A Suite of Database Replication Protocols based on
Group Communication Primitives *

Bettina Kemme

Gustavo Alonso

Information and Communication Systems Research Group

Institute of Information Systems, Swiss Federal Institute of Technology (ETH)

ETH Zentrum,

CH-8092 Ziirich

E-mail: {kemme,alonso}@inf.ethz.ch

Abstract

This paper proposes a family of replication proto-
cols based on group communication in order to address
some of the concerns expressed by database designers
regarding existing replication solutions. Due to these
concerns, current database systems allow inconsisten-
cies and often resort to centralized approaches, thereby
reducing some of the key advantages provided by repli-
cation. The protocols presented in this paper take ad-
vantage of the semantics of group communication and
use relazed isolation guarantees to eliminate the pos-
sibility of deadlocks, reduce the message overhead, and
increase performance. A simulation study shows the
feasibility of the approach and the flexibility with which
different types of bottlenecks can be circumuvented.

1 Introduction

Replication is often seen as a mechanism to increase
availability and performance in distributed databases.
Most of the work done in this area, which we will
refer to as traditional replication protocols, is on syn-
chronous and update everywhere protocols based on
1-copy-serializability [4], whereby an object must ap-
pear as one logical copy and the execution of concur-
rent transactions is coordinated so that it is equivalent
to a serial execution over the logical copy. Unfortu-
nately, very few of the ideas proposed along these lines
are currently used in commercial products. There is a

*Part of this work has been funded by ETH Ziirich within
the DRAGON Research Project (Reg-Nr. 41-2642.5)

TCopyright 1998 IEEE. Published in the Proceedings of
ICDCS’98, May 1998 Amsterdam, The Netherlands. Personal
use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis-
tribution to servers or lists, or to reuse any copyrighted com-
ponent of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE
Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,
NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

strong belief among database designers that such so-
lutions are not feasible due to performance and scal-
ability problems: the probability of deadlocks is di-
rectly proportional to the third power of the number
of nodes in the system, serializability is often consid-
ered too restrictive even in a centralized database, and
the message and logging overhead is extremely high,
leading to resource contention and long transaction re-
sponse times [8]. These considerations have lead cur-
rent products to use asynchronous and primary copy
replication instead [7, 14]. Asynchronous protocols
propagate updates only after the transaction has com-
mitted, which decreases the response time but intro-
duces data inconsistencies. Primary copy approaches
centralize updates in a single copy, which eliminates
concurrent updates but introduces a single point of
failure. While this approach may be criticized, some
of the arguments against traditional research solutions
are justified, especially from the point of view of com-
mercial products where performance often takes prece-
dence over any other consideration.

In view of the gap between theory and practice,
the question that needs to be addressed is whether it
is possible to design synchronous, update everywhere
protocols that do not suffer from the drawbacks out-
lined above. We believe that the answer lies in a
tighter integration between transaction management
and the underlying communication system. Follow-
ing some initial work in this direction [1, 3, 15, 17],
the idea is to exploit group communication [6] to push
down in the software hierarchy the more basic func-
tions, thereby avoiding some of the performance limi-
tations of current solutions. In addition, the proposed
protocols also take into consideration the fact that
databases usually provide a range of consistency lev-
els, commonly much less restrictive than those consid-
ered in traditional approaches. The family of protocols
presented can thus be easily integrated in current sys-



tems, provide reasonable performance, and the same
transactional semantics found in centralized systems.
The paper is organized as follows: Section 2 de-
scribes the system model. Section 3 presents replica-
tion protocols with different isolation levels. Section 4
addresses fault-tolerance. Section 5 presents a perfor-
mance evaluation. Section 6 summarizes the results.

2 Model

A distributed database consists of a number of
nodes, NV, that communicate via message passing, and
a number of objects, X. Objects are accessed by ex-
ecuting transactions. We assume a fully replicated
system, i.e., all nodes have copies of exactly the same
objects. The components of interest in our context are
the communication system, the transaction manager
and the concurrency and replica control.

