best-effort broadcast prim-
itive to disseminate the message to all, i.e., it bebBroadcasts the message.
Note that this implementation adds some protocol headers to the messages
exchanged. In particular, the protocol adds a message descriptor (“Data”)
and the original source of the message to the protocol header. This is de-
noted by [Data, sm, m] in the algorithm. A process that gets the message
(i.e., bebDelivers the message) delivers it immediately (i.e., rbDelivers it). If
the sender does not crash, then the message will be delivered by all correct
processes. The problem is that the sender might crash. In this case, the pro-
cess that delivers the message from some other process can detect that crash
and relays the message to all. It is important to notice here that this is a
language abuse: in fact, the process relays a copy of the message (and not
the message itself).

Our algorithm is said to be lazy in the sense that it only retransmits a
message if the original sender has been detected to have crashed.

Correctness. The no creation (resp. validity) property of our reliable broad-
cast algorithm follows from no creation (resp. validity) property of the under-
lying best effort broadcast primitive. The no duplication property of reliable
broadcast follows from our use of a variable delivered that keeps track of the
messages that have been rbDelivered at every process. Agreement follows here

53

Algorithm 3.2 Lazy reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
delivered := ∅;
correct := Π;
∀pi∈Π : from[pi] := ∅;

upon event 〈 rbBroadcast, m 〉 do
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 rbDeliver, sm,m 〉;
from[pi] := from[pi] ∪ {[sm, m]}
if pi 6∈ correct then

trigger 〈 bebBroadcast, [Data, sm, m] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \ {pi}
forall [sm,m] ∈ from[pi]: do

trigger 〈 bebBroadcast, [Data, sm, m] 〉;

from the validity property of the underlying best effort broadcast primitive,
from the fact that every process relays every message it rbDelivers when it
suspects the sender, and from the use of a perfect failure detector.

Performance. If the initial sender does not crash, to rbDeliver a message
to all processes, the algorithm requires a single communication step and N
messages. Otherwise, at the worst case, if the processes crash in sequence, N
steps and N2 messages are required to terminate the algorithm.

3.3.3 Fail-Silent Algorithm: Eager reliable Broadcast

In our lazy reliable broadcast algorithm (Algorithm 3.2), we make use of the
completeness property of the failure detector to ensure the broadcast agree-
ment. If the failure detector does not ensure completeness, then the processes
might not be relaying messages that they should be relaying (e.g., messages
broadcast by processes that crashed), and hence might violate agreement. If
the accuracy property of the failure detector is not satisfied, then the pro-
cesses might be relaying messages when it is not really necessary. This wastes
resources but does not impact correctness.

54

Algorithm 3.3 Eager reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 rbBroadcast, m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver, self, m 〉;
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
if m 6∈ delivered do

delivered := delivered ∪ {m}
trigger 〈 rbDeliver, sm,m 〉;
trigger 〈 bebBroadcast, [Data, sm, m] 〉;

In fact, we can circumvent the need for a failure detector (completeness)
property as well by adopting a eager scheme: every process that gets a message
relays it immediately. That is, we consider the worst case where the sender
process might have crashed and we relay every message. This relaying phase
is exactly what guarantees the agreement property of reliable broadcast.

Algorithm 3.3 is in this sense eager but asynchronous: it makes use only of
the best-effort primitive described in Section 3.2. In Figure 3.2a we illustrate
how the algorithm ensures agreement event if the sender crashes: process p1

crashes and its message is not bebDelivered by p3 and p4. However, since
p2 retransmits the message (bebBroadcasts it), the remaining processes also
bebDeliver it and then rbDeliver it. In our first algorithm (the lazy one), p2

will be relaying the message only after it has detected the crash of p1.

Correctness. All properties, except agreement, are ensured as in the lazy re-
liable broadcast algorithm. The agreement property follows from the validity
property of the underlying best effort broadcast primitive and from the fact
that every process relays every message it rbDelivers.

Performance. In the best case, to rbDeliver a message to all processes, the
algorithm requires a single communication step and N 2 messages. In the
worst case, if processes crash in sequence, N steps and N 2 messages are
required to terminate the algorithm.

55

Module:

Name: UniformReliableBroadcast (urb).

Events:

〈 urbBroadcast, m 〉, 〈 urbDeliver, src,m 〉, with the same meaning and
interface as in regular reliable broadcast.

Properties:

RB1-RB3: Same as in regular reliable broadcast.

URB4: Uniform Agreement: If a message m is delivered by some process
pi (whether correct or faulty), then m is also eventually delivered by every
other correct process pj .

Module 3.3 Interface and properties of uniform reliable broadcast.

3.4 Uniform Reliable Broadcast

With regular reliable broadcast, the semantics just require correct processes
to deliver the same information, regardless of what messages have been deliv-
ered by faulty processes. The uniform definition is stronger in the sense that
it guarantees that the set of messages delivered by faulty processes is always
a sub-set of the messages delivered by correct processes.

3.4.1 Specification

Uniform reliable broadcast differs from reliable broadcast by the formulation
of its agreement property. The specification is given in Module 3.3.

Uniformity is typically important if processes might interact with the
external world, e.g., print something on a screen or trigger the delivery of
money through an ATM. In this case, the fact that a process has delivered
a message is important, even if the process has crashed afterwards. This is
because the process could have communicated with the external world after
having delivered the message. The processes that remain alive in the system
should also be aware of that message having been delivered.

Figure 3.2b shows why our reliable broadcast algorithm does not ensure
uniformity. Both process p1 and p2 rbDeliver the message as soon as they
bebDeliver it, but crash before relaying the message to the remaining pro-
cesses. Still, processes p3 and p4 are consistent among themselves (none of
them have rbDelivered the message).

3.4.2 Fail-Stop Algorithm: All Ack URB

Basically, our lazy reliable broadcast algorithm does not ensure uniform
agreement because a process may rbDeliver a message and then crash: even
if it has relayed its message to all (through a bebBroadcast primitive), the
message might not reach any of the remaining processes. Note that even if we

56

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

rbDeliver

rbDeliver

(a)

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

(b)

Figure 3.2. Sample executions of eager reliable broadcast.

considered the same algorithm and replaced the best-effort broadcast with
a reliable broadcast, we would still not implement a uniform broadcast ab-
straction. This is because a process delivers a message before relaying it to
all.

Algorithm 3.4 implements the uniform version of reliable broadcast. Basi-
cally, in this algorithm, a process only delivers a message when it knows that
the message has been seen by all correct processes. All processes relay the
message once they have seen it. Each process keeps a record of which pro-
cesses have already retransmitted a given message. When all correct processes
retransmitted the message, all correct processes are guaranteed to deliver the
message, as illustrated in Figure 3.3.

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

rbDeliver

Figure 3.3. Sample execution of uniform reliable broadcast.

Correctness. As before, except for uniform agreement, all properties are triv-
ially derived from the properties of the best-effort broadcast. Uniform agree-
ment is ensured by having each process wait to urbDeliver a message until
all correct processes have bebDelivered the message. We rely here on the use
of a perfect failure detector.

57

Algorithm 3.4 All ack uniform reliable broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

function canDeliver(m) returns boolean is
return (correct ⊂ ackm) ∧ (m 6∈ delivered);

upon event 〈 Init 〉 do
delivered := forward := ∅;
correct := Π;
ackm := ∅,∀m;

upon event 〈 urbBroadcast, m 〉 do
forward := forward ∪ {m}
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
ackm := ackm ∪ {pi}
if m 6∈ forward do

forward := forward ∪ {m};
trigger 〈 bebBroadcast, [Data, sm, m] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon (canDeliver(m)) do
delivered := delivered ∪ {m};
trigger 〈 urbDeliver, sm,m 〉;

Performance. In the best case the algorithm requires two communication
steps to deliver the message to all processes. In the worst case, if processes
crash in sequence, N + 1 steps are required to terminate the algorithm. The
algorithm exchanges N 2 messages in each step. Therefore, uniform reliable
broadcast requires one more step to deliver the messages than its regular
counterpart.

3.4.3 Fail-Silent Algorithm: Majority Ack URB

The uniform algorithm of Section 3.4.2 (i.e., Algorithm 3.4) is not correct if
the failure detector is not perfect. Uniform agreement would be violated if
accuracy is not satisfied and validity would be violated if completeness is not
satisfied.

We give in the following a uniform reliable broadcast algorithm that does
not rely on a perfect failure detector but assumes a majority of correct pro-

58

Algorithm 3.5 Majority ack uniform reliable broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).

function canDeliver(m) returns boolean is
return (|ackm| > N/2) ∧ (m 6∈ delivered);

// Except for the function above, same as Algorithm 3.4.

cesses. In the example above of Figure 3.2, this means that at most one
process can crash in any given execution. Algorithm 3.5 is similar to the pre-
vious uniform reliable broadcast algorithm except that processes do not wait
until all correct processes have seen a message (bebDelivered a copy of the
message), but until a majority has seen the message.

Correctness. The no-creation property follows from the no-creation property
of best-effort broadcast. The no-duplication property follows from the use
of the variable delivered which prevents processes from delivering twice the
same message. To discuss the agreement and validity properties, we first ar-
gue that: if a correct process bebDelivers any message m, then pi urbDelivers
m. Indeed, if pi is correct, and given that it bebBroadcasts m, every correct
process bebDelivers and hence bebBroadcasts m. As we assume a correct
majority, then pi bebDelivers m from a majority of processes and urbDeliv-
ers m. Consider now the validity property: if a process pi urbBroadcasts a
message m, then pi bebBroadcasts and hence bebDelivers m: by the argu-
ment above, it eventually urbDelivers m. Consider now agreement and let
pj be some process that urbDelivers m. To do so, pj must have bebDeliv-
ered m from a majority of correct processes. By the assumption of a correct
majority, at least one correct must have bebBroadcast m. Therefore, all cor-
rect processes have bebDelivered m, which implies that all correct processes
eventually urbDeliver m.

Performance. Similar to the algorithm of Section 3.2.

3.5 Logged Best-Effort Broadcast

We now present an abstraction that captures the notion of reliable broad-
cast in the settings where processes can crash and recover. We present the
specification and an algorithm to implement it.

Specification. We have called this abstraction Logged Best-Effort Multi-
cast, to emphasize that fact that it relies on the fact that “delivery” of mes-
sages is performed by logging messages in a local log. The specification is

59

Module:

Name: Logged Best Effort Broadcast (log-beb).

Events:

Request: 〈 log-bebBroadcast, m 〉: Used to broadcast message m to all
processes.

Indication: 〈 log-bebDeliver, delivered 〉: Used to notify the upper level
of potential updates to the delivered log.

Properties:

LBEB1: Best-effort validity: If pj is correct and pi does not crash, then
every message broadcast by pi is eventually logged by pj .

LBEB2: No duplication: No message is logged more than once.

LBEB3: No creation: If a message m is logged by some process pj , then
m was previously broadcast by some process pi.

Module 3.4 Interface and properties of logged best-effort broadcast.

given in Module 3.4. The key difference to the Best-Effort abstraction de-
fined for the crash no-recovery setting is in the interface between modules.
Instead of simply triggering an event to “deliver” a message, this abstrac-
tion relies of storing the message on a local log, which can later be read by
the layer above (that layer is notified about changes in the log by delivery
events). Note that the validity, no duplication and no creation properties are
redefined in term of log operations.

Fail-Recovery Algorithm: Basic Multicast with Log. We now present
an algorithm that implements logged best-effort broadcast. Algorithm 3.7 is
called basic multicast with log and has many similarities, in its structure, with
Algorithm 3.1. The main differences are as follows. The algorithm maintains
a log of all delivered messages. When a new message is received for the first
time, it is appended to the log and the upper layer is notified that the log has
changed. If the process crashes and later recovers, the upper layer is notified
(as it may have missed some notification triggered just before the crash).

Correctness. The properties are derived from the properties of stubborn
links. No creation is derived from PL2 and PL3. Validity is a liveness prop-
erty that is derived from PL1 and from the fact that the sender sends the
message to every other process in the system. No duplication is derived from
the fact that a process logs all messages that it delivers and that this log is
checked before accepting a new message.

Performance. The algorithm requires a single communication step and ex-
changes at least N messages (note that stubborn channels may retransmit
the same message several times). Additionally, the algorithms requires a log
operation for each delivered message.

60

Algorithm 3.6 Basic Multicast with Log.

Implements:
Logged Best Effort Broadcast (log-beb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;
store (delivered);

upon event 〈 Recovery 〉 do
retrieve (delivered)
trigger 〈 log-bebDeliver, delivered 〉;

upon event 〈 log-bebBroadcast, m 〉 do
forall pi ∈ Π do // Π is the set of all system processes

trigger 〈 sp2pSend, pi,m 〉;

upon event 〈 sp2pDeliver, pi,m 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m};
store (delivered);
trigger 〈 log-bebDeliver, delivered 〉;

3.6 Logged Uniform Broadcast

In a similar manner to the crash no-recovery case, it is possible to define
both regular and uniform variants of reliable broadcast for the fail-recovery
setting. We now describe the uniform variant.

3.6.1 Specification

We define in Module 3.5 a logged variant of the uniform reliable broadcast
for the fail-recovery model. In this variant, if a process logs a message (either
correct or not), all correct processes eventually log that message. Note that,
naturally, the interface is similar to that of logged reliable broadcast.

3.6.2 Fail-Recovery Algorithm: Uniform Multicast with Log

The Algorithm 3.7 implements logged uniform broadcast. The algorithm uses
three variables: todeliver, delivered, and ackm . The todeliver set is used to
collect all messages that have been broadcast. The delivered set collects all
messages that have been delivered. These two sets are maintained in stable
storage and the last one is exposed to the upper layer: in fact, in this case
to “deliver” a message consists in logging a message in the delivered set.

61

Module:

Name: Logged Uniform Reliable Broadcast (log-urb).

Events:

〈 log-urbBroadcast, m 〉, 〈 log-urbDeliver, delivered 〉 with the same mean-
ing and interface as in logged best-effort broadcast.

Properties:

LURB1: Validity: If pi and pj are correct, then every message broadcast
by pi is eventually logged by pj .

LURB2: No duplication: No message is logged more than once.

LURB3: No creation: If a message m is logged by some process pj , then
m was previously broadcast by some process pi.

LURB4: Strongly Uniform Agreement: If a message m is logged by some
process, then m is eventually logged by every correct process.

Module 3.5 Interface and properties of logged uniform reliable broadcast.

Finally ackm sets collect acknowledgements fro message m (logically, there is
a separate set for each message): a process only acknowledges the reception
of a message after logging the message in stable storage. This ensures that
the message will be preserved across crashes and recoveries. The ack set is
not logged, it can be reconstructed upon recovery.

The algorithm exchanges two types of messages: data messages and ac-
knowledgements. The logged best-effort broadcast of Section 3.5 is used to
disseminate both types of messages. When a message is received from the first
time it is logged in the todeliver set. Messages in this set are forwarded to
all other processes to ensure delivery in the case the sender fails (the task of
forwarding the messages is re-initiated upon recovery). Message are only ap-
pended to the delivered log when they have been acknowledged by a majority
of correct processes.

3.7 Probabilistic Broadcast

This section considers probabilistic broadcast algorithms, i.e., algorithms that
do not provide deterministic provision of broadcast guarantees but, instead,
only make statistical claims about such guarantees, for instance, by ensuring
that the guarantees are provided successfully 99% of the times.

Of course, this approach can only be applied to applications that do not
require full reliability. On the other hand, as it will be seen, it is often possible
to build probabilistic systems with good scalability properties.

62

Algorithm 3.7 Uniform Multicast with Log.

Implements:
Logged Uniform Reliable Broadcast (log-urb).

Uses:
StubbornPointToPointLink (sp2p).
Logged Best-Effort Broadcast (log-beb).

upon event 〈 Init 〉 do
ackm := ∅, ∀m;
todeliver := ∅; delivered := ∅;
store (todeliver, delivered);

upon event 〈 Recovery 〉 do
ackm := ∅, ∀m;
retrieve (todeliver, delivered);
trigger 〈 log-urbDeliver, delivered 〉;
forall m ∈ todeliver do

trigger 〈 log-bebBroadcast, [Data, m] 〉;

upon event 〈 log-urbBroadcast, m 〉 do
todeliver := todeliver ∪ {m};
trigger 〈 log-bebBroadcast, [Data, m] 〉;

upon event 〈 log-bebDeliver, delset 〉 do
forall packet ∈ delset do

// packet = [Data, m] ∨ packet = [Ack, j,m]
if m 6∈ todeliver then

todeliver := todeliver ∪ {m};
trigger 〈 log-bebBroadcast, [Data, m] 〉;

if [Ack, self, m] 6∈ ackm do
ackm := ackm ∪ { [Ack, self, m] };
trigger 〈 log-bebBroadcast, [Ack, self, m] 〉;

if packet = [Ack, j,m] ∧ packet 6∈ ackm do
ackm := ackm ∪ { [Ack, j,m] };
if | ackm | > N/2 then

delivered := delivered ∪ {m};
store (todeliver, delivered);
trigger 〈 log-urbDeliver, delivered 〉;

3.7.1 Limitation of Reliable Broadcast

As we have seen throughout this chapter, in order to ensure the reliability
of broadcast in the presence of faulty processes (and/or links with omission
failures), one needs to collect some form of acknowledgments. However, given
limited bandwidth, memory and processor resources, there will always be a
limit to the number of acknowledgments that each process is able to collect
and compute in due time. If the group of processes becomes very large (say
thousand or even millions of members in the group), a process collecting

63

(a) (b)

Figure 3.4. Ack implosion and ack tree.

acknowledgments becomes overwhelmed by that task. This phenomena is
known as the ack implosion problem (see Fig 3.4a).

There are several ways of mitigating the ack implosion problem. One way
is to use some form of hierarchical scheme to collect acknowledgments, for
instance, arranging the processes in a binary tree, as illustrated in Fig 3.4b.
Hierarchies can reduce the load of each process but increase the latency in
the task of collecting acknowledgments. Additionally, hierarchies need to be
reconfigured when faults occur (which may not be a trivial task). Further-
more, even with this sort of hierarchies, the obligation to receive, directly or
indirectly, an acknowledgment from every other process remains a fundamen-
tal scalability problem of reliable broadcast. In the next section we discuss
how probabilistic approaches can circumvent this limitation.

3.7.2 Epidemic Dissemination

Nature gives us several examples of how a probabilistic approach can achieve
a fast and efficient broadcast primitive. Consider how epidemics are spread
among a population: initially, a single individual is infected; this individual
in turn will infect some other individuals; after some period, the whole pop-
ulation is infected. Rumor spreading is based exactly on the same sort of
mechanism.

A number of broadcast algorithms have been designed based on this prin-
ciple and, not surprisingly, these are often called epidemic or rumor monger-
ing algorithms.

Before giving more details on these algorithms, we first define the abstrac-
tion that these algorithms implement. Obviously, this abstraction is not the
reliable broadcast that we have introduced earlier: instead, it corresponds to
a probabilistic variant.

3.7.3 Specification

Probabilistic broadcast is characterized by the properties PB1-3 depicted in
Module 3.6.

64

Module:

Name: Probabilistic Broadcast (pb).

Events:

Request: 〈 pbBroadcast, m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 pbDeliver, src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

PB1: Probabilistic validity: There is a given probability such that for any
pi and pj that are correct, every message broadcast by pi is eventually
delivered by pj with this probability.

PB2: No duplication: No message is delivered more than once.

PB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.6 Interface and properties of probabilistic broadcast.

Note that it is assumed that broadcast messages are implicitly addressed
to all processes in the system, i.e., the goal of the sender is to have its message
delivered at all processes.

The reader may find similarities between the specification of probabilistic
broadcast and the specification of best-effort broadcast presented in Sec-
tion 3.2. In fact, both are probabilistic approaches. However, in best-effort
broadcast the probability of delivery depends directly on the reliability of the
processes: it is in this sense hidden under the probability of process failures.
In probabilistic broadcast, it becomes a first class citizen of the specification.
The corresponding algorithms are devised with inherent redundancy to mask
process faults and ensure delivery with the desired probability.

3.7.4 Algorithm: Eager Probabilistic Broadcast

Algorithm 3.8 implements probabilistic broadcast. The sender selects k pro-
cesses at random and sends them the message. In turn, each of these pro-
cesses selects another k processes at random and forwards the message to
those processes. Note that in this algorithm, some or all of these processes
may be exactly the same processes already selected by the initial sender.

A step consisting of receiving and gossiping a message is called a round.
The algorithm performs a maximum number of rounds r for each message.

The reader should observe here that k, also called the fanout, is a funda-
mental parameter of the algorithm. Its choice directly impacts the probability
of reliable message delivery guaranteed by the algorithm. A higher value of
k will not only increase the probability of having all the population infected
but also will decrease the number of rounds required to have all the pop-
ulation infected. Note also that the algorithm induces a significant amount

65

Algorithm 3.8 Eager Probabilistic Broadcast.

Implements:
ProbabilisticBroadcast (pb).

Uses:
unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
delivered := ∅;

function pick-targets (fanout) returns set of processes do
targets := ∅;
while | targets | < fanout do

candidate := random (Π);
if candidate 6∈ targets ∧ candidate 6= self then

targets := targets ∪ { candidate };
return targets;

procedure gossip (msg) do
forall t ∈ pick-targets (fanout) do

trigger 〈 up2pSend, t, msg 〉;

upon event 〈 pbBroadcast, m 〉 do
gossip ([Gossip, sm, m, maxrounds−1]);

upon event 〈 up2pDeliver, pi, [Gossip, sm, m, r] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 pbDeliver, sm,m 〉;

if r > 0 then gossip ([Gossip, sm, m, r − 1]);

of redundancy in the message exchanges: any given process may receive the
same message more than once. The execution of the algorithm is for instance
illustrated in Figure 3.5 for a configuarion with a fanout of 3.

The higher the fanout, the higher the load that is imposed on each pro-
cesses and the amount of redundant information exchanged in the network.
Therefore, to select the appropriate k is of particular importance. The reader
should also note that there are runs of the algorithm where a transmitted
message may not be delivered to all correct processes. For instance, all the k
processes that receive the message directly from the sender may select exactly
the same k processes to forward the message to. In such case, only these k
processes will receive the message. This translates into the very fact that the
probability of reliable delivery is not 100%.

It can be shown that, to ensure a high probability of delivering a message
to all correct processes, the fanout is in the order of logN , where N is the
number of nodes in the system. Naturally, the exact value of the fanout and
maximum number of rounds to achieve a given probability of success depends

66

(a) (b) (c)

Figure 3.5. Gossip Dissemination.

not only on the system size but also on the probability of link and process
failures.

3.7.5 Algorithm: Lazy Probabilistic Broadcast

The algorithm described above uses an epidemic approach to the dissemi-
nation of messages. However, and as we have discussed, a disadvantage of
this approach is that it consumes a non-negligible amount of resources with
redundant transmissions. A way to overcome this limitation is to rely on a
basic and efficient unreliable multicast primitive to disseminate the messages
first, and then use a probabilistic approach just as a backup to recover from
message omissions.

A simplified version of an algorithm based on this idea is given in Algo-
rithm 3.9. The algorithm assumes that each sender is transmitting a stream
of numbered messages. Message omissions are detected based on gaps on the
sequence numbers of received messages. Each message is disseminated using
the unreliable broadcast primitive. For each message, some randomly selected
receivers are chosen to store a copy of the message for future retransmission
(they store the message for some maximum amount of time). The purpose
of this approach is to distribute, among all processes, the load of storing
messages for future retransmission.

Omissions can be detected using the sequence numbers of messages. A
process p detects that it has missed a message from a process q when p
receives a message from q if a higher timestamp than what p was expecting
from q. When a process detects an omission, it uses the gossip algorithm to
disseminate a retransmission request. If the request is received by one of the
processes that has stored a copy of the message, this process will retransmit
the message. Note that, in this case, the gossip algorithm does not need to
be configured to ensure that the retransmission request reaches all processes:

67

Algorithm 3.9 Lazy Probabilistic Broadcast.

Implements:
ProbabilisticBroadcast (pb).

Uses:
BestEffortBroadcast (beb). unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
∀pi∈Π delivered[pi] := 0; lsn := 0; pending := ∅; stored := ∅;

procedure deliver-pending (s) do
while ∃x : [Data, s, x, snx] in pending ∧ snx = delivered[s]+1 do

delivered[s] := delivered[s]+1; pending := pending \ { [Data, s, x,snx]};
trigger 〈 pbDeliver, s, x 〉;

// Procedure gossip same as in Algorithm 3.8

upon event 〈 pbBroadcast, m 〉 do
lsn := lsn+1;
trigger 〈 bebBroadcast, [Data, self, m, lsn] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m, snm] 〉 do
if random > store-threshold then stored := stored ∪ { [Data, sm, m,snm] };
if snm = delivered[sm]+1 then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver, sm,m 〉;

else
pending := pending ∪ { [Data, sm, m, snm] };
forall seqnb ∈ [sm − 1, delivered[sm]+1] do

gossip ([Request, self, sm, seqnb, maxrounds−1]);

upon event 〈 up2pDeliver, pj , [Request, pi, sm, snm, r] 〉 do
if [Data, sm, m, snm] ∈ stored then

trigger 〈 upp2pSend, pi, [Data, sm, m, snm] 〉;
else if r > 0 then gossip ([Request, pi, sm, snm, r − 1]);

upon event 〈 up2pDeliver, pj , [Data, sm, m, snm] 〉 do
if snm = delivered[sm]+1 then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver, sm,m 〉;
deliver-pending (sm);

else
pending := pending ∪ { [Data, sm, m, snm] };

it is enough that it reaches, with high probability, one of the processes that
has stored a copy of the missing message.

It is expected that, in most cases, the retransmission request message
is much smaller that the original data message. Therefore this algorithm
is much more resource effective than the pure earlier probabilistic broadcast
algorithm described above. On the other hand, it does require the availability

68

of some unreliable broadcast primitive and this primitive may not be available
in settings that include a very large number of processes spread all over the
Internet.

Practical algorithms based on this principle make a significant effort to
optimize the number and the location of nodes that store copies of each
broadcast message. Not surprisingly, best results can be obtained if the phys-
ical network topology is taken into account: for instance, an omission in a
link connecting a local area network (LAN) to the rest of the system affects
all processes in that LAN. Thus, it is desirable to have a copy of the message
in each LAN (to recover from local omissions) and a copy outside the LAN
(to recover from the omission in the link to the LAN). Similarly, the search
procedure, instead of being completely random, may search first for a copy
in the local LAN and only after on more distant processes.

69

Exercises

Exercise 3.1 (*) Consider a process p that rbBroadcasts a message m in
our lazy reliable broadcast implementation (Algorithm 3.2). Can p rbDeliver
m before bebBroadcasting it.

Exercise 3.2 (**) Modify the lazy reliable broadcast algorithm (Algorithm 3.2)
to reduce the number of messages sent in case of failures.

Exercise 3.3 (**) All reliable broadcast (deterministic and fail-stop) algo-
rithms we presented continuously fill their different buffers without empty-
ing them. Modify them to remove unnecessary messages from the following
buffers:

1. from[pi] in the lazy reliable broadcast algorithm
2. delivered in all reliable broadcast algorithms
3. forward in the uniform reliable broadcast algorithm

Exercise 3.4 (*) What do we gain if we replace bebBroadcast with rbBroad-
cast in our uniform reliable broadcast algorithm?

Exercise 3.5 (*) Consider our reliable broadcast and uniform broadcast al-
gorithms that use a perfect failure detector. What happens if each of the fol-
lowing properties of the failure detector are violated:

1. accuracy
2. completeness

Exercise 3.6 (**) Our uniform reliable broadcast algorithm using a perfect
failure detector can be viewed as an extension of our eager reliable broadcast
algorithm. Would we gain anything by devising a uniform reliable broadcast
algorithm that would be an extension of our lazy reliable algorithm, i.e., can
we have the processes not relay messages unless they suspect the sender?

Exercise 3.7 (**) Can we devise a uniform reliable broadcast with an even-
tually perfect failure detector but without the assumption of a correct majority
of processes?

Exercise 3.8 (**) The specification of reliable broadcast in a fail-recovery
model given in Module ?? does only restrict the behavior of processes that do
never crash, as far as validity is concerned.

How can we implement a reliable broadcast abstraction ensuring the fol-
lowing stronger validity property?

• If a correct process broadcasts a message m, then it eventually delivers m.

70

Algorithm 3.10 Simple optimization of lazy reliable broadcast.

upon event 〈 rbBroadcast, m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver, self, m 〉;
trigger 〈 bebBroadcast, [Data, self, m] 〉;

Exercise 3.9 (**) Consider Algorithm ?? implementing a reliable broadcast
in a fail-recovery model. Can we still rely only on an underlying stubborn-
broadcast abstraction, yet optimize the algorithm, if the aim is to ensure the
following weaker agreement property than the one of Module ??.

• If a process pi delivers a message m and pi does not crash, then any process
pj that does not crash delivers m.

Exercise 3.10 (**) Our probabilistic broadcast algorithm considers that the
connectivity is the same among every pair of processes. In practice, it may
happen that some nodes are at shorter distance and connected by more reliable
links than others. For instance, the underlying network topology could be a
set of local-area networks connected by long-haul links. Propose methods to
exploit the topology in gossip algorithms.

Exercise 3.11 (*) Could the notion of “epoch” be removed from our flow-
control algorithm (Algorithm ??)?

Corrections

Solution 3.1 The answer is yes. The process anyway rbDelivers the messages
as soon as it bebDelivers it. This does not add any guarantee with respect
to rbDelivering the message before bebBroadcasting it. The event that we
would need to change to Algorithm 3.2 would simply be the following.

