
Rachid Guerraoui, Lúıs Rodrigues

Introduction to Distributed
Algorithms

(Preliminary Draft)

November 22, 2004

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
HongKong Barcelona
Budapest

To whom it might concern.

DRAFT V (22/11/2004)

Preface

This manuscript aims at offering an introductory description of distributed
programming abstractions and of the algorithms that are used to implement
them in different distributed environments. The reader is provided with an
insight on important problems in distributed computing, knowledge about
the main algorithmic techniques that can be used to solve these problems,
and examples of how to apply these techniques when building distributed
applications.

Content

In modern computing, a program usually executes on several processes: in
this context, a process is an abstraction that may represent a computer, a
processor within a computer, or simply a specific thread of execution within
a processor. The fundamental problem in devising such distributed programs
usually consists in having the processes cooperate on some common task. Of
course, traditional centralized algorithmic issues, on each process individually,
still need to be dealt with. The added difficulty here is about achieving a
robust form of cooperation, despite failures or disconnections of some of the
processes, inherent to most distributed environments.

Had no notion of cooperation been required, a distributed program would
simply consist of a set of detached centralized programs, each running on a
specific process, and little benefit could be obtained from the availability of
several machines in a distributed environment. It was the need for cooperation
that revealed many of the fascinating problems addressed by this manuscript,
problems that would have otherwise remained undiscovered. The manuscript,
not only exposes the reader to these problems but also presents ways to solve
them in different contexts.

Not surprisingly, distributed programming can be significantly simplified
if the difficulty of robust cooperation is encapsulated within specific abstrac-
tions. By encapsulating all the tricky algorithmic issues, such distributed
programming abstractions bridge the gap between network communication
layers, usually frugal in terms of reliability guarantees, and distributed ap-
plication layers, usually demanding in terms of reliability.

Preface Preface

The manuscript presents various distributed programming abstractions
and describes algorithms that implement these abstractions. In a sense, we
give the distributed application programmer a library of abstraction interface
specifications, and the distributed system builder a library of algorithms that
implement the specifications.

A significant amount of the preparation time of this manuscript was de-
voted to preparing the exercises and working out their solutions. We strongly
encourage the reader to work out the exercises. We believe that no reasonable
understanding can be achieved in a passive way. This is especially true in the
field of distributed computing where the underlying anthropomorphism may
provide fast but wrong intuitions. Many exercises are rather easy and can be
discussed within an undergraduate teaching classroom. Some exercises are
more difficult and need more time. These can be given as homeworks.

The manuscript comes with a companion set of running examples imple-
mented in the Java programming language, using the Appia protocol com-
position framework. These examples can be used by students to get a better
understanding of the implementation details not covered in the high-level
description of the algorithms. Instructors can use these protocol layers as a
basis for practical exercises, by suggesting students to perform optimizations
on the code provided, to implement variations of the algorithms for different
system models, or to design applications that make use of these abstractions.

Presentation

The manuscript is written in a self-contained manner. This has been made
possible because the field of distributed algorithms has reached a certain level
of maturity where details, for instance about the network and various kinds
of failures, can be abstracted away when reasoning about the distributed
algorithms. Elementary notions of algorithms, first order logics, program-
ming languages, networking, and operating systems might be helpful, but
we believe that most of our abstraction specifications and algorithms can be
understood with minimal knowledge about these notions.

The manuscript follows an incremental approach and was primarily built
as a textbook for teaching at the undergraduate or basic graduate level. It in-
troduces basic elements of distributed computing in an intuitive manner and
builds sophisticated distributed programming abstractions on top of more
primitive ones. Whenever we devise algorithms to implement a given ab-
straction, we consider a simple distributed system model first, and then we
revisit the algorithms in more challenging models. In other words, we first de-
vise algorithms by making strong simplifying assumptions on the distributed
environment and then we discuss how to weaken those assumptions.

We have tried to balance intuition and presentation simplicity, on one
hand, with rigour, on the other hand. Sometimes rigour was impacted, and
this might not have been always on purpose. The focus here is rather on

DRAFT VIII (22/11/2004)

Preface Preface

abstraction specifications and algorithms, not on calculability and complexity.
Indeed, there is no theorem in this manuscript. Correctness arguments are
given with the aim of better understanding the algorithms: they are not
formal correctness proofs per se. In fact, we tried to avoid Greek letters and
mathematical notations: references are given to papers with more formal
treatment of some of the material presented here.

Organization

• In Chapter 1 we motivate the need for distributed programming abstrac-
tions by discussing various applications that typically make use of such
abstractions. The chapter also presents the programming notations used
in the manuscript to describe specifications and algorithms.

• In Chapter 2 we present different kinds of assumptions that we will be mak-
ing about the underlying distributed environment, i.e., we present different
distributed system models. Basically, we describe the basic abstractions on
which more sophisticated ones are built. These include process and commu-
nication link abstractions. This chapter might be considered as a reference
throughout other chapters.

The rest of the chapters are each devoted to one family of related abstrac-
tions, and to various algorithms implementing them.

• In Chapter 3 we introduce specific distributed programming abstractions:
those related to the reliable delivery of messages that are broadcast to a
group of processes. We cover here issues such as how to make sure that a
message delivered by one process is delivered by all, despite the crash of
the original sender process.

• In Chapter 4 we discuss shared memory abstractions which encapsulate
simple forms of distributed storage objects with read-write semantics, e.g.,
files and register abstractions. We cover here issues like how to ensure
that a value written (stored) within a set of processes is eventually read
(retrieved) despite the crash of some of the processes.

• In Chapter 5 we address the consensus abstraction through which a set of
processes can decide on a common value, based on values, each process ini-
tially proposed, despite the crash of some of the processes. This abstraction
is key in building abstractions described in subsequent chapters.

• In Chapter 6 we consider ordering abstractions. In particular, we discuss
the causal ordering of messages that are broadcast in the system, as well
as a how consensus can be used to ensure totally ordered delivery of mes-
sages. The resulting total order abstraction makes it easy to implement so-
phisticated forms of shared distributed objects, beyond read-write shared
memory objects.

DRAFT IX (22/11/2004)

Preface Preface

• In Chapter 7 we gather what we call coordination abstractions. These in-
clude leader election, terminating reliable broadcast, non-blocking atomic
commit and group membership.

The distributed algorithms we will study differ naturally according to
the actual abstraction they aim at implementing, but also according to the
assumptions on the underlying distributed environment (we will also say dis-
tributed system model), i.e., on the initial abstractions they take for granted.
Aspects such as the reliability of the links, the degree of synchrony of the
system, whether a deterministic or a randomized (probabilistic) solution is
sought, have a fundamental impact on how the algorithm is designed. To give
the reader an insight of how these parameters affect the algorithm design, the
manuscript includes several classes of algorithmic solutions to implement the
same distributed programming abstractions for various distributed system
models.

Covering all chapters, with their associated exercises, constitutes a full
course in the field. Focusing for each chapter on the specifications of the ab-
stractions and their underlying algorithms in their simplest form (i.e., for the
simplest model of computation considered in the manuscript), would consti-
tute a shorter, more elementary course. This can provide a nice companion to
a more practically oriented course possibly based on our protocol framework.

References

We have been exploring the world of distributed programming abstractions
for more than a decade now. During this period, we were influenced by many
researchers in the field of distributed computing. A special mention to Leslie
Lamport and Nancy Lynch for having posed fascinating problems in dis-
tributed computing, and to the Cornell-Toronto school, including Ken Bir-
man, Tushar Chandra, Vassos Hadzilacos, Robert van Renessee, Fred Schnei-
der, and Sam Toueg, for their seminal work on various forms of distributed
programming abstractions.

Many other researchers have directly or indirectly inspired the material
of this manuscript. We did our best to reference their work throughout the
text. Most chapters end with a historical note. This intends to provide hints
for further readings, to trace the history of the concepts presented in the
chapters, as well as to give credits to those who invented and worked out the
concepts. At the end of the manuscript, we reference other manuscripts for
further readings on other aspects of distributed computing.

Acknowledgements

We would like to express our gratitude to our undergraduate and graduate
students from the Swiss Federal Institute of Technology in Lausanne (EPFL)

DRAFT X (22/11/2004)

Preface Preface

and the University of Lisboa (UL), for serving as reviewers of preliminary
drafts of this manuscript. Indeed they had no choice and needed to prepare
their exams anyway. But they were indulgent toward the bugs and typos
that could be found in earlier versions of the manuscript as well as associated
slides, and they did provide us with useful feedback.

Partha Dutta, Corine Hari, Ron Levy, Petr Kouznetsov and Bastian
Pochon, graduate students at the Distributed Programming Laboratory of
the Swiss Federal Institute of Technology in Lausanne (EPFL) at the time of
writing this manuscript, as well as Filipe Araújo, and Hugo Miranda, gradu-
ate students at the Distributed Algorithms and Network Protocol (DIALNP)
group at the Departamento de Informtica da Faculdade de Cincias da Uni-
versidade de Lisboa (UL), at the same period, suggested many improvements
to the algorithms presented in the manuscript. Several of the implementa-
tion for the “hands-on” part ofthe book were developed by or with the help
of several DIALNP team members and students, including Nuno Carvalho,
Maria João Monteiro, Alexandre Pinto, and Lúıs Sardinha.

Finally, we would like to thank all several of our colleagues who were
kind enough to read and comment earlier drafts of this book. These include
Lorenzo Alvisi, Roberto Baldoni, Carole Delporte, Hugues Fauconnier, Pas-
cal Felber, Felix Gaertner, Anne-Marie Kermarrec, Fernando Pedone, Michel
Raynal, and Marten Van Steen.

Rachid Guerraoui and Lúıs Rodrigues

DRAFT XI (22/11/2004)

Contents

1. Introduction . 1
1.1 Motivation . 1
1.2 Distributed Programming Abstractions . 3

1.2.1 Inherent Distribution . 4
1.2.2 Distribution as an Artifact . 6

1.3 The End-to-end Argument . 7
1.4 Software Components . 8

1.4.1 Composition Model . 8
1.4.2 Programming Interface . 10
1.4.3 Modules . 12
1.4.4 Classes of Algorithms . 13

Hands-On . 15
Print Module . 15
Bounded Print Module . 17
Composing Modules . 19

2. Basic Abstractions . 23
2.1 Distributed Computation . 24

2.1.1 Processes and Messages . 24
2.1.2 Automata and Steps . 24
2.1.3 Liveness and Safety . 26

2.2 Abstracting Processes . 27
2.2.1 Process Failures . 27
2.2.2 Lies and Omissions . 28
2.2.3 Crashes . 28
2.2.4 Recoveries . 29

2.3 Abstracting Communication . 32
2.3.1 Link Failures . 32
2.3.2 Fair-loss Links . 33
2.3.3 Stubborn Links . 34
2.3.4 Perfect Links . 36
2.3.5 Processes and Links . 37

2.4 Timing Assumptions . 39
2.4.1 Asynchronous System . 39

Contents Contents

2.4.2 Synchronous System . 40
2.4.3 Partial Synchrony . 42

2.5 Abstracting Time . 42
2.5.1 Failure Detection . 42
2.5.2 Perfect Failure Detection . 43
2.5.3 Eventually Perfect Failure Detection 45
2.5.4 Eventual Leader Election . 47

2.6 Distributed System Models . 50
2.6.1 Combining Abstractions . 51
2.6.2 Measuring Performance . 52

Hands-On . 53
Sendable Event . 53
Message and Extended Message . 53
Fair Loss Point to Point Links . 54
Perfect Point to Point Links . 55
Perfect Failure Detector . 55

Exercises . 57
Solutions . 58
Historical Notes . 60

3. Reliable Broadcast . 61
3.1 Motivation . 61

3.1.1 Client-Server Computing . 61
3.1.2 Multi-Participant Systems . 62

3.2 Best-Effort Broadcast . 63
3.2.1 Specification . 63
3.2.2 Fail-Silent Algorithm: Basic Broadcast 63

3.3 Regular Reliable Broadcast . 64
3.3.1 Specification . 65
3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast 65
3.3.3 Fail-Silent Algorithm: Eager Reliable Broadcast 67

3.4 Uniform Reliable Broadcast . 68
3.4.1 Specification . 68
3.4.2 Fail-Stop Algorithm: All-Ack URB 69
3.4.3 Fail-Silent Algorithm: Majority-Ack URB 71

3.5 Stubborn Broadcast . 72
3.5.1 Overview . 72
3.5.2 Specification . 73
3.5.3 Fail-Recovery Algorithm: Basic Stubborn Broadcast . . 73

3.6 Logged Best Effort Broadcast . 74
3.6.1 Specification . 74
3.6.2 Fail-Recovery Algorithm: Logged Basic Broadcast 74

3.7 Logged Uniform Reliable Broadcast . 75
3.7.1 Specification . 76
3.7.2 Fail-Recovery Algorithm: Logged Majority-Ack URB. . 76

DRAFT XIV (22/11/2004)

Contents Contents

3.8 Randomized Broadcast . 77
3.8.1 The Scalability of Reliable Broadcast 78
3.8.2 Epidemic Dissemination . 79
3.8.3 Specification . 80
3.8.4 Randomized Algorithm: Eager Probabilistic Broadcast 80
3.8.5 Randomized Algorithm: Lazy Probabilistic Broadcast . 82

Hands-On . 85
Best-Effort Broadcast . 85
Lazy Reliable Broadcast . 86
All-Ack URB . 88
Majority-Ack URB . 91
Probabilistic Reliable Broadcast . 91
Test Application . 94

Exercises . 96
Solutions . 97
Historical Notes . 101

4. Shared Memory . 103
4.1 Introduction . 103

4.1.1 Sharing Information in a Distributed System 103
4.1.2 Register Overview . 104
4.1.3 Completeness and Precedence . 107

4.2 (1,N) Regular Register . 108
4.2.1 Specification . 108
4.2.2 Fail-Stop Algorithm: Read-One-Write-All Regular Reg-

ister . 109
4.2.3 Fail-Silent Algorithm: Majority-Voting Regular Register111

4.3 (1,N) Atomic Register . 114
4.3.1 Specification . 114
4.3.2 Transformation: From (1,N) Regular to (1,N) Atomic . 116
4.3.3 Fail-Stop Algorithm: Read-One-Impose-All (1,N) Atomic

Register . 121
4.3.4 Fail-Silent Algorithm: Read-Majority Impose-Majority

(1,N) Atomic Register . 121
4.4 (N,N) Atomic Register . 124

4.4.1 Multiple Writers . 124
4.4.2 Specification . 124
4.4.3 Transformation: From (1,N) atomic to (N,N) atomic

registers . 125
4.4.4 Fail-Stop Algorithm: Read-All-Impose-All (N,N) Atomic

Register . 127
4.4.5 Fail-Silent Algorithm: Majority Voting (N,N) Atomic

Register . 128
4.5 (1,N) Logged Regular Register . 130

4.5.1 Precedence in the Fail-Recovery Model 131

DRAFT XV (22/11/2004)

Contents Contents

4.5.2 Specification . 132
4.5.3 Fail-Recovery Algorithm: Logged Majority Voting 133

Hands-On . 137
Exercises . 138
Solutions . 139
Historical Notes . 143

5. Consensus . 145
5.1 Regular Consensus . 145

5.1.1 Specification . 145
5.1.2 Fail-Stop Algorithm: Consensus with Flooding 146
5.1.3 Fail-Stop Algorithm: Hierarchical Consensus 149

5.2 Uniform Consensus . 151
5.2.1 Specification . 151
5.2.2 Fail-Stop Algorithm: Uniform Consensus with Flooding 152
5.2.3 Fail-Stop Algorithm: Hierarchical Uniform Consensus . 152
5.2.4 Fail-Noisy Algorithm: Carefull Leader Algorythm 154

5.3 Logged Consensus . 160
5.3.1 Specification . 160
5.3.2 Fail-Recovery Algorithm: Logged Careful Reader 160

5.4 Randomized Consensus . 161
5.4.1 Specification . 162
5.4.2 A randomized Consensus Algorithm 163

Hands-On . 167
Exercices . 168
Solutions . 169
Historical Notes . 175

6. Ordering . 177
6.1 Causal Order Broadcast . 177

6.1.1 Overview . 177
6.1.2 Specifications . 178
6.1.3 Fail-Silent Algorithm: No-Waiting Causal Broadcast . . 180
6.1.4 Fail-Stop Extension: Garbage Collecting the Causal Past181
6.1.5 Fail Silent Algorithm: Waiting Causal Order Broadcast 181

6.2 Total Order Broadcast . 183
6.2.1 Overview . 183
6.2.2 Specification . 184
6.2.3 Algorithm: Uniform Total Order Broadcast 185

6.3 Logged Total Order Broadcast . 188
6.3.1 Specification . 189
6.3.2 Fail-Recovery Algorithm: Total Order Broadcast Al-

gorithm with Logs . 189
Hands-On . 192

No-Waiting Reliable Causal Order Broadcast 192

DRAFT XVI (22/11/2004)

Contents Contents

No-Waiting Reliable Causal Order Broadcast with Garbage
Collection . 196

Waiting Reliable Causal Order Broadcast 198
Uniform Total Order Broadcast . 199

Exercises . 202
Solutions . 203
Historical Notes . 205

7. Coordination . 207
7.1 Terminating Reliable Broadcast . 207

7.1.1 Overview . 207
7.1.2 Specifications . 208
7.1.3 Fail-Stop Algorithm: Consensus-Based TRB 208

7.2 Non-blocking Atomic Commit . 211
7.2.1 Overview . 211
7.2.2 Specifications . 212
7.2.3 Fail-Stop Algorithm: Consensus-Based NBAC 212

7.3 Leader Election . 214
7.3.1 Overview . 214
7.3.2 Specification . 214
7.3.3 Fail-Stop Algorithm: Monarchical Leader Election 215

7.4 Group Membership . 216
7.4.1 Overview . 216
7.4.2 Specification . 217
7.4.3 Fail-Stop Algorithm: Consensus-Based Group Mem-

bership . 217
7.5 View-Synchronous Communication . 219

7.5.1 Overview . 219
7.5.2 Specification . 220
7.5.3 Fail-Stop Algorithm: TRB-Based View-Synchrony 221

7.6 Probabilistic Partial Membership . 224
7.6.1 Specification . 224
7.6.2 Randomized Algorithm: Probabilistic Broadcast with

Partial Membership . 225
Hands-On . 226
Exercices . 228
Solutions . 229
Historical Notes . 233

DRAFT XVII (22/11/2004)

1. Introduction

God does not often clap his hands. When he does, every body should dance
(African Proverb)

This chapter first motivates the need for distributed programming ab-
stractions. Special attention is given to abstractions that capture the prob-
lems that underly robust forms of cooperations between multiple processes
in a distributed system, such as agreement abstractions. The chapter then
advocates a modular strategy for the development of distributed programs by
making use of those abstractions through specific Application Programming
Interfaces (APIs).

A concrete simple example API is also given to illustrate the notation and
event-based invocation scheme used throughout the manuscript to describe
the algorithms that implement our abstractions. The notation and invocation
schemes are very close to those we have used to implement our algorithms in
our Appia protocol framework.

1.1 Motivation

Distributed computing has to do with devising algorithms for a set of pro-
cesses that seek to achieve some form of cooperation. Besides executing con-
currently, some of the processes of a distributed system might stop operating,
for instance by crashing or being disconnected, while others might stay alive
and keep operating. This very notion of partial failures is a characteristic of
a distributed system. In fact, this can be useful if one really feels the need
to differentiate a distributed system from a concurrent system. It is usual to
quote Leslie Lamport here:

“A distributed system is one in which the failure of a computer you
did not even know existed can render your own computer unusable”.

1.1. MOTIVATION CHAPTER 1. INTRO

When a subset of the processes have failed, or got disconnected, the chal-
lenge is for the processes that are still operating to synchronize their activities
in a consistent way. In other words, the cooperation must be made robust
to tolerate partial failures. This makes distributed computing quite hard,
yet extremely stimulating, problem. As we will discuss in detail later in the
manuscript, due to several factors such as the asynchrony of the underlying
components and the possibility of failures in the communication infrastruc-
ture, it may be impossible to accurately detect process failures, and in par-
ticular distinguish a process failure from a network failure. This makes the
problem of ensuring a consistent cooperation even more difficult. The chal-
lenge of researchers in distributed computing is precisely to devise algorithms
that provide the processes that remain operating with enough consistent in-
formation so that they can cooperate correctly and solve common tasks.

In fact, many programs that we use today are distributed programs.
Simple daily routines, such as reading e-mail or browsing the web, involve
some form of distributed computing. However, when using these applica-
tions, we are typically faced with the simplest form of distributed computing:
client-server computing. In client-server computing, a centralized process, the
server, provides a service to many remote clients. The clients and the server
communicate by exchanging messages, usually following a request-reply form
of interaction. For instance, in order to display a web page to the user, a
browser sends a request to the WWW server and expects to obtain a response
with the information to be displayed. The core difficulty of distributed com-
puting, namely achieving a consistent form of cooperation in the presence of
partial failures, may be revealed even by using this simple form of interaction.
Going back to our browsing example, it is reasonable to expect that the user
continues surfing the web if the site it is consulting fails (by automatically
switching to other sites), and even more reasonable that the server process
keeps on providing information to the other client processes, even when some
of them fail or got disconnected.

The problems above are already difficult to deal with when distributed
computing is limited to the interaction between two parties, such as in the
client-server case. However, there is more to distributed computing than
client-server computing. Quite often, not only two, but several processes need
to cooperate and synchronize their actions to achieve a common goal. The
existence of not only two, but multiple processes does not make the task of
distributed computation any simpler. Sometimes we talk about multi-party
interactions in this general case. In fact, both patterns might coexist in a
quite natural manner. Actually, a real distributed application would have
parts following a client-server interaction pattern and other parts following a
multi-party interaction one. This might even be a matter of perspective. For
instance, when a client contacts a server to obtain a service, it may not be
aware that, in order to provide that service, the server itself may need to re-

DRAFT 2 (22/11/2004)

CHAPTER 1. INTRO 1.2. ABSTRACTIONS

quest the assistance of several other servers, with whom it needs to coordinate
to satisfy the client’s request.

1.2 Distributed Programming Abstractions

Just like the act of smiling, the act of abstraction is restricted to very few
natural species. By capturing properties which are common to a large and sig-
nificant range of systems, abstractions help distinguish the fundamental from
the accessory and prevent system designers and engineers from reinventing,
over and over, the same solutions for the same problems.

From The Basics. Reasoning about distributed systems should start by ab-
stracting the underlying physical system: describing the relevant components
in an abstract way, identifying their intrinsic properties, and characterizing
their interactions, leads to what is called a system model. In this book we
will use mainly two abstractions to represent the underlying physical system:
processes and links.

The processes of a distributed program abstract the active entities that
perform computations. A process may represent a computer, a processor
within a computer, or simply a specific thread of execution within a pro-
cessor. To cooperate on some common task, the processes might typically
need to exchange messages using some communication network. Links ab-
stract the physical and logical network that supports communication among
processes. It is possible to represent different realities of a distributed system
by capturing different properties of processes and links, for instance, by de-
scribing the different ways these components may fail. Chapter 2 will provide
a deeper discussion on the various distributed systems models that are used
in this book.

To The Advanced. Given a system model, the next step is to understand
how to build abstractions that capture recurring interaction patterns in dis-
tributed applications. In this book we are interested in abstractions that
capture robust cooperation problems among groups of processes, as these
are important and rather challenging. The cooperation among processes can
sometimes be modelled as a distributed agreement problem. For instance, the
processes may need to agree if a certain event did (or did not) take place,
to agree on a common sequence of actions to be performed (from a number
of initial alternatives), to agree on the order by which a set of inputs need
to be processed, etc. It is desirable to establish more sophisticated forms of
agreement from solutions to simpler agreement problems, in an incremental
manner. Consider for instance the following problems:

• In order for processes to be able to exchange information, they must ini-
tially agree on who they are (say using IP addresses) and some common
format for representing messages. They might also need to agree on some
reliable way of exchanging messages (say to provide TCP-like semantics).

DRAFT 3 (22/11/2004)

1.2. ABSTRACTIONS CHAPTER 1. INTRO

• After exchanging some messages, the processes may be faced with sev-
eral alternative plans of action. They may then need to reach a consensus
on a common plan, from all alternatives, and each participating process
may have initially its own plan, different from the plans of the remaining
processes.

• In some cases, it may be only acceptable for the cooperating processes to
take a given step if all other processes also agree that such a step should
take place. If this condition is not met, all processes must agree that the
step should not take place. This form of agreement is utmost importance
in the processing of distributed transactions, where this problem is known
as the atomic commitment problem.

• Processes may need not only to agree on which actions they should execute
but to agree also on the order by which these actions need to be executed.
This form of agreement is the basis of one of the most fundamental tech-
niques to replicate computation in order to achieve fault-tolerance, and it
is called the total order problem.

This book is about mastering the difficulty underlying these problems,
and devising abstractions that encapsulate such problems. In the following,
we try to motivate the relevance of some of the abstractions covered in this
manuscript. We distinguish the case where the abstractions pop up from the
natural distribution of the abstraction, from the case where these abstractions
come out as artifacts of an engineering choice for distribution.

1.2.1 Inherent Distribution

Applications which require sharing or dissemination of information among
several participant processes are a fertile ground for the emergence of dis-
tributed programming abstractions. Examples of such applications are in-
formation dissemination engines, multi-user cooperative systems, distributed
shared spaces, cooperative editors, process control systems, and distributed
databases.

Information Dissemination. In distributed applications with information
dissemination requirements, processes may play one of the following roles:
information producers, also called publishers, or information consumers, also
called subscribers. The resulting interaction paradigm is often called publish-
subscribe.

Publishers produce information in the form of notifications. Subscribers
register their interest in receiving certain notifications. Different variants of
the paradigm exist to match the information being produced with the sub-
scribers interests, including channel-based, subject-based, content-based or
type-based subscriptions. Independently of the subscription method, it is very
likely that several subscribers are interested in the same notifications, which
will then have to be multicast. In this case, we are typically interested in hav-
ing subscribers of the same information receiving the same set of messages.

DRAFT 4 (22/11/2004)

CHAPTER 1. INTRO 1.2. ABSTRACTIONS

Otherwise the system will provide an unfair service, as some subscribers could
have access to a lot more information than other subscribers.

Unless this reliability property is given for free by the underlying infras-
tructure (and this is usually not the case), the sender and the subscribers
may need to coordinate to agree on which messages should be delivered.
For instance, with the dissemination of an audio stream, processes are typ-
ically interested in receiving most of the information but are able to toler-
ate a bounded amount of message loss, especially if this allows the system
to achieve a better throughput. The corresponding abstraction is typically
called a best-effort broadcast.

The dissemination of some stock exchange information might require a
more reliable form of broadcast, called reliable broadcast, as we would like
all active processes to receive the same information. One might even require
from a strock exchange infrastructure that information be disseminated in an
ordered manner. The adequate communication abstraction that offers order-
ing in addition to reliability is called total order broadcast. This abstraction
captures the need to disseminate information, such that all participants can
get a consistent view of the global state of the disseminated information.

In several publish-subscribe applications, producers and consumers in-
teract indirectly, with the support of a group of intermediate cooperative
brokers. In such cases, agreement abstractions might be useful for the coop-
eration of the brokers.

Process Control. Process control applications are those where several soft-
ware processes have to control the execution of a physical activity. Basically,
the (software) processes might be controlling the dynamic location of an air-
craft or a train. They might also be controlling the temperature of a nuclear
installation, or the automation of a car production system.

Typically, every process is connected to some sensor. The processes might
for instance need to exchange the values output by their assigned sensors and
output some common value, say print a single location of the aircraft on the
pilot control screen, despite the fact that, due to the inaccuracy or failure
of their local sensors, they may have observed slightly different input val-
ues. This cooperation should be achieved despite some sensors (or associated
control processes) having crashed or not observed anything. This type of co-
operation can be simplified if all processes agree on the same set of inputs for
the control algorithm, a requirement captured by the consensus abstraction.

Cooperative Work. Users located on different nodes of a network might
cooperate in building a common software or document, or simply in setting-
up a distributed dialogue, say for a virtual conference. A shared working
space abstraction is very useful here to enable effective cooperation. Such
distributed shared memory abstraction is typically accessed through read and
write operations that the users exploit to store and exchange information. In
its simplest form, a shared working space can be viewed as a virtual register
or a distributed file system. To maintain a consistent view of the shared

DRAFT 5 (22/11/2004)

1.2. ABSTRACTIONS CHAPTER 1. INTRO

space, the processes need to agree on the relative order among write and read
operations on that shared board.

Distributed Databases. These constitute another class of applications
where agreement abstractions can be helpful to ensure that all transaction
managers obtain a consistent view of the running transactions and can make
consistent decisions on the way these transactions are serialized.

Additionally, such abstractions can be used to coordinate the transaction
managers when deciding about the outcome of the transactions. That is, the
database servers on which a given distributed transaction has executed would
need to coordinate their activities and decide on whether to commit or abort
the transaction. They might decide to abort the transaction if any database
server detected a violation of the database integrity, a concurrency control
inconsistency, a disk error, or simply the crash of some other database server.
An distributed programming abstraction that is useful here is the atomic
commit (or commitment) form of distributed cooperation.

1.2.2 Distribution as an Artifact

In general, even if the application is not inherently distributed and might not,
at first glance, need sophisticated distributed programming abstractions, this
need sometimes appears as an artifact of the engineering solution to satisfy
some specific requirements such as fault-tolerance, load-balancing , or fast-
sharing .

We illustrate this idea through replication, which is a powerful way to
achieve fault-tolerance in distributed systems. Briefly, replication consists in
making a centralized service highly-available by executing several copies of it
on several machines that are presumably supposed to fail independently. The
service continuity is in a sense ensured despite the crash of a subset of the
machines. No specific hardware is needed: fault-tolerance through replication
is software-based. In fact, replication might also be used within an informa-
tion system to improve the read-access performance to data by placing it
close to the processes where it is supposed to be queried.

For replication to be effective, the different copies must be maintained
in a consistent state. If the state of the replicas diverge arbitrarily, it does
not make sense to talk about replication anyway. The illusion of one highly-
available service would brake and replaced by that of several distributed
services, each possibly failing independently. If replicas are deterministic,
one of the simplest manners to guarantee full consistency is to ensure that
all replicas receive the same set of requests in the same order. Typically, such
guarantees are enforced by an abstraction called total order broadcast and
discussed earlier: the processes need to agree here on the sequence of messages
they deliver. Algorithms that implement such a primitive are non-trivial,
and providing the programmer with an abstraction that encapsulates these
algorithms makes the design of replicated components easier. If replicas are

DRAFT 6 (22/11/2004)

CHAPTER 1. INTRO 1.3. THE END-TO-END ARGUMENT

non-deterministic, then ensuring their consistency requires different ordering
abstractions, as we will see later in the manuscript.

After a failure, it is desirable to replace the failed replica by a new com-
ponent. Again, this calls for systems with dynamic group membership ab-
straction and for additional auxiliary abstractions, such as a state-transfer
mechanism that simplifies the task of bringing the new replica up-to-date.

1.3 The End-to-end Argument

Distributed Programming abstractions are useful but may sometimes be dif-
ficult or expensive to implement. In some cases, no simple algorithm is able
to provide the desired abstraction and the algorithm that solves the problem
can have a high complexity, e.g., in terms of the number of inter-process com-
munication steps and messages. Therefore, depending on the system model,
the network characteristics, and the required quality of service, the overhead
of the abstraction can range from the negligible to the almost impairing.

Faced with performance constraints, the application designer may be
driven to mix the relevant logic of the abstraction with the application logic,
in an attempt to obtain an optimized integrated solution. The intuition is
that such a solution would perform better than a modular approach, where
the abstraction is implemented as independent services that can be accessed
through well defined interfaces. The approach can be further supported by a
superficial interpretation of the end-to-end argument: most complexity should
be implemented at the higher levels of the communication stack. This argu-
ment could be applied to any distributed programming.

However, even if, in some cases, performance gains can be obtained by
collapsing the application and the underlying layers, such an approach has
many disadvantages. First, it is very error prone. Some of the algorithms
that will be presented in this manuscript have a considerable amount of
difficulty and exhibit subtle dependencies among their internal components.
An apparently obvious “optimization” may break the algorithm correctness.
It is usual to quote Knuth here:

“Premature optimization is the source of all evil”

Even if the designer reaches the amount of expertise required to mas-
ter the difficult task of embedding these algorithms in the application, there
are several other reasons to keep both implementations independent. The
most important of these reasons is that there is usually no single solution
to solve a given distributed computing problem. This is particularly true be-
cause the variety of distributed system models. Instead, different solutions
can usually be proposed and none of these solutions might strictly be supe-
rior to the others: each might have its own advantages and disadvantages,
performing better under different network or load conditions, making differ-
ent trade-offs between network traffic and message latency, etc. To rely on

DRAFT 7 (22/11/2004)

1.4. SOFTWARE COMPONENTS CHAPTER 1. INTRO

a modular approach allows the most suitable implementation to be selected
when the application is deployed, or even commute in run-time among dif-
ferent implementations in response to changes in the operational envelope of
the application.

Encapsulating tricky issues of distributed interactions within abstractions
with well defined interfaces significantly helps reason about the correctness
of the application and port it from one system to the other. We strongly
believe that, in many distributed applications, especially those that require
many-to-many interaction, building preliminary prototypes of the distributed
application using several abstraction layers can be very helpful.

Ultimately, one might indeed consider optimizing the performance of the
final release of a distributed application and using some integrated prototype
that implements several abstractions in one monolithic peace of code. How-
ever, full understanding of each of the inclosed abstractions in isolation is
fundamental to ensure the correctness of the combined code.

1.4 Software Components

1.4.1 Composition Model

Notation. One of the biggest difficulties we had to face when thinking about
describing distributed algorithms was to find out an adequate way to repre-
sent these algorithms. When representing a centralized algorithm, one could
decide to use a programming language, either by choosing an existing popular
one, or by inventing a new one with pedagogical purposes in mind.

Although there have indeed been several attempts to come up with dis-
tributed programming languages, these attempts have resulted in rather com-
plicated notations that would not have been viable to describe general pur-
pose distributed algorithms in a pedagogical way. Trying to invent a dis-
tributed programming language was not an option. Had we had the time to
invent one and had we even been successful, at least one book would have
been required to present the language.

Therefore, we have opted to use pseudo-code to describe our algorithms.
The pseudo-code assumes a reactive computing model where components of
the same process communicate by exchanging events: an algorithm is de-
scribed as a set of event handlers, that react to incoming events and may
trigger new events. In fact, the pseudo-code is very close to the actual way
we programmed the algorithms in our experimental framework. Basically, the
algorithm description can be seen as actual code, from which we removed all
implementation-related details that were more confusing than useful for un-
derstanding the algorithms. This approach will hopefully simplify the task
of those that will be interested in building running prototypes from the de-
scriptions found in the book.

DRAFT 8 (22/11/2004)

CHAPTER 1. INTRO 1.4. SOFTWARE COMPONENTS

Component B

Events

Events

Events

Component A

Figure 1.1. Composition model

A Simple Example. Abstractions are typically represented through ap-
plication programming interfaces (API). We will informally discuss here a
simple example API for a distributed programming abstraction.

To describe this API and our APIs in general, as well as the algorithms
implementing these APIs, we shall consider, throughout the manuscript, an
asynchronous event-based composition model. Every process hosts a set of
software modules, called components. Each component is identified by a
name, characterized by a set of properties, and provides an interface in the
form of the events that the component accepts and produces in return. Dis-
tributed Programming abstractions are typically made of a collection of com-
ponents, at least one on every process, that are supposed to satisfy some
common properties.

Software Stacks. Components can be composed to build software stacks,
at each process: each component represents a specific layer in the stack. The
application layer is on the top of the stack whereas the networking layer is
at the bottom. The layers of the distributed programming abstractions we
will consider are in the middle. Components within the same stack commu-
nicate through the exchange of events , as illustrated in Figure 1.1. A given
abstraction is typically materialized by a set of components, each running at
a process.

According to this model, each component is constructed as a state-
machine whose transitions are triggered by the reception of events. Events
may carry information such as a data message, a group view, etc, in one or
more attributes . Events are denoted by 〈 EventType, att1, att2, . . . 〉.

Each event is processed through a dedicated handler by the process (i.e.,
the corresponding component). The processing of an event may result in new
events being created and triggered on the same or on other components. Every
event triggered on a component of the same process is eventually processed,

DRAFT 9 (22/11/2004)

1.4. SOFTWARE COMPONENTS CHAPTER 1. INTRO

unless the process crashes. Events from the same component are processed
in the same order they were triggered. Note that this FIFO (first-in-first-
out) order is only enforced on events exchanged among local components in
a given stack. The messages among different processes may also need to be
ordered according to some criteria, using mechanisms orthogonal to this one.
We shall address this inter-process communication issue later in the book.

We assume that every process executes the code triggered by events in
a mutually exclusive way. Basically, the same process does not handle two
events concurrently. Once the handling of an event is terminated, the process
keeps on checking if any other event is triggered.

The code of each component looks like this:

upon event 〈 Event1, att11, att21, . . . 〉 do
something
// send some event
trigger 〈 Event2, att12,att22, . . . 〉;

upon event 〈 Event3, att13, att23, . . . 〉 do
something else
// send some other event
trigger 〈 Event4, att14, att24, . . . 〉;

This decoupled and asynchronous way of interacting among components
matches very well the requirements of distributed applications: for instance,
new processes may join or leave the system at any moment and a process must
be ready to handle both membership changes and reception of messages at
any time. Hence, a process should be able to concurrently handle several
events, and this is precisely what we capture through our component model.

1.4.2 Programming Interface

A typical interface includes the following types of events:

• Request events are used by a component to request a service from another
component: for instance, the application layer might trigger a request event
at a component in charge of broadcasting a message to a set of processes in
a group with some reliability guarantee, or proposing a value to be decided
on by the group.

• Confirmation events are used by a component to confirm the completion of
a request. Typically, the component in charge of implementing a broadcast
will confirm to the application layer that the message was indeed broadcast
or that the value suggested has indeed been proposed to the group: the
component uses here a confirmation event.

DRAFT 10 (22/11/2004)

CHAPTER 1. INTRO 1.4. SOFTWARE COMPONENTS

• Indication events are used by a given component to deliver information
to another component. Considering the broadcast example above, at every
process that is a destination of the message, the component in charge of
implementing the actual broadcast primitive will typically perform some
processing to ensure the corresponding reliability guarantee, and then use
an indication event to deliver the message to the application layer. Simi-
larly, the decision on a value will be indicated with such an event.

A typical execution at a given layer consists of the following sequence of
actions. We consider here the case of a broadcast kind of abstraction, e.g.,
the processes need to agree on whether or not to deliver a message broadcast
by some process.

1. The execution is initiated by the reception of a request event from the
layer above.

2. To ensure the properties of the broadcast abstraction, the layer will send
one or more messages to its remote peers using the services of the layer
below (using request events).

3. Messages sent by the peer layers are also received using the services of
the underlying layer (through indication events).

4. When a message is received, it may have to be stored temporarily until
the adequate reliability property is satisfied, before being delivered to the
layer above (using a indication event).

This data-flow is illustrated in Figure 1.2. Events used to deliver informa-
tion to the layer above are indications. In some cases, the layer may confirm
that a service has been concluded using a confirmation event.

Layer n
(receive)

(deliver)

indicationrequest

request indication

Layer n−1

Layer n+1

Figure 1.2. Layering

DRAFT 11 (22/11/2004)

1.4. SOFTWARE COMPONENTS CHAPTER 1. INTRO

Module:

Name: Print (lpr).

Events:

Request: 〈 lprPrint, rqid, string 〉: Requests a string to be printed. The
token rqid is an identifier of the request.

Confirmation:〈 lprOk, rqid 〉: Used to confirm that the printing request
with identifier rqid succeeded.

Module 1.1 Interface of a printing module.

Algorithm 1.1 Printing service.

Implements:
Print (lpr).

upon event 〈 lprPrint, rqid, string 〉 do
print string;
trigger 〈 lprOk, rqid 〉;

1.4.3 Modules

Not surprisingly, the modules described in this manuscript perform some
interaction with the correspondent modules on peer processes: after all, this
is a manuscript about distributed computing. It is however also possible to
have modules that perform only local actions.

To illustrate the notion of modules, we use the example of a simple print-
ing module. This module receives a print request, issues a print command
and provides a confirmation of the print operation having been achieved.
Module 1.1 describes its interface and Algorithm 1.1 its implementation. The
algorithm is supposed to be executed by every process pi.

To illustrate the way modules are composed, we use the printing module
above to build a bounded printing service. The bounded printer only accepts
a limited, pre-defined, number of printing requests. The bounded printer
also generates an indication when the threshold of allowed print requests is
reached. The bounded printer uses the service of the (unbounded) printer
introduced above and maintains a counter to keep track of the number of
printing requests executed in the past. Module 1.2 provides the interface of
the bounded printer and Algorithm 1.2 its implementation.

To simplify the presentation of the components, we assume that a special
〈 Init 〉 event is generated automatically by the run-time system when a
component is created. This event is used to perform the initialization of the
component. For instance, in the bounded printer example, this event is used
to initialize the counter of executed printing requests.

DRAFT 12 (22/11/2004)

CHAPTER 1. INTRO 1.4. SOFTWARE COMPONENTS

Module:

Name: BoundedPrint (blpr).

Events:

Request: 〈 blprPrint, rqid, string 〉: Request a string to be printed. The
token rqid is an identifier of the request.

Confirmation:〈 blprStatus, rqid, status 〉: Used to return the outcome of
the printing request: Ok or Nok.

Indication:〈 blprAlarm 〉: Used to indicate that the threshold was
reached.

Module 1.2 Interface of a bounded printing module.

Algorithm 1.2 Bounded printer based on (unbounded) print service.

Implements:
BoundedPrint (blpr).

Uses:
Print (lpr).

upon event 〈 Init 〉 do
bound := PredefinedThreshold;

upon event 〈 blprPrint, rqid, string 〉 do
if bound > 0 then

bound := bound-1;
trigger 〈 lprPrint, rqid, string 〉;
if bound = 0 then trigger 〈 blprAlarm 〉;

else
trigger 〈 blprStatus, rqid, Nok 〉;

upon event 〈 lprOk, rqid 〉 do
trigger 〈 blprStatus, rqid, Ok 〉;

1.4.4 Classes of Algorithms

As noted above, in order to provide a given service, a layer at a given process
may need to execute one or more rounds of message exchange with the peer
layers at remote processes. The behavior of each peer, characterized by the
set of messages that it is capable of producing and accepting, the format of
each of these messages, and the legal sequences of messages, is sometimes
called a protocol. The purpose of the protocol is to ensure the execution of
some distributed algorithm, the concurrent execution of different sequences of
steps that ensure the provision of the desired service. This manuscript covers
several of these distributed algorithms.

To give the reader an insight of how design solutions and system-related
parameters affect the algorithm design, the book includes five different classes

DRAFT 13 (22/11/2004)

1.4. SOFTWARE COMPONENTS CHAPTER 1. INTRO

of algorithmic solutions to implement our distributed programming abstrac-
tions, namely: fail-stop algorithms, designed under the assumption that pro-
cesses can fail by crashing but the crashes can be reliably detected by all the
other processes; fail-silent algorithms where process crashes can never be
reliably detected; fail-noisy algorithms, where processes can fail by crashing
and the crashes can be detected, but not always in a reliable manner; fail-
recovery algorithms, where processes can crash and later recover and still
participate in the algorithm; randomized algorithms, where processes use
randomization to ensure the properties of the abstraction with some known
probability.

These classes are not disjoint and it is important to notice that we do
not give a solution from each class to every abstraction. First, there are cases
where it is known that some abstraction cannot be implemented from an
algorithm of a given class. For example, the coordination abstractions we
consider in Chapter 7 do not have fail-noisy (and hence fail-silent) solutions
and it is not clear either how to devise meaningful randomized solutions to
such abstractions. In other cases, such solutions might exist but devising
them is still an active area of research.

Reasoning about distributed algorithms in general, and in particular
about algorithms that implement distributed programming abstractions, first
goes through defining a clear model of the distributed system where these al-
gorithms are supposed to operate. Put differently, we need to figure out what
basic abstractions the processes assume in order to build more sophisticated
ones. The basic abstractions we consider capture the allowable behavior of
the processes and their communication links in the distributed system. Before
delving into concrete algorithms to build sophisticated distributed program-
ming abstractions, we thus need to understand such basic abstractions. This
will be the topic of the next chapter.

DRAFT 14 (22/11/2004)

CHAPTER 1. INTRO Hands-On

Hands-On

We have implemented several of the algorithms that we will be presenting in
the book. By using these implementations, the reader has the opportunity to
run and experiment the algorithms in a real setting, look at the code, make
changes and improvements to the given code and, eventually, take it as a
basis to implement her own algorithms.

The algorithms have been implemented in the java programming language
with the support of the Appia protocol composition and execution frame-
work (Miranda, Pinto, and Rodrigues 2001). Appia is a tool that simplifies
the development of communication protocols. To start with, Appia already
implements a number of basic services that are required in several protocols,
such as methods to add and extract headers from messages or launch timers.
Additionally, Appia simplifies the task of composing different protocol mod-
ules.

Central to the use of Appia is the notion of protocol composition. In its
simpler form, a protocol composition is a stack of instances of the Layer class.
For each different protocol module, a different specialization of the Layer class
should be defined. In Appia, modules communicate through the exchange of
events. Appia defines the class Event, from which all events exchanged in the
Appia framework must be derived. In order for a module to consume and
produce events, a layer must explicitly declare the set of events accepted,
provided, and required. When a layer requires an event, Appia checks if there
is another layer in the composition that provides that event, otherwise it
generates an exception. This offers a simple form of detecting inconsistencies
in the protocol composition.

Print Module

Consider for instance the implementation of the Print module (Module 1.1).
In first place, we define the events accepted and provided by this module.
This is illustrated in Listing 1.1.

Listing 1.1. Events for the Print module.

class PrintRequestEvent extends Event {
int r id ;
String data;

void setId (int rid);
void setStrint (String s);
int getId ();
String getString ();

}

class PrintConfirmEvent extends Event {
int r id ;

void setId (int rid);
int getId ();

}

DRAFT 15 (22/11/2004)

Hands-On CHAPTER 1. INTRO

Then, we implement the layer for this module. This is illustrated in List-
ing 1.2. As expected, the layer accepts the PrintRequestEvent and provides
the PrintConfirmEvent. The PrintLayer is also responsible for creating objects of
class PrintSession, whose purpose is described in the next paragraphs.

Listing 1.2. PrintLayer.

public class PrintLayer extends Layer {

public PrintLayer(){
/∗ events that the protocol will create ∗/
evProvide = new Class[1];
evProvide[0] = PrintConfirmEvent.class;

/∗ events that the protocol requires to work. This is
∗ a subset of the accepted events ∗/

evRequire = new Class[0];

/∗ events that the protocol will accept ∗/
evAccept = new Class[2];
evAccept[0] = PrintRequestEvent.class;
evAccept[1] = ChannelInit.class;

}

public Session createSession() {
return new PrintSession(this);

}

}

Layers are used to describe the behavior of each module. The actual meth-
ods and the state required by the algorithm is maintained by Session objects.
Thus, for every layer, the programmer needs to define the corresponding ses-
sion. The main method of a session is the handle method, that is invoked by
the Appia kernel whenever there is an event to be processed by the session.
For the case of our Print module, the implementation of the PrintSession is
given in Listing 1.3.

Listing 1.3. PrintSession.

public class PrintSession extends Session {

public PrintSession(Layer layer) {
super(layer);

}

public void handle(Event event){
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit)event);
else if (event instanceof PrintRequestEvent){

handlePrintRequest ((PrintRequestEvent)event);
}

}

private void handleChannelInit(ChannelInit init) {
try {

init .go();
} catch (AppiaEventException e) {

e.printStackTrace();
}

DRAFT 16 (22/11/2004)

CHAPTER 1. INTRO Hands-On

}

private void handlePrintRequest(PrintRequestEvent request) {
try {

PrintConfirmEvent ack = new PrintConfirmEvent ();

doPrint (request.getString ());
request.go();

ack.setChannel(request.getChannel());
ack.setDir(Direction.UP);
ack.setSource(this);
ack.setId(request.getId ());
ack. init ();
ack.go();

} catch (AppiaEventException e) {
e.printStackTrace();

}
}

}

There are a couple of issues the reader should note in the previous code.
First, as in most of our algorithms, every session should be ready to accept
the ChannelInit event. This event is automatically generated and should be
used to initialize the session state. Second, in Appia, the default behaviour
for a session is to always forward downwards (or upwards) in the stack the
events it consumes . As it will become clear later in the text, it is often
very convenient to have the same event be processed by different modules in
sequence.