2.1 Communication Model

Group communication primitives [10, 6] are used
according to the following notation. A node N broad-
casts/sends a message to all nodes of a group. After
the reception of a message at IV, the message is de-
livered when the order is determined and the delivery
guarantees are fulfilled. Of all the possible semantics
of group communication, we are interested in the or-
dering and atomicity of message delivery and group
maintenance. Regarding ordering of messages, we dis-
tinguish a basic service (no ordering guarantees) and
a total order service (same total order at all sites).
In regard to atomicity we consider atomic delivery (a
message is delivered only when there is a guarantee it
will be delivered at all sites) and non-atomic delivery
where we only assume that a message sent between two
correct nodes will eventually be delivered. Note that
our notion of atomicity is related to the “uniformity”
problem in that it encompasses all processes, not only
the correct ones [16]. Failure detection is provided by
the group maintenance services, which will exclude a
failed node from the group. Before a group change
becomes visible to the application (here the database
system), the members of the new group coordinate the
delivery of pending messages from a failed node pro-
viding the required atomicity level. In particular, if a
node might have delivered an atomic message before
its failure, the message must be delivered at all nodes
before the group change becomes active.

From a performance point of view, the different se-
mantics differ in the message overhead and delivery
delays, with basic message order suffering from less
delays than total order and non-atomic delivery re-
quiring less messages than atomic delivery.

2.2 Transaction and Concurrency Models

A transaction T; is a partial order of read r;(X)
and write w;(X) operations. Transactions are exe-
cuted atomically, i.e., a transaction either commits, c;,
or aborts, a;, the results of all its operations [4]. Two
operations conflict if they are from different transac-
tions, access the same object and at least one of them
is a write. In order to guarantee correct executions,
transactions with conflicting operations must be iso-
lated from each other. For this purpose, different lev-
els of isolation are used [9]. The different levels are a
trade-off between correctness and performance in an
attempt to maximize the degree of concurrency by re-
ducing the conflict profile of transactions.

In most systems, locking protocols are used to im-
plement isolation levels. Before accessing an object,
a transaction acquires a read or a write lock on the
object. There may not be two locks for conflicting op-
erations active on an object at the same time. Since
write locks can not be released until commit time for a
variety of reasons (mainly for recovery purposes), the
only possibility to reduce the conflict profile of a trans-
action is to release read locks as early as possible or to
not get read locks at all. Serializability is commonly
implemented using strict 2-phase-locking (2PL): both
read and write locks are kept until the end of the trans-
action (EOT). Cursor stability places a lock on an item
as long as an SQL cursor is positioned on that item,
but the lock is released as soon as the cursor moves on.
This may lead to non-repeatable reads. To avoid lost
updates, read locks are released only if the transaction
does not write to that item. Snapshot isolation elimi-
nates read locks by forcing transactions to “read from
the log”, instead of from the data items themselves.
Hence, conflicts can only be detected between write
operations and some read/write anomalies might oc-
cur. Finally, we also use a hybrid protocolin which 2PL
is used for update transactions while read-only trans-
actions use snapshot isolation. This protocol guaran-
tees serializability but update transactions and queries
must be identified in advance.

2.3 Replica Control Model

For simplicity, we use a version of the all available
copies approach [4]. A transaction T; invoked at a
node N is said to be local to N. For other nodes,
T; is a remote transaction. All read operations of T;
are performed on the local copies of N. The write
operations are deferred until all read operations have
been executed and a description of the set of write
operations, W S;, is bundled into a single message and
broadcast to the group (including the local node).

We exploit the total order provided by the com-



the lock can be granted.

@

4. Upon delivery of W S;, process it in an atomic step:

ignore both the W'S; and a; messages.

