
Rachid Guerraoui, Lúıs Rodrigues
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Preface

This manuscript aims at offering an introductory description of distributed
programming abstractions and of the algorithms that are used to implement
them under different distributed environments. The reader is provided with
an insight on the fundamental problems in distributed computing, knowl-
edge about the main algorithmic techniques that can be used to solve these
problems, and examples of how to apply these techniques when building dis-
tributed applications.

Content

In modern computing, a program usually executes on several processes: in
this context, a process is an abstraction that may represent a computer, a
processor within a computer, or simply a specific thread of execution within
a processor. A fundamental problem in devising such distributed programs
usually consists in having the processes cooperate on some common task. Of
course, traditional centralized algorithmic issues, on each process individually,
still need to be dealt with. The added difficulty here is about achieving a
robust form of cooperation, despite failures or disconnections of some of the
processes.

Had no notion of cooperation been required, a distributed program would
simply consist of a set of detached centralized programs, each running on a
specific process, and little benefit could be obtained from the availability of
several machines in a distributed environment. It was the need for cooperation
that revealed many of the fascinating problems addressed by this manuscript,
problems that would have otherwise remained undiscovered. The manuscript,
not only exposes the reader to these problems but also presents ways to solve
them in different contexts.

Not surprisingly, distributed programming can be significantly simplified
if the difficulty of robust cooperation is encapsulated within specific abstrac-
tions. By encapsulating all the tricky algorithmic issues, such distributed
programming abstractions bridge the gap between network communication
layers, usually frugal in terms of reliability guarantees, and distributed ap-
plication layers, usually demanding in terms of reliability.



The manuscript presents various distributed programming abstractions
and describes algorithms that implement these abstractions. In a sense, we
give the distributed application programmer a library of abstraction interface
specifications, and the distributed system builder a library of algorithms that
implement the specifications.

The algorithms we will study differ naturally according to the actual ab-
straction they aim at implementing, but also according to the assumptions
on the underlying distributed environment (we will also say distributed sys-
tem model), i.e., on the initial abstractions they take for granted. Aspects
such as the reliability of the links, the degree of synchrony of the system,
whether a deterministic or a randomized (probabilistic) solution is sought,
have a fundamental impact on how the algorithm is designed. To give the
reader an insight of how these parameters affect the algorithm design, the
manuscript includes several classes of algorithmic solutions to implement the
same distributed programming abstractions.

A significant amount of the preparation time of this manuscript was de-
voted to preparing the exercises and working out their solutions. We strongly
encourage the reader to work out the exercises. We believe that no reasonable
understanding can be achieved in a passive way. Many exercises are rather
easy and can be discussed within an undergraduate teaching classroom. Some
exercises are more difficult and need more time.

The manuscript comes with a companion set of running examples imple-
mented in the Java programming language, using the Appia protocol com-
position framework. These examples can be used by students to get a better
understanding of the implementation details not covered in the high-level
description of the algorithms. Instructors can use these protocol layers as a
basis for practical exercises, by suggesting students to perform optimizations
on the code provided, to implement variations of the algorithms for different
system models, or to design applications that make use of these abstractions.

Presentation

The manuscript is written in a self-contained manner. This has been made
possible because the field of distributed algorithms has reached a certain level
of maturity where details, for instance about the network, can be abstracted
away when reasoning about the distributed algorithms. Elementary notions of
algorithmic, first order logics, programming languages and operating systems
might be helpful, but we believe that most of our abstraction specifications
and algorithms can be understood with minimal knowledge about these no-
tions.

The manuscript follows an incremental approach and was primarily built
as a textbook for teaching at the undergraduate level. It introduces basic
elements of distributed computing in an intuitive manner and builds sophis-
ticated distributed programming abstractions on top of more primitive ones.
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Whenever we devise algorithms to implement a given abstraction, we consider
a simple distributed system model first, and then we revisit the algorithms in
more challenging models. In other words, we first devise algorithms by mak-
ing strong assumptions on the distributed environment and then we discuss
how to weaken those assumptions.

We have tried to balance intuition and presentation simplicity, on one
hand, with rigour, on the other hand. Sometimes rigour was impacted, and
this might not have been always on purpose. The focus is indeed on abstrac-
tion specifications and algorithms, not on calculability and complexity. There
is indeed no theorem in this manuscript. Correctness arguments are given
with the aim of better understanding the algorithms: they are not formal
correctness proofs per see. In fact, we tried to avoid Greek letters and mathe-
matical notations: references are given to papers with more formal treatment
of some of the material presented here.

Organization

• In Chapter 1 we motivate the need for distributed programming abstrac-
tions. The chapter also presents the programming notations used in the
manuscript to describe specifications and algorithms.

• In Chapter 2 we present different kinds of assumptions about the underly-
ing distributed environment. Basically, we present the basic abstractions on
which more sophisticated ones are built. This chapter should be considered
as a reference throughout other chapters.

The rest of the chapters are each devoted to one family of related abstrac-
tions, and to various algorithms implementing them.

• In Chapter 3 we introduce specific distributed programming abstractions:
those related to the reliable delivery of messages that are broadcast to a
group of processes. We cover here issues such as how to make sure that a
message delivered by one process is delivered by all, despite the crash of
the original sender process.

• In Chapter 4 we discuss storage abstractions which encapsulate simple
forms of distributed memory objects with read-write semantics. We cover
here issues like how to ensure that a value written (stored) within a set
of processes is eventually read (retrieved) despite the crash of some of the
processes.

• In Chapter 5 we address the consensus abstraction and describe algorithms
that have a set of processes decide on a common value, based on some initial
values, despite the crash of some of the processes.
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• In Chapter 6 we consider ordering abstractions. In particular, we discuss
how consensus can be used to ensure totally ordered delivery of messages
broadcast to a group of processes. We also discuss how such an abstrac-
tion makes it easy to implement sophisticated forms of shared distributed
objects, beyond read-write storage objects.

• In Chapter 7 we gather what we call coordination abstractions, namely,
leader election, terminating reliable broadcast, non-blocking atomic com-
mit and group membership.
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1. Introduction

This chapter first motivates the need for distributed programming abstrac-
tions. Special attention is given to abstractions that capture the problems
that underly robust forms of cooperations between multiple processes in a
distributed system, such as agreement abstractions. The chapter then ad-
vocates a modular strategy for the development of distributed programs by
making use of those abstractions through specific Application Programming
Interfaces (APIs).

A concrete simple example API is also given to illustrate the notation and
event-based invocation scheme used throughout the manuscript to describe
the algorithms that implement our abstractions. The notation and invocation
schemes are very close to those we have used to implement our algorithms in
our Appia protocol framework.

1.1 Motivation

Distributed computing has to do with devising algorithms for a set of pro-
cesses that seek to achieve some form of cooperation. Besides executing con-
currently, some of the processes of a distributed system might stop operating,
for instance by crashing or being disconnected, while others might stay alive
and keep operating. This very notion of partial failures is a characteristic of
a distributed system. In fact, this can be useful if one really feels the need
to differentiate a distributed system from a concurrent system. It is usual to
quote Leslie Lamport here:

“A distributed system is one in which the failure of a computer you
did not even know existed can render your own computer unusable”.

When a subset of the processes have failed, or got disconnected, the chal-
lenge is for the processes that are to still operating to synchronize their
activities in a consistent way. In other words, the cooperation must be made
robust to tolerate partial failures. This makes distributed computing quite
hard, yet extremely stimulating, problem. As we will discuss in detail later
in the manuscript, due to several factors such as the asynchrony of the un-
derlying components and the possibility of failures in the communication



infrastructure, it may be impossible to accurately detect process failures,
and in particular distinguish a process failure from a network failure. This
makes the problem of ensuring a consistent cooperation even more difficult.
The challenge of researchers in distributed computing is precisely to devise
algorithms that provide the processes that remain operating with enough con-
sistent information so that they can cooperate correctly and solve common
tasks.

In fact, many programs that we use today are distributed programs.
Simple daily routines, such as reading e-mail or browsing the web, involve
some form of distributed computing. However, when using these applica-
tions, we are typically faced with the simplest form of distributed computing:
client-server computing. In client-server computing, a centralized process, the
server, provides a service to many remote clients. The clients and the server
communicate by exchanging messages, usually following a request-reply form
of interaction. For instance, in order to display a web page to the user, a
browser sends a request to the WWW server and expects to obtain a response
with the information to be displayed. The core difficulty of distributed com-
puting, namely achieving a consistent form of cooperation in the presence of
partial failures, may be revealed even by using this simple form of interaction.
Going back to our browsing example, it is reasonable to expect that the user
continues surfing the web if the site it is consulting fails (by automatically
switching to other sites), and even more reasonable that the server process
keeps on providing information to other client processes, even when some of
them fail or got disconnected.

The problems above are already difficult to deal with when distributed
computing is limited to the interaction between two parties, such as in the
client-server case. However, there is more to distributed computing than
client-server computing. Quite often, not only two, but several processes need
to cooperate and synchronize their actions to achieve a common goal. The
existence of not only two, but multiple processes does not make the task of
distributed computation any simpler. Sometimes we talk about multi-party
interactions in this general case. In fact, both patterns might coexist in a
quite natural manner. Actually, a real distributed application would have
parts following a client-server interaction pattern and other parts following a
multi-party interaction one. This might even be a matter of perspective. For
instance, when a client contacts a server to obtain a service, it may not be
aware that, in order to provide that service, the server itself may need to re-
quest the assistance of several other servers, with whom it needs to coordinate
to satisfy the client’s request.

1.2 Distributed Programming Abstractions

Just like the act of smiling, the act of abstraction is restricted to very few
natural species. By capturing properties which are common to a large and sig-
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nificant range of systems, abstractions help distinguish the fundamental from
the accessory and prevent system designers and engineers from reinventing,
over and over, the same solutions for the same problems.

From The Basics. Reasoning about distributed systems should start by ab-
stracting the underlying physical system: describing the relevant components
in an abstract way, identifying their intrinsic properties, and characterizing
their interactions, leads to what is called a system model. In this book we
will use mainly two abstractions to represent the underlying physical system:
processes and links.

The processes of a distributed program abstract the active entities that
perform computations. A process may represent a computer, a processor
within a computer, or simply a specific thread of execution within a pro-
cessor. To cooperate on some common task, the processes might typically
need to exchange messages using some communication network. Links ab-
stract the physical and logical network that supports communication among
processes. It is possible to represent different realities of a distributed system
by capturing different properties of processes and links, for instance, by de-
scribing the different ways these components may fail. Chapter 2 will provide
a deeper discussion on the various distributed systems models that are used
in this book.

To The Advanced. Given a system model, the next step is to understand
how to build abstractions that capture recurring interaction patterns in dis-
tributed applications. In this book we are interested in abstractions that
capture robust cooperation problems among groups of processes, as these
are important and rather challenging. The cooperation among processes can
sometimes be modelled as a distributed agreement problem. For instance, the
processes may need to agree if a certain event did (or did not) take place,
to agree on a common sequence of actions to be performed (from a number
of initial alternatives), to agree on the order by which a set of inputs need
to be processed, etc. It is desirable to establish more sophisticated forms of
agreement from solutions to simpler agreement problems, in an incremental
manner. Consider for instance the following problems:

• In order for processes to be able to exchange information, they must ini-
tially agree on who they are (say using IP addresses) and some common
format for representing messages. They might also need to agree on some
reliable way of exchanging messages (say to provide TCP-like semantics).

• After exchanging some messages, the processes may be faced with sev-
eral alternative plans of action. They may then need to reach a consensus
on a common plan, from all alternatives, and each participating process
may have initially its own plan, different from the plans of the remaining
processes.

• In some cases, it may be only acceptable for the cooperating processes to
take a given step if all other processes also agree that such a step should
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take place. If this condition is not met, all processes must agree that the
step should not take place. This form of agreement is utmost importance
in the processing of distributed transactions, where this problem is known
as the atomic commitment problem.

• Processes may need not only to agree on which actions they should execute
but to agree also on the order by which these action need to be executed.
This form of agreement is the basis of one of the most fundamental tech-
niques to replicate computation in order to achieve fault-tolerance, and it
is called the total order problem.

This book is about mastering the difficulty underlying these problems,
and devising abstractions that encapsulate such problems. In the following,
we try to motivate the relevance of some of the abstractions covered in this
manuscript. We distinguish the case where the abstractions pop up from the
natural distribution of the abstraction, from the case where these abstractions
come out as artifacts of an engineering choice for distribution.

1.2.1 Inherent Distribution

Applications which require sharing or dissemination of information among
several participant processes are a fertile ground for the emergence of dis-
tributed programming abstractions. Examples of such applications are in-
formation dissemination engines, multi-user cooperative systems, distributed
shared spaces, cooperative editors, process control systems, and distributed
databases.

Information Dissemination. In distributed applications with information
dissemination requirements, processes may play one of the following roles:
information producers, also called publishers, or information consumers, also
called subscribers. The resulting interaction paradigm is often called publish-
subscribe.

Publishers produce information in the form of notifications. Subscribers
register their interest in receiving certain notifications. Different variants of
the paradigm exist to match the information being produced with the sub-
scribers interests, including channel-based, subject-based, content-based or
type-based subscriptions. Independently of the subscription method, it is very
likely that several subscribers are interested in the same notifications, which
will then have to be multicast. In this case, we are typically interested in hav-
ing subscribers of the same information receiving the same set of messages.
Otherwise the system will provide an unfair service, as some subscribers could
have access to a lot more information than other subscribers.

Unless this reliability property is given for free by the underlying infras-
tructure (and this is usually not the case), the sender and the subscribers
may need to coordinate to agree on which messages should be delivered.
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For instance, with the dissemination of an audio stream, processes are typ-
ically interested in receiving most of the information but are able to toler-
ate a bounded amount of message loss, especially if this allows the system
to achieve a better throughput. The corresponding abstraction is typically
called a best-effort broadcast.

The dissemination of some stock exchange information might require a
more reliable form of broadcast, called reliable broadcast, as we would like
all active processes to receive the same information. One might even require
from a strock exchange infrastructure that information be disseminated in an
ordered manner. The adequate communication abstraction that offers order-
ing in addition to reliability is called total order broadcast. This abstraction
captures the need to disseminate information, such that all participants can
get a consistent view of the global state of the disseminated information.

In several publish-subscribe applications, producers and consumers in-
teract indirectly, with the support of a group of intermediate cooperative
brokers. In such cases, agreement abstractions might be useful for the coop-
eration of the brokers.

Process Control. Process control applications are those where several soft-
ware processes have to control the execution of a physical activity. Basically,
the (software) processes might be controlling the dynamic location of an air-
craft or a train. They might also be controlling the temperature of a nuclear
installation, or the automation of a car production system.

Typically, every process is connected to some sensor. The processes might
for instance need to exchange the values output by their assigned sensors and
output some common value, say print a single location of the aircraft on the
pilot control screen, despite the fact that, due to the inaccuracy or failure
of their local sensors, they may have observed slightly different input val-
ues. This cooperation should be achieved despite some sensors (or associated
control processes) having crashed or not observed anything. This type of co-
operation can be simplified if all processes agree on the same set of inputs for
the control algorithm, a requirement captured by the consensus abstraction.

Cooperative Work. Users located on different nodes of a network might
cooperate in building a common software or document, or simply in setting-
up a distributed dialogue, say for a virtual conference. A shared working
space abstraction is very useful here to enable effective cooperation. Such
distributed shared memory abstraction is typically accessed through read and
write operations that the users exploit to store and exchange information. In
its simplest form, a shared working space can be viewed as a virtual register
or a distributed file system. To maintain a consistent view of the shared
space, the processes need to agree on the relative order among write and read
operations on that shared board.

Distributed Databases. These constitute another class of applications
where agreement abstractions can be helpful to ensure that all transaction
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managers obtain a consistent view of the running transactions and can make
consistent decisions on the way these transactions are serialized.

Additionally, such abstractions can be used to coordinate the transaction
managers when deciding about the outcome of the transactions. That is, the
database servers on which a given distributed transaction has executed would
need to coordinate their activities and decide on whether to commit or abort
the transaction. They might decide to abort the transaction if any database
server detected a violation of the database integrity, a concurrency control
inconsistency, a disk error, or simply the crash of some other database server.
An distributed programming abstraction that is useful here is the atomic
commit (or commitment) form of distributed cooperation.

1.2.2 Distribution as an Artifact

In general, even if the application is not inherently distributed and might
not, at first glance, need sophisticated distributed programming abstractions,
distribution sometimes appears as an artifact of the engineering solution to
satisfy some specific requirements such as fault-tolerance, load-balancing , or
fast-sharing .

We illustrate this idea through replication, which is a powerful way to
achieve fault-tolerance in distributed systems. Briefly, replication consists in
making a centralized service highly-available by executing several copies of it
on several machines that are presumably supposed to fail independently. The
service continuity may be ensured despite the crash of a subset of the ma-
chines. No specific hardware is needed: fault-tolerance through replication is
software-based. In fact, replication might also be used within an information
system to improve the read-access performance to data by placing it close to
the processes where it is queried.