BoundedPrint Module

Having defined the events, the layer, and the session for the Print module, we
can now perform a similar job for the BoundedPrint module (Module 1.2). As
before we start by providing the required events, as depicted in Listing 1.4.
Note that we define the PrintAlarmEvent and the PrintStatusEvent11. On the
other hand, we do not need to define a new event for the PrintRequestEvent,
as we can reuse the event used in the basic Print module.

Listing 1.4. Events for BoundedPrint module.

class PrintAlarmEvent extends Event {
}

class PrintStatusEvent extends Event {
int r id ;
Status stat ;

void setId (int rid);
void setStatus (Status s);
int getId ();
int getStatus ();

}

We proceed to define the BoundedPrintLayer, as depicted in Listing 1.5.
Since the BoundedPrint module uses the services of the basic Print module,
it requires the PrintConfirmEvent produced by that module.

DRAFT 17 (22/11/2004)

Hands-On CHAPTER 1. INTRO

Listing 1.5. Bounded PrintLayer.

public class BoundedPrintLayer extends Layer {

public BoundedPrintLayer(){
/∗ events that the protocol will create ∗/
evProvide = new Class[2];
evProvide[0] = PrintStatusEvent.class;
evProvide[1] = PrintAlarmEvent.class;

/∗ events that the protocol require to work.
∗ This is a subset of the accepted events ∗/

evRequire = new Class[1];
evRequire[0] = PrintConfirmEvent.class;

/∗ events that the protocol will accept ∗/
evAccept = new Class[3];
evAccept[0] = PrintRequestEvent.class;
evAccept[1] = PrintConfirmEvent.class;
evAccept[2] = ChannelInit.class;

}

public Session createSession() {
return new BoundedPrintSession(this);

}

}

Subsequently, we can implement the session for the BoundedPrint module,
depicted in Listing 1.6.

Listing 1.6. BoundedPrintSession.

public class BoundedPrintSession extends Session {
int bound;

public BoundedPrintSession(Layer layer) {
super(layer);

}

public void handle(Event event){
if (event instanceof ChannelInit) {

handleChannelInit((ChannelInit)event);
}
else if (event instanceof PrintRequestEvent) {

handlePrintRequest ((PrintRequestEvent)event);
}
else if (event instanceof PrintConfirmEvent) {

handlePrintConfirm ((PrintConfirmEvent)event);
}

}

private void handleChannelInit(ChannelInit init) {
try {

bound = PredefinedThreshold;

init .go();
} catch (AppiaEventException e) {

e.printStackTrace();
}

}

private void handlePrintRequest(PrintRequestEvent request) {
if (bound > 0){

bound = bound −1;

DRAFT 18 (22/11/2004)

CHAPTER 1. INTRO Hands-On

try {
request.go ();

} catch (AppiaEventException e) {
e.printStackTrace();

}
if (bound == 0) {

PrintAlarmEvent alarm = new PrintAlarmEvent ();
alarm.setChannel (request.getChannel());
alarm.setSource (this);
alarm.setDir(Direction.UP);
try {

alarm.init ();
alarm.go ();

} catch (AppiaEventException e) {
e.printStackTrace();

}
}

}
else {

PrintStatusEvent status = new PrintStatusEvent ();
status .setChannel (request.getChannel());
status .setSource (this);
status .setDir(Direction.UP);
status . setId (request.getId ());
status .setStatus (Status.NOK);
try {

status . init ();
status .go ();

} catch (AppiaEventException e) {
e.printStackTrace();

}
}

}

private void handlePrintConfirm(PrintConfirmEvent conf) {
PrintStatusEvent status = new PrintStatusEvent ();
status .setChannel (request.getChannel());
status .setSource (this);
status .setDir(Direction.UP);
status . setId (conf.getId ());
status .setStatus (Status.OK);
try {

status . init ();
status .go ();

} catch (AppiaEventException e) {
e.printStackTrace();

}
}

}

Composing Modules

The two modules that we have described can then be easily composed using
the Appia framework. The first step consists in creating a protocol composi-
tion by stacking the BoundedPrintLayer on top of a the PrintLayer. Actually, in
order to be able to experiment with these two layers, we further add on top
of the stack a simple application layer. A protocol composition in Appia is
called a QoS (Quality of Service) and can simply be created by providing the
desired array of layers, as shown in Listing 1.7. After defining a protocol com-
position, it is possible to create one or more communication channels that

DRAFT 19 (22/11/2004)

Hands-On CHAPTER 1. INTRO

Channel

Layers

CreateChannel

createSession()

createSession()

createSession()

Sessions

QoS

PrintSession

PrintSession

BoundedPrintSession

PrintApplSession

PrintLayer

BoundedPrintSession

BoundedPrintLayer

PrintApplSession

PrintApplLayer

PrintLayer

BoundedPrintLayer

PrintApplLayer

Figure 1.3. Layers, Sessions, QoS and Channels

use that composition. Therefore, channels can be seen as instances of proto-
col compositions. Channels are made of sessions. When a channel is created
from a composition, it is possible to automatically create a new session for
every layer in the composition. The relation between Layers, Sessions, QoS
and Channles is illustrated in Figure 1.3. The code required to perform create
a channel is also depicted in Listing 1.7.

Listing 1.7. Creating a PrintChannel.

public class Example {

public static void main(String[] args) {
/∗ Create layers and put them on a array ∗/
Layer [] qos =

{new PrintLayer(),
new BoundedPrintLayer(),
new PrintApplicationLayer()};

/∗ Create a QoS ∗/
QoS myQoS = null;
try {

myQoS = new QoS(”Print stack”, qos);
} catch (AppiaInvalidQoSException ex) {

System.err.println(”Invalid QoS”);
System.err.println(ex.getMessage());
System.exit(1);

}

/∗ Create a channel. Uses default event scheduler. ∗/
Channel channel = myQoS.createUnboundChannel(”Print Channel”);

try {

DRAFT 20 (22/11/2004)

CHAPTER 1. INTRO Hands-On

channel.start ();
} catch(AppiaDuplicatedSessionsException ex) {

System.err.println(”Error in start”);
System.exit(1);

}

/∗ All set . Appia main class will handle the rest ∗/
System.out.println(”Starting Appia...”);
Appia.run();

}
}

The reader is now invited to install the Appia distribution provided as a
companion of this book and try the implementations described above.

DRAFT 21 (22/11/2004)

2. Basic Abstractions

These are my principles. If you don’t like them, I have others.
(Groucho Marx)

Applications that are deployed in practical distributed systems are usually
composed of a myriad of different machines and communication infrastruc-
tures. Physical machines differ on the number of processors, type of proces-
sors, amount and speed of both volatile and persistent memory, etc. Com-
munication infrastructures differ on parameters such as latency, throughput,
reliability, etc. On top of these machines and infrastructures, a huge variety
of software components are sometimes encompassed by the same application:
operating systems, file-systems, middleware, communication protocols, each
component with its own specific features.

One might consider implementing distributed services that are tailored
to specific combinations of the elements listed above. Such implementation
would depend on one type of machine, one form of communication, one dis-
tributed operating system, etc. However, in this book we are interested in
studying abstractions and algorithms that are relevant for a wide range of
distributed environments. In order to achieve this goal we need to capture
the fundamental characteristics of various distributed systems in some basic
abstractions, and on top of which we can later define other more elaborate,
and generic, distributed programming abstractions.

This chapter presents the basic abstractions we use to model a distributed
system composed of computational entities (processes) communicating by ex-
changing messages. Two kinds of abstractions will be of primary importance:
those representing processes and those representing communication links. Not
surprisingly, it does not seem to be possible to model the huge diversity of
physical networks and operational conditions with a single process abstrac-
tion and a single link abstraction. Therefore, we will define different instances
for each kind of basic abstraction: for instance, we will distinguish process ab-
stractions according to the types of faults that they may exhibit. Besides our

2.1. COMPUTATION CHAPTER 2. BASICS

process and link abstractions, we will introduce the failure detector abstrac-
tion as a convenient way to capture assumptions that might be reasonable
to make on the timing behavior of processes and links. Later in the chapter
we will identify relevant combinations of our three categories of abstractions.
Such a combination is what we call a distributed system model.

This chapter also contains our first module descriptions, used to specify
our basic abstractions, as well as our first algorithms, used to implement these
abstractions. The specifications and the algorithms are rather simple and
should help illustrate our notation, before proceeding in subsequent chapters
to more sophisticated specifications and algorithms.

2.1 Distributed Computation

2.1.1 Processes and Messages

We abstract the units that are able to perform computations in a distributed
system through the notion of process. We consider that the system is com-
posed of N uniquely identified processes, denoted by p1, p2, . . . , pN . Some-
times we also denote the processes by p, q, r. The set of system processes is
denoted by Π . Unless explicitly stated otherwise, it is assumed that this set
is static (does not change) and processes do know of each other.

We do not assume any particular mapping of our abstract notion of pro-
cess to the actual processors, processes, or threads of a specific machine or
operating system. The processes communicate by exchanging messages and
the messages are uniquely identified, say by their original sender process us-
ing a sequence number or a local clock, together with the process identifier.
Messages are exchanged by the processes through communication links. We
will capture the properties of the links that connect the processes through
specific link abstractions, and which we will discuss later.

2.1.2 Automata and Steps

A distributed algorithm is viewed as a collection of distributed automata,
one per process. The automaton at a process regulates the way the process
executes its computation steps, i.e., how it reacts to a message. The execution
of a distributed algorithm is represented by a sequence of steps executed by
the processes. The elements of the sequences are the steps executed by the
processes involved in the algorithm. A partial execution of the algorithm
is represented by a finite sequence of steps and an infinite execution by an
infinite sequence.

It is convenient for presentation simplicity to assume the existence of a
global clock, outside the control of the processes. This clock provides a global
and linear notion of time that regulates the execution of the algorithms. The
steps of the processes are executed according to ticks of the global clock:

DRAFT 24 (22/11/2004)

CHAPTER 2. BASICS 2.1. COMPUTATION

one step per clock tick. Even if two steps are executed at the same physical
instant, we view them as if they were executed at two different times of
our global clock. A correct process executes an infinite number of steps, i.e.,
every process has an infinite share of time units (we come back to this notion
in the next section). In a sense, there is some entity (a global scheduler)
that schedules time units among processes, though the very notion of time is
outside the control of the processes.

A process step consists in receiving (sometimes we will be saying deliver-
ing) a message from another process (global event), executing a local com-
putation (local event), and sending a message to some process (global event)
(Figure 2.1). The execution of the local computation and the sending of a
message is determined by the process automaton, i.e., the algorithm. Local
events that are generated are typically those exchanged between modules of
the same process at different layers.

Process

(receive)

incoming message outgoing message

(send)

internal computation

(modules of the process)

Figure 2.1. Step of a process

The fact that a process has no message to receive or send, but has some
local computation to perform, is simply captured by assuming that messages
might be nil, i.e., the process receives/sends the nil message. Of course, a
process might not have any local computation to perform either, in which
case it does simply not touch any of its local variables. In this case, the local
computation is also nil.

It is important to notice that the interaction between local components of
the very same process is viewed as a local computation and not as a commu-
nication. We will not be talking about messages exchanged between modules
of the same process. The process is the unit of communication, just like it is
the unit of failures as we will discuss shortly below. In short, a communica-
tion step of the algorithm occurs when a process sends a message to another
process, and the latter receives this message. The number of communica-
tion steps reflects the latency an implementation exhibits, since the network
latency is typically a limiting factor of the performance of distributed algo-
rithms. An important parameter of the process abstraction is the restriction
imposed on the speed at which local steps are performed and messages are
exchanged.

DRAFT 25 (22/11/2004)

2.1. COMPUTATION CHAPTER 2. BASICS

Unless specified otherwise, we will consider deterministic algorithms. That
is, for every step performed by any given process, the local computation
executed by the process and the message sent by this process are uniquely
determined by the message received by the process and its local state prior
to executing the step. We will also, in specific situations, describe randomized
(or probabilistic) algorithms where processes make use of underlying random
oracles to choose the local computation to be performed or the next message
to be sent, among a set of possibilities.

2.1.3 Liveness and Safety

When we devise a distributed algorithm to implement a given distributed
programming abstraction, we seek to satisfy the properties of the abstraction
in all possible executions of the algorithm, i.e., in all possible sequences of
steps executed by the processes according to the algorithm. These properties
usually fall into two classes: safety and liveness . Having in mind the dis-
tinction between these classes usually helps understand the abstraction and
hence devise an adequate algorithm to implement it.

• Basically, a safety property is a property of a distributed algorithm that
can be violated at some time t and never be satisfied again after that time.
Roughly speaking, safety properties state that the algorithm should not
do anything wrong. To illustrate this, consider a property of perfect links
(which we will discuss in more details later in this chapter) that roughly
stipulates that no process should receive a message unless this message was
indeed sent. In other words, processes should not invent messages out of
thin air. To state that this property is violated in some execution of an
algorithm, we need to determine a time t at which some process receives a
message that was never sent.
More precisely, a safety property is a property that whenever it is violated
in some execution E of an algorithm, there is a partial execution E ′ of E
such that the property will be violated in any extension of E ′. In more
sophisticated terms, we would say that safety properties are closed under
execution prefixes.
Of course, safety properties are not enough. Sometimes, a good way of
preventing bad things from happening consists in simply doing nothing. In
our countries of origin, some public administrations seem to understand
this rule quite well and hence have an easy time ensuring safety.

• Therefore, to define a useful abstraction, it is necessary to add some liveness
properties to ensure that eventually something good happens. For instance,
to define a meaningful notion of perfect links, we would require that if a
correct process sends a message to a correct destination process, then the
destination process should eventually deliver the message. To state that
such a property is violated in a given execution, we need to show that
there is no chance for a message to be delivered.

DRAFT 26 (22/11/2004)

CHAPTER 2. BASICS 2.2. PROCESSES

More precisely, a liveness property is a property of a distributed system
execution such that, for any time t, there is some hope that the property
can be satisfied at some time t′ ≥ t. It is a property for which, quoting
Cicero:

“While there is life there is hope”.

In general, the challenge is to guarantee both liveness and safety. (The
difficulty is not in talking, or not lying, but in telling the truth). Indeed, useful
distributed services are supposed to provide both liveness and safety proper-
ties. Consider for instance a traditional inter-process communication service
such as TCP: it ensures that messages exchanged between two processes are
not lost or duplicated, and are received in the order they were sent. As we
pointed out, the very fact that the messages are not lost is a liveness prop-
erty. The very fact that the messages are not duplicated and received in the
order they were sent are rather safety properties. Sometimes, we will con-
sider properties that are neither pure liveness nor pure safety properties, but
rather a union of both.

2.2 Abstracting Processes

2.2.1 Process Failures

Unless it fails, a process is supposed to execute the algorithm assigned to
it, through the set of components implementing the algorithm within that
process. Our unit of failure is the process. When the process fails, all its
components are supposed to fail as well, and at the same time.

Process abstractions differ according to the nature of the failures that
are considered. We discuss various forms of failures in the next section (Fig-
ure 2.2).

Omissions

Crashes

Arbitrary
Crashes&recoveries

Figure 2.2. Failure modes of a process

DRAFT 27 (22/11/2004)

2.2. PROCESSES CHAPTER 2. BASICS

2.2.2 Lies and Omissions

A process is said to fail in an arbitrary manner if it deviates arbitrarily from
the algorithm assigned to it. The arbitrary fault behavior is the most general
one. In fact, it makes no assumptions on the behavior of faulty processes,
which are allowed any kind of output and in particular can send any kind
of messages. These kinds of failures are sometimes called Byzantine (see the
historical note at the end of this chapter) or malicious failures. Not surpris-
ingly, arbitrary faults are the most expensive to tolerate, but this is the only
acceptable option when an extremely high coverage is required or when there
is the risk of some processes being indeed controlled by malicious users that
deliberately try to prevent correct system operation.

An arbitrary fault need not be intentional and malicious: it can simply
be caused by a bug in the implementation, the programming language or
the compiler, that causes the process to deviate from the algorithm it was
supposed to execute. A more restricted kind of faults to consider is the omis-
sion (Figure 2.2). An omission fault occurs when a process does not send
(resp. receive) a message it is supposed to send (resp. receive), according to
its algorithm.

In general, omission faults are due to buffer overflows or network conges-
tion. Omission faults result in lost messages. With an omission, the process
deviates from the algorithm it is supposed to execute by dropping some mes-
sages that should have been exchanged with other processes.

2.2.3 Crashes

An interesting particular case of omissions is when a process executes its al-
gorithm correctly, including the exchange of messages with other processes,
possibly until some time t, after which the process does not send any mes-
sage to any other process. This is what happens if the process for instance
crashes at time t and never recovers after that time. If, besides not sending
any message after some time t, the process also stops executing any local
computation after t, we talk here about a crash failure (Figure 2.2), and a
crash stop process abstraction. The process is said to crash at time t. With
this abstraction, a process is said to be faulty if it crashes. It is said to be cor-
rect if it does never crash and executes an infinite number of steps. We discuss
in the following two ramifications underlying the crash-stop abstraction.

• It is usual to devise algorithms that implement a given distributed program-
ming abstraction, say some form of agreement, provided that a minimal
number F of processes are correct, e.g., at least one, or a majority. It is
important to understand here that such assumption does not mean that
the hardware underlying these processes is supposed to operate correctly
forever. In fact, the assumption means that, in every execution of the al-
gorithm making use of that abstraction, it is very unlikely that more than

DRAFT 28 (22/11/2004)

CHAPTER 2. BASICS 2.2. PROCESSES

a certain number F of processes crash, during the lifetime of that very ex-
ecution. An engineer picking such algorithm for a given application should
be confident enough that the chosen elements underlying the software and
hardware architecture make that assumption plausible. In general, it is
also a good practice, when devising algorithms that implement a given
distributed abstraction under certain assumptions to determine precisely
which properties of the abstraction are preserved and which can be vio-
lated when a specific subset of the assumptions are not satisfied, e.g., when
more than F processes crash.

• Considering a crash-stop process abstraction boils down to assuming that
a process executes its algorithm correctly, unless it crashes, in which case
it does not recover. That is, once it crashes, the process does never per-
form any computation. Obviously, in practice, processes that crash can in
general be rebooted and hence do usually recover. It is important to notice
that, in practice, the crash-stop process abstraction does not preclude the
possibility of recovery, nor does it mean that recovery should be prevented
for a given algorithm (assuming a crash-stop process abstraction) to be-
have correctly. It simply means that the algorithm should not rely on some
of the processes to recover in order to pursue its execution. These processes
might not recover, or might recover only after a long period encompassing
the crash detection and then the rebooting delay. In some sense, an algo-
rithm that is not relying on crashed processes to recover would typically be
faster than an algorithm relying on some of the processes to recover (we will
discuss this issue in the next section). Nothing prevents however recovered
processes from getting informed about the outcome of the computation
and participate in subsequent instances of the distributed algorithm.

Unless explicitly stated otherwise, we will assume the crash-stop process
abstraction throughout this manuscript.

2.2.4 Recoveries

Sometimes, the assumption that certain processes never crash is simply not
plausible for certain distributed environments. For instance, assuming that a
majority of the processes do not crash, even only long enough for an algorithm
execution to terminate, might simply be too strong.

An interesting alternative as a process abstraction to consider in this case
is the crash-recovery one; we also talk about a crash-recovery kind of failure
(Figure 2.2). We say that a process is faulty in this case if either the pro-
cess crashes and never recovers, or the process keeps infinitely crashing and
recovering. Otherwise, the process is said to be correct. Basically, such a pro-
cess is eventually always (i.e., during the lifetime of the algorithm execution
of interest) up and operating. A process that crashes and recovers a finite
number of times is correct in this model (i.e., according to this abstraction
of a process).

DRAFT 29 (22/11/2004)

2.2. PROCESSES CHAPTER 2. BASICS

According to the crash-recovery abstraction, a process can indeed crash, in
this case the process stops sending messages, but might later recover. This can
be viewed as an omission fault, with one exception however: a process might
suffer amnesia when it crashes and loses its internal state. This significantly
complicates the design of algorithms because, upon recovery, the process
might send new messages that contradict messages that the process might
have sent prior to the crash. To cope with this issue, we sometimes assume
that every process has, in addition to its regular volatile memory, a stable
storage (also called a log), which can be accessed through store and retrieve
primitives.

Upon recovery, we assume that a process is aware that it has crashed
and recovered. In particular, a specific 〈 Recovery 〉 event is supposed to be
automatically generated by the run-time environment in a similar manner to
the 〈 Init 〉 event, executed each time a process starts executing some algo-
rithm. The processing of the 〈 Recovery 〉 event should for instance retrieve
the relevant state of the process from stable storage before the processing of
other events is resumed. The process might however have lost all the remain-
ing data that was preserved in volatile memory. This data should thus be
properly re-initialized. The 〈 Init 〉 event is considered atomic with respect to
recovery. More precisely, if a process crashes in the middle of its initialization
procedure and recovers, say without having processed the 〈 Init 〉 event prop-
erly, the process should redo again the 〈 Init 〉 procedure before proceeding
to the 〈 Recovery 〉 one.

In some sense, a crash-recovery kind of failure matches an omission one if
we consider that every process stores every update to any of its variables in
stable storage. This is not very practical because access to stable storage is
usually expensive (as there is a significant delay in accessing it). Therefore,
a crucial issue in devising algorithms with the crash-recovery abstraction is
to minimize the access to stable storage.

We discuss in the following three important ramifications underlying the
crash-recovery abstraction.

• One way to alleviate the need for accessing any form of stable storage
is to assume that some of the processes never crash (during the lifetime
of an algorithm execution). This might look contradictory with the ac-
tual motivation for introducing the crash-recovery process abstraction at
the first place. In fact, there is no contradiction, as we explain below. As
discussed earlier, with crash-stop failures, some distributed programming
abstractions can only be implemented under the assumption that a certain
number of processes do never crash, say a majority the processes participat-
ing in the computation, e.g., 4 out of 7 processes. This assumption might
be considered unrealistic in certain environments. Instead, one might con-
sider it more reasonable to assume that at least 2 processes do not crash
during the execution of an algorithm. (The rest of the processes would in-
deed crash and recover.) As we will discuss later in the manuscript, such

DRAFT 30 (22/11/2004)

CHAPTER 2. BASICS 2.2. PROCESSES

assumption makes it sometimes possible to devise algorithms assuming the
crash-recovery process abstraction without any access to a stable storage.
In fact, the processes that do not crash implement a virtual stable storage
abstraction, and this is made possible without knowing in advance which
of the processes will not crash in a given execution of the algorithm.

• At first glance, one might believe that the crash-stop abstraction can also
capture situations where processes crash and recover, by simply having
the processes change their identities upon recovery. That is, a process that
recovers after a crash, would behave, with respect to the other processes,
as if it was a different process that was simply not performing any action.
This could easily be done assuming a re-initialization procedure where,
besides initializing its state as if it just started its execution, a process
would also change its identity. Of course, this process should be updated
with any information it might have missed from others, as if indeed it did
not receive that information yet. Unfortunately, this view is misleading as
we explain below. Again, consider an algorithm devised using the crash-
stop process abstraction, and assuming that a majority of the processes
do never crash, say at least 4 out of a total of 7 processes composing the
system. Consider furthermore a scenario where 4 processes do indeed crash,
and process one recovers. Pretending that the latter process is a different
one (upon recovery) would mean that the system is actually composed of
8 processes, 5 of which should not crash, and the same reasoning can be
made for this larger number of processes. This is because a fundamental
assumption that we build upon is that the set of processes involved in
any given computation is static and the processes know of each other in
advance. In Chapter 7, we will revisit that fundamental assumption and
discuss how to build the abstraction of a dynamic set of processes.

• A tricky issue with the crash-recovery process abstraction is the inter-
face between software modules. Assume that some module at a process,
involved in the implementation of some specific distributed abstraction,
delivers some message or decision to the upper layer (say the application)
and subsequently the process hosting the module crashes. Upon recovery,
the module cannot determine if the upper layer (i.e., the application) has
processed the message or decision before crashing or not. There are at least
two ways to deal with this issue.
1. One way is to change the interface between modules. Instead of delivering

a message (or a decision) to the upper layer, the module may instead
store the message (decision) in a stable storage that is exposed to the
upper layer. It is then up to the upper layer to access the stable storage
and exploit delivered information.

2. A different approach consists in having the module periodically deliver-
ing the message or decision to the application until the latter explicitely
asks for stopping the delivery. That is, the distributed programming

DRAFT 31 (22/11/2004)

2.3. COMMUNICATION CHAPTER 2. BASICS

abstraction implemented by the module is in this case responsible for
making sure the application will make use of the delivered information.

2.3 Abstracting Communication

The link abstraction is used to represent the network components of the
distributed system. We assume that every pair of processes is connected by
a bidirectional link, a topology that provides full connectivity among the
processes. In practice, different topologies may be used to implement this
abstraction, possibly using routing algorithms. Concrete examples, such as
the ones illustrated in Figure 2.3, include the use of a broadcast medium
(such as an Ethernet), a ring, or a mesh of links interconnected by bridges
and routers (such as the Internet). Many implementations refine the abstract
network view to make use of the properties of the underlying topology.

(a) (b) (c)

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

(d)

Figure 2.3. The link abstraction and different instances.

We assume that messages exchanged between processes are uniquely iden-
tified and every message includes enough information for the recipient of a
message to uniquely identify its sender. Furthermore, when exchanging mes-
sages in a request-reply manner among different processes, the processes have
means to identify which reply message is a response to which request message.
This can typically be achieved by having the processes generating (random)
timestamps, based on sequence numbers or on local clocks. This assump-
tion alleviates the need for explicitly introducing these timestamps in the
algorithm.

2.3.1 Link Failures

In a distributed system, it is common for messages to be lost when transiting
through the network. However, it is reasonable to assume that the probability
for a message to reach its destination is non-zero. Hence, a natural way to
overcome the inherent unreliability of the network is to keep on retransmitting
messages until they reach their destinations.

DRAFT 32 (22/11/2004)

CHAPTER 2. BASICS 2.3. COMMUNICATION

In the following, we will describe different kinds of link abstractions: some
are stronger than others in the sense that they provide more reliability guar-
antees. All three are point-to-point link abstractions, i.e., they support the
communication between pairs of processes. (In the next chapter, we will be
defining broadcast communication abstractions.)

We will first describe the abstraction of fair-loss links, which captures the
basic idea that messages might be lost but the probability for a message not
to be lost is non-zero. Then we describe higher level abstractions that could
be implemented over fair-loss links using retransmission mechanisms to hide
from the programmer part of the unreliability of the network. We will more
precisely consider stubborn and perfect link abstractions. As we pointed out
earlier, unless explicitly stated otherwise, we will be assuming the crash-stop
process abstraction.

We define the properties of each of our link abstractions using two kinds
of primitives: send and deliver. The term deliver is privileged upon the more
general term receive to make it clear that we are talking about a specific link
abstraction to be implemented over the network: a message might typically
be received at a given port of the network and stored within some buffer, then
some algorithm will be executed to make sure the properties of the required
link abstraction are satisfied, before the message is actually delivered. When
there is no ambiguity, we might however use the term receive to mean deliver.

A process invokes the send primitive of a link abstraction to request the
sending of a message using that abstraction. When the process invokes that
primitive, we say that the process sends the message. It might then be up to
the link abstraction to make some effort in transmitting the message to the
destinator process, according to the actual specification of the abstraction.
The deliver primitive is invoked by the algorithm implementing the abstrac-
tion on a destinator process. When this primitive is invoked on a process p
for a message m, we say that p delivers m.

2.3.2 Fair-loss Links

The interface of the fair-loss link abstraction is described by Module 2.1, “Fair
Loss Point To Point Links (flp2p)”. This consists of two events: a request
event, used to send messages, and an indication event, used to deliver the
messages. Fair-loss links are characterized by the properties FLL1-FLL3.

Basically, the fair loss property guarantees that a link does not system-
atically drop any given message. Therefore, if neither the sender nor the
recipient crashes, and if a message keeps being re-transmitted, the message is
eventually delivered. The finite duplication property intuitively ensures that
the network does not perform more retransmission than those performed by
the processes themselves. Finally, the no creation property ensures that no
message is created or corrupted by the network.

DRAFT 33 (22/11/2004)

2.3. COMMUNICATION CHAPTER 2. BASICS

Module:

Name: FairLossPointToPointLinks (flp2p).

Events:

Request: 〈 flp2pSend, dest, m 〉: Used to request the transmission of
message m to process dest.

Indication: 〈 flp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

FLL1: Fair loss: If a message m is sent infinitely often by process pi to
process pj , and neither pi nor pj crash, then m is delivered an infinite
number of times by pj .

FLL2: Finite duplication: If a message m is sent a finite number of times
by process pi to process pj , then m cannot be delivered an infinite number
of times by pj .

FLL3: No creation: If a message m is delivered by some process pj , then
m has been previously sent to pj by some process pi.

Module 2.1 Interface and properties of fair-lossy point-to-point links.

Module:

Name: StubbornPointToPointLink (sp2p).

Events:

Request: 〈 sp2pSend, dest, m 〉: Used to request the transmission of mes-
sage m to process dest.

Indication:〈 sp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

SL1: Stubborn delivery: Let pi be any process that sends a message m to
a correct process pj . If pi does not crash, then pj delivers m an infinite
number of times.

SL2: No creation: If a message m is delivered by some process pj , then m
was previously sent to pj by some process pi.

Module 2.2 Interface and properties of stubborn point-to-point links.

2.3.3 Stubborn Links

We define the abstraction of stubborn channels in Module 2.2, “Stubborn
Point To Point Link (sp2p)”. This abstraction hides lower layer retransmis-
sion mechanisms used by the sender process, when using actual fair loss
links, to make sure its messages are eventually delivered by the destination
processes.

Algorithm 2.1, that we have called “Retransmit Forever” describes a very
simple implementation of stubborn links over fair-loss ones. As the name im-

DRAFT 34 (22/11/2004)

CHAPTER 2. BASICS 2.3. COMMUNICATION

Algorithm 2.1 Retransmit Forever.

Implements:
StubbornPointToPointLink (sp2p).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 Init 〉 do
sent := ∅;
startTimer (TimeDelay);

upon event 〈 Timeout 〉 do
forall (dest,m) ∈ sent do

trigger 〈 flp2pSend, dest, m 〉;
startTimer (TimeDelay);

upon event 〈 sp2pSend, dest, m 〉 do
trigger 〈 flp2pSend, dest, m 〉;
sent := sent ∪ { (dest,m) };

upon event 〈 flp2pDeliver, src, m 〉 do
trigger 〈 sp2pDeliver, src, m 〉;

plies, it simply keeps on retransmiting all messages sent, to overcome eventual
omissions in the links. We discuss in the following the correctness of the al-
gorithm as well as some performance considerations.

Correctness. The fair loss property of the underlying links guarantees that, if
the destinator process is correct, it will indeed deliver, infinitely often, every
message that was sent by every process that does not subsequently crashes.
This is because the algorithm makes sure the sender process will keep on
sp2pSending those messages infinitely often, unless that sender process itself
crashes. The no creation property is simply preserved from the underlying
links.

Performance. The algorithm is clearly not performant and its purpose is pri-
marily pedagogical. It is pretty clear that, within a practical application, it
does not make much sense for a process to keep on, and at every step, send-
ing messages infinitely often. There are at least three complementary ways
to prevent that and hence make the algorithm more practical. First, the
sender process might very well introduce a time delay between two sending
events (using the fair loss links). Second, it is very important to remember
that the very notion of infinity and infinitely often are context dependent:
they basically depend on the algorithm making use of stubborn links. After
the algorithm making use of those links has ended its execution, there is no
need to keep on sending messages. Third, an acknowledgement mechanism,
possibly used for groups of processes, can very well be added to mean to a

DRAFT 35 (22/11/2004)

2.3. COMMUNICATION CHAPTER 2. BASICS

Module:

Name: PerfectPointToPointLink (pp2p).

Events:

Request: 〈 pp2pSend, dest, m 〉: Used to request the transmission of
message m to process dest.

Indication:〈 pp2pDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

PL1: Reliable delivery: Let pi be any process that sends a message m to
a process pj . If neither pi nor pj crashes, then pj eventually delivers m.

PL2: No duplication: No message is delivered by a process more than once.

PL3: No creation: If a message m is delivered by some process pj , then
m was previously sent to pj by some process pi.

Module 2.3 Interface and properties of perfect point-to-point links.

sender that it does not need to keep on sending a given set of messages any-
more. This mechanism can be performed whenever a destinator process has
properly consumed those messages, or has delivered messages that semanti-
cally subsume the previous ones, e.g., in stock exchange applications when
new values might subsume old ones. Such a mechanism should however be
viewed as an external algorithm, and cannot be integrated within our algo-
rithm implementing stubborn links. Otherwise, the algorithm might not be
implementing the stubborn link abstraction anymore.

2.3.4 Perfect Links

With the stubborn link abstraction, it is up to the destinator process to check
whether a given message has already been delivered or not. Adding, besides
mechanisms for message retransmission, mechanisms for duplicate verification
helps build an even higher level abstraction: the perfect link one, sometimes
also called the reliable channel abstraction. The perfect link abstraction spec-
ification is captured by the “Perfect Point To Point Link (pp2p)” module,
i.e., Module 2.3. The interface of this module also consists of two events: a
request event (to send messages) and an indication event (used to deliver
messages). Perfect links are characterized by the properties PL1-PL3.

Algorithm 2.2 (“Eliminate Duplicates”) describes a very simple imple-
mentation of perfect links over stubborn ones. It simply keeps a record of all
messages that have been delivered in the past; when a message is received,
it is only delivered if it is not a duplicate. We discuss in the following the
correctness of the algorithm as well as some performance considerations.

Correctness. Consider the reliable delivery property of perfect links. Let m
be any message pp2pSent by some process p to some process q and assume

DRAFT 36 (22/11/2004)

CHAPTER 2. BASICS 2.3. COMMUNICATION

Algorithm 2.2 Eliminate Duplicates.

Implements:
PerfectPointToPointLinks (pp2p).

Uses:
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 pp2pSend, dest, m 〉 do
trigger 〈 sp2pSend, dest, m 〉;

upon event 〈 sp2pDeliver, src, m 〉 do
if m 6∈ delivered then

delivered := delivered ∪ { m };
trigger 〈 pp2pDeliver, src, m 〉;

that none of these processes crash. By the algorithm, process p sp2pSends m
to q using the underlying stubborn links. By the stubborn delivery property
of the underlying links, q eventually sp2pDelivers m () m at least once and
hence pp2pDelivers it. The no duplication property follows from the test per-
formed by the algorithm before delivering any message: whenever a message
is sp2pDelivered and before pp2pDelivering that message. The no creation
property simply follows from the no creation property of the underlying stub-
born links.

Performance. Besides the performance considerations we discussed for our
stubborn link implementation, i.e., Algorithm 2.1 (“Retransmit Forever”),
and which clearly apply to the perfect link implementation of Algorithm 2.2
(“Eliminate Duplicates”), there is an additional concern related to maintain-
ing the ever growing set of messages delivered at every process, provided
actual physical memory limitations.

At first glance, one might think of a simple way to circumvent this issue
by having the destinator acknowledging messages periodically and the sender
acknowledging having received such acknowledgements and promising not
to send those messages anymore. There is no guarantee however that such
messages would not be still in transit and will later reach the destinator
process. Additional mechanisms, e.g., timestamp-based, to recognize such
old messages could however be used.

2.3.5 Processes and Links

Throughout this manuscript, we will mainly assume perfect links. It may
seem awkward to assume that links are perfect when it is known that real

DRAFT 37 (22/11/2004)

2.3. COMMUNICATION CHAPTER 2. BASICS

links may crash, lose and duplicate messages. This assumption only captures
the fact that these problems can be addressed by some lower level protocol.
As long as the network remains connected, and processes do not commit
an unbounded number of omission failures, link crashes may be masked by
routing. The loss of messages can be masked through re-transmission as we
have just explained through our algorithms. This functionality is often found
in standard transport level protocols such as TCP. These are typically sup-
ported by the operating system and do not need to be re-implemented.

The details of how the perfect link abstraction is implemented is not rele-
vant for the understanding of the fundamental principles of many distributed
algorithms. On the other hand, when developing actual distributed applica-
tions, these details become relevant. For instance, it may happen that some
distributed algorithm requires the use of sequence numbers and message re-
transmissions, even assuming perfect links. In this case, in order to avoid
the redundant use of similar mechanisms at different layers, it may be more
effective to rely just on weaker links, such as fair-loss or stubborn links. This
is somehow what will happen when assuming the crash-recovery abstraction
of a process, as we will explain below.

Indeed, consider the reliable delivery property of perfect links: if a pro-
cess pi sends a message m to a process pj , then, unless pi or pj crashes, pj

eventually delivers m. With a crash-recovery process abstraction, pj might
indeed deliver m but crash and then recover. If the act of delivering is simply
that of transmitting a message, then pj might not have had the time to do
anything useful with the message before crashing. One alternative is to define
the act of delivering a message as its logging in stable storage. It is then up
to the receiver process to check in its log which messages it has delivered and
make use of them. Having to log every message in stable storage might not
however be very realistic for the logging being a very expensive operation.

The second alternative in this case is to go back to the fair-loss assumption
and build on top of it a retransmission module which ensures that the receiver
has indeed the time to perform something useful with the message, even if it
crashes and recovers, and without having to log the message. The stubborn
delivery property ensures exactly that: if a process pi sends a message m to
a correct process pj , and pi does not crash, then pj delivers m from pi an
infinite number of times. Hence, the receiver will have the opportunity to do
something useful with the message, provided that it is correct. Remember
that, with a crash-recovery abstraction, a process is said to be correct if,
eventually, it is up and does not crash anymore.

Interestingly, Algorithm 2.1 (“Retransmit Forever”) implements stubborn
links over fair loss ones also with the crash-recovery abstraction of a process;
though with a different meaning of the very notion of a correct process. This
is clearly not the case for Algorithm 2.2 (“Eliminate Duplicates”), i.e., this
algorithm is not correct with the crash-recovery abstraction of a process.

DRAFT 38 (22/11/2004)

CHAPTER 2. BASICS 2.4. TIMING ASSUMPTIONS

2.4 Timing Assumptions

An important aspect of the characterization of a distributed system is related
with the behaviour of its processes and links with respect to the passage of
time. In short, determining whether we can make any assumption on the
existence of time bounds on communication bounds and process (relative)
speeds is if primary importance when defining a model of a distributed sys-
tem. We address some time-related issues in this section and then suggest
the failure detector abstraction as a meaningful way to abstract useful timing
assumptions.

2.4.1 Asynchronous System

Assuming an asynchronous distributed system comes down to not making any
timing assumption about processes and channels. This is precisely what we
have been doing so far, i.e., when defining our process and link abstractions.
That is, we did not assume that processes have access to any sort of physical
clock, nor did we assume any bounds on processing delays and also no bounds
on communication delay.

Even without access to physical clocks, it is still possible to measure the
passage of time based on the transmission and delivery of messages, i.e., time
is defined with respect to communication. Time measured this way is called
logical time.

The following rules can be used to measure the passage of time in an
asynchronous distributed system:

• Each process p keeps an integer called logical clock lp, initially 0.
• Any time an event occurs at process p, the logical clock lp is incremented

by one unit.
• When a process sends a message, it timestamps the message with the value

of its logical clock at the moment the message is sent and tags the message
with that timestamp. The timestamp of event e is denoted by t(e).

• When a process p receives a message m with timestamp lm, p increments
its timestamp in the following way: lp = max(lp, lm) + 1.

An interesting aspect of logical clocks is the fact that they capture cause-
effect relations in systems where the processes can only interact through
message exchanges. We say that an event e1 may potentially have caused
another event e2, denoted as e1 → e2 if the following relation, called the
happened-before relation, applies:

• e1 and e2 occurred at the same process p and e1 occurred before e2 (Fig-
ure 2.4 (a)).

• e1 corresponds to the transmission of a message m at a process p and e2

to the reception of the same message at some other process q (Figure 2.4
(b)).

DRAFT 39 (22/11/2004)

2.4. TIMING ASSUMPTIONS CHAPTER 2. BASICS

e1 e2

p2

p3

p1

(a)

e1

p2

p3

p1

e2

(b)

e1

p2

p3

p1

e2

(c)

Figure 2.4. The happened-before relation.

• there exists some event e′ such that e1 → e′ and e′ → e2 (Figure 2.4 (c)).

It can be shown that if the events are timestamped with logical clocks,
then e1 → e2 ⇒ t(e1) < t(e2). Note that the opposite implication is not true.

As we discuss in the next chapters, even in the absence of any physical
timing assumption, and using only a logical notion of time, we can imple-
ment some useful distributed programming abstractions. Many abstractions
do however need some physical timing assumptions. In fact, even a very
simple form of agreement, namely consensus, is impossible to solve in an
asynchronous system even if only one process fails, and it can only do so by
crashing (see the historical note at the end of this chapter). In this prob-
lem, which we will address later in this manuscript, the processes start, each
with an initial value, and have to agree on a common final value, out the
initial values. The consequence of this result is immediate for the impossibil-
ity of deriving algorithms for many agreement abstractions, including group
membership or totally ordered group communication.

2.4.2 Synchronous System

Whilst assuming an asynchronous system comes down not to make any physi-
cal timing assumption on processes and links, assuming a synchronous system
comes down to assuming the following three properties:

1. Synchronous computation. There is a known upper bound on processing
delays. That is, the time taken by any process to execute a step is always
less than this bound. Remember that a step gathers the delivery of a
message (possibly nil) sent by some other process, a local computation
(possibly involving interaction among several layers of the same process),
and the sending of a message to some other process.

2. Synchronous communication. There is a known upper bound on message
transmission delays. That is, the time period between the instant at which
a message is sent and the time at which the message is delivered by the
destination process is less than this bound.

3. Synchronous physical clocks. Processes are equipped with a local physical
clock. There is a known upper bound on the rate at which the local
physical clock deviates from a global real time clock (remember that we

DRAFT 40 (22/11/2004)

CHAPTER 2. BASICS 2.4. TIMING ASSUMPTIONS

make here the assumption that such a global real time clock exists in
our universe, i.e., at least as a fictional device to simplify the reasoning
about the processes, but this is not accessible to the processes).

In a synchronous distributed system, several useful services can be pro-
vided, such as, among others:

• Timed failure detection. Every crash of a process may be detected within
bounded time: whenever a process p crashes, all processes that did not
crash, detect the crash of p within a known bounded time. This can be
achieved for instance using a heartbeat mechanism, where processes peri-
odically exchange (heartbeat) messages and detect, within a limited time
period, the crash of processes that have crashed.

• Measure of transit delays. It is possible to get a good approximation the
delays spent by messages in the communication links and, from there, infer
which nodes are more distant or connected by slower or overloaded links.

• Coordination based on time. One can implement a lease abstraction that
provides the right to execute some action that is granted for a fixed amount
of time, e.g., manipulating a specific file.

• Worst case performance. By assuming a bound on the number of faults
and on the load of the system, it is possible to derive worst case response
times for a given algorithm. This allows a process to know when a message
it has sent has been received by the destination process (provided that the
latter is correct). This can be achieved even if we assume that processes
commit omission failures without crashing, as long as we bound the number
of these omission failures.

• Synchronized clocks. A synchronous system makes it possible to synchro-
nize the clocks of the different processes in such a way that they are never
apart by more than some known constant δ, known as the clock synchro-
nization precision. Synchronized clocks allow processes to coordinate their
actions and ultimately execute synchronized global steps. Using synchro-
nized clocks makes it possible to timestamp events using the value of the
local clock at the instant they occur. These timestamps can be used to
order events in the system.
If there was a system where all delays were constant, it would be possible
to achieve perfectly synchronized clocks (i.e., where δ would be 0). Unfor-
tunately, such a system cannot be built. In practice, δ is always greater
than zero and events within δ cannot be ordered.

Not surprisingly, the major limitation of assuming a synchronous system
is the coverage of the system, i.e., the difficulty of building a system where
the timing assumptions hold with high probability. This typically requires
careful analysis of the network and processing load and the use of appropriate
processor and network scheduling algorithms. Whilst this might be feasible
for some local area networks, it might not be so, or even desirable, in larger
scale systems such as the Internet. In this case, i.e., on the Internet, there

DRAFT 41 (22/11/2004)

2.5. ABSTRACTING TIME CHAPTER 2. BASICS

are periods where messages can take a very long time to arrive to their
destination. One should consider very large values to capture the processing
and communication bounds. This however would mean considering worst
cases values which are typically much higher than average values. These worst
case values are usually so high that any application based on them would be
very inefficient.

2.4.3 Partial Synchrony

Generally, distributed systems are completely synchronous most of the time.
More precisely, for most systems we know of, it is relatively easy to define
physical time bounds that are respected most of the time. There are however
periods where the timing assumptions do not hold, i.e., periods during which
the system is asynchronous. These are periods where the network is for in-
stance overloaded, or some process has a shortage of memory that slows it
down. Typically, the buffer that a process might be using to store incoming
and outgoing messages might get overflowed and messages might thus get lost,
violating the time bound on the delivery. The retransmission of the messages
might help ensure the reliability of the channels but introduce unpredictable
delays. In this sense, practical systems are partially synchronous.

One way to capture the partial synchrony observation is to assume that
the timing assumptions only hold eventually (without stating when exactly).
This boils down to assuming that there is a time after which these assump-
tions hold forever, but this time is not known. In a way, instead of assuming a
synchronous system, we assume a system that is eventually synchronous. It is
important to notice that making such assumption does not in practice mean
that (1) there is a time after which the underlying system (including applica-
tion, hardware and networking components) is synchronous forever, nor does
it mean that (2) the system needs to be initially asynchronous and then only
after some (long time) period becomes synchronous. The assumption simply
captures the very fact that the system might not always be synchronous, and
there is no bound on the period during which it is asynchronous. However,
we expect that there are periods during which the system is synchronous,
and some of these periods are long enough for an algorithm to terminate its
execution.

2.5 Abstracting Time

2.5.1 Failure Detection

So far, we contrasted the simplicity with the inherent limitation of the asyn-
chronous system assumption, as well the power with the limited coverage
of the synchronous assumption, and we discussed the intermediate partially

DRAFT 42 (22/11/2004)

CHAPTER 2. BASICS 2.5. ABSTRACTING TIME

synchronous system assumption. Each of these make some sense for spe-
cific environments, and need to be considered as plausible assumptions when
reasoning about general purpose implementations of high level distributed
programming abstractions.

As far as the asynchronous system assumption is concerned, there is no
timing assumptions to be made and our process and link abstractions directly
capture that case. These are however not sufficient for the synchronous and
partially synchronous system assumptions. Instead of augmenting our process
and link abstractions with timing capabilities to encompass the synchronous
and partially synchronous system assumptions, we consider a separate kind
of abstractions to encapsulates those capabilities. Namely, we consider failure
detectors. As we will discuss in the next section, failure detectors provide in-
formation (not necessarily fully accurate) about which processes are crashed.
We will in particular introduce a failure detector that encapsulates timing
assumptions of a synchronous system, as well as failure detectors that encap-
sulate timing assumptions of a partially synchronous system. Not surprisingly,
the information provided by the first failure detector about crashed processes
will be more accurate than those provided by the others. More generally, the
stronger are the timing assumptions we make on the distributed system, i.e.,
to implement the failure detector, the more accurate that information can
be.

There are at least two advantages of the failure detector abstraction, over
an approach where we would directly make timing assumptions on processes
and links. First, the failure detector abstraction alleviates the need for ex-
tending the process and link abstractions introduced earlier in this chapter
with timing assumptions: the simplicity of those abstractions is preserved.
Second, and as will see in the following, we can reason about failure detector
properties using axiomatic properties with no explicit references about phys-
ical time. Such references are usually very error prone. In practice, except
for specific applications like process control, timing assumptions are indeed
mainly used to detect process failures, i.e., to implement failure detectors:
this is exactly what we do.

2.5.2 Perfect Failure Detection

In synchronous systems, and assuming a process crash-stop abstraction,
crashes can be accurately detected using timeouts. For instance, assume that
a process sends a message to another process and awaits a response. If the
recipient process does not crash, then the response is guaranteed to arrive
within a time period equal to the worst case processing delay plus two times
the worst case message transmission delay (ignoring the clock drifts). Using
its own clock, a sender process can measure the worst case delay required to
obtain a response and detect a crash in the absence of such a reply within
the timeout period: the crash detection will usually trigger a corrective pro-

DRAFT 43 (22/11/2004)

2.5. ABSTRACTING TIME CHAPTER 2. BASICS

Module:

Name: PerfectFailureDetector (P).