The lock manager of each node N coordinates the operation requests of the transactions as follows:
1. A local transaction T; makes a read request r;(X): if there is no write lock on X, then grant the lock, else wait until

2. A local transaction T; makes a write request w;(X): defer the write operation until T; has submitted all operations.
A local transaction T; has submitted all operations: form the write set W.S; and send it using the total order service.

a. Request for each object X where Jw;(X) € W S; a write lock:
i. If there is a granted read lock r;(X) and the write set W S; of T; has not yet been delivered, abort T} and
grant w;(X). If WS; has already been sent, then broadcast a; using the basic service. Later N itself will

ii. If there is another write lock on X or all read locks on X are from transactions whose write sets have already
been delivered, then wait until all other locks are released and the new lock can be granted.
iii. If there is no other lock on X, then grant the lock.
b. If T; is a local transaction, broadcast ¢; using the basic service.
5. Upon delivery of ¢;: wait until all operations of T; have been executed, then commit T; and release all locks.
6. Upon delivery of a;: undo all operations already executed and release all locks (granted and waiting ones).

Figure 1: Replication protocol guaranteeing serializability

munication system in order to decide on the order of
conflicting transactions. This concept of ordering is
at the core of the replication mechanism. Upon deliv-
ery of the write set W.S;, T; will only start the exe-
cution of an operation on an object X after all con-
flicting operations of previous transactions have been
executed. This is done by handling the lock requests
within W S; as a single step before processing the next
write set. This, however, does not imply that transac-
tions are processed sequentially. Non conflicting op-
erations of different transactions can be executed in
parallel. Note that, with this approach, deadlocks
due to write/write conflicts are avoided entirely. Since
the write sets are delivered at all nodes in the same
order, single object deadlocks cannot occur. Further-
more, deadlocks involving two or more objects are also
avoided because the write locks of a transaction are re-
quested within a single step. Thus, one of the main
concerns regarding replication is avoided by bundling
write operations and relying on the communication to
provide some ordering of the locking requests.

3 Database Replication Protocols

In what follows we present three replication proto-
cols designed to avoid two of the drawbacks of syn-
chronous replication. First, they avoid any type of
deadlock as described before. Second, the protocols
provide different levels of isolation to be able to cap-
ture the varying requirements of different applications.

3.1 Serializability (SER)

Figure 1 describes a replicated version of the strict
2PL protocol based on one of the protocols proposed
in [1]. Upon delivery of a write set message W.S (to-
tally ordered by the underlying communication mech-
anism), the transaction manager acquires all the nec-

essary locks (aborting any conflicting readers, see be-
low), thus guaranteeing that conflicting transactions
are executed in the same order at all sites.

To avoid deadlocks in the case of read/write con-
flicts the algorithm aborts read operations when con-
flicting write operations arrive. It is necessary to give
write operations priority over read operations because
read operations are only known locally but write op-
erations are executed globally. In this protocol, the
execution of a transaction T; requires two messages.
One for the write set and a second with the decision
to abort or commit, since only the owner of T; knows
about the read operations of T; and, therefore, about
a possible abort of T;. The “causal and atomic bcast
based protocol” of [17] has similar behavior although
with a more complex message exchange.

3.2 Cursor Stability (CS)

Cursor stability can be used to avoid having to
abort readers when writers arrive by using short read
locks instead of long ones. The algorithm described
in the previous section can be extended in a straight-
forward way to include short read locks. A detailed
description can be found in [11].

3.3 Snapshot Isolation (SI)

Snapshot isolation, as provided in Oracle [13], uses
the notion of object versions to provide individual
snapshots. Older versions of an object X can be re-
constructed by applying undo successively to X until
the requested version is generated. Each object ver-
sion is labeled with the transaction 7' that created the
version. A transaction T reads the version of an object
X labeled with the latest transaction which updated
X and committed before T started. When T wants
to write an object updated after T started, T will be



Otherwise grant the lock.