2

Solution 3.2 In our lazy reliable broadcast algorithm, if a process p rbBroad-
casts a message and then crashes, N 2 messages are relayed by the remaining
processes to retransmit the message of process p. This is because a process
that bebDelivers the message of p does not know whether the other processes
have bebDelivered this message or not. However, it would be sufficient in this
case if only one process, for example process q, relays the message of p.

In practice one specific process, call it leader process pl, might be more
likely to bebDeliver messages: the links to and from this process are fast and
very reliable, the process runs on a reliable computer, etc. A process pi would

71

forward its messages to the leader pl, which coordinates the broadcast to ev-
ery other process. If the leader is correct, everyone eventually bebDelivers
and rbDelivers every message. Otherwise, we revert to the previous algo-
rithm, and every process is responsible for bebBroadcasting the messages
that it bebDelivers. 2

Solution 3.3 From from[pi] in the lazy reliable broadcast algorithm: The
array from is used exclusively to store messages that are retransmitted in
the case of a failure. Therefore they can be removed as soon as they have
been retransmitted. If pi is correct, they will eventually be bebDelivered. If
pi is faulty, it does not matter if the other processes do not bebDeliver them.

From delivered in all reliable broadcast algorithms: Messages cannot be
removed. If a process crashes and its messages are retransmitted by two
different processes, then a process might rbDeliver the same message twice
if it empties the deliver buffer in the meantime. This would violate the no
duplication safety property.

From forward in the uniform reliable broadcast algorithm: Messages can
actually be removed as soon as they have been urbDelivered. 2

Solution 3.4 Nothing, because the uniform reliable broadcast algorithm does
not assume and hence does not use the guarantees provided by the reliable
broadcast algorithm.

Consider the following scenario which illustrates the difference between
using bebBroadcast and using rbBroadcast. A process p broadcasts a mes-
sage and crashes. Consider the case where only one correct process q receives
the message (bebBroadcast). With rbBroadcast, all correct processes would
deliver the message. In the urbBroadcast algorithm, q adds the message in
forward and then bebBroadcasts it. As q is correct, all correct processes will
deliver it, and thus, we have at least the same guarantee as with rbBroadcast.
2

Solution 3.5 If the accuracy, i.e. the safety property, of the failure detector
is violated, the safety property(ies) of the problem considered might be vio-
lated. In the case of (uniform) reliable broadcast, the agreement property can
be violated. Consider our uniform reliable broadcast algorithm using a per-
fect failure detector and a system of three processes: p1, p2 and p3. Assume
furthermore that p1 urbBroadcasts a message m. If strong completeness is
not satisfied, then p1 might never urbDeliver m if any of p2 or p3 crash and p1

never suspects them or bebDelivers m from them: p1 would wait indefinitely
for them to relay the message.

If the completeness, i.e. the liveness property of the failure detector, is
violated, the liveness property(ies) of the problem considered might be vio-
lated. In the case of (uniform) reliable broadcast, the validity property can be
violated. Assume now that strong accuracy is violated and p1 falsely suspects

72

p2 and p3 to have crashed. Process p1 eventually urbDelivers m. Assume that
p1 crashes afterwards. It might be the case that p2 and p3 never bebDelivered
m and have no way of knowing about m and urbDeliver it: uniform agree-
ment would be violated. 2

Solution 3.6 The advantage of the lazy scheme is that processes do not need
to relay messages to ensure agreement if they do not suspect the sender to
have crashed. In this failure-free scenario, only N − 1 messages are needed
for all the processes to deliver a message. In the case of uniform reliable
broadcast (without a majority), a process can only deliver a message when it
knows that every correct process has seen that message. Hence, every process
should somehow convey that fact, i.e., that it has seen the message. An lazy
scheme would be of no benefit here. 2

Solution 3.7 No. We explain why for the case of a system of four processes
{p1, p2, p3, p4} using what is called a partitioning argument. The fact that the
correct majority assumption does not hold means that 2 out of the 4 pro-
cesses may fail. Consider an execution where process p1 broadcasts a message
m and assume that p3 and p4 crash in that execution without receiving any
message neither from p1 nor from p2. By the validity property of uniform
reliable broadcast, there must be a time t at which p1 urbDelivers message
m. Consider now an execution that is similar to this one except that p1 and
p2 crash right after time t whereas p3 and p4 are correct: say they have been
falsely suspected, which is possible with an eventually perfect failure detec-
tor. In this execution, p1 has urbDelivered a message m whereas p3 and p4

have no way of knowing about that message m and eventually urbDelivering
it: agreement is violated. 2

Solution 3.8 Clearly, this property can only be achieved if the act of broad-
casting a message is defined as the storing of that message into some stable
storage variable. The property can then be achieved by a slight modification
to Algorithm ??: upon recovery, any process delivers the messages it has
broadcast but not delivered yet. 2

Solution 3.9 No. To ensure the following property:

• If a process pi delivers a message m and pi does not crash, then any process
pj that does not crash delivers m.

Without a perfect failure detector, a process has no choice then to forward
any message it delivers. Given than the forwarding can only be achieved with
the stubborn-broadcast primitive, the algorithm cannot be optimized any
further.

2

73

Solution 3.10 One approach consists in assigning weights to link between
processes. Links reflect the reliability of the links. We could easily adapt our
algorithm to avoid redundant transmission by gossiping though more reliable
links with lower probability. An alternative approach consists in organizing
the nodes in a hierarchy that reflects the network topology in order to reduce
the traffic across domain boundaries. 2

Solution 3.11 No. Without the notion of epoch, minb will always decrease,
even if more resources would be available in the system. The introduction
of the epoch ensures that new up-to-date values of minb are not mixed will
outdated values being gossiped in the system. 2

74

Historical Notes

• The requirements for a reliable broadcast communication abstraction seem
to have originated from the domain of aircraft control and the Sift sys-
tem (Wensley 1978). Algorithms ensuring causal delivery of messages came
out of the seminal paper of Lamport (Lamport 1978).
• Later on, several distributed computing libraries offered communication

primitives with reliable or causal order broadcast semantics. These include
the V system (Cherriton and Zwaenepoel 1985), Delta-4 (Powell, Barret,
Bonn, Chereque, Seaton, and Verissimo 1994), Isis and Horus (Birman and
Joseph 1987a; van Renesse and Maffeis 1996).
• Algorithms for reliable broadcast message delivery were presented in a

very comprehensive way in (Hadzilacos and Toueg 1994). The problem
of the uniformity of a broadcast was discussed in (Hadzilacos 1984) and
then (Neiger and Toueg 1993).
• The idea of applying epidemic dissemination to implement probabilistically

reliable broadcast algorithms was explored in (Golding and Long 1992; Bir-
man, Hayden, Ozkasap, Xiao, Budiu, and Minsky 1999; Kermarrec, Mas-
soulie, and Ganesh 2000; Eugster, Handurukande, Guerraoui, Kermarrec,
and Kouznetsov 2001; Kouznetsov, Guerraoui, Handurukande, and Ker-
marrec 2001; Xiao, Birman, and van Renesse 2002).
• The exploitation of topology features in probabilistic algorithms was pro-

posed in (Lin and Marzullo 1999) through an algorithm that assigns weights
to link between processes. A similar idea, but using a hierarchy instead of
weight was proposed in (Gupta, Kermarrec, and Ganesh 2002) to reduce
the traffic across domain boundaries.
• The first probabilistic broadcast algorithm that did not depend of any

global membership was given in (Eugster, Handurukande, Guerraoui, Ker-
marrec, and Kouznetsov 2001) and the notion of message ages was intro-
duced in (Kouznetsov, Guerraoui, Handurukande, and Kermarrec 2001) for
purging messages and ensuring the scalability of process buffers.
• The idea of flow control in probabilistic broadcast was developed in (Ro-

drigues, Handurukande, Pereira, Guerraoui, and Kermarrec 2002). The
same paper also introduced a decentralized techniques to control message
epochs.

75

4. Shared Memory

This chapter presents shared memory abstractions. These are distributed pro-
gramming abstractions that encapsulate read-write forms of storage among
processes. These abstractions are called registers because they resemble those
provided by multi-processor machines at the hardware level, though in many
cases, including in this chapter, they are be implemented over processes that
communicate through message passing and do not share any hardware de-
vice. The register abstractions also resemble files in a distributed directory or
shared working spaces in a distributed working environment. Understanding
how to implement register abstractions help understand how to implement
distributed file systems and shared working spaces.

We study here different variants of register abstractions. These differ ac-
cording to the number of processes that are allowed to read and write on
them, as well as on the semantics of their read operations in the face of
concurrency and failures. We distinguish two kinds of semantics: regular and
atomic. We will first consider the (1,N) regular register abstraction. The no-
tation (1,N) means here that one specific process can write and any process
can read. Then we will consider the (1,N) atomic register and finally the
(N,N) atomic register abstractions. We will consider these abstractions for
three of the distributed system models identified in Chapter 2: the fail-stop,
fail-silent, and fail-recovery models.

4.1 Introduction

4.1.1 Motivation

In a multiprocressor machine, processes typically communicate through reg-
isters provided at the hardware level. The set of these registers constitute the
shared memory of the processes. The act of building a register abstraction
among a set of processes that communicate by message passing is sometimes
called a shared memory emulation. The programmer using this abstraction
can develop shared memory algorithms without being aware that, behind the
scenes, processes are actually communicating by exchanging messages, i.e.,
there is no physical shared memory. Such emulation is very appealing because

programming with a shared memory is usually considered significantly eas-
ier than with message passing, precisely because the programmer can ignore
various concurrency and failure issued.

As we pointed out, studying register specifications and algorithms is also
useful in implementing distributed file systems as well as shared working
spaces for collaborative work. For example, the abstraction of a distributed
file that can be accessed through read and write operations is similar to the
notion of register. Not surprisingly, the algorithms that one needs to devise
in order to build a distributed file system can be directly inspired from those
used to implement register abstractions. Similarly, when building a shared
working space in collaborative editing environments, one ends up devising
register-like distributed algorithms.

In the following, we will study two semantics of registers: regular and
atomic ones. When describing a register abstraction, we will distinguish the
case where it can be read and (or) written by exactly one process, and read
and (or) written by all (i.e., any of the N processes in the system).

4.1.2 Overview

Assumptions. Registers store values that are accessed through two opera-
tions: read and write. The operations of a register are invoked by the processes
of the system to exchange information through the register. When a process
invokes any of these operations and gets back a reply, we say that the process
completes the operation. Every process accesses the registers in a sequential
manner: if a process invokes some operation (read or write on some register),
the process does not invoke any further operation unless the previous one is
complete.

We also assume that every register (a) is supposed to contain only posi-
tive integers, and (b) is supposed to be initialized to 0. In a sense, we assume
through the latter assumption (b) that some write operation was (b.1) ini-
tially invoked on the register with 0 as a parameter and (b.2) completed
before any other operation is invoked. For presentation simplicity but with-
out loss of generality, we will also assume that (c) the values written in the
register are uniquely identified, say by using some unique timestamps pro-
vided by the processes. (Just like we assumed in the previous chapter that
messages that are broadcast are uniquely identified.)

Some of the register abstractions and algorithms we will present make the
assumption that specific processes can write and specific processes can read.
For example, the simplest case is a register with one writer and one reader,
denoted by (1, 1): the writer is a specific process known in advance and so
is the reader. We will also consider registers with one writer and N readers
(the writer is here a specific process and any process can be a reader). More
generally, a register with X readers and Y readers is also called a (X,Y)
register. The extreme case is of course the one with N writers and N readers:
any process can be a writer and a reader at the same time.

78

Signature and Semantics. Basically, a read is supposed to return the value
in the register and a write is supposed to update the value of the register.
More precisely:

1. A read operation does not take any input parameter and has one ouput
parameter. This output parameter contains the presumably current value
of the register and constitutes the reply of the read invocation. A read
does not modify the content of the register.

2. A write operation takes an input parameter and returns a simple indica-
tion (ack) that the operation has taken place. This indication constitutes
the reply of the write invocation. The write operation aims at modifying
the content of the register.

If a register is used (read and written) by a single process, and we assume
there is no failure, it is reasonable to define the specification of the register
through the simple following properties:

• Liveness. Every operation eventually completes.
• Safety. Every read returns the last value written.

In fact, even if a register is used by a set of processes one at a time (i.e.,
we also say in a serial manner) and without crashing, we could still define the
specification of the register using that simple property. Serialisation means
here that a process does not invoke an operation on a register if some other
process has invoked an operation and did not receive any reply.

Failure Issues. If we assume that processes might fail, say by crashing, we
cannot require that any process that invokes an operation eventually com-
pletes that operation. Indeed, a process might crash right after invoking an
operation and would not have the time to complete this operation. We say
that the operation has failed. (Remember that failures are unpredictable and
this is precisely what makes distributed computing challenging).

However, it makes sense to require that if a process pi invokes some op-
eration and does not subsequently crash, then pi gets back a reply to its
invocation, i.e., completes its operation. That is, any process that invokes a
read or write operation, and does not crash, is supposed to eventually return
from that invocation. Its operation should not fail. This requirement makes
the register fault-tolerant. It is also said to be robust or wait-free.

If we assume that processes access a register in a serial manner, we may,
at first glance, still want to require from a read operation that it returns
the last value written. We need however to be careful here with failures in
defining the very notion of last. Consider the following situation.

• Assume that a process p1 invokes a write on the register with value v1

and terminates its write. Later on, some other process p2 invokes a write
operation on the register with a new value v2, and then p2 crashes without

79

the operation having terminated: p2 did not get any indication that the
operation has indeed taken place, i.e., the operation has failed. Now, if even
later on, process p3 invokes a read operation on the register, then what is
the value that is supposed to be returned to p3? should it be v1 or v2?

In fact, we will consider both values to be valid replies. Intuitively, p2

might have or not had the time to terminate the writing operation. In other
words, when we require that a read returns the last value written, we consider
the two following cases as possible:

1. The value returned has indeed been written by the last process that
completed its write, even if some process has invoked a write later but
crashed; Everything happens as if the failed operation was never invoked.

2. The value returned was the input parameter of the last write operation
that was invoked, even by some process that crashed before the comple-
tion of the actual operation. Everything happens as if the operation that
failed has completed.

In fact, the difficulty underlying the problem of failure just discussed has
actually to do with a failed write (the one of the crashed process p2) being
concurrent with a read (i.e., the one that comes from p3 after the crash):
this happens even if a process does not invoke an operation while some other
process is still waiting for a reply. The difficulty is related to the context of
concurrent invocations discussed below.

Concurrency Issues. What should we expect from a value returned by a
read operation that is concurrent with some write operation? What is the
meaning of the last write in this context? Similarly, if two write operations
were invoked concurrently, what is the last value written? can a subsequent
read return one of the values and then a read that comes later return the
other? In this chapter, we will give the specifications of register abstractions
(i.e., regular and atomic) that differ mainly in the way we address these
questions, as well algorithms that implement these specifications. Roughly
speaking, a regular register ensures minimal guarantees in the face of concur-
rent and failed operations. An atomic register is stronger and provides strong
properties even in the face of concurrency and failures. To make the speci-
fications more precise, we first introduce below some definitions that aim to
capture the intuitions discussed above.

4.1.3 Completeness and Precedence

We first define the notions of completeness of an operation execution and
precedence between operation executions, e.g., read or write executions. Note
that when there is no possible ambiguity, we simply talk about operations to
mean operation executions.

These notions are defined using the events that occur at the border of an
operation: the request invocation (read or write invocation) and the return

80

confirmation (ack) or the actual reply value in the case of a read invocation.
Each of such events is assumed to occur at a single indivisible point in time.
(Remember that we assume a fictional notion of global time, used to reason
about specifications and algorithms. This is however not directly accessible
to the processes.)

• We say that an operation is complete if both events defining the operation
have occured.

This basically means that the process which invoked the operation op
did not crash before being informed that op is terminated, i.e., before the
confirmation event occured.

• A failed operation is one that was invoked, but the process which invoked
it crashed before receiving any reply.

• An operation op (e.g., read or write) is said to precede an operation op’
(e.g., read or write) if:

1. the event corresponding to the return of op occurs before (i.e., precedes)
the event corresponding to the invocation of op’;

2. the operations are invoked by the same process and the event corre-
sponding to the invocation of op’ occurs after the event corresponding
to the invocation of op.

It is important to notice here that, for an operation op, invoked by some
process p1 to precede an operation op’ invoked by a different process p2, op
must be complete. This does not need to be the case if both operations are
invoked by the same process in a fail-recovery model. In this case, a process
might invoked op, crashes, recovers, and invokes op′.

• If two operations are such that one precedes the other, we say that the
operations are sequential. Otherwise we say that they are concurrent.

Basically, every execution of a register can be viewed as a partial order
of its read and write operations. If only one process invokes operations,

then the order is total. When there is no concurrency and all operations
are complete, the order is also total.

• When a read operation r returns a value v, and that value v was the input
parameter of some write operation w, we say that r (resp. v) has (was)
read from w.
• A value v is said to have been written when the write of v is complete.

4.2 Regular register

We give here the specification and underlying algorithms of a regular register.
We consider here a model where processes to not recover if they crash: we will
revisit this model later in the chapter by considering a fail-recovey model.

81

Module:

Name: regular Register (rReg).

Events:

Request: 〈 read, reg 〉: Used to invoke a read operation on register reg.
Request: 〈 write, reg, v 〉: Used to invoke a write operation of value v on
register reg.

Confirmation: 〈 readRet, reg, v 〉: Used to return v as a response to
the read invocation on register reg and indicates that the operation is
complete.
Confirmation: 〈 WriteRet, reg,ack 〉: Indicates that the write operation
has taken place at register reg and is complete.

Properties:

SR1: Termination: If a correct process invokes an operation, the process
eventually returns from the invocation.

SR2: Validity: A read returns the last value written, or the value concur-
rently written.

Module 4.1 Interface and properties of a regular register.

Furthermore implicitely assume here a (1, N) register, i.e., one specific
process, say p1 can invoke a write operation on the register and any process
can invoke a read operation on that register.

4.2.1 Specification

The interface and properties of a (1,N) regular register are given in Mod-
ule 4.1. In short, a read that is not concurrent with any write, returns the
last value written. Otherwise (i.e., if there is a concurrent write), the read
is allowed to return the last value written or the value concurrently written.
Note that if a process invokes a write and crashes (without recovering), the
write is concurrent with any read that did not precede it. Hence, such a read
can return the value that was supposed to be written by the failed write or
the previous value written, i.e., the last value written. Note also that, in any
case, the value returned must be read from some write operation invoked on
the register. That is, a value read must in any case be a value that some
process has tried to write (even if the write was not complete): it cannot be
invented out of thin air. This can be the initial value of the register, which
we assume to have been written initially by the writer.

Example. To illustrate the specification of a regular register, we depict in
Figure 4.1 and Figure 4.2 two executions. The first is not permitted by a
regular register whereas the second is. In the first case, even when there is
no concurrency, the read does not return the last value written.

82

write(5) write(6)
p1

p2

read() −> 5 read() −> 6read() −> 0

Figure 4.1. Non-regular register execution

write(5) write(6)
p1

p2

read() −> 5 read() −> 5 read() −> 6

Figure 4.2. Regular register execution

4.2.2 Fail-Stop Algorithm: Read-One-Write-All Regular Register

Algorithm 4.1 implements a regular register. The simplicity of this algorithm
lies in its relying on a perfect failure detector (fail-stop model). The crash of a
process is eventually detected by all correct processes (strong completeness),
and no process is detected to have crashed until it has really crashed (strong
accuracy).

The algorithm has each process store a copy of the current register value
in a variable that is local to the process. In other words, the value of the reg-
ister is replicated at all processes. The writer (remember that we implicitely
assume a (1,N) register) updates the value value of all processes it does not
detect to have crashed. When the write of a new value is complete, all pro-
cesses that did not crash have the new value. The reader simply returns the
value it has stored locally. In other words, the reader process reads one value
and the writer process writes all values. Besides a perfect failure detector, our
algorithm makes use of two underlying communication abstractions: perfect
point-to-point as well as a best-effort broadcast.

Correctness. The termination property is straightforward for any read in-
vocation. A process simply reads (i.e., returns) its local value. For a write
invocation, termination follows from the properties of the underlying commu-
nication abstractions (perfect point-to-point communication and best-effort
broadcast) and the completeness property of a perfect failure detector (every
crashed process is eventually detected by every correct process). Any process
that crashes is suspected and any process that does not crash sends back an
acknowledgement which is eventually delivered by the writer.

Consider validity. Assume that there is no concurrency and all operations
are complete. Consider a read invoked by some process pi and assume fur-
thermore that v is the last value written. By the accuracy property of the
perfect failure detector, at the time when the read is invoked, all processes
that did not crash have value v. These include pi which indeed returns v, i.e.,
the last value written.

Assume now that the read is concurrent with some write of a a value v
and the value written prior to v was v′ (this could be the initial value 0).
By the properties of the communication abstractions, no message is altered

83

Algorithm 4.1 Read-one-write-all regular register algorithm.

Implements:
Regular Register (reg).

Uses:
BestEffortBroadcast (beb).
PerfectPointToPointLinks (pp2p).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
vi := 0;
writeSeti := ∅;
correcti := Π;

upon event 〈 read, reg 〉 do
trigger 〈 readRet, reg, vi 〉;

upon event 〈 crash, pi 〉 do
correcti := correcti \ {pi};

upon event 〈 write, reg,v 〉 do
trigger 〈 bebBroadcast, [Write, v] 〉;

upon event 〈 bebDeliver, pj ,[Write, v] 〉 do
vi := v;
trigger 〈 pp2pSend, pj , [Write, ack] 〉;

upon event 〈 pp2pDeliver, pj ,[Write, ack] 〉 do
writeSeti := writeSeti ∪ {pj};

upon (correct ⊆ writeSet) do
writeSeti := ∅;
trigger 〈 writeRet, reg, ack 〉;

and no value can be stored at a process unless the writer has invoked a write
operation with this value as a parameter. Hence, at the time of the read, the
value can either be v or v′.

Performance. Every write operation requires one communication round-trip
between the writer and all processes, and at most 2N messages. A read
operation does not require any remote communication: it is purely local.

4.2.3 Fail-Silent Algorithm: Majority-Voting Regular Register

It is easy to see that if the failure detector is not perfect, the read-one-write-
all algorithm (i.e., Algorithm 4.1) might not ensure the validity property of
the register. We depict this possibility through the execution of Figure 4.3.
Even without concurrency and without any failure, process p2 returns a value

84

that was not the last value written and this might happen if p1, the process
that has written that value, has falsely suspected p2 to have crashed, and p1

did not make sure p2 has locally stored the new value, i.e., 6.

write(5)
p1

p2
read() −> 5

write(6)

Figure 4.3. A non-regular register execution

In the following, we give a regular register algorithm in a fail-silent model.
This algorithm does not rely on any failure detection scheme. Instead, the
algorithm uses a majority of correct processes as witnesses and a timestamp
to distinguish values. We leave it as an exercise to show that this major-
ity assumption is actually needed, even with an eventually perfect failure
detector.

The general principle of the algorithm consists for the writer and readers
to use a set of witness processes that keep track of the most recent value of
the register. The witnesses must be chosen in such a way that at least one
witness participate in any pair of such operations and did not crash in the
meantime. Sets of witnesses must intuitively form quorums: their intersection
should not be empty. This is ensured by the use of majority and our algorithm
is called a majority voting algorithm (Algorithm 4.2). The algorithm indeed
implements a (1,N) regular register where one specific process is the writer,
say p1, and any process can be the reader.

Similarly to our previous read-one-write-all algorithm (i.e., Algorithm 4.1),
our majority voting algorithm (i.e., Algorithm 4.2) also has each process store
a copy of the current register value in a variable that is local to the process.
Furthermore, the algorithm relies on a timestamp (we also say sequence num-
ber) associated with the value, i.e., to each local value stored at a process.
This timestamp is defined by the writer, i.e., p1, and intuitively represents
the version number (or the age) of the value. It measures the number of times
the value has been written.

• For p1 (the unique writer) to write a new value, p1 defines a new timestamp
by incrementing the one it already had. Then p1 sends a message to all
processes, and has a majority adopts this value (i.e., store it locally), as
well as its corresponding timestamp. Process p1 considers the write to
be complete (and hence returns the indication ack) when p1 has received
an acknowledgement from a majority of processes indicating that they
have indeed adopted the new value and the corresponding estimate. It is
important at this point to notice that a process pi will only adopt a value
sent by the writer, and consequently sends back an acknowledgement, if
pi has not already adopted a more recent value. Process p1 might have

85

adopted an old value if for instance p1 has sent a value v1, then later a
value v2, and process pi receives v2 and then v1. This would mean that pi
was not in the majority that made it possible for p1 to terminate its write
of v1, before proceeding to the writing of v2.
• To read a value, the reader process (it can be any process) selects the

value with the highest timestamp among a majority: the processes in this
majority act as witnesses of what was written before. The two majorities
do not need to be the same. Choosing the highest timestamp ensures that
the last value is chosen, provided there is no concurrency. In our major-
ity voting algorithm (Algorithm 4.2), the reader uses a function highest
that returns the value with the highest timestamp among a set of pairs
(timestamp, value), i.e., among the set of all pairs returned by a majority.
Remember from our event-based model that, for presentation simplicity, we
assume that a process, e.g., the reader, can figure out whether a given reply
message matches a given request message (and is not an old reply). This
assumption is important here since the reader could for instance confuse
two messages: one for an old read invocation and one for a new one. This
might lead to violate the validity property of the register. The assumption
in a sense hides the use of specific additional timestamps that ensure the
request-reply matching.

Correctness. The termination property follows from the properties of the
underlying communication abstractions and the assumption of a majority of
correct processes. Consider now validity.

Consider first the case of a read that is not concurrent with any write.
Assume furthermore that a read is invoked by some process pi and the last
value written by p1, say v, has timestamp sn1 at p1. This means that, at the
time when the read is invoked, a majority of the processes have timestamp
sn1 and there is no higher timestamp in the system. This is because the
writer uses increasing timestamps.

Before reading a value, i.e., returning from the read operation, pi consults
a majority of processes and hence gets at least one value with timestamp sn1.
This is because majorities

always intersect (i.e., they form quorums). Process pi hence returns value
v with timestamp sn1, which is indeed the last value written.

Consider now the case where the read is concurrent with some write of
value v and timestamp sn1, and the previous write was for value v′ and
timestamp sn1− 1. If any process returns sn1 to pi, pi will return v, which is
a valid reply. Otherwise, at least one process will return sn1 − 1 and pi will
return v′, which is also a valid reply.

Performance. Every write operation requires one communication round-trip
between the writer and a majority of the processes and every read requires
one communication round-trip between the reader and a majority of the
processes. In both cases, at most 2N messages are exchanged.

86

Algorithm 4.2 Majority voting regular register algorithm.

Implements:
Regular Register (reg).

Uses:
BestEffortBroadcast (beb).
perfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
tsi := sni := vi := acksi := 0;
readSeti := ∅;

upon event 〈 write, reg, v 〉 do
tsi := tsi + 1;
acksi := 0;
trigger 〈 bebBroadcast, [Write, tsi, v] 〉;

upon event 〈 bebDeliver, pj , [Write, ts, v] 〉 do
if ts > sni then

vi := v;
sni := ts;
trigger 〈 pp2pSend, pj , [Write, ack] 〉;

upon event 〈 pp2pDeliver, pj , [Write, ack] 〉 do
acksi := acksi + 1;

upon (#acksi > N/2) do
trigger 〈 writeRet, reg, ack 〉;

upon event 〈 read, reg 〉 do
readSeti := ∅;
trigger 〈 bebBroadcast, [Read] 〉;

upon event 〈 bebDeliver, pj , [Read] 〉 do
trigger 〈 pp2pSend, pj ,[Read, sni, vi] 〉;

upon event 〈 pp2pDeliver, pj , [Read, snj , vj] 〉 do
readSeti := readSeti ∪ {(snj , vj)};

upon (#readSeti > N/2) do
v := highest(readSeti);
trigger 〈 readRet, reg,v 〉;

4.3 Atomic Registers

We give here the specification and underlying algorithms of a (1, N) atomic
register. The generalization to multiple writers will be discussed in the next
section.

87

4.3.1 Specification

With a regular register specification, nothing prevents a reader from reading
a value v and then v′, even if the writer process has written v′ and then v,
as long as the writes and the reads are concurrent. Furthermore, consider
a register on which only one write operation was invoked by the writer p1,
say with some value v, and p1 crashed before returning from the operation
and does not recover, i.e., the operation is not complete. A subsequent reader
might read v whereas another, coming even later, might not, i.e., might return
the initial value of the register. In short, an atomic register is a regular register
that prevents such behaviors.

write(5) write(6)
p1

p2

read() −> 6read() −> 5 read() −> 5

Figure 4.4. Non-atomic register execution

write(5) write(6)
p1

p2

read() −> 5 read() −> 5 read() −> 6

Figure 4.5. Atomic register execution

The interface and properties of a (1,N) atomic register are given in Mod-
ule 4.2. A (1,N) atomic register is a regular register that, in addition to the
properties of a regular register (Module 4.1) ensures a specific ordering prop-
erty which roughly speaking prevents an old value to be read one a new value
has been read.

Typically, with an atomic register, a reader process cannot read a value
v′, after some value v was read (possibly by some other process), if v ′ was
written before v. In addition, consider a register on which one write operation
was invoked and the writer that invoked this operation, say with some value
v, crashed before returning from the operation, i.e., the operation is not
complete. Once a subsequent reader reads v, no subsequent reader can read
the initial value of the register.