For replication to be effective, the different copies must be maintained
in a consistent state. If the state of the replicas diverge arbitrarily, it does
not make sense to talk about replication anyway. The illusion of one highly-
available service would fail and be replaced by that of several distributed
services, each possibly failing independently. If replicas are deterministic,
one of the simplest manners to guarantee full consistency is to ensure that
all replicas receive the same set of requests in the same order. Typically, such
guarantees are enforced by an abstraction called total order broadcast and
discussed earlier: the processes need to agree here on the sequence of messages
they deliver. Algorithms that implement such a primitive are non-trivial,
and providing the programmer with an abstraction that encapsulates these
algorithms makes the design of replicated components easier. If replicas are
non-deterministic, then ensuring their consistency requires different ordering
abstractions, as we will see later in the manuscript.

After a failure, it is desirable to replace the failed replica by a new com-
ponent. Again, this calls for systems with dynamic group membership ab-
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straction and for additional auxiliary abstractions, such as a state-transfer
mechanism that simplifies the task of bringing the new replica up-to-date.

1.3 The End-to-end Argument

Distributed Programming abstractions are useful but may sometimes be dif-
ficult or expensive to implement. In some cases, no simple algorithm is able
to provide the desired abstraction or the algorithm that solves the problem
can have a high complexity, e.g., in terms of the number of inter-process com-
munication steps and messages. Therefore, depending on the system model,
the network characteristics, and the required quality of service, the overhead
of the abstraction can range from the negligible to the almost impairing.

Faced with performance constraints, the application designer may be
driven to mix the relevant logic of the abstraction with the application logic,
in an attempt to obtain an optimized integrated solution. The intuition is
that such a solution would perform better than a modular approach, where
the abstraction is implemented as independent services that can be accessed
through well defined interfaces. The approach can be further supported by a
superficial interpretation of the end-to-end argument: most complexity should
be implemented at the higher levels of the communication stack. This argu-
ment could be applied to any distributed programming.

However, even if, in some cases, performance gains can be obtained by
collapsing the application and the underlying layers, such an approach has
many disadvantages. First, it is very error prone. Some of the algorithms
that will be presented in this manuscript have a considerable amount of
difficulty and exhibit subtle dependencies among their internal components.
An apparently obvious “optimization” may break the algorithm correctness.
It is usual to quote Knuth here:

“Premature optimization is the source of all evil”

Even if the designer reaches the amount of expertise required to mas-
ter the difficult task of embedding these algorithms in the application, there
are several other reasons to keep both implementations independent. The
most important of these reasons is that there is usually no single solution
to solve a given distributed computing problem. This is particularly true be-
cause the variety of distributed system models. Instead, different solutions
can usually be proposed and none of these solutions might strictly be supe-
rior to the others: each might have its own advantages and disadvantages,
performing better under different network or load conditions, making differ-
ent trade-offs between network traffic and message latency, etc. To rely on
a modular approach allows the most suitable implementation to be selected
when the application is deployed, or even commute in run-time among dif-
ferent implementations in response to changes in the operational envelope of
the application.
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Encapsulating tricky issues of distributed interactions within abstractions
with well defined interfaces significantly helps reason about the correctness
of the application and port it from one system to the other. We strongly
believe that, in many distributed applications, especially those that require
many-to-many interaction, building preliminary prototypes of the distributed
application using several abstraction layers can be very helpful.

Ultimately, one might indeed consider optimizing the performance of the
final release of a distributed application and using some integrated prototype
that implements several abstractions in one monolithic peace of code. How-
ever, full understanding of each of the inclosed abstractions in isolation is
fundamental to ensure the correctness of the combined code.

1.4 Software Components

1.4.1 Composition Model

Notation. One of the biggest difficulties we had to face when thinking about
describing distributed algorithms was to find out an adequate way to repre-
sent these algorithms. When representing a centralized algorithm, one could
decide to use a programming language, either by choosing an existing popular
one, or by inventing a new one with pedagogical purposes in mind.

On the other hand, there have indeed been several attempts to come
up with distributed programming languages, these attempts have resulted
in rather complicated notations that would not have been viable to describe
general purpose distributed algorithms in a pedagogical way. Trying to invent
a distributed programming language was not an option. Had we had the time
to invent one and had we even been successful, at least one book would have
been required to present the language.

Therefore, we have opted to use pseudo-code to describe our algorithms.
The pseudo-code assumes a reactive computing model where components of
the same process communicate by exchanging events: an algorithm is de-
scribed as a set of event handlers, that react to incoming events and may
trigger new events. In fact, the pseudo-code is very close to the actual way
we programmed the algorithms in our experimental framework. Basically, the
algorithm description can be seen as actual code, from which we removed all
implementation-related details that were more confusing than useful for un-
derstanding the algorithms. This approach will hopefully simplify the task
of those that will be interested in building running prototypes from the de-
scriptions found in the book.

A Simple Example. Abstractions are typically represented through ap-
plication programming interfaces (API). We will informally discuss here a
simple example API for a distributed programming abstraction.

To describe this API and our APIs in general, as well as the algorithms
implementing these APIs, we shall consider, throughout the manuscript, an
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Figure 1.1. Composition model

asynchronous event-based composition model. Every process hosts a set of
software modules, called components. Each component is identified by a
name, characterized by a set of properties, and provides an interface in the
form of the events that the component accepts and produces in return. Dis-
tributed Programming abstractions are typically made of a collection of com-
ponents, at least one on every process, that are supposed to satisfy some
common properties.

Software Stacks. Components can be composed to build software stacks,
at each process: each component represents a specific layer in the stack. The
application layer is on the top of the stack whereas the networking layer is
at the bottom. The layers of the distributed programming abstractions we
will consider are in the middle. Components within the same stack commu-
nicate through the exchange of events , as illustrated in Figure 1.1. A given
abstraction is typically materialized by a set of components, each running at
a process.

According to this model, each component is constructed as a state-
machine whose transitions are triggered by the reception of events. Events
may carry information such as a data message, a group view, etc, in one or
more attributes . Events are denoted by 〈 EventType, att1, att2, . . . 〉.

Each event is processed through a dedicated handler by the process (i.e.,
the corresponding component). The processing of an event may result in new
events being created and triggered on the same or on other components. Every
event triggered on a component of the same process is eventually processed,
unless the process crashes. Events from the same component are processed
in the same order they were triggered. Note that this FIFO (first-in-first-
out) order is only enforced on events exchanged among local components in
a given stack. The messages among different processes may also need to be
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ordered according to some criteria, using mechanisms orthogonal to this one.
We shall address this inter-process communication issue later in the book.

We assume that every process executes the code triggered by events in
a mutually exclusive way. Basically, the same process does not handle two
events concurrently. Once the handling of an event is terminated, the process
keeps on checking if any other event is triggered.

The code of each component looks like this:

upon event 〈 Event1, att11, att21, . . . 〉 do
something
// send some event
trigger 〈 Event2, att12,att22, . . . 〉;

upon event 〈 Event3, att13, att23, . . . 〉 do
something else
// send some other event
trigger 〈 Event4, att14, att24, . . . 〉;

This decoupled and asynchronous way of interacting among components
matches very well the requirements of distributed applications: for instance,
new processes may join or leave the system at any moment and a process must
be ready to handle both membership changes and reception of messages at
any time. Hence, a process should be able to concurrently handle several
events, and this is precisely what we capture through our component model.

1.4.2 Programming Interface

A typical interface includes the following types of events:

• Request events are used by a component to request a service from another
component: for instance, the application layer might trigger a request event
at a component in charge of broadcasting a message to a set of processes in
a group with some reliability guarantee, or proposing a value to be decided
on by the group.

• Confirmation events are used by a component to confirm the completion of
a request. Typically, the component in charge of implementing a broadcast
will confirm to the application layer that the message was indeed broadcast
or that the value suggested has indeed been proposed to the group: the
component uses here a confirmation event.

• Indication events are used by a given component to deliver information
to another component. Considering the broadcast example above, at every
process that is a destination of the message, the component in charge of
implementing the actual broadcast primitive will typically perform some
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processing to ensure the corresponding reliability guarantee, and then use
an indication event to deliver the message to the application layer. Simi-
larly, the decision on a value will be indicated with such an event.

A typical execution at a given layer consists of the following sequence of
actions. We consider here the case of a broadcast kind of abstraction, e.g.,
the processes need to agree on whether or not to deliver a message broadcast
by some process.

1. The execution is initiated by the reception of a request event from the
layer above.

2. To ensure the properties of the broadcast abstraction, the layer will send
one or more messages to its remote peers using the services of the layer
below (using request events).

3. Messages sent by the peer layers are also received using the services of
the underlying layer (through indication events).

4. When a message is received, it may have to be stored temporarily until
the adequate reliability property is satisfied, before being delivered to the
layer above (using a indication event).

This data-flow is illustrated in Figure 1.2. Events used to deliver informa-
tion to the layer above are indications. In some cases, the layer may confirm
that a service has been concluded using a confirmation event.

Layer n
(receive)

(deliver)

indicationrequest

request indication

Layer n−1

Layer n+1

Figure 1.2. Layering

1.4.3 Modules

Not surprisingly, the modules described in this manuscript perform some
interaction with the correspondent modules on peer processes: after all, this
is a manuscript about distributed computing. It is however also possible to
have modules that perform only local actions.
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Module:

Name: Print (lpr).

Events:

Request: 〈 lprPrint, rqid, string 〉: Requests a string to be printed. The
token rqid is an identifier of the request.

Confirmation:〈 lprOk, rqid 〉: Used to confirm that the printing request
with identifier rqid succeeded.

Module 1.1 Interface of a printing module.

Algorithm 1.1 Printing service.

Implements:
Print (lpr).

upon event 〈 lprPrint, rqid, string 〉 do
print string;
trigger 〈 lprOk, rqid 〉;

To illustrate the notion of modules, we use the example of a simple print-
ing module. This module receives a print request, issues a print command
and provides a confirmation of the print operation having been achieved.
Module 1.1 describes its interface and Algorithm 1.1 its implementation. The
algorithm is supposed to be executed by every process pi.

To illustrate the way modules are composed, we use the printing module
above to build a bounded printing service. The bounded printer only accepts
a limited, pre-defined, number of printing requests. The bounded printer
also generates an indication when the threshold of allowed print requests is
reached. The bounded printer uses the service of the (unbounded) printer
introduced above and maintains a counter to keep track of the number of
printing requests executed in the past. Module 1.2 provides the interface of
the bounded printer and Algorithm 1.2 its implementation.

To simplify the presentation of the components, we assume that a special
〈 Init 〉 event is generated automatically by the run-time system when a
component is created. This event is used to perform the initialization of the
component. For instance, in the bounded printer example, this event is used
to initialize the counter of executed printing requests.

As noted above, in order to provide a given service, a layer at a given
process may need to execute one or more rounds of message exchange with the
peer layers at remote processes. The behavior of each peer, characterized by
the set of messages that it is capable of producing and accepting, the format
of each of these messages, and the legal sequences of messages, is sometimes
called a protocol. The purpose of the protocol is to ensure the execution of
some distributed algorithm, the concurrent execution of different sequences of
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Module:

Name: BoundedPrint (blpr).

Events:

Request: 〈 blprPrint, rqid, string 〉: Request a string to be printed. The
token rqid is an identifier of the request.

Confirmation:〈 blprStatus, rqid, status 〉: Used to return the outcome of
the printing request: Ok or Nok.

Indication:〈 blprAlarm 〉: Used to indicate that the threshold was
reached.

Module 1.2 Interface of a bounded printing module.

Algorithm 1.2 Bounded printer based on (unbounded) print service.

Implements:
BoundedPrint (blpr).

Uses:
Print (lpr).

upon event 〈 Init 〉 do
bound := PredefinedThreshold;

upon event 〈 blprPrint, rqid, string 〉 do
if bound > 0 then

bound := bound-1;
trigger 〈 lprPrint, rqid, string 〉;
if bound = 0 then trigger 〈 blprAlarm 〉;

else
trigger 〈 blprStatus, rqid, Nok 〉;

upon event 〈 lprOk, rqid 〉 do
trigger 〈 blprStatus, rqid, Ok 〉;

steps that ensure the provision of the desired service. This manuscript covers
several of these distributed algorithms.

To give the reader an insight of how design solutions and system-related
parameters affect the algorithm design, the book includes four different
classes of algorithmic solutions to implement our distributed programming
abstractions, namely: fail-stop algorithms, where processes can fail by crash-
ing but the crashes can be reliably detected by all the other processes; fail-
silent algorithms where process crashes cannot always be reliably detected;
crash-recovery algorithms, where processes can crash and later recover and
still participate in the algorithm; randomized algorithms, where processes
use randomization to ensure the properties of the abstraction with some
known probability.
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These classes are not disjoint and it is important to notice that that we
do not give a solution from each class to every abstraction. First, there are
cases where it is known that some abstraction cannot be implemented from
an algorithm of a given class. For example, the coordination abstractions we
consider in Chapter 7 do not have fail-silent solutions and it is not clear either
how to devise meaningful randomized solutions to such abstractions. In other
cases, such solutions might exist but devising them is still an active area of
research. This is for instance the case for randomized solutions to the shared
memory abstractions we consider in Chapter 4.

Reasoning about distributed algorithms in general, and in particular
about algorithms that implement distributed programming abstractions, first
goes through defining a clear model of the distributed system where these al-
gorithms are supposed to operate. Put differently, we need to figure out what
basic abstractions the processes assume in order to build more sophisticated
ones. The basic abstractions we consider capture the allowable behavior of
the processes and their communication links in the distributed system. Before
delving into concrete algorithms to build sophisticated distributed program-
ming abstractions, we thus need to understand such basic abstractions. This
will be the topic of the next chapter.
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2. Basic Abstractions

Applications that are deployed in practical distributed systems are usually
composed of a myriad of different machines and communication infrastruc-
tures. Physical machines differ on the number of processors, type of proces-
sors, amount and speed of both volatile and persistent memory, etc. Com-
munication infrastructures differ on parameters such as latency, throughput,
reliability, etc. On top of these machines and infrastructures, a huge variety
of software components are sometimes encompassed by the same application:
operating systems, file-systems, middleware, communication protocols, each
component with its own specific features.

One might consider implementing distributed services that are tailored
to specific combinations of the elements listed above. Such implementation
would depend on one type of machine, one form of communication, one dis-
tributed operating system, etc. However, in this book we are interested in
studying abstractions and algorithms that are relevant for a wide range of
distributed environments. In order to achieve this goal we need to capture
the fundamental characteristics of various distributed systems in some basic
abstractions, and on top of which we can later define other more elaborate,
and generic, distributed programming abstractions.

This chapter presents the basic abstractions we use to model a distributed
system composed of computational entities (processes) communicating by ex-
changing messages. Two kinds of abstractions will be of primary importance:
those representing processes and those representing communication links. Not
surprisingly, it does not seem to be possible to model the huge diversity of
physical networks and operational conditions with a single process abstrac-
tion and a single link abstraction. Therefore, we will define different instances
for each kind of basic abstraction: for example, we will distinguish process ab-
stractions according to the types of faults that they may exhibit. Besides our
process and link abstractions, we will introduce the failure detector abstrac-
tion as a convenient way to capture assumptions that might be reasonable
to make on the timing behavior of processes and links. Later in the chapter
we will identify relevant combinations of our three categories of abstractions.
Such a combination is what we call a distributed system model.

This chapter also contains our first module descriptions, used to specify
our basic abstractions, as well as our first algorithms, used to implement these



abstractions. The specifications and the algorithms are rather simple and
should help illustrate our notation, before proceeding in subsequent chapters
to more sophisticated specifications and algorithms.

2.1 Distributed Computation

2.1.1 Processes and Messages

We abstract the units that are able to perform computations in a distributed
system through the notion of process. We consider that the system is com-
posed of N uniquely identified processes, denoted by p1, p2, . . . , pN . Some-
times we also denote the processes by p, q, r. The set of system processes is
denoted by Π . Unless explicitly stated otherwise, it is assumed that this set
is static (does not change) and processes do know of each other.

We do not assume any particular mapping of our abstract notion of pro-
cess to the actual processors, processes, or threads of a specific machine or
operating system. The processes communicate by exchanging messages and
the messages are uniquely identified, say by their original sender process us-
ing a sequence number or a local clock, together with the process identifier.
Messages are exchanged by the processes through communication links. We
will capture the properties of the links that connect the processes through
specific link abstractions, and which we will discuss later.

2.1.2 Automata and Steps

A distributed algorithm is viewed as a distributed automata, one per process.
The automata at a process regulates the way the process executes its compu-
tation steps, i.e., how it reacts to a message. The execution of a distributed
algorithm is represented by a sequence of steps executed by the processes.
The elements of the sequences are the steps executed by the processes in-
volved in the algorithm. A partial execution of the algorithm is represented
by a finite sequence of steps and an infinite execution by an infinite sequence.

It is convenient for presentation simplicity to assume the existence of a
global clock, outside the control of the processes. This clock provides a global
and linear notion of time that regulates the execution of the algorithms. The
steps of the processes are executed according to ticks of the global clock:
one step per clock tick. Even if two steps are executed at the same physical
instant, we view them as if they were executed at two different times of our
global clock. A correct process is one that executes an infinite number of
steps, i.e., every process has an infinite share of time units (we come back
to this notion in the next section). In a sense, there is some entity (a global
scheduler) that schedules time units among processes, though the very notion
of time is outside the control of the processes.

16



A process step consists in receiving (sometimes we will be saying deliver-
ing) a message from another process (global event), executing a local com-
putation (local event), and sending a message to some process (global event)
(Figure 2.1). The execution of the local computation and the sending of a
message is determined by the process automata, i.e., the algorithm. Local
events that are generated are typically those exchanged between modules of
the same process at different layers.