The lock manager of each node N coordinates the operation requests of the transactions as follows:
1. A local transaction T; makes a read request r;(X): reconstruct the version of X labeled with T; where Tj is the
transaction with the highest T'S; (EOT) so that T'S;(EOT) < T'S;(BOT).
2. Upon delivery of W S;: perform in an atomic step for each object X where Jw;(X) € WS; a version check:
i. If there is no other write lock on X and X is labeled with Tj: if T'S;(EOT) > T'S;(BOT), then abort T;.

ii. If there is a write lock on X or a write lock is waiting, and T; will be the last transaction to modify X before T;:
if T'S;(EOT) > T'S;(BOT), then abort T;. Otherwise wait for the lock.
3. Upon having executed all operations of T;: commit the transaction and release all locks.

Figure 2: Replication protocol guaranteeing snapshot isolation

aborted (first writer wins strategy). Timestamps are
used to identify the begin (BOT) and end (EOT) of
a transaction. To synchronize timestamps in a dis-
tributed environment we use the sequence numbers
of WS messages as a global virtual time. The BOT
timestamp T'S;(BOT) of transaction Tj is set to the
highest sequence number of a message WS; so that
transaction 7} and all transactions whose WS have
lower sequence numbers than WS; have committed.
When a message W S; is delivered T'S;(EOT) is set to
W Si’s sequence number (and therefore is unique).

Figure 2 describes the algorithm providing snap-
shot isolation. Each node can decide locally whether
a transaction will commit or abort. No extra com-
mit/abort message is necessary. Furthermore, read
operations do not need to wait for write operations to
finish and vice versa. Note that while serializability
aborts readers when a conflicting write arrives, snap-
shot isolation aborts one of two concurrent writers.
We can therefore surmise that, regarding the abort
rate, the advantages of one or the other algorithm will
depend on the ratio between read and write opera-
tions.

4 Atomic Delivery and Consistency

To guarantee consistency in a replicated environ-
ment, once a transaction is committed at one node, it
must be committed at all nodes. In a failure free en-
vironment, this consistency is guaranteed by the total
order. However, if failures may occur, practical solu-
tions to this problem range from 2-Phase-Commit to
reconciliation techniques [4, 7, 14], always under the
assumption that, in systems with a large transaction
volume, it is considered acceptable to introduce incon-
sistencies in a few transactions in exchange for being
able to process the bulk of them as fast as possible.

We follow the same line and relax the atomicity of
the broadcast primitives in order to minimize message
and logging overhead leading to three versions of the
previous protocols: non-blocking, blocking, and rec-
onciliation based. Due to space limitations we only
present the solutions for serializability and cursor sta-

bility. For snapshot isolation the approach is similar.

4.1 Node Failures
Databases

We assume that in the case of node or communica-
tion failures only a primary group is able to continue.
Once a node recovers, it is allowed to join the group
only after its state is identical to that of the available
nodes (achieved by, for instance, installing a copy of
the database taken from one of the working nodes [4]).

If a node fails there are two cases to consider. First,
that in which a node commits a transaction and then
fails while the other nodes decide to abort. In this
case, upon recovery, reconciliation or compensation
techniques can be used to undo the changes of the
committed transaction as it is done in, for instance,
Oracle Symmetric Replication [14]. Due to the com-
plexities involved, this corresponds to the lowest level
of fault-tolerance. In the second case, the failed node
has not yet committed a transaction while the rest
of the system commits it. This, in general, is not a
problem since upon recovery the failed node can in-
corporate the committed transaction. Hence, proto-
cols allowing this case will still be considered as being
fault-tolerant.

In our replicated scenario, when node N fails and
is excluded from the group, each surviving node N’
has to decide on the in-doubt transactions of N. A
transaction T; invoked at node N is in-doubt for N/ if
N' has delivered W S; but neither a; nor ¢; have been
delivered.

and Recovery in

4.2 Non-Blocking Coordination

The non-blocking versions of the protocols are
based on the following atomic delivery properties:
The delivery of both the write set W.S; and the
commit message ¢; is atomic.