The execution depicted in Figure 4.5 is that of an atomic register whereas
the execution depicted in Figure 4.4 is not. In the execution of Figure 4.4, the
ordering property of an atomic register should prevent the read of process p2

to return 6 and then 5, given that 5 was written before 6.
It is important to notice that none of our previous algorithms implement

a (1,N) atomic register. We illustrate this through the execution depicted
in Figure 4.6 as a counter example for our read-one-write-all regular regis-
ter algorithm (Algorithm 4.1), and the execution depicted in Figure 4.7 as

88

Module:

Name: Atomic Register (aReg).

Events:

Same as for a regular register.

Properties:

AR1: Termination: Same as SR1. If a correct process invokes an operation,
the process eventually returns from the invocation.

AR2: Validity: A read returns the last value written, or the value concur-
rently written.

AR3: Ordering: If a read returns v2 after a read
that precedes it has returned v1, then v1 cannot be written after v2.

Module 4.2 Interface and properties of a (1,N) atomic register.

a counter example for our majority-voting regular register algorithm (Algo-
rithm 4.2).

read() −> 5
p2

read() −> 6

p3
read() −> 5

p1
write(5) write(6)

Figure 4.6. Violation of atomicity in the read-one-write-all regular register algo-
rithm

read() −> 5
p2

sn = 2sn = 1

read() −> 6 read() −> 5

sn = 1

p1
write(5)

sn = 1

write(6)

sn = 2

P3 sn = 1 sn = 1

Figure 4.7. Violation of atomicity in the majority voting regular register algorithm

• The scenario of Figure 4.6 can indeed occur with Algorithm 4.1 if p1,
during its second write, communicates the new value 6 to p2 before p3, and
furthermore, before p2 reads locally 6 but after p3 reads locally 5. This can
happen even if the read of p2 precedes the read of p3.

89

• The scenario of Figure 4.7 can occur with Algorithm 4.2 if p2 has accessed
p1 in its second read and p3 in its third read before p1 accesses any of p2

and p3 in its second write. Clearly, this can also occur for Algorithm ??.

read() −> 5
p2

sn = 2sn = 1

read() −> 6read() −> 6

sn = 2

p1
write(5)

sn = 1

write(6)

sn = 2

P3 sn = 1 sn = 1

Figure 4.8. An atomic register execution

In the following, we give algorithms that implement (1,N) atomic regis-
ter algorithms. We first describe how to automatically transformation any
(fail-stop or fail-silent) (1,N) regular algorithm into a (1,N) atomic register
algorithm. Such a transformation is modular but does not necessarily lead
to efficient algorithms. We also describe how to extend our regular register
algorithms an obtain ad-hoc but efficient (1,N) atomic registers.

4.3.2 Transformation: From (1,1) Regular to (1,1) Atomic

For pedagogical purposes, we divide the problem of transforming any (1,N)
regular register into a (1,N) atomic register algorithm into two parts. We first
explain how to transform a (1,N) (in fact even a (1,1)) regular register into a
(1,1) atomic register and then how to transform a (1,1) atomic register into
a (1,N) atomic register. It is important to notice that these transformations
do not use any other means of communication between processes than the
underlying registers.

The first transformation is given in Algorithm 4.3 and the idea underlying
it is simple. To build a (1,1) atomic register with p1 as a writer and p2 as a
reader, we make use of one (1,1) regular register the writer of which is also p1

and the reader is also p2. Furthermore, the writer p1 maintains a timestamp
that it increments and associates with every new value to be written, and the
reader maintains a sequence number together with a variable to locally store
the latest value read in the register. In Algorithm 4.3, the underlying regular
register is denoted by regReg and the atomic register to be implemented is
denoted by reg.

• To write a value in the atomic register reg, the writer increments its times-
tamp and writes it together with the value in the underlying regular register
regReg.
• To read a value in the atomic register reg, the reader reads the value in the

underlying regular register regReg as well as the associated timestamp.
If the timestamp read is higher than the one previously locally stored

90

Algorithm 4.3 From (1,1) regular to (1,1) atomic registers.

Implements:
Atomic (1,1) Register (reg).

Uses:
Regular (1,1) Register (regReg).

upon event 〈 Init 〉 do
tsi := sni := vi := 0;

upon event 〈 write, reg,v 〉 do
tsi := tsi + 1;
trigger 〈 write, regReg,tsi, v 〉;

upon event 〈 writeRet, regReg, ack 〉 do
trigger 〈 writeRet, reg,ack 〉;

upon event 〈 read, reg 〉 do
trigger 〈 read, regReg 〉;

upon event 〈 readRet, regReg, (ts, v) 〉 do
if ts > sni then

sni := ts;
vi := v;

trigger 〈 readRet, reg,v 〉;

by the reader, then the reader stores the new timestamp read as its new
sequence number, together with the new value read, then returns the latest.
Otherwise, the reader simply returns the value it already had locally stored.

Correctness. The termination property of the atomic register follows from
the one of the underlying regular register.

Consider validity. Consider first a read that is not concurrent with any
write and the last value written by p1, say v, is associated with sequence
number sn1. The sequence number stored by p2 is either sn1, if p − 2 has
already read v in some previous read or a strictly lower value. In both cases,
by the validity property of the regular register, a read by p2 will return
v. Consider now the case where the read is concurrent with some write of
value v and sequence number sn1, and the previous write was for value v′

and sequence number sn1 − 1. The sequence number stored by p2 cannot be
strictly higher than sn1. Hence, by the validity property of the underlying
regular register, p2 will return either v or v′, both are valid replies.

Consider the ordering property. Assume p1 writes value v and then v′.
Assume p2 returns v′ for some read and consider any subsequent read of p2.
The sequence number stored locally at p2 is either the one associated with

91

v′ or a higher one. By the transformation algorithm, there is no way p2 can
return v.

Performance. Interestingly, writing in the atomic register requires only some
local computation (incrementing a sequence number) with respect to writing
in the regular register. Similarly, reading from the atomic register requires
only some local computation (performing a test and possibly some affecta-
tions) with respect to reading from the regular register. This observation
means that no messages need to be added to an algorithm that implements
a (1,1) regular register in order to implement a (1,1) atomic register.

Indeed, our read-one write-all algorithm (i.e., Algorithm 4.1) does not
need to be transformed to implement an atomic register if we consider only
one reader: indeed the scenario of Figure 4.6 involves two readers. As is, the
algorithm implements a (1, 1) atomic register where any process can write and
one specific process, say p2, can read. In fact, if we assume a single reader,
say p2, the algorithm can even be optimized in such a way that the writer
does simply try to store its value in p2, and gives up if the writer detects the
crash of p2. That is, only the reader p2 needs to maintain the register’s value.

Consider now our majority voting algorithm, i.e., Algorithm 4.2. This
algorithm does not implement a (1,1) atomic register but can easily be ex-
tended to satisfy the ordering property by adding a simple local computation
at the reader p−2. It suffices indeed for p2 to update its value and timestamp
whenever p2 selects the value with the highest timestamp before returning
it. Then p2 has simply to make sure that it includes its own value in the set
from which it selects new values. The scenario of Figure 4.7 occurs precisely
because the reader has no memory of the previous value read. We describes
in Algorithm 4.4 what needs to be modified with respect to Algorithm 4.2
in order to obtain a (1,1) atomic register, besides the fact that the reader
is supposed to include itself in every read majority. Note that in this case,
we assume that the function select returns a pair (timestamp,value) (with
the highest timestamp), rather than simply a value. With Algorithm 4.4, the
scenario of Figure 4.7 could not happen, whereas the scenario depicted in
Figure 4.8 could. As in Algorithm 4.2, every write operation requires one
communication round-trip between p1 and a majority of the processes and
every read requires one communication round-trip between p2 and a majority
of the processes. In both cases, 2N messages are exchanged.

Correctness. Termination and validity properties are ensured as for Algo-
rithm 4.2. Consider now the ordering property. Assume that a read invocation
r1 (by process p2) returns a value v1 from a write invocation w1 (by process
p1), a read invocation r2 (also by p2) returns a different value v2 from a write
invocation w1 (also by p1), and r1 precedes r2. Assume by contradiction that
w2 precedes w1. This means that the timestamp associated with w1 is higher
than that of w2. Given that r1 precedes r2, then before terminating r1, p2

must have written v1 and its associated timestamp into p2’s local variable.
There is no way p2 can later read locally v2, because the latter has a times-

92

Algorithm 4.4 (1,1) Atomic extension of the majority voting register algorithm.

Implements:
(1,1) Atomic Register (reg).

Extends:
(1,1) Majority Voting Regular Register Algorithm.

upon (#readSeti > N/2) do
(v, ts) := highest(readSeti);
vi := v;
sni := ts;
trigger 〈 readRet, reg,v 〉;

tamp lower than that of v1 and we assume that p2 includes itself (i.e., v1) in
the read majority.

4.3.3 Transformation: From (1,1) Atomic to (1,N) Atomic

We describe here an algorithm that implements the abstraction of a (1,N)
atomic register out of (1,1) atomic registers. To get an intuition of the trans-
formation, think of a teacher, i.e., the writer, who needs to communicate some
information to a set of students, i.e., the readers, through the abstraction of
a traditional black-board. In some sense, a board is typically a (1,N) register,
as far as only the teacher writes on it. It is furthermore atomic as it is made
of a single physical entity.

Assume however that the teacher cannot physically gather all students
within the same classroom and hence cannot use one physical board for all.
Instead, this global board needs to be emulated using one or several electronic
boards (e-boards) that could also be written by one person but could only be
read by one person, say every student can have one or several of such boards
at-home. It makes sense to have the teacher writes every new information on
at least one board per student. This is intuitively necessary for the students
to eventually read the information provided by the teacher, i.e., to ensure
the validity property of the register. It is however not enough if we want
to guarantee the ordering property of an atomic register. Indeed, assume
that the teacher writes two consecutive information X and then Y . It might
happen that a student reads Y and then later on, some other student reads
X. This case of ordering violation is in a sense similar to the situation of
Figure 4.6.

One way to cope with this issue is, for every student, before terminating
the reading of some information, to transmit this information to all other stu-
dents, through other e-boards. That is, every student would devote, besides
the e-board devoted for the teacher to provide him with new information,
another one for every other student to write new information in. Whenever

93

a student reads some information from the teacher, it first writes this infor-
mation in the boards of all other students before returning the information.
Old and new information are distinguished using timestamps.

The transformation we give in Algorithm 4.5 uses a number of (1, 1)
atomic registers to build one (1, N) atomic register, denoted by reg. The
writer in the latter register reg is p1. The (1, 1) registers are used in the
following way:

1. A series of N of such registers, denoted by wReg1, wReg2, .., wRegN ,
are used to communicate between the writer, i.e., p1, and each of the
N readers. In all these registers, the writer is p1. The reader of register
wRegK is pK .

2. A series ofN2 of such registers, denoted by rReg1,1, rReg1,2, .., rRegi,j , .., rRegN,N ,
are used to communicate between the readers. In any register of the form
rRegi,j , the reader is pi and the writer is pj .

The algorithm does also rely on a sequence number sn that indicates
the version of the current value of the register. We make also use here of
a function highest that returns the pair (sequence number, value) with the
highest sequence number among a set of such pairs.

Correctness. By the termination property of the underlying (1,1) atomic reg-
isters and the fact that the transformation algorithm contains no loop or wait
statement, every operation eventually returns. Similarly, by the validity prop-
erty of the underlying (1,1) atomic register, and the fact that the value with
the largest sequence number is chosen to be returned, we also derive the
validity of the (1,N) atomic register. Consider now the ordering property.
Consider a write w1 of a value v1 with sequence number s1 that precedes a
write w2 with value v2 and sequence number s2 (s1 < s2). Assume that some
read operation returns v2: by the algorithm, for any j in [1, N], pi has writ-
ten (s2, v2) in ri,j . By the ordering property of the underlying (1, 1) registers,
every subsequent read will return a value with a sequence number at least as
hight as s2, i.e., there is no way to return v1.

Performance. Every write operation into the (1,N) register requires N writes
into (1,1) registers. Every read from the (1,N) register requires one read from
N (1,1) registers and one write into N (1,1) registers.

Assume we apply the transformation of Algorithm 4.5 to Algorithm 4.1
in order to obtain a (1,N) atomic register algorithm. Every write operation
in the (1, N) register would involve N communication round-trips between
the writer and all other processes: each round-trip corresponds to a write
into one of the (1, 1) registers. Furthermore, every read in the (1, N) register
would involve N communication round trips between the reader and all other
processes.

Assume we apply the transformation of Algorithm 4.5 to Algorithm 4.4
in order to obtain a (1,N) atomic register algorithm. Every write operation in
the (1,N) register would involve N communication round-trips between the

94

Algorithm 4.5 From (1,1) atomic to (1,N) atomic registers.

Implements:
(1,N) Atomic Register (reg).

Uses:
(1,1) Atomic Register (wReg, rReg).

upon event 〈 Init 〉 do
temp1i := temp2i := tsi := acksRi := acksWi := 0;

upon event 〈 write, reg,v 〉 do
tsi := tsi + 1;
for j = 1 to N do

trigger 〈 write, wRegj ,tsi, v 〉;

upon event 〈 writeRet, wRegj , ack 〉 do
acksWi := acksWi + 1;

upon (#acksWi = N) do
acksWi := 0;
trigger 〈 writeRet, reg,ack 〉;

upon event 〈 read, reg 〉 do
for j = 1 to N do

trigger 〈 read, rRegi,j 〉;

upon event 〈 readRet, rRegi,j , (sn, v) 〉 do
readSeti := readSeti ∪ {(sn, v)};

upon (#readSeti = N) do
trigger 〈 read, wRegi 〉;

upon event 〈 readRet, wRegi, (sn, v) 〉 do
(temp1i, temp2i) := highest(readSeti ∪ (sn,v));
for j = 1 to N do

trigger 〈 write, rRegj,i,temp1i, temp2i 〉;

upon event 〈 writeRet, rRegj,i, ack 〉 do
acksRi := acksRi + 1;

upon (#acksRi = M) do
acksRi := 0;
trigger 〈 readRet, reg,v 〉;

writer and N possible readers: each round-trip corresponds to a write into
the (1,1) register. Furthermore, every read in the (1,N) register would involve
2N communication round trips between the reader and all other processes.

95

We give in the following two (1,N) atomic register algorithms. The first
one is a a fail-stop and the second is a fail-silent algorithm. These are adap-
tations of the read-one-write-all and majority-voting (1,N) regular register
algorithms, respectively. Both algorithms are clearly more efficient than those
we would obtain through the automatic transformation described above.

4.3.4 Fail-Stop Algorithm: Read-One-Write-All (1,N) Atomic
Register

If we consider one writer and multiple readers, i.e., a (1,N) register, the read-
one-write-all regular register algorithm (Algorithm 4.1) does clearly not work:
the counter example is depicted in Figure 4.6. Algorithm 4.6 circumvents the
problem by having the reader also imposes, on all other processes, the value it
is about to return. In other words, the read operation acts also as a write. The
writer uses a timestamp to date the values it is writing: it is this timestamp
that ensures the ordering of every execution. A process that is asked to store
a value that is older than the one it has, returns an acknowledgement but
does not modify its value. We will discuss the need for this test, as well as
the need for the timestamp through an exercise at the end of this chapter.

Correctness. Termination and validity are ensured as in Algorithm 4.1. Con-
sider now ordering. Assume p1 writes a value v and then v′, which is associ-
ated with some sequence number sn. Assume furthermore that some reader
pi reads v′ and, later on, some other process pj invokes another read oper-
ation. At the time where pi completes its read, all processes that did not
crash have a sequence number that is sn or a higher one. By the algorithm,
there is no way pj will later one change its value with v, as this has a lower
timestamp because it was written by p1 before v′.

Performance. Every write or read operation requires one communication
round-trip between the writer or the reader and all processes. At most 2N
messages are needed in both cases.

4.3.5 Fail-Silent Algorithm: Majority-Voting (1,N) Atomic
Register

In the following, we consider a fail-silent model. We describe an adaptation
of our majority-voting (1,N) regular reguster that implements a (1,N) atomic
register algorithm. More precisely, we describe in Algorithm 4.7 what should
be modified with respect to Algorithm 4.2 in order to obtain an algorithm
that implements a (1,N) atomic register.

The implementation of the write operation is similar to that of Algo-
rithm 4.2: the writer makes simply sure a majority adopts its value. The
implementation of the read operation is however different. A reader selects
the value with the highest sequence number among a majority, as in Al-
gorithm 4.2, but now also makes sure a majority adopts this value before

96

Algorithm 4.6 Atomic extension of the (1,N) read-one-write-all regular register

algorithm.

Implements:
Atomic Register (reg).

Extends:
Read-One-Write-All (1,N) Regular Register Algorithm.

upon event 〈 Init 〉 do
tsi := sni := 0;
readingi := false;

upon event 〈 read, reg 〉 do
readingi :=true;
trigger 〈 bebBroadcast, [Write, sni, vi] 〉;

upon event 〈 write, reg,v 〉 do
tsi := tsi + 1;
trigger 〈 bebBroadcast, [Write, tsi, v] 〉;

upon event 〈 bebDeliver, pj ,[Write, ts, v] 〉 do
if ts > sni then

vi := v;
sni := ts

trigger 〈 pp2pSend, pj , [Write, ack] 〉;

upon (correct ⊆ writeSet) do
writeSeti := ∅;
if (readingi =true) then

readingi :=false;
trigger 〈 readRet, reg, vi 〉;

else
trigger 〈 writeRet, reg, ack 〉;

terminating the read operation: this is key to ensuring the ordering property
of an atomic register.

It is important to notice that Algorithm 4.4 is a particular case of Al-
gorithm 4.7 in the following sense. Given that there is only one reader in
Algorithm 4.4, the reader simply adopts itself the value read and makes sure
to include itself in the majority.

Correctness. Termination and validity are ensured as in Algorithm 4.2. Con-
sider now the ordering property. Assume that a read invocation r1, by process
pi, returns a value v1 from a write invocation w1, by process p1 (the only
writer), a read invocation r2, by process pj , returns a different value v2 from
a write invocation w1, also by process p1, and r1 precedes r2. Assume by
contradiction that w2 precedes w1. By the algorithm, the sequence number

97

Algorithm 4.7 Atomic extension of the majority voting (1,N) regular register

algorithm.

Implements:
(1,N) Atomic Register (reg).

Extends:
Majority-Voting (1,N) Regular Register Algorithm.

upon event 〈 Init 〉 do
readingi :=false;

upon (#readSeti > N/2) do
(ts, v) := highest(readSeti);
acksi := 0;
readingi :=true;
trigger 〈 bebBroadcast, [Write, ts, v] 〉;

upon (#acksi > N/2) do
if readingi =true then

readingi :=false;
trigger 〈 readRet, reg,v 〉;

else trigger 〈 writeRet, reg,ack 〉;

that p1 associated with v1, tsk, is strictly higher than the one p1 associated
with v2, tsk′ . Given that r1 precedes r2, then when r2 was invoked, a ma-
jority have tsk′ . Hence pj cannot return v2, because this has a strictly lower
sequence number than v1. A contradiction.

Performance. Every write operation requires one communication round-trip
between p1 and a majority of the processes. 2N messages are exchanged.
Every read requires two communication round-trips between the reader and
a majority of the processes. 4N messages are exchanged.

4.4 (N,N) Atomic Register

4.4.1 Specification

Just like a regular register, an atomic register ensures that failed read op-
erations do always appear as if they were never invoked, and failed writes
either appear as if they were never invoked or if they were complete, i.e.,
if they were invoked and terminated. In addition, even in the face of con-
currency, the values returned by reads could have been returned by a serial
execution (called a linearization of the actual execution) where any operation
takes place at some instant between its invocation and reply instants. The
execution is in this sense linearizable (i.e., it has one linearization). Clearly,

98

Module:

Name: (N,N) Atomic Register (aNReg).

Events:

Same as for a regular register.

Properties:

NAR1: Termination: same as SR1.

NAR2: Atomicity: Every failed operation appears to be complete or does
not appear to have been invoked at all, and every complete operation
appears to have been executed at some instant between its invocation and
reply events.

Module 4.3 Interface and properties of a (N,N) atomic register.

a (N,N) atomic register is a generalization of a (1,N) atomic register. The
interface and properties of a (N,N) atomic register are given in Module 4.3.

To study the implementation of (N,N) atomic registers, we adopt the same
modular approach as for the (1,N) case. We first describe a general transfor-
mation that implements a (N,N) atomic register using (1,N) atomic registers.
This transformation does not rely on any other way of exchanging infor-
mation among the processes, besides the underlying (1,N) atomic registers.
This helps understand the fundamental difference between both abstractions.
Not surprisingly, the algorithms that would result from such transformations
to implement (N,N) atomic registers in various message passing models, al-
though modular, are not efficient. We will also study ad-hoc algorithms in
various models.

4.4.2 From (1,N) atomic to (N,N) atomic registers

To get an intuition of this transformation, think of emulating a general
(atomic) meeting board to exchange information between a set of N teachers.
All teachers are able to write and read information on the common board.
However, what is available are simply boards where only one teacher can
write information. Assume every teacher uses its own board to write its in-
formation, then it would not be clear for a teacher which information to select
and still guarantee the atomicity of the common board, i.e., the illusion of
one physical common board that all teachers share. The difficulty is actually
for any given teacher to select the latest information written. Indeed, if some
teacher A writes X and then some other teacher B writes later Y , then a
teacher that comes afterward should read Y . But how can the latter teacher
know that Y is indeed the latest information?

This can in fact be ensured by having the teachers coordinate their writing
to create a causal precedence among the information they write. Teacher B
that writes Y could actually read the board of teacher A and, when finding
X, associate with Y some global timestamp that denotes the very fact that Y

99

is indeed more recent than X. This is the key to the transformation algorithm
we present below.

Ou transformation algorithm (i.e., Algorithm 4.8) uses N (1,N) atomic
registers, denoted by wReg1, wReg2, .., wRegN , to build one (N,N) atomic
register, denoted by reg. Every register wRegi contains a value, an associated
sequence number, as well as the identity of the process which has written
this value. Basically, to write a value v in reg, process pj reads all registers
and selects the highest sequence number, which it increments and associates
it with the value v to be written. Then pj writes in wRegi the value with
the associated sequence number as well as its own identity j. To read a value
from reg, process pj reads all registers wReg1, wReg2, .., wRegL, and returns
the value with the highest sequence number. To distinguish values that are
associated with the same sequence number, pj uses the identity of the pro-
cesses that have originally written those values and order them accordingly.
We thus define a total order among the sequence numbers associated with the
values, and we abstract away this order within a function highest that returns
the value with the highest sequence number, among a set of such numbers.
We also make use of a similar function, also called highest that returns the
highest sequence number, among a set of triplets (sequence number, value,
process identity).

Correctness. The termination property of the (N,N) register follows from
that of the (1,N) register, whereas atomicity follows from the total order of
writing values.

Performance. Every write operation into the (N,N) atomic register requires
N reads from each of the (1,N) registers and 1 write into a (1,N) register.
Every read from the (N,N) register requires N reads from each of the (1,N)
registers.

Assume we apply the transformation of Algorithm 4.8 to Algorithm 4.6
in order to obtain a (N,N) atomic register algorithm. Every read in the (N,N)
register would involve N communication round trips between the reader and
all other processes. Furthermore, every write operation in the (N,N) regis-
ter would involve (N + 1) communication round-trips between the writer
and all other processes. Similarly, assume we apply the transformation of
Algorithm 4.8 to Algorithm 4.7 in order to obtain a (N,N) atomic register
algorithm. Every read in the (N,N) register would involve 2N communication
round trips between the reader and all other processes. Furthermore, every
write operation in the (N,N) register would involve (N + 1) communication
round-trips between the writer and all other processes. Clearly, none of such
algorithms is efficient. We present in the following, first a fail-stop algorithm
and then a fail-silent algorithm.

100

Algorithm 4.8 From (1,N) atomic to (N,N) atomic registers.

Implements:
(N,N) Atomic Register (reg).

Uses:
(1,N) Atomic Registers (wReg).

upon event 〈 Init 〉 do
tempi := sni := 0;
tSeti := readSeti := ∅;

upon event 〈 write, reg,v 〉 do
tempi := v;
tSeti := ∅;
for j = 1 to N do

trigger 〈 read, wRegj 〉;

upon event 〈 readRet, wRegj , (sn, v, k) 〉 do
tSeti := tSeti ∪ {sn};

upon (#tSeti = N) do
sni := highest(tSeti) + 1;
trigger 〈 write, wRegi,(sni, tempi) 〉;

upon event 〈 writeRet, wRegi, ack 〉 do
trigger 〈 writeRet, reg, ack 〉;

upon event 〈 read, reg 〉 do
for j = 1 to N do

trigger 〈 read, wRegj 〉;

upon event 〈 readRet, wRegj , (ts, v, k) 〉 do
readSeti := readSeti ∪ {ts, v, k};

upon (#readSeti = N) do
v := highest(readSeti);
trigger 〈 readRet, reg,v 〉;

4.4.3 Fail-Stop Algorithm: Read-All-Write-All (N,N) Atomic
Register

We describe below an adaptation of our (1,N) read-one-write-all atomic reg-
ister algorithm to deal with multiple writers. To get an idea of the issue
introduces by multiple writers, it is important to first figure out why Algo-
rithm 4.6 cannot afford multiple writers. Consider indeed the case of two
processes trying to write in a register implemented using Algorithm 4.6: say
processes p1 and p2. Assume furthermore that p1 writes value X, then Y , and

101

later on (after the write of Y is terminated), p2 writes value Z. If some other
process reads the register after the writing of Z is over, it will get value Y ,
and this is because Y has a higher timestamp: Y has timestamp 2 whereas
Z has timestamp 1. Intuitively, the problem is that the timestamps are gen-
erated independently by the processes, which was clearly not the case with a
single writer.

What we actually expect from the timestamps is that (a) they be compa-
rable, and (b) they reflect the precedence relation between operations. They
should not be generated independently by multiple writers, but should in
our example reflect the fact that the writing of Y precedes the writing of Z.
In the case of multiple writers, we have to deal with the problem of how to
determine a timestamp in a distributed fashion. The idea is to have every
writer consults first other writers and determine its timestamp by choosing
the highest, i.e., we add one communication round-trip between the writer
and all processes (that did not crash). It is important to notice that selecting
a highest timestamp is less trivial than in previous cases because two writers
might end up using the same timestamp. As a consequence, two values might
be stored in different processes with the same timestamp. Two consecutive
readers that come after the writes might return different values, without any
write having been invoked in the meantime. Such execution should be pre-
vented for an atomic register. Given that we cannot prevent two concurrent
processes from computing two similar timestamps, the idea is to use the iden-
tity of the processes in the comparison, i.e., use the lexicographical order.

We present in Algorithm 4.9, the events that need to be modified or added
to Algorithm 4.6, in order to deal with multiple writers.

4.4.4 Fail-Silent Algorithm: Majority Voting (N,N) Atomic
Register

We describe here how to obtain an algorithm that implements a (N,N) atomic
register in a fail-silent model as an extension of Algorithm 4.7. Let us first
understand first the issue of multiple writers in Algorithm 4.7. Consider again
the case of two processes trying to write in a register implemented using
Algorithm 4.1: say processes p1 and p2. Assume furthermore that p1 writes
value X, then Y , and later on (after the write of Y is terminated), p2 tries
to write value Z. Process p2 will be blocked waiting for acknowledgements
from a majority of the processes and termination will be violated because at
least one acknowledgement will be missing: remember that, in Algorithm 4.2,
a (witness) process does not send back an acknowledgement for a request to
write a value with a lower timestamp than what the process has. Assume we
modify Algorithm 4.2 to alleviate the need for this test and have the witness
processes reply in all cases. We will ensure that Z is written. Nevertheless,
if some other process reads the register afterward, it will get value Y , and
this is because Y has a higher timestamp: Y has timestamp 2 whereas Z has
timestamp 1.

102

Algorithm 4.9 (N,N) extension of the (1,N) read-one-write-all atomic register

algorithm.

Implements:
Atomic Register (reg).

Extends:
Read-one-write-all (1,N) atomic register algorithm.

upon event 〈 Init 〉 do
sni := (0, 0);
writeTmpSeti := tmpSeti := ∅;
temp1i := temp2i := 0;

upon event 〈 write, reg, v 〉 do
temp1i := v;
trigger 〈 bebBroadcast, [GetTmsp] 〉;

upon event 〈 bebDeliver, pj , [GetTmsp] 〉 do
trigger 〈 pp2pSend, pj ,[GetTmsp, sni] 〉;

upon event 〈 pp2pDeliver, pj , [GetTmsp, ts] 〉 do
tmpSeti := tmpSeti ∪ {ts};
writeTmpSeti := writeTmpSeti ∪ {pj};

upon (correcti ⊆ writeTmpSeti) do
temp2i := highest(tmpSeti);
writeTmpSeti := tmpSeti := ∅;
trigger 〈 bebBroadcast, [Write, (temp2i, i), temp1i] 〉;

We describe in Algorithm 4.10 the events that need to be modified or
added to Algorithm 4.7 in order to deal with multiple writers.

More precisely, the read procedure of our (N,N) atomic register algorithm
is similar to that of Algorithm 4.7 (majority voting (1,N) atomic register
algorithm). The write procedure is different in that the writer determines
a timestamp to associate with the new value to be written by reading at
a majority of processes. It is also important to notice that the processes
distinguish values with the same timestamps using process identifiers. We
assume that every value written is tagged with the identity of the originator
process. A value v is considered more recent than a value v ′, if v has a strictly
higher timestamp, or they have the same timestamp and v was written by pi
whereas v′ was written by pj such that i > j. We assume here a new function
highest() and new comparator operator that counts for this stronger ordering
scheme.