Process

(receive)

incoming message outgoing message

(send)

internal computation

(modules of the process)

Figure 2.1. Step of a process

The fact that a process has no message to receive or send, but has some
local computation to perform, is simply captured by assuming that messages
might be nil, i.e., the process receives/sends the nil message. Of course, a
process might not have any local computation to perform either, in which
case it does simply not touch any of its local variables. In this case, the local
computation is also nil.

It is important to notice that the interaction between local components of
the very same process is viewed as a local computation and not as a commu-
nication. We will not be talking about messages exchanged between modules
of the same process. The process is the unit of communication, just like it is
the unit of failures as we will discuss shortly below. In short, a communica-
tion step of the algorithm occurs when a process sends a message to another
process, and the latter receives this message. The number of communica-
tion steps reflects the latency an implementation exhibits, since the network
latency is typically a limiting factor of the performance of distributed algo-
rithms. An important parameter of the process abstraction is the restriction
imposed on the speed at which local steps are performed and messages are
exchanged.

Unless specified otherwise, we will consider deterministic algorithms. That
is, for every step performed by any given process, the local computation
executed by the process and the message sent by this process are uniquely
determined by the message received by the process and its local state prior
to executing the step. We will also, in specific situations, describe randomized
(or probabilistic) algorithms where processes make use of underlying random
oracles to choose the local computation to be performed or the next message
to be sent, among a set of possibilities.
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2.1.3 Liveness and Safety

When we devise a distributed algorithm to implement a given distributed
programming abstraction, we seek to satisfy the properties of the abstraction
in all possible executions of the algorithm, i.e., in all possible sequences of
steps executed by the processes according to the algorithm. These properties
usually fall into two classes: safety and liveness . Having in mind the dis-
tinction between these classes usually helps understand the abstraction and
hence devise an adequate algorithm to implement it.

• Basically, a safety property is a property of a distributed algorithm that
can be violated at some time t and never be satisfied again after that time.
Roughly speaking, safety properties state that the algorithm should not
do anything wrong. To illustrate this, consider a property of perfect links
(which we will discuss in more details later in this chapter) that roughly
stipulates that no process should receive a message unless this message was
indeed sent. In other words, processes should not invent messages out of
thin air. To state that this property is violated in some execution of an
algorithm, we need to determine a time t at which some process receives a
message that was never sent.
More precisely, a safety property is a property that whenever it is violated
in some execution E of an algorithm, there is a partial execution E ′ of E
such that the property will be violated in any extension of E ′. In more
sophisticated terms, we would say that safety properties are closed under
execution prefixes.
Of course, safety properties are not enough. Sometimes, a good way of
preventing bad things from happening consists in simply doing nothing. In
our countries of origin, some public administrations seem to understand
this rule quite well and hence have an easy time ensuring safety.

• Therefore, to define a useful abstraction, it is necessary to add some liveness
properties to ensure that eventually something good happens. For instance,
to define a meaningful notion of perfect links, we would require that if a
correct process sends a message to a correct destinator process, then the
destinator process should eventually deliver the message. To state that such
a property is violated in a given execution, we need to show that there is
no chance for a message to be received.
More precisely, a liveness property is a property of a distributed system
execution such that, for any time t, there is some hope that the property
can be satisfied at some time t′ ≥ t. It is a property for which, quoting
Cicero:

“While there is life there is hope”.

In general, the challenge is to guarantee both liveness and safety. (The
difficulty is not in talking, or not lying, but in telling the truth). Indeed, useful
distributed services are supposed to provide both liveness and safety proper-
ties. Consider for instance a traditional inter-process communication service
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such as TCP: it ensures that messages exchanged between two processes are
not lost or duplicated, and are received in the order they were sent. As we
pointed out, the very fact that the messages are not lost is a liveness prop-
erty. The very fact that the messages are not duplicated and received in the
order they were sent are rather safety properties. Sometimes, we will con-
sider properties that are neither pure liveness nor pure safety properties, but
rather a union of both.

2.2 Abstracting Processes

2.2.1 Process Failures

Unless it fails, a process is supposed to execute the algorithm assigned to
it, through the set of components implementing the algorithm within that
process. Our unit of failure is the process. When the process fails, all its
components are supposed to fail as well, and at the same time.

Process abstractions differ according to the nature of the failures that
are considered. We discuss various forms of failures in the next section (Fig-
ure 2.2).

Omissions

Crashes

Arbitrary

Crashes&recoveries

Figure 2.2. Failure modes of a process

2.2.2 Lies and Omissions

A process is said to fail in an arbitrary manner if it deviates arbitrarily from
the algorithm assigned to it. The arbitrary fault behavior is the most general
one. In fact, it makes no assumptions on the behavior of faulty processes,
which are allowed any kind of output and in particular can send any kind
of messages. These kinds of failures are sometimes called Byzantine (see the
historical note at the end of this chapter) or malicious failures. Not surpris-
ingly, arbitrary faults are the most expensive to tolerate, but this is the only
acceptable option when an extremely high coverage is required or when there
is the risk of some processes being indeed controlled by malicious users that
deliberately try to prevent correct system operation.
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An arbitrary fault need not be intentional and malicious: it can simply
be caused by a bug in the implementation, the programming language or
the compiler, that causes the process to deviate from the algorithm it was
supposed to execute. A more restricted kind of fault to consider is the omis-
sion (Figure 2.2). An omission fault occurs when a process does not send
(resp. receive) a message it is supposed to send (resp. receive), according to
its algorithm.

In general, omission faults are due to buffer overflows or network conges-
tion. Omission faults result in lost messages. With an omission, the process
deviates from the algorithm it is supposed to execute by dropping some mes-
sages that should have been exchanged with other processes.

2.2.3 Crashes

An interesting particular case of omissions is when a process executes its
algorithm correctly, including the exchange of messages with other processes,
possibly until some time t, after which the process does not send any message
to any other process. This is what happens if the process for instance crashes
at time t and never recovers after that time. It is common to talk here about
a crash failure (Figure 2.2), and a crash stop process abstraction. With this
abstraction, a process is said to be faulty if it crashes. It is said to be correct
if it does never crash and executes an infinite number of steps. We discuss in
the following two ramifications underlying the crash-stop abstraction.

• It is usual to devise algorithms that implement a given distributed program-
ming abstraction, say some form of agreement, provided that a minimal
number F of processes are correct, e.g., at least one, or a majority. It is
important to understand here that such assumption does not mean that
the hardware underlying these processes is supposed to operate correctly
forever. In fact, the assumption means that, in every execution of the al-
gorithm making use of that abstraction, it is very unlikely that more than
a certain number F of processes crash, during the lifetime of that very ex-
ecution. An engineer picking such algorithm for a given application should
be confident enough that the chosen elements underlying the software and
hardware architecture make that assumption plausible. In general, it is
also a good practice, when devising algorithms that implement a given
distributed abstraction under certain assumptions to determine precisely
which properties of the abstraction are preserved and which are violated
when a specific subset of the assumptions are not satisfied, e.g., when more
than F processes crash.

• Considering a crash-stop process abstraction boils down to assuming that
a process executes its algorithm correctly, unless it crashes, in which case
it does not recover. That is, once it crashes, the process does never per-
form any computation. Obviously, in practice, processes that crash can in
general be rebooted and hence do usually recover. It is important to notice
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that, in practice, the crash-stop process abstraction does not preclude the
possibility of recovery, nor does it mean that recovery should be prevented
for a given algorithm (assuming a crash-stop process abstraction) to be-
have correctly. It simply means that the algorithm should not rely on some
of the processes to recover in order to pursue its execution. These processes
might not recover, or might recover only after a long period encompassing
the crash detection and then the rebooting delay. In some sense, an algo-
rithm that is not relying on crashed processes to recover would typically be
faster than an algorithm relying on some of the processes to recover (we will
discuss this issue in the next section). Nothing prevents, however, recovered
processes from getting informed about the outcome of the computation and
participate in subsequent instances of the distributed algorithm.

Unless explicitly stated otherwise, we will assume the crash-stop process
abstraction throughout this manuscript.

2.2.4 Recoveries

Sometimes, the assumption that certain processes never crash is simply not
plausible for certain distributed environments. For instance, assuming that a
majority of the processes do not crash, even only long enough for an algorithm
execution to terminate, might simply be too strong.

An interesting alternative as a process abstraction to consider in this case
is the fail-recovery one; we also talk about a fail-recovery kind of failure
(Figure 2.2). We say that a process is faulty in this case if either the pro-
cess crashes and never recovers, or the process keeps infinitely crashing and
recovering. Otherwise, the process is said to be correct. Basically, such a pro-
cess is eventually always (i.e., during the lifetime of the algorithm execution
of interest) up and operating. A process that crashes and recovers a finite
number of times is correct.

According to the fail-recovery abstraction, a process can indeed crash, in
this case the process stops sending messages, but might later recover. This can
be viewed as an omission fault, with one exception however: a process might
suffer amnesia when it crashes and looses its internal state. This significantly
complicates the design of algorithms because, upon recovery, the process
might send new messages that contradict messages that the process might
have sent prior to the crash. To cope with this issue, we sometimes assume
that every process has, in addition to its regular volatile memory, a stable
storage (also called a log), which can be accessed through store and retrieve

primitives.
Upon recovery, we assume that a process is aware that it has crashed

and recovered. In particular, a specific 〈 Recovery 〉 event is supposed to be
automatically generated by the run-time environment in a similar manner to
the 〈 Init 〉 event, executed each time a process starts executing some algo-
rithm. The processing of the 〈 Recovery 〉 event should for instance retrieve
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the relevant state of the process from stable storage before the processing of
other events is resumed. The process might however have lost all the remain-
ing data that was preserved in volatile memory. This data should thus be
properly re-initialized. The 〈 Init 〉 event is considered atomic with respect to
recovery. More precisely, if a process crashes in the middle of its initialization
procedure and recovers without having processed the 〈 Init 〉 event properly,
the process should redo again the 〈 Init 〉 procedure. On the other hand, if
the 〈 Init 〉 event was processed entirely, then the process must handle the
〈 Recovery 〉 event instead.

In some sense, a fail-recovery kind of failure matches an omission one if
we consider that every process stores every update to any of its variables in
stable storage. This is not very practical because access to stable storage is
usually expensive (as there is a significant delay in accessing it). Therefore,
a crucial issue in devising algorithms with the fail-recovery abstraction is to
minimize the access to stable storage.

We discuss in the following three important ramifications underlying the
fail-recovery abstraction.

• One way to alleviate the need for accessing any form of stable storage
is to assume that some of the processes do never crash (during the life-
time of an algorithm execution). This might look contradictory with the
actual motivation for introducing the fail-recovery process abstraction at
the first place. In fact, there is no contradiction, as we explain below. As
discussed earlier, with crash-stop failures, some distributed programming
abstractions can only be implemented under the assumption that a certain
number of processes do never crash, say a majority the processes participat-
ing in the computation, e.g., 4 out of 7 processes. This assumption might
be considered unrealistic in certain environments. Instead, one might con-
sider it more reasonable to assume that at least 2 processes do not crash
during the execution of an algorithm. (The rest of the processes would in-
deed crash and recover.) As we will discuss later in the manuscript, such
assumption makes it sometimes possible to devise algorithms assuming the
fail-recovery process abstraction without any access to a stable storage. In
fact, the processes that do not crash implement a virtual stable storage
abstraction, and this is made possible without knowing in advance which
of the processes will not crash in a given execution of the algorithm.

• At first glance, one might believe that the crash-stop abstraction can also
capture situations where processes crash and recover, by simply having
the processes change their identities upon recovery. That is, a process that
recovers after a crash, would behave, with respect to the other processes,
as if it was a different process that was simply not performing any action.
This could easily be done assuming a re-initialization procedure where,
besides initializing its state as if it just started its execution, a process
would also change its identity. Of course, this process should be updated
with any information it might have missed from others, as if indeed it did
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not receive that information yet. Unfortunately, this view is misleading as
we explain below. Again, consider an algorithm devised using the crash-
stop process abstraction, and assuming that a majority of the processes
do never crash, say at least 4 out of a total of 7 processes composing the
system. Consider furthermore a scenario where 4 processes do indeed crash,
and process one recovers. Pretending that the latter process is a different
one (upon recovery) would mean that the system is actually composed of
8 processes, 5 of which should not crash, and the same reasoning can be
made for this larger number of processes. This is because a fundamental
assumption that we build upon is that the set of processes involved in
any given computation is static and the processes know of each other in
advance. In Chapter 7, we will revisit that fundamental assumption and
discuss how to build the abstraction of a dynamic set of processes.

• A tricky issue with the fail-recovery process abstraction is the interface be-
tween software modules. Assume that some module at a process, involved
in the implementation of some specific distributed abstraction, delivers
some message or decision to the upper layer (say the application) and
subsequently the process hosting the module crashes. Upon recovery, the
module cannot determine if the upper layer (i.e., the application) has pro-
cessed the message or decision before crashing or not. There are at least
two ways to deal with this issue.
1. One way is to change the interface between modules. Instead of delivering

a message (or a decision) to the upper layer, the module may instead
store the message (decision) in a stable storage that is exposed to the
upper layer. It is then up to the upper layer to access the stable storage
and exploit delivered information.

2. A different approach consists in having the module periodically deliver-
ing the message or decision to the application until the latter explicitely
asks for stopping the delivery. That is, the distributed programming
abstraction implemented by the module is in this case responsible for
making sure the application will make use of the delivered information.

2.3 Abstracting Communication

The link abstraction is used to represent the network components of the
distributed system. We assume that every pair of processes is connected by
a bidirectional link, a topology that provides full connectivity among the
processes. In practice, different topologies may be used to implement this
abstraction, possibly using routing algorithms. Concrete examples, such as
the ones illustrated in Figure 2.3, include the use of a broadcast medium
(such as an Ethernet), a ring, or a mesh of links interconnected by bridges
and routers (such as the Internet). Many implementations refine the abstract
network view to make use of the properties of the underlying topology.
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Figure 2.3. The link abstraction and different instances.

We assume that messages exchanged between processes are uniquely iden-
tified and every message includes enough information for the recipient of a
message to uniquely identify its sender. Furthermore, when exchanging mes-
sages in a request-reply manner among different processes, the processes have
means to identify which reply message is a response to which request message.
This can typically be achieved by having the processes generating (random)
timestamps, based on sequence numbers or on local clocks. This assump-
tion alleviates the need for explicitly introducing these timestamps in the
algorithm.

2.3.1 Link Failures

In a distributed system, it is common for messages to be lost when transiting
through the network. However, it is reasonable to assume that the probability
for a message to reach its destination is non-zero. Hence, a natural way to
overcome the inherent unreliability of the network is to keep on retransmitting
messages until they reach their destinations.

In the following, we will describe different kinds of link abstractions: some
are stronger than others in the sense that they provide more reliability guar-
antees. All three are point-to-point link abstractions, i.e., they support the
communication between pairs of processes. (In the next chapter, we will be
defining broadcast communication abstractions.)

We will first describe the abstraction of fair-loss links, which captures the
basic idea that messages might be lost but the probability for a message not
to be lost is non-zero. Then we describe higher level abstractions that could
be implemented over fair-loss links using retransmission mechanisms to hide
from the programmer part of the unreliability of the network. We will more
precisely consider stubborn and perfect link abstractions. As we pointed out
earlier, unless explicitly stated otherwise, we will be assuming the crash-stop
process abstraction.

We define the properties of each of our link abstractions using two kinds
of primitives: send and deliver. The term deliver is privileged upon the more
general term receive to make it clear that we are talking about a specific link
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Module:

Name: FairLossPointToPointLinks (flp2p).

Events:

Request: 〈 flp2pSend, dest, m 〉: Used to request the transmission of
message m to process dest.

Indication: 〈 flp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

FLL1: Fair loss: If a message m is sent infinitely often by process pi to
process pj , and neither pi or pj crash, then m is delivered infinitely often
by pj .

FLL2: Finite duplication: If a message m is sent a finite number of times
by process pi to process pj , then m cannot be delivered an infinite number
of times by pj .

FLL3: No creation: If a message m is delivered by some process pj , then
m has been previously sent to pj by some process pi.

Module 2.1 Interface and properties of fair-lossy point-to-point links.

abstraction to be implemented over the network: a message might typically
be received at a given port of the network and stored within some buffer, then
some algorithm will be executed to make sure the properties of the required
link abstraction are satisfied, before the message is actually delivered. When
there is no ambiguity, we might however use the term receive to mean deliver.

A process invokes the send primitive of a link abstraction to request the
sending of a message using that abstraction. When the process invokes that
primitive, we say that the process sends the message. It might then be up to
the link abstraction to make some effort in transmitting the message to the
destinator process, according to the actual specification of the abstraction.
The deliver primitive is invoked by the algorithm implementing the abstrac-
tion on a destinator process. When this primitive is invoked on a process p
for a message m, we say that p delivers m.

2.3.2 Fair-loss Links

The interface of the fair-loss link abstraction is described by Module 2.1.
This consists of two events: a request event, used to send messages, and an
indication event, used to deliver the messages. Fair-loss links are characterized
by the properties FLL1-FLL3.

Basically, the fair loss property guarantees that a link does not system-
atically drop any given message. Therefore, if neither the sender nor the
recipient crashes, and if a message keeps being re-transmitted, the message is
eventually delivered. The finite duplication property intuitively ensures that
the network does not perform more retransmission than those performed by
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Module:

Name: StubbornPointToPointLink (sp2p).