If both message types are sent atomically, each node
can decide independently to abort in-doubt transac-
tions of a failed node N. Due to the atomicity prop-
erties, the group change that excludes N is not an-
nounced to the application of N’ before all messages
N might have delivered are also delivered at N'. Since



¢; was not delivered before the group change, no other
node (including N) has delivered or will deliver c¢;.
Furthermore, the atomic delivery of W.S; excludes the
scenario where all nodes of the remaining group have
received ¢; but none of them has received W .S;. Note
that abort messages, on the other hand, need not to be
sent atomically. This approach guarantees that if sur-
viving nodes decide to abort a transaction, no failed
node has committed it.

As long as the underlying group communication
system is non-blocking, the database will also not
block when a failure occurs.

4.3 Blocking Coordination

Some of the overhead of the previous approach
can be avoided by risking not being able to reach
a decision about the transactions of a failed node.
The atomic delivery requirement for this case is:

The delivery of a write set W.S; is atomic.

The atomic delivery of W S; is necessary to exclude
the case where a node delivers W S; and ¢;, commits
T;, and fails, while the remaining nodes have not even
received W S; and will therefore ignore T;.

Since the delivery of both ¢; and a; is non-atomic,
now a node cannot decide independently on an in-
doubt transaction 7;. It might be that other nodes
(including the failed one) have either delivered ¢; or
a; and terminated T3, or are also in-doubt. Therefore,
a coordination protocol among the members of the
new group is needed. If a transaction T; is in-doubt
at all nodes, T; must be blocked until the recovery
of N, because N might have aborted or committed
T; and reported the result to the user. However, if a
transaction T; is in-doubt at node N' but not at N",
N" should inform N'.

After a group change a coordinator node, C, sends
a decision request message req with all its in-doubt
transactions to the new group. Upon delivery of req,
a participant P sends the following response message
res back to C':

e For each T; cited in req: if P has already received
¢ifai, it includes it in res. (So that C' can termi-
nate its in-doubt transaction 7;.)

e If P has an in-doubt transaction T; not cited in
req, T; is included in res. (So that C, that must
have received ¢;/a;, informs P.)

After the delivery of all res, C' knows about the state
of all group members. A transaction, T3, cited in req
but whose ¢;/a; was not included in any res, is in-
doubt at all nodes and must be blocked. For all other
transactions, C' can now make a decision. It atom-
ically broadcasts this information to the new group.
After the delivery of this broadcast each node can con-

tinue normal processing. In the case of a failure of C'
before the delivery of the last broadcast the coordina-
tion can be simply restarted by a new coordinator.

Note, that only transactions conflicting with the
blocked transactions cannot be executed. This same
protocol can be used in a slightly different manner.
The coordinator decides to abort the in-doubt trans-
actions and later let the failed node use compensation
to undo the changes in case it had committed them.
However, if these inconsistencies are allowed the fol-
lowing approach could be used, with less overhead.
4.4 Reconciliation based Protocols

Reconciliation based coordination does not broad-
cast any message atomically. The result is, as de-
scribed before, that the failed node N may have com-
mitted T; but the rest of the nodes have not even
received WS; and will ignore T;, or will decide to
abort T;. Upon recovery, N needs to reconciliate its
database with that of the working nodes and compen-
sate the changes introduced by 7;. Following standard
practice in database systems, we consider the proba-
bility of such an event to be small enough to make this
protocol a viable alternative when performance needs
to be improved.

5 Experiments and Results

The performance of the replication protocols de-
scribed above has been studied using a simulation
study similar to [2]. A detailed description of the
model and the parameters can be found in [11]. Our
system carefully models the use of hardware resources
like CPU, disk and the network. Communication costs
are determined as a function of the communication se-
mantics. Every broadcast has a basic communication
delay. If a message is sent either in total order or atom-
ically, this time is multiplied by 2. If it is sent both in
total order and atomically this time is multiplied by
2.5. This approach models a rough estimation of the
overhead of the different broadcast semantics. Trans-
action execution and concurrency control is modeled
according to the algorithms described in the previ-
ous sections. We use an open queuing model. At each
node every certain time unit (inter arrival time) a new
transaction is started.