Events:

Indication: 〈 crash, pi 〉: Used to notify that process pi has crashed.

Properties:

PFD1: Strong completeness: Eventually every process that crashes is per-
manently detected by every correct process.

PFD2: Strong accuracy: No process is detected by any process before it
crashes.

Module 2.4 Interface and properties of the perfect failure detector.

Algorithm 2.3 Exclude on Timeout.

Implements:
PerfectFailureDetector (P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π;
detected := ∅;
startTimer (TimeDelay);

upon event 〈 Timeout 〉 do
forall pi ∈ Π do

if pi 6∈ alive and pi 6∈detected then
detected := detected ∪ {pi};
trigger 〈 crash, pi 〉;

trigger 〈 pp2pSend, pi, [Heartbeat] 〉;
alive := ∅;
startTimer (TimeDelay);

upon event 〈 pp2pDeliver, src, [Heartbeat] 〉 do
alive := alive ∪ {src};

cedure. We encapsulate such a way of detecting failures in a synchronous
system through the use of a perfect failure detector abstraction.

Specification. The perfect failure detector outputs, at every process, the
set of processes that are detected to have crashed. A perfect failure detector
can be described by the accuracy and completeness properties of Module 2.4,
“Perfect Failure Detector (P)”. The act of detecting a crash coincides with
the triggering of the event crash: once the crash of a process p is detected by
some process q, the detection is permanent, i.e., q will not change its mind.

Algorithm. Algorithm 2.3, that we call “Exclude on Timeout”, implements
a perfect failure detector assuming a synchronous system. Communication

DRAFT 44 (22/11/2004)

CHAPTER 2. BASICS 2.5. ABSTRACTING TIME

links do not lose messages sent by a correct process to a correct process
(perfect links) and the transmission period of every message is bounded by
some known constant, in comparison to which the local processing time of
a process, as well as the clock drifts, are negligible. The algorithm makes
use of a specific timeout mechanism initialized with a timeout delay chosen
to be large enough such that, within that period, every process has enough
time to send a message to all, and each of these messages has enough time
to be delivered at its destination. Whenever the timeout period expires, the
specific Timeout event is triggered.

In order for the algorithm no to trigger an infinite number of failure
detection events (crash pi) for every faulty process pi, once an event has
been triggered for a given process pi, we simply put that process in a specific
variable detected and save the triggering of future failure detection events for
pi.

Correctness. Consider the strong completeness property of a perfect failure
detector. If a process p crashes, it stops sending heartbeat messages and no
process will deliver its messages: remember that perfect links ensure that no
message is delivered unless it was sent. Every correct process will thus detect
the crash of p.

Consider now the strong accuracy property of a perfect failure detector.
The crash of a process p is detected by some other process q, only if q does not
deliver a message from p before a timeout period. This can only happen if p
has indeed crashed because the algorithm makes sure p must have otherwise
sent a message and the synchrony assumption implies that the message should
have been delivered before the timeout period.

2.5.3 Eventually Perfect Failure Detection

Just like we can encapsulate timing assumptions of a synchronous system
in a perfect failure detector abstraction, we can similarly encapsulate timing
assumptions of a partially synchronous system within an eventually perfect
failure detector abstraction.

Specification. Basically, the eventually perfect failure detector abstraction
guarantees that there is a time after which crashes can be accurately detected.
This captures the intuition that, most of the time, timeout delays can be
adjusted so they can accurately detect crashes. However, there are periods
where the asynchrony of the underlying system prevents failure detection to
be accurate and leads to false suspicions. In this case, we talk about failure
suspicion instead of detection.

More precisely, to implement an eventually perfect failure detector ab-
straction, the idea is to also use a timeout, and to suspect processes that
did not send heartbeat messages within a timeout delay. Obviously, a suspi-
cion might be wrong in a partially synchronous system. A process p might
suspect a process q, even if q has not crashed, simply because the timeout

DRAFT 45 (22/11/2004)

2.5. ABSTRACTING TIME CHAPTER 2. BASICS

Module:

Name: EventuallyPerfectFailureDetector (3P).

Events:

Indication: 〈 suspect, pi 〉: Used to notify that process pi is suspected to
have crashed.

Indication: 〈 restore, pi 〉: Used to notify that process pi is not suspected
anymore.

Properties:

EPFD1: Strong completeness: Eventually, every process that crashes is
permanently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is sus-
pected by any correct process.

Module 2.5 Interface and properties of the eventually perfect failure detector.

delay chosen by p to suspect the crash of q was too short. In this case, p’s
suspicion about q is false. When p receives a message from q, and p will if
p and q are correct, p revises its judgement and stops suspecting q. Process
p also increases its timeout delay: this is because p does not know what the
bound on communication delay will eventually be; it only knows there will
be one. Clearly, if q now crashes, p will eventually suspect q and will never
revise its judgement. If q does not crash, then there is a time after which
p will stop suspecting q, i.e., the timeout delay used by p to suspect q will
eventually be large enough because p keeps increasing it whenever it commits
a false suspicion. This is because we assume that there is a time after which
the system is synchronous.

An eventually perfect failure detector can be described by the accuracy
and completeness properties (EPFD1-2) of Module 2.5, “Eventually Perfect
Failure Detector (3P)”. A process p is said to be suspected by process q
whenever q triggers the event suspect(pi) and does not subsequently trigger
the event restore(pi).

Algorithm. Algorithm 2.4, that we have called “Increasing Timeout”, im-
plements an eventually perfect failure detector assuming a partially syn-
chronous system. As for Algorithm 2.3 (“Exclude on Timeout”), we make
use of a specific timeout mechanism initialized with a timeout delay. The
main difference here is that the timeout delay increases whenever a process
realizes that it has falsely suspected a process that is actually correct.

Correctness. The strong completeness property is satisfied as for Algorithm 2.3
(“Exclude on Timeout”). If a process crashes, it will stop sending messages,
will be suspected by every correct process and no process will ever revise its
judgement about that suspicion.

Consider now the eventual strong accuracy property. Consider the time
after which the system becomes synchronous, and the timeout delay becomes

DRAFT 46 (22/11/2004)

CHAPTER 2. BASICS 2.5. ABSTRACTING TIME

Algorithm 2.4 Increasing Timeout.

Implements:
EventuallyPerfectFailureDetector (3P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π;
suspected := ∅;
period := TimeDelay;
startTimer (period);

upon event 〈 Timeout 〉 do
if alive ∩ suspected 6= ∅ then

period := period + ∆;
forall pi ∈ Π do

if pi 6∈ alive then
suspected := suspected ∪ {pi};
trigger 〈 crash, pi 〉;

else
if pi ∈ suspected then

suspected := suspected \ {pi};
trigger 〈 restore, pi 〉;

trigger 〈 pp2pSend, pi, [Heartbeat] 〉;
alive := ∅;
startTimer (period);

upon event 〈 pp2pDeliver, src, [Heartbeat] 〉 do
alive := alive ∪ { src };

larger than message transmission delays (plus clock drifts and local processing
periods). After this time, any message sent by a correct process to a correct
process is delivered within the timeout delay. Hence, any correct process that
was wrongly suspecting some correct process will revise its suspicion and no
correct process will ever be suspected by a correct process.

2.5.4 Eventual Leader Election

Often, one may not need to detect which processes have failed, but rather
need to agree on a process that has not failed and that may act as the
coordinator in some steps of a distributed algorithm. This process is in a
sense trusted by the other processes and elected as their leader. The leader
detector abstraction we discuss here provides such support.

Specification. The eventual leader detector abstraction, with the proper-
ties (CD1-2) stated in Module 2.6, and denoted by Ω, encapsulates a leader
election algorithm which ensures that eventually the correct processes will

DRAFT 47 (22/11/2004)

2.5. ABSTRACTING TIME CHAPTER 2. BASICS

Module:

Name: EventualLeaderDetector (Ω).

Events:

Indication: 〈 trust, pi 〉: Used to notify that process pi is trusted to be
leader.

Properties:

CD1: Eventual accuracy: There is a time after which every correct process
trusts some correct process.

CD2: Eventual agreement: There is a time after which no two correct
processes trust different processes.

Module 2.6 Interface and properties of the eventual leader detector.

elect the same correct process as their leader. Nothing precludes the possibil-
ity for leaders to change in an arbitrary manner and for an arbitrary period
of time. Once a unique leader is determined, and does not change again, we
say that the leader has stabilized. Such a stabilization is guaranteed by the
specification of Module 2.6.

Algorithms. With a crash-stop process abstraction, Ω can be obtained di-
rectly from 3P . Indeed, it is is enough to trust the process with the highest
identifier among all processes that are not suspected by 3P . Eventually, and
provided at least one process is correct, exactly one correct process will be
trusted by all correct processes.

Interestingly, the leader abstraction Ω can also be implemented with the
process crash-recovery abstraction, also using timeouts and assuming the
system to be partially synchronous. Algorithm 2.5 describes such implemen-
tation assuming that at least one process is correct. Remember that this
implies, with a process crash-recovery abstraction, that at least one process
does never crash, or eventually recovers and never crashes again (in every
execution of the algorithm).

In Algorithm 2.5, called “elect Lower Epoch”, every process pi keeps track
of how many times it crashed and recovered, within an epoch integer variable.
This variable, representing the epoch number of pi, is retrieved, incremented,
and then stored in stable storage whenever pi recovers from a crash. The goal
of the algorith is to elect has a leader the active process with lower epoch,
i.e., that has crashed and recovered less times.

Process pi periodically sends to all a heartbeat message together with its
current epoch number. Besides, every process pi keeps a list of potential
leader processes, within the variable candidate. Initially, at every process pi,
candidate contains all processes. Then any process that does not communicate
with pi is excluded from candidate. A process pj that communicates with pi,
after having recovered or being slow in communicating with pi, is simply
added again to candidate, i.e., considered a potential leader for pi.

DRAFT 48 (22/11/2004)

CHAPTER 2. BASICS 2.5. ABSTRACTING TIME

Initially, the leader for all processes is the same and is process p1. After
every timeout delay, pi checks whether p1 can still be the leader. This test
is performed through a function select that returns one process among a
set of processes, or nothing if the set is empty. The function is the same
at all processes and returns the same process (identifier) for the same given
set (candidate), in a deterministic manner and following the following rule:
among processes with the lowest epoch number, the process with the lowest
index is returned. This guarantees that, if a process pj is elected leader, and
pj keeps on crashing and recovering forever, pj will eventually be replaced by
a correct process. By definition, the epoch number of a correct process will
eventually stop increasing.

A process increases its timeout delay whenever it changes a leader. This
guarantees that, eventually, if leaders keep changing because of the timeout
delay being too short with respect to communication delays, the delay will
increase and become large enough for the leader to stabilize when the system
becomes synchronous.

Correctness. Consider the eventual accuracy property and assume by con-
tradiction that there is a time after which a correct process pi permanently
trusts the same faulty process, say pj . There are two cases to consider (re-
member that we consider a crash-recovery process abstraction): (1) process pj

eventually crashes and never recovers again, or (2) process pj keeps crashing
and recovering forever.

Consider case (1). Since pj crashes and does never recover again, pj will
send its heartbeat messages to pi only a finite number of times. By the no
creation and finite duplication properties of the underlying links (fair loss),
there is a time after which pi stops delivering such messages from pi. Even-
tually, pj will be excluded from the set (candidate) of potential leaders for pi

and pi will elect a new leader.
Consider now case (2). Since pj keeps on crashing and recovering forever,

its epoch number will keep on increasing forever. If pk is a correct process,
then there is a time after which its epoch number will be lower than that
of pj . After this time, either (2.1) pi will stop delivering messages from pj ,
and this can happen if pj crashes and recovers so quickly that it does not
have the time to send enough messages to pi (remember that with fail loss
links, a message is guaranteed to be delivered by its destinator only it is sent
infinitely often), or (2.2) pi delivers messages from pj but with higher epoch
numbers than those of pk. In both cases, pi will stop trusting pj .

Process pi will eventually trust only correct processes.
Consider now the eventual agreement property. We need to explain why

there is a time after which no two different processes are trusted by two
correct processes. Consider the subset of correct processes in a given execu-
tion S. Consider furthermore the time after which (a) the system becomes
synchronous, (b) the processes in S do never crash again, (c) their epoch
numbers stop increasing at every process, and (d) for every correct process

DRAFT 49 (22/11/2004)

2.6. MODELS CHAPTER 2. BASICS

Algorithm 2.5 Elect Lower Epoch.

Implements:
EventualLeaderDetector (Ω).

Uses:
FairLossPointToPointLinks (flp2p)

upon event 〈 Init 〉 do
leader := p1;
candidate := Π;
period := TimeDelay;
startTimer (TimeDelay);
epoch := 0;

upon event 〈 Recovery 〉 do
leader := p1;
candidate := Π;
period := TimeDelay;
startTimer (TimeDelay);
retrieve(epoch); epoch := epoch + 1; store(epoch);

upon event 〈 Timeout 〉 do
if leader 6= select(candidate) then

period := period + ∆;
leader := select(candidate);
trigger 〈 trust, leader 〉;

candidate := ∅;
forall pi ∈ Π do

trigger 〈 sp2pSend, pi, [Heartbeat, epoch] 〉;
startTimer (period);

upon event 〈 flp2pDeliver, src, [Heartbeat, epc] 〉 do
if exists (s, e) ∈ candidate such that (s= src) ∧ (e<epc) then

candidate := candidate \ {(s, e)};
candidate := candidate ∪ { (src, epc) };

pi and every faulty process pj , pi stops delivering messages from pj , or pj ’s
epoch number at pi gets strictly larger than the largest epoch number of S’s
processes at pi. By the assumptions of a partially synchronous system, the
properties of the underlying fair loss channels and the algorithm, this time
will eventually be reached. After it is reached, every process that is trusted
by a correct process will be one of the processes in S. By the function select
all correct processes will trust the same process within this set.

2.6 Distributed System Models

A combination of (1) a process abstraction, (2) a link abstraction and (3)
(possibly) a failure detector abstraction defines a distributed system model.

DRAFT 50 (22/11/2004)

CHAPTER 2. BASICS 2.6. MODELS

In the following, we discuss five models that will be considered throughout
this manuscript to reason about distributed programming abstractions and
the algorithms used to implement them. We will also discuss some important
properties of abstraction specifications and algorithms that will be useful
reasoning tools for the following chapters.

2.6.1 Combining Abstractions

Clearly, we will not consider all possible combinations of basic abstractions.
On the other hand, it is interesting to discuss more than one possible com-
bination to get an insight on how certain assumptions affect the algorithm
design. We have selected five specific combinations to define five different
models studied in this manuscript. Namely, we consider the following mod-
els:

• Fail-stop. We consider the crash-stop process abstraction, where the pro-
cesses execute the deterministic algorithms assigned to them, unless they
possibly crash, in which case they do not recover. Links are considered to
be perfect. Finally, we assume the existence of a perfect failure detector
(P) (Module 2.4). As the reader will have the opportunity to observe, when
comparing algorithms in this model with algorithms in the four other mod-
els discussed below, making these assumptions substantially simplify the
design of distributed algorithms.

• Fail-silent. We also consider here the crash-stop process abstraction to-
gether with perfect links. Nevertheless, we do not assume here any failure
detection abstraction: that is, the processes have no means to get any in-
formation about other processes having crashed.

• Fail-noisy. This case is somehow intermediate between the two above. We
also consider here the crash-stop process abstraction together with perfect
links. In addition, we assume here the existence of the eventually perfect
failure detector (3P) of Module 2.5 or the eventual leader detector (Ω) of
Module 2.6.

• Fail-recovery. We consider here the crash-recovery process abstraction,
according to which processes may crash and later recover and still partic-
ipate in the algorithm. Algorithms devised with this basic abstraction in
mind have to deal with the management of stable storage and with the dif-
ficulties of dealing with amnesia, i.e., the fact that a process might forget
what it might have done prior to crashing. Links are assumed to be stub-
born and we might rely on the eventual leader detector (Ω) of Module 2.6.

• Randomized. We will consider here a specific particularity in the process
abstraction: algorithms might not be deterministic. That is, the processes
might use a random oracle to choose among several steps to execute. Typ-
ically, the corresponding algorithms implement a given abstraction with
some (hopefully high) probability.

DRAFT 51 (22/11/2004)

2.6. MODELS CHAPTER 2. BASICS

It is important to notice that some of the abstractions we study cannot
be implemented in all models. For example, the coordination abstractions
we consider in Chapter 7 do not have fail-silent solutions and it is not clear
either how to devise meaningful randomized solutions to such abstractions.
For other abstractions, such solutions might exist but devising them is still an
active area of research. This is for instance the case for randomized solutions
to the shared memory abstractions we consider in Chapter 4.

2.6.2 Measuring Performance

When we present an algorithm that implements a given abstraction, we an-
alyze its cost mainly using two metrics: (1) the number of messages required
to terminate an operation of the abstraction, and (2) the number of com-
munication steps required to terminate such an operation. When evaluating
the performance of distributed algorithms in a crash-recovery model, besides
the number of communication steps and the number of messages, we also
consider (3) the number of accesses to stable storage (also called logs).

In general, we count the messages, communication steps, and disk accesses
in specific executions of the algorithm, specially executions when no failures
occur. Such executions are more likely to happen in practice and are those
for which the algorithms are optimized. It does make sense indeed to plan
for the worst, by providing means in the algorithms to tolerate failures, and
hope for the best, by optimizing the algorithm for the case where failures do
not occur. Algorithms that have their performance go proportionally down
when the number of failures increass are sometimes called gracefully degrading
algorithms.

Precise performance studies help select the most suitable algorithm for a
given abstraction in a specific environment and conduct real-time analysis.
Consider for instance an algorithm that implements the abstraction of perfect
communication links and hence ensures that every message sent by a correct
process to a correct process is eventually delivered by the latter process. It
is important to notice here what such a property states in terms of timing
guarantees: for every execution of the algorithm, and every message sent in
that execution, there is a time delay within which the message is eventu-
ally delivered. The time delay is however defined a posteriori. In practice
one would require that messages be delivered within some time delay de-
fined a priori, for every execution and possibly every message. To determine
whether a given algorithm provides this guarantee in a given environment,
a careful performance study needs to be conducted on the algorithm, taking
into account various parameters of the environment, such as the operating
system, the scheduler, and the network. Such studies are out of the scope of
this manuscript. We indeed present algorithms that are applicable to a wide
range of distributed systems, where bounded delays cannot be enforced, and
where infrastructures such as real-time are not strictly required.

DRAFT 52 (22/11/2004)

CHAPTER 2. BASICS Hands-On

Hands-On

We now describe the implementation of some of the abstractions presented
in this chapter. However, before proceeding we need to introduce some addi-
tional components of the Appia framework.

Sendable Event

For the implementation of the protocols that we will be describing, we have
defined a specialization of the basic Appia Event, called SendableEvent. The
interface of this event is presented in Listing 2.1.

Listing 2.1. SendableEvent interface.

public class SendableEvent extends Event implements Cloneable {
public Object dest;
public Object source;
protected Message message;

public SendableEvent();
public SendableEvent(Channel channel, int dir, Session source);
public SendableEvent(Message msg);
public SendableEvent(Channel channel, int dir, Session source, Message msg);

public Message getMessage();
public void setMessage(Message message);
public Event cloneEvent();

}

A SendableEvent owns three relevant attributes, namely: a Message, that
contains the data to be sent on the network, the source, that identifies the
sending process; and the destination attribute, that identifies the recipient
processes.

Since our implementation are based on low-level protocols from the IP
family, processes will be identified by a tuple (ip address, port). Therefore,
both the source and the dest attributes should contain an object of type In-

etWithPort (used by java TCP and UDP interface).

Message and Extended Message

The Message component is provided by the Appia framework to simplify the
task of adding and extracting protocol headers to/from the message pay-
load. Chunks of data can be added or extracted from the message using the
auxiliary MsgBuffer data structure, depicted in Listing 2.2.

Listing 2.2. MsgBuffer interface.

public class MsgBuffer {
public byte[] data;
public int off ;
public int len;

DRAFT 53 (22/11/2004)

Hands-On CHAPTER 2. BASICS

public MsgBuffer();
public MsgBuffer(byte[] data, int off, int len);

}

The interface of the Message object is partially listed in Listing 2.3. Note
the methods to push and pop MsgBuffers to/from a message, as well as meth-
ods to fragment and concatenate messages.

Listing 2.3. Message interface (partial).

public class Message implements Cloneable {

public Message();

public int length();
public void peek(MsgBuffer mbuf);
public void pop(MsgBuffer mbuf);
public void push(MsgBuffer mbuf);
public void frag(Message m, int length);
public void join(Message m);
public Object clone() throws CloneNotSupportedException;

}

To ease the programming of distributed protocols in java, the basic Message

class was extended to allow arbitrary objects to be pushed and pop. The
class that provides this extended functionality is the ExtendedMessage class,
whose interface is depicted in Listing 2.4. This is the class we will be using
throughout the remaining of the book.

Listing 2.4. ExtendedMessage interface (partial).

public class ExtendedMessage extends Message {

public ExtendedMessage(); {

public void pushObject(Object obj);
public void pushLong(long l);
public void pushInt(int i);
/∗ ... ∗/
public Object popObject();
public long popLong();
public int popInt();
/∗ ... ∗/
public Object peekObject();
public long peekLong();
public int peekInt();
/∗ ... ∗/
public Object clone() throws CloneNotSupportedException;

}

Fair Loss Point to Point Links

The Fair Loss Point to Point Links abstraction is implemented in Appia by
the UdpSimple protocol. The UdpSimple protocol uses UDP sockets as unre-
liable communication channels. When a UdpSimple session receives a Send-

ableEvent with the down direction (i.e., a transmission request) it extracts the

DRAFT 54 (22/11/2004)

CHAPTER 2. BASICS Hands-On

message from the event and pushes it to the TCP socket. When a message is
received from a TCP socket, a SendableEvent is created with the up direction.

Perfect Point to Point Links

The Perfect Point to Point Links abstraction is implemented in Appia by
the TcpComplete protocol. As its name implies, this implementation is based
on the TCP protocol, more precisely, it uses TCP sockets as communication
channels. When a TcpComplete session receives a SendableEvent with the down

direction (i.e., a transmission request) it extracts the message from the event
and pushes it to the TCP socket. When a message is received from a TCP
socket, a SendableEvent is created with the up direction.

A TcpComplete session automatically establishes a TCP connection when
requested to send a message to a given destination for the first time. There-
fore, a single session implements multiple point-to-point links.

It should be noted that, in pure asynchronous systems, this implementa-
tion is just an approximation of the Perfect Point-to-Point Link abstraction.
In fact, TCP includes acknowledgements and retransmission mechanisms (to
recover from omissions in the network). However, if the other endpoint is
unresponsive, TCP breaks the connection, assuming that the corresponding
node has crashed. Therefore, TCP makes synchronous assumptions about
the system and fails to deliver the messages when it erroneously “suspects”
correct processes.

Perfect Failure Detector

In this case, the Perfect Failure Detector (PFD) is only used with Perfect
Point to Point Links (PP2PL), which are builded using TCP channels. When
a TCP socket is closed, the protocol that implements PP2PL sends an event
to the Appia channel. This event is accepted by the PFD protocol, which
sends a Crash event to notify other layers. The implementation of this notifi-
cation is shown in Listing 2.5. The protocols that need a PFD declare that
will accept the Crash event and will process it, as shown in the implementation
of the reliable broadcast protocols, which are described in the next Section.

To notify other layers of a closed socket, the PP2PL protocol must first
create the corresponding TCP sockets. The way the PP2PL is implemented,
these sockets are open on-demand, i.e., when there is the need to send/receive
something from a remote peer. To ensure that these sockets are created, the
PFD session send a message to all other processes when it is started.

Note that the PFD abstraction assumes that all processes are started
before it starts operating. Therefore, the user must start all processes before
activating the perfect failure detector. Otherwise, the detector may detect as
failed processes that have not yet been launched. Therefore, in subsequent
Chapters, when using the perfect failure detector in conjunction with other

DRAFT 55 (22/11/2004)

Hands-On CHAPTER 2. BASICS

protocols, you will be requested to explicitly start the perfect failure detector.
In most test applications, this is achieved by issuing the startpfd request
on the command line. The implementation is ilustrated in Listing 2.5.

Listing 2.5. Perfect failure detector implementation.

public class PerfectFailureDetectorSession extends Session {
private Channel channel;
private ProcessSet processes;
private boolean started;

public PerfectFailureDetectorSession(Layer layer) {
super(layer);
started = false;

}

public void handle(Event event) {
if (event instanceof TcpUndeliveredEvent)

notifyCrash((TcpUndeliveredEvent) event);
else if (event instanceof ChannelInit)

handleChannelInit((ChannelInit) event);
else if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent) event);
else if (event instanceof PFDStartEvent)

handlePFDStart((PFDStartEvent) event);
}

private void handleChannelInit(ChannelInit init) {
channel = init.getChannel();
init .go();

}

private void handleProcessInit(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();

}

private void handlePFDStart(PFDStartEvent event) {
started = true;
event.go();
CreateChannelsEvent createChannels =

new CreateChannelsEvent(channel,Direction.DOWN,this);
createChannels.go();

}

private void notifyCrash(TcpUndeliveredEvent event) {
if (started){

SampleProcess p = processes.getProcess((InetWithPort) event.who);
if (p.isCorrect ()) {

p.setCorrect(false);
Crash crash =

new Crash(channel,Direction.UP,this,p.getProcessNumber());
crash.go();

}
}

}
}

DRAFT 56 (22/11/2004)

CHAPTER 2. BASICS Exercises

Exercises

Exercise 2.1 Explain under which assumptions (a) the fail-recovery and (b)
the fail-silent models where any process can commit omission failures are
similar?

Exercise 2.2 Does the following statement satisfy the synchronous process-
ing assumption: on my server, no request ever takes more than one week to
be processed?

Exercise 2.3 Can we implement the perfect failure detector in a model where
the processes could commit omissions failures but where we could not bound
the number of such failures? What if this number is bounded but unknown?
What if processes that can commit omission failures commit a limited and
known number of such failures and then crash?

Exercise 2.4 In a fail-stop model, can we determine a priori a time period,
such that, whenever a process crashes, all correct processes suspect this process
to have crashed after this period?

Exercise 2.5 In a fail-stop model, which of the following properties are
safety properties:

1. every process that crashes is eventually detected;
2. no process is detected before it crashes;
3. no two processes decide differently;
4. no two correct processes decide differently;
5. every correct process decides before X time units;
6. if some correct process decides, then every correct process decides.

Exercise 2.6 Consider any algorithm A that implements a distributed pro-
gramming abstraction M using a failure detector D that is assumed to be
eventually perfect. Can A violate the safety property of M if failure detector
D is not eventually perfect, e.g., D permanently outputs the empty set?

Exercise 2.7 Specify a distributed programming abstraction M and an al-
gorithm A implementing M using a failure detector D that is supposed to
satisfy a set of properties, such that the liveness of M is violated if D does
not satisfy its properties.

DRAFT 57 (22/11/2004)

Solutions CHAPTER 2. BASICS

Solutions

Solution 2.1 When processes crash, they lose the content of their volatile
memory and they commit omissions. If we assume (1) that processes do have
stable storage and store every update on their state within the stable storage,
and (2) that they are not aware they have crashed and recovered, then the
two models are similar. 2

Solution 2.2 Yes. This is because the time it takes for the process (i.e. the
server) to process a request is bounded and known: it is one week. 2

Solution 2.3 It is impossible to implement a perfect failure detector if the
number of omissions failures is unknown. Indeed, to guarantee the strong
completeness property of the failure detector, a process p must detect the
crash of another one q after some timeout delay. No matter how this delay
is chosen, it can however exceed the tranmission delay times the number of
omissions that q commits. This would lead to violate the strong accuracy
property of the failure detector. If the number of possible omissions is known
in a synchronous system, we can use it to calibrate the timeout delay of the
processes to accurately detect failures. If the delay exceeds the maximum
time during which a process can commit omission failures without having
actually crashed, it can safely detect the process to have crashed. 2

Solution 2.4 No. The perfect failure detector only ensures that processes
that crash are eventually detected: there is no bound on the time it takes for
these crashes to be detected. This points out a fundamental difference be-
tween algorithms assuming a synchronous system and algorithms assuming
a perfect failure detector (fail-stop model). In a precise sense, a synchronous
model is strictly stronger. 2

Solution 2.5

1. Eventually, every process that crashes is eventually detected. This is a
liveness property; we can never exhibit a time t in some execution and
state that the property is violated. There is always the hope that even-
tually the failure detector detects the crashes.

2. No process is detected before it crashes. This is a safety property. If a
process is detected at time t before it has crashed, then the property is
violated at time t.

3. No two processes decide differently. This is also a safety property, because
it can be violated at some time t and never be satisfied again.

4. No two correct processes decide differently. If we do not bound the num-
ber of processes that can crash, then the property turns out to be a
liveness property. Indeed, even if we consider some time t at which two
processes have decided differently, then there is always some hope that,

DRAFT 58 (22/11/2004)

CHAPTER 2. BASICS Solutions

eventually, some of the processes might crash and validate the property.
This remains actually true even if we assume that at least one process is
correct.
Assume now that we bound the number of failures, say by F < N − 1.
The property is not anymore a liveness property. Indeed, if we consider a
partial execution and a time t at which N −2 processes have crashed and
the two remaining processes, decide differently, then there is not way we
can extend this execution and validate the property. But is the property
a safety property? This would mean that in any execution where the
property does not hold, there is a partial execution of it, such that no
matter how we extend it, the property would still not hold. Again, this
is not true. To see why, Consider the execution where less than F − 2
processes have crashed and two correct processes decide differently. No
matter what partial execution we consider, we can extend it by crashing
one of the two processes that have decided differently and validate the
property. To conclude, in the case where F < N − 1, the property is the
union of both a liveness and a safety property.

5. Every correct process decides before X time units. This is a safety prop-
erty: it can be violated at some t, where all correct processes have ex-
ecuted X of their own steps. If violated, at that time, there is no hope
that it will be satisfied again.

6. If some correct process decides, then every correct process decides. This
is a liveness property: there is always the hope that the property is sat-
isfied. It is interesting to note that the property can actually be satisfied
by having the processes not doing anything. Hence, the intuition that a
safety property is one that is satisfied by doing nothing might be mis-
leading.

2

Solution 2.6 No. Assume by contradiction that A violates the safety prop-
erty of M if D does not satisfy its properties. Because of the very nature of
a safety property, there is a time t and an execution R of the system such
that the property is violated at t in R. Assume now that the properties of
the eventually perfect failure detector hold after t in a run R′ that is similar
to R up to time t. A would violate the safety property of M in R′, even if
the failure detector is eventually perfect. 2

Solution 2.7 An example of such abstraction is simply the eventually perfect
failure detector. Note that such abstraction has no safety property. 2

DRAFT 59 (22/11/2004)

Historical Notes CHAPTER 2. BASICS

Historical Notes

• In 1978, the notions of causality and logical time were introduced in proba-
bly the most influential paper in the area of distributed computing: (Lam-
port 1978).

• In 1982, In (Lamport, Shostak, and Pease 1982), agreement problems were
considered in an arbitrary fault-model, also called the malicious or the
Byzantine model.

• In 1984, algorithms which assume that processes can only fail by crash-
ing and every process has accurate information about which process
has crashed have been called fail-stop algorithms (Schneider, Gries, and
Schlichting 1984).

• In 1985, it was proven that, even a very simple form of agreement, namely
consensus, is impossible to solve with a deterministic algorithm in an asyn-
chronous system even if only one process fails, and it can only do so by
crashing (Fischer, Lynch, and Paterson 1985).

• In 1988, intermediate models between the synchronous and the asyn-
chronous model were introduced to circumvent the consensus impossibil-
ity (Dwork, Lynch, and Stockmeyer 1988).

• In 1989, the use of synchrony assumptions to build leasing mechanisms was
explored (Gray and Cheriton 1989).

• In 1991 (Chandra and Toueg 1996; Chandra, Hadzilacos, and Toueg 1996),
it was observed that, when solving consensus, timing assumptions where
mainly used to detect process crashes. This observation led to the defi-
nition of an abstract notion of failure detector that encapsulates timing
assumptions. The very fact that consensus can be solved in eventually syn-
chronous systems (Dwork, Lynch, and Stockmeyer 1988) is translated, in
the parlance of (Chandra, Hadzilacos, and Toueg 1996), by saying that
consensus can be solved even with unreliable failure detectors.

• In 2000, the notion of unreliable failure detector was precisely defined (Guer-
raoui 2000). Algorithms that rely on such failure detectors have been called
indulgent algorithms in (Guerraoui 2000; Dutta and Guerraoui 2002).

• In 1985, the notions of safety and liveness were considered and it was
shown that any property of a distributed system execution can be viewed
as a composition of a liveness and a safety property (Alpern and Schneider
1985; Schneider 1987).

DRAFT 60 (22/11/2004)

3. Reliable Broadcast

He said: ”I could have been someone”;
She replied: ”So could any one”.

(The Pogues)

This chapter covers the specifications of broadcast communication abstrac-
tions. These are used to disseminate information among a set of processes
and they differ according to the reliability of the dissemination. For instance,
best-effort broadcast guarantees that all correct processes deliver the same set
of messages if the senders are correct. Stronger forms of reliable broadcast
guarantee this property even if the senders crash while broadcasting their
messages.

We will consider several related abstractions: best-effort broadcast, (regu-
lar) reliable broadcast, uniform reliable broadcast, logged broadcast, stubborn
broadcast and probabilistic broadcast. For each of these abstractions, we will
provide several algorithms implementing it, and these will cover the different
models addressed in this book.

3.1 Motivation

3.1.1 Client-Server Computing

In traditional distributed applications, interactions are often established be-
tween two processes. Probably the most representative of this sort of inter-
action is the now classic client-server scheme. According to this model, a
server process exports an interface to several clients. Clients use the inter-
face by sending a request to the server and by later collecting a reply. Such
interaction is supported by point-to-point communication protocols. It is ex-
tremely useful for the application if such a protocol is reliable. Reliability
in this context usually means that, under some assumptions (which are by

3.1. MOTIVATION CHAPTER 3. BROADCAST

the way often not completely understood by most system designers), mes-
sages exchanged between the two processes are not lost or duplicated, and
are delivered in the order in which they were sent. Typical implementations
of this abstraction are reliable transport protocols such as TCP. By using a
reliable point-to-point communication protocol, the application is free from
dealing explicitly with issues such as acknowledgments, timeouts, message
re-transmissions, flow-control and a number of other issues that become en-
capsulated by the protocol interface. The programmer can focus on the actual
functionality of the application.

3.1.2 Multi-Participant Systems

As distributed applications become bigger and more complex, interactions
are no longer limited to bilateral relationships. There are many cases where
more than two processes need to operate in a coordinated manner. Consider,
for instance, a multi-user virtual environment where several users interact in
a virtual space. These users may be located at different physical places, and
they can either directly interact by exchanging multimedia information, or
indirectly by modifying the environment.

It is convenient to rely here on broadcast abstractions. These allow a pro-
cess to send a message within a group of processes, and make sure that the
processes agree on the messages they deliver. A naive transposition of the
reliability requirement from point-to-point protocols would require that no
message sent to the group be lost or duplicated, i.e., the processes agree to
deliver every message broadcast to them. However, the definition of agree-
ment for a broadcast primitive is not a simple task. The existence of multiple
senders and multiple recipients in a group introduces degrees of freedom that
do not exist in point-to-point communication. Consider for instance the case
where the sender of a message fails by crashing. It may happen that some
recipients deliver the last message while others do not. This may lead to an
inconsistent view of the system state by different group members. Roughly
speaking, broadcast abstractions provide reliability guarantees ranging from
best-effort, that only ensures delivery among all correct processes if the sender
does not fail, through reliable that, in addition, ensures all-or-nothing deliv-
ery semantics even if the sender fails, to totally ordered that furthermore
ensures that the delivery of messages follow the same global order, and ter-
minating which ensures that the processes either deliver a message or are
eventually aware that they will never deliver the message. In this chapter,
we will focus on best-effort and reliable broadcast abstractions. Totally or-
dered and terminating forms of broadcast will be considered later in this
manuscript.

DRAFT 62 (22/11/2004)

CHAPTER 3. BROADCAST 3.2. BEST-EFFORT

Module:

Name: BestEffortBroadcast (beb).

Events:

Request: 〈 bebBroadcast, m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 bebDeliver, src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

BEB1: Best-effort validity: For any two processes pi and pj . If pi and pj

are correct, then every message broadcast by pi is eventually delivered by
pj .

BEB2: No duplication: No message is delivered more than once.

BEB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.1 Interface and properties of best-effort broadcast.

3.2 Best-Effort Broadcast

A broadcast abstraction enables a process to send a message, in a one-shot
operation, to all the processes in a system, including itself. We give here the
specification and algorithm for a broadcast communication primitive with a
weak form of reliability, called best-effort broadcast.

3.2.1 Specification

With best-effort broadcast, the burden of ensuring reliability is put only on
the sender. Therefore, the remaining processes do not have to be concerned
with enforcing the reliability of received messages. On the other hand, no de-
livery guarantees are offered in case the sender fails. More precisely, best-effort
broadcast is characterized by the properties BEB1-3 depicted in Module 3.1.
BEB1 is a liveness property whereas BEB2 and BEB3 are safety proper-
ties. Note that broadcast messages are implicitly addressed to all processes.
Remember also that messages are uniquely identified.

3.2.2 Fail-Silent Algorithm: Basic Broadcast

We first provide an algorithm that implements best effort broadcast using
perfect links. This algorithm does not make any assumption on failure detec-
tion: it is a fail-silent algorithm. To provide best effort broadcast on top of
perfect links is quite simple. It suffices to send a copy of the message to every
process in the system, as depicted in Algorithm 3.1, called “Basic Broadcast”,
and illustrated by Figure 3.1. As long as the sender of the message does not

DRAFT 63 (22/11/2004)

3.3. RELIABLE CHAPTER 3. BROADCAST

Algorithm 3.1 Basic Broadcast.

Implements:
BestEffortBroadcast (beb).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 bebBroadcast, m 〉 do
forall pi ∈ Π do

trigger 〈 pp2pSend, pi, m 〉;

upon event 〈 pp2pDeliver, pi, m 〉 do
trigger 〈 bebDeliver, pi, m 〉;

crash, the properties of perfect links ensure that all correct processes will
deliver the message.

p1

p2

p3

p4

bebBroadcast

bebDeliver

bebDeliver

bebDeliver

bebDeliver

Figure 3.1. Sample execution of Basic Broadcast algorithm.

Correctness. The properties are trivially derived from the properties of per-
fect point-to-point links. No duplication and no creation are safety properties
that are derived from PL2 and PL3. Validity is a liveness property that is
derived from PL1 and from the fact that the sender sends the message to
every other process in the system.

Performance. The algorithm requires a single communication step and ex-
changes N messages.

3.3 Regular Reliable Broadcast

Best-effort broadcast ensures the delivery of messages as long as the sender
does not fail. If the sender fails, the processes might disagree on whether
or not to deliver the message. Actually, even if the process sends a message

DRAFT 64 (22/11/2004)

CHAPTER 3. BROADCAST 3.3. RELIABLE

Module:

Name: (regular)ReliableBroadcast (rb).

Events:

Request: 〈 rbBroadcast, m 〉: Used to broadcast message m.

Indication: 〈 rbDeliver, src, m 〉: Used to deliver message m broadcast by
process src.

Properties:

RB1: Validity: If a correct process pi broadcasts a message m, then pi

eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

RB4: Agreement: If a message m is delivered by some correct process pi,
then m is eventually delivered by every correct process pj .

Module 3.2 Interface and properties of regular reliable broadcast.

to all processes before crashing, the delivery is not ensured because perfect
links do not enforce delivery when the sender fails. We now consider the case
where agreement is ensured even if the sender fails. We do so by introducing
a broadcast abstraction with a stronger form of reliability, called (regular)
reliable broadcast.

3.3.1 Specification

Intuitively, the semantics of a reliable broadcast algorithm ensure that correct
processes agree on the set of messages they deliver, even when the senders
of these messages crash during the transmission. It should be noted that a
sender may crash before being able to transmit the message, case in which no
process will deliver it. The specification is given in Module 3.2. This extends
the specification of Module 3.1 with a new liveness property: agreement.

3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast

To implement regular reliable broadcast, we make use of the best-effort ab-
straction described in the previous section as well as the perfect failure detec-
tor module introduced earlier in the manuscript (i.e., we consider a fail-stop
algorithm). This is depicted in Algorithm 3.2, that we have called “Lazy
Reliable Broadcast”.

To rbBroadcast a message, a process uses the best-effort broadcast prim-
itive to disseminate the message to all, i.e., it bebBroadcasts the message.
Note that this implementation adds some protocol headers to the messages
exchanged. In particular, the protocol adds a message descriptor (“Data”)

DRAFT 65 (22/11/2004)

3.3. RELIABLE CHAPTER 3. BROADCAST

Algorithm 3.2 Lazy Reliable Broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
delivered := ∅;
correct := Π;
forall pi ∈ Π do

from[pi] := ∅;

upon event 〈 rbBroadcast, m 〉 do
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 rbDeliver, sm, m 〉;
from[pi] := from[pi] ∪ {(sm, m)}
if pi 6∈ correct then

trigger 〈 bebBroadcast, [Data, sm, m] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \ {pi}
forall [sm, m] ∈ from[pi] do

trigger 〈 bebBroadcast, [Data, sm, m] 〉;

and the original source of the message to the protocol header. This is de-
noted by [Data, sm, m] in the algorithm. A process that gets the message
(i.e., bebDelivers the message) delivers it immediately (i.e., rbDelivers it). If
the sender does not crash, then the message will be delivered by all correct
processes. The problem is that the sender might crash. In this case, the pro-
cess that delivers the message from some other process can detect that crash
and relays the message to all. It is important to notice here that this is a
language abuse: in fact, the process relays a copy of the message (and not
the message itself).

Our algorithm is said to be lazy in the sense that it only retransmits a
message if the original sender has been detected to have crashed.

Correctness. The no creation (resp. validity) property of our reliable broad-
cast algorithm follows from the no creation (resp. validity) property of the
underlying best effort broadcast primitive. The no duplication property of re-
liable broadcast follows from our use of a variable delivered that keeps track
of the messages that have been rbDelivered at every process. Agreement fol-
lows here from the validity property of the underlying best effort broadcast

DRAFT 66 (22/11/2004)

CHAPTER 3. BROADCAST 3.3. RELIABLE

Algorithm 3.3 Eager Reliable Broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 rbBroadcast, m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver, self, m 〉;
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
if m 6∈ delivered do

delivered := delivered ∪ { m }
trigger 〈 rbDeliver, sm, m 〉;
trigger 〈 bebBroadcast, [Data, sm, m] 〉;

primitive, from the fact that every process relays every message it rbDelivers
when it suspects the sender, and from the use of a perfect failure detector.

Performance. If the initial sender does not crash, to rbDeliver a message
to all processes, the algorithm requires a single communication step and N
messages. Otherwise, in the worst case, if the processes crash in sequence, N
steps and N2 messages are required to terminate the algorithm.

3.3.3 Fail-Silent Algorithm: Eager Reliable Broadcast

In our lazy reliable broadcast algorithm (Algorithm 3.2), we make use of the
completeness property of the failure detector to ensure the broadcast agree-
ment. If the failure detector does not ensure completeness, then the processes
might not be relaying messages that they should be relaying (e.g., messages
broadcast by processes that crashed), and hence might violate agreement. If
the accuracy property of the failure detector is not satisfied, then the pro-
cesses might be relaying messages when it is not really necessary. This wastes
resources but does not impact correctness.

In fact, we can circumvent the need for a failure detector (completeness)
property as well by adopting an eager scheme: every process that gets a
message relays it immediately. That is, we consider the worst case where
the sender process might have crashed and we relay every message. This
relaying phase is exactly what guarantees the agreement property of reliable
broadcast. The resulting algorith, called Eager Reliable Broadcast, is depicted
in Algorithm 3.3.

DRAFT 67 (22/11/2004)

3.4. UNIFORM CHAPTER 3. BROADCAST

Module:

Name: UniformReliableBroadcast (urb).

Events:

〈 urbBroadcast, m 〉, 〈 urbDeliver, src, m 〉, with the same meaning and
interface as in regular reliable broadcast.

Properties:

RB1-RB3: Same as in regular reliable broadcast.

URB4: Uniform Agreement: If a message m is delivered by some process
pi (whether correct or faulty), then m is also eventually delivered by every
other correct process pj .

Module 3.3 Interface and properties of uniform reliable broadcast.

Algorithm 3.3 is in this sense eager but fail-silent: it makes use only of the
best-effort primitive described in Section 3.2 (and no failure detector abstrac-
tion). In Figure 3.2a we illustrate how the algorithm ensures agreement even
if the sender crashes: process p1 crashes and its message is not bebDelivered
by p3 and p4. However, since p2 retransmits the message (bebBroadcasts it),
the remaining processes also bebDeliver it and then rbDeliver it. In our first
algorithm (the lazy one), p2 will be relaying the message only after it has
detected the crash of p1.

Correctness. All properties, except agreement, are ensured as in the lazy re-
liable broadcast algorithm. The agreement property follows from the validity
property of the underlying best effort broadcast primitive and from the fact
that every process relays every message it rbDelivers.

Performance. In the best case, to rbDeliver a message to all processes, the
algorithm requires a single communication step and N 2 messages. In the
worst case, if processes crash in sequence, N steps and N 2 messages are
required to terminate the algorithm.

3.4 Uniform Reliable Broadcast

With regular reliable broadcast, the semantics just require correct processes
to deliver the same information, regardless of what messages have been deliv-
ered by faulty processes. The uniform definition is stronger in the sense that
it guarantees that the set of messages delivered by faulty processes is always
a sub-set of the messages delivered by correct processes.

3.4.1 Specification

Uniform reliable broadcast differs from reliable broadcast by the formulation
of its agreement property. The specification is given in Module 3.3.

DRAFT 68 (22/11/2004)

CHAPTER 3. BROADCAST 3.4. UNIFORM

Uniformity is typically important if processes might interact with the
external world, e.g., print something on a screen or trigger the delivery of
money through an ATM. In this case, the fact that a process has delivered
a message is important, even if the process has crashed afterwards. This
is because the process, before crashing, could have communicated with the
external world after having delivered the message. The processes that remain
alive in the system (i.e., that did not crash) should also be aware of that
message having been delivered.

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

rbDeliver

rbDeliver

(a)

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

(b)

Figure 3.2. Sample executions of Eager Reliable Broadcast.

Figure 3.2b shows why our reliable broadcast algorithm does not ensure
uniformity. Both processes p1 and p2 rbDeliver the message as soon as they
bebDeliver it, but crash before relaying the message to the remaining pro-
cesses. Still, processes p3 and p4 are consistent among themselves (none of
them have rbDelivered the message).

3.4.2 Fail-Stop Algorithm: All-Ack URB

Basically, our lazy reliable broadcast algorithm does not ensure uniform
agreement because a process may rbDeliver a message and then crash: even
if this process has relayed its message to all (through a bebBroadcast prim-
itive), the message might not reach any of the remaining processes. Note
that even if we considered the same algorithm and replaced the best-effort
broadcast with a reliable broadcast, we would still not implement a uniform
broadcast abstraction. This is because a process delivers a message before
relaying it to all.

Algorithm 3.4, named All-Ack Uniform Reliable Broadcast, implements
the uniform version of reliable broadcast. Basically, in this algorithm, a pro-
cess only delivers a message when it knows that the message has been seen
by all correct processes. All processes relay the message once they have seen

DRAFT 69 (22/11/2004)

3.4. UNIFORM CHAPTER 3. BROADCAST

Algorithm 3.4 All-Ack Uniform Reliable Broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

function canDeliver(m) returns boolean is
return (correct ⊆ ackm) ∧ (m 6∈ delivered));

upon event 〈 Init 〉 do
delivered := ∅;
pending := ∅;
correct := Π;
forall m do ackm := ∅;

upon event 〈 urbBroadcast, m 〉 do
pending := pending ∪ { (self, m) }
trigger 〈 bebBroadcast, [Data, self, m] 〉;

upon event 〈 bebDeliver, pi, [Data, sm, m] 〉 do
ackm := ackm ∪ {pi}
if (sm, m) 6∈ forward do

forward := forward ∪ { (sm, m) };
trigger 〈 bebBroadcast, [Data, sm, m] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon exists (sm, m) ∈ pending such that canDeliver(m) do
delivered := delivered ∪{m};
trigger 〈 urbDeliver, sm, m 〉;

it. Each process keeps a record of which processes have already retransmit-
ted a given message. When all correct processes retransmitted the message,
all correct processes are guaranteed to deliver the message, as illustrated in
Figure 3.3.