Events:

Request: 〈 sp2pSend, dest, m 〉: Used to request the transmission of mes-
sage m to process dest.

Indication:〈 sp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

SL1: Stubborn delivery: Let pi be any process that sends a message m to
a correct process pj . If pi does not crash, then pj eventually delivers m an
infinite number of times.

SL2: No creation: If a message m is delivered by some process pj , then m
was previously sent to pj by some process pi.

Module 2.2 Interface and properties of stubborn point-to-point links.

Algorithm 2.1 Stubborn links using fair-loss links.

Implements:
StubbornPointToPointLink (sp2p).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 sp2pSend, dest, m 〉 do
while (true) do

trigger 〈 flp2pSend, dest, m 〉;

upon event 〈 flp2pDeliver, src, m 〉 do
trigger 〈 sp2pDeliver, src, m 〉;

the processes themselves. Finally, the no creation property ensures that no
message is created or corrupted by the network.

2.3.3 Stubborn Links

We define the abstraction of stubborn channels in Module 2.2. This abstrac-
tion hides lower layer retransmission mechanisms used by the sender process,
when using actual fair loss links, to make sure its messages are eventually
delivered by the destinator processes.

Algorithm 2.1 describes a very simple implementation of stubborn links
over fair-loss ones. We discuss in the following the correctness of the algorithm
as well as some performance considerations.
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Correctness. The fair loss property of the underlying links guarantees that, if
the destinator process is correct, it will indeed deliver, infinitely often, every
message that was sent by every process that does not subsequently crashes.
This is because the algorithm makes sure the sender process will keep on
sp2pSending those messages infinitely often, unless that sender process itself
crashes. The no creation property is simply preserved from the underlying
links.

Performance. The algorithm is clearly not performant and its purpose is pri-
marily pedagogical. It is pretty clear that, within a practical application, it
does not make much sense for a process to keep on, and at every step, send-
ing messages infinitely often. There are at least three complementary ways
to prevent that and hence make the algorithm more practical. First, the
sender process might very well introduce a time delay between two sending
events (using the fair loss links). Second, it is very important to remember
that the very notion of infinity and infinitely often are context dependent:
they basically depend on the algorithm making use of stubborn links. After
the algorithm making use of those links has ended its execution, there is no
need to keep on sending messages. Third, an acknowledgement mechanism,
possibly used for groups of processes, can very well be added to mean to a
sender that it does not need to keep on sending a given set of messages any-
more. This mechanism can be performed whenever a destinator process has
properly consumed those messages, or has delivered messages that semanti-
cally subsume the previous ones, e.g., in stock exchange applications when
new values might subsume old ones. Such a mechanism should however be
viewed as an external algorithm, and cannot be integrated within our algo-
rithm implementing stubborn links. Otherwise, the algorithm might not be
implementing the stubborn link abstraction anymore.

2.3.4 Perfect Links

With the stubborn link abstraction, it is up to the destinator process to check
whether a given message has already been delivered or not. Adding, besides
mechanisms for message retransmission, mechanisms for duplicate verifica-
tion helps build an even higher level abstraction: the perfect link one, some-
times also called the reliable channel abstraction. The perfect link abstraction
specification is captured by the “Perfect Point To Point Link” module, i.e.,
Module 2.3. The interface of this module also consists of two events: a request
event (to send messages) and an indication event (used to deliver messages).
Perfect links are characterized by the properties PL1-PL3.

Algorithm 2.2 describes a very simple implementation of perfect links over
stubborn ones. We discuss in the following the correctness of the algorithm
as well as some performance considerations.

Correctness. Consider the reliable delivery property of perfect links. Let m
be any message pp2pSent by some process p to some process q and assume
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Module:

Name: PerfectPointToPointLink (pp2p).

Events:

Request: 〈 pp2pSend, dest, m 〉: Used to request the transmission of
message m to process dest.

Indication:〈 pp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

PL1: Reliable delivery: Let pi be any process that sends a message m to
a process pj . If neither pi nor pj crashes, then pj eventually delivers m.

PL2: No duplication: No message is delivered by a process more than once.

PL3: No creation: If a message m is delivered by some process pj , then
m was previously sent to pj by some process pi.

Module 2.3 Interface and properties of perfect point-to-point links.

Algorithm 2.2 Perfect links using stubborn links.

Implements:
PerfectPointToPointLinks (pp2p).

Uses:
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 pp2pSend, dest, m 〉 do
trigger 〈 sp2pSend, dest, m 〉;

upon event 〈 sp2pDeliver, src, m 〉 do
if m 6∈ delivered then

trigger 〈 pp2pDeliver, src, m 〉;
else delivered := delivered ∪{m};

that none of these processes crash. By the algorithm, process p sp2pSends m
to q using the underlying stubborn links. By the stubborn delivery property
of the underlying links, q eventually sp2pDelivers m () m at least once and
hence pp2pDelivers it. The no duplication property follows from the test per-
formed by the algorithm before delivering any message: whenever a message
is sp2pDelivered and before pp2pDelivering that message. The no creation
property simply follows from the no creation property of the underlying stub-
born links.
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Performance. Besides the performance considerations we discussed for our
stubborn link implementation, i.e., Algorithm 2.1, and which clearly apply
to the perfect link implementation of Algorithm 2.2, there is an additional
concern related to maintaining the ever growing set of messages delivered at
every process, provided actual physical memory limitations.

At first glance, one might think of a simple way to circumvent this issue
by having the destinator acknowledging messages periodically and the sender
acknowledging having received such acknowledgements and promising not
to send those messages anymore. There is no guarantee however that such
messages would not be still in transit and will later reach the destinator
process. Additional mechanisms, e.g., timestamp-based, to recognize such
old messages could however be used.

2.3.5 Processes and Links

Throughout this manuscript, we will mainly assume perfect links. It may
seem awkward to assume that links are perfect when it is known that real
links may crash, lose and duplicate messages. This assumption only captures
the fact that these problems can be addressed by some lower level protocol.
As long as the network remains connected, and processes do not commit
an unbounded number of omission failures, link crashes may be masked by
routing. The loss of messages can be masked through re-transmission as we
have just explained through our algorithms. This functionality is often found
in standard transport level protocols such as TCP. These are typically sup-
ported by the operating system and do not need to be re-implemented.

The details of how the perfect link abstraction is implemented is not rele-
vant for the understanding of the fundamental principles of many distributed
algorithms. On the other hand, when developing actual distributed applica-
tions, these details become relevant. For instance, it may happen that some
distributed algorithm requires the use of sequence numbers and message re-
transmissions, even assuming perfect links. In this case, in order to avoid
the redundant use of similar mechanisms at different layers, it may be more
effective to rely just on weaker links, such as fair-loss or stubborn links. This
is somehow what will happen when assuming the fail-recovery abstraction of
a process, as we will explain below.

Indeed, consider the reliable delivery property of perfect links: if a process
pi sends a message m to a process pj , then, unless pi or pj crashes, pj even-
tually delivers m. With a fail-recovery process abstraction, pj might indeed
deliver m but crash and then recover. If the act of delivering is simply that of
transmitting a message, then pj might not have had the time to do anything
useful with the message before crashing. One alternative is to define the act
of delivering a message as its logging in stable storage. It is then up to the
receiver process to check in its log which messages it has delivered and make
use of them. Having to log every message in stable storage might however
not be very realistic for the logging being a very expensive operation.
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The second alternative in this case is to go back to the fair-loss assump-
tion and build on top of it a retransmission module which ensures that the
receiver has indeed the time to perform something useful with the message,
even if it crashes and recovers, and without having to log the message. The
stubborn delivery property ensures exactly that: if a process pi sends a mes-
sage m to a correct process pj , and pi does not crash, then pj delivers m from
pi an infinite number of times. Hence, the receiver will have the opportunity
to do something useful with the message, provided that it is correct. Remem-
ber that, with a fail-recovery abstraction, a process is said to be correct if,
eventually, it is up and does not crash anymore.

Interestingly, Algorithm 2.1 implements stubborn links over fair loss ones
also with the fail-recovery abstraction of a process; though with a different
meaning of the very notion of a correct process. This is clearly not the case
for Algorithm 2.2, i.e., this algorithm is not correct with the fail-recovery
abstraction of a process.

2.4 Timing Assumptions

An important aspect of the characterization of a distributed system is related
with the behaviour of its processes and links with respect to the passage of
time. In short, determining whether we can make any assumption on the
existence of time bounds on communication bounds and process (relative)
speeds is if primary importance when defining a model of a distributed sys-
tem. We address some time-related issues in this section and then suggest
the failure detector abstraction as a meaningful way to abstract useful timing
assumptions.

2.4.1 Asynchronous System

Assuming an asynchronous distributed system comes down to not making any
timing assumption about processes and channels. This is precisely what we
have been doing so far, i.e., when defining our process and link abstractions.
That is, we did not assume that processes have access to any sort of physical
clock, nor did we assume there are no bounds on processing delays and also
no bounds on communication delay.

Even without access to physical clocks, it is still possible to measure the
passage of time based on the transmission and delivery of messages, i.e., time
is defined with respect to communication. Time measured this way is called
logical time.

The following rules can be used to measure the passage of time in an
asynchronous distributed system:

• Each process p keeps an integer called logical clock lp, initially 0.
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Figure 2.4. The happened-before relation.

• Any time an event occurs at process p, the logical clock lp is incremented
by one unit.

• When a process sends a message, it timestamps the message with the value
of its logical clock at the moment the message is sent and tags the message
with that timestamp. The timestamp of event e is denoted by t(e).

• When a process p receives a message m with timestamp lm, p increments
its timestamp in the following way: lp = max(lp, lm) + 1.

An interesting aspect of logical clocks is the fact that they capture cause-
effect relations in systems where the processes can only interact through
message exchanges. We say that an event e1 may potentially have caused
another event e2, denoted as e1 → e2 if the following relation, called the
happened-before relation, applies:

• e1 and e2 occurred at the same process p and e1 occurred before e2 (Fig-
ure 2.4 (a)).

• e1 corresponds to the transmission of a message m at a process p and e2

to the reception of the same message at some other process q (Figure 2.4
(b)).

• there exists some event e′ such that e1 → e′ and e′ → e2 (Figure 2.4 (c)).

It can be shown that if the events are timestamped with logical clocks,
then e1 → e2 ⇒ t(e1) < t(e2). Note that the opposite implication is not true.

As we discuss in the next chapters, even in the absence of any physical
timing assumption, and using only a logical notion of time, we can imple-
ment some useful distributed programming abstractions. Many abstractions
do however need some physical timing assumptions. In fact, even a very
simple form of agreement, namely consensus, is impossible to solve in an
asynchronous system even if only one process fails, and it can only do so by
crashing (see the historical note at the end of this chapter). In this prob-
lem, which we will address later in this manuscript, the processes start, each
with an initial value, and have to agree on a common final value, out the
initial values. The consequence of this result is immediate for the impossibil-
ity of deriving algorithms for many agreement abstractions, including group
membership or totally ordered group communication.
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2.4.2 Synchronous System

Whilst assuming an asynchronous system comes down not to make any physi-
cal timing assumption on processes and links, assuming a synchronous system
comes down to assuming the following three properties:

1. Synchronous processing. There is a known upper bound on processing
delays. That is, the time taken by any process to execute a step is always
less than this bound. Remember that a step gathers the delivery of a
message (possibly nil) sent by some other process, a local computation
(possibly involving interaction among several layers of the same process),
and the sending of a message to some other process.

2. Synchronous communication. There is a known upper bound on message
transmission delays. That is, the time period between the instant at which
a message is sent and the time at which the message is delivered by the
destination process is less than this bound.

3. Synchronous physical clocks. Processes are equipped with a local physical
clock. There is a known upper bound on the rate at which the local
physical clock from a global real time clock (remember that we make here
the assumption that such a global real time clock exists in our universe,
i.e., at least as a fictional device to simplify the reasoning about the
processes, but this is not accessible to the processes).

In a synchronous distributed system, several useful services can be pro-
vided, such as, among others:

• Timed failure detection. Every crash of a process may be detected within
bounded time: whenever a process p crashes, all processes that did not
crash, detect the crash of p within a known bounded time. This can be
achieved for instance using a heartbeat mechanism, where processes peri-
odically exchange (heartbeat) messages and detect, within a limited time
period, the crash of processes that have crashed.

• Measure of transit delays. It is possible to measure the delays spent by
messages in the communication links and, from there, infer which nodes
are more distant or connected by slower or overloaded links.

• Coordination based on time. One can implement a lease abstraction that
provides the right to execute some action that is granted for a fixed amount
of time, e.g., manipulating a specific file.

• Worst case performance. By assuming a bound on the number of faults
and on the load of the system, it is possible to derive worst case response
times for a given algorithm. This allows a process to know when a message
it has sent has been received by the destination process (provided that the
latter is correct). This can be achieved even if we assume that processes
commit omission failures without crashing, as long as we bound the number
of these omission failures.
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• Synchronized clocks. A synchronous system makes it possible to synchro-
nize the clocks of the different processes in such a way that they are never
apart by more than some known constant δ, known as the clock synchro-
nization precision. Synchronized clocks allow processes to coordinate their
actions and ultimately execute synchronized global steps. Using synchro-
nized clocks makes it possible to timestamp events using the value of the
local clock at the instant they occur. These timestamps can be used to
order events in the system.
If there was a system where all delays were constant, it would be possible to
achieve perfectly synchronized clocks (i.e., where δ would be 0). Unfortu-
nately, such a system cannot be built. In practice, δ is always greater than
zero and events within δ cannot be ordered. This is not a significant prob-
lem when δ can be made small enough such that only concurrent events
(i.e., events that are not causally related) can have the same timestamp.

Not surprisingly, the major limitation of assuming a synchronous system
is the coverage of the system, i.e., the difficulty of building a system where
the timing assumptions hold with high probability. This typically requires
careful analysis of the network and processing load and the use of appropriate
processor and network scheduling algorithms. Whilst this might be feasible
for some local area networks, it might not be so, or even desirable, in larger
scale systems such as the Internet. In this case, i.e., on the Internet, there
are periods where messages can take a very long time to arrive to their
destination. One should consider very large values to capture the processing
and communication bounds. This however would mean considering worst
cases values which are typically much higher than average values. These worst
case values are usually so high that any application based on them would be
very inefficient.

2.4.3 Partial Synchrony

Generally, distributed systems are completely synchronous most of the time.
More precisely, for most systems we know of, it is relatively easy to define
physical time bounds that are respected most of the time. There are however
periods where the timing assumptions do not hold, i.e., periods during which
the system is asynchronous. These are periods where the network is for in-
stance overloaded, or some process has a shortage of memory that slows it
down. Typically, the buffer that a process might be using to store incoming
and outgoing messages might get overflowed and messages might thus get lost,
violating the time bound on the delivery. The retransmission of the messages
might help ensure the reliability of the channels but introduce unpredictable
delays. In this sense, practical systems are partially synchronous.

One way to capture the partial synchrony observation is to assume that
the timing assumptions only hold eventually (without stating when exactly).
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This boils down to assuming that there is a time after which these assump-
tions hold forever, but this time is not known. In a way, instead of assuming a
synchronous system, we assume a system that is eventually synchronous. It is
important to notice that making such assumption does not in practice mean
that (1) there is a time after which the underlying system (including applica-
tion, hardware and networking components) is synchronous forever, (2) nor
does it mean that the system needs to be initially asynchronous and then only
after some (long time) period becomes synchronous. The assumption simply
captures the very fact that the system might not always be synchronous, and
there is no bound on the period during which it is asynchronous. However,
we expect that there are periods during which the system is synchronous,
and some of these periods are long enough for an algorithm to terminate its
execution.

2.5 Failure Detection

2.5.1 Abstracting Time

So far, we contrasted the simplicity with the inherent limitation of the asyn-
chronous system assumption, as well the power with the limited coverage
of the synchronous assumption, and we discussed the intermediate partially
synchronous system assumption. Each of these make some sense for spe-
cific environments, and need to be considered as plausible assumptions when
reasoning about general purpose implementations of high level distributed
programming abstractions.

As far as the asynchronous system assumption is concerned, there is no
timing assumptions to be made and our process and link abstractions di-
rectly capture that case. These are however clearly not sufficient for the syn-
chronous and partially synchronous system assumptions. Instead of augment-
ing our process and link abstractions with timing capabilities to encompass
the synchronous and partially synchronous system assumptions, we consider
a separate kind of abstractions to encapsulates those capabilities. Namely,
we consider failure detectors. As we will discuss in the next section, failure
detectors provide information (not necessarily fully accurate) about which
processes are crashed. We will in particular introduce a failure detector that
encapsulates timing assumptions of a synchronous system, as well as failure
detectors that encapsulate t timing assumptions of a partially synchronous
system. Not surprisingly, the information provided by the first failure detec-
tor about crashed processes will be more accurate than those provided by
the others. More generally, the stronger are the timing assumptions we make
on the distributed system, i.e., to implement the failure detector, the more
accurate that information can be.

There are at least two advantages of the failure detector abstraction, over
an approach where we would directly make timing assumptions on processes
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Module:

Name: PerfectFailureDetector (P).

Events:

Indication: 〈 crash, pi 〉: Used to notify that process pi has crashed.

Properties:

PFD1: Eventual strong completeness: Eventually every process that
crashes is permanently detected by every correct process.

PFD2: Strong accuracy: No process is detected by any process before it
crashes.