Due to space limitations we will only discuss some
of the results of the many experiments we have con-
ducted. The presented experiments base on a 10-
node-system and a database with 10000 objects. All
tests were repeated until a 90% confidence interval was
reached. The main performance metric is the response
time of a transaction, i.e., the time from BOT to EQT.
It consists of the execution time (CPU + I/0) and the
message delay. The following abbreviations are used:



600

500

400

300

200

Response Time in ms

100

Figure 3: Response time of (a) short transactions and (b) long transactions for different communication delays

0.35

0.3

0.25

0.2

0.15

Abort Rate

0.1

0.05

Figure 4:

600

500

300

200

Response Time in ms

100

Figure 5: Response time of (a) read-only transactions and (b) update transactions for different rates of read-only

transactions

Response Time at Interarrival 30 ms - Short Transactions

SER ——
CS -+
Sl o

SER-RB x
CS-RB -+ N
I SI-RB -x-- T e

20 30 40 50 60 70 80 90 100
Communication Delay in ms

(a)

Abort Rate at Interarrival 150 ms - Long Transactions

. ; ; . . .
B

SER —~—
CS -+
Sl o

0 10 20 30 40 50 60 70 80 90
% of Read Operations

(a)

Response Time at Interarrival 80 ms - Read Transactions

10 20 30 40 50 60 70 80 90
% of Read Transactions

(a)

Response Time in ms

Response Time in ms

Response Time in ms

1000
900
800
700
600
500
400
300
200
100

600
550
500
450
400
350
300
250
200
150
100

600

500

400

300

200

100

Response Time at Interarrival 90 ms - Long Transactions

SER ——|

CS

L S| e
SER-RB =

L CS-RB -+

SI-RB -x-

0 10 20 30 40 50 60 70 80 90 100
Communication Delay in ms

(b)

Response Time at Interarrival 150 ms - Long Transactions
T T

: SER —— 1
CS -+
i Sl o 1

0 10 20 30 40 50 60 70 80 90
% of Read Operations

(b)

(a) Abort rate and (b) response time of long transactions for different read/update rates

Response Time at Interarrival 80 ms - Write Transactions

10 20 30 40 50 60 70 80 90

% of Read Transactions

(b)



SER for serializability, CS for cursor stability, and SI
for snapshot isolation. Only the results for the recon-
ciliation based (RB) and non-blocking versions of the
algorithms are compared.

5.1 Communication Delay

Existing studies on group communication systems
present considerable different results [5, 12], thus our
first test suite investigates the impact of the commu-
nication delay. We have performed tests with two dif-
ferent transaction types (short transactions with 10
operations and long transactions with 30 operations,
both having 40% of writes) to analyze different data
contention workloads. The parameter for the basic
communication delay varies from 2 to 100 ms.

Figure 3 shows the response time for short and
long transactions, respectively. The arrival times are
chosen so that the resource contention is similar and
rather high for both workloads. Short transactions
show little data contention, and therefore, the mes-
sage delay has a great impact on the response time.
With a low communication delay the response time is
purely due to the execution time which is roughly sim-
ilar for all protocols. However, with increasing mes-
sage delay, the response times increase depending on
the number and complexity of the message exchanges.
The non-blocking protocols show worse performance.
In the case of long transactions, the response time is
much more influenced by the data contention. Since
the resource utilization is high, the abort and restart
of a transaction degrades performance more than long
message delays. Both CS protocols clearly show the
best results for all message delays because of their
low conflict rate. SER, on the other hand, has such
a high data contention that it starts thrashing very
quickly. This degradation is due to readers aborted
upon arrival of a write transaction which is later also
aborted. Aborting the readers was unnecessary, but,
as the message delay increases, the likelihood of such
cases increases. SI does not have this problem because
the decision to abort or commit is done independently
at each node and the write set of a transaction T is
only executed when T is able to commit.