Correctness. As before, except for uniform agreement, all properties are triv-
ially derived from the properties of the best-effort broadcast. (We also rely
for validity on the completeness property of the failure detector). Uniform
agreement is ensured by having each process wait to urbDeliver a message
until all correct processes have bebDelivered the message. We rely here on
the accuracy property of the perfect failure detector.

Performance. In the best case the algorithm requires two communication
steps to deliver the message to all processes. In the worst case, if processes
crash in sequence, N + 1 steps are required to terminate the algorithm. The
algorithm exchanges N2 messages in each step. Therefore, uniform reliable

DRAFT 70 (22/11/2004)

CHAPTER 3. BROADCAST 3.4. UNIFORM

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

rbDeliver

Figure 3.3. Sample execution of All-Ack Uniform Reliable Broadcast.

Algorithm 3.5 Majority-ack uniform reliable broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).

function canDeliver(m) returns boolean is
return (|ackm| > N/2) ∧ (m 6∈ delivered);

// Except for the function above, and the non-use of the
// perfect failure detector, same as Algorithm 3.4.

broadcast requires one step more to deliver a message than its regular coun-
terpart.

3.4.3 Fail-Silent Algorithm: Majority-Ack URB

The uniform algorithm of Section 3.4.2 (i.e., Algorithm 3.4) is not correct if
the failure detector is not perfect. Uniform agreement would be violated if
accuracy is not satisfied and validity would be violated if completeness is not
satisfied.

We give in the following a uniform reliable broadcast algorithm that does
not rely on a perfect failure detector but assumes a majority of correct pro-
cesses. We leave it as an exercise to show why the majority assumption is
needed in a fail-silent model.

In the example above of Figure 3.2, the correct majority assumption
means that at most one process can crash in any given execution. Algo-
rithm 3.5 is similar to the previous uniform reliable broadcast algorithm
except that processes do not wait until all correct processes have seen a mes-
sage (bebDelivered a copy of the message), but until a majority has seen the
message.

Correctness. The no-creation property follows from the no-creation property
of best-effort broadcast. The no-duplication property follows from the use

DRAFT 71 (22/11/2004)

3.5. STUBBORN CHAPTER 3. BROADCAST

of the variable delivered which prevents processes from delivering twice the
same message. To discuss the uniform agreement and validity properties, we
first argue that if a correct process pi bebDelivers any message m, then pi

urbDelivers m. Indeed, if pi is correct, and given that pi bebBroadcasts m,
every correct process bebDelivers and hence bebBroadcasts m. As we assume
a correct majority, then pi bebDelivers m from a majority of processes and
urbDelivers m. Consider now the validity property: if a correct process pi

urbBroadcasts a message m, then pi bebBroadcasts and hence pi bebDeliv-
ers m: by the argument above, pi eventually urbDelivers m. Consider now
uniform agreement and let pj be some process that urbDelivers m. To do so,
pj must have bebDelivered m from a majority of processes. By the assump-
tion of a correct majority, at least one correct must have bebBroadcast m.
Therefore, all correct processes have bebDelivered m, which implies that all
correct processes eventually urbDeliver m.

Performance. Similar to the algorithm of Section 3.2.

3.5 Stubborn Broadcast

We now consider broadcast abstractions in a setting where processes can
crash and recover, i.e., in the fail-recovery model. We first discuss the is-
sue underlying fail-recovery when broadcasting messages and then we give
examples of specifications and underlying algorithms in this model.

3.5.1 Overview

It is first important to notice why the specifications we have considered for
the fail-stop and fail-silent models are not really adequate for the fail-recovery
model. Indeed, we argue that even the strongest of our specifications, uni-
form reliable broadcast, does not provide useful semantics in a setting where
processes that crash can recover (are not excluded from the computation).

Consider a message m that is broadcast by some process pi. Consider
furthermore some other process pj that crashes at some instant, recovers,
and never crashes again. In the fail-recovery sense, process pj is correct. With
the semantics of uniform reliable broadcast however, it might happen that pj

delivers m, crashes without having processed m, and then recovers with no
memory about m. Ideally, there should be some way for process pj to find
out about m upon recovery, and hence to be able to execute any associated
action accordingly.

We start by presenting a generalization of the stubborn point-to-point
communication idea to the broadcast situation. Correct processes are sup-
posed to deliver all messages (broadcast by processes that did not crash) an
infinite number of times, and hence eventually deliver such messages upon
recovery. The corresponding specification is called stubborn broadcast.

DRAFT 72 (22/11/2004)

CHAPTER 3. BROADCAST 3.5. STUBBORN

Module:

Name: StubbornBestEffortBroadcast (sbeb).

Events:

Request: 〈 sbebBroadcast, m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 sbebDeliver, m 〉: Used to deliver message m.

Properties:

SBEB1: Best-effort validity: If pj is correct and pi does not crash, then
every message broadcast by pi is delivered by pj an infinite number of
times.

SBEB2: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.4 Interface and properties of stubborn best-effort broadcast.

3.5.2 Specification

The specification of stubborn broadcast we consider is given in Module 3.4
and we focus here on the best-effort case. Stronger abstractions (regular and
uniform) can be easily obtained accordingly. The key difference with the best-
effort abstraction defined for the fail no-recovery settings is in the stubborn
delivery of every message broadcast, as long as the process which has broad-
cast that message did not crash. Note also that the no duplication property
is not ensured. In fact, the very fact that processes have now to deal with
multiple deliveries is the price to pay for saving expensive logging operations.

3.5.3 Fail-Recovery Algorithm: Basic Stubborn Broadcast

We now present an algorithm that implements stubborn best-effort broadcast.
Algorithm 3.6 is called basic stubborn broadcast and is straightforward using
underlying stubborn communication links.

Correctness. The properties are derived from the properties of stubborn
links. In particular, validity is derived from the fact that the sender sends
the message to every other process in the system.

Performance. The algorithm requires a single communication step for a pro-
cess to deliver a message and exchanges at least N messages. Of course,
stubborn channels may retransmit the same message several times and, in
practice, an optimization mechanism is needed to acknowledge the messages
and stop the retransmission. Additionally, the algorithms requires a log op-
eration for each delivered message.

DRAFT 73 (22/11/2004)

3.6. LOGGED CHAPTER 3. BROADCAST

Algorithm 3.6 Basic Stubborn Broadcast.

Implements:
StubbornBestEffortBroadcast (sbeb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 sbebBroadcast, m 〉 do
forall pi ∈ Π do

trigger 〈 sp2pSend, pi, m 〉;

upon event 〈 sp2pDeliver, pi, m 〉 do
trigger 〈 sbebDeliver, delivered 〉;

3.6 Logged Best Effort Broadcast

We now extende Stubborn Broadcast to prevent multiple delivery of the same
messages. In order to achieve this goal, we defining the semantics of message
delivery according to message logging. Roughly speaking, a process is said to
deliver a message when it logs the message, i.e., it stores it in stable storage.
Hence, if it has delivered a message m, a process that crashes and recovers
will still be able to retrieve m from stable storage and will be able to execute
any associated action accordingly. The corresponding specification is called
logged broadcast.

3.6.1 Specification

The abstraction we consider here is called logged broadcast, to emphasize the
fact that the act of “delivering” corresponds to its logging in a local stable
storage. The key difference with the best-effort abstraction defined for the fail
no-recovery settings is in the interface between modules. Instead of simply
triggering an event to “deliver” a message, logged broadcast relies on storing
the message in a local log, which can later be read by the layer above: the
layer is notified about changes in the log through specific events.

The specification is given in Module 3.5. The act of delivering the mes-
sage corresponds here to the act of logging the variable delivered with m in
that variable. Hence, validity, no duplication and no creation properties are
redefined in term of log operations. Note also that we consider here the best-
effort case: as we discuss later, stronger abstractions (regular and uniform)
can then be designed and implemented on top of this one.

3.6.2 Fail-Recovery Algorithm: Logged Basic Broadcast

Algorithm 3.7, called “Logged Basic Broadcast”, implements logged best-
effort broadcast. It has many similarities, in its structure, with Algorithm 3.1
(“Basic Broadcsat”). The main differences are the following.

DRAFT 74 (22/11/2004)

CHAPTER 3. BROADCAST 3.7. LOGGED

Module:

Name: LoggedBestEffortBroadcast (log-beb).

Events:

Request: 〈 log-bebBroadcast, m 〉: Used to broadcast message m to all
processes.

Indication: 〈 log-bebDeliver, delivered 〉: Used to notify the upper level
of potential updates to the delivered log.

Properties:

LBEB1: Best-effort validity: If pj is correct and pi does not crash, then
every message broadcast by pi is eventually delivered by pj .

LBEB2: No duplication: No message is delivered more than once.

LBEB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.5 Interface and properties of logged best-effort broadcast.

1. The algorithm makes use of stubborn communication links between every
pair of processes. Remember that these ensure in particular that a mes-
sage that is sent by a process that does not crash to a correct recipient
is supposed to be delivered by its recipient an infinite number of times.

2. The algorithm maintains a log of all delivered messages. When a new
message is received for the first time, it is appended to the log (delivered)
and the upper layer is notified that the log has changed. If the process
crashes and later recovers, the upper layer is also notified (as it may have
missed a notification triggered just before the crash).

Correctness. The properties are derived from the properties of stubborn
links. In particular, validity is derived from the fact that the sender sends the
message to every other process in the system. No duplication is derived from
the fact that the delivery log is checked before delivering new messages.

Performance. The algorithm requires a single communication step for a pro-
cess to deliver a message and exchanges at least N messages. Of course,
stubborn channels may retransmit the same message several times and, in
practice, an optimization mechanism is needed to acknowledge the messages
and stop the retransmission. Additionally, the algorithms requires a log op-
eration for each delivered message.

3.7 Logged Uniform Reliable Broadcast

In a manner similar to the crash no-recovery case, it is possible to define both
reliable and uniform variants of best-effort broadcast for the fail-recovery
setting.

DRAFT 75 (22/11/2004)

3.7. LOGGED CHAPTER 3. BROADCAST

Algorithm 3.7 Logged Basic Broadcast.

Implements:
LoggedBest-EffortBroadcast (log-beb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;
store (delivered);

upon event 〈 Recovery 〉 do
retrieve (delivered)
trigger 〈 log-bebDeliver, delivered 〉;

upon event 〈 log-bebBroadcast, m 〉 do
forall pi ∈ Π do

trigger 〈 sp2pSend, pi, m 〉;

upon event 〈 sp2pDeliver, pi, m 〉 do
if m 6∈ delivered then

delivered := delivered ∪ { m };
store (delivered);
trigger 〈 log-bebDeliver, delivered 〉;

3.7.1 Specification

Module 3.6 defines a logged variant of the uniform reliable broadcast for
the fail-recovery model. In this variant, if a process (either correct or not)
delivers a message (i.e., logs the variable delivered with the message in it), all
correct processes should eventually deliver that message (i.e., log it in their
variable delivered). Not surprisingly, the interface is similar to that of logged
best-effort broadcast.

3.7.2 Fail-Recovery Algorithm: Logged Majority-Ack URB

Algorithm 3.8, called Logged “Majority-Ack URB”, implements logged uni-
form broadcast assuming a majority of correct processes. The act of delivering
(log-urbDeliver) a message m corresponds to logging the variable delivered
with m in that variable. Besides delivered, the algorithm uses two other vari-
ables: pending and ackm. The pending set gathers the messages that have
been seen by a process but still need to be log-urbDelivered. This variable is
logged. The ackm set gathers, at each process pi, the set of processes that pi

knows have seen m. The ackm set is not logged: it can be reconstructed upon
recovery. Message are only appended to the delivered log when they have been
retransmitted by a majority of processes. This, together with the assumption

DRAFT 76 (22/11/2004)

CHAPTER 3. BROADCAST 3.8. RANDOMIZED

Module:

Name: LoggedUniformReliableBroadcast (log-urb).

Events:

〈 log-urbBroadcast, m 〉, 〈 log-urbDeliver, delivered 〉 with the same mean-
ing and interface as in logged best-effort broadcast.

Properties:

LURB1: Validity: If pj is correct and pi does not crash, then every mes-
sage broadcast by pi is eventually delivered by pj .

LURB2: No duplication: No message is delivered more than once.

LURB3: No creation: If a message m is delivered by some process pj ,
then m was previously broadcast by some process pi.

LURB4: Uniform Agreement: If a message m is delivered by some process,
then m is eventually delivered by every correct process.

Module 3.6 Interface and properties of logged uniform reliable broadcast.

of a correct majority, ensures that at least one correct process has logged the
message and will ensure the retransmission to all correct processes.

Correctness. Consider the agreement property and assume some process pi

delivers (log-urbDelivers) a message m and does not crash. To do so, a ma-
jority of the processes must have retransmitted the message. As we assume a
majority of correct processes, at least one correct process must have logged
the message (in pending). This process will ensure the eventual transmission
(sp2pSend) of the message to all correct processes and all correct processes
will hence acknowledge the message. Hence, every correct will deliver (log-
urbDeliver) m. Consider the validity property and assume some process pi

broadcasts (log-urbBroadcasts) a message m and does not crash. Eventually,
the message will be seen by all correct processes. As a majority is correct,
a majority will retransmit the message: pi will eventually log-urbDeliver m.
The no duplication property is trivially ensured by the algorithm whereas the
no creation property is ensured by the underlying channels.

Performance. Let m be any message that is broadcast (log-urbBroadcast)
by some process pi. A process delivers the message (log-urbDeliver) m after
two communication steps and two causally related logging operations. (The
logging of pending at a majority can be done in parallel).

3.8 Randomized Broadcast

This section considers randomized broadcast algorithms. These algorithms
do not provide deterministic broadcast guarantees but, instead, only make
probabilistic claims about such guarantees, for instance, by ensuring that the
guarantees are provided successfully 99% of the times.

DRAFT 77 (22/11/2004)

3.8. RANDOMIZED CHAPTER 3. BROADCAST

Algorithm 3.8 Logged Majority-Ack Uniform reliable Broadcast.

Implements:
LoggedUniformReliableBroadcast (log-urb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
forall m do ackm := ∅;
pending := deliver := ∅;
store (pending, delivered);

upon event 〈 Recovery 〉 do
retrieve (pending, delivered);
trigger 〈 log-rbDeliver, delivered 〉;
forall m ∈ pending do

forall pi ∈ Π do
trigger 〈 sp2pSend, pi, m 〉;

upon event 〈 log-urbBroadcast, m 〉 do
pending := pending ∪ {m};
store (pending);
ackm := ackm ∪ self;
forall pi ∈ Π do

trigger 〈 sp2pSend, pi, m 〉;

upon event 〈 sp2pDeliver, pi, m 〉 do
if m 6∈ pending then

pending := pending ∪ {m};
store (pending);
forall pi ∈ Π do

trigger 〈 sp2pSend, pi, m 〉;
if pi 6∈ ackm then

ackm := ackm ∪ {pi};
if | ackm | > N/2 then

delivered := delivered ∪ {m};
store (delivered);
trigger 〈 log-urbDeliver, delivered 〉;

Of course, this approach can only be applied to applications that do not
require full reliability. On the other hand, as it will be seen, it is often possible
to build probabilistic systems with good scalability properties.

3.8.1 The Scalability of Reliable Broadcast

As we have seen throughout this chapter, in order to ensure the reliability
of broadcast in the presence of faulty processes (and/or links with omission
failures), one needs to collect some form of acknowledgments. However, given

DRAFT 78 (22/11/2004)

CHAPTER 3. BROADCAST 3.8. RANDOMIZED

(a) (b)

Figure 3.4. Ack implosion and ack tree.

limited bandwidth, memory and processor resources, there will always be a
limit to the number of acknowledgments that each process is able to collect
and compute in due time. If the group of processes becomes very large (say
thousand or even millions of members in the group), a process collecting
acknowledgments becomes overwhelmed by that task. This phenomena is
known as the ack implosion problem (see Figure 3.4a).

There are several ways of mitigating the ack implosion problem. One way
is to use some form of hierarchical scheme to collect acknowledgments, for in-
stance, arranging the processes in a binary tree, as illustrated in Figure 3.4b.
Hierarchies can reduce the load of each process but increase the latency in
the task of collecting acknowledgments. Additionally, hierarchies need to be
reconfigured when faults occur (which may not be a trivial task). Further-
more, even with this sort of hierarchies, the obligation to receive, directly or
indirectly, an acknowledgment from every other process remains a fundamen-
tal scalability problem of reliable broadcast. In the next section we discuss
how probabilistic approaches can circumvent this limitation.

3.8.2 Epidemic Dissemination

Nature gives us several examples of how a probabilistic approach can achieve
a fast and efficient broadcast primitive. Consider how epidemics are spread
among a population: initially, a single individual is infected; this individual
in turn will infect some other individuals; after some period, the whole pop-
ulation is infected. Rumor spreading is based exactly on the same sort of
mechanism and has shown to be a very effective way to disseminate informa-
tion.

A number of broadcast algorithms have been designed based on this prin-
ciple and, not surprisingly, these are often called epidemic or rumor monger-
ing algorithms.

Before giving more details on these algorithms, we first define the abstrac-
tion that these algorithms implement. Obviously, this abstraction is not the
reliable broadcast that we have introduced earlier.

DRAFT 79 (22/11/2004)

3.8. RANDOMIZED CHAPTER 3. BROADCAST

Module:

Name: ProbabilisticBroadcast (pb).

Events:

Request: 〈 pbBroadcast, m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 pbDeliver, src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

PB1: Probabilistic validity: There is a given probability such that for any
pi and pj that are correct, every message broadcast by pi is eventually
delivered by pj with this probability.

PB2: No duplication: No message is delivered more than once.

PB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Module 3.7 Interface and properties of probabilistic broadcast.

3.8.3 Specification

Probabilistic broadcast is characterized by the properties PB1-3 depicted in
Module 3.7.

Note that it is assumed that broadcast messages are implicitly addressed
to all processes in the system, i.e., the goal of the sender is to have its message
delivered at all processes. Note also that only validity is probabilistic.

The reader may find similarities between the specification of probabilistic
broadcast and the specification of best-effort broadcast presented in Sec-
tion 3.2. In fact, both are probabilistic approaches. However, in best-effort
broadcast the probability of delivery depends directly on the reliability of the
processes: it is in this sense hidden under the probability of process failures.
In probabilistic broadcast, it becomes a first class citizen of the specification.
The corresponding algorithms are devised with inherent redundancy to mask
process faults and ensure delivery with the desired probability.

3.8.4 Randomized Algorithm: Eager Probabilistic Broadcast

Algorithm 3.9, called “Eager Probabilistic Broadcast”, implements proba-
bilistic broadcast. The sender selects k processes at random and sends them
the message. In turn, each of these processes selects another k processes at
random and forwards the message to those processes. Note that, in this al-
gorithm, some or all of these processes may be exactly the same processes
already selected by the initial sender.

A step consisting of receiving and gossiping a message is called a round.
The algorithm performs a maximum number of rounds r for each message.

DRAFT 80 (22/11/2004)

CHAPTER 3. BROADCAST 3.8. RANDOMIZED

Algorithm 3.9 Eager Probabilistic Broadcast.

Implements:
ProbabilisticBroadcast (pb).

Uses:
unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
delivered := ∅;

function pick-targets (fanout) returns set of processes do
targets := ∅;
while | targets | < fanout do

candidate := random (Π);
if candidate 6∈ targets ∧ candidate 6= self then

targets := targets ∪ { candidate };
return targets;

procedure gossip (msg) do
forall t ∈ pick-targets (fanout) do

trigger 〈 up2pSend, t, msg 〉;

upon event 〈 pbBroadcast, m 〉 do
gossip ([Gossip, sm, m, maxrounds−1]);

upon event 〈 up2pDeliver, pi, [Gossip, sm, m, r] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 pbDeliver, sm, m 〉;

if r > 0 then gossip ([Gossip, sm, m, r − 1]);

The reader should observe here that k, also called the fanout, is a funda-
mental parameter of the algorithm. Its choice directly impacts the probability
of reliable message delivery guaranteed by the algorithm. A higher value of
k will not only increase the probability of having all the population infected
but also will decrease the number of rounds required to have all the pop-
ulation infected. Note also that the algorithm induces a significant amount
of redundancy in the message exchanges: any given process may receive the
same message more than once. The execution of the algorithm is for instance
illustrated in Figure 3.5 for a configuration with a fanout of 3.

The higher the fanout, the higher the load that is imposed on each pro-
cesses and the amount of redundant information exchanged in the network.
Therefore, to select the appropriate k is of particular importance. The reader
should also note that there are runs of the algorithm where a transmitted
message may not be delivered to all correct processes. For instance, all the k
processes that receive the message directly from the sender may select exactly
the same k processes to forward the message to. In such case, only these k

DRAFT 81 (22/11/2004)

3.8. RANDOMIZED CHAPTER 3. BROADCAST

(a) (b) (c)

Figure 3.5. Gossip Dissemination.

processes will receive the message. This translates into the very fact that the
probability of reliable delivery is not 100%.

It can be shown that, to ensure a high probability of delivering a message
to all correct processes, it is enough for the fanout to be in the order of log N ,
where N is the number of processes in the system. Naturally, the exact value
of the fanout and maximum number of rounds to achieve a given probability
of success depends not only on the system size but also on the probability of
link and process failures.

3.8.5 Randomized Algorithm: Lazy Probabilistic Broadcast

The algorithm described above uses an epidemic approach to the dissemi-
nation of messages. However, and as we have discussed, a disadvantage of
this approach is that it consumes a non-negligible amount of resources with
redundant transmissions. A way to overcome this limitation is to rely on a
basic and efficient unreliable communication primitives to disseminate the
messages first, and then use a probabilistic approach just as a backup to re-
cover from message omissions. More precisely, we assume here the existence
of unreliable point-to-point and broadcast communication abstractions, de-
fined by the primitives unp2pSend, unp2p2Deliver and unBroadcast, unDe-
liver respectively. We do not make specific assumptions on these, expect that
they could be used to exchange messages efficiently, without corrupting or
adding messages to the system, and with some reliable delivery guarantees.
These could typically correspond to a fair-lossy communication primitive and
a broadcast abstraction built on top of it.

A simplified version of an algorithm based on this idea is given in Al-
gorithm 3.10, called “Lazy Probabilistic Broadcast”. The algorithm assumes
that each sender is transmitting a stream of numbered messages. Message
omissions are detected based on gaps on the sequence numbers of received

DRAFT 82 (22/11/2004)

CHAPTER 3. BROADCAST 3.8. RANDOMIZED

Algorithm 3.10 Lazy Probabilistic Broadcast.

Implements:
ProbabilisticBroadcast (pb).

Uses:
UnreliablePointToPointLinks (up2p), UnreliableBroadcast (unb).

upon event 〈 Init 〉 do
forall pi ∈ Π do delivered[pi] := 0;
lsn := 0; pending := ∅; stored := ∅;

procedure deliver-pending (s) do
forall [Data, s, x, snx] ∈ pending such that snx = delivered[s]+1 do

delivered[s] := delivered[s]+1; pending := pending \ { [Data, s, x,snx]};
trigger 〈 pbDeliver, s, x 〉;

procedure gossip (msg) do
forall t ∈ pick-targets (fanout) do

trigger 〈 up2pSend, t, msg 〉;

upon event 〈 pbBroadcast, m 〉 do
lsn := lsn+1;
trigger 〈 unBroadcast, [Data, self, m, lsn] 〉;

upon event 〈 unDeliver, pi, [Data, sm, m, snm] 〉 do
if random() > store-threshold then stored := stored ∪ { [Data, sm, m,snm] };
if snm = delivered[sm]+1 then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver, sm, m 〉;

else
pending := pending ∪ { [Data, sm, m, snm] };
forall seqnb ∈ [snm − 1, delivered[sm] + 1] do

gossip ([Request, self, sm, seqnb, maxrounds−1]);

upon event 〈 up2pDeliver, pj , [Request, pi, sm, snm, r] 〉 do
if [Data, sm, m, snm] ∈ stored then

trigger 〈 up2pSend, pi, [Data, sm, m, snm] 〉;
else if r > 0 then gossip ([Request, pi, sm, snm, r − 1]);

upon event 〈 up2pDeliver, pj , [Data, sm, m, snm] 〉 do
if snm = delivered[sm]+1 then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver, sm, m 〉;
deliver-pending (sm);

else
pending := pending ∪ { [Data, sm, m, snm] };

messages. Each message is disseminated using the unreliable broadcast prim-
itive. For each message, some randomly selected receivers are chosen to store
a copy of the message for future retransmission: they store the message for

DRAFT 83 (22/11/2004)

3.8. RANDOMIZED CHAPTER 3. BROADCAST

some maximum amount of time. The purpose of this approach is to distribute,
among all processes, the load of storing messages for future retransmission.

Omissions can be detected using sequence numbers associated with mes-
sages. A process p detects that it has missed a message from a process q
when p receives a message from q with a higher timestamp than what p was
expecting from q. When a process detects an omission, it uses the gossip al-
gorithm to disseminate a retransmission request. If the request is received by
one of the processes that has stored a copy of the message, this process will
retransmit the message. Note that, in this case, the gossip algorithm does
not need to be configured to ensure that the retransmission request reaches
all processes: it is enough that it reaches, with high probability, one of the
processes that has stored a copy of the missing message.

It is expected that, in most cases, the retransmission request message
is much smaller that the original data message. Therefore this algorithm is
much more resource effective than the eager probabilistic broadcast algorithm
described earlier. On the other hand, it does require the availability of some
unreliable but efficient means of communication and this may not be available
in settings that include a very large number of processes spread all over the
Internet.

Practical algorithms based on this principle make a significant effort to
optimize the number and the location of nodes that store copies of each broad-
cast message. Not surprisingly, best results can be obtained if the physical
network topology is taken into account: for instance, an omission in a link
connecting a local area network (LAN) with the rest of the system affects all
processes in that LAN. Thus, it is desirable to have a copy of the message
in each LAN (to recover from local omissions) and a copy outside the LAN
(to recover from the omission in the link to the LAN). Similarly, the search
procedure, instead of being completely random, may search first for a copy
in the local LAN and only after on more distant processes.

DRAFT 84 (22/11/2004)

CHAPTER 3. BROADCAST Hands-On

Hands-On

We now describe the implementation, in Appia, of several of the protocols
introduced in this chapter.

Basic Broadcast

The communication stack used to illustrate the protocol is the following:

Application
Basic Broadcast

Perfect Point-to-Point Links

The implementation of this algorithm closely follows the algorithm of
Algorithm 3.1 (“Basic Broadcast”). As shown in Listing 3.1, this protocol only
handles three classes of events, namely the ProcessInitEvent, used to initialize
the set of processes that participate in the broadcast (this event is triggered
by the application after reading the configuration file), the ChannelInit event,
that is automatically triggered by the runtime when a new channel is created,
and the SendableEvent. This last event is associated with transmission requests
(if the event flows in the stack downwards) or the reception of events from the
layer below (if the event flows upwards). Note that the code in these listing
has been simplified. In particular, all exception handling code was deleted
from the listings for clarity (but is included in the real code distributed with
the tutorial).

The only method that requires some coding is the bebBroadcast() method,
which is in charge of sending a series of point-to-point messages to all mem-
bers of the group. This is performed by executing the following instructions
for each member of the group: i) the event being sent is “cloned” (this effec-
tively copies the data to be sent to a new event); ii) the source and destination
address of the point-to-point message are set; iii) the event is forwarded to
the layer below. There is a single exception to this procedure: if the desti-
nation process is the sender itself, the event is immediately delivered to the
upper layer. The method to process messages received from the the layer
below is very simple: it just forwards the message up.

Listing 3.1. Basic Broadcast implementation.

public class BEBSession extends Session {

private ProcessSet processes;

public BEBSession(Layer layer) {
super(layer);

}

public void handle(Event event){
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit)event);

DRAFT 85 (22/11/2004)

Hands-On CHAPTER 3. BROADCAST

else if (event instanceof ProcessInitEvent)
handleProcessInitEvent((ProcessInitEvent) event);

else if (event instanceof SendableEvent){
if (event.getDir()==Direction.DOWN)

// UPON event from the above protocol (or application)
bebBroadcast((SendableEvent) event);

else

// UPON event from the bottom protocol (or perfect point2point links)
pp2pDeliver((SendableEvent) event);

}
}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();

}

private void handleChannelInit(ChannelInit init) {
init .go();

}

private void bebBroadcast(SendableEvent event) {
SampleProcess[] processArray = this.processes.getAllProcesses();
SendableEvent sendingEvent = null;
for(int i=0 ; i<processArray.length ; i++){

// source and destination for data message
sendingEvent = (SendableEvent) event.cloneEvent();
sendingEvent.source = processes.getSelfProcess().getInetWithPort();
sendingEvent.dest = processArray[i].getInetWithPort();
// set the event fields
sendingEvent.setSource(this); // the session that created the event
if (i == processes.getSelfRank())

sendingEvent.setDir(Direction.UP);
sendingEvent.init ();
sendingEvent.go();

}
}

private void pp2pDeliver(SendableEvent event) {
event.go();

}
}

Lazy Reliable Broadcast

The communication stack used to illustrate the protocol is the following:

Application
Reliable Broadcast

Perfect Failure Detector
Best Effort Broadcast

Perfect Point to Point Links

The implementation of this algorithm, shown in Listing 3.2, closely follows
the Algorithm 3.2 (“Lazy Reliable Broadcast”). The protocol accepts four
events, namely the ProcessInitEvent, used to initialize the set of processes that
participate in the broadcast (this event is triggered by the application after
reading the configuration file), the ChannelInit event, that is automatically

DRAFT 86 (22/11/2004)

CHAPTER 3. BROADCAST Hands-On

triggered by the runtime when a new channel is created, the Crash event,
triggered by the PFD when a node crashes, and the SendableEvent. This last
event is associated with transmission requests (if the event flows in the stack
downwards) or the reception of events from the layer below (if the event
flows upwards). Note that the code in these listing has been simplified. In
particular, all exception handling code was deleted from the listings for clarity
(but is included in the real code distributed with the tutorial).

In order to detect duplicates, each message needs to be uniquely identified.
In this implementation, the protocol use the rank of the sender of the message
and a sequence number. This information needs to be pushed into the message
header when a message is sent, and then popped again when the message is
received. Note that during the retransmission phase, it is possible for the same
message, with the same identifier, to be broadcast by different processes.

In the protocol, to broadcast a message consists only in pushing the mes-
sage identifier and forward the request to the Best-Effort layer. To receive
the message consists in popping the message identifier, check for duplicates,
and to log and deliver the message when it is received for the first time. Upon
a crash notification, all messages from the crashed node are broadcast again.
Note that when a node receives a message for the first time, if the sender is
already detected to be crashed, the message is immediately retransmitted.

Listing 3.2. Lazy reliable broadcast implementation.

public class RBSession extends Session {
private ProcessSet processes;
private int seqNumber;
private LinkedList[] from;
private LinkedList delivered;

public RBSession(Layer layer) {
super(layer);
seqNumber = 0;

}

public void handle(Event event){
// (...)

}

private void handleChannelInit(ChannelInit init) {
init .go();
delivered = new LinkedList();

}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();
from = new LinkedList[processes.getSize()];
for (int i=0; i<from.length; i++)

from[i] = new LinkedList();
}

private void rbBroadcast(SendableEvent event) {
SampleProcess self = processes.getSelfProcess ();
MessageID msgID = new MessageID(self.getProcessNumber(),seqNumber);
seqNumber++;
((ExtendedMessage)event.getMessage()).pushObject(msgID);
bebBroadcast(event);

DRAFT 87 (22/11/2004)

Hands-On CHAPTER 3. BROADCAST

}

private void bebDeliver(SendableEvent event) {
MessageID msgID = (MessageID) ((ExtendedMessage)event.getMessage()).peekObject();
if (! delivered .contains(msgID)){

delivered.add(msgID);
SendableEvent cloned = (SendableEvent) event.cloneEvent();
((ExtendedMessage)event.getMessage()).popObject();
event.go();
SampleProcess pi = processes.getProcess((InetWithPort) event.source);
int piNumber = pi.getProcessNumber();
from[piNumber].add(event);
if (! pi . isCorrect ()){

SendableEvent retransmit = (SendableEvent) cloned.cloneEvent();
bebBroadcast(retransmit);

}
}

}

private void bebBroadcast(SendableEvent event) {
event.setDir(Direction.DOWN);
event.setSource(this);
event. init ();
event.go();

}

private void handleCrash(Crash crash) {
int pi = crash.getCrashedProcess();
System.out.println(”Process ”+pi+” failed.”);
processes.getProcess(pi).setCorrect(false);
SendableEvent event = null;
ListIterator it = from[pi]. listIterator ();
while(it.hasNext()){

event = (SendableEvent) it.next();
bebBroadcast(event);

}
from[pi]. clear ();
}

}

Hands-On Exercise

Exercise 3.1 This implementation of the Reliable Broadcast Algorithm has
a delivered set that is never garbage collected. Modify the implementation to
remove messages that no longer need to be maintained in the delivered set.

All-Ack URB

The communication stack used to illustrate the protocol is the following:

Application
Uniform Reliable Broadcast

Perfect Failure Detector
Best Effort Broadcast

Perfect Point to Point Links

The implementation of this protocol is shown in Listing 3.3. Note that the
code in these listing has been simplified. In particular, all exception handling

DRAFT 88 (22/11/2004)

CHAPTER 3. BROADCAST Hands-On

code was deleted from the listings for clarity (but is included in the real code
distributed with the tutorial).

The protocol uses two variables received and delivered to register which
messages have already been received and delivered respectively. These vari-
ables only store message identifiers. When a message is received for the first
time, it is forwarded as specified in the algorithm. To keep track on who
has already acknowledged (forwarded) a given message a hash table is used.
There is an entry in the hash table for each message. This entry keeps the
data message itself (for future delivery) and a record of who has forwarded
the message.

When a message has been forwarded by every correct process it can be
delivered. This is checked every time a new event is handled (as both the
reception of messages and the crash of processes may trigger the delivery of
pending messages).

Listing 3.3. All ack uniform reliable broadcast implementation.

public class URBSession extends Session {
private ProcessSet processes;
private int seqNumber;
private LinkedList received, delivered ;
private Hashtable ack;

public URBSession(Layer layer) {
super(layer);

}

public void handle(Event event) {
// (...)
urbTryDeliver();

}

private void urbTryDeliver() {
Iterator it = ack.values (). iterator ();
MessageEntry entry=null;
while(it.hasNext()){

entry = (MessageEntry) it.next();
if (canDeliver(entry)){

delivered .add(entry.messageID);
urbDeliver(entry.event, entry.messageID.process);

}
}

}

private boolean canDeliver(MessageEntry entry) {
int procSize = processes.getSize ();
for(int i=0; i<procSize; i++)

if (processes.getProcess(i). isCorrect() && (! entry.acks[i]))
return false;

return ((! delivered.contains(entry.messageID)) && received.contains(entry.messageID));
}

private void handleChannelInit(ChannelInit init) {
init .go();
received = new LinkedList();
delivered = new LinkedList();
ack = new Hashtable();

}

DRAFT 89 (22/11/2004)

Hands-On CHAPTER 3. BROADCAST

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();

}

private void urbBroadcast(SendableEvent event) {
SampleProcess self = processes.getSelfProcess ();
MessageID msgID = new MessageID(self.getProcessNumber(),seqNumber);
seqNumber++;
received.add(msgID);
((ExtendedMessage) event.getMessage()).pushObject(msgID);
event.go ();

}

private void bebDeliver(SendableEvent event) {
SendableEvent clone = (SendableEvent) event.cloneEvent();
MessageID msgID = (MessageID) ((ExtendedMessage) clone.getMessage()).popObject();
addAck(clone,msgID);
if (! received.contains(msgID)){

received.add(msgID);
bebBroadcast(event);

}
}

private void bebBroadcast(SendableEvent event) {
event.setDir(Direction.DOWN);
event.setSource(this);
event. init ();
event.go();

}

private void urbDeliver(SendableEvent event, int sender) {
event.setDir(Direction.UP);
event.setSource(this);
event.source = processes.getProcess(sender).getInetWithPort();
event. init ();
event.go();

}

private void handleCrash(Crash crash) {
int crashedProcess = crash.getCrashedProcess();
System.out.println(”Process ”+crashedProcess+” failed.”);
processes.getProcess(crashedProcess).setCorrect(false);

}

private void addAck(SendableEvent event, MessageID msgID){
int pi = processes.getProcess((InetWithPort)event.source).getProcessNumber();
MessageEntry entry = (MessageEntry) ack.get(msgID);
if (entry == null){

entry = new MessageEntry(event, msgID, processes.getSize());
ack.put(msgID,entry);

}
entry.acks[pi] = true;

}
}

Hands-On Exercises

Exercise 3.2 Modify the implementation to keep track just of the last mes-
sage sent from each process, in the received and delivered variables.

DRAFT 90 (22/11/2004)

CHAPTER 3. BROADCAST Hands-On

Exercise 3.3 Change the protocol to exchange acknowledgements when the
sender is correct and only retransmit the payload of a message when the
sender is detected to have crashed (just like in the Lazy Reliable Protocol).

Majority-Ack URB

The communication stack used to illustrate the protocol is the following (note
that a Perfect Failure Detector is no longer required):

Application
Indulgent Uniform Reliable Broadcast

Best Effort Broadcast
Perfect Point to Point Links

The protocol works in the same way as the protocol presented in the
prevous section, but without being aware of crashed processes. Besides that,
the only difference from the previous implementation is the canDeliver()

method, which can be shown in Listing 3.4.

Listing 3.4. Indulgent Uniform reliable broadcast implementation.

public class IURBSession extends Session {

private boolean canDeliver(MessageEntry entry) {
int N = processes.getSize(), numAcks = 0;
for(int i=0; i<N; i++)

if (entry.acks[i])
numAcks++;

return (numAcks > (N/2)) && (! delivered.contains(entry.messageID));
}

// Except for the method above, and for the handling of the crash event, same
// as the previous protocol

}

Hand-On Exercises.

Exercise 3.4 Note that if a process does not acknowledge a message, copies
of that message may have to be stored for a long period (in fact, if a process
crashes, copies need to be stored forever). Try to devise a scheme to ensure
that no more than N/2+1 copies of each message are preserved in the system
(that is, not all members should be required to keep a copy of every message).

Probabilistic Reliable Broadcast

This protocol is based on probabilities and is used to broadcast messages in
large groups. Instead of creating Perfect Point to Point Links, it use Unre-
liable Point to Point Links (UP2PL) to send messages just for a subset of
the group. The communication stack used to illustrate the protocol is the
following:

DRAFT 91 (22/11/2004)

Hands-On CHAPTER 3. BROADCAST

Application
Probabilistic Broadcast

Unreliable Point to Point Links

The protocol has two configurable parameters: i) fanout is the number of
processes for which the message will be gossiped; maxrounds, is the maximum
number of rounds that the message will be retransmitted.

The implementation of this protocol is shown on Listing 3.5. The gossip()

method invokes the pickTargets() method to choose the processes which the
message is going to be sent and sends the message to those targets. The
pickTargets() method chooses targets randomly from the set of processes. Each
message carries its identification (as previous reliable broadcast protocols)
and the remaining number of rounds (when the message is gossiped again,
the number of rounds is decremented).

Listing 3.5. Probabilistic broadcast implementation.

public class PBSession extends Session {

private LinkedList delivered;
private ProcessSet processes;
private int fanout, maxRounds, seqNumber;

public PBSession(Layer layer) {
super(layer);
PBLayer pbLayer = (PBLayer) layer;
fanout = pbLayer.getFanout();
maxRounds = pbLayer.getMaxRounds();
seqNumber = 0;

}

public void handle(Event event){
// (...)

}

private void handleChannelInit(ChannelInit init) {
init .go();
delivered = new LinkedList();

}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
fanout = Math.min (fanout, processes.getSize ());
event.go();

}

private void pbBroadcast(SendableEvent event) {
MessageID msgID = new MessageID(processes.getSelfRank(),seqNumber);
seqNumber++;
gossip(event, msgID, maxRounds−1);

}

private void up2pDeliver(SendableEvent event) {
SampleProcess pi = processes.getProcess((InetWithPort)event.source);
int round = ((ExtendedMessage) event.getMessage()).popInt();
MessageID msgID = (MessageID) ((ExtendedMessage) event.getMessage()).popObject();
if (! delivered .contains(msgID)){

delivered .add(msgID);
SendableEvent clone = null;
clone = (SendableEvent) event.cloneEvent();

DRAFT 92 (22/11/2004)

CHAPTER 3. BROADCAST Hands-On

pbDeliver(clone,msgID);
}
if (round > 0)

gossip(event,msgID,round−1);
}

private void gossip(SendableEvent event, MessageID msgID, int round){
int [] targets = pickTargets();
for(int i=0; i<fanout; i++){

SendableEvent clone = (SendableEvent) event.cloneEvent();
((ExtendedMessage) clone.getMessage()).pushObject(msgID);
((ExtendedMessage) clone.getMessage()).pushInt(round);
up2pSend(clone,targets[i]);

}
}

private int [] pickTargets() {
Random random = new Random(System.currentTimeMillis());
LinkedList targets = new LinkedList();
Integer candidate = null;
while(targets.size() < fanout){

candidate = new Integer(random.nextInt(processes.getSize()));
if ((! targets .contains(candidate)) && (candidate.intValue() != processes.getSelfRank()))

targets .add(candidate);
}
int [] targetArray = new int[fanout];
ListIterator it = targets . listIterator ();
for(int i=0; (i<targetArray.length) && it.hasNext(); i++)

targetArray[i] = ((Integer) it .next()). intValue();
return targetArray;

}

private void up2pSend(SendableEvent event, int dest) {
event.setDir(Direction.DOWN);
event.setSource(this);
event.dest = processes.getProcess(dest).getInetWithPort();
event. init ();
event.go();

}

private void pbDeliver(SendableEvent event, MessageID msgID) {
event.setDir(Direction.UP);
event.setSource(this);
event.source = processes.getProcess(msgID.process).getInetWithPort();
event. init ();
event.go();

}
}

Hands-On Exercises

Exercise 3.5 The up2pDeliver() method perform two different functions: i)
delivers the message to the application (if it was not delivered yet) and ii)
gossips the message to other processes. Change the code such that a node
gossip just when it receives a message for the first time. Discuss the impact
of the changes.

Exercise 3.6 Change the code to limit i) the number of messages each node
can store; ii) the maximum throughput (messages per unit of time) of each
node.

DRAFT 93 (22/11/2004)

Hands-On CHAPTER 3. BROADCAST

Test Application

All the implementations covered by this chapter may be experimented using
the same application, called SampleAppl. An optional parameter in the com-
mand line allows the user to select which protocol stack the application will
use. The general format of the command line is the following:

java demo/tutorialDA/SampleAppl -f <cf> -n <rank> -qos <prot>

The cf parameter is the name of a text file with the information about the
set of processes, namely the total number N of processes in the system and,
for each of these processes, its “rank” and “endpoint”. The rank is a unique
logical identifier of each process (an integer from 0 to N −1). The “endpoint”
is just the host name or IP address and the port number of the process. This
information is used by low-level protocols (such as TCP or UDP) to estab-
lish the links among the processes. The configuration file has the following
format:

<number_of_processes>

<rank> <host_name> <port>

...

<rank> <host_name> <port>

For example, the following configuration file could be used to define a
group of three processes, all running in the local machine:

3

0 localhost 25000

1 localhost 25100

2 localhost 25200

The rank parameter identifies the rank of the process being launched (and
implicitly, the address to be used by the process, taken from the configuration
file).

The prot parameter specifies which broadcast abstraction is used by the
application. One of the following values can be selected: beb to use Best Effort
Broadcast protocol; rb to use Lazy Reliable Broadcast protocol; urb to use
Uniform Reliable Broadcast protocol; iurb to use Indulgent Uniform Reliable
Broadcast protocol; and pb <fanout> <maxrounds> to use the Probabilistic
Broadcast protocol with a specified fanout and maximum number of message
rounds.

After all processes are launched, a message can be sent from one process
to the other processes just by typing a bcast <string> in the command line
and pressing the Enter key. The application also accepts another command,
the startpfd to activate the perfect failure detector (as decribed in the
previous chapter); do not forget to initiate the PFD at every processes by

DRAFT 94 (22/11/2004)

CHAPTER 3. BROADCAST Hands-On

issuing the startpfd request on the command line every time the stack uses
this service.

DRAFT 95 (22/11/2004)

Exercises CHAPTER 3. BROADCAST

Exercises

Exercise 3.7 Consider a process p that rbBroadcasts a message m in our
lazy reliable broadcast implementation (Algorithm 3.2). Can p rbDeliver m
before bebBroadcasting it.

Exercise 3.8 Modify our lazy reliable broadcast algorithm (Algorithm 3.2)
to reduce the number of messages sent in case of failures.

Exercise 3.9 Some of our algorithms have the processes continuously fill
their different buffers without emptying them. Modify them to remove unnec-
essary messages from the following buffers:

1. from[pi] in the lazy reliable broadcast algorithm
2. delivered in all reliable broadcast algorithms
3. pending in the all-ack uniform reliable broadcast algorithm

Exercise 3.10 What do we gain if we replace bebBroadcast with rbBroadcast
in our majority-ack uniform reliable broadcast algorithm?

Exercise 3.11 Consider our lazy reliable broadcast and all-ack uniform
broadcast algorithms: both use a perfect failure detector. What happens if
each of the following properties of the failure detector is violated:

1. accuracy
2. completeness

Exercise 3.12 Our all-ack uniform reliable broadcast algorithm can be viewed
as an extension of our eager reliable broadcast algorithm. Would we gain
anything by devising a uniform reliable broadcast algorithm that would be an
extension of our lazy reliable algorithm, i.e., can we have the processes not
relay messages unless they suspect the sender?

Exercise 3.13 Can we devise a uniform reliable broadcast with an eventually
perfect failure detector but without the assumption of a correct majority of
processes?

Exercise 3.14 Give the specification of a logged reliable broadcast abstrac-
tion (i.e., a weaker variant Module 3.6) and an algorithm that implements it
(i.e., a simpler variant of Algorithm 3.7).

Exercise 3.15 Our probabilistic broadcast algorithm considers that the con-
nectivity is the same among every pair of processes. In practice, it may hap-
pen that some processes are at shorter distance and connected by more reliable
links than others. For instance, the underlying network topology could be a
set of local-area networks connected by long-haul links. Propose methods to
exploit the topology in gossip algorithms.

DRAFT 96 (22/11/2004)

CHAPTER 3. BROADCAST Solutions

Algorithm 3.11 Simple optimization of lazy reliable broadcast.

upon event 〈 rbBroadcast, m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver, self, m 〉;
trigger 〈 bebBroadcast, [Data, self, m] 〉;

Solutions

Solution 3.7 The answer is yes. Every process anyway rbDelivers the mes-
sages as soon as it bebDelivers them. This does not add any guarantee with
respect to rbDelivering the messages before bebBroadcasting them. The event
that we would need to change to Algorithm 3.2 would simply be the rbBroad-
cast even, as depicted in Algorithm 3.11.

2

Solution 3.8 In our lazy reliable broadcast algorithm, if a process p rbBroad-
casts a message and then crashes, N 2 messages are relayed by the remaining
processes to retransmit the message of process p. This is because a process
that bebDelivers the message of p does not know whether the other processes
have bebDelivered this message or not. However, it would be sufficient in this
case if only one process, for example process q, relays the message of p.

In practice one specific process, call it leader process pl, might be more
likely to bebDeliver messages: the links to and from this process would be
fast and very reliable, the process runs on a reliable computer, etc. A process
pi would forward its messages to the leader pl, which would coordinate the
broadcast to every other process. If the leader is correct, every process will
eventually bebDelivers and rbDelivers every message. Otherwise, we revert
to the previous algorithm, and every process would be responsible of beb-
Broadcasting the messages that it bebDelivered. 2

Solution 3.9 From from[pi] in the lazy reliable broadcast algorithm: The
array from is used exclusively to store messages that are retransmitted in
the case of a failure. Therefore they can be removed as soon as they have
been retransmitted. If pi is correct, they will eventually be bebDelivered. If
pi is faulty, it does not matter if the other processes do not bebDeliver them.

From delivered in all reliable broadcast algorithms: Messages cannot be
removed. If a process crashes and its messages are retransmitted by two
different processes, then a process might rbDeliver the same message twice
if it empties the deliver buffer in the meantime. This would violate the no
duplication property.