Performance. Every read or write in the (N,N) register requires 2 communi-
cation round-trips. In each cases, 4N messages are exchanged.

103

Algorithm 4.10 (N,N) Extension of the majority voting (1,N) atomic register

algorithm.

Implements:
(N,N) Atomic Register (reg).

Extends:
Majority-Voting (1,N) Atomic Register Algorithm.

upon event 〈 Init 〉 do
temp1i := temp2i := 0;

upon event 〈 write, reg, v 〉 do
readSeti := ∅;
temp1i := v;
trigger 〈 bebBroadcast, [Read] 〉;

upon (#readSeti > N/2) do
(temp2i, temp3i) := highest(readSeti);
acksi := 0;
if (readingi =false) then

temp3i := temp3i + 1;
temp4i := temp1i;

trigger 〈 bebBroadcast, [Write, temp4i, temp3i] 〉;

4.5 Logged Registers

So far, we considered register specifications and implementations under the
assumption that processes that crash do not recover. In other words, processes
that crash, even if they recover, are somehow excluded from the computation:
they can neither read or write in a register. Furthermore, they cannot help
other processes reading or writing by storing and witnessing values. We re-
visit here this assumption and take into account processes that recover after
crashing.

4.5.1 Specifications

The interface and properties of a (1,N) regular register in a fail-recovery
model, called here a logged register, are given in Module ??. Logged atomic
registers can be specified accordingly.

The termination property is similar to what we considered before, though
expressed here in a different manner. Indeed the notion of correctness used in
earlier register specifications has a different meaning here. It does not make
much sense to require that processes that invokes some operation, crash, and
then recover, still get back a reply to the operation. They might however
invoked another operation and, unless they crash, our termination property

104

Module:

Name: regular Register (rReg).

Events:

Request: 〈 read, reg 〉: Used to invoke a read operation on register reg.
Request: 〈 write, reg, v 〉: Used to invoke a write operation of value v on
register reg.

Confirmation: 〈 readRet, reg, v 〉: Used to return v as a response to
the read invocation on register reg and indicates that the operation is
complete.
Confirmation: 〈 WriteRet, reg,ack 〉: Indicates that the write operation
has taken place at register reg and is complete.

Properties:

SRR1: Termination: If a process invokes an operation and does not crash,
the process eventually returns from the invocation.

SRR2: Validity: A read returns the last value written, or the value con-
currently written.

Module 4.4 Interface and properties of a logged regular register.

ensures than they eventually get a reply. On the the other hand, the valid-
ity property is expressed as in earlier specifications but now has a different
meaning. Assume the writer p1 crashes before completing the write of some
value X (no previous write was invoked before), then recovers and invokes
the writing of value Y . Assume that p2 concurrently invokes a read operation
on the same register. It is valid that this read operation returns 0: value X
is not considered to have been written. Now assume that p2 invokes another
read operation that is still concurrent with the writing of Y . It is not valid
for p2 to return 5. In other words, there is only one last value written before
6: this can be 0 or 5, but not both of them.

4.5.2 Algorithms

Considering that all processes can crash, it is easy to see that even a (1, 1)
regular register algorithm cannot be implemented unless the processes have
access to stable storage and a majority is correct. We thus make the following
assumptions.

1. Every process has access to a local stable storage. This is supposed to be
accessible through the primitives store, which atomically logs information
in the stable storage, and retreive, which gets back that information from
the storage. Information that is logged in the stable storage is not lost
after a crash.

2. A majority of the processes are correct. Remember that a correct process
in a fail-recovery model is one that either never crashes, or eventually
recovers and never crashes again.

105

Intuitively, we might consider transforming our majority voting regular
register (i.e., Algorithm 4.2) to deal with process crashes and recoveries sim-
ply by logging every new value of any local variable to stable storage, upon
modification of that variable, and then retrieving all variables upon recovery.
This would include messages to be delivered, i.e., the act of delivering a mes-
sage would coincide with the act of storing it in stable storage. However, and
as we discussed earlier in this manuscript, one should be careful witch such
an automatic transformation because access to stable storage is an expensive
operation and should only be used when necessary.

In particular, we describe in Algorithm 4.11 an implementation of a (1, N)
regular register that logs the variables that are persistent across invocations
(e.g., the value of the register at a given process and the timestamp), in one
atomic operation, and retreive these variables upon recovery. We discuss the
need of this atomicity, through an exercise given at the end of the chapter.

Our algorithm does not log messages but makes use of stubborn communi-
cation channels and stubborn broadcast communication abstractions instead
of perfect point to point communication channels and best effort broadcast.
Remember that stubborn communication primitives ensure that if a message
is sent to a correct process (even in the fail-recovery sense), the message is
delivered an infinite number of times, unless the sender crashes. This ensures
that the process, even if it crashes and recovers a finite number of times, will
eventually process every message sent to it. This guarantee is not provided
with perfect point to point communication channels (nor with best effort
broadcast), unless the act of delivering a message coincides with the act of
logging it.

Note that upon recovery, every process first executes its initialization
procedure and then its recovery one. Note also that we do not log the vari-
ables that are only persistent across events, e.g., the variable that counts the
number of acknowledgements that a writer has for instance received. The
communication pattern of Algorithm 4.11 is similar to that of Algorithm 4.2.
What we furthermore add here are logs. For every write operation, the writer
logs the new timestamp and the value to be written, then a majority of the
processes log the new value with its timestamp.

Correctness. The termination property follows from the properties of the
underlying stubborn communication abstractions and the assumption of a
majority of correct processes.

Consider now validity. Consider first the case of a read that is not con-
current with any write. Assume furthermore that a read is invoked by some
process pi and the last value written by p1, say v, has timestamp sn1 at p1.
Because the writer logs every timestamp and increments the timestamp for
every write, at the time when the read is invoked, a majority of the pro-
cesses have logged v and timestamp sn1 and there is no higher timestamp in
the system. Before reading a value, i.e., returning from the read operation,
pi consults a majority of processes and hence gets at least one value with

106

Algorithm 4.11 Majority voting regular register algorithm with recovery.

Implements:
Regular Register

Uses:
StubbornBroadcast (sb).
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
tsi := sni := vi := acksi := initi := 0;
readSeti := ∅;

upon event 〈 Recovery 〉 do
retreive(tsi, initi, sni, vi);
if initi 6= 0 then trigger 〈 sbebBroadcast, [Write, tsi, vi] 〉;

upon event 〈 write, reg, v 〉 do
acksi := 0; tsi := tsi + 1;
store(tsi, v);
trigger 〈 sbebBroadcast, [Write, tsi, v] 〉;

upon event 〈 sbebDeliver, pj , [Write, ts, v] 〉 do
if ts > sni then

vi := v; sni := ts;
store(sni, vi);

trigger 〈 sbp2pSend, pj , [Write, ack] 〉;

upon event 〈 sbp2pDeliver, pj , [Write, ack] 〉 do
acksi := acksi + 1;

upon (#acksi > N/2) do
trigger 〈 writeRet, reg, ack 〉;

upon event 〈 read, reg 〉 do
trigger 〈 sbebBroadcast, [Read] 〉;

upon event 〈 sbebDeliver, pj , [Read] 〉 do
trigger 〈 sp2pSend, pj ,[Read, sni, vi] 〉;

upon event 〈 sp2pDeliver, pj , [Read, snj , vj] 〉 do
readSeti := readSeti ∪ {(snj , vj)};

upon (#readSeti > N/2) do
v := highest(readSeti);
readSeti := ∅;
trigger 〈 readRet, reg,v 〉;

timestamp sn1. Process pi hence returns value v with timestamp sn1, which
is indeed the last value written.

107

Consider now the case where the read is concurrent with some write of
value v and timestamp sn1, and the previous write was for value v′ and
timestamp sn1 − 1. If the latter write had failed before p1 logged v′ than no
process will ever see v′. Otherwise, p1 would have first completed the writing
of v′ upon recovery. If any process returns sn1 to pi, pi will return v, which
is a valid reply. Otherwise, at least one process will return sn1−1 and pi will
return v′, which is also a valid reply.

Performance. Every write operation requires one communication round-trip
between p1 and a majority of the processes and every read requires one com-
munication round-trip between the reader process and a majority of the pro-
cesses. In both cases, at most 2N messages are exchanged. Every write re-
quites one log at p1 and then at least a majority of logs (possibly parallel
ones). In a sense, every write requites two causally related logs. It is im-
portant to notice that stubborn channels are implemented by retransmitting
messages periodically, and this retransmission can be stopped by a writer
and a reader that receives a reply of some process or receives enough replies
to complete its operation.

Interestingly, Algorithm 4.10 and Algorithm 4.7 extend Algorithm 4.11 to
implement respectively a (1,N) and (N,N) atomic registers in a fail-recovery
model.

108

Exercises

Make sure we have an exercise that illustrates the need for the timestamp and
the majority in the fail recovery algorithm and an exercise that illustrates a
fail recovery algorithm with a majority of the processes that do never crash.

If we assume that a majority of the processes never crash, then we can very
easily adapt our fail-silent algorithms described above (i.e., Algorithm 4.2 and
alg:regRegM) to the crash-recovery case. This would require one modification:
a process that crashes and recovers does simply never act as a witness in any
reading or writing activity of some other process, i.e., the process should
not have its value and timestamp included in any majority from which a
value is selected. Roughly speaking, this is because the witness process in the
intersection might have crashed and recovered in the meantime. Given that
this process does not have any stable storage, it might report about an old
value. In this sense, processes that recover are excluded from the computation:
they cannot act as witnesses. However, they can still invoke reads and writes
operations.

Exercise 4.1 (*) Explain why every process needs to maintain a copy of the
register value in Algorithm 4.1 and in Algorithm 4.2.

Exercise 4.2 (*) Explain why a timestamp is needed in Algorithm 4.2 but
not in Algorithm 4.1.

Exercise 4.3 (*) Explain why, in Algorithm 4.4, the reader p2 needs always
include its own value and timestamp when selecting a majority.

Exercise 4.4 (**) Does any implementation of a regular register require a
majority of correct processes in an asynchronous system? What if an even-
tually perfect failure detector is available?

Exercise 4.5 (***) Assume that some algorithm A, using some failure de-
tector D, implements a regular register in a system where up to N−1 processes
can crash. Can we implement a perfect failure detector out of D?

Exercise 4.6 (**) Explain why, in Algorithm 4.11 for instance, if the store
primitive is not atomic, it is important not to log the timestamp without
having logged the value. What if the value is logged without having logged the
timestamp.

Exercise 4.7 (**) Explain why in Algorithm 4.11, the writer needs to store
its timestamp in stable storage.

109

Solutions

Solution 4.1 We consider each algorithm separately.

Algorithm 4.1. In this algorithm, a copy of the register value needs to be
stored at every process because we assume that any number of processes can
crash and any process can read. Indeed, assume that the value is not stored
at some process pk. It is easy to see that after some write operation, all
processes might crash except pk. In this case, there is no way for pk to return
the last value written.

Algorithm 4.2. In this algorithm, a copy of the register value needs also to
be maintained at all processes, even if we assume only one reader. Assume
that some process pk does not maintain a copy. Assume furthermore that
the writer updates the value of the register: it can do so only by accessing
a majority. If pk is in that majority, then the writer would have stored the
value in a majority of the processes minus one. It might happen that all pro-
cesses in that majority, except pk, crash: the rest of the processes plus pk also
constitutes a majority. A subsequent read in this majority might not get the
last value written. 2

Solution 4.2 The timestamp of Algorithm 4.2 is needed precisely because
we do not make use of a perfect failure detector. Without the use of any
timestamp, p2 would not have any means to compare different values from
the accessed majority. In particular, if p1 writes a value v and then a value v′,
and does not access the same majority in both cases, p2, which is supposed
to return v′, might not see which one is the latest. Such a timestamp is not
needed in Algorithm 4.1, because the writer accesses all processes that did
not crash. The writer can do so because of its relying on a perfect failure
detector. 2

Solution 4.3

p2
sn = 2

read() −> 6 read() −> 5

sn = 1

p1
write(5)

sn = 1

write(6)

sn = 2

sn = 1 sn = 1 p3 sn = 1 sn = 1 sn = 1

sn = 1 sn = 1

sn = 1

p4

p5 sn = 1

sn = 1

Figure 4.9. Violation of ordering

110

Unless it includes its own value and timestamp when selecting a majority,
the reader p2 might violate the ordering property as depicted in the scenario
of Figure 4.9. This is because, in its first read, p2 accesses the writer, p1,
which has the latest value, and in its second read, it accesses a majority with
timestamp 1 and old value 5. 2

Solution 4.4 The argument we use here is a partitioning argument and it is
similar to the argument used earlier in this manuscript to show that uniform
reliable broadcast requires a majority of correct processes even if the system
is augmented with an eventually perfect failure detector.

We partition the system into two disjoint sets of processes X and Y , such
that | X | dn/2e: p1, the writer of the register, is in X and p2, the reader of
the register, is in Y . The assumption that there is no correct majority means
here that there are runs where all processes of X crash and runs where all
processes of Y crash.

Basically, the writer p1 might return from having written a value, say
v, even if none of the processes in Y has witnessed this value. The other
processes, including p2, were considered to have crashed, even if they were
not. If the processes of X, and which might have witnessed v later, crash, the
reader, p2, has no way of knowing about v and might not return the last value
written. The exact same argument can be used to show that the agreement
property of a one-shot register can be violated if there is no correct majority.

Assuming an eventually perfect detector does not help. This is because,
even with such a failure detector, the processes of X, including the writer p1

might return from having written a value, say v, even if no process in Y has
witnessed v. The processes of Y have been falsely suspected and there is no
way to know whether the suspicions are true or false. 2

Solution 4.5 The answer is yes and this intuitively means that a perfect
failure detector is needed to implement a regular register if N − 1 processes
can crash.

We sketch the idea of an algorithm A′ that uses A to implement a per-
fect failure detector, i.e., to emulate its behavior within a distributed vari-
able v[P]. Every process pi has a copy of this variable, denoted by v[P]i.
The variable v[P]i is supposed to contain a set of processes suspected by pi
according to the strong completeness and strong accuracy properties of the
perfect failure detector P . The variable is initially empty at every process
and the processes use algorithm A, and the register they can build out of A,
to update the variable.

The principle of algorithm A′ is the following. It uses N regular (1,N) reg-
isters: every process is the writer of exactly one register (we say its register).
Every process pi holds a counter that pi keeps on incrementing and writing in
its register. For a value k of the counter, pi triggers an instance of algorithm
A, which itself triggers an exchange of messages among processes. Whenever

111

a process pj receives such a message, it tags it with k and its identity. When
pi receives, in the context of its instance k of A, a message tagged with pj
and k, pi remembers pj as one of the processes that participated in its k’th
writing. When the write terminates, pi adds to v[P]i all processes that did
not participate in the k’th writing and does never remove them from v[P]i.

It is easy to see that variable v[P] ensures strong completeness. Any pro-
cess that crashes stops participating in the writing and will be permanently
suspected by every correct process. We argue now that it also ensures strong
accuracy. Assume by contradiction that some process pj is falsely suspected.
In other words, process pj does not participate in the k’th writing of some
process pi in the register. Given that N − 1 processes can crash, right after
pi terminates its k’t writing, all processes can crash except pj . The latter
has no way of distinguishing a run where pi did write the value k from a
run where pi did not write such a value. Process pj might hence violate the
validity property of the register. 2

Solution 4.6 Assume p1 writes a value v, then a value v′, and then a value
v′′. While writing v, assume p1 accesses some process pk and not p′k whereas,
while writing v′, p1 accesses p′k and not pk. While writing v′′, p1 also accesses
pk but pk later logs first the timestamp and then crashes without logging the
associated value, then recovers. When reading, process p2 might select the
old value v because it has a higher timestamp, violating validity.

Nevertheless, logging the timestamp without logging the value is not nec-
essary (although desirable to minimize accesses to stable storage). In the
example depicted above, p2 would not be able to return the new value be-
cause it still has an old timestamp. But that is okay because the value was
not completely written and there is no obligation to return it. 2

Solution 4.7 The reason for the writer to log its timestamp in Algorithm 4.11
is the following. If it crashes and recovers, the writer should not use a smaller
timestamp than the one associated with the current value of the register.
Otherwise, the reader might return an old value and violates the validity
property of the register. 2

112

4.6 Historical Notes

• Register specifications were first given in (Lamport 1977; Lamport 1986a;
Lamport 1986b), for the case of a concurrent system with one writer. His
notion of atomic register was similar to the one we introduced here. There
is slight difference however in the way we gave our definition because we
had to take into account the possibility for the processes to fail (indepen-
dently of each other). We had thus to deal explicitly with the notion of
failed operations (in particular failed write). Lamport considered a multi-
processor machine where processes do not fail independently. In fact, our
notion of atomicity is similar to the notion of linearizability introduced
in (?)
Our notion of regular register also corresponds to the notion of regular reg-
ister also introduced in (Lamport 1977; Lamport 1986a; Lamport 1986b).
For the case of multiple-writers the notion of regular register was gener-
alized in three different ways in (?), all are stronger than our notion of
regular register.
• Various forms of register transformations were given in (Vitanyi and Awer-

buch 1986; Vidyasankar 1988; Vidyasankar 1990; Israeli and Li 1993).
• In this chapter, we considered registers that can contain any integer value

and did not make any assumption on the possible range of this value.
In (Lamport 1977), registers with values of a limited range were consid-
ered, i.e., the value in the register cannot be greater than some specific value
V . In (Lamport 1977; Peterson 1983; Vidyasankar 1988), several transfor-
mation algorithms were described to emulate a register with a given range
value into a register with a larger range value.
• Fail-silent register implementations over a crash-stop message passing sys-

tem and assuming a correct majority were first given in (Attiya, Bar-Noy,
and Dolev 1995) for the case of a single writer. They were then generalized
for the case of multiple writers in (?; ?).
• Failure detection lower bounds for registers were given in (Delporte-Gallet,

Fauconnier, and Guerraoui 2002).
• Implementation of registers when processes can crash and recover were

given in (Boichat, Dutta, Frolund, and Guerraoui 2001), inspired by con-
sensus implementations in a crash-recovery trmodel from (Aguilera, Chen,
and Toueg 2000).

113

5. Consensus

This chapter considers the consensus abstraction. The processes use this ab-
straction to individually propose an initial value and eventually agree on a
common final value among one of these initial values. We give specifications
of this abstraction and algorithms that implement these specifications.

We will show later, in Chapter 6, how consensus can be used to build
a strong form of reliable broadcast: total order broadcast. Later in the
manuscript, in Chapter 7, we will use the consensus abstractions to build
more sophisticated forms of agreements.

5.1 Regular Consensus

5.1.1 Specifications

Consensus (sometimes we say regular consensus) is specified in terms of two
primitives: propose and decide. Each process has an initial value that it pro-
poses to the others, through the primitive propose. The proposed values are
private to the processes and the act of proposing is local. This act typically
triggers broadcast events through which the processes exchange their pro-
posed values to eventually reach agreement. Indeed, all correct processes have
to decide on a single value, through the primitive decide. This decided value
has to be one of the proposed values. Consensus must satisfy the properties
C1–4 listed in Module 5.1.

In the following, we present two different algorithms to implement con-
sensus. Both algorithms are fail-stop: they rely on a perfect failure detector
abstraction.

5.1.2 A Flooding Algorithm

Algorithm 5.1 uses, besides a perfect failure detector, a best-effort broadcast
communication abstraction. The basic idea is the following. The processes
follow sequential rounds. Each process keeps a set of proposed values it has
seen. This set is typically augmented when moving from a round to the next
(and new proposed values are known). In each round, each process dissemi-
nates its own set to all processes using a best-effort broadcast, i.e., it floods

Module:

Name: (regular) Consensus (c).

Events:

Request: 〈 cPropose, v 〉: Used to propose a value for consensus.

Indication: 〈 cDecide, v 〉: Used to indicate the decided value for consen-
sus.

Properties:

C1: Termination: Every correct process eventually decides some value.

C2: Validity: If a process decides v, then v was proposed by some process.

C3: Integrity: No process decides twice.

C4: Agreement: No two correct processes decide differently.

Module 5.1 Interface and properties of consensus.

the system with all proposals it has seen. When a process gets a proposal set
from another process, it merges this set with its own. Basically, in each round
every process makes a global union of all sets of proposed values it received
so far.

Every message is tagged with the round number in which the message
was broadcast. A round terminates when a set has been included from every
process that has not been suspected in that round. That is, a process does
not leave a round unless it received messages, tagged with that round, from
all processes that have not been suspected to have crashed.

Consensus is reached when all processes have the same set of proposed
values. In a round where a new failure is detected, a process pi is not sure
of having exactly the same set of values as the other processes. This might
happen because the crashed process(es) may have broadcast some values to
the other processes but not to pi.

In order to know when it is safe to decide, each process keeps a record of
how many processes were not suspected in the previous round and from how
many processes it has got an input in the current round. If a round terminates
with the same number of non-suspected processes as in the previous round, a
decision can be made. The process can then apply some deterministic function
to the set of accumulated values. In our case, it picks the minimum value
and decides it. (The processes could also pick the value proposed by the
process with the lowest identity for instance.) A process that decides simply
disseminates the decision to all processes using the best-effort broadcast.

An execution of the algorithm is illustrated in Figure 5.1. Process p1

crashes during the first round after broadcasting its proposal. Only p2 sees
that proposal. No other process crashes. Therefore, p2 sees the proposals of
all processes and may decide. It takes the min of the proposals and decides
the value 3. Processes p3 and p4 detect the failure and cannot decide. So

116

Algorithm 5.1 A flooding consensus algorithm.

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
correct := correct-last-round := Π;
proposal-set := correct-this-round := ∅;
decided := ⊥;
round := 1;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 cPropose, v 〉 do
proposal-set := {v};
trigger 〈 bebBroadcast, [MySet, round, proposal-set] 〉;

upon event 〈 bebDeliver, pi, [MySet, round, set] 〉 do
correct-this-round := correct-this-round ∪ {pi};
proposal-set := proposal-set ∪ set;

upon correct ⊂ correct-this-round do
round := round +1;
if (correct-this-round = correct-last-round) ∧ (decided = ⊥) then

trigger 〈 cDecided, min (proposal-set) 〉;
trigger 〈 bebBroadcast, [Decided, round, min (proposal-set)] 〉;

else
correct-last-round := correct-this-round;
correct-this-round := ∅;
trigger 〈 bebBroadcast, [MySet, round, proposal-set] 〉;

upon event 〈 bebDeliver, pi, [Decided, round, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 cDecided, v 〉;
trigger 〈 bebBroadcast, [Decided, round + 1, min (proposal-set)] 〉;

they advance to the next round. Note that if these processes took min of the
proposals they had after round 1, they would have decided differently. Since
p2 has decided, p2 disseminates its decision through a best-effort broadcast.
When the decision is delivered, processes p3 and p4 also decide 3.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the communication abstractions. Termination follows from the fact
that at round N at the latest, all processes decide. Agreement is ensured be-
cause the min function is deterministic and is applied by all correct processes
on the same set.

117

p1

p2

p3

p4

round 1 round 2

cPropose (3)

cPropose (5)

cPropose (8)

cPropose (7)

cDecide (3=min(3,5,8,7))

cDecide (3)

cDecide (3)

(5,8,7)

(5,8,7)

Figure 5.1. Sample execution of the flooding consensus algorithm.

Performance. If there are no failures, the algorithm requires a single com-
munication step: all processes decide at the end or round 1, after they notice
that the set of non-suspected processes initally (i.e., all processes) is the same
as the set of non-suspected processes at the end of round 1. Each failure may
cause at most one additional communication step (therefore, in the worst
case the algorithm requires N steps, if N − 1 processes crash in sequence).
If there are no failures, the algorithm exchanges 2N 2 messages. There is an
additional N2 message exchanges for each round where a process crashes.

5.1.3 A Hierarchical Algorithm

We give here an alternative algorithm (Algorithm 5.2) for regular consensus.
This alternative algorithm is interesting because it uses less messages and
enables one process to decide before exchanging any message with the rest
of the processes (0-latency). However, to reach a global decision, where all
processes decide, the algorithm requires N communication steps. This algo-
rithm is particularly useful if consensus is used as a service implemented by
a set of server processes where the clients are happy with one value, as long
as this value is returned very rapidly.

Algorithm 5.2 makes use of the fact that processes can be ranked according
to their identity and this rank is used to totally order them a priori, i.e.,
p1 > p2 > p3 > .. > pN . In short, the algorithm ensures that the correct
process with the highest rank in the hierarchy, i.e., the process with the
lowest identity, imposes its value on all the other processes. Basically, if p1

does not crash, then p1 will impose its value to all: all correct processes will
decide the value proposed by p1. If p1 crashes initially and p2 is correct, then
the algorithm ensures that p2’s proposal will be decided. A tricky issue that
the algorithm handles is the case where p1 is faulty but does not initially
crash whereas p2 is correct.

The algorithm works in rounds and uses a best effort broadcast abstrac-
tion. In the kth round, process pk decides its proposal, and broadcasts it to
all processes: all other processes in this round wait to deliver the message of

118

pk or to suspect pk. None of these processes broadcast any message in this
round. When a process pk delivers the proposal of pi, in round i < k, pk
adopts this proposal as its own new proposal.

Consider the example depicted in Figure 5.2. Process p1 broadcasts its
proposal to all processes and crashes. Process p2 and p3 detect the crash
before they deliver the proposal of p1 and advance to the next round. Pro-
cess p4 delivers the value of p1 and changes its own proposal accordingly. In
round 2, process p2 broadcasts its own proposal. This causes p4 to change
its proposal again. From this point on, there are no further failures and the
processes decide in sequence the same value.

p1

p2

p3

p4

cPropose (3)

cPropose (5)

cPropose (8)

cPropose (7)

round 1 round 2 round 3 round 4

cDecide (5)

cDecide (5)

cDecide (5)

(3)

(5)

(5)

Figure 5.2. Sample execution of hierarchical consensus.

Correctness:. The validity and integrity properties follow from the algorithm
and the use of an underlying best effort broadcast abstraction. Termination
follows from the perfect failure detection assumption and the validity prop-
erty of best effort broadcast: no process will remain indefinitely blocked in a
round and every correct process pi will eventually reach round i and decide
in that round. Concerning agreement, let pi be the correct process with the
highest rank which decides some value v. By the algorithm, every process pj
such that j > i decides v: no process will suspect pi thanks to the perfect
failure detector and every process will adopt pi’s decision.

Performance. The algorithm exchanges (N − 1) messages in each round and
can clearly be optimized such that it exchanges only N(N − 1)/2 messages:
a process does not need to send a message to processes with a higher rank.
The algorithm also requires N communication steps to terminate.

5.2 Uniform Consensus

5.2.1 Specification

As with (regular) reliable broadcast, we can define a uniform variant of con-
sensus. The uniform specification is presented in Module 5.2: correct processes

119

Algorithm 5.2 A hierarchical consensus algorithm.

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
suspected := ∅;
round := 1;
proposal := nil;
for i = 1 to N do pset[i] := pi;
for i = 1 to N do delivered[round] := false;
for i = 1 to N do broadcast[round] := false;

upon event 〈 crash, pi 〉 do
suspected := suspected ∪{pi};

upon event 〈 cPropose, v 〉 do
proposal := v;

upon (pset[round] = self) ∧ (proposal 6= nil) ∧ (broadcast[round] = false) do
trigger 〈 cDecided, proposal 〉;
trigger broadcast[round] := true;
trigger 〈 bebBroadcast, proposal 〉;

upon (pset[round] ∈ suspected) ∨ (delivered[round] = true) do
round := round + 1;

upon event 〈 bebDeliver, pset[round],value 〉 do
if self.id ≥ round then

proposal := value;
delivered[round] := true;

decide a value that must be consistent with values decided by processes that
might have decided before crashing. In fact, no two processes must decide
different values, whether they are correct or not.

None of the consensus algorithms we presented so far ensure uniform
agreement. Roughly speaking, this is because some of the processes decide
too early: without making sure that their decision has been seen by enough
processes. Should they crash, other processes might have no choice but to
decide something different. To illustrate this in a simple manner, consider
our hierarchical consensus algorithm, i.e., Algorithm 5.2. Process p1 decides
its own proposal in a unilateral way without making sure its proposal is seen
by any other process. Hence, if process p1 crashes immediately after deciding,
it is likely that the other processes decide a different value.

120

Module:

Name: UniformConsensus (uc).

Events:

〈 ucPropose, v 〉, 〈 ucDecide, v 〉: with the same meaning and interface of
the consensus interface.

Properties:

C1-C3: from consensus.

C4’: Uniform Agreement: no two processes decide differently..

Module 5.2 Interface and properties of uniform consensus.

In the following, we present two different algorithms to solve uniform
consensus: each algorithm can be viewed as a uniform variant of one of our
regular consensus algorithms above. The first algorithm is a flooding uniform
consensus algorithm whereas the second is a hierarchical uniform consensus
algorithm.

5.2.2 A Flooding Uniform Consensus Algorithm

Algorithm 5.3 implements uniform consensus. The processes follow sequential
rounds. As in our first regular consensus algorithm (flooding), each process
gathers a set of proposals that it has seen and disseminates its own set to
all processes using a best-effort broadcast primitive: the algorithm is also a
flooding one. An important difference here is that processes wait for round
N before deciding.

Correctness. Validity and integrity follow from the algorithm and the proper-
ties of best-effort broadcast. Termination is ensured here because all correct
processes reach round N and decide in that round. Uniform agreement is en-
sured because all processes that reach round N have the same set of values.

Performance. The algorithm requires N communication steps and N ∗ (N −
1)2 messages for all correct processes to decide.