Module 2.4 Interface and properties of the perfect failure detector.

and links. First, the failure detector abstraction alleviates the need for ex-
tending the process and link abstractions introduced earlier in this chapter
with timing assumptions: the simplicity of those abstractions is preserved.
Second, and as will see in the following, we can reason about failure detector
properties using axiomatic properties with no explicit references about phys-
ical time. Such references are usually very error prone. In practice, except
for specific applications like process control, timing assumptions are indeed
mainly used to detect process failures, i.e., to implement failure detectors:
this is exactly what we do.

2.5.2 Perfect Failure Detection

In synchronous systems, and assuming a process crash-stop abstraction,
crashes can be accurately detected using timeouts. For instance, assume that
a process sends a message to another process and awaits a response. If the
recipient process does not crash, then the response is guaranteed to arrive
within a time period equal to the worst case processing delay plus two times
the worst case message transmission delay (ignoring the clock drifts). Using
its own clock, a sender process can measure the worst case delay required to
obtain a response and detect a crash in the absence of such a reply within
the timeout period: the crash detection will usually trigger a corrective pro-
cedure. We encapsulate such a way of detecting failures in a synchronous
system through the use of a perfect failure detector abstraction.

Specification. The perfect failure detector outputs, at every process, the
set of processes that are detected to have crashed. A perfect failure detector
can be described by the accuracy and completeness properties of Module 2.4.
The act of detecting a crash coincides with the triggering of the event crash
(Module 2.4): once the crash of a process p is detected by some process q,
the detection is permanent, i.e., q will not change its mind.

Algorithm. Algorithm 2.3 implements a perfect failure detector assuming
a synchronous system. Communication links do not lose messages sent by a
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Algorithm 2.3 Perfect failure detector with perfect links and timeouts.

Implements:
PerfectFailureDetector (P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π;

upon event 〈 TimeDelay 〉 do
∀pi∈Π :

if pi 6∈ alive then
trigger 〈 crash, pi 〉;

alive := ∅;
∀pi∈Π : trigger 〈 pp2pSend, pi, [Data, heartbeat] 〉;

upon event 〈 pp2pDeliver, src, [Data, heartbeat] 〉 do
alive := alive ∪ {src};

correct process to a correct process (perfect links) and the transmission period
of every message is bounded by some known constant, in comparison to which
the local processing time of a process, as well as the clock drifts, are negligible.
The algorithm makes use of a specific timeout mechanism initialized with a
timeout delay chosen to be large enough such that, within that period, every
process has enough time to send a message to all, and each of these messages
has enough time to be delivered at its destination. Whenever the timeout
period expires, the specific TimeDelay event is triggered.

Correctness. Consider the strong completeness property of a perfect failure
detector. If a process p crashes, it stops sending heartbeat messages and no
process will deliver its messages: remember that perfect links ensure that no
message is delivered unless it was sent. Every correct process will thus detect
the crash of p.

Consider now the strong accuracy property of a perfect failure detector.
The crash of a process p is detected by some other process q, only if q does not
deliver a message from p after a timeout period. This can only happen if p has
indeed crashed because the algorithm makes sure p must have otherwise sent
a message and the synchrony assumption implies that the message should
have been delivered before the timeout period.

2.5.3 Eventually Perfect Failure Detection

Just like we can encapsulate timing assumptions of a synchronous system
in a perfect failure detector abstraction, we can similarly encapsulate timing
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assumotions of a partially synchronous system within an eventually perfect
failure detector abstraction.

Specification. Basically, the eventually perfect failure detector abstraction
guarantees that there is a time after which crashes can be accurately detected.
This captures the intuition that, most of the time, timeout delays can be
adjusted so they can accurately detect crashes. However, there are periods
where the asynchrony of the underlying system prevents failure detection to
be accurate and leads to false suspicions. In this case, we talk about failure
suspicion instead of detection.

More precisely, to implement an eventually perfect failure detector ab-
straction, the idea is to also use a timeout, and to suspect processes that
did not send heartbeat messages within a timeout delay. Obviously, a suspi-
cion might be wrong in a partially synchronous system. A process p might
suspect a process q, even if q has not crashed, simply because the timeout
delay chosen by p to suspect the crash of q was too short. In this case, p’s
suspicion about q is false. When p receives a message from q, and p will if
p and q are correct, p revises its judgement and stops suspecting q. Process
p also increases its timeout delay: this is because p does not know what the
bound on communication delay will eventually be; it only knows there will
be one. Clearly, if q now crashes, p will eventually suspect q and will never
revise its judgement. If q does not crash, then there is a time after which
p will stop suspecting q, i.e., the timeout delay used by p to suspect q will
eventually be large enough because p keeps increasing it whenever it commits
a false suspicion. This is because we assume that there is a time after which
the system is synchronous.

An eventually perfect failure detector can be described by the accuracy
and completeness properties (EPFD1-2) of Module 2.5. A process p is said to
be suspected by process q whenever q triggers the event suspect(pi) and does
not trigger the event restore(pi).

Algorithm. Algorithm 2.4 implements an eventually perfect failure detector
assuming a partially synchronous system. As for Algorithm 2.3, we make use
of a specific timeout mechanism initialized with a timeout delay. The main
difference here is that the timeout delay increases whenever a process realizes
that it has falsely suspected a process that is actually correct.

Correctness. The strong completeness property is satisfied as for of Algo-
rithm 2.3. If a process crashes, it will stop sending messages, will be suspected
by every correct process and no process will ever revise its judgement about
that suspicion.

Consider now the eventual strong accuracy property. Consider the time
after which the system becomes synchronous, and the timeout delay becomes
larger than message transmission delays (plus clock drifts and local processing
periods). After this time, any message sent by a correct process to a correct
process is delivered within the timeout delay. Hence, any correct process that
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Module:

Name: EventuallyPerfectFailureDetector (3P).

Events:

Indication: 〈 suspect, pi 〉: Used to notify that process pi is suspected to
have crashed.

Indication: 〈 restore, pi 〉: Used to notify that process pi is not suspected
anymore.

Properties:

EPFD1: Eventual strong completeness: Eventually, every process that
crashes is permanently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is sus-
pected by any correct process.

Module 2.5 Interface and properties of the eventually perfect failure detector.

was wrongly suspecting some correct process will revise its suspicion and no
correct process will ever be suspected by a correct process.

2.5.4 Eventual Leader Election

Often, one may not need to detect which processes have failed, but rather
need to agree on a process that has not failed and that may act as the
coordinator in some steps of a distributed algorithm. This process is in a
sense trusted by the other processes and elected as their leader. The leader
detector abstraction we discuss here provides such support.

Specification. The eventual leader detector abstraction, with the proper-
ties (CD1-2) stated in Module 2.6, and denoted by Ω, encapsulates a leader
election algorithm which ensures that eventually the correct processes will
elect the same correct process as their leader. Nothing precludes the possibil-
ity for leaders to change in an arbitrary manner and for an arbitrary period
of time. Once a unique leader is determined, and does not change again, we
say that the leader has stabilized. Such a stabilization is guaranteed by the
specification of Module 2.6.

Algorithms. With a crash-stop process abstraction, Ω can be obtained di-
rectly from 3P . Indeed, it is is enough to trust the process with the highest
identifier among all processes that are not suspected by 3P . Eventually, and
provided at least one process is correct, exactly one correct process will be
trusted by all correct processes.

Interestingly, the leader abstraction Ω can also be implemented with the
process fail-recovery abstraction, also using timeouts and assuming the sys-
tem to be partially synchronous. Algorithm 2.5 describes such implemen-
tation assuming that at least one process is correct. Remember that this
implies, with a process fail-recovery abstraction, that at least one process
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Algorithm 2.4 Eventually perfect failure detector with perfect links and timeouts.

Implements:
EventuallyPerfectFailureDetector (3P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π;
suspected := ∅;

upon event 〈 TimeDelay 〉 do
∀pi∈Π :

if pi 6∈ alive then
suspected := suspected ∪ {pi};
trigger 〈 crash, pi 〉;

else
if pi ∈ suspected then

suspected := suspected \ {pi};
TimeDelay := TimeDelay + ∆;
trigger 〈 restore, pi 〉;

alive := ∅;
while (true) do
∀pi∈Π : trigger 〈 pp2pSend, pi, [Data, heartbeat] 〉;

upon event 〈 pp2pDeliver, src, [Data, heartbeat] 〉 do
alive := alive ∪ {src};

Module:

Name: EventualLeaderDetector (Ω).

Events:

Indication: 〈 trust, pi 〉: Used to notify that process pi is trusted to be
leader.

Properties:

CD1: Eventual accuracy: There is a time after which every correct process
trusts some correct process.

CD2: Eventual agreement: There is a time after which no two correct
processes trust different processes.

Module 2.6 Interface and properties of the eventual leader detector.

does never crash, or eventually recovers and never crashes again (in every ex-
ecution of the algorithm). It is pretty obvious that, without such assumption,
no algorithm can implement Ω with the process fail-recovery abstraction.

In Algorithm 2.5, every process pi keeps track of how many times it
crashed and recovered, within an epoch integer variable. This variable, rep-
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resenting the epoch number of pi, is retrieved, incremented, and then stored
in stable storage whenever pi recovers from a crash. Process pi periodically
sends to all a heartbeat message together with its current epoch number. Be-
sides, every process pi keeps a list of potential leader processes, within the
variable possible. Initially, at every process pi, possible contains all processes.
Then any process that does not communicate in a timely manner with pi is
excluded from possible. A process pj that communicates in a timely manner
with pi, after having recovered or being slow in communicating with pi, is
simply added again to possible, i.e., considered a potential leader for pi.

Initially, the leader for all processes is the same and is process p1. After
every timeout delay, pi checks whether p1 can still be the leader. This test
is performed through a function select that returns one process among a set
of processes, or nothing if the set is empty. The function is the same at all
processes and returns the same process (identifier) for the same given set
(alive), in a deterministic manner and following the following rule: among
processes with the lowest epoch number, the process with the lowest index is
returned. This guarantees that, if a process pj is elected leader, and pj keeps
on crashing and recovering forever, pj will eventually be replaced by a correct
process. By definition, the epoch number of a correct process will eventually
stop increasing.

A process increases its timeout delay whenever it changes a leader. This
guarantees that, eventually, if leaders keep changing because of the timeout
delay being too short with respect to communication delays, the delay will
increase and become large enough for the leader to stabilize when the system
becomes synchronous.

Correctness. Consider the eventual accuracy property and assume by con-
tradiction that there is a time after which a correct process pi permanently
trusts the same faulty process, say pj . There are two cases to consider (re-
member that we consider a fail-recovery process abstraction): (1) process pj

eventually crashes and never recovers again, or (2) process pj keeps crashing
and recovering forever.

Consider case (1). Since pj crashes and does never recover again, pj will
send its heartbeat messages to pi only a finite number of times. By the no
creation and finite duplication properties of the underlying links (fair loss),
there is a time after which pi stops delivering such messages from pi. Even-
tually, pj will be excluded from the set (possible) of potential leaders for pi

and pi will elect a new leader.
Consider now case (2). Since pj keeps on crashing and recovering forever,

its epoch number will keep on increasing forever. If pk is a correct process,
then there is a time after which its epoch number will be lower than that
of pj . After this time, either (2.1) pi will stop delivering messages from pj ,
and this can happen if pj crashes and recovers so quickly that it does not
have the time to send enough messages to pi (remember that with fail loss
links, a message is guaranteed to be delivered by its destinator only it is sent
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Algorithm 2.5 Eventually leader election with fail-recovery processes, fair loss

links and timeouts .

Implements:
EventualLeaderDetector (Ω).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 Init 〉 do
leader := p1;
possible := Π;
epoch := 0;

upon event 〈 Recovery 〉 do
retrieve(epoch);
epoch := epoch + 1;
store(epoch);

upon event 〈 TimeDelay 〉 do
if leader 6= select(possible) then

TimeDelay := TimeDelay + ∆;
leader := select(possible);
trigger 〈 trust, leader 〉;

possible := ∅;
while (true) do
∀pi∈Π : trigger 〈 flp2pSend, pi, [Data, heartbeat,epoch] 〉;

upon event 〈 flp2pDeliver, src, [Data, heartbeat,epc] 〉 do
possible := possible ∪ {(src, epc)};

infinitely often), or (2.2) pi delivers messages from pj but with higher epoch
numbers than those of pk. In both cases, pi will stop trusting pj .

Process pi will eventually trust only correct processes.
Consider now the eventual agreement property. We need to explain why

there is a time after which no two different processes are trusted by two
correct processes. Consider the subset of correct processes in a given execu-
tion S. Consider furthermore the time after which (a) the system becomes
synchronous, (b) the processes in S do never crash again, (c) their epoch
numbers stop increasing at every process, and (d) for every correct process
pi and every faulty process pj , pi stops delivering messages from pj , or pj ’s
epoch number at pi gets strictly larger than the largest epoch number of S’s
processes at pi. By the assumptions of a partially synchronous system, the
properties of the underlying fair loss channels and the algorithm, this time
will eventually be reached. After it does, every process that is trusted by a
correct process will be one of the processes in S. By the function select all
correct processes will trust the same process within this set.
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2.6 Distributed System Models

A combination of (1) a process abstraction, (2) a link abstraction and (3)
(possibly) a failure detector abstraction defines a distributed system model.
In the following, we discuss four models that will be considered throughout
this manuscript to reason about distributed programming abstractions and
the algorithms used to implement them. We will also discuss some important
properties of abstraction specifications and algorithms that will be useful
reasoning tools for the following chapters.

2.6.1 Combining Abstractions

Clearly, we will not consider all possible combinations of basic abstractions.
On the other hand, it is interesting to discuss more than one possible com-
bination to get an insight on how certain assumptions affect the algorithm
design. We have selected four specific combinations to define four different
models studied in this manuscript. Namely, we consider the following models:

• Fail-stop. We consider the crash-stop process abstraction, where the pro-
cesses execute the deterministic algorithms assigned to them, unless they
possibly crash, in which case they do not recover. Links are considered to
be perfect. Finally,we assume the existence of a perfect failure detector
(Module 2.4). As the reader will have the opportunity to observe, when
comparing algorithms in this model with algorithms in the three other
models discussed below, making these assumptions substantially simplify
the design of distributed algorithms.

• Fail-silent. We also consider here the crash-stop process abstraction to-
gether with perfect links. Nevertheless, we do not assume here a perfect
failure detector. Instead, we might rely on the eventually perfect failure
detector (3P) of Module 2.5 or on the eventual leader detector (Ω) of
Module 2.6.

• fail-recovery. We consider here the fail-recovery process abstraction, ac-
cording to which processes may crash and later recover and still participate
in the algorithm. Algorithms devised with this basic abstraction in mind
have to deal with the management of stable storage and with the difficul-
ties of dealing with amnesia, i.e., the fact that a process might forget what
it might have done prior to crashing. Links are assumed to be stubborn
and we might rely on the eventual leader detector (Ω) of Module 2.6.

• Randomized. We will consider here a specific particularity in the process
abstraction: algorithms might not be deterministic. That is, the processes
might use a random oracle to choose among several steps to execute. Typ-
ically, the corresponding algorithms implement a given abstraction with
some (hopefully high) probability.

It is important to notice that some of the abstractions we study cannot
be implemented in all models. For example, the coordination abstractions
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we consider in Chapter 7 do not have fail-silent solutions and it is not clear
either how to devise meaningful randomized solutions to such abstractions.
For other abstractions, such solutions might exist but devising them is still an
active area of research. This is for instance the case for randomized solutions
to the shared memory abstractions we consider in Chapter 4.

2.6.2 Performance

When we present an algorithm that implements a given abstraction, we an-
alyze its cost mainly using two metrics: (1) the number of messages required
to terminate an operation of the abstraction, and (2) the number of com-
munication steps required to terminate such an operation. When evaluating
the performance of distributed algorithms in a fail-recovery model, besides
the number of communication steps and the number of messages, we also
consider (3) the number of accesses to stable storage (also called logs).

In general, we count the messages, communication steps, and disk accesses
in specific executions of the algorithm, specially executions when no failures
occur. Such executions are more likely to happen in practice and are those
for which the algorithms are optimized. It does make sense indeed to plan
for the worst, by providing means in the algorithms to tolerate failures, and
hope for the best, by optimizing the algorithm for the case where failures
do not occur. Algorithms that have their performance go progressively down
when the number of failures increass are sometimes called gracefully degrading
algorithms.

Precise performance studies help select the most suitable algorithm for a
given abstraction in a specific environment and conduct real-time analysis.
Consider for instance an algorithm that implements the abstraction of perfect
communication links and hence ensures that every message sent by a correct
process to a correct process is eventually delivered by the latter process. It
is important to notice here what such a property states in terms of timing
guarantees: for every execution of the algorithm, and every message sent in
that execution, there is a time delay within which the message is eventu-
ally delivered. The time delay is however defined a posteriori. In practice
one would require that messages be delivered within some time delay de-
fined a priori, for every execution and possibly every message. To determine
whether a given algorithm provides this guarantee in a given environment,
a careful performance study needs to be conducted on the algorithm, taking
into account various parameters of the environment, such as the operating
system, the scheduler, and the network. Such studies are out of the scope of
this manuscript. We indeed present algorithms that are applicable to a wide
range of distributed systems, where bounded loads cannot be enforced, and
where infrastructures such as real-time are not strictly required.
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Exercises

Exercise 2.1 Explain when (a) a fail-recovery model, and (b) an asyn-
chronous model where any process can commit omission failures, are similar?