From pending in the uniform reliable broadcast algorithm: Messages can
actually be removed as soon as they have been urbDelivered. 2

DRAFT 97 (22/11/2004)

Solutions CHAPTER 3. BROADCAST

Solution 3.10 Nothing, because the uniform reliable broadcast algorithm
does not assume and hence does not use the guarantees provided by the
reliable broadcast algorithm.

Consider the following scenario which illustrates the difference between
using bebBroadcast and using rbBroadcast. A process p broadcasts a mes-
sage and crashes. Consider the case where only one correct process q receives
the message (bebBroadcast). With rbBroadcast, all correct processes would
deliver the message. In the urbBroadcast algorithm, q adds the message in
forward and then bebBroadcasts it. As q is correct, all correct processes will
deliver it, and thus, we have at least the same guarantee as with rbBroadcast.
2

Solution 3.11 Consider our uniform reliable broadcast algorithm using a per-
fect failure detector and a system of three processes: p1, p2 and p3. Assume
furthermore that p1 urbBroadcasts a message m. If strong completeness is not
satisfied, then p1 might never urbDeliver m if any of p2 or p3 crash and p1

never suspects them or bebDelivers m from them: p1 would wait indefinitely
for them to relay the message. In the cases of regular and uniform reliable
broadcast algorithms, the validity property can be violated. Assume now that
strong accuracy is violated and p1 falsely suspects p2 and p3 to have crashed.
Process p1 eventually urbDelivers m. Assume that p1 crashes afterwards. It
might be the case that p2 and p3 never bebDelivered m and have no way of
knowing about m and urbDeliver it: uniform agreement is violated. 2

Solution 3.12 The advantage of the lazy scheme is that processes do not
need to relay messages to ensure agreement if they do not suspect the sender
to have crashed. In this failure-free scenario, only N − 1 messages are needed
for all the processes to deliver a message. In the case of uniform reliable
broadcast (without a majority), a process can only deliver a message when it
knows that every correct process has seen that message. Hence, every process
should somehow convey that fact, i.e., that it has seen the message. A lazy
scheme would be of no benefit here. 2

Solution 3.13 No. We explain why for the case of a system of four processes
{p1, p2, p3, p4} using what is called a partitioning argument. The fact that the
correct majority assumption does not hold means that 2 out of the 4 pro-
cesses may fail. Consider an execution where process p1 broadcasts a message
m and assume that p3 and p4 crash in that execution without receiving any
message neither from p1 nor from p2. By the validity property of uniform
reliable broadcast, there must be a time t at which p1 urbDelivers message
m. Consider now an execution that is similar to this one except that p1 and
p2 crash right after time t whereas p3 and p4 are correct: say they have been
falsely suspected, which is possible with an eventually perfect failure detec-
tor. In this execution, p1 has urbDelivered a message m whereas p3 and p4

DRAFT 98 (22/11/2004)

CHAPTER 3. BROADCAST Solutions

Module:

Name: Logged Reliable Broadcast (log-rb).

Events:

〈 log-rbBroadcast, m 〉, 〈 log-rbDeliver, delivered 〉 with the same meaning
and interface as in logged best-effort broadcast.

Properties:

LURB1: Validity: If pj is correct and pi does not crash, then every mes-
sage broadcast by pi is eventually delivered by pj .

LURB2: No duplication: No message is delivered more than once.

LURB3: No creation: If a message m is delivered by some process pj ,
then m was previously broadcast by some process pi.

LURB4: Agreement: If a message m is delivered by some correct process,
then m is eventually delivered by every correct process.

Module 3.8 Interface and properties of logged reliable broadcast.

have no way of knowing about that message m and eventually urbDelivering
it: uniform agreement is violated. 2

Solution 3.14
Module 3.6 defines a logged variant of reliable broadcast. In this variant, if

a correct process delivers a message (i.e., logs the variable delivered with the
message in it), all correct processes should eventually deliver that message
(i.e., log it in their variable delivered).

Algorithm 3.12 implements logged reliable broadcast using stubborn chan-
nels. To broadcast a message, a process first delivers it and then sends it to
all (using stubborn channels). When a message is received for the first time,
it is delivered and sent to all. Upon recovery, a process retrieves the messages
it has delivered and sends them to all.

Correctness. Consider the agreement property and assume some process cor-
rect pi delivers a message m. If it does not crash, then pi sends the message
to all and all correct processes will deliver the message by the properties of
the stubborn channels. If it crashes, there is a time after which pi recovers,
retrieves m and sends it to all. Again, all correct processes will deliver the
message by the properties of the stubborn channels. The validity property
follows directly from the stubborns channels. The no duplication property is
trivially ensured by the algorithm whereas the no creation property is ensured
by the underlying channels.

Performance. Let m be any message that is broadcast by some process pi. A
process delivers the message m immediately and the other processes deliver
it after one communication step.

2

DRAFT 99 (22/11/2004)

Solutions CHAPTER 3. BROADCAST

Algorithm 3.12 Reliable Broadcast with Log.

Implements:
LoggedReliableBroadcast (log-rb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;
store (delivered);

upon event 〈 Recovery 〉 do
retrieve (delivered);
trigger 〈 log-rbDeliver, delivered 〉;
forall m ∈ delivered do

forall pi ∈ Π do
trigger 〈 sp2pSend, pi, m 〉;

upon event 〈 log-rbBroadcast, m 〉 do
delivered := delivered ∪ {m};
store (delivered);
trigger 〈 log-rbDeliver, delivered 〉;
forall pi ∈ Π do

trigger 〈 sp2pSend, pi, m 〉;

upon event 〈 sp2pDeliver, pi, m 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m};
store (delivered);
trigger 〈 log-rbDeliver, delivered 〉;
forall pi ∈ Π do

trigger 〈 sp2pSend, pi, m 〉;

Solution 3.15 One approach consists in assigning weights to the links con-
necting processes. Weights reflect the reliability of the links. We could easily
adapt our algorithm to avoid redundant transmission by gossiping though
more reliable links with lower probability. An alternative approach consists
in organizing the nodes in a hierarchy that reflects the network topology in
order to reduce the traffic across domain boundaries. 2

DRAFT 100 (22/11/2004)

CHAPTER 3. BROADCAST Historical Notes

Historical Notes

• The requirements for a reliable broadcast communication abstraction seem
to have originated from the domain of aircraft control and the Sift system
in 1978 (Wensley 1978).

• Later on, several distributed computing libraries offered communication
primitives with reliable broadcast semantics. These include the V Sys-
tem (Cherriton and Zwaenepoel 1985), Delta-4 (Powell, Barret, Bonn,
Chereque, Seaton, and Verissimo 1994), Isis and Horus (Birman and Joseph
1987a; van Renesse and Maffeis 1996). Amoeba (Kaashoek, Tanenbaum,
Hummel, and Bal 1989), Psync (Peterson, Bucholz, and Schlichting 1989),
Transis (Amir, Dolev, Kramer, and Malki 1992), Totem (Moser, Melliar-
Smith, Agarwal, Budhia, Lingley-Ppadopoulos, and Archambault 1995),
xAMp (Rodrigues and Veŕıssimo 1992), OGS (Felber and Guerraoui 2000),
Appia (Miranda, Pinto, and Rodrigues 2001), among others.

• Algorithms for reliable broadcast message delivery were presented in a very
comprehensive way in 1994 (Hadzilacos and Toueg 1994). The problem of
the uniformity of a broadcast was discussed in 1984 (Hadzilacos 1984) and
then in 1993 (Neiger and Toueg 1993).

• The idea of applying epidemic dissemination to implement probabilisti-
cally reliable broadcast algorithms was explored in various papers (Gold-
ing and Long 1992; Birman, Hayden, Ozkasap, Xiao, Budiu, and Min-
sky 1999; Eugster, Handurukande, Guerraoui, Kermarrec, and Kouznetsov
2001; Kouznetsov, Guerraoui, Handurukande, and A.-M.Kermarrec 2001;
Kermarrec, Massoulie, and Ganesh 2000; Xiao, Birman, and van Renesse
2002). The specification of probabilistic broadcast was defined later (Eug-
ster, Guerraoui, and Kouznetsov 2004).

• The exploitation of topology features in probabilistic algorithms was pro-
posed through an algorithm that assigns weights to link between pro-
cesses (Lin and Marzullo 1999). A similar idea, but using a hierarchy in-
stead of weight was proposed later to reduce the traffic across domain
boundaries (Gupta, Kermarrec, and Ganesh 2002).

• The first probabilistic broadcast algorithm that did not depend of any
global membership was given in 2001 (Eugster, Handurukande, Guer-
raoui, Kermarrec, and Kouznetsov 2001). The notion of message ages was
also introduced in 2001 (Kouznetsov, Guerraoui, Handurukande, and A.-
M.Kermarrec 2001) for purging messages and ensuring the scalability of
process buffers. The idea of flow control in probabilistic broadcast was de-
veloped in 2002 (Rodrigues, Handurukande, Pereira, Guerraoui, and Ker-
marrec 2003).

DRAFT 101 (22/11/2004)

4. Shared Memory

I always tell the truth, even when I lie.
(Tony Montana - Scarface)

This chapter presents shared memory abstractions. These are distributed
programming abstractions that encapsulate read-write forms of storage among
processes. These abstractions are called registers because they resemble those
provided by multi-processor machines at the hardware level, though in many
cases, including in this chapter, they are be implemented over processes that
communicate through message passing and do not share any hardware device.
help understand how to implement distributed shared working spaces.

We study here different variants of register abstractions. These differ ac-
cording to the number of processes that are allowed to read and write on
them, as well as on the semantics of their read operations in the face of
concurrency and failures. We distinguish two kinds of semantics: regular and
atomic. We will first consider the (1,N) regular register abstraction. The no-
tation (1,N) means here that one specific process can write and any process
can read. Then we will consider the (1,N) atomic register and finally the
(N,N) atomic register abstractions. We will consider these abstractions for
three of the distributed system models identified in Chapter 2: the fail-stop,
fail-silent, and fail-recovery models.

4.1 Introduction

4.1.1 Sharing Information in a Distributed System

In a multiprocressor machine, processes typically communicate through reg-
isters provided at the hardware level. The set of these registers constitute the
shared memory of the processes. The act of building a register abstraction
among a set of processes that communicate by message passing is sometimes

4.1. INTRODUCTION CHAPTER 4. MEMORY

called a shared memory emulation. The programmer using this abstraction
can develop shared memory algorithms without being aware that, behind the
scenes, processes are actually communicating by exchanging messages, i.e.,
there is no physical shared memory. Such emulation is very appealing because
programming with a shared memory is usually considered significantly eas-
ier than with message passing, precisely because the programmer can ignore
various concurrency and failure issues.

Studying register specifications and algorithms is also useful in implement-
ing distributed file systems as well as shared working spaces for collaborative
work. For example, the abstraction of a distributed file that can be accessed
through read and write operations is similar to the notion of register. Not
surprisingly, the algorithms that one needs to devise in order to build a dis-
tributed file system can be directly inspired from those used to implement
register abstractions. Similarly, when building a shared working space in col-
laborative editing environments, one ends up devising register-like distributed
algorithms.

In the following, we will study two semantics of registers: regular and
atomic ones. When describing a register abstraction, we will distinguish the
case where it can be read and (or) written by exactly one process, and read
and (or) written by all (i.e., any of the N processes in the system).

4.1.2 Register Overview

Assumptions. Registers store values that are accessed through two opera-
tions: read and write. The operations of a register are invoked by the processes
of the system to exchange information through the register. When a process
invokes any of these operations and gets back a reply, we say that the process
completes the operation. Each process accesses the registers in a sequential
manner: if a process invokes some operation (read or write on some register),
the process does not invoke any further operation unless the previous one is
complete.

To simplify, we also assume that every register (a) is supposed to contain
only positive integers, and (b) is supposed to be initialized to 0. In other
words, we assume through the latter assumption that some write operation
was initially invoked on the register with 0 as a parameter and completed
before any other operation is invoked. Also, for presentation simplicity but
still without loss of generality, we will also assume that (c) the values written
in the register are uniquely identified, say by using some unique timestamps
provided by the processes. (Just like we assumed in the previous chapter that
messages that are broadcast are uniquely identified.)

Some of the register abstractions and algorithms we will present make the
assumption that specific processes can write and specific processes can read.
For example, the simplest case is a register with one writer and one reader,
denoted by (1, 1): the writer is a specific process known in advance and so
is the reader. We will also consider registers with one writer and N readers

DRAFT 104 (22/11/2004)

CHAPTER 4. MEMORY 4.1. INTRODUCTION

(the writer is here a specific process and any process can be a reader). More
generally, a register with X writers and Y readers is also called a (X, Y)
register. The extreme case is of course the one with N writers and N readers:
any process can be a writer and a reader at the same time.

Signature and Semantics. Basically, a read is supposed to return the value
in the register and a write is supposed to update the value of the register.
More precisely:

1. A read operation does not take any input parameter and has one ouput
parameter. This output parameter contains the presumably current value
of the register and constitutes the reply of the read invocation. A read
does not modify the content of the register.

2. A write operation takes an input parameter and returns a simple indica-
tion (ack) that the operation has taken place. This indication constitutes
the reply of the write invocation. The write operation aims at modifying
the content of the register.

If a register is used (read and written) by a single process, and we assume
there is no failure, it is reasonable to define the specification of the register
through the simple following properties:

• Liveness. Every operation eventually completes.
• Safety. Every read returns the last value written.

In fact, even if a register is used by a set of processes one at a time (i.e.,
we also say in a serial manner) and without crashing, we could still define the
specification of the register using those simple properties. By serial access we
mean that a process does not invoke an operation on a register if some other
process has invoked an operation and did not receive any reply.

Failure Issues. If we assume that processes might fail, say by crashing, we
cannot require that any process that invokes an operation eventually com-
pletes that operation. Indeed, a process might crash right after invoking an
operation and would not have the time to complete this operation. We say
that the operation has failed. (Remember that failures are unpredictable and
this is precisely what makes distributed computing challenging).

However, it makes sense to require that if a process pi invokes some op-
eration and does not subsequently crash, then pi gets back a reply to its
invocation, i.e., completes its operation. That is, any process that invokes a
read or write operation, and does not crash, is supposed to eventually return
from that invocation. Its operation should not fail. This requirement makes
the register fault-tolerant. It is also sometimes said to be robust or wait-free.

If we assume that processes access a register in a serial manner, we may,
at first glance, still want to require from a read operation that it returns
the last value written. We need however to be careful here with failures in

DRAFT 105 (22/11/2004)

4.1. INTRODUCTION CHAPTER 4. MEMORY

defining the very notion of last. To illustrate the underlying issue, consider
the following situation.

• Assume that a process p1 invokes a write on the register with value v1

and terminates its write. Later on, some other process p2 invokes a write
operation on the register with a new value v2, and then p2 crashes before
the operation terminates: before it crashes, p2 did not get any indication
that the operation has indeed taken place, i.e., the operation has failed.
Now, if even later on, process p3 invokes a read operation on the register,
then what is the value that is supposed to be returned to p3? should it be
v1 or v2?

In fact, we will consider both values to be valid replies. Intuitively, p2

might have or not had the time to terminate the writing operation. In other
words, when we require that a read returns the last value written, we consider
the two following cases as possible:

1. The value returned has indeed been written by the last process that
completed its write, even if some process has invoked a write later but
crashed. In this case, no future read should be returning the value of
the failed write; Everything happens as if the failed operation was never
invoked.

2. The value returned was the input parameter of the last write operation
that was invoked, even by some process that crashed before the comple-
tion of the actual operation. Everything happens as if the operation that
failed has completed.

In fact, the difficulty underlying the problem of failure just discussed has
actually to do with a failed write (the one of the crashed process p2) being
concurrent with a read (i.e., the one that comes from p3 after the crash):
this happens even if a process does not invoke an operation while some other
process is still waiting for a reply. The difficulty is related to the context of
concurrent invocations discussed below.

Concurrency Issues. What should we expect from a value returned by a
read operation that is concurrent with some write operation? What is the
meaning of the last write in this context? Similarly, if two write operations
were invoked concurrently, what is the last value written? Can a subsequent
read return one of the values and then a read that comes even later return
the other?

In this chapter, we will give the specifications of register abstractions (i.e.,
regular and atomic) that differ mainly in the way we address these questions,
as well algorithms that implement these specifications. Roughly speaking,
a regular register ensures minimal guarantees in the face of concurrent and
failed operations. An atomic register is stronger and provides strong proper-
ties even in the face of concurrency and failures. To make the specifications
more precise, we first introduce below some definitions that aim to capture

DRAFT 106 (22/11/2004)

CHAPTER 4. MEMORY 4.1. INTRODUCTION

the intuitions discussed above (remember that, by default, we consider that
a process does nor recover after a crash; later in the chapter we will consider
the fail-recovery model).

4.1.3 Completeness and Precedence

We first define the notions of completeness of an operation execution and
precedence between operation executions, e.g., read or write executions. Note
that when there is no possible ambiguity, we simply talk about operations to
mean operation executions.

These notions are defined using the events that occur at the boundary of
an operation: the request invocation (read or write invocation) and the return
confirmation (ack) or the actual reply value in the case of a read invocation.
Each of these events is assumed to occur at a single indivisible point in time.
(Remember that we assume a fictional notion of global time, used to reason
about specifications and algorithms. This global time is however not directly
accessible to the processes.)

• We say that an operation is complete if both events defining the operation
have occured.
This basically means that the process which invoked the operation op did
not crash before being informed that op is terminated, i.e., before the
confirmation event occured.

• A failed operation is one that was invoked, but the process which invoked
it crashed before obtaining any reply.

• An operation op (e.g., read or write) is said to precede an operation op’
(e.g., read or write) if:

– the event corresponding to the return of op occurs before (i.e., precedes)
the event corresponding to the invocation of op’;

It is important to notice here that, for an operation op, invoked by some
process p1 to precede an operation op’ (invoked by a different process) p2,
op must be complete.

• If two operations are such that one precedes the other, we say that the
operations are sequential. Otherwise we say that they are concurrent.

Basically, every execution of a register can be viewed as a partial order of
its read and write operations. If only one process invokes operations, then the
order is total. When there is no concurrency and all operations are complete,
the order is also total.

• When a read operation r returns a value v, and that value v was the input
parameter of some write operation w, we say that r (resp. v) has (was)
read from w.

• A value v is said to be written when the write of v is complete.

DRAFT 107 (22/11/2004)

4.2. (1,N) REGULAR REGISTER CHAPTER 4. MEMORY

Module:

Name: (1,N)RegularRegister (on-rreg).

Events:

Request: 〈 on-rRedRead, reg 〉: Used to invoke a read operation on reg-
ister reg.
Request: 〈 on-rregWrite, reg, v 〉: Used to invoke a write operation of
value v on register reg.

Confirmation: 〈 on-rregReadReturn, reg, v 〉: Used to return v as a re-
sponse to the read invocation on register reg and indicates that the oper-
ation is complete.
Confirmation: 〈 on-rregWriteReturn, reg 〉: Indicates that the write op-
eration has taken place at register reg and is complete.

Properties:

RR1: Termination: If a correct process invokes an operation, the process
eventually returns from the invocation.

RR2: Validity: A read returns the last value written, or the value concur-
rently written.

Module 4.1 Interface and properties of a (1,N) regular register.

4.2 (1,N) Regular Register

We give here the specification and underlying algorithms of a (1,N) regular
register, i.e., one specific process, say p1 can invoke a write operation on the
register and any process can invoke a read operation on that register.

4.2.1 Specification

The interface and properties of a (1,N) regular register are given in Mod-
ule 4.1. In short, a read that is not concurrent with any write returns the
last value written. Otherwise (i.e., if there is a concurrent write), the read
is allowed to return the last value written or the value concurrently written.
Note that if a process invokes a write and crashes (without recovering), the
write is considered to be concurrent with any read that did not precede it.
Hence, such a read can return the value that was supposed to be written
by the failed write or the previous value written, i.e., the last value written
before the failed write was invoked. Note also that, in any case, the value
returned must be read from some write operation invoked on the register.
That is, a value read must in any case be a value that some process has tried
to write (even if the write was not complete): it cannot be invented out of
thin air. This can be the initial value of the register, which we assume to have
been written initially by the writer.

Example. To illustrate the specification of a regular register, we depict in
Figure 4.1 and Figure 4.2 two executions. The first is not permitted by a

DRAFT 108 (22/11/2004)

CHAPTER 4. MEMORY 4.2. (1,N) REGULAR REGISTER

regular register whereas the second is. In the first case, even when there is
no concurrency, the read does not return the last value written.

write(5) write(6)
p1

p2
read() −> 5 read() −> 6read() −> 0

Figure 4.1. Non-regular register execution

write(5) write(6)
p1

p2
read() −> 5 read() −> 5 read() −> 6

Figure 4.2. Regular register execution

4.2.2 Fail-Stop Algorithm: Read-One-Write-All Regular Register

Algorithm 4.1 implements a (1,N) regular register. The simplicity of this
algorithm lies in its relying on a perfect failure detector (fail-stop model).
The crash of a process is eventually detected by all correct processes (strong
completeness), and no process is detected to have crashed until it has really
crashed (strong accuracy).

The algorithm has each process store a copy of the current register value
in a variable that is local to the process. In other words, the value of the
register is replicated at all processes. The writer updates the value of all
processes it does not detect to have crashed. When the write of a new value
is complete, all processes that did not crash have the new value. The reader
simply returns the value it has stored locally. In other words, the reader reads
one value and the writer writes all values. Henve the name of Algorithm 4.1
(read-one-write-all algorithm).

Besides a perfect failure detector, our algorithm makes use of two under-
lying communication abstractions: perfect point-to-point links as well as a
best-effort broadcast.

Correctness. The termination property is straightforward for any read in-
vocation. A process simply reads (i.e., returns) its local value. For a write
invocation, termination follows from the properties of the underlying commu-
nication abstractions (perfect point-to-point communication and best-effort
broadcast) and the completeness property of a perfect failure detector (every
crashed process is eventually detected by every correct process). Any process
that crashes is detected and any process that does not crash sends back an
acknowledgement which is eventually delivered by the writer.

DRAFT 109 (22/11/2004)

4.2. (1,N) REGULAR REGISTER CHAPTER 4. MEMORY

Algorithm 4.1 Read-one-write-all regular register algorithm.

Implements:
(1,N)RegularRegister (on-rreg).

Uses:
BestEffortBroadcast (beb).
PerfectPointToPointLinks (pp2p).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
forall r do

value[r] := 0;
writeSet[r] := ∅;

correct := Π;

upon event 〈 crash, pi 〉 do
correct := correct \ {pi};

upon event 〈 on-rregRead, reg 〉 do
trigger 〈 on-rregReadReturn, reg, value[reg] 〉;

upon event 〈 on-rregWrite, reg, val 〉 do
trigger 〈 bebBroadcast, [Write, reg, val] 〉;

upon event 〈 bebDeliver, pj , [Write, reg, val] 〉 do
value[reg] := val;
trigger 〈 pp2pSend, pj , [Ack, reg] 〉;

upon event 〈 pp2pDeliver, pj , [Ack, reg] 〉 do
writeSet[reg] := writeSet[reg] ∪ {pj};

upon exists r such that correct ⊆ writeSet[r] do
writeSet[r] := ∅;
trigger 〈 on-rregWriteReturn, r 〉;

Consider validity. Assume that there is no concurrency and all operations
are complete. Consider a read invoked by some process pi and assume fur-
thermore that v is the last value written. By the accuracy property of the
perfect failure detector, at the time when the read is invoked, all processes
that did not crash have value v. These include pi which indeed returns v, i.e.,
the last value written.

Assume now that the read is concurrent with some write of a value v
and the value written prior to v was v′ (this could be the initial value 0).
By the properties of the communication abstractions, no message is altered
and no value can be stored at a process unless the writer has invoked a write
operation with this value as a parameter. Hence, at the time of the read, the
value can either be v or v′.

DRAFT 110 (22/11/2004)

CHAPTER 4. MEMORY 4.2. (1,N) REGULAR REGISTER

Performance. Every write operation requires one communication round-trip
between the writer and all processes, and at most 2N messages. A read
operation does not require any remote communication: it is purely local.

4.2.3 Fail-Silent Algorithm: Majority-Voting Regular Register

It is easy to see that if the failure detector is not perfect, the read-one-write-
all algorithm (i.e., Algorithm 4.1) might not ensure the validity property of
the register. We depict this possibility through the execution of Figure 4.3.
Even without concurrency and without any failure, process p2 returns a value
that was not the last value written. This might happen if p1, the process that
has written that value, has falsely suspected p2 to have crashed, and p1 did
not make sure p2 has locally stored the new value, i.e., 6.

write(5)
p1

p2
read() −> 5

write(6)

Figure 4.3. A non-regular register execution

In the following, we give a regular register algorithm in a fail-silent model.
This algorithm does not rely on any failure detection scheme. Instead, the
algorithm assumes a majority of correct processes. We leave it as an exercise
to show that this majority assumption is actually needed, even when an
eventually perfect failure detector can be used.

The general principle of the algorithm consists for the writer and readers
to use a set of witness processes that keep track of the most recent value
of the register. The witnesses must be chosen in such a way that at least
one witness participates in any pair of such operations and does not crash
in the meantime. Sets of witnesses must intuitively form quorums: their in-
tersection should not be empty. This is ensured by the use of majorities and
Algorithm 4.2 is called the a majority-voting algorithm. The algorithm indeed
implements a (1,N) regular register where one specific process is the writer,
say p1, and any process can be the reader.

Similarly to our previous read-one-write-all algorithm (i.e., Algorithm 4.1),
our majority voting algorithm (i.e., Algorithm 4.2) also has each process store
a copy of the current register value in a local variable. Furthermore, the algo-
rithm relies on a timestamp (we also say sequence number) associated with
the value, i.e., which each value stored locally at a process. This timestamp is
defined by the writer, i.e., p1, and intuitively represents the version number
(or the age) of the value. It measures the number of times the write operation
has been invoked.

• For p1 (the unique writer) to write a new value, p1 defines a new timestamp
by incrementing the one it already had and associates it with the value to

DRAFT 111 (22/11/2004)

4.2. (1,N) REGULAR REGISTER CHAPTER 4. MEMORY

Algorithm 4.2 Majority-voting regular register algorithm.

Implements:
(1,N)RegularRegister (on-rreg).

Uses:
BestEffortBroadcast (beb).
perfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
forall r do

ts[r] := sn[r] := v[r] := acks[r] := reqid[r] := 0; readSet[r] := ∅;

upon event 〈 on-rregWrite, r, val 〉 do
ts[r] := ts[r] + 1; acks[r] := 0; reqid[r] := reqid[r] + 1;
trigger 〈 bebBroadcast, [Write, r, reqid, ts[r], val] 〉;

upon event 〈 bebDeliver, pj , [Write, r, id, tsamp, val] 〉 do
if tstamp > sn[r] then

v[r] := val; sn[r] := tstamp;
trigger 〈 pp2pSend, pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver, pj , [Ack, r, id] 〉 do
if id=reqid[r] then acks[r] := acks[r] + 1;

upon exists r such that acks[r] > N/2) do
trigger 〈 on-rregWriteReturn, r 〉;

upon event 〈 on-rregRead, r 〉 do
reqid[r] := reqid[r] +1; readSet[r] := ∅;
trigger 〈 bebBroadcast, [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver, pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend, pj ,[ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 pp2pDeliver, pj , [ReadValue, r, id, version, val] 〉 do
if id=reqid[r] then readSet[r] := readSet[r] ∪ {(version, val)};

upon exists r such that |readSet[r]| > N/2) do
v[r] := highest(readSet[r]);
trigger 〈 on-rregReadReturn, r, v[r] 〉;

be written. Then p1 sends a message to all processes, and has a majority
adopt this value (i.e., store it locally), as well as the value’s timestamp.
Process p1 considers the write to be complete (and hence returns the in-
dication ack) when p1 has received an acknowledgement from a majority
of processes indicating that they have indeed adopted the new value and
the corresponding timestamp. It is important at this point to notice that
a process pi will only adopt a value sent by the writer, and consequently
sends back an acknowledgement, if pi has not already adopted a more re-
cent value (with a higher timestamp). Process p1 might have adopted an

DRAFT 112 (22/11/2004)

CHAPTER 4. MEMORY 4.2. (1,N) REGULAR REGISTER

old value if for instance p1 has sent a value v1, then later a value v2, and
process pi receives v2 and then v1. This would mean that pi was not in the
majority that made it possible for p1 to terminate its writing of v1, before
proceeding to the writing of v2.

• To read a value, the reader process (it can be any process) selects the
value with the highest timestamp among a majority: the processes in this
majority act as witnesses of what was written before. The two majorities
do not need to be the same. Choosing the highest timestamp ensures that
the last value is chosen, provided there is no concurrency. In our majority
voting algorithm (Algorithm 4.2), the reader uses a function highest that
returns the value with the highest timestamp among a set of pairs (times-
tamp, value) among the set of all pairs returned by a majority. Note that
every request is tagged with a unique identifier, and that the corresponding
replies carry this identifier. In this way, the reader, can figure out whether
a given reply message matches a given request message (and is not an old
reply). This is important here since the reader could for instance confuse
two messages: one for an old read invocation and one for a new one. This
might lead to violate the validity property of the register.

Correctness. The termination property follows from the properties of the
underlying communication abstractions and the assumption of a majority of
correct processes. Consider now validity.

Consider first the case of a read that is not concurrent with any write.
Assume furthermore that a read is invoked by some process pi and the last
value written by p1, say v, has timestamp sn1 at p1. This means that, at the
time when the read is invoked, a majority of the processes have timestamp
sn1 and there is no higher timestamp in the system. This is because the
writer uses increasing timestamps.

Before reading a value, i.e., returning from the read operation, pi consults
a majority of processes and hence gets at least one value with timestamp sn1.
This is because majorities always intersect (i.e., they form quorums). Process
pi hence returns value v with timestamp sn1, which is indeed the last value
written.

Consider now the case where the read is concurrent with some write of
value v and timestamp sn1, and the previous write was for value v′ and
timestamp sn1 −1. If any process returns sn1 to pi, pi will return v, which is
a valid reply. Otherwise, at least one process will return sn1 − 1 and pi will
return v′, which is also a valid reply.

Performance. Every write operation requires one communication round-trip
between the writer and a majority of the processes and every read requires
one communication round-trip between the reader and a majority of the
processes. In both operations, at most 2N messages are exchanged.

DRAFT 113 (22/11/2004)

4.3. (1,N) ATOMIC REGISTER CHAPTER 4. MEMORY

4.3 (1,N) Atomic Register

We give here the specification and underlying algorithms of a (1, N) atomic
register. The generalization to multiple writers will be discussed in the next
section.

4.3.1 Specification

With a regular register specification, nothing prevents a process from reading
a value v and then v′, even if the writer process has written v′ and then v,
as long as the writes and the reads are concurrent. Furthermore, consider
a register on which only one write operation was invoked by the writer p1,
say with some value v, and p1 crashed before returning from the operation
and does not recover, i.e., the operation is not complete. A subsequent reader
might read v whereas another, coming even later, might not, i.e., might return
the initial value of the register. In short, an atomic register is a regular register
that prevents such behaviors.

write(5) write(6)
p1

p2
read() −> 6read() −> 5 read() −> 5

Figure 4.4. Non-atomic register execution

write(5) write(6)
p1

p2
read() −> 5 read() −> 5 read() −> 6

Figure 4.5. Atomic register execution

The interface and properties of a (1,N) atomic register are given in Mod-
ule 4.2. A (1,N) atomic register is a regular register that, in addition to the
properties of a regular register (Module 4.1) ensures a specific ordering prop-
erty which, roughly speaking, prevents an old value to be read once a new
value has been read.

Typically, with a (1,N) atomic register, a reader process cannot read a
value v′, after some value v was read (possibly by some other process), if
v′ was written before v. In addition, consider a register on which one write
operation was invoked and the writer that invoked this operation, say with
some value v, crashed before returning from the operation, i.e., the operation
is not complete. Once a subsequent reader reads v, no subsequent reader can
read the initial value of the register.

DRAFT 114 (22/11/2004)

CHAPTER 4. MEMORY 4.3. (1,N) ATOMIC REGISTER

Module:

Name: (1,N)AtomicRegister (on-areg).

Events:

Request: 〈 on-aregRead, reg 〉: Used to invoke a read operation on register
reg.
Request: 〈 on-aregWrite, reg, v 〉: Used to invoke a write operation of
value v on register reg.

Confirmation: 〈 on-aregReadReturn, reg, v 〉: Used to return v as a re-
sponse to the read invocation on register reg and indicates that the oper-
ation is complete.
Confirmation: 〈 on-aregWriteReturn, reg 〉: Indicates that the write op-
eration has taken place at register reg and is complete.

Properties:

AR1: Termination: If a correct process invokes an operation, the process
eventually returns from the invocation (same as RR1).

AR2: Validity: A read returns the last value written, or the value concur-
rently written (same as RR2).

AR3: Ordering: If a read returns v2 after a read that precedes it has
returned v1, then v1 cannot be written after v2.

Module 4.2 Interface and properties of a (1,N) atomic register.

The execution depicted in Figure 4.5 is that of an atomic register whereas
the execution depicted in Figure 4.4 is not. In the execution of Figure 4.4, the
ordering property of an atomic register should prevent the read of process p2

to return 6 and then 5, given that 5 was written before 6.
It is important to notice that none of our previous algorithms implements

a (1,N) atomic register. We illustrate this through the execution depicted
in Figure 4.6 as a counter example for our read-one-write-all regular regis-
ter algorithm (Algorithm 4.1), and the execution depicted in Figure 4.7 as
a counter example for our majority-voting regular register algorithm (Algo-
rithm 4.2).

read() −> 5
p2

read() −> 6

p3
read() −> 5

p1
write(5) write(6)

Figure 4.6. Violation of atomicity in the read-one-write-all regular register algo-
rithm

DRAFT 115 (22/11/2004)

4.3. (1,N) ATOMIC REGISTER CHAPTER 4. MEMORY

read() −> 5
p2

sn = 2sn = 1

read() −> 6 read() −> 5

sn = 1

p1
write(5)

sn = 1

write(6)

sn = 2

P3 sn = 1 sn = 1

Figure 4.7. Violation of atomicity in the majority-voting regular register algorithm

• The scenario of Figure 4.6 can indeed occur with Algorithm 4.1 if p1,
during its second write, communicates the new value 6 to p2 before p3, and
furthermore, before p2 reads locally 6 but after p3 reads locally 5. This can
happen even if the read of p2 precedes the read of p3.

• The scenario of Figure 4.7 can occur with Algorithm 4.2 if p2 has accessed
p1 in its second read and p3 in its third read before p1 accesses any of p2

and p3 in its second write. Clearly, this can also occur for Algorithm 4.1.

read() −> 5
p2

sn = 2sn = 1

read() −> 6read() −> 6

sn = 2

p1
write(5)

sn = 1

write(6)

sn = 2

P3 sn = 1 sn = 1

Figure 4.8. An (1,N) atomic register execution

In the following, we give algorithms that implement the (1,N) atomic
register abstraction. We first describe how to automatically transform any
(fail-stop or fail-silent) (1,1) regular algorithm into a (1,N) atomic register
algorithm. Such a transformation does not lead to an efficient implementation
but it is modular and helps understand the fundamental difference between
atomic and regular registers. It does not however lead to efficient algorithms.
We later describe how to extend our regular register algorithms in an ad-hoc
way and obtain an efficient (1,N) atomic register algorithms.

4.3.2 Transformation: From (1,N) Regular to (1,N) Atomic

For pedagogical reasons, we divide the problem of transforming any (1,N)
regular register into a (1,N) atomic register algorithm in two parts. We first
explain how to transform any (1,1) regular register algorithm into a (1,1)
atomic register algorithm and then how to transform any (1,1) atomic register
algorithm into a (1,N) atomic register algorithm. It is important to notice
that these transformations do not use any other means of communication
between processes than the underlying registers.

DRAFT 116 (22/11/2004)

CHAPTER 4. MEMORY 4.3. (1,N) ATOMIC REGISTER

From (1,N) Regular to (1,1) Atomic. The first transformation is given
in Algorithm 4.3 and its underlying idea is simple. To build a (1,1) atomic reg-
ister with p1 as a writer and p2 as a reader, we make use of one (1,N) regular
register the writer of which is also p1 and the reader is also p2. Furthermore,
the writer p1 maintains a timestamp that it increments and associates with
every new value to be written. The reader also maintains a timestamp, to-
gether with a variable to locally store the latest value read from the register.
Intuitively, the goal of storing this value is to make sure an old value is not
returned after a new one has been returned.

In Algorithm 4.3, the underlying regular register is denoted by regReg
and the atomic register to be implemented is denoted by reg.

• To write a value v, in the atomic register reg, the writer p1 increments its
timestamp and writes it, together with v in the underlying regular register
regReg.

• To read a value in the atomic register reg, the reader p2 reads the value in
the underlying regular register regReg as well as the associated timestamp.
If the timestamp read is higher than the one previously locally stored by
the reader, then p2 stores the new timestamp read, together with the new
value read, and returns the latest. Otherwise, the reader simply returns
the value it already had locally stored.

Correctness. The termination property of the atomic register follows from
the one of the underlying regular register.

Consider validity. Assume first a read that is not concurrent with any write
and the last value written by p1, say v, is associated with sequence number
sn1. The sequence number stored by p2 is either sn1, if p2 has already read v
in some previous read or a strictly lower value. In both cases, by the validity
property of the regular register, a read by p2 will return v. Consider now the
case where the read is concurrent with some write of value v and sequence
number sn1, and the previous write was for value v′ and sequence number
sn1 − 1. The sequence number stored by p2 cannot be strictly higher than
sn1. Hence, by the validity property of the underlying regular register, p2 will
return either v or v′, both are valid replies.

Consider the ordering property. Assume p1 writes value v and then v′.
Assume p2 returns v′ for some read and consider any subsequent read of p2.
The sequence number stored locally at p2 is either the one associated with
v′ or a higher one. By the transformation algorithm, there is no way p2 can
return v.

Performance. Interestingly, writing in the atomic register requires only a
local computation (incrementing a timestamp) in addition to writing in the
regular register. Similarly, reading from the atomic register requires only
a local computation (performing a test and possibly some affectations) in
addition to reading from the regular register. This observation means that

DRAFT 117 (22/11/2004)

4.3. (1,N) ATOMIC REGISTER CHAPTER 4. MEMORY

Algorithm 4.3 From (1,N) regular to (1,1) atomic registers.

Implements:
(1,1)AtomicRegister (oo-areg).

Uses:
(1,N)RegularRegister(on-rreg).

upon event 〈 Init 〉 do
forall r do

ts[r] := sn[r] := v[r] := 0;

upon event 〈 oo-aregWrite, r, v 〉 do
ts[r] := ts[r] + 1;
trigger 〈 on-rregWrite, r, ts[r], v[r] 〉;

upon event 〈 on-rregWriteReturn, r 〉 do
trigger 〈 oo-aregWriteReturn, r 〉;

upon event 〈 oo-aregRead, r 〉 do
trigger 〈 on-rregRead, r 〉;

upon event 〈 on-rregReadRet, r, (tstamp,val) 〉 do
if tstamp > sn[r] then

sn[r] := tstamp; v[r] := val;
trigger 〈 oo-aregReadReturn, r, v[r] 〉;

no messages need to be added to an algorithm that implements a (1,1) regular
register in order to implement a (1,1) atomic register.

From (1,1) Atomic to (1,N) Atomic. We describe here an algorithm
that implements the abstraction of a (1,N) atomic register out of (1,1) atomic
registers. To get an intuition of the transformation, think of a teacher, i.e.,
the writer, who needs to communicate some information to a set of students,
i.e., the readers, through the abstraction of a traditional black-board. In some
sense, a board is typically a (1,N) register, as far as only the teacher writes
on it. It is furthermore atomic as it is made of a single physical entity.

Assume however that the teacher cannot physically gather all students
within the same classroom and hence cannot use one physical board for all.
Instead, this global board needs to be emulated using one or several electronic
boards (e-boards) that could also be written by one person but could only be
read by one person, say every student can have one or several of such boards
at-home that only this student can read.

It makes sense to have the teacher write every new information on at
least one board per student. This is intuitively necessary for the students
to eventually read the information provided by the teacher, i.e., to ensure
the validity property of the register. This is however not enough if we want

DRAFT 118 (22/11/2004)

CHAPTER 4. MEMORY 4.3. (1,N) ATOMIC REGISTER

to guarantee the ordering property of an atomic register. Indeed, assume
that the teacher writes two consecutive information X and then Y . It might
happen that a student reads Y and then later on, some other student reads
X , say because the information flow from the teacher to the first student is
faster than the flow to the second teacher. This case of ordering violation is
in a sense similar to the situation of Figure 4.6.

One way to cope with this issue is, for every student, before terminating
the reading of some information, to transmit this information to all other stu-
dents, through other e-boards. That is, every student would devote, besides
the e-board devoted for the teacher to provide her with new information,
another one for every other student to write new information in. Whenever a
student reads some information from the teacher, she first writes this infor-
mation in the boards of all other students before returning the information.
Old and new information are distinguished using timestamps.

The transformation we give in Algorithm 4.4 uses a number of (1, 1)
atomic registers to build one (1, N) atomic register, denoted by reg. The
writer of the latter register reg is p1. The (1, 1) registers are used in the
following way:

1. A series of N of (1,1) atomic registers, with identities stored in variables
writer[reg, 1], writer[reg, 2], . . ., writer[reg, N]. These registers are used
to communicate between the writer, i.e., p1, and each of the N readers.
In all these registers, the writer is p1. The reader of register writer[reg, k]
is pk.

2. A series of N2 of (1,1) atomic registers, with identities stored in variables
readers[reg, 1, 1], . . ., readers[reg, i, j], . . . , readers[reg, N, N]. These
registers are used to communicate between the readers. In any register
with identifier readers[reg, i, j], the reader is pi and the writer is pj .

The algorithm also relies on a timestamp ts that indicates the version of
the current value of the register. We make also use here of a function highest
that returns the pair (timestamp, value) with the highest timestamp among
a set of such pairs.

Correctness. By the termination property of the underlying (1,1) atomic reg-
isters and the fact that the transformation algorithm contains no loop or wait
statement, every operation eventually returns. Similarly, by the validity prop-
erty of the underlying (1,1) atomic registers, and the fact that the value with
the largest timestamp is chosen to be returned, we also derive the validity
of the (1,N) atomic register. Consider now the ordering property. Consider a
write w1 of a value v1 with timestamp s1 that precedes a write w2 with value
v2 and timestamp s2 (s1 < s2). Assume that some read operation returns v2:
by the algorithm, for any j in [1, N], pi has written (s2, v2) in ri,j . By the
ordering property of the underlying (1, 1) registers, every subsequent read
will return a value with a timestamp at least as high as s2, i.e., there is no
way to return v1.

DRAFT 119 (22/11/2004)

4.3. (1,N) ATOMIC REGISTER CHAPTER 4. MEMORY

Algorithm 4.4 From (1,1) atomic to (1,N) atomic registers.

Implements:
(1,N)AtomicRegister (on-areg).

Uses:
(1,1)AtomicRegister (oo-areg).

upon event 〈 Init 〉 do
i := rank (self); // rank of local process (integer in range 1 . . . N)
forall r do

ts[r] := acks[r] := readval[r] := 0; readSet[r] := ∅;
for j = 1 to N do // assign namespace of (1,1) atomic registers

writer[r, j] := (r − 1)(N2 + N) + j;
for k = 1 to N do readers[r, j, k] := (N2 + N)(r − 1) + jN + k;

upon event 〈 on-aregWrite, r, v 〉 do
ts[r] := ts[r] + 1;
for j = 1 to N do trigger 〈 oo-aregWrite, writer[r, j], (ts[r], v) 〉;

upon event 〈 oo-aregWriteReturn, writer[r, j] 〉 do
acks[r] := acks[r] + 1;

upon exists r such that acks[r] = N do
acks[r] := 0; trigger 〈 on-aregWriteReturn, r 〉;

upon event 〈 on-aregRead, r 〉 do
readSet[r] := ∅; for j = 1 to N do trigger 〈 oo-aregRead, readers[r, i, j] 〉;

upon event 〈 oo-aregReadReturn, readers[r, i, j], (tstamp, v) 〉 do
readSet[r] := readSet[r] ∪ {(tstamp, v)};

upon exists r such that |readSet[r]| = N) do
trigger 〈 oo-aregRead, writer[r, i] 〉;

upon event 〈 oo-aregReadReturn, writer[r, i], (tstamp, v) 〉 do
(maxts,reaval[r]) := highest (readSet[r] ∪ (tstamp ,v));
for j = 1 to N do

trigger 〈 oo-aregWrite, readers[r, j, i], maxts, readval[r] 〉;

upon event 〈 oo-aregWriteReturn, readers[r, j, i] 〉 do
acks[r] := acks[r] + 1;

upon exists r such that acks[r] = N do
acks[r] := 0; trigger 〈 on-aregReadReturn, r, readval[r] 〉;

Performance. Every write operation into the (1,N) register requires N writes
into (1,1) registers. Every read from the (1,N) register requires one read from
N (1,1) registers and one write into N (1,1) registers.

We give in the following two ad-hoc (1,N) atomic register algorithms. The
first one is a a fail-stop and the second is a fail-silent algorithm. These are

DRAFT 120 (22/11/2004)

CHAPTER 4. MEMORY 4.3. (1,N) ATOMIC REGISTER

adaptations of the read-one-write-all and majority-voting (1,N) regular regis-
ter algorithms, respectively. Both algorithms require less messages than those
we would obtain through the automatic transformations described above.

4.3.3 Fail-Stop Algorithm: Read-One-Impose-All (1,N) Atomic
Register

If the goal is to implement a register with one writer and multiple readers,
i.e., (1,N), the read-one-write-all regular register algorithm (Algorithm 4.1)
does clearly not work: the scenario depicted in Figure 4.6 illustrates this case.

To cope with this case, we define an extension to the read-one-write-all
regular register algorithm (Algorithm 4.1) that circumvents the problem by
having the reader also imposes, on all other processes, the value it is about
to return. In other words, the read operation acts also as a write. The result-
ing algorithm, named read-one-impose-all, is depicted in Algorithm 4.5 The
writer uses a timestamp to date the values it is writing: it is this timestamp
that ensures the ordering of every execution. A process that is asked to store
a value that is older than the one it has returns an acknowledgement but
does not modify its value. We will discuss the need for this test, as well as
the need for the timestamp, through an exercise at the end of this chapter.

Correctness. Termination and validity are ensured as in Algorithm 4.1. Con-
sider now ordering. Assume p1 writes a value v and then v′, which is associ-
ated with some timestamp sn. Assume furthermore that some reader pi reads
v′ and, later on, some other process pj invokes another read operation. At
the time where pi completes its read, all processes that did not crash have a
timestamp that is at least as hight as sn. By the read-one impose-all algo-
rithm, there is no way pj will later on change its value with v, as this has a
lower timestamp because it was written by p1 before v′.

Performance. Every write or read operation requires one communication
round-trip between the writer or the reader and all processes. At most 2N
messages are needed in both cases.

4.3.4 Fail-Silent Algorithm: Read-Majority Impose-Majority
(1,N) Atomic Register

In the following, we consider a fail-silent model. We describe an adaptation of
our majority-voting (1,N) regular register (Algorithm 4.2) that implements
a (1,N) atomic register algorithm.

This adaptation, called read-majority impose-majority, is depicted in Al-
gorithm 4.6. The implementation of the write operation is similar to that
of the majority-voting algorithm (Algorithm 4.2): the writer makes simply
sure a majority adopts its value. The implementation of the read operation
is however different. A reader selects the value with the highest timestamp
among a majority, as in the majority-voting algorithm, but now also makes

DRAFT 121 (22/11/2004)

4.3. (1,N) ATOMIC REGISTER CHAPTER 4. MEMORY

Algorithm 4.5 Read-one-impose-all (1,N) atomic register algorithm.

Implements:
(1,N)AtomicRegister (on-areg).