5.2.3 A Hierarchical Uniform Consensus Algorithm

We give here an alternative algorithm that implements uniform consensus.
Algorithm 5.4 is round-based and is similar to our second regular consensus
algorithm. It is also hierarchical. It uses both a best-effort broadcast abstrac-
tion to exchange messages and a reliable broadcast abstraction to disseminate
a decision.

Every round has a leader: process pi is leader of round i. Unlike our
hierarchical regular consensus algorithm, however, a round here consists of
two communication steps: within the same round, the leader broadcasts a

121

Algorithm 5.3 A flooding uniform consensus algorithm.

Implements:
UniformConsensus (c);

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
correct := Π;
round := 1;
for i = 1 to N do set[i] := delivered[i] := ∅;
proposal-set := ∅;
decided := false;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 ucPropose, v 〉 do
proposal-set := {v};
trigger 〈 bebBroadcast, [MySet, round, proposal-set] 〉;

upon event 〈 bebDeliver, pi, [MySet, round, newSet] 〉 ∧ (pi ∈ correct) do
set[round] := set[round] ∪ newSet;
delivered[round] := delivered[round] ∪{pi};

upon (correct ⊆ delivered[round]) ∧ (decided = false) do
if round = N then

decided := true;
trigger 〈 ucDecided, min(proposal-set ∪ set[round]) 〉;

else
proposal-set := proposal-set ∪ set[round];
round := round + 1;
trigger 〈 bebBroadcast, [MySet, round, proposal-set] 〉;

message to all, trying to impose its value, and then expects to get an ac-
knowledgement from all. Processes that get a proposal from the coordinator
of the round adopt this proposal as their own and send an acknowledgement
back to the leader of the round. If it succeeds to collect an acknowledgement
from all correct processes, the leader decides and disseminates the decided
value using a reliable broadcast communication abstraction.

If the leader of a round fails, the correct processes detect this and change
round. The leader is consequently changed. Processes in our algorithm do not
move sequentially from one round to another: they might jump to a higher
round if they get a message from that higher round.

An execution of the algorithm is illustrated in Figure 5.3. Process p1

imposes its value to all processes and receives an acknowledgment back from

122

Algorithm 5.4 A hierarchical uniform consensus algorithm.

Implements:
UniformConsensus (uc);

Uses:
PerfectPointToPointLinks (pp2p);
ReliableBroadcast (rb).
BestEffortBroadcast (beb).
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
proposal := decided := ⊥;
round := 1;
suspected := ack-set := ∅;
for i = 1 to N do pset[i] := pi;

upon event 〈 crash, pi 〉 do
suspected := suspected ∪ {pi};

upon event 〈 ucPropose, v 〉 do
proposal := v;

upon (pset[round] = self) ∧ (proposed 6= ⊥) ∧ (decided = ⊥) do
trigger 〈 bebBroadcast, [Propose, round, proposal] 〉;

upon event 〈 bebDeliver, pi, [Propose, round, v] 〉 do
proposal := v;
trigger 〈 pp2pSend, pi, [Ack, round] 〉;
round := round + 1;

upon event (pset[round] ∈ suspected) do
round := round + 1;

upon event 〈 pp2pDeliver, pi, [Ack, round] 〉 do
ack-set := ack-set ∪ {pi};

upon event (ack-set ∪ suspected = Π) do
trigger 〈 rbBroadcast, [Decided, proposal] 〉;

upon event 〈 rbDeliver, pi, [Decided, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 ucDecide, v 〉;

all processes. Therefore, it can decide immediately. However, it crashes before
disseminating the decision using the reliable broadcast primitive. Its failure is
detected by the remaining processes that, in consequence, move to the next
round. The next leader, p2 will in turn impose its proposal, which is now
that of p1: remember that p2 has adopted the proposal of p1. Since there are
no further failures, process p2 gets an acknowledgment from the remaining
processes and disseminates the decision using a reliable broadcast.

123

p1

p2

p3

p4

cPropose (3)

cPropose (5)

cPropose (8)

cPropose (7)

(3)

round 1

cDecide (3)

(3)

(3)

round 2

cDecide (3)

cDecide (3)

cDecide (3)
(3)

(3)

Figure 5.3. Sample execution of hierarchical uniform consensus.

Correctness. Validity and integrity follow trivially from the algorithm and the
properties of the underlying communication abstractions. Consider termina-
tion. If some correct process decides, it decides through the reliable broadcast
abstraction, i.e., by rbDelivering a decision message. By the properties of this
broadcast abstraction, every correct process rbDelivers the decision message
and decides. Hence, either all correct processes decide or no correct process
decides. Assume by contradiction that there is at least one correct process
and no correct process decides. Let pi be the correct process with the highest
rank. By the completeness property of the perfect failure detector, every cor-
rect process suspects the processes with higher ranks than i (or bebDelivers
their message). Hence, all correct processes reach round i and, by the accu-
racy property of the failure detector, no process suspects process pi or moves
to a higher round, i.e., all correct processes wait until a message from pi is
bebDelivered. In this round, process pi hence succeeds in imposing a decision
and decides. Consider now agreement and assume that two processes decide.
This can only be possible if two processes rbBroadcast two decision messages
with two propositions. Consider any two processes pi and pj , such that j is
the closest integer to i such that j > i and pi and pj sent two decision values
v and v′, i.e., rbBroadcast v and v′. Because of the accuracy property of the
failure detector, process pj must have adopted v before reaching round j.
Given that j is the closest integer to i such that some process proposed v ′,
after v was proposed, then v = v′.

Performance. If there are no failures, the algorithm terminates in 3 commu-
nication steps: 2 steps for the first round and 1 step for the reliable broadcast.
It exchanges 3(N − 1) messages. Each failure of a leader adds 2 additional
communication steps and 2(N − 1) additional messages.

5.3 Asynchronous Consensus Algorithms

So far, the consensus and uniform consensus algorithms we have given are
fail-stop: they rely on the assumption of a perfect failure detector. It is easy

124

to see that in any of those algorithms, a false failure suspicion might lead to
violation of the agreement property of consensus (see exercice at the end of
this chapter). That is, if a process is suspected to have crashed whereas the
process is actually correct, agreement would be violated and two processes
might decide differently.

In the following, we give two (uniform) consensus algorithms. The first
relies on the eventually perfect leader election abstraction whereas the sec-
ond relies on the assumption of an eventually perfect failure detector. The
algorithms can be viewed as asynchronous (more precisely eventually syn-
chronous) variants of our hierarchical uniform consensus algorithm.

Our algorithms implement the uniform variant of consensus and rely on
the assumption of a correct majority of processes. We leave it as exercices
to show that any asynchronous consensus algorithm that solves consensus
solves uniform consensus, and no asynchronous algorithm can solve consensus
without a correct majority of processes.

The first algorithm we give here is called the round-about consensus al-
gorithm. We call it that way to highlight the difference with the second
algorithm, which we call the traffic-light consensus algorithm.

5.3.1 The Round-About Consensus Algorithm

5.3.2 Overview

In the first algorithm, and with some imagination, the processes do behave
as cars in a round-about. The first car to go on the round-about behaves as
the leader of the round-about and might succeed if no other process goes on
the round-about. It could fail however if another car believes it is also leader.
A car that fails in crossing the round-about might try again if it still believes
it is leader.

In the algorithm, a process pi that believes it is leader tries to impose
a decision. Process pi will succeed if no other process pj believes it is also
leader and pj tries concurrently to impose its decision. Termination is ensured
because we rely on the eventually perfect leader election abstraction, which
ensures that only one process considers itself as leader and imposes a value.
Since the underlying leader election abstraction is unreliable, it may happen
that, at the same time, two different processes act concurrently as leaders.
As we will explain however, the algorithm ensures that only one value could
be imposed even in the presence of multiple leaders. That is, the algorithm
preserves agreement even in the presence of multiple leaders.

Indeed, to ensure consensus agreement, we require that the leader consults
twice in a row a majority of processes before imposing a decision value. The
aim of the double consultation is indeed twofold.

• The leader checks through this majority whether any other value might
have been decided. If the leader finds a plausible one, it gives up on its
original proposal and proposes this value.

125

• Second, the leader makes sure that the value it is about to impose will be
recorded at a majority, and hence a new leader will necessarily see this
decision.

Therefore, a leader decides a value only when it knows a majority of
the processes have acknowledged that value. Acknowledging a value means
giving a promise to the leader that these processes would not let another
leader decide a different value. This corresponds to a distributed form of
locking. No process locally knows the value is locked but the system in some
sense does.

In other words, a leader pi does not try to impose a value v unless it
makes sure, within a majority, that no other leader pj has decided a different
value v′. If it happens that another value v′ might have been decided, then
the leader pi will try to impose the value v′ instead of the value pi initially
intended to propose, i.e., v. As we pointed out often in this manuscript, the
nice property of two majorities is that they always intersect. This is the key
to agreement in asynchronous consensus.

As we will discuss in the following, the distributed locking idea in asyn-
chronous consensus can be captured by our one-shot register abstraction in-
troduced in the previous chapter. It can of course also be implemented di-
rectly among the processes using message passing. We give two corresponding
variants of the round-about algorithm: the first can be viewed as a shared
memory variant whereas the second as a message passing variant of the same
algorithm.

5.3.3 Round-About Consensus in Shared Memory

Algorithm 5.5 uses, besides an eventually perfect leader election abstraction
and a best-effort broadcast communication abstractions, a one-shot register
abstraction shared by all processes. Remember also from the previous chap-
ter that the one-shot register can itself be implemented in an asynchronous
system with a majority of correct processes.

Intuitively, the value that is decided in the consensus algorithm is the
value that is successfully stored (i.e. committed) in the register. Remember
that this register can store at-most one value. Two processes that try to store
a value might both abort: if only one tries for sufficiently long, this process
will succeed. This will be ensured in our algorithm by having only leaders
access the register. Eventually, only one leader is elected and this will be
able to successfully store a value. Once this is done, the leader broadcasts a
message to all processes informing them of the decision.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions. Consider termination.
By the assumption of the underlying eventually perfect leader election, some
correct process is eventually elected and remains leader forever. Let pi be that
process. There is a time after which any other process stops being leader. If

126

Algorithm 5.5 A shared memory variant of round-about consensus.

Implements:
UniformConsensus (uc).

Uses:
One-shot register (reg);
BestEffortBroadcast (beb);
EventualLeaderDetector (Ω).

upon event 〈 Init 〉 do
proposal := ⊥;
leader := decided := false;

upon event 〈 trust, pi 〉 do
if pi = self then leader := true;
else leader := false;

upon event 〈 ucPropose, v 〉 do
proposal := v;

upon (leader) do
trigger 〈 store, reg,proposal 〉;

upon event 〈 storeRet, reg,result 〉 do
if result 6=⊥ then

trigger 〈 bebBroadcast, [Decided, result] 〉;
else

if (leader) then
trigger 〈 store, reg,proposal 〉;

upon event 〈 bebDeliver, pi, [Decided, v] 〉 ∧ 6(decided) do
decided := true;
trigger 〈 ucDecide, v 〉;

some value has been stored, then pi will figure that out and broadcast that
decision to all. Otherwise, eventually, pi is the only process which stores a
value. By the properties of the one-shot register, pi will commit that value.

By the properties of the best-effort communication primitive, all correct
processes eventually deliver the decision message and decide. Consider now
agreement and assume that some process pi decides some value v. This means
that v was committed in the register. By the properties of the register, no
other process can commit any different value. Any other process pj that
decides, does necessarily decide v.

Performance. We consider here our implementation of the one-shot register
assuming a majority of correct processes of the previous chapter. If there is a
single leader and this leader does not crash, then 4 communication steps and
4(N − 1) are needed for this leader to decide. Therefore, 5 communication
steps and 5(N − 1) messages are needed for all correct processes to decide.

127

5.3.4 Round-About Consensus in Message Passing

In the following, we give a variant of the round-about algorithm directly using
message passing among the processes. That is, we open the one-shot register
abstraction. The algorithm uses, besides an eventually perfect leader election
and a best-effort broadcast communication abstractions, point-to-point and
reliable broadcast communication abstractions. The algorithm also assumes
a correct majority of processes.

To simplify its presentation, we give the algorithm in two parts: the leader
role in Algorithm 5.6 and the witness role in Algorithm 5.7. Of course, a leader
process plays also the witness role, but a witness process plays the leader role
only if it gets elected.

The processes proceed in rounds. Process pi owns in some sense round i,
i + N , etc. In other words, the leader in such rounds can only be pi. If pi
has reached some round k, and pi becomes leader, then pi jumps to the next
round that it owns and tries to decide in that round.

For doing so, the leader computes a new proposal by asking the pro-
cesses about what they witnessed so far. Then the leader tries to impose that
proposal to all: every process that gets the proposal from the current leader
adopts this proposal and assigns it the current round number as a timestamp.
Then this witness process acknowledges that proposal back to the leader. If
the leader gets a majority of acknowledgements, it decides and disseminates
that decision using a reliable broadcast abstraction.

More precisely, a successfull round consists a priori (i.e., if the leader
remains leader) of five phases.

1. Computation. The leader first computes its current proposal by asking all
processes to send it their proposal. All processes, as part of their witness
role, send their current proposal to the leader which selects the proposal
with the highest timestamp. The leader starts the selection process af-
ter it has received the current proposal from at least a majority of the
processes.

2. Adoption. The leader broadcasts its current proposal to all. Any process
that gets that proposal witnesses it (i.e., adopts it) and assigns it the
current round number as a timestamp.

3. Acknowledgment. Every process, as part of its witness role, that adopts
a value from the leader sends an acknowledgement message back to the
leader.

4. Decision. If the leader gets a majority of acknowledgement messages, it
uses a reliable broadcast primitive to disseminate the decision to all.

5. Global decision. Any process that delivers a decision message decides.

A non-successful round is one where the leader crashes or some of the
processes have already proceeded to a higher round. This can happen if some
other process has been elected leader and used a higher round number.

128

Algorithm 5.6 A message-passing variant of round-about consensus: leader role.

Uses:
PerfectPointToPointLinks (pp2p);
ReliableBroadcast (rb);
BestEffortBroadcast (beb);
EventualLeaderDetector (Ω).

upon event 〈 Init 〉 do
proposal := leader := ⊥;
estimate-set[] := ack-set[] := ∅;
decided := estimate[] := ack[] := false;
round1 := 1;

upon (leader = self) do
while self.id 6= (round+1) mod N + 1 repeat

round := round+1;
upon event 〈 pp2pDeliver, pi, [Nack, r] 〉 ∧ r > round do

round := r;

upon event 〈 pp2pDeliver, pi, [Estimate, r, value] 〉 ∧ r = round do
estimate-set[round] := estimate-set[round] ∪{value};

upon (round mod N+1 = self.id) ∧ (#estimate-set[round] > N/2) do
proposal := highest(estimate-set[round]);
trigger 〈 bebBroadcast, [Propose, round, proposal] 〉;

upon event 〈 pp2pDeliver, pi, [Ack, r] 〉 ∧ (round mod N+1 = self) do
ack-set[r] := ack-set[r] ∪{pi};

upon (leader = self.id) ∧ (#ack-set[round] > N/2) do
trigger 〈 rbBroadcast, [Decide, proposal] 〉;

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions. Consider termination.
If some correct process decides, it decides through the reliable broadcast ab-
straction, i.e., by bebDelivering a decision message. By the properties of this
broadcast abstraction, every correct process rbDelivers the decision message
and decides. Assume by contradiction that there is at least one correct pro-
cess and no correct process decides. Consider the time t after which all faulty
processes crashed, all faulty processes are suspected by every correct process
forever and no correct process is ever suspected. Let pi be the first correct
process that is leader after time t and let r denote the round at which that
process is leader. If no process has decided, then all correct processes reach
round r and pi eventually reaches a decision and rbBroadcasts that decision.
Consider now agreement. Consider by contradiction any two rounds i and j,
j is the closest integer to i such that j > i and pi mod N+1, and pj mod N+1,
proposed two different decision values v and v′. Process pj mod N+1 must

129

Algorithm 5.7 A message-passing variant of round-about consensus: witness role.

upon event 〈 ucPropose, v 〉 do
proposal := v;
round := round + 1;

upon event 〈 trust, pi 〉 do
leader := pi;

upon event 〈 bebDeliver, pi, [ReqEstimate, r] 〉 do
if round > r then

trigger 〈 pp2pSend, pi, [Nack, round] 〉;
else

round := r;
trigger 〈 pp2pSend, pi, [Estimate, round, proposal] 〉;

upon event 〈 bebDeliver, pi, [Propose, r, p] 〉 do
if round > r then

trigger 〈 pp2pSend, pi, [Nack, round] 〉;
else

proposal := p;
round := r;
trigger 〈 pp2pSend, pi, [Ack, round] 〉;

upon event 〈 rbDeliver, pi, [Decided, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 ucDecided, v 〉;

have adopted v before reaching round j. This is because pj mod N+1 selects
the value with the highest timestamp and pj mod N+1 cannot miss the value
of pi mod N+1: any two majorities always intersect. Given that j is the closest
integer to i such that some process proposed v′ different from v, after v was
proposed, we have a contradiction.

Performance. If no process fails or is suspected to have failed, then 5 com-
munication steps and 5(N − 1) messages are needed for all correct processes
to decide.

5.3.5 The Traffic-Light Consensus Algorithm

We describe here the traffic-light consensus algorithm. Besides a best-effort
and a reliable broadcast communication abstractions, the algorithm uses an
eventually perfect failure detector.

This algorithm is also round-based and the processes play two roles: the
role of a leader, described in Algorithm 5.8, and the role of a witness, de-
scribed in Algorithm 5.9. Every process goes sequentially from round i to
round i+ 1: no process ever jumps from one round to another round, unlike

130

in the round-about algorithm. Every round has a leader: the leader of round
i is process pi mod N , e.g., p2 is the leader of rounds 2, N + 2, 2N + 2, etc.

We call this algorithm the traffic-light consensus algorithm because the
processes behave as cars in a cross-road controlled by a traffic-light. Again,
crossing the road in our context means deciding on a consensus value and
having the chance to cross the road in our context means being leader of
the current round. The guarantee that there eventually will only be one
green light conveys the fact that only eventually, some correct process is not
suspected and will hence be the only leader.

Like in the round-about consensus algorithm, the process that is leader
in a round computes a new proposal and tries to impose that proposal to
all: every process that gets the proposal from the current leader adopts this
proposal and assigns it the current round number as a timestamp. Then it
acknowledges that proposal back to the leader. If the leader gets a majority of
acknowledgements, it decides and disseminates that decision using a reliable
broadcast abstraction. Here as well, a round consists a priori (i.e., if the leader
is not suspected) of five phases.

In this algorithm however, there is a critical point where processes need
the input of their failure detector in every round. When the processes are
waiting for a proposal from the leader of that round, the processes should
not wait indefinitely if the leader has crashed without having broadcast its
proposal. In this case, the processes consult their failure detector module
to get a hint as to whether the leader process has crashed. Given that an
eventually perfect detector ensures that, eventually, every crashed process is
suspected by every correct process, the process that is waiting for a crashed
leader will eventually suspect it and send a specific message nack to the
leader, then move to the next round. In fact, a leader that is waiting for
acknowledgements might get some nacks: in this case it moves to the next
round without deciding.

Note also that processes after acknowledging a proposal move to the next
round directly: they do not need to wait for a decision. They might deliver it
in an asynchronous way: through the reliable broadcast dissemination phase.
In that case, they will simply stop their algorithm.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions. Consider termination.
If some correct process decides, it decides through the reliable broadcast ab-
straction, i.e., by rbDelivering a decision message. By the properties of this
broadcast abstraction, every correct process rbDelivers the decision message
and decides. Assume by contradiction that there is at least one correct pro-
cess and no correct process decides. Consider the time t after which all faulty
processes crashed, all faulty processes are suspected by every correct process
forever and no correct process is ever suspected. Let pi be the first correct
process that is leader after time t and let r denote the round at which that
process is leader. If no process has decided, then all correct processes reach

131

Algorithm 5.8 The traffic-light consensus algorithm: leader role.

Uses:
PerfectPointToPointLinks (pp2p);
ReliableBroadcast (rb);
BestEffortBroadcast (beb);
EventuallyPerfectFailureDetector (3P);

upon event 〈 Init 〉 do
proposal := decided := ⊥; round := 1;
suspected:= estimate-set[] := ack-set[] := ∅;
estimate[] := ack[] := false; for i = 1 to N do ps[i] := pi;

upon event(ps[round mod N + 1]= self.id) ∧ 〈 pp2pDeliver, pi, [Estimate, round, estimate] 〉 do
estimate-set[round] := estimate-set[round] ∪{estimate};

upon (ps[round mod N + 1]= self.id) ∧ (#estimate-set[round] > N/2)) do
proposal := highest(estimate-set[round]);
trigger 〈 bebBroadcast, [Propose, round, proposal] 〉;

upon event(ps[round mod N + 1]= self.id) ∧ 〈 pp2pDeliver, pi, [Ack, round] 〉 do
ack-set[round] := ack-set[round] ∪{pi};

upon (ps[round mod N + 1]= self.id) ∧ 〈 pp2pDeliver, pi, [Nack, round] 〉 do
round := round + 1;

upon (ps[round mod N + 1]= self.id) ∧ (#ack-set[round] > N/2) do
trigger 〈 rbBroadcast, [Decide, proposal] 〉;

round r and pi eventually reaches a decision and rbBroadcasts that decision.
Consider now agreement. Consider by contradition any two rounds i and j,
j is the closest integer to i such that j > i and pi mod N+1, and pj mod N+1,
proposed two different decision values v and v′. Process pj mod N+1 must
have adopted v before reaching round j. This is because pj mod N+1 selects
the value with the highest timestamp and pj mod N+1 cannot miss the value
of pi mod N+1: any two majorities always intersect. Given that j is the closest
integer to i such that some process proposed v′ different from v, after v was
proposed, we have a contradiction.

Performance. If no process fails or is suspected to have failed, then 4 com-
munication steps and 4(N − 1) messages are needed for all correct processes
to decide.

132

Algorithm 5.9 The traffic-light consensus algorithm: witness role.

upon event 〈 suspect, pi 〉 do
suspected := suspected ∪{pi};

upon event 〈 restore, pi 〉 do
suspected := suspected \{pi};

upon event 〈 ucPropose, v 〉 do
proposal := [v, 0];

upon event (proposal 6= ⊥) ∧ (estimate[round] = false) do
estimate[round] := true;
trigger 〈 pp2pSend, ps[round mod N], [Estimate, round, proposal] 〉;

upon event 〈 bebDeliver, pi, [Propose, round, value] 〉 ∧ (ack[round] = false) do
ack[round] := true;
proposal := [value, round];
trigger 〈 pp2pSend, ps[round mod N], [Ack, round] 〉;
round := round + 1;

upon event (ps[round mod N] ∈ suspected) ∧ (ack[round] = false) do
ack[round] := true;
trigger 〈 pp2pSend, ps[round mod N], [Nack, round] 〉;
round := round + 1;

upon event 〈 rbDeliver, pi, [Decided, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 ucDecided, v 〉;

5.4 Consensus in the Crash-Recovery Model

5.4.1 Specifications

The definition of uniform consensus in the crash-recovery model is given in
Module 5.3. Note that it allows the upper layer to invoke consensus more
than once, in the presence of crashes and recoveries. Nevertheless, if a value
is decided, the same value is returned in response to repeated invocations of
propose.

5.4.2 The Crash-Recovery Round-About Consensus Algorithm

Interestingly, it is easy to extend the round-about consensus algorithm of
Section 5.3.1 to operate in the crash recovery model.

If we consider the shared memory variant of the algorithm, the one-shot
register does not change. We simply need to plug its implementation in the
crash-recovery model given in the previous chapter. The best-effort broadcast
abstraction needs to be replaced with the stubborn broadcast abstraction.

133

Module:

Name: Uniform Consensus in the Crash-Recovery model(cr-uc).

Events:

Request: 〈 cr-ucPropose, v 〉: Used to propose a value for consensus.

Indication: 〈 cr-ucDecide, v 〉: Used to indicate the decided value for
consensus.

Properties:

CR-C1: Termination: Every process that eventually remain permanently
up eventually decides some value.

CR-C2: Validity: If a process decides v, then v was proposed by some
process.

CR-C3: Integrity: If the same instance of consensus is invoked twice, the
corresponding decide events return the same decided value.

CR-C4: Uniform Agreement: No two processes decide differently.

Module 5.3 Interface and properties of consensus in the crash-recovery model.

If we consider directly the message passing variant, we obtain a crash-
recovery resilient algorithm (Algorithm 5.10 + Algorithm 5.11) by slightly
modifying our round-about consensus algorithm in a message passing model:

• Stubborn point-to-point links are used instead of reliable point-to-point
links.
• Reliable broadcast for the crash-recovery model is used. Note that this

implies that a log of delivered messages by the reliable broadcast module
to the consensus module. In this case, consensus just replies to each message
again.
• The store and retrieve primitives are used to preserve the state of the

algorithm on stable storage. Three values are stored: the last proposed
value, the current round and the decided value (if any). These variables
are stored when changed and before a message is sent with their updated
values.

5.5 Randomized Consensus

Interestingly, randomization can also be used to solve consensus without re-
sourcing to a failure detector.

The randomized consensus algorithm described here also operates in
(asynchronous) rounds where, in each round, the processes try to ensure that
the same value is proposed by a majority of processes. If there is no such
value, the processes use randomization to select which of the initial values
they will propose in the next round. In this algorithm, due to randomization,

134

Algorithm 5.10 The round-about consensus algorithm with crash-recovery (1/2).

Uses:
StubbornPointToPointLinks (sp2p).
CrashRecoveryReliableBroadcast (cr-rb).
EventualLeaderDetector (Ω).

upon event 〈 Init 〉 do
proposal := decided := ⊥; round := 1;
estimate-set[] := ack-set[] := leader := ∅;
estimate[] := false; proposed[] := ⊥;

upon event 〈 Recover 〉 do
retrieve (proposal, decided, round);
estimate-set[] := ack-set[] := leader := ∅;
estimate[] := false; proposed[] := ⊥;
if decided 6= ⊥ do trigger 〈 cr-rbBroadcast, [Decide, proposal] 〉;

upon event 〈 trust, pi 〉 do
leader := pi;

upon event 〈 cr-ucPropose, v 〉 ∧ (proposal = ⊥) ∧ (decided = ⊥) do
if (proposal = ⊥) ∧ (decided = ⊥) do

proposal := v;
store (proposal);

if
trigger 〈 cr-ucDecided, v 〉;

upon (leader = self) ∧ (round mod N + 1 6= self) do
while round mod N + 1 6= self repeat

round := round+1;

upon (round mod N + 1 = self) ∧ (estimate[round] = false) ∧ (decided = ⊥) do
estimate[round] = true; store (round);
trigger 〈 cr-rbBroadcast, [ReqEstimate, round] 〉;

there is a probability (strictly greater than zero) that there will be a given
round where a majority of processes propose and agree on the same value
(and, as in probabilistic broadcast, the more rounds you execute, the higher
is this probability). Therfore, if the algorithm continues to execute rouds,
eventually it terminates with probability 1.

5.5.1 Specification

Randomized consensus has the same interface as the non-probabilistic asyn-
chronous versions: propose and decide. Each process has an initial value that
it proposes to the others (through the primitive propose). All correct pro-
cesses have to decide on a single value (through the primitive decide) that
has to be one of the proposed values. Randomized consensus must satisfy the
properties RC1–4 listed in Module 5.4.

135

Algorithm 5.11 The round-about consensus algorithm with crash-recovery (2/2).

upon event 〈 cr-rbDeliver, messages 〉 ∧ (decided= ⊥) do
forall m ∈ messages do

if m = [ReqEstimate, r] then
if round > r then

trigger 〈 sp2pSend, pi, [Nack, round] 〉;
else

round := r; store (round);
trigger 〈 sp2pSend, pi, [Estimate, round, proposal] 〉;

else if m = [Propose, r, v] then
if round > r then

trigger 〈 sp2pSend, pi, [Nack, round] 〉;
else

round := r; proposal := v; store (proposal, round);
trigger 〈 sp2pSend, pi, [Ack, round] 〉;

else if m = [Decide, v] then
decided := v; store (decided);
trigger 〈 cr-rbBroadcast, [Decide, proposal] 〉;
trigger 〈 cr-ucDecided, v 〉;

upon event 〈 sp2pDeliver, pi, [Nack, r] 〉 ∧ (r > round) ∧ (decided= ⊥) do
round := r;

upon event 〈 sp2pDeliver, pi, [Estimate, r, value] 〉 ∧ (decided6= ⊥) do
estimate-set[r] := estimate-set[r] ∪ {(pi, value)};

upon event 〈 sp2pDeliver, pi, [Ack, r] 〉 ∧ (decided= ⊥) do
ack-set[r] := ack-set[r] ∪ {pi};

upon (round mod N + 1 = self) ∧ (#estimate-set[round] > N/2) ∧ (proposal[round] = ⊥) ∧ (decided= ⊥)do
proposal := proposed[round] := highest(estimate-set[round]);
store (proposal, round);
trigger 〈 cr-rbBroadcast, [Propose, round, proposal] 〉;

upon (round mod N + 1 = self) ∧ (#ack-set[round] > N/2) ∧ (decided= ⊥) do
decided := v;
store (decided);
trigger 〈 cr-ucDecided, v 〉;
trigger 〈 cr-rbBroadcast, [Decide, proposal] 〉;

5.5.2 A randomized Consensus Algorithm

Algorithm 5.12 is randomized and requires a majority of correct processes to
make progress. Initially, each process uses reliable broadcast to disseminate
its own initial value to every other correct processes. Therefore, eventually, all
correct processes will have all initial values from every other correct process.