Exercise 2.2 Does the following statement satisfy the synchronous process-
ing assumption: on my server, no request ever takes more than one week to
be processed?

Exercise 2.3 Can we implemenz a perfect failure detector if we cannot
bound the number of omission failures? What if this number is bounded but
unknown? What if processes that can commit omission failures commit a
limited and known number of such failures and then crash?

Exercise 2.4 In a fail-stop model, can we determine a priori a time period,
such that, whenever a process crashes, all correct processes suspect this process
to have crashed after this period?

Exercise 2.5 In a fail-stop model, which of the following properties are
safety properties:

1. eventually, every process that crashes is eventually detected;
2. no process is detected before it crashes;
3. no two processes decide differently;
4. no two correct processes decide differently;
5. every correct process decides before X time units;
6. if some correct process decides, then every correct process decides.

Exercise 2.6 Consider any algorithm A that implements a distributed pro-
gramming abstraction M using a failure detector D that is assumed to be
eventually perfect. Can A violate the safety property of M if failure detector
D is not eventually perfect, e.g., D permanently outputs the empty set?

Exercise 2.7 Specify a distributed programming abstraction M and an al-
gorithm A implementing M using a failure detector D that is supposed to
satisfy a set of properties, such that the liveness of M is violated if D does
not satisfy its properties.
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Corrections

Solution 2.1 When processes crash, they lose the content of their volatile
memory and they commit omissions. If we assume (1) that processes do have
stable storage and store every update on their state within the stable storage,
and (2) that they are not aware they have crashed and recovered, then the
two models are similar. 2

Solution 2.2 Yes. This is because the time it takes for the process (i.e. the
server) to process a request is bounded and known: it is one week. 2

Solution 2.3 It is impossible to implement a perfect failure detector if the
number of omissions failures is unknown. Indeed, to guarantee the strong
completeness property of the failure detector, a process p must detect the
crash of another one q after some timeout delay. No matter how this delay
is chosen, it can however exceed the tranmission delay times the number of
omissions that q commits. This would lead to violate the strong accuracy
property of the failure detector. If the number of possible omissions is known
in a synchronous system, we can use it to calibrate the timeout delay of the
processes to accurately detect failures. If the delay exceeds the maximum
time during which a process can commit omission failures without having
actually crashed, it can safely detect the process to have crashed. 2

Solution 2.4 No. The perfect failure detector only ensures that processes
that crash are eventually detected: there is no bound on the time it takes for
these crashes to be detected. This points out a fundamental difference be-
tween algorithms assuming a synchronous system and algorithms assuming
a perfect failure detector (fail-stop model). In a precise sense, a synchronous
model is strictly stronger. 2

Solution 2.5

1. Eventually, every process that crashes is eventually detected. This is a
liveness property; we can never exhibit a time t in some execution and
state that the property is violated. There is always the hope that even-
tually the failure detector detects the crashes.

2. No process is detected before it crashes. This is a safety property. If a
process is detected at time t before it has crashed, then the property is
violated at time t.

3. No two processes decide differently. This is also a safety property, because
it can be violated at some time t and never be satisfied again.

4. No two correct processes decide differently. If we do not bound the num-
ber of processes that can crash, then the property turns out to be a
liveness property. Indeed, even if we consider some time t at which two
processes have decided differently, then there is always some hope that,
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eventually, some of the processes might crash and validate the property.
This remains actually true even if we assume that at least one process is
correct.
Assume now that we bound the number of failures, say by F < N − 1.
The property is not anymore a liveness property. Indeed, if we consider a
partial execution and a time t at which N −2 processes have crashed and
the two remaining processes, decide differently, then there is not way we
can extend this execution and validate the property. But is the property
a safety property? This would mean that in any execution where the
property does not hold, there is a partial execution of it, such that no
matter how we extend it, the property would still not hold. Again, this
is not true. To see why, Consider the execution where less than F − 2
processes have crashed and two correct processes decide differently. No
matter what partial execution we consider, we can extend it by crashing
one of the two processes that have decided differently and validate the
property. To conclude, in the case where F < N − 1, the property is the
union of both a liveness and a safety property.

5. Every correct process decides before X time units. This is a safety prop-
erty: it can be violated at some t, where all correct processes have ex-
ecuted X of their own steps. If violated, at that time, there is no hope
that it will be satisfied again.

6. If some correct process decides, then every correct process decides. This
is a liveness property: there is always the hope that the property is sat-
isfied. It is interesting to note that the property can actually be satisfied
by having the processes not doing anything. Hence, the intuition that a
safety property is one that is satisfied by doing nothing might be mis-
leading.

2

Solution 2.6 No. Assume by contradiction that A violates the safety prop-
erty of M if D does not satisfy its properties. Because of the very nature of
a safety property, there is a time t and an execution R of the system such
that the property is violated at t in R. Assume now that the properties of
the eventually perfect failure detector hold after t in a run R′ that is similar
to R up to time t. A would violate the safety property of M in R′, even if
the failure detector is eventually perfect. 2

Solution 2.7 An example of such abstraction is simply the eventually perfect
failure detector. 2
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Historical Notes

• In 1978, the notions of causality and logical time were introduced in proba-
bly the most influential paper in the area of distributed computing: (Lam-
port 1978).

• In 1982, In (Lamport, Shostak, and Pease 1982), agreement problems were
considered in an arbitrary fault-model, also called the malicious or the
Byzantine model.

• In 1984, algorithms which assume that processes can only fail by crash-
ing and every process has accurate information about which process
has crashed have been called fail-stop algorithms (Schneider, Gries, and
Schlichting 1984).

• In 1985, it was proved that, even a very simple form of agreement, namely
consensus, is impossible to solve with a deterministic algorithm in an asyn-
chronous system even if only one process fails, and it can only do so by
crashing (Fischer, Lynch, and Paterson 1985).

• In 1987, the notions of safety and liveness were considered and it was
shown that any property of a distributed system execution can be viewed
as a composition of a liveness and a safety property (?; Schneider 1987).

• In 1988, intermediate models between the synchronous and the asyn-
chronous model were introduced to circumvent the consensus impossibil-
ity (Dwork, Lynch, and Stockmeyer 1988).

• In 1989, the use of synchrony assumptions to build leasing mechanisms was
explored (Gray and Cheriton 1989).

• In 1996 (Chandra and Toueg 1996; Chandra, Hadzilacos, and Toueg 1996),
it was observed that, when solving consensus, timing assumptions where
mainly used to detect process crashes. This observation led to the defi-
nition of an abstract notion of failure detector that encapsulates timing
assumptions. The very fact that consensus can be solved in eventually syn-
chronous systems (Dwork, Lynch, and Stockmeyer 1988) is translated, in
the parlance of (Chandra, Hadzilacos, and Toueg 1996), by saying that
consensus can be solved even with unreliable failure detectors.

• In 2000, the notion of unreliable failure detector was precisely defined (Guer-
raoui 2000). Algorithms that rely on such failure detectors have been called
indulgent algorithms in (Guerraoui 2000; Dutta and Guerraoui 2002).
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3. Reliable Broadcast

This chapter covers the specifications of a family of agreement abstractions:
broadcast communication abstractions. These are used to disseminate infor-
mation among a set of processes. Roughly speaking, these abstractions cap-
ture a weak form of coordination coordination among processes, as processes
must agree on the set of messages they deliver. We study here different vari-
ants of such abstractions. These differ according to the level of reliability
they guarantee. For instance, best-effort broadcast guarantees that all correct
processes deliver the same set of messages if the senders are correct. Stronger
forms of reliable broadcast guarantee this agreement even if the senders crash
while broadcasting their messages.

We will consider six related abstractions: Best-Effort Broadcast, Regular
Reliable Broadcast, Uniform Reliable Broadcast, Logged Best-Effort Broad-
cast, Logged Uniform Broadcast and Probabilistic Broadcast. For each of
these abstractions, we will provide one or more algorithms implementing it,
in order to cover the different models addressed in this book (fail-stop, fail-
silent, fail-recovery and randomized).

3.1 Motivation

3.1.1 Client-Server Computing

In traditional distributed applications, interactions are often established be-
tween two processes. Probably the most representative of this sort of inter-
action is the now classic client-server scheme. According to this model, a
server process exports an interface to several clients. Clients use the inter-
face by sending a request to the server and by later collecting a reply. Such
interaction is supported by point-to-point communication protocols. It is ex-
tremely useful for the application if such a protocol is reliable. Reliability
in this context usually means that, under some assumptions (which are by
the way often not completely understood by most system designers), mes-
sages exchanged between the two processes are not lost or duplicated, and
are delivered in the order in which they were sent. Typical implementations
of this abstraction are reliable transport protocols such as TCP. By using a
reliable point-to-point communication protocol, the application is free from



dealing explicitly with issues such as acknowledgments, timeouts, message
re-transmissions, flow-control and a number of other issues that become en-
capsulated by the protocol interface. The programmer can focus on the actual
functionality of the application.

3.1.2 Multi-participant Systems

As distributed applications become bigger and more complex, interactions
are no longer limited to bilateral relationships. There are many cases where
more than two processes need to operate in a coordinated manner. Consider,
for instance, a multi-user virtual environment where several users interact in
a virtual space. These users may be located at different physical places, and
they can either directly interact by exchanging multimedia information, or
indirectly by modifying the environment.

It is convenient to rely here on broadcast abstractions. These allow a pro-
cess to send a message within a group of processes, and make sure that the
processes agree on the messages they deliver. A naive transposition of the
reliability requirement from point-to-point protocols would require that no
message sent to the group would be lost or duplicated, i.e., the processes agree
to deliver every message broadcast to them. However, the definition of agree-
ment for a broadcast primitive is not a simple task. The existence of multiple
senders and multiple recipients in a group introduces degrees of freedom that
do not exist in point-to-point communication. Consider for instance the case
where the sender of a message fails by crashing. It may happen that some
recipients deliver the last message while others do not. This may lead to an
inconsistent view of the system state by different group members. Roughly
speaking, broadcast abstractions provide reliability guarantees ranging from
best-effort, that only ensures delivery among all correct processes if the sender
does not fail, through reliable that, in addition, ensures all-or-nothing deliv-
ery semantics even if the sender fails, to totally ordered that furthermore
ensures that the delivery of messages follow the same global order, and ter-
minating which ensures that the processes either deliver a message or are
eventually aware that they will not never deliver the message. In this chap-
ter, we will focus on best-effort and reliable broadcast abstractions. Totally
ordered and terminating forms of broadcast will be considered later in this
manuscript.

3.2 Best-Effort Broadcast

A broadcast abstraction enables a process to send a message, in a one-shot
operation, to all the processes in a system, including itself. We give here the
specification and algorithm for a broadcast communication primitive with a
weak form of reliability, called best-effort broadcast.
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Module:

Name: BestEffortBroadcast (beb).

Events:

Request: 〈 bebBroadcast, m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 bebDeliver, src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

BEB1: Best-effort validity: If pi and pj are correct, then every message
broadcast by pi is eventually delivered by pj .

BEB2: No duplication: No message is delivered more than once.

BEB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.1 Interface and properties of best-effort broadcast.

3.2.1 Specification

With best-effort broadcast, the burden of ensuring reliability is put only on
the sender. Therefore, the remaining processes do not have to be concerned
with enforcing the reliability of received messages. On the other hand, no
guarantees are offered in case the sender fails. More precisely, best-effort
broadcast is characterized by the properties BEB1-3 depicted in Module 3.1.
BEB1 is a liveness property whereas BEB2 and BEB3 are safety proper-
ties. Note that broadcast messages are implicitly addressed to all processes.
Remember also that messages are uniquely identified.

3.2.2 Fail-Stop/ Fail-Silent Algorithm: Basic Multicast

We first provide an algorithm that implements best effort multicast using
perfect links. This algorithm works both for fail-stop and fail-silent assump-
tions. To provide best effort broadcast on top of perfect links is quite simple.
It suffices to send a copy of the message to every process in the system, as
depicted in Algorithm 3.1 and illustrated by Figure 3.1. As long as the sender
of the message does not crash, the properties of perfect links ensure that all
correct processes will deliver the message.

Correctness. The properties are trivially derived from the properties of per-
fect point-to-point links. No duplication and no creation are safety properties
that are derived from PL2 and PL3. Validity is a liveness property that is
derived from PL1 and from the fact that the sender sends the message to
every other process in the system.

Performance. The algorithm requires a single communication step and ex-
changes N messages.
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Algorithm 3.1 Basic Multicast.

Implements:
BestEffortBroadcast (beb).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 bebBroadcast, m 〉 do
forall pi ∈ Π do // Π is the set of all system processes

trigger 〈 pp2pSend, pi, m 〉;

upon event 〈 pp2pDeliver, pi, m 〉 do
trigger 〈 bebDeliver, pi, m 〉;

p1

p2

p3

p4

bebBroadcast

bebDeliver

bebDeliver

bebDeliver

bebDeliver

Figure 3.1. Sample execution of Basic Multicast algorithm.

3.3 Regular Reliable Broadcast

Best-effort broadcast ensures the delivery of messages as long as the sender
does not fail. If the sender fails, the processes might disagree on whether
or not to deliver the message. Actually, even if the process sends a message
to all processes before crashing, the delivery is not ensured because perfect
links do not enforce delivery when the sender fails. We now consider the case
where agreement is ensured even if the sender fails. We do so by introducing
a broadcast abstraction with a stronger form of reliability, called (regular)
reliable broadcast.

3.3.1 Specification

Intuitively, the semantics of a reliable broadcast algorithm ensure that correct
processes agree on the set of messages they deliver, even when the senders
of these messages crash during the transmission. It should be noted that a
sender may crash before being able to transmit the message, case in which no
process will deliver it. The specification is given in Module 3.2. This extends
the specification of Module 3.1 with a new liveness property: agreement.
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Module:

Name: (regular)ReliableBroadcast (rb).

Events:

Request: 〈 rbBroadcast, m 〉: Used to broadcast message m.

Indication: 〈 rbDeliver, src, m 〉: Used to deliver message m broadcast by
process src.

Properties:

RB1: Validity: If a correct process pi broadcasts a message m, then pi

eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

RB4: Agreement: If a message m is delivered by some correct process pi,
then m is eventually delivered by every correct process pj .

Module 3.2 Interface and properties of reliable broadcast.

3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast

To implement regular reliable broadcast, we make use of the best-effort ab-
straction described in the previous section as well as the perfect failure de-
tector module introduced earlier in the manuscript. This is depicted in Algo-
rithm 3.2.

To rbBroadcast a message, a process uses the best-effort broadcast prim-
itive to disseminate the message to all, i.e., it bebBroadcasts the message.
Note that this implementation adds some protocol headers to the messages
exchanged. In particular, the protocol adds a message descriptor (“Data”)
and the original source of the message to the protocol header. This is de-
noted by [Data, sm, m] in the algorithm. A process that gets the message
(i.e., bebDelivers the message) delivers it immediately (i.e., rbDelivers it). If
the sender does not crash, then the message will be delivered by all correct
processes. The problem is that the sender might crash. In this case, the pro-
cess that delivers the message from some other process can detect that crash
and relays the message to all. It is important to notice here that this is a
language abuse: in fact, the process relays a copy of the message (and not
the message itself).

Our algorithm is said to be lazy in the sense that it only retransmits a
message if the original sender has been detected to have crashed.

Correctness. The no creation (resp. validity) property of our reliable broad-
cast algorithm follows from no creation (resp. validity) property of the under-
lying best effort broadcast primitive. The no duplication property of reliable
broadcast follows from our use of a variable delivered that keeps track of the
messages that have been rbDelivered at every process. Agreement follows here
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Algorithm 3.2 Lazy reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
delivered := ∅;
correct := Π;
∀pi∈Π : from[pi] := ∅;

upon event 〈 rbBroadcast, m 〉 do
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 rbDeliver, sm, m 〉;
from[pi] := from[pi] ∪ {[sm, m]}
if pi 6∈ correct then

trigger 〈 bebBroadcast, [Data, sm, m] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \ {pi}
forall [sm, m] ∈ from[pi]: do

trigger 〈 bebBroadcast, [Data, sm, m] 〉;

from the validity property of the underlying best effort broadcast primitive,
from the fact that every process relays every message it rbDelivers when it
suspects the sender, and from the use of a perfect failure detector.

Performance. If the initial sender does not crash, to rbDeliver a message
to all processes, the algorithm requires a single communication step and N
messages. Otherwise, at the worst case, if the processes crash in sequence, N
steps and N2 messages are required to terminate the algorithm.

3.3.3 Fail-Silent Algorithm: Eager reliable Broadcast

In our lazy reliable broadcast algorithm (Algorithm 3.2), we make use of the
completeness property of the failure detector to ensure the broadcast agree-
ment. If the failure detector does not ensure completeness, then the processes
might not be relaying messages that they should be relaying (e.g., messages
broadcast by processes that crashed), and hence might violate agreement. If
the accuracy property of the failure detector is not satisfied, then the pro-
cesses might be relaying messages when it is not really necessary. This wastes
resources but does not impact correctness.
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Algorithm 3.3 Eager reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 rbBroadcast, m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver, self, m 〉;
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
if m 6∈ delivered do

delivered := delivered ∪ {m}
trigger 〈 rbDeliver, sm, m 〉;
trigger 〈 bebBroadcast, [Data, sm, m] 〉;

In fact, we can circumvent the need for a failure detector (completeness)
property as well by adopting a eager scheme: every process that gets a message
relays it immediately. That is, we consider the worst case where the sender
process might have crashed and we relay every message. This relaying phase
is exactly what guarantees the agreement property of reliable broadcast.