Uses:
BestEffortBroadcast (beb).
PerfectPointToPointLinks (pp2p).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
correct := Π;
forall r do

v[r]:= ts[r] := sn[r] := readval[r] := rqid[r] := 0;
reading[r] := false; writeSet[r] := ∅;

upon event 〈 crash, pi 〉 do
correct := correct \ {pi};

upon event 〈 on-aregRead, r 〉 do
rqid[r] := rqid[r] + 1; reading[r] := true; readval[r] := v[r];
trigger 〈 bebBroadcast, [Write, r, reqid, sn[r], v[r]] 〉;

upon event 〈 on-aregWrite, r, val 〉 do
rqid[r] := rqid[r] + 1; ts[r] := ts[r] + 1;
trigger 〈 bebBroadcast, [Write, r, reqid[r], ts[r], val] 〉;

upon event 〈 bebDeliver, pj ,[Write, r, id, tstamp, val] 〉 do
if tstamp > sn[r] then

v[r] := val; sn[r] := tstamp;
trigger 〈 pp2pSend, pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver, pj , [Ack, r, id] 〉 do
if id = reqid[r] then writeSet[r] := writeSet[r] ∪ {pj};

upon exists r such that correct ⊆ writeSet[r] do
writeSet[r] := ∅;
if (reading[r] = true) then

reading[r] := false;
trigger 〈 on-aregReadReturn, r, readval[r] 〉;

else
trigger 〈 on-aregWriteReturn, r 〉;

sure a majority adopts this value before completing the read operation: this
is key to ensuring the ordering property of an atomic register.

It is important to notice that the majority-voting algorithm can be seen
as a particular case of the read-majority impose-majority algorithm in the
following sense: given that there is only one reader in the majority-voting
algorithm, the reader simply adopts itself the value read and makes sure to
include itself in the majority.

DRAFT 122 (22/11/2004)

CHAPTER 4. MEMORY 4.3. (1,N) ATOMIC REGISTER

Algorithm 4.6 Read-Majority Impose-Majority (1,N) atomic register algorithm.

Implements:
(1,N)AtomicRegister (on-areg).

Uses:
BestEffortBroadcast (beb).
perfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
forall r do

ts[r] := sn[r] := v[r] := acks[r] := reqid[r] := 0; ;
reading[r] := false; readSet[r] := ∅;

upon event 〈 on-aregWrite, r, val 〉 do
reqid[r] := reqid[r] + 1; ts[r] := ts[r] + 1; acks[r] := 0;
trigger 〈 bebBroadcast, [Write, r, reqid, ts[r], val] 〉;

upon event 〈 bebDeliver, pj , [Write, r, id, t, val] 〉 do
if t > sn[r] then

v[r] := val; sn[r] := t; trigger 〈 pp2pSend, pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver, pj , [Ack, r, id] 〉 do
if reqid[r] = id then acks[r] := acks[r] + 1;

upon exists r such that acks[r] > N/2 do
if reading[r] = true then

reading[r] := false; trigger 〈 on-aregReadReturn, r, v[r] 〉;
else trigger 〈 on-aregWriteReturn, r 〉;

upon event 〈 on-aregRead, r 〉 do
reqid[r] := reqid[r] +1; readSet[r] := ∅;
trigger 〈 bebBroadcast, [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver, pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend, pj , [ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 pp2pDeliver, pj , [ReadValue, r, id, snb, val] 〉 do
if reqid[r] = id then readSet[r] := readSet[r] ∪ {(snb, val)};

upon exists r such that |readSet[r]| > N/2 do
(tstamp, val) := highest(readSet[r]); acks[r] := 0; reading[r] := true;
reqid[r] := reqid[r] +1; trigger 〈 bebBroadcast, [Write, r, reqid[r], tstamp, val] 〉;

Correctness. Termination and validity are ensured as in Algorithm 4.2. Con-
sider now the ordering property. Assume that a read invocation r1, by process
pi, returns a value v1 from a write invocation w1, by process p1 (the only
writer), a read invocation r2, by process pj , returns a different value v2 from
a write invocation w1, also by process p1, and r1 precedes r2. Assume by
contradiction that w2 precedes w1. By the algorithm, the sequence number

DRAFT 123 (22/11/2004)

4.4. (N,N) ATOMIC REGISTER CHAPTER 4. MEMORY

that p1 associated with v1, tsk, is strictly higher than the one p1 associated
with v2, tsk′ . Given that r1 precedes r2, then when r2 was invoked, a majority
have a timestamp that is at least tsk′ . Hence pj cannot return v2, because v2

has a strictly lower sequence number than v1. A contradiction.

Performance. Every write operation requires one communication round-trip
between p1 and a majority of the processes. 2N messages are exchanged.
Every read requires two communication round-trips between the reader and
a majority of the processes. 4N messages are exchanged.

4.4 (N,N) Atomic Register

4.4.1 Multiple Writers

So far, we have focused on registers with a single writer. That is, our specifi-
cations of regular and atomic registers do not provide any guarantees when
multiple processes write in a register. It is natural to ask what should be
ensured in the case of multiple writers.

One difficulty underlying this question has to do with defining the validity
property in the case of multiple writers. Indeed, this property requires that
a read that is not concurrent with any write should return the last value
written. But if two processes have written different values concurrently, say v
and v′, before some other process invokes a read operation, then what should
this read return? Assume we make it possible for the reader to return either
v or v′, do we allow a concurrent reader, or even a reader that comes later,
to return the other value?

In the following, we address these questions and we generalize the speci-
fication of atomic registers to multiple writers.

4.4.2 Specification

In short, a (N,N) atomic register ensures that failed writes either appear
as if they were never invoked or if they were complete, i.e., if they were
invoked and terminated. (Clearly, failed read operations do always appear
as if they were never invoked.) In addition, even in the face of concurrency,
the values returned by reads could have been returned by a serial execution
(called a linearization of the actual execution) where any operation takes
place at some instant between its invocation and reply instants. The execution
is in this sense linearizable (i.e., it has one linearization). A (N,N) atomic
register is a generalization of a (1,N) atomic register in the following sense:
every execution of (1,N) atomic register is an execution of a (N,N) atomic
register. The interface and properties of a (N,N) atomic register are given in
Module 4.3.

DRAFT 124 (22/11/2004)

CHAPTER 4. MEMORY 4.4. (N,N) ATOMIC REGISTER

Module:

Name: (N,N) Atomic Register (nn-areg).

Events:

Same as for a regular register (just replave “on-” by “nn-” on the interface).

Properties:

NAR1: Termination: Same as RR1.

NAR2: Atomicity: Every failed operation appears to be complete or does
not appear to have been invoked at all, and every complete operation
appears to have been executed at some instant between its invocation and
reply events.

Module 4.3 Interface and properties of a (N,N) atomic register.

To study the implementation of (N,N) atomic registers, we adopt the same
modular approach as for the (1,N) case. We first describe a general transfor-
mation that implements a (N,N) atomic register using (1,N) atomic registers.
This transformation does not rely on any other way of exchanging informa-
tion among the processes, besides the underlying (1,N) atomic registers. This
helps understand the fundamental difference between both abstractions. We
will also study ad-hoc (N,N) atomic register algorithms in various models.

4.4.3 Transformation: From (1,N) atomic to (N,N) atomic
registers

To get an intuition of this transformation, think of emulating a general
(atomic) board to be used by a set of teachers to provide information to
a set of students. All teachers are able to write and read information on the
common board. However, what is available are simply boards where only one
teacher can write information. If every teacher uses her own board to write
information, then it would not be clear for a student which information to
select and still guarantee the atomicity of the common board, i.e., the illusion
of one physical common board that all teachers share. The difficulty is ac-
tually for any given student to select the latest information written. Indeed,
if some teacher A writes X and then some other teacher B writes later Y ,
then a student that comes afterward should read Y . But how can the student
know that Y is indeed the latest information, given that what is available are
simply individual boards, one for each teacher?

This can in fact be ensured by having the teachers coordinate their writing
to create a causal precedence among the information they write. Teacher B
that writes Y could actually read the board of teacher A and, when finding
X , associate with Y some global timestamp that denotes the very fact that Y
is indeed more recent than X . This is the key to the transformation algorithm
we present below.

DRAFT 125 (22/11/2004)

4.4. (N,N) ATOMIC REGISTER CHAPTER 4. MEMORY

The transformation algorithm, depicted in Algorithm 4.7, uses N (1,N)
atomic registers, whose identities are stored in variables writer[reg, 1], . . .,
writer[reg, N], to build one (N,N) atomic register, denoted by reg. Every reg-
ister writer[reg, i] contains a value and an associated timestamp. Basically,
to write a value v in reg, process pj reads all (1,N) registers and selects the
highest timestamp, which it increments and associates with the value v to
be written. Then pj writes in writer[reg, j] the value with the associated
timestamp.

To read a value from reg, process pj reads all registers writer[reg, 1],
writer[reg, 2], . . ., writer[reg, N], and returns the value with the highest
timestamp. To distinguish values that are associated with the same times-
tamp, pj uses the identity of the processes that have originally written those
values and order them accordingly, i.e., pj uses the indices of the registers
from which it read these timestamps. We define this way a total order among
the timestamps associated with the values, and we abstract away this order
within a function highest that returns the value with the highest order. We
also make use of a similar function, called highest, but with a different signa-
ture, that returns the value with highest timestamp, among a set of triplets
(timestamp, value, process identity).

Correctness. The termination property of the (N,N) register follows from that
of the (1,N) register, whereas atomicity follows from the total order used to
write values: this order respects the real-time order of the processes.

Performance. Every write operation into the (N,N) atomic register requires
N reads from each of the (1,N) registers and one write into a (1,N) register.
Every read from the (N,N) register requires N reads from each of the (1,N)
registers.

1. Assume we apply the transformation of Algorithm 4.7 to the read-one-
impose-all fail-stop algorithm (Algorithm 4.5) in order to obtain a (N,N)
atomic register algorithm. Every read in the (N,N) register would involve
N parallel communication round trips between the reader and all other
processes. Furthermore, every write operation in the (N,N) register would
involve N parallel communication round-trips between the writer and all
other processe (to determine the highest timestamp) and then another
communication round-trip between the writer and all other processes (to
perform the actual writing).

2. Similarly, assume we apply the transformation of Algorithm 4.7 to “read-
majority impose-majority algorith (Algorithm 4.6) in order to obtain a
(N,N) atomic register algorithm. Every read in the (N,N) register would
involve N communication round trips between the reader and a majority
of processes (to determine the latest value), and then N other commu-
nication round trips between the reader and a majority of processes (to
impose that value). Furthermore, every write operation in the (N,N) reg-
ister would involve N parallel communication round-trips between the

DRAFT 126 (22/11/2004)

CHAPTER 4. MEMORY 4.4. (N,N) ATOMIC REGISTER

Algorithm 4.7 From (1,N) atomic to (N,N) atomic registers.

Implements:
(N,N)AtomicRegister (nn-areg).

Uses:
(1,N)AtomicRegisters(o-areg).

upon event 〈 Init 〉 do
i := rank (self); // rank of local process (integer in range 1 . . . N)
forall r do

writeval[r] := 0; tSet[r] := readSet[r] := ∅;
for j = 1 to N do // assign namespace of (1,N) atomic registers

writer[r, j] := (r − 1)N + j;

upon event 〈 nn-aregWrite, r, v 〉 do
writeval[r] := v; tSet[r] := ∅;
for j = 1 to N do trigger 〈 on-aregRead, writer[r, j] 〉;

upon event 〈 on-aregReadReturn, writer[r, j], (tstamp,val) 〉 do
tSet[r] := tSet[r] ∪ { tstamp, j };

upon exists r such that | tSet[r]| = N do
trigger 〈 on-aregWrite, writer[r, i], (highest(tSet[r]) +1, writeval[r]) 〉;

upon event 〈 on-aregWriteReturn, writer[r, i] 〉 do
trigger 〈 nn-aregWriteReturn, r 〉;

upon event 〈 nn-aregRead, reg 〉 do
for j = 1 to N do trigger 〈 on-aregRead, writer[reg, j] 〉;

upon event 〈 on-aregReadRetutn, writerw[r, j], (tstamp, val) 〉 do
readSet[r] := readSet[r] ∪ {tstamp, val, j};

upon exists r such that |readSet[r]| = N do
trigger 〈 nn-aregReadReturn, r, highest (readSet[r]) 〉;

writer and a majority (to determine the highest timestamp) and then
another communication round-trip between the writer and a majority
(to perform the actual writing).

We present in the following ad-hoc algorithms that require less messages.
We describe first a fail-stop algorithm and then a fail-silent algorithm.

4.4.4 Fail-Stop Algorithm: Read-All-Impose-All (N,N) Atomic
Register

We describe below an adaptation of our (1,N) read-one-impose-all (1-N)
atomic register algorithm (Algorithm 4.5) to deal with multiple writers. To
get an idea of the issue introduced by multiple writers, it is important to

DRAFT 127 (22/11/2004)

4.4. (N,N) ATOMIC REGISTER CHAPTER 4. MEMORY

first figure out why the read-one-impose-all algorithm cannot afford multiple
writers. Consider indeed the case of two processes trying to write in a register
implemented using the read-one-impose-all algorithm: say processes p1 and
p2. Assume furthermore that p1 writes value X , then Y , and later on (after
the write of Y is terminated), p2 writes value Z. If some other process, say
p3, reads the register after the writing of Z is over, p3 will get value Y , and
this is because Y has a higher timestamp: Y has timestamp 2 whereas Z has
timestamp 1.

Intuitively, the problem is that the timestamps are generated indepen-
dently by the processes, which was clearly not the case with a single writer.

What we actually expect from the timestamps is that (a) they be totally
ordered, and (b) they reflect the precedence relation between operations.
They should not be generated independently by multiple writers, but should
in our example reflect the fact that the writing of Y precedes the writing of
Z. In the case of multiple writers, we have to deal with the problem of how
to determine a timestamp in a distributed fashion. The idea is to have every
writer consult first other writers and determine its timestamp by choosing
the highest, i.e., we add one communication round-trip between the writer
and all processes (that did not crash). (The idea of consulting other writers is
key to our transformation above from (1,N) to (N,N) atomic.) It is important
to notice that two values might be stored in different processes with the same
timestamp. Two consecutive readers that come after the writes might return
different values, without any write having been invoked in the meantime.
To address this issue, the idea is to use the identity of the processes in the
comparison, i.e., use the lexicographical order. (The idea of making use of
process identities in the comparions was also key in our transformation from
(1,N) to (N,N) atomic.)

The resulting algorithm, called read-all impose-all, depicted in Algo-
rithm 4.8 and 4.9, is an extension of read-one-impose-all algorithm (Algo-
rithm 4.5) that implements a (N,N) atomic register.

Correctness. The termination property of the register follows from the com-
pletenes property of the failure detector and the underlying channels. The
atomicity property follows from the accuracy property of the failure detector.

Performance. Every read in the (N,N) register requires 2 communication
round-trips: 4N messages are exchanged. Every write requires 1 communica-
tion round-trip: 2N messages are exchanged.

4.4.5 Fail-Silent Algorithm: Majority Voting (N,N) Atomic
Register

We describe here how to obtain an algorithm that implements a (N,N) atomic
register in a fail-silent model as an extension of our majority-voting algorithm,
i.e., Algorithm 4.6. Let us first understand first the issue of multiple writers
in Algorithm 4.6. Consider again the case of two processes trying to write in

DRAFT 128 (22/11/2004)

CHAPTER 4. MEMORY 4.4. (N,N) ATOMIC REGISTER

Algorithm 4.8 Read-All Impose-All (N,N) atomic register algorithm (1/2).

Implements:
(N,N)AtomicRegister (nn-areg).

Uses:
BestEffortBroadcast (beb). PerfectPointToPointLinks (pp2p).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
correct := Π; i := rank (self);
forall r do

writeSet[r] := readSet[r] := ∅;
reqid[r] := readval[r] := writeval[r] := v[r] := ts[r] := mrank[r] :=0;

upon event 〈 crash, pi 〉 do
correct := correct \ {pi};

upon event 〈 nn-aRegRead, reg 〉 do
reqid[r] := reqid[r] +1; reading[r] := true; readSet[r] := ∅; readval[r] := v[r];
trigger 〈 bebBroadcast, [Write, r, reqid[r], (ts[r], i), v[r]] 〉;

upon event 〈 nn-aRegWrite, r, val 〉 do
reqid[r] := reqid[r] +1; writeval[r] := val;
trigger 〈 bebBroadcast, [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver, pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend, pj , [ReadValue, r, id, (ts[r], mrank[r]), v[r]] 〉;

upon event 〈 pp2pDeliver, pj , [ReadValue, r, id, (t,rk), val] 〉 do
if id = reqid[r] then readSet[r] := readSet[r] ∪ {((t, rk), val)};

upon exists r such that |correct| ≤ |readSet[r]| do
reqid[r] := reqid[r] +1; ((t,rk), val) := highest(readSet[r]); writeSet[r] := := ∅;

a register implemented using Algorithm 4.1: say processes p1 and p2. Assume
furthermore that p1 writes value X , then Y , and later on (after the write of
Y is terminated), p2 tries to write value Z. Process p2 will be blocked waiting
for acknowledgements from a majority of the processes and termination will
be violated because at least one acknowledgement will be missing: remember
that, in Algorithm 4.2, a (witness) process does not send back an acknowl-
edgement for a request to write a value with a lower timestamp than what
the process has. Assume we modify Algorithm 4.2 to alleviate the need for
this test and have the witness processes reply in all cases. We will ensure that
Z is written. Nevertheless, if some other process reads the register afterward,
it will get value Y , and this is because Y has a higher timestamp: Y has
timestamp 2 whereas Z has timestamp 1.

We describe in Algorithm 4.10 the events that need to be modified or
added to Algorithm 4.6 in order to deal with multiple writers.

DRAFT 129 (22/11/2004)

4.5. (1,N) LOGGED REGULAR REGISTER CHAPTER 4. MEMORY

Algorithm 4.9 Read-All Impose-All (N,N) atomic register algorithm (2/2).

upon event 〈 bebDeliver, pj ,[Write, r, id, (t,j), val] 〉 do
if (t,j) > (ts[r], mrank[r]) then

v[r] := val; sn[r] := t; mrank[r] := j;
trigger 〈 pp2pSend, pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver, pj , [Ack, r, id] 〉 do
if id = reqid[r] then writeSet[r] := writeSet[r] ∪ {pj};

upon exists r such that correct ⊆ writeSet[r] do
writeSet[r] := ∅;
if (reading[r] = true) then

reading[r] := false;
trigger 〈 nn-aregReadReturn, r, readval[r] 〉;

else
trigger 〈 nn-aregWriteReturn, r 〉;

More precisely, the read procedure of our (N,N) atomic register algorithm
is similar to that of Algorithm 4.6. The write procedure is different in that
the writer first determines a timestamp to associate with the new value to be
written by reading at a majority of processes. It is also important to notice
that the processes distinguish values with the same timestamps using process
identifiers. We assume that every value written is tagged with the identity of
the originator process. A value v is considered more recent than a value v′,
if v has a strictly higher timestamp, or they have the same timestamp and v
was written by pi whereas v′ was written by pj such that i > j. We assume
here a new function highest() and new comparator operator that counts for
this stronger ordering scheme.

Correctness. The termination property of the register follows from the correct
majority assumption and the underlying channels. The atomicity property
follows from the quorum property of the majority.

Performance. Every read or write in the (N,N) register requires 2 commu-
nication round-trips between the reader or the writer and a majority of the
processes. In each case, 4N messages are exchanged.

4.5 (1,N) Logged Regular Register

So far, we considered register specifications and implementations under the
assumption that processes that crash do not recover. In other words, processes
that crash, even if they recover, are excluded from the computation: they
can neither read nor write in a register. Furthermore, they cannot help other
processes reading or writing by storing and witnessing values. We revisit here
this assumption and take into account processes that recover after crashing.

DRAFT 130 (22/11/2004)

CHAPTER 4. MEMORY 4.5. (1,N) LOGGED REGULAR REGISTER

Algorithm 4.10 Read-Majority Impose-Majority (N,N) atomic register algorithm.

Implements:
(N,N)AtomicRegister (nn-areg).

Uses:
BestEffortBroadcast (beb). PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
i := rank (self);
forall r do

writeSet[r] := readSet[r] := ∅;
reqid[r] := readval[r] := writeval[r] := v[r] := ts[r] := mrank[r] :=0;

upon event 〈 nn-aRegRead, reg 〉 do
reqid[r] := reqid[r] +1; reading[r] := true; readSet[r] := ∅;
trigger 〈 bebBroadcast, [Read, r, reqid[r]] 〉;

upon event 〈 nn-aRegWrite, r, val 〉 do
reqid[r] := reqid[r] +1; writeval[r] := val; readSet[r] := ∅;
trigger 〈 bebBroadcast, [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver, pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend, pj , [ReadValue, r, id, (ts[r], mrank[r]), v[r]] 〉;

upon event 〈 pp2pDeliver, pj , [ReadValue, r, id, (t,rk), val] 〉 do
if id = reqid[r] then readSet[r] := readSet[r] ∪ {((t, rk), val)};

upon exists r such that |readSet[r]| > N/2 do
reqid[r] := reqid[r] +1; ((t,rk),val) := highest (readSet[r]); writeSet[r] := ∅;
if reading[r] then

readval[r] := val;
trigger 〈 bebBroadcast, [Write, r, reqid[r], (t+1, i), readval[r]] 〉;

else
trigger 〈 bebBroadcast, [Write, r, reqid[r], (t+1, i), writeval[r]] 〉;

upon event 〈 bebDeliver, pj ,[Write, r, id, (t,j), val] 〉 do
if (t,j) > (ts[r], mrank[r]) then

v[r] := val; sn[r] := t; mrank[r] := j; trigger 〈 pp2pSend, pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver, pj , [Ack, r, id] 〉 do
if id = reqid[r] then writeSet[r] := writeSet[r] ∪ {pj};

upon exists r such that |writeSet[r]| > N/2 do
if (reading[r] = true) then

reading[r] := false; trigger 〈 nn-aregReadReturn, r, readval[r] 〉;
else trigger 〈 nn-aregWriteReturn, r 〉;

4.5.1 Precedence in the Fail-Recovery Model

To define the notion of a register in a fail-recovery model, we first revisit the
notion of precedence introduced earlier, assuming by default, fail-no-recovery
models.

DRAFT 131 (22/11/2004)

4.5. (1,N) LOGGED REGULAR REGISTER CHAPTER 4. MEMORY

Module:

Name: (1,N)LoggedRegularRegister (on-log-rreg).

Events:

Request: 〈 on-log-rregRead, reg 〉: Used to invoke a read operation on
register reg.

Request: 〈 on-log-rregWrite, reg, v 〉: Used to invoke a write operation of
value v on register reg.

Confirmation: 〈 on-log-rregReadReturn, reg, v 〉: Used to return v as
a response to the read invocation on register reg and indicates that the
operation is complete.

Confirmation: 〈 on-log-rregWriteReturn, reg 〉: Indicates that the write
operation has taken place at register reg and is complete.

Properties:

SRR1: Termination: If a process invokes an operation and does not crash,
the process eventually returns from the invocation.

SRR2: Validity: A read returns the last value written, or the value con-
currently written.

Module 4.4 Interface and properties of a (1,N) logged regular register.

• We say that an operation op (e.g., read or write) precedes an operation op’
(e.g., read or write) if any of the two following conditions hold.

1. the event corresponding to the return of op occurs before (i.e., precedes)
the event corresponding to the invocation of op’;

2. the operations are invoked by the same process and the event corre-
sponding to the invocation of op’ occurs after the event corresponding
to the invocation of op.

It is important to notice here that, for an operation op, invoked by some
process p1 to precede an operation op’ invoked by the same process, op does
not need to be complete. In this case, a process might have invoked op, crash,
recover, and invoke op′. This was clearly not possible in a crash-non-recovery
models.

4.5.2 Specification

The interface and properties of a (1,N) regular register in a fail-recovery
model, called here a logged register, are given in Module 4.4. Logged atomic
registers ((1,N) and (N,N)) can be specified accordingly.

The termination property is similar to what we considered before, though
expressed here in a different manner. Indeed the notion of correctness used in
earlier register specifications has a different meaning here. It does not make
much sense to require that a process that invokes some operation, crashes,

DRAFT 132 (22/11/2004)

CHAPTER 4. MEMORY 4.5. (1,N) LOGGED REGULAR REGISTER

and then recovers, still gets back a reply to the operation. Our termination
property requires however that if a process invokes an operation and does
not crash, it eventually gets a reply.

On the the other hand, the validity property is expressed as in earlier
specifications but now has a different meaning. Assume the writer p1 crashes
before completing the write of some value X (no previous write was invoked
before), then recovers and invokes the writing of value Y . Assume that p2

concurrently invokes a read operation on the same register. It is valid that
this read operation returns 0: value X is not considered to have been written.
Now assume that p2 invokes another read operation that is still concurrent
with the writing of Y . It is not valid for p2 to return 5. In other words, there
is only one last value written before 6: this can be 0 or 5, but not both of
them.

4.5.3 Fail-Recovery Algorithm: Logged Majority Voting

Considering a fail-recovery model where all processes can crash, it is easy
to see that even a (1, 1) regular register algorithm cannot be implemented
unless the processes have access to stable storage and a majority is correct.
We thus make the following assumptions.

1. Every process has access to a local stable storage. This is supposed to be
accessible through the primitives store, which atomically logs information
in the stable storage, and retrieve, which gets back that information from
the storage. Information that is logged in the stable storage is not lost
after a crash.

2. A majority of the processes are correct. Remember that a correct process
in a fail-recovery model is one that either never crashes, or eventually
recovers and never crashes again.

Intuitively, we might consider transforming our majority voting regular
register (i.e., Algorithm 4.2) to deal with process crashes and recoveries sim-
ply by logging every new value of any local variable to stable storage, upon
modification of that variable, and then retrieving all variables upon recovery.
This would include messages to be delivered, i.e., the act of delivering a mes-
sage would coincide with the act of storing it in stable storage. However, and
as we discussed earlier in this manuscript, one should be careful with such
an automatic transformation because access to stable storage is an expensive
operation and should only be used when necessary.

In particular, we describe in Algorithm 4.11 an implementation of a (1, N)
regular register that logs the variables that are persistent across invocations
(e.g., the value of the register at a given process and the timestamp), in one
atomic operation, and retrieve these variables upon recovery. We discuss the
need of this atomicity, through an exercise given at the end of the chapter.

DRAFT 133 (22/11/2004)

4.5. (1,N) LOGGED REGULAR REGISTER CHAPTER 4. MEMORY

The algorithm makes use of stubborn communication channels and stub-
born broadcast communication abstractions. Remember that stubborn com-
munication primitives ensure that if a message is sent to a correct process
(even in the fail-recovery sense), the message is delivered an infinite number
of times, unless the sender crashes. This ensures that the process, even if it
crashes and recovers a finite number of times, will eventually process every
message sent to it.

Note that upon recovery, every process first executes its initialization pro-
cedure and then its recovery one. Note also that we do not log the variables
that are only persistent across events, e.g., the variable that counts the num-
ber of acknowledgements that a writer has for instance received. The commu-
nication pattern of Algorithm 4.11 is similar to the one of the majority-voting
regular register algorithm for the fail-silent model (Algorithm 4.2). What we
furthermore add here are logs. For every write operation, the writer logs the
new timestamp and the value to be written, then a majority of the processes
log the new value with its timestamp.

Correctness. The termination property follows from the properties of the
underlying stubborn communication abstractions and the assumption of a
majority of correct processes.

Consider now validity. Consider first the case of a read that is not con-
current with any write. Assume furthermore that a read is invoked by some
process pi and the last value written by p1, say v, has timestamp sn1 at p1.
Because the writer logs every timestamp and increments the timestamp for
every write, at the time when the read is invoked, a majority of the pro-
cesses have logged v and timestamp sn1 and there is no higher timestamp in
the system. Before reading a value, i.e., returning from the read operation,
pi consults a majority of processes and hence gets at least one value with
timestamp sn1. Process pi hence returns value v with timestamp sn1, which
is indeed the last value written.

Consider now the case where the read is concurrent with some write of
value v and timestamp sn1, and the previous write was for value v′ and
timestamp sn1 − 1. If the latter write had failed before p1 logged v′ than no
process will ever see v′. Otherwise, p1 would have first completed the writing
of v′ upon recovery. If any process returns sn1 to pi, pi will return v, which
is a valid reply. Otherwise, at least one process will return sn1−1 and pi will
return v′, which is also a valid reply.

Performance. Every write operation requires one communication round-trip
between p1 and a majority of the processes and every read requires one com-
munication round-trip between the reader process and a majority of the pro-
cesses. In both cases, at most 2N messages are exchanged. Every write re-
quites one log at p1 and then at least a majority of logs (possibly parallel
ones). Thus, every write requites two causally related logs. It is important to
notice that stubborn channels are implemented by retransmitting messages
periodically, and this retransmission can be stopped by a writer and a reader

DRAFT 134 (22/11/2004)

CHAPTER 4. MEMORY 4.5. (1,N) LOGGED REGULAR REGISTER

Algorithm 4.11 Majority voting (1,N) logged regular register algorithm.

Implements:
(1,N)LoggedRegularRegister (on-logrreg)

Uses:
StubbornBestEffortBroadcast (sbeb). StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
forall r do

ts[r] := sn[r] := v[r] := acks[r] := reqid[r] := 0;
readSet[r] := ∅; writing[r] = false;

upon event 〈 Recovery 〉 do
retrieve (ts, sn, v, writing);
forall r do

if writing[r] 6= 0 then
acks[r] = 0; reqid[r] := reqid[r] + 1;
trigger 〈 sbebBroadcast, [Write, r, reqid[r], ts[r], v[r]] 〉;

upon event 〈 on-logrregWrite, r, val 〉 do
acks[r] := 0; reqid[r] := reqid[r] + 1; ts[r] := ts[r] + 1; writing[r] := true
store (ts[r], v[r], writing[r]);
trigger 〈 sbebBroadcast, [Write, r, reqid[r], ts[r], v[r]] 〉;

upon event 〈 sbebDeliver, pj , [Write, r, id, t, val] 〉 do
if t > sn[r] then

v[r] := val; sn[r] := t; store(sn[r], v[r]);
trigger 〈 sbp2pSend, pj , [Ack, r, id] 〉;

upon event 〈 sbp2pDeliver, pj , [Ack, r, id] 〉 do
if id = reqid[r] then acks[r] := acks[r] + 1;

upon exists r such that acks[r] > N/2 do
writing[r] = false; trigger 〈 on-logrregWriteReturn, r 〉; store (writing[r]);

upon event 〈 on-logrregRead, r 〉 do
reqid[r] := reqid[r] + 1; readSet[r] := ∅;
trigger 〈 sbebBroadcast, [Read, r, id] 〉;

upon event 〈 sbebDeliver, pj , [Read, r, id] 〉 do
trigger 〈 sp2pSend, pj ,[ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 sp2pDeliver, pj , [ReadValue, r, id, snb, val] 〉 do
if id = reqid[r] then readSet[r] := readSet[r] ∪ { (snb, val) };

upon exists r such that | readSet[r]| > N/2 do
trigger 〈 on-logrregReadReturn, r, highest(readSet[r]) 〉;

that receives a reply of some process or receives enough replies to complete
its operation.

DRAFT 135 (22/11/2004)

4.5. (1,N) LOGGED REGULAR REGISTER CHAPTER 4. MEMORY

Interestingly, Algorithm 4.10 and Algorithm 4.6 extend Algorithm 4.11 to
implement respectively a (1,N) and a (N,N) atomic registers in a fail-recovery
model.

DRAFT 136 (22/11/2004)

CHAPTER 4. MEMORY Hands-On

Hands-On

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done.

DRAFT 137 (22/11/2004)

Exercises CHAPTER 4. MEMORY

Exercises

Exercise 4.1 Explain why every process needs to maintain a copy of the
register value in the read-one-write-all algorithm (Algorithm 4.1) as well as
in the majority-voting algorithm (Algorithm 4.2).

Exercise 4.2 Use the idea of the tranformation from (1,N) regular to (1,1)
atomic registers (Algorithm 4.3) to adapt the read-one-write-all algorithm
(i.e., Algorithm 4.1) to implement a (1,1) Atomic Register.

Exercise 4.3 Use the idea of the tranformation from (1,N) regular to (1,1)
atomic registers (Algorithm 4.3) to adapt the majority voting algorithm (Al-
gorithm 4.2) to implement a (1,1) Atomic Register.

Exercise 4.4 Explain why a timestamp is needed in the majority-voting al-
gorithm (Algorithm 4.2) but not in the read-one-write-all algorithm (Algo-
rithm 4.1).

Exercise 4.5 Explain why, in Algorithm 4.12, the reader p2 needs always
include its own value and timestamp when selecting a majority.

Exercise 4.6 Does any implementation of a regular register require a ma-
jority of correct processes in an asynchronous system? What if an eventually
perfect failure detector is available?

Exercise 4.7 Explain why, in Algorithm 4.11 for instance, if the store prim-
itive is not atomic, it is important not to log the timestamp without having
logged the value. What if the value is logged without having logged the times-
tamp.

Exercise 4.8 Explain why in Algorithm 4.11, the writer needs to store its
timestamp in stable storage.

DRAFT 138 (22/11/2004)

CHAPTER 4. MEMORY Solutions

Solutions

Solution 4.1 We consider each algorithm separately.

Algorithm 4.1. In this algorithm, a copy of the register value needs to be
stored at every process because we assume that any number of processes can
crash and any process can read. Indeed, assume that the value is not stored
at some process pk. It is easy to see that after some write operation, all
processes might crash except pk. In this case, there is no way for pk to return
the last value written.

Algorithm 4.2. In this algorithm, a copy of the register value needs also to
be maintained at all processes, even if we assume only one reader. Assume
that some process pk does not maintain a copy. Assume furthermore that
the writer updates the value of the register: it can do so only by accessing
a majority. If pk is in that majority, then the writer would have stored the
value in a majority of the processes minus one. It might happen that all pro-
cesses in that majority, except pk, crash: the rest of the processes plus pk also
constitutes a majority. A subsequent read in this majority might not get the
last value written. 2

Solution 4.8 The read-one-write-all algorithm (i.e., Algorithm 4.1) does not
need to be transformed to implement an atomic register if we consider only
one reader: indeed the scenario of Figure 4.6, which violates ordering involves
two readers. As is, the algorithm implements a (1, 1) atomic register where
any process can write and one specific process, say p2, can read. In fact, if
we assume a single reader, say p2, the algorithm can even be optimized in
such a way that the writer does simply try to store its value in p2, and gives
up if the writer detects the crash of p2. Basically, only the reader p2 needs
to maintain the register’s value and the writer p1 would not need to send a
message to all. 2

Solution 4.3 Consider now our majority voting algorithm, i.e., Algorithm 4.2.
This algorithm does not implement a (1,1) atomic register but can easily be
extended to satisfy the ordering property by adding a simple local compu-
tation at the reader p2. It suffices indeed for p2 to update its value and
timestamp whenever p2 selects the value with the highest timestamp before
returning it. Then p2 has simply to make sure that it includes its own value
in the set from which it selects new values. The scenario of Figure 4.7 occurs
precisely because the reader has no memory of the previous value read.

A solution is depicted in Algorithm 4.12, an extension of Algorithm 4.2
that implements a (1,1) atomic register. We assume here that the reader in-
cludes itself in every read majority. Note that in this case, we assume that
the function select returns a pair (timestamp,value) (with the highest times-
tamp), rather than simply a value. With this algorithm, the scenario of Fig-
ure 4.7 cannot happen, whereas the scenario depicted in Figure 4.8 could. As

DRAFT 139 (22/11/2004)

Solutions CHAPTER 4. MEMORY

Algorithm 4.12 Majority-voting (1,1) atomic register algorithm.

Implements:
(1,1)AtomicRegister (oo-areg).

Uses:
BestEffortBroadcast (beb).
perfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
forall r do

ts[r] := sn[r] := v[r] := acks[r] := reqid[r] := 0; readSet[r] := ∅;

upon event 〈 oo-aregWrite, r, val 〉 do
ts[r] := ts[r] + 1; acks[r] := 0; reqid[r] := reqid[r] + 1;
trigger 〈 bebBroadcast, [Write, r, reqid[r], ts[r], val] 〉;

upon event 〈 bebDeliver, pj , [Write, r, id, tstamp, val] 〉 do
if tstamp > sn[r] then

v[r] := val; sn[r] := tstamp;
trigger 〈 pp2pSend, pj , [Ack, r,id] 〉;

upon event 〈 pp2pDeliver, pj , [Ack, r, id] 〉 do
if id=reqid[r] then acks[r] := acks[r] + 1;

upon exists r such that acks[r] > N/2 do
trigger 〈 oo-aregWriteReturn, r 〉;

upon event 〈 oo-aregRead, r 〉 do
readSet[r] := ∅; reqid[r] := reqid[r] +1;
trigger 〈 bebBroadcast, [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver, pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend, pj ,[ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 pp2pDeliver, pj , [ReadValue, r, id, snb,val] 〉 do
if id=reqid[r] then readSet[r] := readSet[r] ∪ {(snb, val)};

upon exists r such that | readSet[r]| > N/2 do
(v, ts) := highest(readSet[r]); v[r] := v; sn[r] := ts;
trigger 〈 oo-aregReadRetutn, r, v 〉;

in the original majority voting algorithm (Algorithm 4.2), every write opera-
tion requires one communication round-trip between p1 and a majority of the
processes and every read requires one communication round-trip between p2

and a majority of the processes. In both cases, 2N messages are exchanged.
2

Solution 4.4 The timestamp of Algorithm 4.2 is needed precisely because
we do not make use of a perfect failure detector. Without the use of any
timestamp, p2 would not have any means to compare different values from

DRAFT 140 (22/11/2004)

CHAPTER 4. MEMORY Solutions

the accessed majority. In particular, if p1 writes a value v and then a value v′,
and does not access the same majority in both cases, p2, which is supposed
to return v′, might not see which one is the latest. Such a timestamp is not
needed in Algorithm 4.1, because the writer accesses all processes that did
not crash. The writer can do so because of its relying on a perfect failure
detector. 2

Solution 4.5

p2
sn = 2

read() −> 6 read() −> 5

sn = 1

p1
write(5)

sn = 1

write(6)

sn = 2

sn = 1 sn = 1 p3 sn = 1 sn = 1 sn = 1

sn = 1 sn = 1

sn = 1

p4

p5 sn = 1

sn = 1

Figure 4.9. Violation of ordering

Unless it includes its own value and timestamp when selecting a majority,
the reader p2 might violate the ordering property as depicted in the scenario
of Figure 4.9. This is because, in its first read, p2 accesses the writer, p1,
which has the latest value, and in its second read, it accesses a majority with
timestamp 1 and old value 5. 2

Solution 4.6 The argument we use here is a partitioning argument and it is
similar to the argument used earlier in this manuscript to show that uniform
reliable broadcast requires a majority of correct processes even if the system
is augmented with an eventually perfect failure detector.

We partition the system into two disjoint sets of processes X and Y , such
that | X | dn/2e: p1, the writer of the register, is in X and p2, the reader of
the register, is in Y . The assumption that there is no correct majority means
here that there are runs where all processes of X crash and runs where all
processes of Y crash.

Basically, the writer p1 might return from having written a value, say
v, even if none of the processes in Y has witnessed this value. The other
processes, including p2, were considered to have crashed, even if they were
not. If the processes of X , and which might have witnessed v later, crash,
the reader, p2, has no way of knowing about v and might not return the last
value written.

Assuming an eventually perfect detector does not help. This is because,
even with such a failure detector, the processes of X , including the writer p1

DRAFT 141 (22/11/2004)

Solutions CHAPTER 4. MEMORY

might return from having written a value, say v, even if no process in Y has
witnessed v. The processes of Y have been falsely suspected and there is no
way to know whether the suspicions are true or false. 2

Solution 4.7 Assume p1 writes a value v, then a value v′, and then a value
v′′. While writing v, assume p1 accesses some process pk and not p′k whereas,
while writing v′, p1 accesses p′k and not pk. While writing v′′, p1 also accesses
pk which logs first the timestamp and then crashes without logging the as-
sociated value, then recovers. When reading, process p2 might select the old
value v because it has a higher timestamp, violating validity.

On the other hand, logging the timestamp without logging the value is
not necessary (although desirable to minimize accesses to stable storage). In
the example depicted above, p2 would not be able to return the new value
because it still has an old timestamp. But that is okay because the value was
not completely written and there is no obligation to return it. 2

Solution 4.8 The reason for the writer to log its timestamp in Algorithm 4.11
is the following. If it crashes and recovers, the writer should not use a smaller
timestamp than the one associated with the current value of the register.
Otherwise, the reader might return an old value and violates the validity
property of the register. 2

DRAFT 142 (22/11/2004)

CHAPTER 4. MEMORY Historical Notes

Historical Notes

• Register specifications were first given in (Lamport 1977; Lamport 1986a;
Lamport 1986b), for the case of a concurrent system with one writer. The
original notion of atomic register was similar to the one we introduced
here. There is slight difference however in the way we gave our definition
because we had to take into account the possibility for the processes to fail
(independently of each other). We had thus to deal explicitly with the no-
tion of failed operations (in particular failed write). The original definition
was given in the context of a multiprocessor machine where processes do
not fail independently.

• In the fail-stop model, our notion of atomicity is similar to the notion of
linearizability introduced in (Herlihy and Wing 1990). In the fail-recovery
model, we had to consider a slightly different notion to take into account
the fact that a write operation that was interrupted by a failure has to
appear as it was never invoked or if it was terminated before the next
invocation of the same process (which might have recovered) take place.

• Our notion of regular register also corresponds to the notion of regular
register initially introduced in (Lamport 1977; Lamport 1986a; Lamport
1986b). For the case of multiple-writers the notion of regular register was
generalized in three different ways in (Shao, Pierce, and Welch 2003), all
are stronger than our notion of regular register.

• Various forms of register transformations were given in (Vitanyi and Awer-
buch 1986; Vidyasankar 1988; Vidyasankar 1990; Israeli and Li 1993).

• In this chapter, we considered registers that can contain any integer value
and did not make any assumption on the possible range of this value.
In (Lamport 1977), registers with values of a limited range were consid-
ered, i.e., the value in the register cannot be greater than some specific value
V . In (Lamport 1977; Peterson 1983; Vidyasankar 1988), several transfor-
mation algorithms were described to emulate a register with a given range
value into a register with a larger range value.

• Fail-silent register implementations over a crash-stop message passing sys-
tem and assuming a correct majority were first given in (Attiya, Bar-Noy,
and Dolev 1995) for the case of a single writer. They were then generalized
for the case of multiple writers in (Lynch and Shvartsman 1997; Lynch and
Shvartsman 2002).

• Failure detection lower bounds for registers were given in (Delporte-Gallet,
Fauconnier, and Guerraoui 2002).

• Implementation of registers when processes can crash and recover were
given in (Boichat, Dutta, Frolund, and Guerraoui 2001; Guerraoui and
Levy 2004).

DRAFT 143 (22/11/2004)

5. Consensus

Life is what happens to you while you are making other plans.
(John Lennon)

This chapter considers the consensus abstraction. The processes use this
abstraction to agree on a common value out of values they initially propose.
We consider four variants of this abstraction: regular, uniform, logged and
randomized.

We will show later in this manuscript (Chapter 6 and Chapter 7) how con-
sensus abstractions can be used to build more sophisticated forms of agree-
ments.

5.1 Regular Consensus

5.1.1 Specification

Consensus (sometimes we say regular consensus) is specified in terms of two
primitives: propose and decide. Each process has an initial value that it pro-
poses for the agreement, through the primitive propose. The proposed values
are private to the processes and the act of proposing is local. This act typ-
ically triggers broadcast events through which the processes exchange their
proposed values in order to eventually reach agreement. All correct processes
have to decide on a single value, through the primitive decide. This decided
value has to be one of the proposed values. Consensus must satisfy the prop-
erties C1–4 listed in Module 5.1.

In the following, we present two different algorithms to implement con-
sensus. Both algorithms are fail-stop: they rely on a perfect failure detector
abstraction. The first algorithm uses a small number of communication steps
but a large number of messages. The second, on the other hand, uses less
messages but a large number of communication steps.

5.1. REGULAR CHAPTER 5. CONSENSUS

Module:

Name: (regular) Consensus (c).

Events:

Request: 〈 cPropose, v 〉: Used to propose a value for consensus.

Indication: 〈 cDecide, v 〉: Used to indicate the decided value for consen-
sus.

Properties:

C1: Termination: Every correct process eventually decides some value.

C2: Validity: If a process decides v, then v was proposed by some process.

C3: Integrity: No process decides twice.

C4: Agreement: No two correct processes decide differently.

Module 5.1 Interface and properties of consensus.

5.1.2 Fail-Stop Algorithm: Consensus with Flooding

Algorithm 5.1 uses, besides a perfect failure detector, a best-effort broadcast
communication abstraction.

The basic idea of the algorithm is the following. The processes follow se-
quential rounds. Each process keeps the set of proposed values (proposals) it
has seen, and this set is typically augmented when moving from a round to
the next (and new proposed values are known). In each round, every process
disseminates its own set to all processes using the best-effort broadcast ab-
straction, i.e., the process floods the system with all proposals it has seen in
previous rounds. When a process receives a proposal set from another pro-
cess, it merges this set with its own. That is, in each round, every process
computes the union of all sets of proposed values it received so far. Roughly
speaking, a process decides a specific value in its set when it knows it has
gathered all proposals that will ever possibly be seen by any correct process.
We explain in the following (1) when a round terminates and a process moves
from a round to the next, (2) when a process knows it is safe to decide, and
(3) how a process selects the value to decide.

1. Every message is tagged with the round number in which the message
was broadcast. A round terminates, at a given process pi, when pi has
received a message from every process that has not been suspected by pi

in that round. That is, a process does not leave a round unless it receives
messages, tagged with that round, from all processes that have not been
suspected to have crashed in that round.

2. A consensus decision is reached when a process knows it has the same
set of proposed values as all correct processes. In a round where a new
failure is detected, a process pi is not sure of having exactly the same set
of values as the other processes. This might happen because the crashed

DRAFT 146 (22/11/2004)

CHAPTER 5. CONSENSUS 5.1. REGULAR

Algorithm 5.1 A flooding consensus algorithm.

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
correct := correct-this-round[0] := Π;
decided := ⊥; round := 1;
for i = 1 to N do

correct-this-round[i] := ∅;
proposal-set[i] := ∅;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 cPropose, v 〉 do
proposal-set[round] := {v};
trigger 〈 bebBroadcast, [MySet, round, proposal-set] 〉;

upon event 〈 bebDeliver, pi, [MySet, r, set] 〉 do
correct-this-round[r] := correct-this-round[r] ∪ {pi};
proposal-set[r] := proposal-set[r] ∪ set;

upon correct ⊂ correct-this-round[round] ∧ (decided = ⊥) do
if (correct-this-round[round] = correct-this-round[round-1]) then

decided := min (proposal-set[round]);
trigger 〈 cDecide, decided 〉;
trigger 〈 bebBroadcast, [Decided, decided] 〉;

else
round := round +1;
trigger 〈 bebBroadcast, [MySet, round, proposal-set[round-1]] 〉;

upon event 〈 rbDeliver, pi, [Decided, v] 〉 ∧ pi ∈ correct ∧ (decided = ⊥) do
decided := v; trigger 〈 cDecide, v 〉;
trigger 〈 bebBroadcast, [Decided, decided] 〉;

process(es) may have broadcast some values to the other processes but
not to pi. In order to know when it is safe to decide, each process keeps a
record of the processes it did not suspect in the previous round, and from
how many processes it has received a proposal in the current round. If
a round terminates with the same number of non-suspected processes as
in the previous round, a decision can be made. In a sense, the messages
broadcast by all processes that moved to the current round did all reach
their destination.

3. To make a decision, a process can then apply any deterministic function
to the set of accumulated values, provided this function is the same at all

DRAFT 147 (22/11/2004)

5.1. REGULAR CHAPTER 5. CONSENSUS

processes (i.e., it is agreed upon by all processes in advance). In our case,
the process decides the minimum value: we implicitely assume here that
the set of all possible proposals is totally ordered and the order is known
by all processes. (The processes could also pick the value proposed by the
process with the lowest identity for instance.) A process that decides,
simply disseminates the decision to all processes using the best-effort
broadcast abstraction.

p1

p2

p3

p4

round 1 round 2

cPropose (3)

cPropose (5)

cPropose (8)

cPropose (7)

cDecide (3=min(3,5,8,7))

cDecide (3)

cDecide (3)

(5,8,7)

(5,8,7)

Figure 5.1. Sample execution of the flooding consensus algorithm.

An execution of the algorithm is illustrated in Figure 5.1. Process p1

crashes during the first round after broadcasting its proposal. Only p2 sees
that proposal. No other process crashes. Therefore, p2 sees the proposals of
all processes and can decide. This is because the set of processes from which it
receives proposals in the first round is the same as the initial set of processes
which start the algorithm. Process p2 takes the min of the proposals and
decides the value 3. Processes p3 and p4 detect the crash of p1 and cannot
decide. So they advance to the next round, namely round 2. Note that if
any of these processes decided the min of the proposals it had after round
1, they would have decided differently, i.e., value 5. Since p2 has decided, p2

disseminates its decision through a best-effort broadcast. When the decision
is delivered, processes p3 and p4 also decide 3.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the communication abstractions. Termination follows from the fact
that at round N at the latest, all processes decide. Agreement is ensured be-
cause the min function is deterministic and is applied by all correct processes
on the same set.