The algorithm operates in rounds. Each round consists of two phases. In
the first phase every correct process proposes a value. If a process observes
that a majority of processes have proposed the same value in the first phase,

136

Module:

Name: Randomized Consensus (rc).

Events:

Request: 〈 rcPropose, v 〉: Used to propose a value for consensus.

Indication: 〈 rcDecide, v 〉: Used to indicate the decided value for con-
sensus.

Properties:

RC1: Termination: With probability 1, every correct process decides some
value.

RC2: Validity: If a process decides v, then v was proposed by some process.

RC3: Integrity: No process decides twice.

RC4: Agreement: No two correct processes decide differently.

Module 5.4 Interface and properties of randomized consensus.

then it proposes that value for the second phase. If a process is unable to
observe a majority of proposals for the same value in the first phase, it simply
proposes ⊥ for the second phase. Note that as a result of this procedure, if
two processes propose a value (different from ⊥) for the second phase, they
propose exactly the same value. Let this value be called majph1.

The purpose of the second phase is to verify if majph1 was observed by
a majority of processes. In this is the case, majph1 is the decided value. A
process that receives majph1 in the second phase but is unable to collect a
majority of majph1 on that phase, starts a new round with majph1 as its
estimate.

Finally, it is possible that a process does not receive majph1 in the second
phase (either because no such value was found in phase 1 or simply because
it has received a majority of ⊥ in the second phase). In this case, the process
has to start a new round, with a new estimate. To ensure that there is some
probability of obtaining a majority in the new round, the process selects, at
random, one of the initial values from all processes, and uses this value as its
proposal for the first phase of the next round.

Figure 5.4 illustrates why randomization is necessary to ensure termina-
tion (assume that all messages not depicted in the figure are late messages).
At first glance, it may seem that a deterministic decision would allow a ma-
jority in the first phase to be reached faster. For instance, if a process would
receive a majority of ⊥ in the second phase of a round, it could deterministi-
cally select the first non-⊥ initial value instead of selecting a value at random.
Unfortunately, a deterministic choice allows runs where the algorithm never
terminates.

137

Algorithm 5.12 A randomized consensus algorithm.

Implements:
Randomized Consensus (rc);

Uses:
ReliableBroadcast (rb).

upon event 〈 Init 〉 do
decided := ⊥; estimate := ⊥; round := 0;
for i = 1 to N do val[i] := ⊥;

upon event 〈 rcPropose, v 〉 do
trigger 〈 rbBroadcast, [IniValue, v] 〉;
estimate := v; round := round +1;
trigger 〈 rbBroadcast, [Phase1, round, v] 〉;

upon event 〈 rbDeliver, pi, [IniVal, v] 〉 do
val[i] := v;

upon event 〈 rbDeliver, pi, [Phase1, r, v] 〉 do
phase1[r] := phase1[r] ⊕ v;

upon (decided=⊥ ∧ |phase1[round]| > Π/2) do
if ∃v : ∀x ∈ phase1[round]: x = v then estimate := v;
else estimate := ⊥;
trigger 〈 rbBroadcast, [Phase2, round, estimate] 〉;

upon event 〈 rbDeliver, pi, [Phase2, r, v] 〉 do
phase2[r] := phase2[r] ⊕ v;

upon (decided=⊥ ∧ |phase2[round]| > Π/2) do
if ∃v 6= ⊥ : ∀x ∈ phase1[round]: x = v then

decided := v;
trigger 〈 rbBroadcast, [Decided, round, decided] 〉;

else
if ∃v ∈ phase2[round]: v 6= ⊥ then estimate := v;
else estimate := val[random];
round := round +1; // start one more round
trigger 〈 rbBroadcast, [Phase1, round, estimate] 〉;

upon event 〈 rbDeliver, pi, [Phase2, r, v] 〉 do
decided := v;
trigger 〈 rcDecided, decided 〉;

In the example, we have three processes, p1, p2 and p3 with initial values
of 1, 2 and 2 respectively. Each process proposes its own value for the first
phase of the round. Consider the following execution for the first phase:

• Process p1 receives the value from p2. Since both values differ, it proposes
⊥ for the second phase.

138

cPropose (1)

cPropose (2)

cPropose (2)

p3

p2

p1

(1)

(2)

(2)(2)

(⊥)

(⊥)

phase 1 phase 2

round 1

(1)

(2)

(2)

Figure 5.4. Role of randomization.

• Process p2 receives the value from p1. Since both values differ, it proposes
⊥ for the second phase.
• Process p3 receives the value from p2. Since both values are the same, it

proposes 2 for the second phase.

Now consider the following execution for the second phase:

• Process p1 receives the value from p2. Since both values are ⊥ it determin-
istically selects value 1 for the first phase of the next round.
• Process p2 receives the value from p3. Since one of the values is 2, it pro-

poses 2 for the first phase of the next round.
• Process p3 receives the value from p2. Since one of the values is 2, it pro-

poses 2 for the first phase of the next round.

This run is clearly feasible. Unfortunately, the result of this run is that the
input values for the next round are exactly the same as for the previous round.
The same execution sequence could be repeated indefinitely. Randomization
prevents this infinite runs from occurring since, there would be a round where
p1 would also propose 2 as the input value for the next round.

139

Exercises

Exercise 5.1 (*) Improve our hierarchical regular consensus algorithm to
save one communication step. (The algorithm requires N communication
steps for all correct processes to decide. By a slight modification, it can run
in N − 1 steps: suggest such a modification.)

Exercise 5.2 (*) Explain why none of our (regular) consensus algorithms
ensures uniform consensus.

Exercise 5.3 (*) Can we optimize our flooding uniform consensus algo-
rithms to save one communication step, i.e., such that all correct processes
always decide after N−1 communication steps? Consider the case of a system
of two processes.

Exercise 5.4 (*) What would happen in our flooding uniform consensus al-
gorithm if:

1. we did not use set[round] but directly update proposedSet in upon event
bebDeliver?

2. we accepted any bebDeliver event, even if pi /∈ correct?

Exercise 5.5 (*) Consider our consensus algorithms using a perfect failure
detector. Explain why none of those algorithms would be correct if the failure
detector turns out not to be perfect.

Exercise 5.6 (*) Explain why any of our two asynchronous algorithms
(traffic-light or round-about) that solve consensus actually solves uniform con-
sensus.

Exercise 5.7 (*) Explain why any consensus algorithm using an eventually
perfect failure detector needs a majority of correct processes.

Exercise 5.8 (*) Suggest improvements of our traffic-light and round-about
consensus algorithms such that, if no process fails or is suspected to have
failed, only 3 communication steps and 3(N − 1) messages are needed for all
correct processes to decide.

Exercise 5.9 (*) Consider our randomized consensus algorithm (Algorithm 5.12).
When using randomization, the algorithm selects a random element for the
val list. Is there any simple method to refine this selection to improve the
convergence of the algorithm?

140

Corrections

Solution 5.1 The last process (say, pN) does not need to broadcast its mes-
sage. Indeed, the only process that uses pN ’s broadcast value is pN itself,
and pN anyway decides its proposal just before it broadcasts it (not when it
delivers it). Clearly, no process ever uses pN ’s broadcast. More generally, no
process pi ever uses the value broadcast from any process pj such that i ≥ j. 2

Solution 5.2 Consider our flooding algorithm first and the scenario of Fig-
ure 5.1: if p1 crashes after deciding 3, p2 and p3 would decide 5. Now consider
our hierarchical algorithm and the scenario of Figure 5.2. In the case where
p1 decides and crashes and no other process sees p1’s proposal (i.e., 3), then
p1 would decide differently from the other processes. 2

Solution 5.3 No. We give a counter example for the particular case of N = 2.
The interested reader will then easily extend beyond this case to the general
case of any N . Consider the system made of two processes p1 and p2. We
exhibit an execution where processes do not reach uniform agreement after
one round, thus they need at least two rounds. More precisely, consider the
execution where p1 and p2 propose two different values, that is, v1 6= v2,
where vi is the value proposed by pi (i = 1, 2). Without loss of generality,
consider that v1 < v2. We shall consider the following execution where p1 is
a faulty process.

During round 1, p1 and p2 respectively send their message to each other.
Process p1 receives its own value and p2’s message (p2 is correct), and decides.
Assume that p1 decides its own value v1, which is different from p2’s value,
and then crashes. Now, assume that the message p1 sent to p2 in round 1
is arbitrarily delayed (this is possible in an asynchronous system). There is
a time after which p2 permanently suspects p1 because of the Strong Com-
pleteness property of the perfect failure detector. As p2 does not know that
p1 did send a message, p2 decides at the end of round 1 on its own value v2.
Hence the violation of uniform agreement.

Note that if we allow processes to decide only after 2 rounds, the above
scenario does not happen, because p1 crashes before deciding (i.e. it never
decides), and later on, p2 decides v2. 2

Solution 5.4 For case (1), it would not change anything. Intuitively, the
algorithm is correct (more specifically, preserves uniform agreement), because
any process executes for N rounds before deciding. Thus there exists a round
r during which no process crashes. Because at each round, every process
broadcasts the values it knows from the previous rounds, after executing
round r, all processes that are not crashed know exactly the same information.
If we now update proposedSet before the beginning of the next round (and in
particular before the beginning of round r), the processes will still have the

141

information on time. In conclusion, the fact they get the information earlier
is not a problem since they must execute N rounds anyway.

In case (2), the algorithm is not correct anymore. In the following, we
discuss an execution that leads to disagreement. More precisely, consider the
system made of three processes p1, p2 and p3. The processes propose 0, 1 and
1, respectively. During the first round, the messages of p1 are delayed and p2

and p3 never receive them. Process p1 crashes at the end of round 2, but p2

still receives p1’s round 2 message (that is, 0) in round 2 (possible because
channels are not FIFO). Process p3 does not receive p1’s message in round
2 though. In round 3, the message from p2 to p3 (that is, the set {0, 1}) is
delayed and process p2 crashes at the end of round 3, so that p3 never receives
p2’s message. Before crashing, p2 decides on value 0, whereas p3 decides on
1. Hence the disagreement. 2

Solution 5.5 In all our algorithms using a perfect failure detector, there
is at least one critical point where a correct process p waits to deliver a
message from a process q or to suspect the process q. Should q crash and p
never suspect q, p would remain blocked forever and never decide. In short,
in any of our algorithm using a perfect failure detector, a violation of strong
completeness could lead to violate the termination property of consensus.

Consider now strong accuracy. Consider our flooding algorithm first and
the scenario of Figure 5.1: if p1 crashes after deciding 3, and p1 is suspected to
have crashed by p2 and p3, then p2 and p3 would decide 5. The same scenario
can happen for our hierarchical consensus algorithm. 2

Solution 5.6 Consider any of our asynchronous consensus algorithm that
does not solve uniform consensus. This means that there is an execution sce-
nario where two processes p and q decide differently and one of them crashes:
the algorithm violates uniform agreement. Assume that process q crashes.
With an eventually perfect failure detector, it might be the case that q is
not crashed but just falsely suspected by all other processes. Process p would
decide the same as in the previous scenario and the algorithm would violate
(non-uniform) agreement. 2

Solution 5.7 We explain this for the case of a system of four processes
{p1, p2, p3, p4}. Assume by contradiction that there is an asynchronous con-
sensus algorithm that tolerates the crash of two processes. Assume that p1

and p2 propose a value v whereas p3 and p4 propose a different value v′.
Consider a scenario E1 where p1 and p2 crash initially: in this scenario, p3

and p4 decide v′ to respect the validity property of consensus. Consider also a
scenario E2 where p3 and p4 crash initially: in this scenario, p1 and p2 decide
v. With an eventually perfect failure detector, a third scenario E3 is possible:
the one where no process crashes, p1 and p2 falsely suspect p3 and p4 whereas
p3 and p4 falsely suspect p1 and p2. In this scenario E3, p1 and p2 decide v,

142

just as in scenario E1, whereas p3 and p4 decide v′, just as in scenario E2.
Agreement would hence be violated. 2

Solution 5.8 The optimization of the traffic-light algorithm consists in skip-
ping the first communication step of the algorithm during the first round. In
this case, process p1 does not really need to compute a proposal based on the
estimates of other processes. This computation phase is actually only needed
to make sure that the leader will propose any value that might have been
proposed. For the first round, p1 is sure that no decision has been made and
can save one communication phase by directly proposing its own proposal.

A similar optimization can be applied to the round-about algorithm: we
can safely remove the two first communication steps and have process p1,
when it is indeed leader in round 1, go ahead directly and propose its initial
value without waiting for other values. 2

Solution 5.9 The algorithm should select at random a non-⊥ element from
val. This ensures that a non-⊥ value is proposed in the first phase of the next
round. 2

143

Historical Notes

• The consensus problem was defined in a seminal paper by Lamport in
1982 (Lamport, Shostak, and Pease 1982).
• In another seminal paper (Fischer, Lynch, and Paterson 1985), it was

proved that, consensus is impossible to solve with a deterministic algo-
rithm in a pure asynchronous model (with no failure detector) even if only
one process fails, and it can only do so by crashing.
• Later on, intermediate models between the synchronous and the asyn-

chronous model were introduced to circumvent the consensus impossibil-
ity (Dwork, Lynch, and Stockmeyer 1988). The notion of failure detec-
tion was precisely defined to encapsulate partial synchrony assumptions in
1996 (Chandra and Toueg 1996; Chandra, Hadzilacos, and Toueg 1996).
• The traffic-light consensus algorithm was given in (Chandra and Toueg

1996) whereas the round-about consensus algorithm is from (Lamport
1989).
• The notion of unreliable failure detector (such as the eventually perfect

one) was defined precisely in (Guerraoui 2000). It was also shown in that
paper that any algorithm using such a failure detector to solve consensus
solves uniform consensus. It was also shown in (Chandra and Toueg 1996;
Guerraoui 2000) that any consensus algorithm using an unreliable failure
detector requires a majority of correct processes.
• Our randomized consensus algorithm is from (Ezhilchelvan, Mostefaoui,

and Raynal 2001), and is a generalization of the binary randomized con-
sensus algorithm of (Ben-Or 1983).

144

6. Ordering

So far, we did not consider any ordering guarantee among messages deliv-
ered by different processes. In particular, when we consider a reliable broad-
cast abstraction for instance, messages can be delivered in any order and
the reliability guarantees are in a sense orthogonal to such an order. This
chapter considers ordering abstractions. These are broadcast communication
abstractions that provide ordering guarantees among the messages exchanged
between the processes. We will describe here two categories of such abstrac-
tions: causal ordering as well as total ordering abstractions.

6.1 Regular Reliable Causal Order Broadcast

In this section, we discuss the issue of ensuring message delivery according
to causal ordering. This is a generalization of FIFO (first-in-first-out) order-
ing where messages from the same process should be delivered in the order
according to which they were broadcast.

Consider the case of a distributed message board that manages two types
of information: proposals and comments on previous proposals. To make the
interface user-friendly, comments are depicted attached to the proposal they
are referring to. Assume that we implement the board application by repli-
cating all the information at all participants. This can be achieved through
the use of a reliable broadcast primitive to disseminate both proposals and
comments. With a reliable broadcast, the following sequence would be pos-
sible: participant p1 broadcasts a message m1 containing a new proposal;
participant p2 delivers m1 and disseminates a comment in message m2; due
to message delays, another participant p3 delivers m2 before m1. In this case,
the application at p3 would be forced to log m2 and wait for m1, to avoid
presenting the comment before the proposal being commented. In fact, m2

is causally after m1 (m1 → m2), and a causal order primitive would make
sure that m1 would have been delivered before m2, relieving the application
programmer of such a task.

6.1.1 Specification

As the name indicates, a causal order protocol ensures that messages are
delivered respecting cause-effect relations. This is expressed by the happened-
before relation described earlier in this manuscript. This relation, also called
the causal order relation, when applied to the messages exchanged among
processes, is captured by broadcast and delivery events. In this case, we say
that a message m1 may potentially have caused another message m2 (or m1

happened before m2), denoted as m1 → m2, if the following relation, applies:

• m1 and m2 were broadcast by the same process p and m1 was broadcast
before m2 (Figure 6.1a).
• m1 was delivered by process p, m2 was broadcast by process p and m2 was

broadcast after the delivery of m1 (Figure 6.1b).
• there exists some messagem′ such thatm1 → m′ andm′ → m2(Figure 6.1c).

m1 m2

p2

p3

p1

(a)

m1

p2

p3

p1

m2

(b)

m1

p2

p3

p1

m2

m′

(c)

Figure 6.1. Causal order of messages.

Clearly, a broadcast primitive that has only to ensure the causal delivery
property might not be very useful: the property might be ensured by having
no process ever deliver any message. However, the causal delivery property
can be combined with regular reliable broadcast. This combination, called
regular causal order broadcast, has the interface and properties of Module 6.1.
The ordering is defined by property CD. The property states that messages
are delivered by the communication abstraction according to the causal order
relation. There must be no “holes” in the causal past, i.e., when a message
is delivered, all preceding messages have already been delivered.

6.1.2 Fail-Stop Algorithm: No-Waiting Causal Broadcast

Algorithm 6.1 is a causal broadcast algorithm. The algorithm uses an un-
derlying reliable broadcast communication abstraction defined through rb-
Broadcast and rbDeliver primitives. The same algorithm could be used to
implement a uniform causal broadcast abstraction, simply by replacing the
underlying reliable broadcast module by a uniform reliable broadcast module.

146

Module:

Name: (regular) ReliableCausalBroadcast (rcb).

Events:

Request: 〈 rcbBroadcast, m 〉: Used to broadcast message m to Π.

Indication: 〈 rcbDeliver, src, m 〉: Used to deliver message m broadcast
by process src.

Properties (RB1-RB4, from reliable broadcast):

RB1: Validity: If a correct process pi broadcasts a message m, then pi
eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

RB4: Agreement: If a message m is delivered by some correct process pi,
then m is eventually delivered by every correct process pj .

CD: Causal delivery: No process pi delivers a message m2 unless pi has
already delivered every message m1 such that m1 → m2.

Module 6.1 Properties of (regular) reliable causal broadcast.

The algorithm is said to be no-waiting in the following sense: whenever a
process rbDeliver a message m, it can rcbDeliver m without waiting for other
messages to be rbDelivered. Each message m carries a control field called
pastm. The pastm field of a message m includes all messages that causally
precede m. When a message m is rbDelivered, pastm is first inspected: mes-
sages in pastm that have not been rcbDelivered must be rcbDelivered before
m itself is also rcbDelivered. In order to record its own causal past, each
process p memorizes all the messages it has rcbBroadcast or rcbDelivered in
a local variable past. Note that past (and pastm) are ordered sets.

The biggest advantage of Algorithm 6.1 is that the delivery of a message is
never delayed in order to enforce causal order. This is illustrated in Figure 6.2.
Consider for instance process p4 and message m2. Process p4 rbDelivers m2.
Since m2 carries m1 in its past, m1 and m2 are delivered in order. Finally,
when m1 is rbDelivered from p1, it is discarded.

Correctness. All properties of reliable broadcast follow from the use of an
underlying reliable broadcast primitive and the no-waiting flavor of the algo-
rithm. The causal order property is enforced by having every message carry
its causal past and every process making sure that it rcbDelivers the causal
past of a message before rcbDelivering the message.

Performance. The algorithm does not add additional communication steps or
messages to the underlying uniform reliable broadcast algorithm. However,
the size of the messages grows linearly with time, unless some companion
garbage collection algorithm to purge past is executed.

147

Algorithm 6.1 No-waiting reliable causal broadcast.

Implements:
ReliableCausalOrder (rcb).

Uses:
ReliableBroadcast (rb).

upon event 〈 Init 〉 do
delivered := ∅;
past := ∅

upon event 〈 rcbBroadcast, m 〉 do
trigger 〈 rbBroadcast, [Data, past, m] 〉;
past := past ∪ { [self,m] };

upon event 〈 rbDeliver, pi, [Data, pastm, m] 〉 do
if m 6∈ delivered then

forall [sn, n] ∈ pastm do //in order
if n 6∈ delivered then

trigger 〈 rcbDeliver, sn, n 〉;
delivered := delivered ∪ {n}
past := past ∪ {[sn, n]};

trigger 〈 rcbDeliver, pi,m 〉;
delivered := delivered ∪ {m}
past := past ∪ {[pi,m]};

p1

p2

p3

p4

rcoBroadcast (m1)

[m1]

rcoBroadcast (m2)

rcoDeliver (m2)

rcoDeliver (m1)

Figure 6.2. Sample execution of causal broadcast with complete past.

There is a clear inconvenience however with this algorithm: the pastm
field may become extremely large, since it includes the complete causal past
of m. In the next subsection we illustrate a simple scheme to reduce the size
of past. However, even with this optimization, this approach consumes too
much bandwidth to be used in practice. Note also that no effort is made to
prevent the size of the delivered set from growing indefinitely. In the next
paragraph, we discuss an algorithm that circumvents these issues at the ex-
pense of blocking.

148

Algorithm 6.2 Garbage collection of past.

Implements:
GarbageCollectionOfPast.
(extends Algorithm 6.1).

Uses:
ReliableBroadcast (rb).
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
delivered := past := ∅;
correct := Π;
ackm := ∅,∀m;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon ∃m ∈ delivered: self 6∈ ackm do
ackm := ackm ∪ { self };
trigger 〈 rbBroadcast, [Ack, m] 〉;

upon event 〈 rbDeliver, pi, [Ack, m] 〉 do
ackm := ackm ∪ {pi};
if correct ⊂ ackmdo

past := past \{[sm,m]};

Garbage Collection. We now present a very simple algorithm, Algo-
rithm 6.2, to delete messages from the past set. The algorithm supposes
a fail-stop model, i.e., it builds upon a perfect failure detector. The garbage
collection algorithm, is aimed to be used in conjunction with Algorithm 6.1.
It works as follows: when a process rbDelivers a message m, it rbBroadcasts
an Ack message to all other processes; when an Ack for message m has been
rbDelivered from all correct processes, m is purged from past.

6.1.3 Fail-Stop Algorithm: Waiting Causal Broadcast

The approach described in this section, depicted in Algorithm 6.3, circum-
vents the main limitation of Algorithm 6.1: the huge size of the messages.
Instead of keeping a record of all past messages, we keep just the sequence
number of the last message that was rcbBroadcast. In this way, pastp is
reduced to an array of integers. Temporal information stored in this way
is called a vector clock. Algorithm 6.3 uses an underlying reliable broadcast
communication abstraction defined through rbBroadcast and rbDeliver prim-
itives.

With Algorithm 6.3, messages do not carry the complete past, only a
summary of the past in the form of the vector clock. It is possible that a
message may be prevented from being rcbDelivered immediately when it is

149

Algorithm 6.3 Waiting causal broadcast.

Implements:
ReliableCausalOrder (rcb).

Uses:
ReliableBroadcast (rb).

upon event 〈 init 〉 do
∀pi∈Π : V C[pi] := 0;

upon event 〈 rcbBroadcast, m 〉 do
V C[self] := V C[self]+1;
trigger 〈 rbBroadcast, [Data, self, V C, m] 〉;

upon event 〈 rbDeliver, pi, [Data, sm, V Cm, m] 〉 do
wait until ((V C[sm] ≥ V Cm[sm]− 1) and (∀pj 6=sm : V C[pj] ≥ V Cm[pj])
trigger 〈 rcbDeliver, sm,m 〉;
if sm 6= self then

VC[sm] := VC[sm]+1;

rbDelivered, because some of the preceding messages have not been rbDeliv-
ered yet. It is also possible that the rbDelivery of a single message triggers
the rcbDelivery of several messages that were waiting to be rcbDelivered. For
instance, in Figure 6.3 message m2 is rbDelivered at p4 before message m1,
but its rcbDelivery is delayed until m1 is rbDelivered and rcbDelivered.

p1

p2

p3

p4

rcoBroadcast (m1)

rcoDeliver (m1)
rcoDeliver (m2)

[1, 0, 0, 0]

[1, 1, 0, 0]

rcoBroadcast (m2)

Figure 6.3. Sample execution of causal broadcast with vector clocks.

As with the no-waiting variant, Algorithm 6.3 could also be used to imple-
ment uniform reliable causal broadcast, simply by replacing the underlying
reliable broadcast module by a uniform reliable broadcast module.

Performance. The algorithm does not add any additional communication
steps or messages to the underlying reliable broadcast algorithm. The size of

150

Module:

Name: UniformReliableCausalBroadcast (urcb).

Events:

〈 urcbBroadcast, m 〉 and 〈 urcbDeliver, src, m 〉: with the same meaning
and interface as in the regular reliable causal order interface.

Properties:

URB1-URB4 and CD, from uniform reliable broadcast and causal order.

Module 6.2 Properties of uniform reliable causal broadcast.

the message header is linear with regard to the number of processes in the
system.

6.2 Uniform Reliable Causal Order Broadcast

6.2.1 Specification

In the previous section we have shown how the notion of causal order can
be combined with regular reliable broadcast. In a similar manner, we can
combine causal delivery with uniform reliable broadcast, deriving a stronger
form of causal broadcast, the uniform reliable causal broadcast, as depicted
in Module 6.2.

6.2.2 Fail-silent Algorithms

Algorithms 6.1 and 6.3 can be adapted to provide uniform reliable causal
broadcast, both in the fail-stop and fail-silent models, by using a uniform
reliable broadcast primitive to disseminate messages, instead of using a reg-
ular primitive. The reader should note that the garbage collection algorithm
described in Section 6.1.2 does not work in the fail-silent model, as it requires
a perfect failure detector.

6.3 Uniform Total Order Broadcast

Causal order broadcast enforces a global ordering for all messages that
causally depend on each other: such messages need to be delivered in the
same order and this order must be the causal order. Messages that are not
related by causal order are said to be concurrent messages. Such messages
can be delivered in any order. In particular, if in parallel two processes each
broadcasts a message, say p1 broadcasts m1 and p2 broadcasts m2, then the
messages might be delivered in different orders by the processes. For instance,
p1 might deliver m1 and then m2, whereas p2 might deliver m2 and then m1.

151

A total order broadcast abstraction is a reliable broadcast abstraction
which ensures that all processes deliver the same set of messages exactly in
the same order. This abstraction is sometimes also called atomic broadcast
because the message delivery occurs as an indivisible operation: the message
is delivered to all or to none of the processes and, if it is delivered, other
messages are ordered before or after this message.

This sort of ordering eases the maintenance of a global consistent state
among a set of processes. In particular, if each process is programmed as a
state machine, i.e., its state at a given point depends exclusively of the initial
state and of the sequence of messages received, the use of total order broadcast
ensures consistent replicated behavior. The replicated state machine is one
of the fundamental techniques to achieve fault-tolerance.

Note that total order is orthogonal to the causal order discussed in Sec-
tion 6.1. It is possible to have a total-order abstraction that does not respect
causal order, as well as it is possible to build a total order abstraction on top
of a causal order primitive. A causal order abstraction that does not enforce
total order may deliver concurrent messages in different order to different
processes.

6.3.1 Specification

Two variants of the abstraction can be defined: a regular variant only ensures
total order among the processes that remain correct; and a uniform variant
that ensures total order with regard to the crashed processes as well. In this
section we discuss the definition and implementation of the uniform variant
(the regular variant is left as an exercise to the reader). Uniform total order
is captured by the properties depicted in Module 6.3.

Note that the total order property (uniform or not) can be combined with
the properties of a uniform reliable broadcast or those of a causal broadcast
abstraction (for conciseness, we omit the interface of these modules).

6.3.2 Fail-silent Algorithm: Sequenced Sets

In the following, we give a uniform total order broadcast algorithm. More
precisely, the algorithm ensures the properties of uniform reliable broadcast
plus the uniform total order property. The algorithm uses a uniform reli-
able broadcast and a uniform consensus abstractions as underlying building
blocks. In this algorithm, messages are first disseminated using a uniform
(but unordered) reliable broadcast primitive. Messages delivered this way
are stored in a bag of unordered messages at every process. The processes
then use the consensus abstraction to order the messages in this bag.

More precisely, the algorithm works in consecutive rounds. Processes go
sequentially from round i to i+1: as long as new messages are broadcast, the
processes keep on moving from one round to the other. There is one consensus

152

Module:

Name: UniformTotalOrder (uto).

Events:

Request: 〈 utoBroadcast, m 〉: Used to broadcast message m to Π.

Indication: 〈 utoDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

RB1: Validity: If a correct process pi broadcasts a message m, then pi
eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

URB4: Uniform Agreement: If a message m is delivered by some process
pi (whether correct or faulty), then m is also eventually delivered by every
other correct process pj .

UTO1: Uniform total order: Let m1 and m2 be any two messages. Let pi
and pj be any two processes that deliver m2. If pi delivers m1 before m2,
then pj delivers m1 before m2.

Module 6.3 Interface and properties of uniform total order broadcast.

instance per round. The consensus instance of a given round is used to make
the processes agree on a set of messages to assign to the sequence number
corresponding to that round: these messages will be delivered in that round.
For instance, the first round decides which messages are assigned sequence
number 1, i.e., which messages are delivered in round 1. The second round
decides which messages are assigned sequence number 2, etc. All messages
that are assigned round number 2 are delivered after the messages assigned
round number 1. Messages with the same sequence number are delivered
according to some deterministic order (e.g., based on message identifiers).
That is, once the processes have agreed on a set of messages for a given
round, they simply apply a deterministic function to sort the messages of the
same set.

In each instance of the consensus, every process proposes a (potentially
different) set of messages to be ordered. The properties of consensus ensure
that all processes decide the same set of messages for that sequence number.
The full description is given in Algorithm 6.4. The wait flag is used to ensure
that a new round is not started before the previous round has terminated.