As a summary, the choice of the best protocol de-
pends on the workload and the system configuration.
Low conflict rates or fast communication permits to
use serializability and atomic message delivery to pro-
vide full correctness and consistency. However, slow
communication forces to choose protocols with low
message overhead like snapshot isolation or reconcilia-
tion based protocols. If, on the other hand, data con-
tention is high, lower levels of isolation are the only
alternative to achieve acceptable response times.

5.2 Resource and Data Contention

The distribution of read and write operations is rel-
evant in two ways. First, depending on the replica
control method, conflict resolution is either done by
aborting readers or writers. Second, the distribution
influences the resource contention, since read opera-
tions are only performed at one node and write op-
erations at all nodes. Thus, in this experiment, we
consider transactions with 30 operations and the per-
centage of write operations varied from 10% to 100%.
The basic communication delay is set to be very low
(5 ms) because we want to investigate pure resource
and data contention. Since the level of atomicity does
not have an impact at so low communication costs we
only show the results for the non-blocking protocols.

Figure 4 shows the abort rate and the response
time as a function of the read rate. CS always has
the smallest abort rate. For SER and CS the abort
rates are zero with only write operations, since writes
are never aborted. The abort rates increase slightly
because reads might be aborted by writes but then
decreases because there are less writes in the system.
SI has a high abort rate when the update rate is high
because it solves write/write conflicts by aborting one
transaction, but then the abort rate decreases fast be-
cause SI does not abort reads. This shows that SI
is especially indicated for high read rates. The abort
rate, however, has only a small impact on the response
time, which is mainly determined by the resource uti-
lization, and hence, similar for all protocols. At low
read rates the system is near its thrashing point be-
cause updates are performed at all nodes. However,
with increasing read rates, the resource utilization and
with it the response time decreases substantially be-
cause reads are only done locally.

In the configuration studied, resource contention is
a more relevant factor than data contention if the up-
date rates are high. This problem is inherent to repli-
cation schemes where all updates are performed at all
copies. However, update rates in practical applica-
tions do not seem to be extremely high: even in pure
OLTP workloads like the TPC-C benchmark, transac-
tions normally have at least 50% read operations.

5.3 Read-Only Transactions

The main gain of replication lies in the ability to
perform read operations locally. Replication pays off
when a great part of the transactions are queries which
can be executed without any communication costs. As
a last experiment we look at a mixed workload consist-
ing of update and read-only transactions, both having
30 operations. The percentage of both types are varied
between 10% to 90%. Again, we chose a fast commu-



nication and only look at the non-blocking protocols.
This time, we also analyze the hybrid protocol.
Figure 5 presents the response times for the read-
only transactions and update transactions as a func-
tion of the percentage of read-only transactions. The
response times of both transaction types decrease
when the percentage of read-only transactions in-
creases because of less resource and data contention.
Although the performance is mainly determined by
the resource utilization, differences in the protocols
can be observed. They are due to different abort
rates. Only SER aborts read-only transactions leading
to high response times. If many updaters are in the
system CS behaves better than the others for update
transactions. However, the abort rates — and with
them the performance differences — decrease very fast
with an increasing number of read-only transactions.
As a conclusion, read-only transactions need a spe-
cial treatment to avoid unnecessary aborts. The hy-
brid protocol seems to be a good alternative to provide
good performance for read-only transactions and seri-
alizability for updating transactions. However, trans-
actions must be declared read-only in advance to allow
their special treatment. Although cursor stability has
the best performance results it may be problematic in
certain applications due to its low isolation level.

6 Conclusion

In this paper, we have analyzed several approaches
to maintain a replicated and distributed database by
using group communication. Starting with a fault-
tolerant, 2PL protocol presented in [1], we suggested
several optimizations to handle data contention and
to achieve high performance even in the case of slow
communication systems. To do so, we weakened the
correctness and consistency criteria as it is typically
done in existing database systems. We quantitatively
investigated the performance implications of the dif-
ferent methods under various workload configurations,
using a detailed simulation model.