Performance. If there are no failures, the algorithm requires a single com-
munication step: all processes decide at the end of round 1, if no process is
suspected to have crashed. Each failure may cause at most one additional
communication step. Therefore, in the worst case the algorithm requires N
steps, if N − 1 processes crash in sequence. If there are no failures, the algo-

DRAFT 148 (22/11/2004)

CHAPTER 5. CONSENSUS 5.1. REGULAR

Algorithm 5.2 A hierarchical consensus algorithm.

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
suspected := ∅; round := 1;
proposal := nil; prop-round :=0;
for i = 1 to N do

delivered[i] := broadcast[i] := false;

upon event 〈 crash, pi 〉 do
suspected := suspected ∪{ rank(pi) };

upon event 〈 cPropose, v 〉 do
proposal := v;

upon (round = rank (self)) ∧ (proposal 6= nil) ∧ (broadcast[round] = false) do
broadcast[round] := true;
trigger 〈 cDecide, proposal 〉;
trigger 〈 bebBroadcast, [Decided, round, proposal] 〉;

upon (round ∈ suspected) ∨ (delivered[round] = true) do
round := round + 1;

upon event 〈 bebDeliver, pi, [Decided, r,v] 〉 do
if (r < rank (self)) ∧ (r > prop-round) then

proposal := v; prop-round := r;
delivered[r] := true;

rithm exchanges 2N2 messages. There is an additional N 2 message exchanges
for each round where a process crashes.

5.1.3 Fail-Stop Algorithm: Hierarchical Consensus

Algorithm 5.2 is an alternative way to implement regular consensus. This
algorithm is interesting because it uses less messages than our flooding al-
gorithm and enables one process to decide before exchanging any messages
with the rest of the processes (0-latency). However, to reach a global deci-
sion, where all processes decide, the algorithm requires N communication
steps, even in situations when no failure occurs. Algorithm 5.2 is particularly
adequate if consensus is used as a service implemented by a set of server
processes where the clients are happy to get a value as fast as possible, even
if the servers did not all decide that value yet.

DRAFT 149 (22/11/2004)

5.1. REGULAR CHAPTER 5. CONSENSUS

Algorithm 5.2 makes use of the fact that processes can be ranked according
to their identity, and this rank is used to totally order them, a priori, i.e.,
p1 > p2 > p3 > .. > pN . In short, the algorithm ensures that the correct
process with the highest rank in the hierarchy, i.e., the process with the
lowest identity, imposes its value on all the other processes. Basically, if p1

does not crash, then p1 will impose its value to all: all correct processes will
decide the value proposed by p1. If p1 crashes initially and p2 is correct,
then the algorithm ensures that p2’s proposal will be decided. A non-trivial
issue that the algorithm handles is the case where p1 is faulty, but does not
initially crash, whereas p2 is correct. The issue has to do with the fact that
p1’s decision message might only reach process p3 but not p2.

Algorithm 5.2 also works in rounds and uses a best effort broadcast ab-
straction. In the kth round, process pk decides its proposal, and broadcasts
it to all processes: all other processes in round k wait to deliver the message
of pk or to suspect pk. None of these processes broadcast any message in this
round. When a process pk receives the proposal of pi, in round i < k, pk

adopts this proposal as its own new proposal.
Consider the example depicted in Figure 5.2. Process p1 decides 3 and

broadcasts its proposal to all processes, but crashes. Processes p2 and p3

detect the crash before they deliver the proposal of p1 and advance to the
next round. Process p4 delivers the value of p1 and changes its own proposal
accordingly, i.e., p4 adopts p1’s value. In round 2, process p2 decides and
broadcasts its own proposal. This causes p4 to change its proposal again, i.e.,
now p4 adopts p2’s value. From this point on, there are no further failures
and the processes decide in sequence the same value, namely p2’s value (5).

p1

p2

p3

p4

cPropose (3)

cPropose (5)

cPropose (8)

cPropose (7)

round 1 round 2 round 3 round 4

cDecide (5)

cDecide (5)

cDecide (5)

(3)

(5)

(5)

Figure 5.2. Sample execution of hierarchical consensus.

Correctness. The validity and integrity properties follow from the algorithm
and the use of an underlying best effort broadcast abstraction. Termination
follows from the completeness property of the perfect failure detector and the
validity property of best effort broadcast: no process will remain indefinitely
blocked in a round and every correct process pi will eventually reach round i
and decide in that round. Concerning agreement, let pi be the correct process

DRAFT 150 (22/11/2004)

CHAPTER 5. CONSENSUS 5.2. UNIFORM

Module:

Name: UniformConsensus (uc).

Events:

〈 ucPropose, v 〉, 〈 ucDecide, v 〉: with the same meaning and interface of
the consensus interface.

Properties:

C1-C3: from consensus.

C4’: Uniform Agreement: no two processes decide differently..

Module 5.2 Interface and properties of uniform consensus.

with the highest rank which decides some value v. By the algorithm, every
process pj , such that j > i, decides v: no process will suspect pi because pi

is correct. This is guaranteed by the accuracy property of the perfect failure
detector. Hence, every process will adopt and decides pi’s decision.

Performance. The algorithm exchanges (N − 1) messages in each round and
can clearly be optimized such that it exchanges only N(N − 1)/2 messages:
a process does not need to send a message to processes with a higher rank.
The algorithm also requires N communication steps to terminate.

5.2 Uniform Consensus

5.2.1 Specification

As with (regular) reliable broadcast, we can define a uniform variant of con-
sensus. The uniform specification is presented in Module 5.2: correct processes
decide a value that must be consistent with values decided by processes that
might have decided before crashing. In short, uniform consensus ensures that
no two processes decide different values, whether they are correct or not.

None of the consensus algorithms we presented so far ensure uniform
agreement. Roughly speaking, this is because some of the processes decide
too early: without making sure that their decision has been seen by enough
processes. Should the deciding processes crash, other processes might have no
choice but to decide something different. To illustrate this for our hierarchical
consensus algorithm, i.e., Algorithm 5.2, remember that process p1 decides
its own proposal in a unilateral way without making sure its proposal is seen
by any other process. Hence, if process p1 crashes immediately after deciding,
it is likely that the other processes decide a different value. To illustrate this
for our flooding consensus algorithm, i.e., Algorithm 5.1, consider a scenario
where process p1 , at the end of round 1, receives messages from all processes.
Assume furthermore that p1 decides its own value as this turns out to be the
lowest value. Assume however that p1 crashes after deciding and its message

DRAFT 151 (22/11/2004)

5.2. UNIFORM CHAPTER 5. CONSENSUS

does not reach any other process. The rest of the processes move to round
2 without having received p1’s message. Again, the processes are likely to
decide some other value.

In the following, we present two uniform consensus algorithms for the
fail-stop model. Each algorithm can be viewed as a uniform variant of one
of our regular consensus algorithms above. The first algorithm is a flooding
uniform consensus algorithm whereas the second is a hierarchical uniform
consensus algorithm. Subsecquently, we present also an algorithm for the
fail-noisy model.

5.2.2 Fail-Stop Algorithm: Uniform Consensus with Flooding

Algorithm 5.3 implements uniform consensus. The processes follow sequential
rounds. As in our flooding regular consensus algorithm, each process gathers
a set of proposals that it has seen and disseminates its own set to all pro-
cesses using a best-effort broadcast primitive. An important difference with
Algorithm 5.3 is that all processes wait for round N before deciding.

Correctness. Validity and integrity follow from the algorithm and the proper-
ties of best-effort broadcast. Termination is ensured here because all correct
processes reach round N and decide in that round. Uniform agreement is en-
sured because all processes that reach round N have the same set of values.

Performance. The algorithm requires N communication steps and N(N−1)2

messages for all correct processes to decide.

5.2.3 Fail-Stop Algorithm: Hierarchical Uniform Consensus

Algorithm 5.4 is round-based, hierarchical, and is in this sense similar to
our hierarchical regular consensus algorithm. Algorithm 5.4 uses both a best-
effort broadcast abstraction to exchange messages and a reliable broadcast
abstraction to disseminate a decision.

Every round has a leader: process pi is leader of round i. When a process
receives a proposal from the leader, it ignores its own initial value and follows
the leader. Unlike our hierarchical regular consensus algorithm, however, the
leader does not decide immediately. Instead, it waits until all other processes
have confirmed the value the leader has proposed. If the leader of a round
fails, the correct processes detect this and proceeds to the next round. The
leader is consequently changed.

Correctness. Validity and integrity follow trivially from the algorithm and the
properties of the underlying communication abstractions. Consider termina-
tion. If some correct process decides, it decides through the reliable broadcast
abstraction, i.e., by rbDelivering a decision message. By the properties of this
broadcast abstraction, every correct process rbDelivers the decision message
and decides. Hence, either all correct processes decide or no correct process

DRAFT 152 (22/11/2004)

CHAPTER 5. CONSENSUS 5.2. UNIFORM

Algorithm 5.3 A flooding uniform consensus algorithm.

Implements:
UniformConsensus (c);

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
correct := Π; round := 1; decided := ⊥; proposal-set := ∅;
for i = 1 to N do delivered[i] := ∅;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 ucPropose, v 〉 do
proposal-set := {v};
trigger 〈 bebBroadcast, [MySet, round, proposal-set] 〉;

upon event 〈 bebDeliver, pi, [MySet, r, newSet] 〉 do
proposal-set := proposal-set ∪ newSet;
delivered[r] := delivered[r] ∪ {pi};

upon (correct ⊆ delivered[round]) ∧ (decided = ⊥) do
if round = N then

decided := min (proposal-set);
trigger 〈 ucDecide, decided) 〉;

else
round := round + 1;
trigger 〈 bebBroadcast, [MySet, round, proposal-set] 〉;

decides. Assume by contradiction that there is at least one correct process
and no correct process decides. Let pi be the correct process with the high-
est rank. By the completeness property of the perfect failure detector, every
correct process suspects the processes with higher ranks than pi (or bebDe-
livers their message). Hence, all correct processes reach round i and, by the
accuracy property of the failure detector, no process suspects process pi or
moves to a higher round, i.e., all correct processes wait until a message from
pi is bebDelivered. In this round, process pi hence succeeds in imposing a de-
cision and decides. Consider now agreement and assume that two processes
decide differently. This can only be possible if two processes rbBroadcast two
decision messages with two propositions. Consider any two processes pi and
pj , such that j > i and pi and pj rbBroadcast two decision values v and
v′. Because of the accuracy property of the failure detector, process pj must
have adopted v before reaching round j.

Performance. If there are no failures, the algorithm terminates in 3 commu-
nication steps: 2 steps for the first round and 1 step for the reliable broadcast.

DRAFT 153 (22/11/2004)

5.2. UNIFORM CHAPTER 5. CONSENSUS

Algorithm 5.4 A hierarchical uniform consensus algorithm.

Implements:
UniformConsensus (uc);

Uses:
PerfectPointToPointLinks (pp2p);
ReliableBroadcast (rb).
BestEffortBroadcast (beb).
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
proposal := decided := ⊥; round := 1;
suspected := ack-set := ∅;
prop-round := 0;

upon event 〈 crash, pi 〉 do
suspected := suspected ∪ { rank(pi) };

upon event 〈 ucPropose, v 〉 do
proposal := v;

upon (round = rank(self)) ∧ (proposal 6= ⊥) ∧ (decided = ⊥) do
trigger 〈 bebBroadcast, [Propose, round, proposal] 〉;

upon event 〈 bebDeliver, pi, [Propose, r, v] 〉do
ack-set := ack-set ∪ { rank(pi) };
if r < rank(self) ∧ r < prop-round then

proposal := v; prop-round := r;

upon event (round ∈ suspected) ∨ (round ∈ ack-set) do
round := round + 1;

upon event (ack-set ∪ suspected = Π) do
trigger 〈 rbBroadcast, [Decided, proposal] 〉;

upon event 〈 rbDeliver, pi, [Decided, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 ucDecide, v 〉;

It exchanges 3(N − 1) messages. Each failure of a leader adds 2 additional
communication steps and 2(N − 1) additional messages.

5.2.4 Fail-Noisy Algorithm: Carefull Leader Algorythm

The consensus and uniform consensus algorithms we have given so far are all
fail-stop: they rely on the assumption of a perfect failure detector. It is easy to
see that, in any of those algorithms, a false failure suspicion (i.e., a violation
of the accuracy property of the failure detector) might lead to violation of
the agreement property of consensus (see exercice at the end of this chapter).

DRAFT 154 (22/11/2004)

CHAPTER 5. CONSENSUS 5.2. UNIFORM

That is, if a process is suspected to have crashed whereas the process is
actually correct, agreement would be violated and two processes might decide
differently. On the other hand, in any of those algorithms, not suspecting
a crashed process (i.e., violating the completeness property of the failure
detector) might lead to violation of the termination property of consensus.

In fact, there is no solution to consensus in a fail-silent model if at least
one process can crash. Note that this does not mean that a perfect failure
detector is always necessary, as we discuss below. In fact, we will provide
an algorithm to solve consensus in the fail-noisy model. In this section, we
will also show that any fail-noisy algorithm that solves consensus also solves
uniform consensus, and no fail-silent algorithm can solve abortable consensus
(resp no fail-noisy algorithm can solve consensus) without a correct majority
of processes.

Given the complexity of solving consensusin the fail-noisy model, we will
use, as a building block, an intermediate abstraction, that we call abortable
consensus.

Abortable Consensus. Roughly, abortable consensus is weaker variant of
consensus that does not require processes to always decide: This consensus
variant can be implemented in a fail-silent model, provided a majority of the
processes are correct. We later describe how, given such abstraction, uniform
consensus can be obtained in a fail-noisy model, i.e., if an eventually perfect
failure detector is available. This modular approach helps better understand
the various issues underlying solving consensus without a perfect failure de-
tector, i.e., in a fail-noisy model.

Just like consensus, abortable consensus has a single propose operation.
This operation takes one input parameter, i.e., a proposal for a consensus
decision. The operation is also supposed to return a value. Unlike consensus
however, the value returned is not necessarily a value that was proposed by
some process. It could also be a specific indication ⊥, meaning that consensus
has aborted. It is important to notice that the specific value ⊥ is not value
that could be proposed to consensus. We use the following terminology to
define the abortable consensus abstraction.

• When a process invokes the propose operation with v as an argument, we
say that the process proposes v.

• When a process returns from the invocation with v 6=⊥, we say that the
process decides v.

• When a process returns from the invocation with ⊥, we say that the process
aborts.

Just like with consensus, we require that, when a process decides v, then
v was proposed by some process: it cannot be invented out of thin air. Fur-
thermore, once a process has decided a value v, no other process can decide
a different value v′. We explain now intuitively when a process can abort and
when it has to decide. We will come back to these situations in more details
later in the section. Roughly speaking:

DRAFT 155 (22/11/2004)

5.2. UNIFORM CHAPTER 5. CONSENSUS

Module:

Name: AbortableConsensus (ac).

Events:

Request: 〈 acPropose, v, tstamp 〉: Used to propose a value v with times-
tamp tstamp.

Indication: 〈 acDecide, x 〉: Used to return x, either a decision value or
⊥, as a response to the proposition.

Properties:

ER1: Termination: Every correct process that proposes eventually decides
or aborts.

ER2: Decision: If a single process proposes an infinite number of times,
it eventually decides.

ER3: Agreement: No two processes decide differently.

ER4: Validity: Any value decided must have been proposed.

Module 5.3 Interface and properties of abortable consensus.

• A process might abort if another process tries concurrently to propose a
value.

• If only one process keeps proposing, it eventually decides. Underlying this
idea lies the very fact that abortable consensus is typically an abstraction
that processes might (need to) use in a repeated fashion.

Module 5.3 describes the interface and specification of abortable consen-
sus.

Fail-Silent Read-Write Abortable Consensus Algorithm. We de-
scribe here a fail-silent algorithm that implements abortable consensus. The
algorithm assumes a majority of correct processes (we discuss the need for
this majority in the exercice section). We do not make use of any failure
detection scheme.

In short, the idea underlying the algorithm is the following. Each process
stores an estimate of the proposal value as well as a corresponding timestamp.
A process pi that proposes a value first determines a timestamp to associate
with that value: this is simply done by having the process increments its
previous timestamp with the value N . Then the process proceeds in two
phases: a read and then a write phase. The aim of the first phase is to check
if there already is some estimate of the decision in the system, whereas the
aim of the second phase is to reach a decision. Any of these phases can abort,
in which case pi simply stops the algorithm and returns back the abort value
⊥. The other processes act during these phases as witnesses for pi.

We describe below the two phases of the algorithm for the process that is
proposing a value, say pi, as well as the tasks of the witness processes.

• Read. The aim of this phase, described in Algorithm 5.5, is twofold.

DRAFT 156 (22/11/2004)

CHAPTER 5. CONSENSUS 5.2. UNIFORM

1. First, the aim is for pi to check, among a majority of witness processes,
the estimates already stored in the processes, and the timestamps that
those processes have already seen. If any of those timestamps is higher
than the timestamp that pi is proposing, then pi aborts. Otherwise, pi

selects the value with the higest timestamp, or its own proposal if no
such value has been stored, and then proceeds to the write phase. We
make use here of a function highest that returns the estimate value with
the highest timestamp among a set of (timestamp, value) pairs.

2. The second aim is for pi to get a promise from a majority of processes
that no other process will succeed in a read or write phase with a lower
timestamp.

• Write. The aim of this phase, described in Algorithm 5.5, is also twofold.

1. The first aim is for pi to store an estimate value among a majority of
witness processes, and then decide that value. While doing so, pi might
figure out that some process in the majority has seen a higher timestamp
than the one pi is proposing. In this case, pi simply aborts. Otherwise,
pi decides.

2. The second aim is for pi to get a promise from a majority of processes
that no other process will succeed in a read or write phase with a striclty
lower timestamp.

Correctness. The termination and validity properties follow from the prop-
erties of the channels and the assumption of a majority of correct processes.

Consider now the decision property. Let pi be the process that keeps on
proposing an infinite number of times, and let t be the time after which
no other process proposes a value. Assume by contradiction that no process
decides. By the algorithm, pi keeps on incrementing its timestamp until it gets
to a timestamp no process has ever used. By the properties of the channels
and the algorithm, there is a time t′ higher than t after which pi decides. A
contradiction.

Consider now agreement. Let pi be the process which decides with the
smallest timestamp ti. Assume pi decides value vi. By induction on the times-
tamp, any process that decides with a higher timestamp tj , does it with vi.
Clearly, tj 6= ti, otherwise, by the algorithm and the use of a majority, some
process will abort the read phase of pi or pj . Assume the induction property
up to some timestamp tj > ti and consider tj +1. By the algorithm, pj selects
the value with the highest timestamp from a majority, and this must be vi

in a majority, with the highest timestamp.

Performance. Every propose operation requires 2 communication round-trips
between the process that is proposing a value and a majority of the processes.
Hence, at most 4N messages are exchanged.

Variant. It is easy to see how our abortable consensus algorithm can be
transformed to alleviate the need for a majority of correct processes if a per-
fect failure detector is available (i.e., in a fail-stop model). Roughly speaking,

DRAFT 157 (22/11/2004)

5.2. UNIFORM CHAPTER 5. CONSENSUS

Algorithm 5.5 Abortable consensus algorithm

Implements:
AbortableConsensus (ac).

Uses:
BestEffortBroadcast (beb). PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
estimate := value := ⊥;
readSet := ∅; wAcks := rstamp := wstamp := 0;

upon event 〈 acPropose, val, tstamp 〉 do
readSet:= ∅; estimate := val; ts = tstamp;
trigger 〈 bebBroadcast, [Read, ts] 〉;

upon event 〈 bebDeliver, pj ,[Read, t] 〉 do
if rstamp ≥ t or wstamp ≥ t then

trigger 〈 pp2pSend, pj ,[ReadNack] 〉;
else

rstamp := t; trigger 〈 pp2pSend, pj , [ReadAck, wstamp, v] 〉;

upon event 〈 pp2pDeliver, pj , [ReadNack] 〉 do
trigger 〈 acDecide, ⊥ 〉;

upon event 〈 pp2pDeliver, pj , [ReadAck, t, v] 〉 do
readSet := readSet ∪ {(t, v)}

upon (| readSet | > N/2) do
value := highest(readSet); if value 6=⊥ then estimate := value;
wAcks := 0; trigger 〈 bebBroadcast, [Write, ts, estimate] 〉;

upon event 〈 bebDeliver, pj , [Write, t, v] 〉 do
if rstamp > t or wstamp > t then

trigger 〈 pp2pSend, pj ,[WriteNack] 〉;
else

value := v; wstamp := t; trigger 〈 pp2pSend, pj , [WriteAck] 〉;

upon event 〈 pp2pDeliver, pj , [WriteNack] 〉 do
trigger 〈 acDecide, ⊥ 〉;

upon event 〈 pp2pDeliver, pj , [WriteAck] 〉 do
wAcks := wAcks +1;

upon (|wAcks | > N/2) do
trigger 〈 acDecide, estimate 〉;

instead of relying on a majority to read and write a value, a process would
do so at all processes that it did not suspect to have crashed. Later in this
chapter, we will give an algorithm that implements abortable consensus in a
fail-recovery model.

DRAFT 158 (22/11/2004)

CHAPTER 5. CONSENSUS 5.2. UNIFORM

Algorithm 5.6 Careful Leader Algorithm.

Implements:
UniformConsensus (uc).

Uses:
AbortableConsensus (ac);
BestEffortBroadcast (beb);
EventualLeaderDetector (Ω).

upon event 〈 Init 〉 do
proposal := ⊥; leader := proposed := decided := false;
ts := rank (); // process rank (1 . . . N)

upon event 〈 trust, pi 〉 do
if pi = self then leader := true;
else leader := false;

upon event 〈 ucPropose, v, ts 〉 do
proposal := v;

upon leader ∧ (proposed = false) ∧ (proposal 6= ⊥) do
proposed := true; trigger 〈 acPropose, proposal, ts 〉;

upon event 〈 acDecide, result 〉 do
if result 6=⊥ then trigger 〈 bebBroadcast, [Decided, result] 〉;
else proposed := false;
ts := ts +N ;

upon event 〈 bebDeliver, pi, [Decided, v] 〉 ∧ (decided = false) do
decided := true; trigger 〈 ucDecide, v 〉;

Fail-Noisy Careful Leader Consensus. Algorithm 5.6 implements uni-
form consensus. It uses, besides an eventually perfect leader election ab-
straction and a best-effort broadcast communication abstraction, abortable
consensus.

Intuitively, the value that is decided in the consensus algorithm is the
value that is decided in the underlying abortable consensus. Two processes
that concurrently propose values to abortable consensus might abort. If only
one process keeps proposing for sufficiently long however, this process will
succeed. This will be ensured in our algorithm by having only leaders pro-
pose values. Eventually, only one leader is elected and this will be able to
successfully propose a value. Once this is done, the leader broadcasts a mes-
sage to all processes informing them of the decision.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions. Consider termination
and assume some process is correct. By the algorithm, only a process that
is leader can propose a value to abortable consensus. By the assumption of

DRAFT 159 (22/11/2004)

5.3. LOGGED CHAPTER 5. CONSENSUS

Module:

Name: LoggedConsensus (lc).

Events:

Request: 〈 lcPropose, v 〉: Used to propose a value for logged consensus.

Indication: 〈 lcDecide, v 〉: Used to indicate the decided value for logged
consensus.

Properties:

C1: Termination: Unless it crashes, every process eventually decides some
value.

C2: Validity: If a process decides v, then v was proposed by some process.

C3: Agreement: No two processes decide differently.

Module 5.4 Interface and properties of logged consensus.

the underlying eventually perfect leader election, there is a time after which
exactly one correct process is eventually elected and remains leader forever.
Let pi be that process. Process pi will permanently keep on proposing values.
By the properties of abortable consensus, pi will decide and broadcast the
decision. By the properties of the best-effort communication primitive, all
correct processes eventually deliver the decision message and decide. Con-
sider now agreement and assume that some process pi decides some value v.
This means that v was decided in the underlying abortable consensus. By the
properties of abortable consensus, no other process can decide any different
value. Any other process pj that decides, does necessarily decide v.

Performance. We consider here our implementation of abortable consensus
assuming a majority of correct processes. If there is a single leader and this
leader does not crash, then 4 communication steps and 4(N − 1) are needed
for this leader to decide. Therefore, 5 communication steps and 5(N − 1)
messages are needed for all correct processes to decide.

5.3 Logged Consensus

5.3.1 Specification

We consider here the fail-recovery model and we introduce the logged con-
sensus abstraction in Module 5.4.

5.3.2 Fail-Recovery Algorithm: Logged Careful Reader

As for the fail-noisy model, we will use an auxiliary abstraction, in this case,
the abortable logged consensus abstraction.

DRAFT 160 (22/11/2004)

CHAPTER 5. CONSENSUS 5.4. RANDOMIZED

Module:

Name: LoggedAbortableConsensus (lac).

Events:

Request: 〈 lacPropose, v 〉: Used to propose a value v.

Indication: 〈 lacDecide, x 〉: Used to return x, either a decision value or
⊥, as a response to the proposition.

Properties:

ER1: Termination: If a process proposes and does not crash, it eventually
decides or aborts.

ER2: Decision: If a single correct process proposes an infinite number of
times, it eventually decides.

ER3: Agreement: No two processes decide differently.

ER4: Validity: Any value decided must have been proposed.

Module 5.5 Interface and properties of logged abortable consensus.

Logged Abortable Consensus. The interface and properties of logged
abortable consensus are depicted in Module 5.5.

Logged Abortable Consensus Algorithm. We give now an algorithm
that implements logged abortable consensus. The algorithm we describe here,
depicted in Algorithm 5.7 and 5.8 is similar to the algorithm presented for
the fail-silent model (Algorithm 5.5), with three major differences:

1. We use stubborn links and stubborn broadcast instead of perfect-links
and best-effort broadcast.

2. We indeed also assume a majority of correct processes but remember
that the notion of correct is different in a fail-recovery model: a process
is said to be correct in this case if eventually it is permanently up.

3. The updates of the timestamps and estimate values are now logs, i.e.,
updates on stable storage. The timestamps and estimate values are re-
treived upon recovery.

Logged Careful Reader Algorithm. Interestingly, assuming a logged
abortable consensus instead of abortable consensus, Algorithm 5.6 imple-
ments logged consensus (instead of uniform consensus).

5.4 Randomized Consensus

In this section, we discuss how randomization can also be used to solve a
slightly weaker variant of consensus without resourcing to a failure detector.
This variant of consensus, which we call randomized consensus, ensures in-
tegrity, (uniform) agreement and validity properties of (uniform) consensus,

DRAFT 161 (22/11/2004)

5.4. RANDOMIZED CHAPTER 5. CONSENSUS

Algorithm 5.7 Logged abortable consensus algorithm (1/2)

Implements:
LoggedAbortableConsensus (lac).

Uses:
StubbornEffortBroadcast (sbeb). StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
estimate := value := ⊥; ts := rank (); // process rank (1 . . . N)
readSet := ∅; wAcks := rstamp := wstamp := 0;

upon event 〈 Recover 〉 do
retrieve (value, rstamp, wstamp);

upon event 〈 lacPropose, val 〉 do
readSet:= ∅; estimate := val; ts := ts +N ;
trigger 〈 sbebBroadcast, [Read, ts] 〉;

upon event 〈 sbebDeliver, pj ,[Read, t] 〉 do
if rstamp ≥ t or wstamp ≥ t then

trigger 〈 sp2pSend, pj ,[ReadNack] 〉;
else

rstamp := t; store (rstamp); trigger 〈 sp2pSend, pj , [ReadAck, wstamp, v] 〉;

upon event 〈 sp2pDeliver, pj , [ReadNack] 〉 do
trigger 〈 lacDecide, ⊥ 〉;

upon event 〈 sp2pDeliver, pj , [ReadAck, t, v] 〉 do
readSet := readSet ∪ {(t, v)}

upon (| readSet | > N/2) do
value := highest(readSet); if v 6=⊥ then estimate := value;
wAcks := 0; trigger 〈 sbebBroadcast, [Write, ts, estimate] 〉;

plus a termination properties which stipulates that, with probability 1, every
correct process eventually decides.

5.4.1 Specification

Each process has an initial value that it proposes to the others through the
primitive rcPropose (we simply write propose when there is no confusion).
All correct processes have to decide on a single value that has to be one of
the proposed values: the decision primitive is denoted by rcdecide) (we simply
write decide when there is no confusion). Randomized consensus ensures the
properties RC1–4 listed in Module 5.6.

DRAFT 162 (22/11/2004)

CHAPTER 5. CONSENSUS 5.4. RANDOMIZED

Algorithm 5.8 Logged abortable consensus algorithm (2/2)

upon event 〈 sbebDeliver, pj , [Write, t, v] 〉 do
if rstamp > t or wstamp > t then

trigger 〈 sp2pSend, pj ,[WriteNack] 〉;
else

value := v; wstamp := t; store (value, wstamp); trigger 〈 sp2pSend, pj , [WriteAck] 〉;

upon event 〈 sp2pDeliver, pj , [WriteNack] 〉 do
trigger 〈 lacDecide, ⊥ 〉;

upon event 〈 sp2pDeliver, pj , [WriteAck] 〉 do
wAcks := wAcks +1;

upon (|wAcks | > N/2) do
trigger 〈 lacDecide, estimate 〉;

Module:

Name: Randomized Consensus (rc).

Events:

Request: 〈 rcPropose, v 〉: Used to propose a value for consensus.

Indication: 〈 rcDecide, v 〉: Used to indicate the decided value for con-
sensus.

Properties:

RC1: Termination: With probability 1, every correct process decides some
value.

RC2: Validity: If a process decides v, then v was proposed by some process.

RC3: Integrity: No process decides twice.

RC4: Agreement: No two correct processes decide differently.

Module 5.6 Interface and properties of randomized consensus.

5.4.2 A randomized Consensus Algorithm

The randomized consensus algorithm described here operates in (asyn-
chronous) rounds where, in each round, the processes try to ensure that the
same value is proposed by a majority of processes. If there is no such value,
the processes use randomization to select which of the initial values they will
propose in the next round. The probability that processes agree in a given
round is strictly greater than zero. Therefore, if the algorithm continues to
execute rounds, eventually it terminates with probability 1.

Algorithm 5.9 is randomized and requires a majority of correct processes
to make progress. Initially, each process uses reliable broadcast to disseminate
its own initial value to every other correct processes. Therefore, eventually, all
correct processes will have all initial values from every other correct process.

DRAFT 163 (22/11/2004)

5.4. RANDOMIZED CHAPTER 5. CONSENSUS

Algorithm 5.9 Randomized algorithm: consensus

Implements:
Randomized Consensus (rc);

Uses:
ReliableBroadcast (rb). BestEffortBroadcast (beb).

upon event 〈 Init 〉 do
decided := ⊥; estimate := ⊥; round := 0;
val := ∅;

upon event 〈 rcPropose, v 〉 do
trigger 〈 bebBroadcast, [IniValue, v] 〉;
estimate := v; round := round +1;
val:= val ∪ {v};
trigger 〈 bebBroadcast, [Phase1, round, v] 〉;

upon event 〈 bebDeliver, pi, [IniVal, v] 〉 do
val:= val ∪ {v};

upon event 〈 bebDeliver, pi, [Phase1, r, v] 〉 do
phase1[r] := phase1[r] ⊕ v;

upon (decided=⊥ ∧ |phase1[round]| > N/2) do
if exists v such that ∀x ∈ phase1[round]: x = v then estimate := v;
else estimate := ⊥;
trigger 〈 bebBroadcast, [Phase2, round, estimate] 〉;

upon event 〈 bebDeliver, pi, [Phase2, r, v] 〉 do
phase2[r] := phase2[r] ⊕ v;

upon (decided=⊥ ∧ |phase2[round]| > N/2) do
if exists v 6= ⊥ such that ∀x ∈ phase2[round]: x = v then

decided := v;
trigger 〈 rbBroadcast, [Decided, round, decided] 〉;

else
if exists v ∈ phase2[round] such that v 6= ⊥ then estimate := v;
else estimate := random(val);
round := round +1; // start one more round
trigger 〈 rbBroadcast, [Phase1, round, estimate] 〉;

upon event 〈 rbDeliver, pi, [Phase2, r, v] 〉 do
decided := v;
trigger 〈 rcDecided, decided 〉;

The algorithm operates in rounds. Each round consists of two phases. In
the first phase every correct process proposes a value. If a process observes
that a majority of processes have proposed the same value in the first phase,
then it proposes that value for the second phase. If a process is unable to
observe a majority of proposals for the same value in the first phase, it simply

DRAFT 164 (22/11/2004)

CHAPTER 5. CONSENSUS 5.4. RANDOMIZED

proposes ⊥ for the second phase. Note that as a result of this procedure, if
two processes propose a value (different from ⊥) for the second phase, they
propose exactly the same value. Let this value be called majph1.

The purpose of the second phase is to verify if majph1 was observed by
a majority of processes. In this is the case, majph1 is the decided value. A
process that receives majph1 in the second phase but is unable to collect a
majority of majph1 in that phase, starts a new round with majph1 as its
estimate.

Finally, it is possible that a process does not receive majph1 in the second
phase (either because no such value was found in phase 1 or simply because
it has received a majority of ⊥ in the second phase). In this case, the process
has to start a new round, with a new estimate. To ensure that there is some
probability of obtaining a majority in the new round, the process selects, at
random, one of the initial values it has seen from, and uses this value as its
proposal for the first phase of the next round.

cPropose (1)

cPropose (2)

cPropose (2)

p3

p2

p1

(1)

(2)

(2)(2)

(⊥)

(⊥)

phase 1 phase 2

round 1

(1)

(2)

(2)

Figure 5.3. Role of randomization.

Figure 5.3 illustrates the idea underlying the algorithm. At first glance,
it may seem that a deterministic decision would allow a majority in the first
phase to be reached faster. For instance, if a process would receive a majority
of ⊥ in the second phase of a round, it could deterministically select the first
non-⊥ initial value instead of selecting a value at random. Unfortunately, a
deterministic choice allows executions where the algorithm never terminates.

In the example, we have three processes, p1, p2 and p3 with initial values
of 1, 2 and 2 respectively. Each process proposes its own value for the first
phase of the round. Consider the following execution for the first phase:

• Process p1 receives the value from p2. Since both values differ, p1 proposes
⊥ for the second phase.

• Process p2 receives the value from p1. Since both values differ, p2 proposes
⊥ for the second phase.

DRAFT 165 (22/11/2004)

5.4. RANDOMIZED CHAPTER 5. CONSENSUS

• Process p3 receives the value from p2. Since both values are the same, p3

proposes 2 for the second phase.

Now consider the following execution for the second phase:

• Process p1 receives the value from p2. Since both values are ⊥, p1 deter-
ministically selects value 1 for the first phase of the next round.

• Process p2 receives the value from p3. Since one of the values is 2, p2

proposes 2 for the first phase of the next round.
• Process p3 receives the value from p2. Since one of the values is 2, p3

proposes 2 for the first phase of the next round.

This execution is clearly possible. Unfortunately, the result of this execu-
tion is that the input values for the next round are exactly the same as for the
previous round. The same execution sequence could be repeated indefinitely.
Randomization prevents this infinite executions from occurring since, there
would be a round where p1 would also propose 2 as the input value for the
next round.

DRAFT 166 (22/11/2004)

CHAPTER 5. CONSENSUS Hands-On

Hands-On

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done.

DRAFT 167 (22/11/2004)

Exercices CHAPTER 5. CONSENSUS

Exercices

Exercise 5.1 Improve our hierarchical regular consensus algorithm to save
one communication step. (The algorithm we presented requires N communi-
cation steps for all correct processes to decide. By a slight modification, it can
run in N − 1 steps: suggest such a modification.)

Exercise 5.2 Explain why none of our (regular) consensus algorithms en-
sures uniform consensus.

Exercise 5.3 Can we optimize our flooding uniform consensus algorithm
to save one communication step, i.e., such that all correct processes always
decide after N − 1 communication steps? Consider the case of a system of
two processes.

Exercise 5.4 What would happen in our flooding uniform consensus algo-
rithm if:

1. we did not use set[round] but directly updated proposedSet in upon

event bebDeliver?
2. we accepted any bebDeliver event, even if pi /∈ correct?

Exercise 5.5 Consider all our fail-stop consensus algorithms. Explain why
none of those algorithms would be correct if the failure detector turns out not
to be perfect.

Exercise 5.6 Explain why any fail-noisy consensus actually solves uniform
consensus.

Exercise 5.7 Explain why any fail-noisy consensus (resp. abortable consen-
sus) algorithm needs a majority of correct processes.

Exercise 5.8 Give a fail-recovery logged consensus algorithm which uses the
Ω abstraction and ensures the following property: if p1 does not crash and
is the only leader from the beginning of the execution, only 3 communication
steps, 3(N − 1) messages, and 1 log at each process of a majority is needed
for all correct processes to decide.

Exercise 5.9 Give a fail-noisy consensus algorithm that assumes a correct
majority of processes and uses an eventually perfect failure detector abstrac-
tion in such a way that: (1) in any execution where p1 is never suspected, p1

imposes its decision, (2) in any execution where p1 crashes initially and p2

is never suspected, p2 imposes its decision, and so forth.

DRAFT 168 (22/11/2004)

CHAPTER 5. CONSENSUS Solutions

Solutions

Solution 5.1 The last process (pN) does not need to broadcast its message.
Indeed, the only process that uses pN ’s broadcast value is pN itself, and pN

decides its proposal just before it broadcasts it (not when it delivers it). More
generally, note that no process pi ever uses the value broadcast from any pro-
cess pj such that i ≥ j. 2

Solution 5.2 Consider our flooding algorithm first and the scenario of Fig-
ure 5.1. Assume that p1’s message has reached only p2. At the end of the first
round, p2 has not suspected any process and can thus decide 3. However, if
p2 crashes after deciding 3, p3 and p4 might decide 5.

Now consider our hierarchical algorithm and the scenario of Figure 5.2. In
the case where p1 decides and crashes and no other process sees p1’s proposal
(i.e., 3), then p1 would decide differently from the other processes. 2

Solution 5.3 No. We give a counter example for the particular case of N = 2.
The interested reader will then easily extend beyond this case to the general
case of any N . Consider a system made of two processes p1 and p2. We
exhibit an execution where processes do not reach uniform agreement after
one round, thus they need at least two rounds. More precisely, consider the
execution where p1 and p2 propose two different values, respectively, v1 and
v2. Without loss of generality, consider that v1 < v2. We shall consider the
following execution where p1 is a faulty process.

During round 1, p1 and p2 respectively send their message to each other.
Process p1 receives its own value and p2’s message (p2 is correct), and decides.
Assume that p1 decides its own value v1, which is different from p2’s value,
and then crashes. Now, assume that the message p1 sent to p2 in round 1
is arbitrarily delayed (this is possible in an asynchronous system). There is
a time after which p2 permanently suspects p1 because of the Strong Com-
pleteness property of the perfect failure detector. As p2 does not know that
p1 did send a message, p2 decides at the end of round 1 on its own value v2.
Hence the violation of uniform agreement.

Note that if we allow processes to decide only after 2 rounds, the above
scenario does not happen, because p1 crashes before deciding (i.e. it never
decides), and later on, p2 decides v2. 2

Solution 5.4 For case (1), it would not change anything. Intuitively, the
algorithm is correct and preserves uniform agreement because any process
executes for N rounds before deciding. Thus, unless all processes crash, there
exists a round r during which no process crashes. This is because, at each
round, every process broadcasts the values it knows from the previous rounds.
After executing round r, all processes that are not crashed know exactly
the same information. If we now update proposedSet before the beginning
of the next round (and in particular before the beginning of round r), the

DRAFT 169 (22/11/2004)

Solutions CHAPTER 5. CONSENSUS

processes will still have the information on time. In conclusion, the fact they
get the information earlier is not a problem since they must execute N rounds
anyway.

In case (2), the algorithm would be wrong. In the following, we exhibit
an execution that leads to disagreement. More precisely, consider a system
made of three processes p1, p2 and p3. The processes propose 0, 1 and 1, re-
spectively. During the first round, the messages of p1 are delayed and p2 and
p3 never receive them. Process p1 crashes at the end of round 2, but p2 still
receives p1’s round 2 message (that is, the set {0, 1}) in round 2 (possible
because channels are not FIFO). Process p3 does not receive p1’s message
in round 2 though. In round 3, the message from p2 to p3 (that is, the set
{0, 1}) is delayed and process p2 crashes at the end of round 3, so that p3

never receives p2’s message. Before crashing, p2 decides on value 0, whereas
p3 decides on 1. Hence the disagreement. 2

Solution 5.5 In all our fail-stop algorithms, there is at least one critical point
where a process p waits to deliver a message from a process q or to suspect
the process q. Should q crash and p never suspect q, p would remain blocked
forever and never decide. In short, in any of our algorithm using a perfect
failure detector, a violation of strong completeness could lead to violate the
termination property of consensus.

Consider now strong accuracy. Consider for instance our flooding consen-
sus algorithm and the scenario of Figure 5.1: if p2 crashes after deciding 3,
and p1 is falsely suspected to have crashed by p3 and p4, then p3 and p4

would decide 5. A similar scenario can happen for our hierarchical consensus
algorithms. 2

Solution 5.6 Consider any fail-noisy consensus algorithm that does not solve
uniform consensus. This means that there is an execution where two processes
pi and pj decide differently and one of them crashes: the algorithm violates
uniform agreement. Assume that process pi crashes. With an eventually per-
fect failure detector, it might be the case that pi is not crashed but just
falsely suspected by all other processes. Process pj would decide the same
as in the previous execution and the algorithm would violate (non-uniform)
agreement. 2

Solution 5.7 We explain this for the case of a system of four processes
{p1, p2, p3, p4}. Assume by contradiction that there is a fail-noisy consensus
algorithm that tolerates the crash of two processes. Assume that p1 and p2

propose a value v whereas p3 and p4 propose a different value v′. Consider
an execution E1 where p1 and p2 crash initially: in this execution, p3 and
p4 decide v′ to respect the validity property of consensus. Consider also an
execution E2 where p3 and p4 crash initially: in this scenario, p1 and p2

decide v. With an eventually perfect failure detector, a third execution E3

DRAFT 170 (22/11/2004)

CHAPTER 5. CONSENSUS Solutions

is possible: the one where no process crashes, p1 and p2 falsely suspect p3

and p4 whereas p3 and p4 falsely suspect p1 and p2. In this execution E3, p1

and p2 decide v, just as in execution E1 (they execute the same steps as in
E1 and cannot distinguish E3 from E1 up to the decision point), whereas p3

and p4 decide v′, just as in execution E2 (they execute the same steps as in
E2 and cannot distinguish E3 from E2 up to the decision point). Agreement
would hence be violated.

A similar argument applies to abortable consensus. We would in this case
assume that p1 is leader in execution E1 whereas p4 is leader in execution
E2 and consider an execution E3 where both are leaders until the decision
point. 2

Solution 5.8 The algorithm is a variant of our logged consensus algorithm
where the underlying logged abortable consensus building block is opened for
optimization purposes. In the case where p1 is initially elected leader, p1 di-
rectly tries to impose its decision, i.e., without consulting the other processes.
In a sense, it skips the read phase of the underlying logged abortable consen-
sus. This computation phase is actually only needed to make sure that the
leader will propose any value that might have been proposed. For the case
where p1 is initially the leader, p1 is sure that no decision has been made
in a previous round (there cannot be any previous round) and can save one
communication phase by directly proposing its own proposal. This also leads
to save the first access to stable storage and one communication round-trip.

2

Solution 5.9 The algorithm we give here is round-based and the processes
play two roles: the role of a leader, described in Algorithm 5.10, and the role
of a witness, described in Algorithm 5.11. Every process goes sequentially
from round i to round i + 1: no process ever jumps from one round k to
another round k′ < k + 1. Every round has a leader determined a priori: the
leader of round i is process p(i−1) mod (N+1), e.g., p2 is the leader of rounds
2, N + 2, 2N + 2, etc.

The process that is leader in a round computes a new proposal and tries
to impose that proposal to all: every process that gets the proposal from the
current leader adopts this proposal and assigns it the current round number
as a timestamp. Then it acknowledges that proposal back to the leader. If
the leader gets a majority of acknowledgements, it decides and disseminates
that decision using a reliable broadcast abstraction.

There is a critical point where processes need the input of their failure
detector in every round. When the processes are waiting for a proposal from
the leader of that round, the processes should not wait indefinitely if the
leader has crashed without having broadcast its proposal. In this case, the
processes consult their failure detector module to get a hint whether the
leader process has crashed. Given that an eventually perfect detector ensures

DRAFT 171 (22/11/2004)

Solutions CHAPTER 5. CONSENSUS

Algorithm 5.10 Fail-noisy consensus algorithm: leader role.

Uses:
PerfectPointToPointLinks (pp2p);
ReliableBroadcast (rb);
BestEffortBroadcast (beb);
EventuallyPerfectFailureDetector (3P);

upon event 〈 Init 〉 do
proposal := decided := ⊥;
round := 1;
suspected:= estimate-set[] := ack-set[] := ∅;
estimate[] := ack[] := false;
for i = 1 to N do ps[i] := pi;

upon event(ps[round mod N + 1]= self.id) ∧ 〈 pp2pDeliver, pi, [Estimate, round, estimate] 〉 do
estimate-set[round] := estimate-set[round] ∪{estimate};

upon (ps[round mod N + 1]= self.id) ∧ (|estimate-set[round]| > N/2)) do
proposal := highest(estimate-set[round]);
trigger 〈 bebBroadcast, [Propose, round, proposal] 〉;

upon event(ps[round mod N + 1]= self.id) ∧ 〈 pp2pDeliver, pi, [Ack, round] 〉 do
ack-set[round] := ack-set[round] ∪{pi};

upon (ps[round mod N + 1]= self.id) ∧ 〈 pp2pDeliver, pi, [Nack, round] 〉 do
round := round + 1;

upon (ps[round mod N + 1]= self.id) ∧ (|ack-set[round] | > N/2) do
trigger 〈 rbBroadcast, [Decide, proposal] 〉;

that, eventually, every crashed process is suspected by every correct process,
the process that is waiting for a crashed leader will eventually suspect it. In
this case, the process sends a specific message nack to the leader, then moves
to the next round. In fact, a leader that is waiting for acknowledgements
might get some nacks (if some processes falsely suspected it): in this case,
the leader moves to the next round without deciding.

Note also that processes after acknowledging a proposal move to the next
round directly: they do not need to wait for a decision. They might deliver
the decision through the reliable broadcast dissemination phase. In that case,
they will simply stop their algorithm.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions. Consider termination.
If some correct process decides, it decides through the reliable broadcast ab-
straction, i.e., by rbDelivering a decision message. By the properties of this
broadcast abstraction, every correct process rbDelivers the decision message
and decides. Assume by contradiction that there is at least one correct pro-

DRAFT 172 (22/11/2004)

CHAPTER 5. CONSENSUS Solutions

Algorithm 5.11 Fail-noisy consensus algorithm: witness role.

upon event 〈 suspect, pi 〉 do
suspected := suspected ∪{pi};

upon event 〈 restore, pi 〉 do
suspected := suspected \{pi};

upon event 〈 ucPropose, v 〉 do
proposal := [v, 0];

upon event (proposal 6= ⊥) ∧ (estimate[round] = false) do
estimate[round] := true;
trigger 〈 pp2pSend, ps[round mod N], [Estimate, round, proposal] 〉;

upon event 〈 bebDeliver, pi, [Propose, round, value] 〉 ∧ (ack[round] = false) do
ack[round] := true;
proposal := [value, round];
trigger 〈 pp2pSend, ps[round mod N], [Ack, round] 〉;
round := round + 1;

upon event (ps[round mod N] ∈ suspected) ∧ (ack[round] = false) do
ack[round] := true;
trigger 〈 pp2pSend, ps[round mod N], [Nack, round] 〉;
round := round + 1;

upon event 〈 rbDeliver, pi, [Decided, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 ucDecided, v 〉;

cess and no correct process decides. Consider the time t after which all faulty
processes crashed, all faulty processes are suspected by every correct process
forever and no correct process is ever suspected. Let pi be the first correct
process that is leader after time t and let r denote the round at which that
process is leader. If no process has decided, then all correct processes reach
round r and pi eventually reaches a decision and rbBroadcasts that decision.
Consider now agreement. Consider by contradition any two rounds i and j,
j is the closest integer to i such that j > i and pi mod N+1, and pj mod N+1,
proposed two different decision values v and v′. Process pj mod N+1 must
have adopted v before reaching round j. This is because pj mod N+1 selects
the value with the highest timestamp and pj mod N+1 cannot miss the value
of pi mod N+1: any two majorities always intersect. Given that j is the closest
integer to i such that some process proposed v′ different from v, after v was
proposed, we have a contradiction.