Algorithm 3.3 is in this sense eager but asynchronous: it makes use only of
the best-effort primitive described in Section 3.2. In Figure 3.2a we illustrate
how the algorithm ensures agreement event if the sender crashes: process p1

crashes and its message is not bebDelivered by p3 and p4. However, since
p2 retransmits the message (bebBroadcasts it), the remaining processes also
bebDeliver it and then rbDeliver it. In our first algorithm (the lazy one), p2

will be relaying the message only after it has detected the crash of p1.

Correctness. All properties, except agreement, are ensured as in the lazy re-
liable broadcast algorithm. The agreement property follows from the validity
property of the underlying best effort broadcast primitive and from the fact
that every process relays every message it rbDelivers.

Performance. In the best case, to rbDeliver a message to all processes, the
algorithm requires a single communication step and N 2 messages. In the
worst case, if processes crash in sequence, N steps and N 2 messages are
required to terminate the algorithm.
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Module:

Name: UniformReliableBroadcast (urb).

Events:

〈 urbBroadcast, m 〉, 〈 urbDeliver, src, m 〉, with the same meaning and
interface as in regular reliable broadcast.

Properties:

RB1-RB3: Same as in regular reliable broadcast.

URB4: Uniform Agreement: If a message m is delivered by some process
pi (whether correct or faulty), then m is also eventually delivered by every
other correct process pj .

Module 3.3 Interface and properties of uniform reliable broadcast.

3.4 Uniform Reliable Broadcast

With regular reliable broadcast, the semantics just require correct processes
to deliver the same information, regardless of what messages have been deliv-
ered by faulty processes. The uniform definition is stronger in the sense that
it guarantees that the set of messages delivered by faulty processes is always
a sub-set of the messages delivered by correct processes.

3.4.1 Specification

Uniform reliable broadcast differs from reliable broadcast by the formulation
of its agreement property. The specification is given in Module 3.3.

Uniformity is typically important if processes might interact with the
external world, e.g., print something on a screen or trigger the delivery of
money through an ATM. In this case, the fact that a process has delivered
a message is important, even if the process has crashed afterwards. This is
because the process could have communicated with the external world after
having delivered the message. The processes that remain alive in the system
should also be aware of that message having been delivered.

Figure 3.2b shows why our reliable broadcast algorithm does not ensure
uniformity. Both process p1 and p2 rbDeliver the message as soon as they
bebDeliver it, but crash before relaying the message to the remaining pro-
cesses. Still, processes p3 and p4 are consistent among themselves (none of
them have rbDelivered the message).

3.4.2 Fail-Stop Algorithm: All Ack URB

Basically, our lazy reliable broadcast algorithm does not ensure uniform
agreement because a process may rbDeliver a message and then crash: even
if it has relayed its message to all (through a bebBroadcast primitive), the
message might not reach any of the remaining processes. Note that even if we
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rbBroadcast

rbDeliver

rbDeliver

rbDeliver

rbDeliver

(a)

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

(b)

Figure 3.2. Sample executions of eager reliable broadcast.

considered the same algorithm and replaced the best-effort broadcast with
a reliable broadcast, we would still not implement a uniform broadcast ab-
straction. This is because a process delivers a message before relaying it to
all.

Algorithm 3.4 implements the uniform version of reliable broadcast. Basi-
cally, in this algorithm, a process only delivers a message when it knows that
the message has been seen by all correct processes. All processes relay the
message once they have seen it. Each process keeps a record of which pro-
cesses have already retransmitted a given message. When all correct processes
retransmitted the message, all correct processes are guaranteed to deliver the
message, as illustrated in Figure 3.3.

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

rbDeliver

Figure 3.3. Sample execution of uniform reliable broadcast.

Correctness. As before, except for uniform agreement, all properties are triv-
ially derived from the properties of the best-effort broadcast. Uniform agree-
ment is ensured by having each process wait to urbDeliver a message until
all correct processes have bebDelivered the message. We rely here on the use
of a perfect failure detector.
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Algorithm 3.4 All ack uniform reliable broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

function canDeliver(m) returns boolean is
return (correct ⊂ ackm) ∧ (m 6∈ delivered);

upon event 〈 Init 〉 do
delivered := forward := ∅;
correct := Π;
ackm := ∅, ∀m;

upon event 〈 urbBroadcast, m 〉 do
forward := forward ∪ {m}
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
ackm := ackm ∪ {pi}
if m 6∈ forward do

forward := forward ∪ {m};
trigger 〈 bebBroadcast, [Data, sm, m] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon (canDeliver(m)) do
delivered := delivered ∪ {m};
trigger 〈 urbDeliver, sm, m 〉;

Performance. In the best case the algorithm requires two communication
steps to deliver the message to all processes. In the worst case, if processes
crash in sequence, N + 1 steps are required to terminate the algorithm. The
algorithm exchanges N2 messages in each step. Therefore, uniform reliable
broadcast requires one more step to deliver the messages than its regular
counterpart.

3.4.3 Fail-Silent Algorithm: Majority Ack URB

The uniform algorithm of Section 3.4.2 (i.e., Algorithm 3.4) is not correct if
the failure detector is not perfect. Uniform agreement would be violated if
accuracy is not satisfied and validity would be violated if completeness is not
satisfied.

We give in the following a uniform reliable broadcast algorithm that does
not rely on a perfect failure detector but assumes a majority of correct pro-

58



Algorithm 3.5 Majority ack uniform reliable broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).

function canDeliver(m) returns boolean is
return (|ackm| > N/2) ∧ (m 6∈ delivered);

// Except for the function above, same as Algorithm 3.4.

cesses. In the example above of Figure 3.2, this means that at most one
process can crash in any given execution. Algorithm 3.5 is similar to the pre-
vious uniform reliable broadcast algorithm except that processes do not wait
until all correct processes have seen a message (bebDelivered a copy of the
message), but until a majority has seen the message.

Correctness. The no-creation property follows from the no-creation property
of best-effort broadcast. The no-duplication property follows from the use
of the variable delivered which prevents processes from delivering twice the
same message. To discuss the agreement and validity properties, we first ar-
gue that: if a correct process bebDelivers any message m, then pi urbDelivers
m. Indeed, if pi is correct, and given that it bebBroadcasts m, every correct
process bebDelivers and hence bebBroadcasts m. As we assume a correct
majority, then pi bebDelivers m from a majority of processes and urbDeliv-
ers m. Consider now the validity property: if a process pi urbBroadcasts a
message m, then pi bebBroadcasts and hence bebDelivers m: by the argu-
ment above, it eventually urbDelivers m. Consider now agreement and let
pj be some process that urbDelivers m. To do so, pj must have bebDeliv-
ered m from a majority of correct processes. By the assumption of a correct
majority, at least one correct must have bebBroadcast m. Therefore, all cor-
rect processes have bebDelivered m, which implies that all correct processes
eventually urbDeliver m.

Performance. Similar to the algorithm of Section 3.2.

3.5 Logged Best-Effort Broadcast

We now present an abstraction that captures the notion of reliable broad-
cast in the settings where processes can crash and recover. We present the
specification and an algorithm to implement it.

Specification. We have called this abstraction Logged Best-Effort Multi-
cast, to emphasize that fact that it relies on the fact that “delivery” of mes-
sages is performed by logging messages in a local log. The specification is
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Module:

Name: Logged Best Effort Broadcast (log-beb).

Events:

Request: 〈 log-bebBroadcast, m 〉: Used to broadcast message m to all
processes.

Indication: 〈 log-bebDeliver, delivered 〉: Used to notify the upper level
of potential updates to the delivered log.

Properties:

LBEB1: Best-effort validity: If pj is correct and pi does not crash, then
every message broadcast by pi is eventually logged by pj .

LBEB2: No duplication: No message is logged more than once.

LBEB3: No creation: If a message m is logged by some process pj , then
m was previously broadcast by some process pi.

Module 3.4 Interface and properties of logged best-effort broadcast.

given in Module 3.4. The key difference to the Best-Effort abstraction de-
fined for the crash no-recovery setting is in the interface between modules.
Instead of simply triggering an event to “deliver” a message, this abstrac-
tion relies of storing the message on a local log, which can later be read by
the layer above (that layer is notified about changes in the log by delivery
events). Note that the validity, no duplication and no creation properties are
redefined in term of log operations.

Fail-Recovery Algorithm: Basic Multicast with Log. We now present
an algorithm that implements logged best-effort broadcast. Algorithm 3.7 is
called basic multicast with log and has many similarities, in its structure, with
Algorithm 3.1. The main differences are as follows. The algorithm maintains
a log of all delivered messages. When a new message is received for the first
time, it is appended to the log and the upper layer is notified that the log has
changed. If the process crashes and later recovers, the upper layer is notified
(as it may have missed some notification triggered just before the crash).

Correctness. The properties are derived from the properties of stubborn
links. No creation is derived from PL2 and PL3. Validity is a liveness prop-
erty that is derived from PL1 and from the fact that the sender sends the
message to every other process in the system. No duplication is derived from
the fact that a process logs all messages that it delivers and that this log is
checked before accepting a new message.

Performance. The algorithm requires a single communication step and ex-
changes at least N messages (note that stubborn channels may retransmit
the same message several times). Additionally, the algorithms requires a log
operation for each delivered message.
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Algorithm 3.6 Basic Multicast with Log.

Implements:
Logged Best Effort Broadcast (log-beb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;
store (delivered);

upon event 〈 Recovery 〉 do
retrieve (delivered)
trigger 〈 log-bebDeliver, delivered 〉;

upon event 〈 log-bebBroadcast, m 〉 do
forall pi ∈ Π do // Π is the set of all system processes

trigger 〈 sp2pSend, pi, m 〉;

upon event 〈 sp2pDeliver, pi, m 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m};
store (delivered);
trigger 〈 log-bebDeliver, delivered 〉;

3.6 Logged Uniform Broadcast

In a similar manner to the crash no-recovery case, it is possible to define
both regular and uniform variants of reliable broadcast for the fail-recovery
setting. We now describe the uniform variant.

3.6.1 Specification

We define in Module 3.5 a logged variant of the uniform reliable broadcast
for the fail-recovery model. In this variant, if a process logs a message (either
correct or not), all correct processes eventually log that message. Note that,
naturally, the interface is similar to that of logged reliable broadcast.

3.6.2 Fail-Recovery Algorithm: Uniform Multicast with Log

The Algorithm 3.7 implements logged uniform broadcast. The algorithm uses
three variables: todeliver, delivered, and ackm . The todeliver set is used to
collect all messages that have been broadcast. The delivered set collects all
messages that have been delivered. These two sets are maintained in stable
storage and the last one is exposed to the upper layer: in fact, in this case
to “deliver” a message consists in logging a message in the delivered set.
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Module:

Name: Logged Uniform Reliable Broadcast (log-urb).

Events:

〈 log-urbBroadcast, m 〉, 〈 log-urbDeliver, delivered 〉 with the same mean-
ing and interface as in logged best-effort broadcast.

Properties:

LURB1: Validity: If pi and pj are correct, then every message broadcast
by pi is eventually logged by pj .

LURB2: No duplication: No message is logged more than once.

LURB3: No creation: If a message m is logged by some process pj , then
m was previously broadcast by some process pi.

LURB4: Strongly Uniform Agreement: If a message m is logged by some
process, then m is eventually logged by every correct process.

Module 3.5 Interface and properties of logged uniform reliable broadcast.

Finally ackm sets collect acknowledgements fro message m (logically, there is
a separate set for each message): a process only acknowledges the reception
of a message after logging the message in stable storage. This ensures that
the message will be preserved across crashes and recoveries. The ack set is
not logged, it can be reconstructed upon recovery.

The algorithm exchanges two types of messages: data messages and ac-
knowledgements. The logged best-effort broadcast of Section 3.5 is used to
disseminate both types of messages. When a message is received from the first
time it is logged in the todeliver set. Messages in this set are forwarded to
all other processes to ensure delivery in the case the sender fails (the task of
forwarding the messages is re-initiated upon recovery). Message are only ap-
pended to the delivered log when they have been acknowledged by a majority
of correct processes.

3.7 Probabilistic Broadcast

This section considers probabilistic broadcast algorithms, i.e., algorithms that
do not provide deterministic provision of broadcast guarantees but, instead,
only make statistical claims about such guarantees, for instance, by ensuring
that the guarantees are provided successfully 99% of the times.

Of course, this approach can only be applied to applications that do not
require full reliability. On the other hand, as it will be seen, it is often possible
to build probabilistic systems with good scalability properties.
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Algorithm 3.7 Uniform Multicast with Log.

Implements:
Logged Uniform Reliable Broadcast (log-urb).

Uses:
StubbornPointToPointLink (sp2p).
Logged Best-Effort Broadcast (log-beb).

upon event 〈 Init 〉 do
ackm := ∅, ∀m;
todeliver := ∅; delivered := ∅;
store (todeliver, delivered);

upon event 〈 Recovery 〉 do
ackm := ∅, ∀m;
retrieve (todeliver, delivered);
trigger 〈 log-urbDeliver, delivered 〉;
forall m ∈ todeliver do

trigger 〈 log-bebBroadcast, [Data, m] 〉;

upon event 〈 log-urbBroadcast, m 〉 do
todeliver := todeliver ∪ {m};
trigger 〈 log-bebBroadcast, [Data, m] 〉;

upon event 〈 log-bebDeliver, delset 〉 do
forall packet ∈ delset do

// packet = [Data, m] ∨ packet = [Ack, j, m]
if m 6∈ todeliver then

todeliver := todeliver ∪ {m};
trigger 〈 log-bebBroadcast, [Data, m] 〉;

if [Ack, self, m] 6∈ ackm do
ackm := ackm ∪ { [Ack, self, m] };
trigger 〈 log-bebBroadcast, [Ack, self, m] 〉;

if packet = [Ack, j, m] ∧ packet 6∈ ackm do
ackm := ackm ∪ { [Ack, j, m] };
if | ackm | > N/2 then

delivered := delivered ∪ {m};
store (todeliver, delivered);
trigger 〈 log-urbDeliver, delivered 〉;

3.7.1 Limitation of Reliable Broadcast

As we have seen throughout this chapter, in order to ensure the reliability
of broadcast in the presence of faulty processes (and/or links with omission
failures), one needs to collect some form of acknowledgments. However, given
limited bandwidth, memory and processor resources, there will always be a
limit to the number of acknowledgments that each process is able to collect
and compute in due time. If the group of processes becomes very large (say
thousand or even millions of members in the group), a process collecting
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(a) (b)

Figure 3.4. Ack implosion and ack tree.

acknowledgments becomes overwhelmed by that task. This phenomena is
known as the ack implosion problem (see Fig 3.4a).

There are several ways of mitigating the ack implosion problem. One way
is to use some form of hierarchical scheme to collect acknowledgments, for
instance, arranging the processes in a binary tree, as illustrated in Fig 3.4b.
Hierarchies can reduce the load of each process but increase the latency in
the task of collecting acknowledgments. Additionally, hierarchies need to be
reconfigured when faults occur (which may not be a trivial task). Further-
more, even with this sort of hierarchies, the obligation to receive, directly or
indirectly, an acknowledgment from every other process remains a fundamen-
tal scalability problem of reliable broadcast. In the next section we discuss
how probabilistic approaches can circumvent this limitation.

3.7.2 Epidemic Dissemination

Nature gives us several examples of how a probabilistic approach can achieve
a fast and efficient broadcast primitive. Consider how epidemics are spread
among a population: initially, a single individual is infected; this individual
in turn will infect some other individuals; after some period, the whole pop-
ulation is infected. Rumor spreading is based exactly on the same sort of
mechanism.

A number of broadcast algorithms have been designed based on this prin-
ciple and, not surprisingly, these are often called epidemic or rumor monger-
ing algorithms.

Before giving more details on these algorithms, we first define the abstrac-
tion that these algorithms implement. Obviously, this abstraction is not the
reliable broadcast that we have introduced earlier: instead, it corresponds to
a probabilistic variant.

3.7.3 Specification

Probabilistic broadcast is characterized by the properties PB1-3 depicted in
Module 3.6.
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Module:

Name: Probabilistic Broadcast (pb).

Events:

Request: 〈 pbBroadcast, m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 pbDeliver, src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

PB1: Probabilistic validity: There is a given probability such that for any
pi and pj that are correct, every message broadcast by pi is eventually
delivered by pj with this probability.

PB2: No duplication: No message is delivered more than once.

PB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.6 Interface and properties of probabilistic broadcast.

Note that it is assumed that broadcast messages are implicitly addressed
to all processes in the system, i.e., the goal of the sender is to have its message
delivered at all processes.

The reader may find similarities between the specification of probabilistic
broadcast and the specification of best-effort broadcast presented in Sec-
tion 3.2. In fact, both are probabilistic approaches. However, in best-effort
broadcast the probability of delivery depends directly on the reliability of the
processes: it is in this sense hidden under the probability of process failures.
In probabilistic broadcast, it becomes a first class citizen of the specification.
The corresponding algorithms are devised with inherent redundancy to mask
process faults and ensure delivery with the desired probability.