Our experiments demonstrate several points: The
efficiency of communication plays a major role in repli-
cated transaction processing. However, severe perfor-
mance problems can be avoided by using protocols
that reduce the message overhead but weaken fault-
tolerance. We suggest protocols that guarantee con-
sistency, however allow the user to see incorrect data
in the rare cases of node failures. With our protocols,
the number of messages per transaction is constant.
However, long message delays increase the probabil-
ity of data contention because the response times of
the transactions are longer, leading to more concur-
rent transactions in the system. This problem can

be solved by using concurrency control protocols with
lower isolation levels. These lower isolation levels also
help to reduce the conflict rate among transactions.

We believe synchronous update everywhere repli-
cation is feasible for a wide spectrum of applications
and configurations. With fast communication, a low
system load, low conflict rates or a high percentage of
read-only transactions, standard 2PL can be used. If
the system configuration is not ideal, as it will hap-
pen in most cases, the optimizations described in the
paper help to maintain reasonable performance while
still guaranteeing consistency and replication trans-
parency to a high degree.

Acknowledgments
We would like to thank A. Schiper, R. Guerraoui
and F. Pedone for helpful discussions on the topic.

References
[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Ex-
ploiting atomic broadcast in replicated databases. In Euro-
Par’97, Passau (Germany), August 1997.

[2] R. Agrawal, M.J. Carey, and M. Livny. Concurrency con-
trol performance modeling: Alternatives and implications.
ACM Trans. on Database Systems, 12(4):609-654, 1987.

[3] G. Alonso. Partial database replication and group commu-
nication primitives. In 2nd Europ. Research Seminar on
Advances in Distr. Systems (ERSADS’97), Zinal (Switzer-
land), March 1997.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, Massachusetts, 1987.

[5] K. Birman and T. Clark. Performance of the Isis dis-
tributed computing toolkit. Technical report, Dep. of Com-
puter Science, Cornell University, TR-94-1432, June 1994.

[6] David Powell et al. Group communication (special issue).
Communications of the ACM, 39(4):50-97, April 1996.

[7] R. Goldring. A discussion of relational database replication
technology. InfoDB, 8(1), 1994.

[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In ACM SIGMOD Int. Conf.
on Management of Data, Montreal, Canada, June 1996.

[9] J. Gray and A. Reuter. Transaction Processing. Morgan
Kaufmann, 1993.

[10] V. Hadzilacos and S. Toueg. Distributed Systems, chap-
ter 5, pages 97-145. Addison-Wesley, 1993. Edited by S.
Mullender.

[11] B. Kemme and G. Alonso. Database replication based on
group communication. Technical report, Department of
Computer Science, ETH Ziirich, No. 289, February 1998.

[12] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-
tolerant multicast group communication system. Commu-
nications of the ACM, 39(4):54-63, April 1996.

[13] Oracle. Concurrency Control, Transaction Isolation and
Serializability in SQLI2 and Oracle7, 1995. White Paper.

[14] Oracle. Oracle8(TM) Server Replication, Concepts Man-
ual, 1997.



(15]

(16]

F. Pedone, R. Guerraoui, and A. Schiper. Transaction
reordering in replicated databases. In 16th IEEE Symp. on
Reliable Distributed Systems (SRDS’97), Durham, USA,
October 1997.

A. Schiper and A. Sandoz. Uniform reliable multicast
in a virtually synchronous environment. In 13th IEEE
Int. Conf. on Distributed Computing Systems, Pittsburgh,
USA, 1993.

I. Stanoi, D. Agrawal, and A. El Abbadi. Using broad-
cast primitives in replicated databases. In 18th IEEE
Int. Conf. on Distributed Computing Systems, Amster-
dam, The Netherlands, May 1998.