An execution of the algorithm is illustrated in Figure 6.4. The figure is
unfolded into two parallel flows: That of the reliable broadcasts, used to
disseminate the messages, and that of the consensus instances, used to order
the messages. As messages are received from the reliable module they are
proposed to the next instance of consensus. For instance, process p4 proposes

153

Algorithm 6.4 Sequenced sets algorithm.

Implements:
UniformTotalOrderBroadcast (uto);

Uses:
UniformReliableBroadcast (urb).
UniformConsensus (uc);

upon event 〈 Init 〉 do
unordered := delivered := ∅;
wait := false;
sn := 1;

upon event 〈 utoBroadcast, m 〉 do
trigger 〈 urbBroadcast, m 〉;

upon event 〈 urbDeliver, sm, m 〉 do
if m 6∈ delivered then

unordered := unordered ∪{(sm,m)}

upon (unordered 6= ∅) ∧ (¬ wait) do
wait := true;
trigger 〈 ucPropose, sn,unordered 〉;

upon event 〈 ucDecided, sn, decided 〉 do
delivered := delivered ⊕ decided;
unordered := unordered \ delivered;
decided := sort (decided); // some deterministic order;
∀(sm,m) ∈ decided: trigger 〈 utoDeliver, sm,m 〉; //following a deterministic order
sn := sn +1;
wait := false;

message m2 to the first instance of consensus. Since the first instance of
consensus decides message m1, process p4 re-submits m2 (along with m3

that was received meanwhile) to the second instance of consensus.

Correctness. The no-creation property follows from (1) the no-creation prop-
erty of the reliable broadcast abstraction and (2) the validity property of
consensus. The no-duplication property follows from (1) the no-duplication
property of the reliable broadcast abstraction, and (2) the integrity property
of consensus (more precisely, the use of the variable delivery). Consider the
agreement property. Assume that some correct process pi toDelivers some
message m. By the algorithm, pi must have decided a batch of messages
with m inside that batch. Every correct process will reach that point because
of the algorithm and the termination property of consensus, and will decide
that batch, and will toDeliver m. Consider the validity property of total order
broadcast, and let pi be some correct process that toBroadcasts a message m.
Assume by contradiction that pi never toDelivers m. This means that m is
never included in a batch of messages that some correct process decides. By

154

p1

p2

p3

p4

p1

p2

p3

p4

Round 1 Round 2 Round 3

uabBroadcast (m4)

uabBroadcast (m3)

uabBroadcast (m1)

uabBroadcast (m2)

Consensus

Reliable Broadcast

uabDeliver (m1) uabDeliver (m2) uabDeliver (m3, m4)

m1

m2, m1

m1

m2 m2, m3

m2, m3

m2

m2 m3, m4

m3, m4

m3, m4

m3, m4

Figure 6.4. Sample execution of the uniform total order broadcast algorithm.

the validity property of reliable broadcast, every correct process will eventu-
ally rbDeliver and propose m in a batch of messages to consensus. By the
validity property of consensus, pi will decide a batch of messages including
m and will toDeliver m. Consider now the total order property. Let pi and
pj be any two processes that toDeliver some message m2. Assume that pi
toDelivers some message m1 before m2. If pi toDelivers m1 and m2 in the
same batch (i.e., the same round number), then by the agreement property
of consensus, pj must have also decided the same batch. Thus, pj must toDe-
liver m1 before m2 since we assume a deterministic function to order the
messages for the same batch before their toDelivery. Assume that m1 is from
a previous batch at pi. By the agreement property of consensus, pj must have
decided the batch of m1 as well. Given that processes proceed sequentially
from one round to the other, then pj must have toDelivered m1 before m2.

Performance. The algorithm requires at least one communication step to ex-
ecute the reliable broadcast and at least two communication steps to execute
the consensus. Therefore, even if no failures occur, at least three communi-
cation steps are required.

Variations. It is easy to see that a regular total order broadcast algorithm is
automatically obtained by replacing the uniform consensus abstraction by a
regular one. Similarly, one could obtain a total order broadcast that satisfies
uniform agreement if we used a uniform reliable broadcast abstraction instead
of regular reliable broadcast abstraction. Finally, the algorithm can trivially
be made to ensure in addition causal ordering, for instance if we add past

155

Module:

Name: Logged Uniform Total Order (log-uto).

Events:

Request: 〈 log-utoBroadcast, m 〉: Used to broadcast message m.

Indication: 〈 log-utoDeliver, delivered 〉: Used to deliver the log of all
ordered messages up to the moment the indication is generated.

Properties:

LURB1: Validity: If pi and pj are correct, then every message broadcast
by pi is eventually logged by pj .

LURB2: No duplication: No message is logged more than once.

LURB3: No creation: If a message m is logged by some process pj , then
m was previously broadcast by some process pi.

LURB4: Strongly Uniform Agreement: If a message m is logged by some
process, then m is eventually logged by every correct process.

LUTO1: Total order: Let delivered i be the sequence of messages delivered
to process pi. For any pair (i, j), either delivered i is a prefix of delivered j
or delivered j is a prefix of delivered i.

Module 6.4 Interface and properties of logged uniform total order broadcast.

information with every message (see our non-blocking causal order broadcast
algorithm).

6.4 Logged Total Order Broadcast

To derive a total order specification, and later an algorithm, for the fail-
recovery model we can apply the same sort of approach we have used to
derive a reliable broadcast and consensus for the same model. We depart
from an algorithm designed from the fail-silent model and adapt the follow-
ing aspects: interface with adjacent modules, logging of relevant state, and
definition of recovery procedures. Besides, we make use of underlying abstrac-
tions deigned for the fail-recovery model, e.g., logged consensus and logged
reliable broadcast.

6.4.1 Specification

We consider here just the uniform definition, which is presented in Mod-
ule 6.4. Note that, similarly to the definition of Logged Reliable Broadcast
(see Section 3.5), the module exports to the upper layers the sequence of
delivered (and ordered) messages.

156

Algorithm 6.5 Redo Total Order Broadcast.

Implements:
Logged Uniform Total Order Broadcast (log-uto);

Uses:
Logged Best Effort Broadcast (log-beb).
Logged Uniform Consensus (log-uc);

upon event 〈 Init 〉 do
unordered := ∅; delivered := ∅;
sn := 0; wait := false;
∀k : propose[k] := ⊥;

upon event 〈 Recovery 〉 do
sn := 0; wait := false;
while propose[k] 6= ⊥ do

trigger 〈 log-ucPropose, sn, propose[ns] 〉;
wait 〈 log-ucDecided, sn, decided 〉;
decided := sort (decided); // some deterministic order;
delivered := delivered ⊕ decided;
sn := sn +1;

trigger 〈 log-utoDeliver, delivered 〉;

upon event 〈 log-utoBroadcast, m 〉 do
trigger 〈 log-rbBroadcast, m 〉;

upon event 〈 log-rbDeliver, msgs 〉 do
unordered := unordered ∪ msgs;

upon (unordered\decided 6= ∅) ∧ (¬ wait) do
wait := true;
propose[ns] := unordered\delivered; store (propose[ns]);
trigger 〈 log-ucPropose, sn, propose[ns] 〉;

upon event 〈 log-ucDecided, sn, decided 〉 do
decided := sort (decided); // some deterministic order;
delivered := delivered ⊕ decided;
trigger 〈 log-utoDeliver, delivered 〉;
sn := sn +1; wait := false;

6.4.2 Fail-Recovery Algorithm: Redo Total Order Broadcast

Our algorithm (Algorithm 6.5) closely follows the algorithm for the fail-stop
model presented in Section 6.3. The algorithm works as follows. Messages
sent by the upper layer are disseminated using the reliable broadcast algo-
rithm for the fail-recovery model introduced in Section 3.5. The total order
algorithm keeps two sets of messages: the set of unordered messages (these
messages are the messages received from the reliable broadcast module) and
the set of ordered messages (obtained by concatenating the result of the sev-
eral executions of consensus). A new consensus is started when one notices

157

that there are unordered messages that have not yet been ordered by previ-
ous consensus executions. The wait flag is used to ensure that consensus are
invoked in serial order. Upon a crash and recovery, the total order module
may re-invoke the same consensus execution more than once. Before invoking
the ith instance of consensus, the total order algorithm stores the values to
be proposed in stable storage. This ensures that a given instance of consensus
is always invoked with exactly the same parameters. This may not be strictly
needed (depending on the implementation of consensus) but is consistent
with the intuitive notion that each processes proposes a value by storing it
in stable storage.

The algorithm has the interesting feature of never storing the unordered
and delivered sets. These sets are simply reconstructed upon recovery from
the stable storage kept internally by the reliable broadcast and consensus im-
plementations. Since the initial values proposed for each consensus execution
are logged, the process may re-invoke all past instance of consensus to obtain
all messages ordered in previous rounds.

Correctness. The correctness argument is identical to the argument presented
for the fail-silent model.

Performance. The algorithm requires at least one communication step to ex-
ecute the reliable broadcast and at least two communication steps to execute
the consensus. Therefore, even if no failures occur, at least three communi-
cation steps are required. No stable storage access is needed besides those
needed by the underlying consensus module.

158

Exercises

Exercise 6.1 (*) Compare our causal broadcast property with the following
property: “If a process delivers messages m1 and m2, and m1 → m2, then
the process must deliver m1 before m2”.

Exercise 6.2 (**) Can we devise a best-effort broadcast algorithm that sat-
isfies the causal delivery property without being a causal broadcast algorithm,
i.e., without satisfying the agreement property of a reliable broadcast?

Exercise 6.3 (*) Can we devise a broadcast algorithm that does not ensure
the causal delivery property but only its non-uniform variant: No correct pro-
cess pi delivers a message m2 unless pi has already delivered every message
m1 such that m1 → m2.

Exercise 6.4 (**) Suggest a modification of the garbage collection scheme
to collect messages sooner than in Algorithm 6.2.

Exercise 6.5 (*) What happens in our total order broadcast algorithm if the
set of messages decided on are not sorted deterministically after the decision
but prior to the proposal? What happens if in our total order broadcast algo-
rithm if the set of messages decided on is not sorted deterministically, neither
a priori nor a posteriori?

Exercise 6.6 (*) Define a regular variant of the total order broadcast prob-
lem.

Corrections

Solution 6.1 We need to compare the two following two properties:

1. If a process delivers a message m2, then it must have delivered every
message m1 such that m1 → m2.

2. If a process delivers messages m1 and m2, and m1 → m2, then the process
must deliver m1 before m2.

Property 1 says that any message m1 that causally precedes m2 must only
be delivered before m2 if m2 is delivered. Property 2 says that any delivered
message m1 that causally precedes m2 must only be delivered before m2 if
m2 is delivered.

Both properties are safety properties. In the first case, a process that de-
livers a message m without having delivered a message that causally precedes
m violates the property and this is irremediable. In the second case, a process
that delivers both messages without respecting the causal precedence might

159

violate the property and this is also irremediable. The first property is how-
ever strictly stronger than the second. If the first is satisfied then the second
is. However, it can be the case with the second property is satisfied whereas
the first is not: a process delivers a message m2 without delivering a message
m1 that causally precedes m1. 2

Solution 6.2 The answer is no. Assume by contradiction that some broadcast
algorithm ensures causal order deliver and is not reliable but best-effort. We
define the abstraction implemented by such an algorithm with primitives:
coBroadcast and coDeliver. The only possibility for a broadcast to ensure the
best-effort properties and not be reliable is to violate the agreement property:
there must be some execution of the algorithm implementing the abstraction
where some correct process p coDelivers a message m that some other process
q does never coDeliver. Because the algorithm is best-effort, this can only
happen if the original source of the message, say r is faulty.

Assume now that after coDelivering m, process p coBroadcasts a mes-
sage m′. Given that p is correct and the broadcast is best-effort, all correct
processes, including q, coDeliver m′. Given that m precedes m′, q must have
coDelivered m: a contradiction. Hence, any best-effort broadcast that satis-
fies the causal delivery property is also reliable. 2

Solution 6.3 Assume by contradiction that some algorithm does not ensure
the causal delivery property but ensures its non-uniform variant. This means
that the algorithm has some execution where some process p delivers some
message m without delivering a message m′ that causally precedes m. Given
that we assume a model where processes do not commit suicide, p might very
well be correct, in which case it violates even the non-uniform variant. 2

Solution 6.4 When removing a message m from the past, we can also remove
all the messages that causally depend on this message—and then recursively
those that causally precede these. This means that a message stored in the
past must be stored with its own, distinct past. 2

Solution 6.5 If the deterministic sorting is done prior to the proposal, and
not a posteriori upon a decision, the processes would not agree on a set but on
a sequence, i.e., an ordered set. If they then toDeliver the messages according
to this order, we would still ensure the total order property.

If the messages that we agree on through consensus are not sorted deter-
ministically within every batch (neither a priori nor a posteriori), then the
total order property is not ensured. Even if the processes decide on the same
batch of messages, they might toDeliver the messages within this batch in a
different order. In fact, the total order property would only be ensured with
respect to the batches of messages, and not to the messages themselves. We
thus get a coarser granularity in the total order.

160

We could avoid using the deterministic sort function at the cost of propos-
ing a single message at a time in the consensus abstraction. This means that
we would need exactly as many consensus instances as there are messages
exchanged between the processes. If messages are generated very slowly by
processes, the algorithm ends up using one consensus instance per message
anyway. If the messages are generated rapidly, then it is beneficial to use
several messages per instance: within one instance of consensus, several mes-
sages would be gathered, i.e., every message of the consensus algorithm would
concern several messages to toDeliver. Agreeing on several messages at the
same time reduces the number of times we use the consensus protocol. 2

Solution 6.6 Regular total order broadcast can be defined by replacing
properties URB4 and UTO1 in Module 6.3 by the following properties:

RB4: Agreement: If a message m is delivered by some correct process
pi, then m is also eventually delivered by every other correct process
pj .

TO1: Total order: Let m1 and m2 be any two messages. Let pi and
pj be any two correct processes that deliver m2. If pi delivers m1

before m2, then pj delivers m1 before m2.

Note that both agreement and order only have to be enforced among cor-
rect processes (therefore, the regular specification allows processes that fail
to deliver the messages in a different order). 2

161

Historical Notes

• The causal broadcast abstraction was defined by Birman and Joseph
in (Birman and Joseph 1987a) following the notion of causality initially
introduced by Lamport (Lamport 1978).
• In this chapter, we presented algorithms that implement causal broadcast

assuming that all messages are broadcast to all processes in the system. It
is also possible to ensure causal delivery in the cases where individual mes-
sages may be sent to an arbitrary subset of group members, but the algo-
rithms require a significantly larger amount of control information (Raynal,
Schiper, and Toueg 1991).
• Similarly, we considered that messages need to be totally ordered were

broadcast to all processes in the system, and hence it was fine to have
all the processes participate in the ordering activity. It is also possible to
consider a total order multicast abstraction where the sender can select
the subset of processes to which the message needs to be sent, and require
that no other process besides the sender and the multicast set participates
in the ordering. The algorithms in this case are rather tricky (?; ?).
• Our no-waiting causal broadcast algorithm was inspired by one of the earli-

est implementations of causal ordering, included in the ISIS toolkit (Birman
and Joseph 1987b).
• Our waiting causal broadcast algorithms was based on the notion of vector

clocks introduced in (Fidge 1988; Ladin, Liskov, Shrira, and Ghemawat
1990; Schwarz and Mattern 1992).
• The total order broadcast abstraction was specified by Schneider (?), fol-

lowing the work on state machine replication by Lamport. Our total order
broadcast algorithm is inspired by (Chandra and Toueg 1996).
• Our total order broadcast specification and algorithms in the fail-recovery

model are inspired by (?; Rodrigues and Raynal 2003).

.

162

7. Coordination

This chapter considers agreement abstractions where a given process is typi-
cally trying to impose a decision on all, either by electing itself as a perpetual
leader or by forcing the other processes to commit on its decision. These ab-
stractions are similar to consensus in that processes need to agree on some
common value. The very characteristic of these abstractions is that the value
decided cannot be any value and might for instance need to be the value of
some given process.

Examples of such abstractions include terminating reliable broadcast,
(non-blocking) atomic commitment, leader election, and group membership.
We give in the following the specifications of these abstractions as well as
algorithms to implement them. We do so in a fail-stop model. Variants of
their algorithms for alternative models are discussed through the exercices at
the end of the chapter.

7.1 Terminating Reliable Broadcast

7.1.1 Intuition

As its name indicates, terminating reliable broadcast is a form of reliable
broadcast with a termination property.

Consider the case where a given process pi is known to have the obligation
of broadcasting some message to all processes in the system. In other words,
pi is a source of information in the system and all processes must perform
some specific processing according to the message m got from pi. All the
remaining processes are thus waiting for pi’s message. If pi uses a best effort
broadcast and does not crash, then its message will be seen by all correct
processes. Consider now the case where pi crashed and some process pj de-
tects that pi has crashed without having seen m. Does this mean that m was
not broadcast? Not really. It is possible that pi crashed while broadcasting
m: some processes may have received m whereas others have not. Process pj
needs to know whether it should keep on waiting for m, or if it can know at
some point that m will never be delivered by any process.

At this point, one may think that the problem could be avoided if pi had
used a uniform reliable broadcast primitive to broadcast m. Unfortunately,

Module:

Name: TerminatingReliableBroadcast (trb).

Events:

Request: 〈 trbBroadcast, src, m 〉: Used to initiate a terminating reliable
broadcast for process src.

Indication: 〈 trbDeliver, src, m 〉: Used to deliver message m broadcast
by process src (or F in the case src crashes).

Properties:

TRB1: Termination: Every correct process eventually delivers exactly one
message.

TRB2: Validity: If the sender src is correct and broadcasts a message m,
then src eventually delivers m.

TRB3: Integrity: If a correct process delivers a message m then either
m = F or m was previously broadcast by src.

TRB5: Uniform Agreement: If any process delivers a message m, then
every correct process eventually delivers m.

Module 7.1 Interface and properties of terminating reliable broadcast.

this is not the case. Consider process pj in the example above. The use of a
uniform reliable broadcast primitive would ensure that, if some other process
pk delivered m, then pj would eventually deliver m also. However, pj cannot
decide if it should wait for m or not.

The terminating reliable broadcast (TRB) abstraction precisely gives to
pj either the message m or some indication F that m will not be delivered.
This indication is given in the form of a specific message to the processes: it
is however assumed that the indication is not like any other message, i.e., it
does not belong to the set of possible messages that processes can broadcast.
A process that gets such an indication knows that the sender has crashed
and would not use this indication as a regular message.

7.1.2 Specifications

The properties of this broadcast abstraction are depicted in Module 7.1. It
is important to notice that the abstraction is defined for a specific originator
process, denoted by src in Module 7.1.

7.1.3 Algorithm

Algorithm 7.1 implements uniform TRB using three underlying abstractions:
a perfect failure detector, a uniform consensus and a best-effort broadcast.

The algorithm works by having the source of the message m disseminate
m to all correct processes using a best-effort broadcast. Every correct process

164

Algorithm 7.1 A uniform terminating reliable broadcast algorithm.

Implements:
TerminatingReliableBroadcast (trb).

Uses:
BestEffortBroadcast (beb).
UniformConsensus (uc);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
proposal := ⊥;
correct := Π;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 trbBroadcast, src, m 〉 do
if (src = self) do trigger 〈 bebBroadcast, m 〉;

upon event 〈 bebDeliver, pi, m 〉 do
proposal := m;

upon (src 6∈correct) do
proposal := Fsrc;

upon (proposal 6= ⊥) do
trigger 〈 ucPropose, proposal 〉;

upon event 〈 ucDecide, decided 〉 do
trigger 〈 trbDeliver, src, decided 〉

waits until it gets the message broadcast by the sender process or detects the
crash of the originator process. Then all processes run a consensus to agree
on whether to deliver m or a failure notification. The processes that got m
propose it to consensus and those who detected the crash of the sender, src,
propose F . The result of the consensus is the value delivered by the TRB
algorithm.

An execution of the algorithm is illustrated in Figure 7.1. Process p1

crashes while broadcasting m. Therefore p2 and p3 get m but p4 does not.
The remaining processes use the consensus module to decide which value must
be delivered. In the example of the figure the processes decide to deliver m
but F would be also a possible outcome (since p1 has crashed).

Correctness. The validity properties of best-effort broadcast and consensus
ensure that if a process trbDelivers a message m, then either m is F or m was
trbBroadcast by src. The no-duplication property of best-effort broadcast and
the integrity property of consensus ensure that no process trbDelivers more
than one message. The completeness property of the failure detector, the va-

165

p1

p2

p3

p4

trbBroadcast (p1, m)

ucPropose (m)

ucPropose (m)

ucPropose (F)

crash (p1)

ucDecide (m) trbDeliver (m)

trbDeliver (m)

trbDeliver (m)

uniform consensus

Figure 7.1. Sample execution of terminating reliable broadcast.

lidity property of best-effort broadcast and the termination property of con-
sensus ensure that every correct process eventually trbDelivers a message.
The agreement property of consensus ensures that of terminating reliable
broadcast. Consider now the validity property of terminating reliable broad-
cast. Consider that src does not crash and trbBroadcasts a message m 6= F .
By the accuracy property of the failure detector, no process detects the crash
of src. By the validity property of best-effort broadcast, every correct process
bebDelivers m and proposes m to consensus. By the validity and termination
properties of consensus, all correct processes, including src, eventually decide
and trbDeliver a message m.

Performance. The algorithm requires the execution of the consensus abstrac-
tion. In addition to the cost of consensus, the algorithm exchanges N−1 mes-
sages and requires one additional communication step (for the initial best-
effort broadcast).

Variation. Our TRB specification has a uniform agreement property. As for
reliable broadcast, we could specify a regular variant of TRB with a regular
agreement property. By using a regular consensus abstraction instead of uni-
form consensus, we can automatically obtain a regular terminating reliable
broadcast abstraction.

7.2 Non-blocking Atomic Commit

7.2.1 Intuition

The non-blocking atomic commit (NBAC) abstraction is used to make a set
of processes, each representing a data manager, agree on the outcome of a
transaction. The outcome is either to commit the transaction, say to decide
1, or to abort the transaction, say to decide 0. The outcome depends on the
initial proposals of the processes. Every process proposes an initial vote for
the transaction: 0 or 1. Voting 1 for a process means that the process is
willing and able to commit the transaction.

166

Typically, by voting 1, a data manager process witnesses the absence of
any problem during the execution of the transaction. Furthermore, the data
manager promises to make the update of the transaction permanent. This in
particular means that the process has stored the temporary update of the
transaction in stable storage: should it crash and recover, it can install a
consistent state including all updates of the committed transaction.

By voting 0, a data manager process vetos the commitment of the trans-
action. Typically, this can occur if the process cannot commit the transaction
for an application-related reason, e.g., not enough money for a bank transfer
in a specific node, for a concurrency control reason, e.g., there is a risk of vi-
olating serialisability in a database system, or a storage reason, e.g., the disk
is full and there is no way to guarantee the persistence of the transaction’s
updates.

At first glance, the problem looks like consensus: the processes propose 0
or 1 and need to decide on a common final value 0 or 1. There is however a
fundamental difference: in consensus, any value decided is valid as long as it
was proposed. In the atomic commitment problem, the decision 1 cannot be
taken if any of the processes had proposed 0. It is indeed a veto right that is
expressed with a 0 vote.

7.2.2 Specifications

NBAC is characterized by the properties listed in Module 7.2. Without the
termination property, the abstraction is simply called atomic commit (or
atomic commitment). Note that NBAC is inherently uniform. In a distributed
database system for instance, the very fact that some process has decided to
commit a transaction is important, say the process has delivered some cash
through an ATM. Even if that process has crashed, its decision is important
and other processes should reach the same outcome.

7.2.3 Algorithm

Algorithm 7.2 solves NBAC using three underlying abstractions: a perfect
failure detector, a consensus and a best-effort broadcast.

The algorithm works as follows. Every correct process pi broadcasts its
proposal (0 or 1) to all, and waits, for every process pj , either to get the
proposal of pj or to detect the crash of pj . If pi detects the crash of any other
process or gets a proposal 0 from any process, then pi invokes consensus with
0 as its proposal. If pi gets the proposal 1 from all processes, then pi invokes
consensus with 1 as a proposal. Then the processes decide for NBAC the
outcome of consensus.

Correctness. The agreement property of NBAC directly follows from that of
consensus. The no-duplication property of best-effort broadcast and the in-
tegrity property of consensus ensure that no process nbacDecides twice. The

167

Module:

Name: Non-Blocking Atomic Commit (nbac).

Events:

Request: 〈 nbacPropose, v 〉: Used to propose a value for the commit (0
or 1).

Indication: 〈 nbacDecide, v 〉: Used to indicate the decided value for nbac.

Properties:

NBAC1: Agreement No two processes decide different values.

NBAC2: Integrity No process decides twice.

NBAC3: Abort-Validity 0 can only be decided if some process proposes
0 or crashes.

NBAC4: Commit-Validity 1 can only be decided if no process proposes
0.

NBAC5: Termination Every correct process eventually decides.

Module 7.2 Interfaces and properties of NBAC.

termination property of NBAC follows from the validity property of best-
effort broadcast, the termination property of consensus, and the complete-
ness property of the failure detector. Consider now the validity properties of
NBAC. The commit-validity property requires that 1 is decided only if all
processes propose 1. Assume by contradiction that some process pi nbacPro-
poses 0 whereas some process pj nbacDecides 1. By the algorithm, for pj to
nbacDecide 1, it must have decided 1, i.e., through the consensus abstraction.
By the validity property of consensus, some process pk must have proposed 1
to the consensus abstraction. By the validity property of best-effort broadcast,
there are two cases to consider: (1) either pi crashes before pk bebDelivers pi’s
proposal or (2) pk bebDelivers pi’s proposal. In both cases, by the algorithm,
pk proposes 0 to consensus: a contradiction. Consider now the abort-validity
property of NBAC. This property requires that 0 is decided only if some pro-
cess nbacProposes 0 or crashes. Assume by contradiction that all processes
nbacPropose 1 and no process crashes, whereas some process pi nbacDecides
0. For pi to nbacDecide 0, by the validity property of consensus, some process
pk must propose 0. By the algorithm and the accuracy property of the failure
detector, pk would only propose 0 if some process nbacProposes 0 or crashes:
a contradiction.

Performance. The algorithm requires the execution of the consensus abstrac-
tion. In addition to the cost of consensus, the algorithm exchanges N 2 mes-
sages and requires one additional communication step (for the initial best-
effort broadcast).

Variation. One could define a non-uniform variant of NBAC, i.e., by requiring
only agreement and not uniform agreement. However, this abstraction would

168

Algorithm 7.2 Non-blocking atomic commit.

Implements:
NonBlockingAtomicCommit (nbac).

Uses:
BestEffortBroadcast (beb).
Consensus (uc);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
delivered := ∅;
correct := Π;
proposal := 1;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 nbacPropose, v 〉 do
trigger 〈 bebBroadcast, v 〉;

upon event 〈 bebDeliver, pi, v 〉 do
delivered := delivered ∪{pi} ;
proposal := proposal * v;

upon (correct \ delivered = ∅) do
if correct 6= Π then

proposal := 0;
trigger 〈 ucPropose, proposal 〉;

upon event 〈 ucDecide, decided 〉 do
trigger 〈 nbacDecide, decided 〉

not be useful in a practical setting to control the termination of a transaction
in a distributed database system. A database server is obviously supposed to
recover after a crash and even communicate the outcome of the transaction
to the outside world before crashing. The very fact that it has committed (or
aborted) a transaction is important: other processes must nbacDecide the
same value.

7.3 Leader Election

7.3.1 Intuition

The leader election abstraction consists in choosing one process to be selected
as a unique representative of the group of processes in the system. This
abstraction is very useful in a primary-backup replication scheme for instance.
Following this scheme, a set of replica processes coordinate their activities

169

Module:

Name: LeaderElection (le).

Events:

Indication: 〈 leLeader, pi 〉: Used to indicate that process pi is now the
leader.

Properties:

LE1: Either there is no correct process, or some correct process is even-
tually permanently the leader.

LE2: A process p is leader only if all processes in O(p) have crashed.

Module 7.3 Interface and properties of leader election.

to provide the illusion of a fault-tolerant service. Among the set of replica
processes, one is chosen as the leader. This leader process, sometimes called
primary, is supposed to treat the requests submitted by the client processes,
on behalf of the other replicas, called backups. Before a leader returns a reply
to a given client, it updates its backups to keep them up to date. If the leader
crashes, one of the backups is elected as the new leader, i.e., the new primary.

7.3.2 Specification

We define the leader election abstraction through the properties given in
Module 7.3. Processes are totally ordered according to some function O,
which is known to the user of the leader election abstraction, e.g., the clients
of a primary-backup replication scheme. This function O associates to every
process, those that precede it in the ranking. A process can only become
leader if those that precede it have crashed. In a sense, the function represents
the royal ordering in a monarchical system. The prince becomes leader if and
only if the queen dies. If the prince indeed becomes the leader, may be his
little brother is the next on the list, etc. Typically, we would assume that
O(p1) = ∅, O(p2) = {p1}, O(p3) = {p1, p2}, and so forth. The order in this
case is p1; p2; p3; . . .

7.3.3 Algorithm

Algorithm 7.3 implements leader election in a fail-stop model. It assumes a
perfect failure detector abstraction.

Correctness. Property LE1 follows from the completeness property of the
failure detector whereas property LE2 follows from the accuracy property of
the failure detector.

Performance. The process of becoming a leader is a local operation. The
time to react to a failure and become the new leader depends on the latency
of the failure detector.

170

Algorithm 7.3 Leader election algorithm.