3.7.4 Algorithm: Eager Probabilistic Broadcast

Algorithm 3.8 implements probabilistic broadcast. The sender selects k pro-
cesses at random and sends them the message. In turn, each of these pro-
cesses selects another k processes at random and forwards the message to
those processes. Note that in this algorithm, some or all of these processes
may be exactly the same processes already selected by the initial sender.

A step consisting of receiving and gossiping a message is called a round.
The algorithm performs a maximum number of rounds r for each message.

The reader should observe here that k, also called the fanout, is a funda-
mental parameter of the algorithm. Its choice directly impacts the probability
of reliable message delivery guaranteed by the algorithm. A higher value of
k will not only increase the probability of having all the population infected
but also will decrease the number of rounds required to have all the pop-
ulation infected. Note also that the algorithm induces a significant amount
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Algorithm 3.8 Eager Probabilistic Broadcast.

Implements:
ProbabilisticBroadcast (pb).

Uses:
unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
delivered := ∅;

function pick-targets (fanout) returns set of processes do
targets := ∅;
while | targets | < fanout do

candidate := random (Π);
if candidate 6∈ targets ∧ candidate 6= self then

targets := targets ∪ { candidate };
return targets;

procedure gossip (msg) do
forall t ∈ pick-targets (fanout) do

trigger 〈 up2pSend, t, msg 〉;

upon event 〈 pbBroadcast, m 〉 do
gossip ([Gossip, sm, m, maxrounds−1]);

upon event 〈 up2pDeliver, pi, [Gossip, sm, m, r] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 pbDeliver, sm, m 〉;

if r > 0 then gossip ([Gossip, sm, m, r − 1]);

of redundancy in the message exchanges: any given process may receive the
same message more than once. The execution of the algorithm is for instance
illustrated in Figure 3.5 for a configuarion with a fanout of 3.

The higher the fanout, the higher the load that is imposed on each pro-
cesses and the amount of redundant information exchanged in the network.
Therefore, to select the appropriate k is of particular importance. The reader
should also note that there are runs of the algorithm where a transmitted
message may not be delivered to all correct processes. For instance, all the k
processes that receive the message directly from the sender may select exactly
the same k processes to forward the message to. In such case, only these k
processes will receive the message. This translates into the very fact that the
probability of reliable delivery is not 100%.

It can be shown that, to ensure a high probability of delivering a message
to all correct processes, the fanout is in the order of log N , where N is the
number of nodes in the system. Naturally, the exact value of the fanout and
maximum number of rounds to achieve a given probability of success depends
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Figure 3.5. Gossip Dissemination.

not only on the system size but also on the probability of link and process
failures.

3.7.5 Algorithm: Lazy Probabilistic Broadcast

The algorithm described above uses an epidemic approach to the dissemi-
nation of messages. However, and as we have discussed, a disadvantage of
this approach is that it consumes a non-negligible amount of resources with
redundant transmissions. A way to overcome this limitation is to rely on a
basic and efficient unreliable multicast primitive to disseminate the messages
first, and then use a probabilistic approach just as a backup to recover from
message omissions.

A simplified version of an algorithm based on this idea is given in Algo-
rithm 3.9. The algorithm assumes that each sender is transmitting a stream
of numbered messages. Message omissions are detected based on gaps on the
sequence numbers of received messages. Each message is disseminated using
the unreliable broadcast primitive. For each message, some randomly selected
receivers are chosen to store a copy of the message for future retransmission
(they store the message for some maximum amount of time). The purpose
of this approach is to distribute, among all processes, the load of storing
messages for future retransmission.

Omissions can be detected using the sequence numbers of messages. A
process p detects that it has missed a message from a process q when p
receives a message from q if a higher timestamp than what p was expecting
from q. When a process detects an omission, it uses the gossip algorithm to
disseminate a retransmission request. If the request is received by one of the
processes that has stored a copy of the message, this process will retransmit
the message. Note that, in this case, the gossip algorithm does not need to
be configured to ensure that the retransmission request reaches all processes:
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Algorithm 3.9 Lazy Probabilistic Broadcast.

Implements:
ProbabilisticBroadcast (pb).

Uses:
BestEffortBroadcast (beb). unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
∀pi∈Π delivered[pi] := 0; lsn := 0; pending := ∅; stored := ∅;

procedure deliver-pending (s) do
while ∃x : [Data, s, x, snx] in pending ∧ snx = delivered[s]+1 do

delivered[s] := delivered[s]+1; pending := pending \ { [Data, s, x,snx]};
trigger 〈 pbDeliver, s, x 〉;

// Procedure gossip same as in Algorithm 3.8

upon event 〈 pbBroadcast, m 〉 do
lsn := lsn+1;
trigger 〈 bebBroadcast, [Data, self, m, lsn] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m, snm] 〉 do
if random > store-threshold then stored := stored ∪ { [Data, sm, m,snm] };
if snm = delivered[sm]+1 then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver, sm, m 〉;

else
pending := pending ∪ { [Data, sm, m, snm] };
forall seqnb ∈ [sm − 1, delivered[sm]+1] do

gossip ([Request, self, sm, seqnb, maxrounds−1]);

upon event 〈 up2pDeliver, pj , [Request, pi, sm, snm, r] 〉 do
if [Data, sm, m, snm] ∈ stored then

trigger 〈 upp2pSend, pi, [Data, sm, m, snm] 〉;
else if r > 0 then gossip ([Request, pi, sm, snm, r − 1]);

upon event 〈 up2pDeliver, pj , [Data, sm, m, snm] 〉 do
if snm = delivered[sm]+1 then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver, sm, m 〉;
deliver-pending (sm);

else
pending := pending ∪ { [Data, sm, m, snm] };

it is enough that it reaches, with high probability, one of the processes that
has stored a copy of the missing message.

It is expected that, in most cases, the retransmission request message
is much smaller that the original data message. Therefore this algorithm
is much more resource effective than the pure earlier probabilistic broadcast
algorithm described above. On the other hand, it does require the availability
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of some unreliable broadcast primitive and this primitive may not be available
in settings that include a very large number of processes spread all over the
Internet.

Practical algorithms based on this principle make a significant effort to
optimize the number and the location of nodes that store copies of each
broadcast message. Not surprisingly, best results can be obtained if the phys-
ical network topology is taken into account: for instance, an omission in a
link connecting a local area network (LAN) to the rest of the system affects
all processes in that LAN. Thus, it is desirable to have a copy of the message
in each LAN (to recover from local omissions) and a copy outside the LAN
(to recover from the omission in the link to the LAN). Similarly, the search
procedure, instead of being completely random, may search first for a copy
in the local LAN and only after on more distant processes.
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Exercises

Exercise 3.1 (*) Consider a process p that rbBroadcasts a message m in
our lazy reliable broadcast implementation (Algorithm 3.2). Can p rbDeliver
m before bebBroadcasting it.

Exercise 3.2 (**) Modify the lazy reliable broadcast algorithm (Algorithm 3.2)
to reduce the number of messages sent in case of failures.

Exercise 3.3 (**) All reliable broadcast (deterministic and fail-stop) algo-
rithms we presented continuously fill their different buffers without empty-
ing them. Modify them to remove unnecessary messages from the following
buffers:

1. from[pi] in the lazy reliable broadcast algorithm
2. delivered in all reliable broadcast algorithms
3. forward in the uniform reliable broadcast algorithm

Exercise 3.4 (*) What do we gain if we replace bebBroadcast with rbBroad-
cast in our uniform reliable broadcast algorithm?

Exercise 3.5 (*) Consider our reliable broadcast and uniform broadcast al-
gorithms that use a perfect failure detector. What happens if each of the fol-
lowing properties of the failure detector are violated:

1. accuracy
2. completeness

Exercise 3.6 (**) Our uniform reliable broadcast algorithm using a perfect
failure detector can be viewed as an extension of our eager reliable broadcast
algorithm. Would we gain anything by devising a uniform reliable broadcast
algorithm that would be an extension of our lazy reliable algorithm, i.e., can
we have the processes not relay messages unless they suspect the sender?

Exercise 3.7 (**) Can we devise a uniform reliable broadcast with an even-
tually perfect failure detector but without the assumption of a correct majority
of processes?

Exercise 3.8 (**) The specification of reliable broadcast in a fail-recovery
model given in Module ?? does only restrict the behavior of processes that do
never crash, as far as validity is concerned.

How can we implement a reliable broadcast abstraction ensuring the fol-
lowing stronger validity property?

• If a correct process broadcasts a message m, then it eventually delivers m.
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Algorithm 3.10 Simple optimization of lazy reliable broadcast.

upon event 〈 rbBroadcast, m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver, self, m 〉;
trigger 〈 bebBroadcast, [Data, self, m] 〉;

Exercise 3.9 (**) Consider Algorithm ?? implementing a reliable broadcast
in a fail-recovery model. Can we still rely only on an underlying stubborn-
broadcast abstraction, yet optimize the algorithm, if the aim is to ensure the
following weaker agreement property than the one of Module ??.

• If a process pi delivers a message m and pi does not crash, then any process
pj that does not crash delivers m.

Exercise 3.10 (**) Our probabilistic broadcast algorithm considers that the
connectivity is the same among every pair of processes. In practice, it may
happen that some nodes are at shorter distance and connected by more reliable
links than others. For instance, the underlying network topology could be a
set of local-area networks connected by long-haul links. Propose methods to
exploit the topology in gossip algorithms.

Exercise 3.11 (*) Could the notion of “epoch” be removed from our flow-
control algorithm (Algorithm ??)?

Corrections

Solution 3.1 The answer is yes. The process anyway rbDelivers the messages
as soon as it bebDelivers it. This does not add any guarantee with respect
to rbDelivering the message before bebBroadcasting it. The event that we
would need to change to Algorithm 3.2 would simply be the following.

2

Solution 3.2 In our lazy reliable broadcast algorithm, if a process p rbBroad-
casts a message and then crashes, N 2 messages are relayed by the remaining
processes to retransmit the message of process p. This is because a process
that bebDelivers the message of p does not know whether the other processes
have bebDelivered this message or not. However, it would be sufficient in this
case if only one process, for example process q, relays the message of p.

In practice one specific process, call it leader process pl, might be more
likely to bebDeliver messages: the links to and from this process are fast and
very reliable, the process runs on a reliable computer, etc. A process pi would
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forward its messages to the leader pl, which coordinates the broadcast to ev-
ery other process. If the leader is correct, everyone eventually bebDelivers
and rbDelivers every message. Otherwise, we revert to the previous algo-
rithm, and every process is responsible for bebBroadcasting the messages
that it bebDelivers. 2

Solution 3.3 From from[pi] in the lazy reliable broadcast algorithm: The
array from is used exclusively to store messages that are retransmitted in
the case of a failure. Therefore they can be removed as soon as they have
been retransmitted. If pi is correct, they will eventually be bebDelivered. If
pi is faulty, it does not matter if the other processes do not bebDeliver them.

From delivered in all reliable broadcast algorithms: Messages cannot be
removed. If a process crashes and its messages are retransmitted by two
different processes, then a process might rbDeliver the same message twice
if it empties the deliver buffer in the meantime. This would violate the no
duplication safety property.

From forward in the uniform reliable broadcast algorithm: Messages can
actually be removed as soon as they have been urbDelivered. 2

Solution 3.4 Nothing, because the uniform reliable broadcast algorithm does
not assume and hence does not use the guarantees provided by the reliable
broadcast algorithm.

Consider the following scenario which illustrates the difference between
using bebBroadcast and using rbBroadcast. A process p broadcasts a mes-
sage and crashes. Consider the case where only one correct process q receives
the message (bebBroadcast). With rbBroadcast, all correct processes would
deliver the message. In the urbBroadcast algorithm, q adds the message in
forward and then bebBroadcasts it. As q is correct, all correct processes will
deliver it, and thus, we have at least the same guarantee as with rbBroadcast.
2

Solution 3.5 If the accuracy, i.e. the safety property, of the failure detector
is violated, the safety property(ies) of the problem considered might be vio-
lated. In the case of (uniform) reliable broadcast, the agreement property can
be violated. Consider our uniform reliable broadcast algorithm using a per-
fect failure detector and a system of three processes: p1, p2 and p3. Assume
furthermore that p1 urbBroadcasts a message m. If strong completeness is
not satisfied, then p1 might never urbDeliver m if any of p2 or p3 crash and p1

never suspects them or bebDelivers m from them: p1 would wait indefinitely
for them to relay the message.

If the completeness, i.e. the liveness property of the failure detector, is
violated, the liveness property(ies) of the problem considered might be vio-
lated. In the case of (uniform) reliable broadcast, the validity property can be
violated. Assume now that strong accuracy is violated and p1 falsely suspects
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p2 and p3 to have crashed. Process p1 eventually urbDelivers m. Assume that
p1 crashes afterwards. It might be the case that p2 and p3 never bebDelivered
m and have no way of knowing about m and urbDeliver it: uniform agree-
ment would be violated. 2

Solution 3.6 The advantage of the lazy scheme is that processes do not need
to relay messages to ensure agreement if they do not suspect the sender to
have crashed. In this failure-free scenario, only N − 1 messages are needed
for all the processes to deliver a message. In the case of uniform reliable
broadcast (without a majority), a process can only deliver a message when it
knows that every correct process has seen that message. Hence, every process
should somehow convey that fact, i.e., that it has seen the message. An lazy
scheme would be of no benefit here. 2

Solution 3.7 No. We explain why for the case of a system of four processes
{p1, p2, p3, p4} using what is called a partitioning argument. The fact that the
correct majority assumption does not hold means that 2 out of the 4 pro-
cesses may fail. Consider an execution where process p1 broadcasts a message
m and assume that p3 and p4 crash in that execution without receiving any
message neither from p1 nor from p2. By the validity property of uniform
reliable broadcast, there must be a time t at which p1 urbDelivers message
m. Consider now an execution that is similar to this one except that p1 and
p2 crash right after time t whereas p3 and p4 are correct: say they have been
falsely suspected, which is possible with an eventually perfect failure detec-
tor. In this execution, p1 has urbDelivered a message m whereas p3 and p4

have no way of knowing about that message m and eventually urbDelivering
it: agreement is violated. 2

Solution 3.8 Clearly, this property can only be achieved if the act of broad-
casting a message is defined as the storing of that message into some stable
storage variable. The property can then be achieved by a slight modification
to Algorithm ??: upon recovery, any process delivers the messages it has
broadcast but not delivered yet. 2

Solution 3.9 No. To ensure the following property:

• If a process pi delivers a message m and pi does not crash, then any process
pj that does not crash delivers m.

Without a perfect failure detector, a process has no choice then to forward
any message it delivers. Given than the forwarding can only be achieved with
the stubborn-broadcast primitive, the algorithm cannot be optimized any
further.

2
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Solution 3.10 One approach consists in assigning weights to link between
processes. Links reflect the reliability of the links. We could easily adapt our
algorithm to avoid redundant transmission by gossiping though more reliable
links with lower probability. An alternative approach consists in organizing
the nodes in a hierarchy that reflects the network topology in order to reduce
the traffic across domain boundaries. 2

Solution 3.11 No. Without the notion of epoch, minb will always decrease,
even if more resources would be available in the system. The introduction
of the epoch ensures that new up-to-date values of minb are not mixed will
outdated values being gossiped in the system. 2
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Historical Notes

• The requirements for a reliable broadcast communication abstraction seem
to have originated from the domain of aircraft control and the Sift sys-
tem (Wensley 1978). Algorithms ensuring causal delivery of messages came
out of the seminal paper of Lamport (Lamport 1978).

• Later on, several distributed computing libraries offered communication
primitives with reliable or causal order broadcast semantics. These include
the V system (Cherriton and Zwaenepoel 1985), Delta-4 (Powell, Barret,
Bonn, Chereque, Seaton, and Verissimo 1994), Isis and Horus (Birman and
Joseph 1987a; van Renesse and Maffeis 1996).

• Algorithms for reliable broadcast message delivery were presented in a
very comprehensive way in (Hadzilacos and Toueg 1994). The problem
of the uniformity of a broadcast was discussed in (Hadzilacos 1984) and
then (Neiger and Toueg 1993).

• The idea of applying epidemic dissemination to implement probabilistically
reliable broadcast algorithms was explored in (Golding and Long 1992; Bir-
man, Hayden, Ozkasap, Xiao, Budiu, and Minsky 1999; Kermarrec, Mas-
soulie, and Ganesh 2000; Eugster, Handurukande, Guerraoui, Kermarrec,
and Kouznetsov 2001; Kouznetsov, Guerraoui, Handurukande, and Ker-
marrec 2001; Xiao, Birman, and van Renesse 2002).

• The exploitation of topology features in probabilistic algorithms was pro-
posed in (Lin and Marzullo 1999) through an algorithm that assigns weights
to link between processes. A similar idea, but using a hierarchy instead of
weight was proposed in (Gupta, Kermarrec, and Ganesh 2002) to reduce
the traffic across domain boundaries.

• The first probabilistic broadcast algorithm that did not depend of any
global membership was given in (Eugster, Handurukande, Guerraoui, Ker-
marrec, and Kouznetsov 2001) and the notion of message ages was intro-
duced in (Kouznetsov, Guerraoui, Handurukande, and Kermarrec 2001) for
purging messages and ensuring the scalability of process buffers.

• The idea of flow control in probabilistic broadcast was developed in (Ro-
drigues, Handurukande, Pereira, Guerraoui, and Kermarrec 2002). The
same paper also introduced a decentralized techniques to control message
epochs.
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