Implements:
LeaderElection (le);

Uses:
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
suspected := ∅;

upon event 〈 crash, pi 〉 do
suspected := suspected ∪{pi};

upon event O(self) ⊂ suspected do
trigger 〈 leLeader, self 〉;

7.4 Group Membership

7.4.1 Intuition

In the previous sections, our algorithms were required to make decisions based
on the information about which processes were operational or crashed. This
information is provided by the failure detector module available at each pro-
cess. However, the output of failure detector modules at different processes
is not coordinated. This means that different processes may get notification
of failures of other processes in different orders and, in this way, obtain a dif-
ferent perspective of the system evolution. One of the roles of a membership
service is to provide consistent information about which processes are correct
and which processes have crashed.

Another role of a membership service is to allow new processes to leave
and join the set of processes that are participating in the computation, or
let old processes voluntarily leave this set. As with failure information, the
result of leave and join operations should be provided to correct processes in
a consistent way.

To simplify the presentation, we will consider here just the case of pro-
cess crashes, i.e., the initial membership of the group is the complete set of
processes and subsequent membership changes are solely caused by crashes.
Hence, we do not consider explicit join and leave operations.

7.4.2 Specifications

We name the set of processes that participate in the computation a group.
The current membership of the group is called a group view . Each view V i =
(i,Mi) is a tuple that contains a unique view identifier i and a set of member
processes M . We consider here a linear group membership service, where

171

Module:

Name: Membership (memb).

Events:

Indication: 〈 membVview, g, V i 〉 Used to deliver update membership
information in the form of a view. The variable g denotes the group id. A
view V i is a tuple (i,M), where i is a unique view identifier and M is the
set of processes that belong to the view.

Properties:

Memb1: Self inclusion: If a process p installs view V i = (i,Mi), then
p ∈Mi.

Memb2: Local Monotonicity: If a process p installs view V j = (j,Mj)
after installing V i = (i,Mi), then j > i.

Memb3: Initial view: Every correct process installs V 0 = (0, Π).

Memb4: Agreement: If a correct process installs V i, then every correct
process also installs V i.

Memb5: Completeness: If a process p crashes, then eventually every view
V i = (i,Mi) installed by a correct process does not contain p, i.e., p 6∈Mi.

Memb6: Accuracy: If some process installs a view V i = (i,Mi) : q 6∈Mi,
then q has crashed.

Module 7.4 Interface and properties of a group membership service.

all correct processes see the same sequence of views: V 0 = (0,M0), V 1 =
(1,M1), As we have noted before, the initial view of all processes V 0

includes the complete set of processesΠ in the system. A process that delivers
a view V i is said to install view V i. The membership service is characterized
by the properties listed in Module 7.4.

7.4.3 Algorithm

We now present a group membership algorithm based on consensus and a
perfect failure detector: Algorithm 7.4. At initialization, each process deliv-
ers the initial view with all the processes in the system. From that point on,
the algorithm remains idle until a process is detected to have crashed. Since
different processes may detect crashes in different orders, a new view is not
generated immediately. Instead, a consensus is executed to decide which pro-
cesses are to be included in the next view. The wait flag is used to prevent
a process to start a new consensus before the previous consensus terminates.
When consensus decides, a new view is delivered and the current-membership
and next-membership are updated. Note that a process may install a view
containing a process that it already knows to be crashed. In this case it will
initiate a new consensus to trigger the installation of another view.

172

Algorithm 7.4 Group membership properties.

Uses:
UniformConsensus (uc);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
current-id := 0;
current-membership := Π;
next-membership := Π;
current-view := (current-id, current-membership);
wait := false;
trigger 〈 memView, g, current-view 〉;

upon event 〈 crash, pi 〉 do
next-membership := next-membership \{pi};

upon (current-membership 6= next-membership) ∧ (¬ wait) do
wait := true;
trigger 〈 ucPropose, current-id+1, next-membership 〉;

upon event 〈 ucDecided, id, memb 〉 do
current-id := id;
current-membership := memb;
next-membership := current-membership ∩ next-membership;
current-view := (current-id, current-membership);
wait := false;
trigger 〈 membView, g, current-view 〉

An execution of the membership algorithm is illustrated in Figure 7.2. In
the execution both p1 and p2 crash. Process p3 detects the crash of p2 and
initiates the consensus to define a new view. Process p4 detects the crash of p1

and proposes a different view to consensus. As a result of the first consensus,
p1 is excluded from the view. Since p3 has already detected the crash of p2,
p3 starts a new consensus to exclude p2. Eventually, p4 also detects the crash
of p2 and also participates in the consensus for the third view, that only
includes the correct processes.

Correctness. Self inclusion, local monotonicity, and initial view follow from
the algorithm. The agreement property follows from consensus. The complete-
ness property follows from the completeness property of the failure detector
and the accuracy property follows from the accuracy property of the failure
detector.

Performance. The algorithm requires at most one consensus execution for
each process that crashes.

173

p1

p2

p3

p4

crash (p2)

crash (p1)

membView (p2, p3, p4)membView (p1, p2, p3, p4)

ucPropose (p3, p4)

uniform consensus

ucPropose (p2, p3, p4)

ucPropose (p1, p3, p4)

membView (p3, p4)

crash (p1)
ucPropose (p3, p4)

crash (p2)

Figure 7.2. Sample execution of the membership algorithm.

7.5 Probabilistic Group Membership

Probabilistic Partial Membership. We discuss below how membership
can be managed in a probabilistic manner. An intuitive approach consists of
having each process store just a partial view of the complete membership.
For instance, every process would store a fixed number of processes in the
system, i.e., every process would have a set of acquaintances. This is also
called the view of the process.

Naturally, to ensure connectivity, views of different processes must overlap
at least at one process, and a larger overlap is desirable for fault-tolerance.
Furthermore, the union of all views should include all processes in the system.
If processes in the group are uniformly distributed among the views, it can
be shown that a probabilistic broadcast algorithm preserves almost the same
properties as an algorithm that relies on full membership information.

The problem is then to derive an algorithm that allows new processes
to join the group and that promotes an uniform distribution of processes
among the view. The basic idea consists of having processes gossip infor-
mation about the contents of their local views. The nice thing is that this
(partial) membership information may be piggybacked in data messages. Us-
ing this information, processes may “mix” their view with the views of the
processes they receive messages from, by randomly discarding old members
and inserting new members.

Algorithm 7.5 illustrates the idea. It works by managing three variables:
view, that maintains the partial membership; subs that maintains a set of
processes that are joining the membership; and, unsubs, a set of processes
that want to leave the membership. Each of these sets has a maximum size,
viewsz, subssz, and unsubssz respectively. If during the execution of the algo-
rithm, these sets become larger than the maximum size, elements are removed
at random until the maximum size is reached. Processes periodically gossip
(and merge) their subs and unsubs sets. The partial view is updated accord-
ing to the information propagated in these sets. Note that, as a result of
new subscriptions, new members are added and some members are randomly

174

Algorithm 7.5 A probabilistic partial membership algorithm.

Implements:
Probabilistic Partial Membership (ppm).

Uses:
unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
view := set of known group members;
subs := ∅; unsubs := ∅;

every T units of time do
for 1 to fanout do

target := random (view);
trigger 〈 upp2pSend, target, [Gossip, subs, unsubs] 〉;

upon 〈 ppmJoin 〉 do
subs := subs ∪ { self };

upon 〈 ppmLeave 〉 do
unsubs := unsubs ∪ { self };

upon event 〈 up2pDeliver, pi, [Gossip, s, u] 〉 do
view := view \ u;
view := view ∪(s \ { self });
unsubs := unsubs ∪ u;
subs := subs ∪(s \ { self });
//trim variables
while | view | > viewsz do

target := random (view);
view := view \ { target };
subs := subs ∪ { target };

while | unsubs | > unsubssz do unsubs := unsubs \ { random(unsubs) };
while | subs | > subssz do subs := subs \ { random(subs) };

removed from the partial view. Members removed from the partial view, say
due to the overflow of the table where each process stores the identities of its
acquaintances, are added to the subs set, allowing them to be later inserted in
the partial view of other members. It is of course assumed that each process
is initialized with a set of known group members.

It is important to notice that the Probabilistic Partial Membership al-
gorithm can be viewed as an auxiliary service of the probabilistic broadcast
service presented above. When the two algorithms are used in combination,
the variable view of Algorithm 7.5 replaces the set Π in Algorithm 3.8. Ad-
ditionally, membership information can simply be piggybacked as control
information in the packets exchanged and part of the data gossiping activity.

175

Exercises

Exercise 7.1 (*) Can we implement TRB with the eventually perfect failure
detector 3P if we assume that at least one process can crash?

Exercise 7.2 (*) Do we need the perfect failure detector P to implement
TRB (assuming that any number of processes can crash and every process
can trbBroadcast messages)?

Exercise 7.3 (*) Devise two algorithms that, without consensus, implement
weaker specifications of NBAC where we replace the termination property with
the following ones:

• (1) weak termination: let pi be some process: if pi does not crash then all
correct processes eventually decide;
• (2) very weak termination: if no process crashes, then all processes decide.

Exercise 7.4 (*) Can we implement NBAC with the eventually perfect fail-
ure detector 3P if we assume that at least one process can crash? What if
we consider a weaker specification of NBAC where the agreement was not
required?

Exercise 7.5 (*) Do we need the perfect failure detector P to implement
NBAC if we consider a system where at least two processes can crash but a
majority is correct?

Exercise 7.6 (*) Do we need the perfect failure detector P to implement
NBAC if we assume that at most one process can crash?

Exercise 7.7 (*) Consider a specification of leader election where we require
that (1) there cannot be two leaders at the same time and (2) either there
is no correct process, or some correct process is eventually leader. Is this
specification sound? e.g., would it be useful for a primary-backup replication
scheme?

Exercise 7.8 (*) What is the difference between the specification of leader
election given in the core of the chapter and a specification with the two
properties of the previous exercice and the following property: (3) (stability)
a leader remains leader until it crashes.

Exercise 7.9 (*) Do we need the perfect failure detector P to implement
leader election?

176

Corrections

Solution 7.1 No. Consider TRBi, i.e., the sender is process pi. We discuss
below why it is impossible to implement TRBi with 3P if one process can
crash. Consider an execution E1 where process pi crashes initially and con-
sider some correct process pj . By the termination property of TRBi, there
must be a time T at which pj trbDelivers Fi. Consider an execution E2 that
is similar to E1 up to time T , except that pi is correct: pi’s messages are
delayed until after time T and the failure detector behaves as in E1 until
after time T . This is possible because the failure detector is only eventually
perfect. Up to time T , pj cannot distinguish E1 from E2 and trbDelibevers
Fi. By the agreement property of TRBi, pi must trbDeliver Fi as well. By the
termination property, pi cannot trbDeliver two messages and will contadict
the validity property of TRBi. 2

Solution 7.2 The answer is yes. More precisely, we discuss below that if
we have TRBi abstractions, for every process pi, and if we consider a model
where failures cannot be predicted, then we can emulate a perfect failure de-
tector. This means that the perfect failure detector is not only sufficient to
solve TRB, but also necessary. The emulation idea is simple. Every process
trbBroadcasts a series of messages to all processes. Every process pj that
trbDelivers Fi, suspects process pi. The strong completeness property would
trivially be satisfied. Consider the strong accuracy property (i.e., no process
is suspected before it crashes). If pj trbDelivers Fi, then pi is faulty. Given
that we consider a model where failures cannot be predicted, pi must have
crashed. 2

Solution 7.3 The idea of the first algorithm is the following. It uses a perfect
failure detector. All processes bebBroadcast their proposal to process pi. This
process would collect the proposals from all that it does not suspect and
compute the decision: 1 if all processes propose 1 and 0 otherwise, i.e., if some
process proposes 0 or is suspected to have crashed. Then pi bebBroadcasts
the decision to all and decide. Any process that bebDelivers the message
decides accordingly. If pi crashes, then all processes are blocked. Of course,
the processes can figure out the decision by themselves if pi crashes after some
correct process has decided, or if some correct process decides 0. However,
if all correct processes propose 1 and pi crashes before any correct process,
then no correct process can decide.

This algorithm is also called the Two-Phase Commit (2PC) algorithm. It
implements a variant of atomic commitment that is blocking.

The second algorithm is simpler. All processes bebBroadcast their propos-
als to all. Every process waits from proposals from all. If a process bebDelivers
1 from all it decides 1, otherwise, it decides 0. (This algorithm does not make
use of any failure detector.) 2

177

Solution 7.4 No. The reason is similar to that of exercise 7.1. Consider
an execution E1 where all processes are correct and propose 1, except some
process pi which proposes 0 and crashes initially. By the abort-validity prop-
erty, all correct processes decide 0. Let T be the time at which one of these
processes, say pj , decides 0. Consider an execution E2 that is similar to E1

except that pi proposes 1. Process pj cannot distinguish the two executions
(because pi did not send any message) and decides 0 at time T . Consider
now an execution E3 that is similar to E2, except that pi is correct but its
messages are all delayed until after time T . The failure detector behaves in
E3 as in E2: this is possible because it is only eventually perfect. In E3, pj
decides 0 and violates commit-validity: all processes are correct and propose
1.

In this argumentation, the agreement property of NBAC was not explic-
itly needed. This shows that even a specification of NBAC where agreement
was not needed could not be implemented with an eventually perfect failure
detector if some process crashes. 2

Solution 7.5 Do we need the perfect failure detector to implement NBAC
if we assume that a minority of the processes can crash? What if we assume
that at most one process can crash? What if we assume that any number of
processes can crash?

If we assume that a minority of processes can crash, then the perfect
failure detector is not needed. To show that, we exhibit a failure detector
that, in a precise sense, is strictly weaker than the perfect failure detector
and that helps solving NBAC.

The failure detector in question is denoted by ?P, and called the anony-
mously perfect perfect failure detector. This failure detector ensures the strong
completess and eventual strong accuracy of an eventually perfect failure detec-
tor, plus the following anonymous detection property: every correct process
suspects outputs a specific value F iff some process has crashed.

Given that we assume a majority of correct processes, then the ?P failure
detector solves uniform consensus and we can build a consensus module. Now
we give the idea of an algorithm that uses ?P and a consensus module to solve
NBAC.

The idea of the algorithm is the following. All processes bebBroadcast
their proposal to all. Every process pi waits either (1) to bebDeliver 1 from
all processes, (2) to bebDeliver 0 from some process, or (3) to output F . In
case (1), pi invokes consensus with 1 as a proposed value. In cases (2) and
(3), pi invokes consensus with 0. Then pi decides the value output by the
consensus module.

Now we discuss in which sense ?P is strictly weaker than P. Assume a
system where at least two processes can crash. Consider an execution E1

where two processes pi and pj crash initially and E2 is an execution where
only pi initially crashes. Let pk be any correct process. Using ?P, at any time

178

T , process pk can confuse executions E1 and E2 if the messages of pj are
delayed. Indeed, pk will output F and know that some process has indeed
crashed but will not know which one.

Hence, in a system where two processes can crash but a majority is cor-
rect, then P is not needed to solve NBAC. There is a failure detector that is
strictly weaker and this failure detector solves NBAC. 2

Solution 7.6 We show below that in a system where at most one process
can crash, we can emulate a perfect failure detector if we can solve NBAC.
Indeed, the processes go through sequential rounds. In each round, the pro-
cesses bebBrodcast a message I-Am-Alive to all and trigger an instance of
NBAC (two instances are distinguished by the round number at which they
were triggered). In a given round r, every process waits to decide the out-
come of NBAC: if this outcome is 1, then pi moves to the next round. If the
outcome is 0, then pi waits to bebDeliver N − 1 messages and suspects the
missing message. Clearly, this algorithm emulates the behavior of a perfect
failure detector P in a system where at most one process crashes. 2

Solution 7.7 The specification looks simple but is actually bogus. Indeed,
nothing prevents an algorithm from changing leaders all the time: this would
comply with the specification. Such a leader election abstraction would be
useless, say for a primary-backup replication scheme, because even if a pro-
cess is leader, it would not know for how long and that would prevent it from
treating any request from the client. This is because we do not explicitly
handle any notion of time. In this context, to be useful, a leader must be
stable: once it is elected, it should remain leader until it crashes. 2

Solution 7.8 A specification with properties (1), (2) and (3) makes more
sense but still has an issue: we leave it up to the algorithm that implements
the leader election abstraction to choose the leader. In practice, we typi-
cally expect the clients of a replicated service to know which process is the
first leader, which is the second to be elected if the first has crashed, etc.
This is important for instance in failure-free executions where the clients of a
replicated service would consider sending their requests directly to the actual
leader instead of broadcasting the requests to all, i.e., for optimization issues.
Our specification, given in the core of the chapter, is based on the knowledge
of an ordering function that the processes should follow in the leader elec-
tion process. This function is not decided by the algorithm and can be made
available to the client of the leader election abstraction. 2

Solution 7.9 Yes. More precisely, we discuss below that if we have a leader
election abstraction, then we can emulate a perfect failure detector. This
means that the perfect failure detector is not only sufficient to solve leader
election, but also necessary. The emulation idea is simple. Every process pi

179

triggers N − 1 instances of leader election, each one for a process pj different
from pi. In instance j, O(pj) = ∅ and O(pi) = {pj}, for every pj 6= pi. When-
ever pi is elected leader in some instance j, pi accurately detects the crash of
pj . 2

180

Historical Notes

• The atomic commit problem was posed in the context of distributed
databases in 1978 (Gray 1978). A variant of the problem that ensures
also liveness was introduced in (Skeen 1981).
• The terminating reliable broadcast is a variant, in the crash-stop model of

the Byzantine Generals problem.
• The group membership problem was posed by Birman and discussed in

various papers.

181

8. Further Reading

We have been exploring the world of agreement for more than a decade now.
During this period, we were influenced by many researchers in the field of dis-
tributed computing. A special mention to Leslie Lamport and Nancy Lynch
for having posed fascinating problems in distributed computing, and to the
Cornell school, including Ken Birman, Tushar Chandra, Vassos Hadzilacos,
Prasad Jayanti, Robert van Renessee, Fred Schneider, and Sam Toueg, for
their seminal work on various forms of agreement abstractions.

Many other researchers have directly or indirectly inspired the material of
this manuscript. We did our best to reference their work throughout the text.
Most chapters end with a historical note. This intends to trace the history
of the concepts presented in the chapter and to give credits to those who
invented and worked out the concepts.

Major sources of the material covered in this manuscript are the many pa-
pers presented in the ACM Symposium on Principles of Distributed Comput-
ing (PODC), the Symposium on Distributed Computing (DISC, previously
called WDAG), the IEEE Symposium on Dependable Systems and Networks
(DSN, prevously called FTCS), the IEEE Conference on Distributed Com-
puting Systems. Extensions of such papers have appeared by now in various
journals such as the Journal of the ACM, the Journal of Distributed Comput-
ing, ACM Transactions on Computer Systems, IEEE Transactions on Com-
puters, IEEE Transactions on Parallel and Distributed Systems, Journal of
Parallel and Distributed Computing as well as Information Processing Let-
ters.

Several manuscripts have been published on distributed algorithms. The
books of Tel (Tel 2000), Lynch (Lynch 1996) and Attiya-Welch (Attiya and
Welsh 1998) do an excellent job in covering several models of distributed
computing and gathering fundamental theoretical results in those models. In
our manuscript, we focus on distributed programming abstractions (instead
of models), and show how to incrementally build sophisticated ones based on
more primitive ones.

Special topics like mutual exclusion and database concurrency control
have been covered in the seminal books of Raynal (Raynal 1990) and
Bernstein-Hazilacos-Goodman, respectively (Bernstein, Hadzilacos, and Good-
man 1987).

There has also been a number of manuscripts on distributed applica-
tions and distributed system architectures. These include the Books of Bir-
man (Birman 1996), Birman and van Renessee (Birman and van Renesse
1994), Veŕıssimo and Rodrigues (Veŕıssimo and Rodrigues 2001), van Steen
and Tanenbaum (Steen and Tanenbaum 2001), Coulouris, Dollimore and
Kindberg (Coulouris, Dollimore, and Kindberg 2000).

184

References

Aguilera, M., W. Chen, and S. Toueg (2000, May). Failure detection and consensus
in the crash recovery model. Distributed Computing 2 (13).

Attiya, H., A. Bar-Noy, and D. Dolev (1995, June). Sharing memory robustly in
message passing systems. Journal of the ACM 1 (42).

Attiya, H. and J. Welsh (1998). Distributed Computing. Fundamentals, Simulations,
and Advanced Topics. McGraw-Hill Publishing Company, UK.

Ben-Or, M. (1983). Another advantage of free choice: Completely asynchonous
agreement protocols. In Proceedings of 2nd ACM Symposium on Principles of
Distributed Computing (PODC’83), Montreal, Canada, pp. 27–30.

Bernstein, P. A., V. Hadzilacos, and N. Goodman (1987). Concurrency Control and
Recovery in Database Systems. Addison-Wesley.

Birman, K. (1996). Building Secure and Reliable Network Applications. Manning
Publications.

Birman, K., M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky (1999,
May). Bimodal multicast. ACM Transactions on Computer Systems 17 (2).

Birman, K. and T. Joseph (1987a, February). Reliable communication in the pres-
ence of failures. ACM Transactions on Computer Systems 1 (5).

Birman, K. and T. Joseph (1987b, February). Reliable Communication in the
Presence of Failures. ACM, Transactions on Computer Systems 5 (1).

Birman, K. and R. van Renesse (Eds.) (1994). Reliable Distributed Computing With
the ISIS Toolkit. IEEE CS Press.

Boichat, R., P. Dutta, S. Frolund, and R. Guerraoui (2001, January). Decon-
structing paxos. Technical Report 49, Swiss Federal Institute of Technology in
Lausanne, CH 1015, Lausanne.

Chandra, T., V. Hadzilacos, and S. Toueg (1996). The weakest failure detector for
consensus. Journal of the ACM .

Chandra, T. and S. Toueg (1996). Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM 43 (2), 225–267.

Cherriton, D. and W. Zwaenepoel (1985, May). Distributed process groups in the
v kernel. ACM Transactions on Computer Systems 3 (2).

Coulouris, G., J. Dollimore, and T. Kindberg (2000). Distributed Systems: Concepts
and Design (3rd Edition). Addison-Wesley Pub Co.

Delporte-Gallet, C., H. Fauconnier, and R. Guerraoui (2002, October). Failure
detection lower bounds on consensus and registers. In Proc. of the International
Conference on Distributed Computing Systems (DISC’02).

Dutta, D. and R. Guerraoui (2002, July). The inherent price of indulgence. In Proc.
of the ACM Symposium on Principles of Distributed Computing (PODC’02).

Dwork, C., N. Lynch, and L. Stockmeyer (1988, April). Consensus in the presence
of partial synchrony. Journal of the ACM 35 (2), 288–323.

Eugster, P., S. Handurukande, R. Guerraoui, A.-M. Kermarrec, and P. Kouznetsov
(2001, July). Lightweight probabilistic broadcast. In Proceedings of The Interna-
tional Conference on Dependable Systems and Networks (DSN 2001), Goteborg,
Sweden.

Ezhilchelvan, P., A. Mostefaoui, and M. Raynal (2001, May). Randomized mul-
tivalued consensus. In Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, Magdeburg, Germany.

Fidge, C. (1988). Timestamps in Message-Passing Systems that Preserve the Partial
Ordering. In Proceedings of the 11th Australian Computer Science Conference.

Fischer, M., N. Lynch, and M. Paterson (1985, April). Impossibility of distributed
consensus with one faulty process. Journal of the Association for Computing
Machinery 32 (2), 374–382.

Golding, R. and D. Long (1992, October). Design choices for weak-consistency
group communication. Technical Report UCSC–CRL–92–45, University of Cali-
fornia Santa Cruz.

Gray, C. and D. Cheriton (1989, December). Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, Litchfield Park, Arizona, pp.
202–210.

Gray, J. (1978). Notes on database operating systems. Lecture Notes in Computer
Science.

Guerraoui, R. (2000, July). Indulgent algorithms. In Proc. of the ACM Symposium
on Principles of Distributed Computing (PODC’00).

Gupta, I., A.-M. Kermarrec, and A. Ganesh (2002, October). Adaptive and efficient
epidemic-style protocols for reliable and scalable multicast. In Proceedings of
Symposium on Reliable and Distributed Systems (SRDS 2002), Osaka, Japan.

Hadzilacos, V. (1984). Issues of fault tolerance in concurrent computations. Tech-
nical Report 11-84, Harvard University, Ph.D thesis.

Hadzilacos, V. and S. Toueg (1994, May). A modular approach to fault-tolerant
broadcast and related problems. Technical Report 94-1425, Cornell University,
Dept of Computer Science, Ithaca, NY.

Israeli, A. and m. M. Li (1993). Bounded timestamps. Distributed Computing 4 (6),
205–209.

Kermarrec, A.-M., L. Massoulie, and A. Ganesh (2000, October). Reliable proba-
bilistic communication in large-scale information dissemination systems. Tech-
nical Report MMSR-TR-2000-105, Microsoft Reserach, Cambridge, UK.

Kouznetsov, P., R. Guerraoui, S. Handurukande, and A.-M. Kermarrec (2001, Octo-
ber). Reducing noise in gossip-based reliable broadcast. In Proceedings of the 20th
Symposium on Reliable Distributed Systems (SRDS 2001), NewOrleans,USA.

Ladin, R., B. Liskov, L. Shrira, and S. Ghemawat (1990). Lazy replication: Ex-
ploiting the semantics of distributed services. In Proceedings of the Ninth Annual
ACM Symposium of Principles of Distributed Computing, pp. 43–57.

Lamport, L. (1977). Concurrent reading and writing. Communications of the
ACM 11 (20), 806–811.

Lamport, L. (1978, July). Time, clocks and the ordering of events in a distributed
system. Communications of the ACM 21 (7), 558–565.

Lamport, L. (1986a). On interprocess communication, part i: Basic formalism.
Distributed Computing 2 (1), 75–85.

Lamport, L. (1986b). On interprocess communication, part ii: Algorithms. Dis-
tributed Computing 2 (1), 86–101.

Lamport, L. (1989, May). The part-time parliament. Technical Report 49, Digital,
Systems Research Center, Palo Alto, California.

186

Lamport, L., R. Shostak, and M. Pease (1982, July). The byzantine generals prob-
lem. ACM Transactions on Prog. Lang. and Systems 4 (3).

Lin, M.-J. and K. Marzullo (1999, September). Directional gossip: Gossip in a wide
area network. In Proceedings of 3rd European Dependable Computing Conference,
pp. 364–379.

Lynch, N. (1996). Distributed Algorithms. Morgan Kaufmann Publishers.
Neiger, G. and S. Toueg (1993, April). Simulating synchronized clocks and common

knowledge in distributed systems. Journal of the ACM 2 (40).
Peterson, G. (1983). Concurrent reading while writing. ACM Transactions on Prog.

Lang. and Systems 1 (5), 56–65.
Powell, D., P. Barret, G. Bonn, M. Chereque, D. Seaton, and P. Verissimo (1994).

The delta-4 distributed fault-tolerant architecture. Readings in Distributed Sys-
tems, IEEE, Casavant and Singhal (eds).

Raynal, M. (1990). Synchronization and Control of Distributed Programs. Wiley.
Raynal, M., A. Schiper, and S. Toueg (1991, September). The causal ordering ab-

straction and a simple way to implement it. Information processing letters 39 (6),
343–350.

Rodrigues, L., S. Handurukande, J. Pereira, R. Guerraoui, and A.-M. Kermarrec
(2002). Adaptive gossip-based broadcast. Technical report, EPFL, Switzerland.

Rodrigues, L. and M. Raynal (2003). Atomic broadcast in asynchronous crash-
recovery distributed systems and its use in quorum-based replication. IEEE
Transactions on Knowledge and Data Engineering 15 (4). (to appear).

Schneider, F. (1987). Decomposing properties into safety and lineness. Technical
Report TR87-874, Cornell University.

Schneider, F., D. Gries, and R. Schlichting (1984). Fault-tolerant broadcasts. Sci-
ence of Computer Programming (4), 1–15.

Schwarz, R. and F. Mattern (1992, February). Detecting causal relationships in
distributed computations: In search of the holy grail. Technical report, Univ.
Kaiserslautern, Kaiserslautern, Germany.

Skeen, D. (1981, July). A decentralized termination protocol. In Proceedings of
the 1st Symposium on Reliability in Distributed Software and Database Systems,
Pittsburgh, USA. IEEE.

Steen, M. V. and A. S. Tanenbaum (2001). Distributed Systems: Principles and
Paradigms. Prentice Hall.

Tel, G. (2000). Introduction to Distributed Algorithms (2nd ed.). Cambridge Uni-
versity Press.

van Renesse, T. Birman, K. and S. Maffeis (1996, April). Horus: A flexible group
communication system. Communications of the ACM 4 (39).

Veŕıssimo, P. and L. Rodrigues (2001). Distributed Systems For System Architects.
Kluwer.

Vidyasankar, K. (1988, August). Converting lamport’s regular register to atomic
register. Information Processing Letters (28).

Vidyasankar, K. (1990, June). Concurrent reading while writing revisited. Dis-
tributed Computing 2 (4).

Vitanyi, P. and B. Awerbuch (1986). Atomic shared register by asynchronous
hardware. In Proc. of the IEEE Symposium on Foundations of Computer Science
(FOCS’86), pp. 233–243.

Wensley, J. e. a. (1978, October). The design and analysis of a fault-tolerant com-
puter for air craft control. IEEE 10 (66).

Xiao, Z., K. Birman, and R. van Renesse (2002, June). Optimizing buffer manage-
ment for reliable multicast. In Proceedings of The International Conference on
Dependable Systems and Networks (DSN 2002), Washington, USA.

187