Performance. If no process fails or is suspected to have failed, then 4 com-
munication steps and 4(N − 1) messages are needed for all correct processes
to decide.

DRAFT 173 (22/11/2004)

Solutions CHAPTER 5. CONSENSUS

2

DRAFT 174 (22/11/2004)

CHAPTER 5. CONSENSUS Historical Notes

Historical Notes

• The consensus problem was defined in a seminal paper (Lamport, Shostak,
and Pease 1982).

• In another seminal paper (Fischer, Lynch, and Paterson 1985), it was
proved that, consensus is impossible to solve with a deterministic algo-
rithm in a fail-silent model even if only one process fails.

• Later on, intermediate models between the synchronous and the asyn-
chronous model were introduced to circumvent the consensus impossibil-
ity (Dwork, Lynch, and Stockmeyer 1988). The notion of failure detection
was defined to encapsulate partial synchrony assumptions in (Chandra and
Toueg 1996; Chandra, Hadzilacos, and Toueg 1996).

• The round-based fail-noisy consensus algorithm presented in the exerci-
ces was introduced in (Chandra and Toueg 1996) whereas our fail-noisy
consensus algorithm based on abortable consensus is a modular variant
of (Lamport 1989).

• It was shown in in (Guerraoui 2000) that any fail-noisy algorithm that
solves consensus also solves uniform consensus.

• It was shown in (Chandra and Toueg 1996; Guerraoui 2000) that any con-
sensus algorithm using an unreliable failure detector requires a majority of
correct processes.

• Our randomized consensus algorithm is from (Ezhilchelvan, Mostefaoui,
and Raynal 2001), and is a generalization of the binary randomized con-
sensus algorithm of (Ben-Or 1983).

DRAFT 175 (22/11/2004)

6. Ordering

So when they continued asking him, he lifted up himself, and said unto
them, he that is without sin among you, let him first cast a stone at her.

(John (not Lennon) 8:7)

This chapter considers ordering abstractions. These are broadcast commu-
nication abstractions that provide ordering guarantees among the messages
exchanged between the processes. We will study here two categories of such
abstractions: causal ordering as well as total ordering abstractions.

We will build causal order broadcast algorithms over reliable broadcast
algorithms and total order broadcast algorithms over reliable broadcast and
consensus ones. This modular approach will help abstract away the underly-
ing variations of the models, i.e., fail-silent, fail-stop, etc.

6.1 Causal Order Broadcast

So far, we did not consider any ordering guarantee among messages delivered
by different processes. In particular, when we consider a reliable broadcast
abstraction for instance, messages can be delivered in any order and the
reliability guarantees are in a sense orthogonal to such an order.

In this section, we discuss the issue of ensuring message delivery according
to causal ordering. This is a generalization of FIFO (first-in-first-out) order-
ing where messages from the same process should be delivered in the order
according to which they were broadcast.

6.1.1 Overview

Consider the case of a distributed message board that manages two types
of information: proposals and comments on previous proposals. To make the
interface user-friendly, comments are depicted attached to the proposal they

6.1. CAUSAL CHAPTER 6. ORDERING

are referring to. Assume that we implement the board application by repli-
cating all the information at all participants. This can be achieved through
the use of a reliable broadcast primitive to disseminate both proposals and
comments. With a reliable broadcast, the following sequence would be pos-
sible: participant p1 broadcasts a message m1 containing a new proposal;
participant p2 delivers m1 and disseminates a comment in message m2; due
to message delays, another participant p3 delivers m2 before m1. In this case,
the application at p3 would be forced to keep m2 and wait for m1, to avoid
presenting the comment before the proposal being commented. In fact, m2

is causally after m1 (m1 → m2), and a causal order primitive would make
sure that m1 would have been delivered before m2, relieving the application
programmer of such a task.

6.1.2 Specifications

As the name indicates, a causal order protocol ensures that messages are
delivered respecting cause-effect relations. This is expressed by the happened-
before relation described earlier in this manuscript. This relation, also called
the causal order relation, when applied to the messages exchanged among
processes, is captured by broadcast and delivery events. In this case, we say
that a message m1 may potentially have caused another message m2 (or m1

happened before m2), denoted as m1 → m2, if the following relation, applies:

• m1 and m2 were broadcast by the same process p and m1 was broadcast
before m2 (Figure 6.1a).

• m1 was delivered by process p, m2 was broadcast by process p and m2 was
broadcast after the delivery of m1 (Figure 6.1b).

• there exists some message m′ such that m1 → m′ and m′ → m2 (Fig-
ure 6.1c).

m1 m2

p2

p3

p1

(a)

m1

p2

p3

p1

m2

(b)

m1

p2

p3

p1

m2

m′

(c)

Figure 6.1. Causal order of messages.

Using the causal order relation, a causal order broadcast can be defined
by the property CB in Module 6.1. The property states that messages are
delivered by the communication abstraction according to the causal order

DRAFT 178 (22/11/2004)

CHAPTER 6. ORDERING 6.1. CAUSAL

Module:

Name: CausalOrder (co).

Events:

Request: 〈 coBroadcast, m 〉: Used to broadcast message m to Π.

Indication: 〈 coDeliver, src, m 〉: Used to deliver message m broadcast by
process src.

Properties:

CB: Causal delivery: No process pi delivers a message m2 unless pi has
already delivered every message m1 such that m1 → m2.

Module 6.1 Properties of causal broadcast.

Module:

Name: ReliableCausalOrder (rco).

Events:

〈 rcoBroadcast, m 〉 and 〈 rcoDeliver, src, m 〉: with the same meaning and
interface as the causal order interface.

Properties:

RB1-RB3, RB4, from reliable broadcast and CB from causal order
broadcast.

Module 6.2 Properties of reliable causal broadcast.

Module:

Name: UniformReliableCausalOrder (urco).

Events:

〈 urcoBroadcast, m 〉 and 〈 urcoDeliver, src, m 〉: with the same meaning
and interface as the causal order interface.

Properties:

URB1-URB4 and CB, from uniform reliable broadcast and causal order.

Module 6.3 Properties of uniform reliable causal broadcast.

relation. There must be no “holes” in the causal past, i.e., when a message
is delivered, all preceding messages have already been delivered.

Clearly, a broadcast primitive that has only to ensure the causal delivery
property might not be very useful: the property might be ensured by having
no process ever deliver any message. However, the causal delivery property
can be combined with both reliable broadcast and uniform reliable broadcast
semantics. These combinations would have the interface and properties of
Module 6.2 and Module 6.3, respectively. To simplify, we call the first causal
order broadcast and the second uniform causal order broadcast.

DRAFT 179 (22/11/2004)

6.1. CAUSAL CHAPTER 6. ORDERING

Algorithm 6.1 No-waiting reliable causal broadcast.

Implements:
ReliableCausalOrder (rco).

Uses:
ReliableBroadcast (rb).

upon event 〈 Init 〉 do
delivered := ∅;
past := ∅

upon event 〈 rcoBroadcast, m 〉 do
trigger 〈 rbBroadcast, [Data, past, m] 〉;
past := past ∪ { [self,m] };

upon event 〈 rbDeliver, pi, [Data, pastm, m] 〉 do
if m 6∈ delivered then

forall [sn, n] ∈ pastm do //in order
if n 6∈ delivered then

trigger 〈 rcoDeliver, sn, n 〉;
delivered := delivered ∪ {n}
past := past ∪ {[sn, n]};

trigger 〈 rcoDeliver, pi, m 〉;
delivered := delivered ∪ {m}
past := past ∪ {[pi, m]};

6.1.3 Fail-Silent Algorithm: No-Waiting Causal Broadcast

Algorithm 6.1 is a causal broadcast algorithm. The algorithm uses an un-
derlying reliable broadcast communication abstraction defined through rb-
Broadcast and rbDeliver primitives. The same algorithm could be used to
implement a uniform causal broadcast abstraction, simply by replacing the
underlying reliable broadcast module by a uniform reliable broadcast module.

The algorithm is said to be no-waiting in the following sense: whenever a
process rbDeliver a message m, it can rcoDeliver m without waiting for other
messages to be rbDelivered. Each message m carries a control field called
pastm. The pastm field of a message m includes all messages that causally
precede m. When a message m is rbDelivered, pastm is first inspected: mes-
sages in pastm that have not been rcoDelivered must be rcoDelivered before
m itself is also rcoDelivered. In order to record its own causal past, each
process p memorizes all the messages it has rcoBroadcast or rcoDelivered in
a local variable past. Note that past (and pastm) are ordered sets.

The biggest advantage of Algorithm 6.1 is that the delivery of a message is
never delayed in order to enforce causal order. This is illustrated in Figure 6.2.
Consider for instance process p4 and message m2. Process p4 rbDelivers m2.
Since m2 carries m1 in its past, m1 and m2 are delivered in order. Finally,
when m1 is rbDelivered from p1, it is discarded.

DRAFT 180 (22/11/2004)

CHAPTER 6. ORDERING 6.1. CAUSAL

p1

p2

p3

p4

rcoBroadcast (m1)

[m1]

rcoBroadcast (m2)

rcoDeliver (m2)

rcoDeliver (m1)

Figure 6.2. Sample execution of causal broadcast with complete past.

Correctness. All properties of reliable broadcast follow from the use of an
underlying reliable broadcast primitive and the no-waiting flavor of the algo-
rithm. The causal order property is enforced by having every message carry
its causal past and every process making sure that it rcoDelivers the causal
past of a message before rcoDelivering the message.

Performance. The algorithm does not add additional communication steps or
messages to the underlying uniform reliable broadcast algorithm. However,
the size of the messages grows linearly with time, unless some companion
garbage collection algorithm to purge past is executed.

There is a clear inconvenience however with this algorithm: the pastm

field may become extremely large, since it includes the complete causal past
of m. In the next subsection we illustrate a simple scheme to reduce the size
of past. However, even with this optimization, this approach consumes too
much bandwidth to be used in practice. Note also that no effort is made to
prevent the size of the delivered set from growing indefinitely. We will later
discuss an algorithm that circumvents these issues at the expense of blocking.

6.1.4 Fail-Stop Extension: Garbage Collecting the Causal Past

We now present a very simple algorithm, Algorithm 6.2, to delete messages
from the past set. The algorithm supposes a fail-stop model, i.e., it builds
upon a perfect failure detector.

The garbage collection algorithm, is aimed to be used in conjunction with
Algorithm 6.1. It works as follows: when a process rbDelivers a message m, it
rbBroadcasts an Ack message to all other processes; when an Ack for message
m has been rbDelivered from all correct processes, m is purged from past.

6.1.5 Fail Silent Algorithm: Waiting Causal Order Broadcast

Algorithm 6.3 circumvents the main limitation of Algorithm 6.1: the huge
size of the messages. Instead of keeping a record of all past messages, we

DRAFT 181 (22/11/2004)

6.1. CAUSAL CHAPTER 6. ORDERING

Algorithm 6.2 Garbage collection of past.

Implements:
GarbageCollectionOfPast.

Extends:
No-waiting reliable causal broadcast algorithms.
(Algorithm 6.1).

Uses:
ReliableBroadcast (rb).
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
delivered := past := ∅;
correct := Π;
ackm := ∅, ∀m;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon ∃m ∈ delivered: self 6∈ ackm do
ackm := ackm ∪ { self };
trigger 〈 rbBroadcast, [Ack, m] 〉;

upon event 〈 rbDeliver, pi, [Ack, m] 〉 do
ackm := ackm ∪ {pi};
if correct ⊆ ackmdo

past := past \{[sm, m]};

keep just the sequence number of the last message that was rcoBroadcast.
In this way, pastp is reduced to an array of integers. Temporal information
stored in this way is called a vector clock. Algorithm 6.3 uses an underlying
reliable broadcast communication abstraction defined through rbBroadcast
and rbDeliver primitives.

With Algorithm 6.3, messages do not carry the complete past, only a
summary of the past in the form of the vector clock. It is possible that a
message may be prevented from being rcoDelivered immediately when it is
rbDelivered, because some of the preceding messages have not been rbDeliv-
ered yet. It is also possible that the rbDelivery of a single message triggers
the rcoDelivery of several messages that were waiting to be rcoDelivered. For
instance, in Figure 6.3 message m2 is rbDelivered at p4 before message m1,
but its rcoDelivery is delayed until m1 is rbDelivered and rcoDelivered.

As with the no-waiting variant, Algorithm 6.3 could also be used to imple-
ment uniform reliable causal broadcast, simply by replacing the underlying
reliable broadcast module by a uniform reliable broadcast module.

Performance. The algorithm does not add any additional communication
steps or messages to the underlying reliable broadcast algorithm. The size of

DRAFT 182 (22/11/2004)

CHAPTER 6. ORDERING 6.2. TOTAL

Algorithm 6.3 Waiting causal broadcast.

Implements:
ReliableCausalOrder (rco).

Uses:
ReliableBroadcast (rb).

upon event 〈 init 〉 do
∀pi∈Π : V C[pi] := 0;

upon event 〈 rcoBroadcast, m 〉 do
trigger 〈 rbBroadcast, [Data, V C, m] 〉;
V C[self] := V C[self]+1;

upon event 〈 rbDeliver, pi, [Data, V Cm, m] 〉 do
wait until (∀pj

: V C[pj] ≥ V Cm[pj])
trigger 〈 rcoDeliver, sm, m 〉;
if pi 6= self then

VC[pi] := VC[pi]+1;

p1

p2

p3

p4

rcoBroadcast (m1)

rcoDeliver (m1)
rcoDeliver (m2)

[1, 0, 0, 0]

[1, 1, 0, 0]

rcoBroadcast (m2)

Figure 6.3. Sample execution of causal broadcast with vector clocks.

the message header is linear with regard to the number of processes in the
system.

6.2 Total Order Broadcast

6.2.1 Overview

Causal order broadcast enforces a global ordering for all messages that
causally depend on each other: such messages need to be delivered in the
same order and this order must be the causal order. Messages that are not
related by causal order are said to be concurrent messages. Such messages
can be delivered in any order.

DRAFT 183 (22/11/2004)

6.2. TOTAL CHAPTER 6. ORDERING

In particular, if in parallel two processes each broadcasts a message, say p1

broadcasts m1 and p2 broadcasts m2, then the messages might be delivered
in different orders by the processes. For instance, p1 might deliver m1 and
then m2, whereas p2 might deliver m2 and then m1.

A total order broadcast abstraction is a reliable broadcast communication
abstraction which ensures that all processes deliver the same set of messages
exactly in the same order. In short, whereas reliable broadcast ensures that
processes agree on the same set of messages they deliver, total order broadcast
ensures that they agree on the same sequence of messages, i.e., the set is now
ordered. This abstraction is sometimes also called atomic broadcast because
the message delivery occurs as if the broadcast was an indivisible primitive
(i.e., atomic): the message is delivered to all or to none of the processes and,
if it is delivered, every other messages is ordered either before or after this
message.

This sort of ordering eases the maintenance of a global consistent state
among a set of processes. In particular, if each process is programmed as a
state machine, i.e., its state at a given point depends exclusively on the initial
state and on the sequence of messages received, the use of total order broad-
cast ensures consistent replicated behavior. The replicated state machine is
one of the fundamental techniques to achieve fault-tolerance. One application
of this approach is to implement shared objects of arbitrary types in a dis-
tributed system, i.e., beyond read-write (register) objects studied earlier in
the manuscript. Each process would host a copy of the object and invocations
to the distributed object would be broadcast to all copies using the total or-
der broadcast primitive. This will ensure that all copies keep the same state
and ensure that the responses are consistent. In short, the use of total order
broadcast ensures that the object is highly available, yet it appears as if it
was a single logical entity accessed in a sequential and failure-free manner.

6.2.2 Specification

Two variants of the abstraction can be defined: a regular variant only ensures
total order among the correct processes; and a uniform variant that ensures
total order with regard to the faulty processes as well. Total order is captured
by the properties TO1 and RB1-4 depicted in Module 6.4 and UTO1 and
URB1-4 in Module 6.5.

Note that the total order property (uniform or not) can be combined with
the properties of a uniform reliable broadcast. For conciseness, we omit the
interface of the resulting modules.

Note also that total order is orthogonal to the causal order discussed in
Section 6.1. It is possible to have a total-order abstraction that does not
respect causal order. (As we pointed out, a causal order abstraction does
not enforce total order and the processes may deliver concurrent messages
in different order to different processes.) On the other hand, it is possible to

DRAFT 184 (22/11/2004)

CHAPTER 6. ORDERING 6.2. TOTAL

Module:

Name: TotalOrder (to).

Events:

Request: 〈 toBroadcast, m 〉: Used to broadcast message m to Π.

Indication: 〈 toDeliver, src, m 〉: Used to deliver message m sent by
process src.

Properties:

TO1: Total order: Let m1 and m2 be any two messages. Let pi and pj

be any two correct processes that deliver m2. If pi delivers m1 before m2,
then pj delivers m1 before m2.

RB1-RB4: from reliable broadcast.

Module 6.4 Interface and properties of total order broadcast.

Module:

Name: UniformTotalOrder (uto).

Events:

〈 utoBroadcast, m 〉, 〈 utoDeliver, src, m 〉: with the same meaning and
interface of the consensus interface.

Properties:

UTO1: Uniform total order: Let m1 and m2 be any two messages. Let pi

and pj be any two processes that deliver m2. If pi delivers m1 before m2,
then pj delivers m1 before m2.

URB1-URB4: from uniform reliable broadcast.

Module 6.5 Interface and properties of uniform total order broadcast.

build a total order abstraction on top of a causal order primitive. We also
omit the interface of the resuling module in this case.

6.2.3 Algorithm: Uniform Total Order Broadcast

In the following, we give a uniform total order broadcast algorithm. More
precisely, the algorithm ensures the properties of uniform reliable broadcast
plus the uniform total order property. The algorithm uses a uniform reli-
able broadcast and a uniform consensus abstractions as underlying building
blocks. The algorithm might perform in a fail-silent model assuming a correct
majority of processes as well as in a fail-stop model with no assumption on
the number of correct processes. This depends on how the uniform reliable
broadcast and consensus abstractions are themselves implemented.

In the total order broadcast algorithm, messages are first disseminated
using a uniform (but unordered) reliable broadcast primitive. Messages de-
livered this way are stored in a bag of unordered messages at every process.

DRAFT 185 (22/11/2004)

6.2. TOTAL CHAPTER 6. ORDERING

The processes then use the consensus abstraction to order the messages in
this bag.

More precisely, the algorithm works in consecutive rounds. Processes go
sequentially from 1 to round 2, .., to round i to round i + 1 and so forth: as
long as new messages are broadcast, the processes keep on moving from one
round to the other. There is one consensus instance per round. The consensus
instance of a given round is used to make the processes agree on a set of
messages to assign to the sequence number corresponding to that round: these
messages will be delivered in that round. For instance, the first round decides
which messages are assigned sequence number 1, i.e., which messages are
delivered in round 1. The second round decides which messages are assigned
sequence number 2, etc. All messages that are assigned round number 2 are
delivered after the messages assigned round number 1. Messages with the
same sequence number are delivered according to some deterministic order
agreed upon by the processes in advance (e.g., based on message identifiers).
That is, once the processes have agreed on a set of messages for a given round,
they simply apply a deterministic function to sort the messages of the same
set.

In each instance of the consensus, every process proposes a (potentially
different) set of messages to be ordered. The process simply proposes the set
of messages it has seen (i.e., urbDelivered) and not yet delivered according
to the total order semantics (i.e., utoDelivered). The properties of consensus
ensure that all processes decide the same set of messages for that sequence
number. The full description is given in Algorithm 6.4. The wait flag is used
to ensure that a new round is not started before the previous round has
terminated.

An execution of the algorithm is illustrated in Figure 6.4. The figure is
unfolded into two parallel flows: That of the reliable broadcasts, used to
disseminate the messages, and that of the consensus instances, used to order
the messages. As messages are received from the reliable module they are
proposed to the next instance of consensus. For instance, process p4 proposes
message m2 to the first instance of consensus. Since the first instance of
consensus decides message m1, process p4 re-submits m2 (along with m3

that was received meanwhile) to the second instance of consensus.

Correctness. The no-creation property follows from (1) the no-creation prop-
erty of the reliable broadcast abstraction and (2) the validity property of
consensus. The no-duplication property follows from (1) the no-duplication
property of the reliable broadcast abstraction, and (2) the integrity property
of consensus (more precisely, the use of the variable delivery). Consider the
agreement property. Assume that some correct process pi utoDelivers some
message m. By the algorithm, pi must have decided a batch of messages with
m inside that batch. Every correct process will reach that point because of
the algorithm and the termination property of consensus, will decide that
batch, and will utoDeliver m. Consider the validity property of total order

DRAFT 186 (22/11/2004)

CHAPTER 6. ORDERING 6.2. TOTAL

Algorithm 6.4 Uniform total order broadcast algorithm.

Implements:
UniformTotalOrderBroadcast (uto);

Uses:
UniformReliableBroadcast (urb).
UniformConsensus (uc);

upon event 〈 Init 〉 do
unordered := delivered := ∅;
wait := false;
sn := 1;

upon event 〈 utoBroadcast, m 〉 do
trigger 〈 urbBroadcast, m 〉;

upon event 〈 urbDeliver, sm, m 〉 do
if m 6∈ delivered then

unordered := unordered ∪ {(sm, m)}

upon (unordered 6= ∅) ∧ (¬ wait) do
wait := true;
trigger 〈 ucPropose, sn,unordered 〉;

upon event 〈 ucDecided, sn, decided 〉 do
delivered := delivered ∪ decided;
unordered := unordered \ decided;
decided := sort (decided); // some deterministic order;
∀(sm,m) ∈ decided: trigger 〈 utoDeliver, sm, m 〉; // following the deterministic order
sn := sn +1;
wait := false;

broadcast, and let pi be some correct process that utoBroadcasts a message
m. Assume by contradiction that pi never utoDelivers m. This means that m
is never included in a batch of messages that some correct process decides. By
the validity property of reliable broadcast, every correct process will even-
tually urbDeliver and propose m in a batch of messages to consensus. By
the validity property of consensus, pi will decide a batch of messages includ-
ing m and will utoDeliver m. Consider now the total order property. Let
pi and pj be any two processes that utoDeliver some message m2. Assume
that pi utoDelivers some message m1 before m2. If pi utoDelivers m1 and
m2 in the same batch (i.e., the same round number), then by the agreement
property of consensus, pj must have also decided the same batch. Thus, pj

must utoDeliver m1 before m2 since we assume a deterministic function to
order the messages for the same batch before their utoDelivery. Assume that
m1 is from a previous batch at pi. By the agreement property of consensus,
pj must have decided the batch of m1 as well. Given that processes proceed

DRAFT 187 (22/11/2004)

6.3. LOGGED TOTAL CHAPTER 6. ORDERING

p1

p2

p3

p4

p1

p2

p3

p4

Round 1 Round 2 Round 3

Consensus

Reliable Broadcast

utoBroadcast (m1)

utoDeliver (m1) utoDeliver (m2) utoDeliver (m3)
utoDeliver (m4)

urbBroadcast (m2)

urbBroadcast (m3)

urbBroadcast (m4)

m1

m2, m1

m1

m2 m2, m3

m2, m3

m2

m2 m3, m4

m3, m4

m3, m4

m3, m4

Figure 6.4. Sample execution of the uniform total order broadcast algorithm.

sequentially from one round to the other, then pj must have utoDelivered m1

before m2.

Performance. The algorithm requires at least one communication step to ex-
ecute the reliable broadcast and at least two communication steps to execute
the consensus. Therefore, even if no failures occur, at least three communi-
cation steps are required.

Variations. It is easy to see that a regular total order broadcast algorithm is
automatically obtained by replacing the uniform consensus abstraction by a
regular one. Similarly, one could obtain a total order broadcast that satisfies
uniform agreement if we used a uniform reliable broadcast abstraction instead
of regular reliable broadcast abstraction. Finally, the algorithm can trivially
be made to ensure in addition causal ordering, for instance if we append past
information with every message (see our no-waiting causal order broadcast
algorithm).

6.3 Logged Total Order Broadcast

To derive a total order abstraction for the fail-recovery model we apply the
same sort of approach we have used to derive a reliable broadcast or a con-
sensus abstractions for the same model. We depart from an abstraction de-
signed from the crash-stop model and adapt the following aspects: interface
with adjacent modules, logging of relevant state, and definition of recovery

DRAFT 188 (22/11/2004)

CHAPTER 6. ORDERING 6.3. LOGGED TOTAL

Module:

Name: TotalOrder in the Crash-Recovery model (cr-uto).

Events:

Request: 〈 cr-utoBroadcast, m 〉: Used to broadcast message m.

Indication: 〈 cr-utoDeliver, delivered 〉: Used to deliver the log of all
ordered messages up to the moment the indication is generated.

Properties:

CR-UTO1: Total order: Let delivered i be the sequence of messages de-
livered to process pi. For any pair (i, j), either delivered i is a prefix of
delivered j or delivered j is a prefix of delivered i.

CR-RB1 to CR-RB3: from reliable broadcast in the crash recovery
model.

CR-UTO4: Uniform Agreement: If there exists pi such that m ∈ deliv-
ered i then eventually m ∈ delivered j at every process pj that eventually
remains permanently up.

Module 6.6 Interface and properties of total order broadcast.

procedures. Besides, we make use of underlying abstractions implemented in
the crash-recovery model, e.g., consensus and reliable broadcast.

6.3.1 Specification

We consider here just the uniform definition, which is presented in Mod-
ule 6.6. Note that the module exports to the upper layers the sequence of
delivered (and ordered) messages.

6.3.2 Fail-Recovery Algorithm: Total Order Broadcast Algorithm
with Logs

Our algorithm (Algorithm 6.5) closely follows the algorithm for the crash
no-recovery model presented in Section 6.2. The algorithm works as follows.
Messages sent by the upper layer are disseminated using the reliable broad-
cast algorithm for the fail-recovery model. The total order algorithm keeps
two sets of messages: the set of unordered messages (these messages are the
messages received from the reliable broadcast module) and the set of ordered
messages (obtained by concatenating the result of the several executions of
consensus). A new consensus is started when one notices that there are un-
ordered messages that have not yet been ordered by previous consensus ex-
ecutions. The wait flag is also used to ensure that consensus are invoked
in serial order. Upon a crash and recovery, the total order module may re-
invoke the same consensus execution more than once. Before invoking the
ith instance of consensus, the total order algorithm stores the values to be

DRAFT 189 (22/11/2004)

6.3. LOGGED TOTAL CHAPTER 6. ORDERING

Algorithm 6.5 Uniform total order broadcast algorithm for the crash-recovery

model.

Implements:
CrashRecoveryUniformTotalOrderBroadcast (cr-uto);

Uses:
CrashRecoveryReliableBroadcast (cr-rb).
CrashRecoveryUniformConsensus (cr-uc);

upon event 〈 Init 〉 do
unordered := ∅; delivered := ∅;
sn := 0; wait := false;
∀k : propose[k] := ⊥;

upon event 〈 Recovery 〉 do
sn := 0; wait := false;
while propose[k] 6= ⊥ do

trigger 〈 cr-ucPropose, sn, propose[ns] 〉;
wait 〈 cr-ucDecided, sn, decided 〉;
decided := sort (decided); // some deterministic order;
delivered := delivered ⊕ decided;
sn := sn +1;

trigger 〈 cr-utoDeliver, delivered 〉;

upon event 〈 cr-utoBroadcast, m 〉 do
trigger 〈 cr-rbBroadcast, m 〉;

upon event 〈 cr-rbDeliver, msgs 〉 do
unordered := unordered ∪ msgs;

upon (unordered\decided 6= ∅) ∧ (¬ wait) do
wait := true;
propose[ns] := unordered\delivered; store (propose[ns]);
trigger 〈 cr-ucPropose, sn, propose[ns] 〉;

upon event 〈 cr-ucDecided, sn, decided 〉 do
decided := sort (decided); // some deterministic order;
delivered := delivered ∪ decided;
trigger 〈 cr-utoDeliver, delivered 〉;
sn := sn +1; wait := false;

proposed in stable storage. This ensures that a given instance of consensus is
always invoked with exactly the same parameters. This may not be strictly
needed (depending on the implementation of consensus) but is consistent
with the intuitive notion that each processes proposes a value by storing it
in stable storage.

The algorithm has the interesting feature of never storing the unordered
and delivered sets. These sets are simply reconstructed upon recovery from
the stable storage kept internally by the reliable broadcast and consensus im-

DRAFT 190 (22/11/2004)

CHAPTER 6. ORDERING 6.3. LOGGED TOTAL

plementations. Since the initial values proposed for each consensus execution
are logged, the process may re-invoke all past instance of consensus to obtain
all messages ordered in previous rounds.

Correctness. The correctness argument is identical to the argument presented
for the crash no-recovery model.

Performance. The algorithm requires at least one communication step to ex-
ecute the reliable broadcast and at least two communication steps to execute
the consensus. Therefore, even if no failures occur, at least three communi-
cation steps are required. No stable storage access is needed besides those
needed by the underlying consensus module.

DRAFT 191 (22/11/2004)

Hands-On CHAPTER 6. ORDERING

Hands-On

In this section, we describe the implementation in Appia of the following algo-
rithms introduced in this chapter: no-waiting reliable causal order broadcast,
no-waiting reliable causal order broadcast with garbage collection, waiting
reliable causal order broadcast, uniform total order broadcast.

No-Waiting Reliable Causal Order Broadcast

The communication stack used to implement the protocol is the following:

SampleApplLayer
CONoWaitingLayer

DelayLayer
RBLayer

PerfectFailureDetectorLayer
BEBLayer

NewTcpLayer

The role of each of the layers is exlained below.

SampleAppllayer This layer performs the user interface, and allows to exper-
iment the implementations. The user indicates to the application which
protocol he pretends to test. Then, the application reads the input from
the user, builds a corresponding message, SampleSendableEvent, and sends
it down to the stack. The application is also responsible for reading the
file indicated in the command line and creating the event, ProcessInitEvent,
that contains the information about the processes in the group and for
sending it down to the stack.

CONoWaitingLayer This layer implements the causal order protocol. Each
message, in the protocol, is uniquely identified by its source and a se-
quence number, as each process in the group has its own sequence num-
ber. The events that walk through the stack aren’t serializable so we have
chosen the relevant information of those events to send, as the past list.
A message coming from the protocol looks like Figure 6.5.

Source Sequence MessageEvent
type (ip.port) number size

Message

Sequence
number

Size of
past list

PayloadPast List

Figure 6.5. Format of messages exchanged by CONoWaiting protocol.

DRAFT 192 (22/11/2004)

CHAPTER 6. ORDERING Hands-On

DelayLayer Test protocol used to delay the messages of one process-source
when delivering them to one process-destination. This is used to check
that messages are really delivered in the right order, even when delays are
present. In short, this layer simulates network delays. Note that this layer
doesn’t belong to the protocol stack, it was just developed for testing.

RBLayer Protocol that implements the reliable broadcast algorithm. The
remaining layers are required by this protocol (see Chapter 3).

The protocol implementation is depicted in Listing 6.1.

Listing 6.1. No-waiting reliable causal order broadcast implementation.

public class CONoWaitingSession extends Session {
Channel channel;
InetWithPort myID;
int seqNumber=0;
LinkedList delivered ; /∗ Set of delivered messages ∗/
LinkedList myPast; /∗ Set of messages in past ∗/

public CONoWaitingSession(Layer l) {
super(l);

}

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof RegisterSocketEvent)

handleRegisterSocketEvent((RegisterSocketEvent)e);
else if (e instanceof SendableEvent){

if (e.getDirection(). direction==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
}

}

public void handleChannelInit (ChannelInit e){
delivered=new LinkedList();
myPast=new LinkedList();
this.channel = e.getChannel();
e.go();

}

public void handleRegisterSocketEvent (RegisterSocketEvent e){
myID=new InetWithPort(InetAddress.getLocalHost(),e.port);
e.go();

}

public void handleSendableEventDOWN (SendableEvent e){
//cloning the event to be sent in oder to keep it in the mypast list ...
SendableEvent e aux= (SendableEvent)e.cloneEvent();
ObjectsMessage om=(ObjectsMessage)e.getMessage();

//inserting myPast list in the msg:
for(int k=myPast.size();k>0;k−−){

ObjectsMessage om k= (ObjectsMessage)((ListElement)myPast.get(k−1)).getSE().getMessage();

om.push(om k.toByteArray());
om.pushInt(om k.toByteArray().length);
om.pushInt(((ListElement)myPast.get(k−1)).getSeq());
InetWithPort.push((InetWithPort)((ListElement)myPast.get(k−1)).getSE().source,om);

DRAFT 193 (22/11/2004)

Hands-On CHAPTER 6. ORDERING

om.pushString(((ListElement)myPast.get(k−1)).getSE().getClass().getName());
}
om.pushInt(myPast.size());
om.pushInt(seqNumber);
e.setMessage(om);

e.go();

//add this message to the myPast list:
e aux.source=myID;
ListElement le=new ListElement(e aux,seqNumber);
myPast.add(le);

//increments the global seq number
seqNumber++;

}

public void handleSendableEventUP (SendableEvent e){
ObjectsMessage om=(ObjectsMessage)e.getMessage();
int seq=om.popInt();

//checks to see if this msg has been already delivered...
if (! isDelivered((InetWithPort)e.source,seq)){

//size of the past list of this msg
int pastSize=om.popInt();
for(int k=0;k<pastSize;k++){

String className=om.popString();
InetWithPort msgSource=InetWithPort.pop(om);
int msgSeq=om.popInt();
int msgSize=om.popInt();
byte[] msg=(byte[])om.pop();

//if this msg hasn’t been already delivered, we must deliver it prior to the one that just arrived!
if (! isDelivered(msgSource,msgSeq)){

//composing and sending the msg!
SendableEvent se=null;
se = (SendableEvent) Class.forName(className).newInstance();
se .setChannel(channel);
se . setDirection(new Direction(Direction.UP));
se .setSource(this);

ObjectsMessage aux om = new ObjectsMessage();
aux om.setByteArray(msg,0,msgSize);
se .setMessage(aux om);
se.source=msgSource;

se . init ();
se .go();

}

//this msg has been delivered!
ListElement le=new ListElement(se,msgSeq);
delivered.add(le);
myPast.add(le);

}
}

//cloning the event just received to keep it in the mypast list
SendableEvent e aux=null;
e aux=(SendableEvent)e.cloneEvent();

// deliver the event
e.setMessage(om);
e.go();

DRAFT 194 (22/11/2004)

CHAPTER 6. ORDERING Hands-On

ListElement le=new ListElement(e aux,seq);
delivered .add(le);

if (!e aux.source.equals(myID))
myPast.add(le);

}

boolean isDelivered(InetWithPort source,int seq){
for(int k=0;k<delivered.size();k++){

InetWithPort iwp aux=(InetWithPort) ((ListElement)delivered.get(k)).getSE().source;
int seq aux=((ListElement)delivered.get(k)).getSeq();
if (iwp aux.equals(source) && seq aux==seq)

return true;
}
return false;

}
}

class ListElement{
SendableEvent se;
int seq;

public ListElement(SendableEvent se, int seq){
this.se=se;
this.seq=seq;

}

SendableEvent getSE(){
return se;

}

int getSeq(){
return seq;

}
}

Try It Assuming that the package order is loaded into directory DIR,
follow the next steps:

1. Setup
a) Open 3 shells/command prompts.
b) In each shell go to directory DIR/order.
c) In shell 0 execute java appl/SampleAppl appl/procs 0.
d) In shell 1 execute java appl/SampleAppl appl/procs 1.
e) In shell 2 execute java appl/SampleAppl appl/procs 2.
f) A list of the developed protocols should appear in the 3 shells. If

this list doesn’t appear, check if the error NoClassDefError has ap-
peared instead. If it has, confirm that both packages order and rb
are included in the classpath.

g) Now, that everything is ok, choose protocol 1 in every shell.
2. Run: Now that processes are launched and running, let’s try 2 different

executions:

a) Execution I
i. In shell 0, send a message M1 (just write M1 and press enter).

• Note that all processes received message M1.
ii. In shell 1, send a message M2.

DRAFT 195 (22/11/2004)

Hands-On CHAPTER 6. ORDERING

• Note that all processes received message M2.
iii. Confirm that all processes have received M1 and then M2 and

note the continuous growth of the size of the messages sent.
b) Execution II: For this execution it is necessary to first modify file

appl/SampleAppl.java in package order. Line 121 should be uncom-
mented in order to insert a test layer that allows to inject delays in
messages sent between process 0 and process 2. After modifying the
file, it is necessary to compile it.

i. In shell 0, send a message M1.
• Note that process 2 didn’t receive the message M1.

ii. In shell 1, send a message M2.
• Note that all processes received M2.

iii. Confirm that all processes received M1 and then M2. Process 2
received message M1 because it was appended to message M2.

No-Waiting Reliable Causal Order Broadcast with Garbage Col-
lection

The next protocol to present is an optimization of the previous one. It intends
to circunvents its main disadvantage by deleting messages from the past list.
When the protocol delivers a message it broadcasts an acknowledgement to
all other processes; when an acknowledgement for the same message has been
received from all correct processes, this message is removed from the past list.

The communication stack used to implement the protocol is the following:

SampleApplLayer
CONoWaitingLayerGC

DelayLayer
RBLayer

PerfectFailureDetectorLayer
BEBLayer

NewTcpLayer

The protocol implementation is depicted in Listing 6.2.

Listing 6.2. No-waiting reliable causal order broadcast with garbage collection
implementation.

public class CONoWaitingSessionGC extends Session {
Channel channel;
int seqNumber;
LinkedList delivered ; /∗ delivered messages ∗/
LinkedList myPast; /∗ Past set ∗/
/∗
∗ Set of the correct processes.
∗/

private ProcessSet correct;
/∗
∗ Set of the msgs not yet acked by all correct processes.
∗ unit: seq number+source+list of processes acked

DRAFT 196 (22/11/2004)

CHAPTER 6. ORDERING Hands-On

∗ (AckElement)
∗/

LinkedList acks;

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)e);
else if (e instanceof AckEvent)

handleAck((AckEvent)e);
else if (e instanceof SendableEvent){

if (e.getDirection(). direction==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
}else if (e instanceof Crash)

handleCrash((Crash)e);
else{

try {
e.go();

} catch (AppiaEventException ex) {
System.out.println(”[CONoWaitingGCSession:handle]”

+ ex.getMessage());
}

}
}

}

Try It Assuming that the package order is loaded into directory DIR,
follow the next steps:

1. Setup
a) Open 3 shells/command prompts.
b) In each shell go to directory DIR/order.
c) In shell 0 execute java appl/SampleAppl appl/procs 0.
d) In shell 1 execute java appl/SampleAppl appl/procs 1.
e) In shell 2 execute java appl/SampleAppl appl/procs 2.
f) A list of the developed protocols should appear in the 3 shells. If

this list doesn’t appear, check if the error NoClassDefError has ap-
peared instead. If it has, confirm that both packages order and rb
are included in the classpath.

g) Now, that everything is ok, choose protocol 2 in every shell.
2. Run: Now that processes are launched and running, let’s try 3 different

executions:
a) Since this protocol is very similar with the previous one, the 2 execu-

tions presented in the previous section can be applied to this protocol.
Note that the line of code inq appl/SampleAppl.java that has to be
altered is now line 175.

b) Execution III:(this execution is to be done with the delay layer in
the protocol stack.)

i. In shell 0, send a message M1 (just write M1 and press enter).
• Note that process 2 didn’t receive the message M1.

ii. In shell 1, send a message M2.

DRAFT 197 (22/11/2004)

Hands-On CHAPTER 6. ORDERING

• Note the size of the message that was sent and note also that
all processes received message M2.

iii. In shell 2, send a message M3.
• Note the smaller size of the message that was sent and note

also that all processes received message M3.
iv. Confirm that all processes received M1, M2 and M3 by the

right order.

Waiting Reliable Causal Order Broadcast

The communication stack used to implement the protocol is the following:

SampleApplLayer
COWaitingLayer

DelayLayer
RBLayer

PerfectFailureDetectorLayer
BEBLayer

NewTcpLayer

The protocol implementation is depicted in Listing 6.3.

Listing 6.3. Waiting reliable causal order broadcast implementation.

public class COWaitingSession extends Session{
Channel channel;
/∗
∗ Set of the correct processes.
∗/
private ProcessSet correct;
/∗
∗ The list of the msg that are waiting to be delivered
∗ unit: SendableEvent
∗/
private LinkedList pendingMsg;

int [] vectorClock;

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)e);
else if (e instanceof SendableEvent){

if (e.getDirection(). direction==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
}else{

try {
e.go();

} catch (AppiaEventException ex) {
System.out.println(”[COWaitingSession:handle]”

+ ex.getMessage());
}

}
}

DRAFT 198 (22/11/2004)

CHAPTER 6. ORDERING Hands-On

}

Try It Assuming that the package order is loaded into directory DIR,
follow the next steps:

1. Setup
a) Open 3 shells/command prompts.
b) In each shell go to directory DIR/order.
c) In shell 0 execute java appl/SampleAppl appl/procs 0.
d) In shell 1 execute java appl/SampleAppl appl/procs 1.
e) In shell 2 execute java appl/SampleAppl appl/procs 2.
f) A list of the developed protocols should appear in the 3 shells. If

this list doesn’t appear, check if the error NoClassDefError has ap-
peared instead. If it has, confirm that both packages order and rb
are included in the classpath.

g) Now, that everything is ok, choose protocol 3 in every shell.
2. Run: Now that processes are launched and running, let’s try 2 different

executions:
a) Execution I

i. In shell 0, send a message M1 (just write M1 and press enter).
• Note that all processes received message M1.

ii. In shell 1, send a message M2.
• Note that all processes received message M2.

iii. Confirm that all processes received M1 and then M2.
b) Execution II: For this execution it is necessary to first modify file

appl/SampleAppl.java in package order. Line 228 should be uncom-
mented in order to insert a test layer that allows to inject delays in
messages sent between process 0 and process 2. After modifying the
file, it is necessary to compile it.

i. In shell 0, send a message M1.
• Note that process 2 didn’t receive the message M1.

ii. In shell 1, send a message M2.
• Note that process 2 also didn’t receive M2.

iii. Wait for process 2 to receive the messages.
• Note that process 2 didn’t receive M1, immediately, due to

the presence of the Delay layer. And it didn’t receive M2, also
immediately, because it had to wait for M1 to be delivered,
as M1 preceded M2.

Uniform Total Order Broadcast

The communication stack used to implement the protocol is the following:

DRAFT 199 (22/11/2004)

Hands-On CHAPTER 6. ORDERING

SampleApplLayer
TOUniformLayer

DelayLayer
FloodingUniformLayer

URBLayer
PerfectFailureDetectorLayer

BEBLayer
NewTcpLayer

The protocol implementation is depicted in Listing 6.4.

Listing 6.4. Uniform total order broadcast implementation.

public class TOUniformSession extends Session{
/∗my id∗/
InetWithPort iwp;

Channel channel;

/∗global sequence number of the message sent by
this process∗/

int seqNumber;

/∗Sequence number of the set of messages to
deliver in the same round!∗/
int sn;

/∗Sets the beginning and the end of the rounds∗/
boolean wait;

/∗
∗ Set of delivered messages.
∗ unit: sendable event+seq number (ListElement)
∗/
LinkedList delivered;

/∗
∗ Set of unordered messages.
∗ unit: sendable event+seq number (ListElement)
∗/
LinkedList unordered;

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof ProcessInitEvent)

handleProcessInitEvent((ProcessInitEvent)e);
else if (e instanceof SendableEvent){

if (e.getDirection(). direction==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
}else if (e instanceof ConsensusDecide)

handleConsensusDecide((ConsensusDecide)e);
else{

try {
e.go();

} catch (AppiaEventException ex) {
System.out.println(”[TOUniformSession:handle]”

+ ex.getMessage());
}

DRAFT 200 (22/11/2004)

CHAPTER 6. ORDERING Hands-On

}
}

}

Try It Assuming that the package order is loaded into directory DIR,
follow the next steps:

1. Setup
a) Open 3 shells/command prompts.
b) In each shell go to directory DIR/order.
c) In shell 0 execute java appl/SampleAppl appl/procs 0.
d) In shell 1 execute java appl/SampleAppl appl/procs 1.
e) In shell 2 execute java appl/SampleAppl appl/procs 2.
f) A list of the developed protocols should appear in the 3 shells. If

this list doesn’t appear, check if the error NoClassDefError has ap-
peared instead. If it has, confirm that both packages order and rb
are included in the classpath.

g) Now, that everything is ok, choose protocol 4 in every shell.
2. Run: Now that processes are launched and running, let’s try the following

execution:
a) Execution I: Note that the protocol stack already has the delay layer

in order to perform the following execution.

i. In shell 0, send a message M1 (just write M1 and press enter).
• Note that no process received the message M1.

ii. In shell 1, send a message M2.
• Note that all processes received message M1. The consensus

decided to deliver M1.
iii. In shell 1, send a message M3.

• Note that all processes received message M2 and M3. Now,
the consensus decided to deliver these both messages.

iv. Confirm that all processes received M1, M2 and M3 in the same
order.

v. You can keep doing these steps, in order to introduce some delays,
and check that all processes receive all messages by the same
order.

DRAFT 201 (22/11/2004)

Exercises CHAPTER 6. ORDERING

Exercises

Exercise 6.1 Compare our causal broadcast property with the following
property: “If a process delivers messages m1 and m2, and m1 → m2, then
the process must deliver m1 before m2”.

Exercise 6.2 Can we devise a best-effort broadcast algroithm that satisfies
the causal delivery property without being a causal broadcast algorithm, i.e.,
without satisfying the agreement property of a reliable broadcast?

Exercise 6.3 Can we devise a broadcast algorithm that does not ensure the
causal delivery property but only its non-uniform variant: No correct process
pi delivers a message m2 unless pi has already delivered every message m1

such that m1 → m2.

Exercise 6.4 Suggest a modification of the garbage collection scheme to col-
lect messages sooner than in Algorithm 6.2.

Exercise 6.5 What happens in our total order broadcast algorithm if the set
of messages decided on are not sorted deterministically after the decision but
prior to the proposal? What happens in our total order broadcast algorithm if
the set of messages decided on is not sorted deterministically, neither a priori
nor a posteriori?

DRAFT 202 (22/11/2004)

CHAPTER 6. ORDERING Solutions

Solutions

Solution 6.1 We need to compare the two following properties:

1. If a process delivers a message m2, then it must have delivered every
message m1 such that m1 → m2.

2. If a process delivers messages m1 and m2, and m1 → m2, then the process
must deliver m1 before m2.

Property 1 says that any message m1 that causally precedes m2 must only
be delivered before m2 if m2 is delivered. Property 2 says that any delivered
message m1 that causally precedes m2 must only be delivered before m2 if
m2 is delivered.

Both properties are safety properties. In the first case, a process that de-
livers a message m without having delivered a message that causally precedes
m violates the property and this is irremediable. In the second case, a process
that delivers both messages without respecting the causal precedence might
violate the property and this is also irremediable. The first property is how-
ever strictly stronger than the second. If the first is satisfied then the second
is. However, it can be the case with the second property is satisfied whereas
the first is not: a process delivers a message m2 without delivering a message
m1 that causally precedes m1. 2

Solution 6.2 The answer is no. Assume by contradiction that some broadcast
algorithm ensures causal order deliver and is not reliable but best-effort. We
define the abstraction implemented by such an algorithm with primitives:
coBroadcast and coDeliver. The only possibility for a broadcast to ensure the
best-effort properties and not be reliable is to violate the agreement property:
there must be some execution of the algorithm implementing the abstraction
where some correct process p coDelivers a message m that some other process
q does never coDeliver. Because the algorithm is best-effort, this can only
happen if the original source of the message, say r is faulty.

Assume now that after coDelivering m, process p coBroadcasts a mes-
sage m′. Given that p is correct and the broadcast is best-effort, all correct
processes, including q, coDeliver m′. Given that m precedes m′, q must have
coDelivered m: a contradiction. Hence, any best-effort broadcast that satis-
fies the causal delivery property is also reliable. 2

Solution 6.3 Assume by contradiction that some algorithm does not ensure
the causal delivery property but ensures its non-uniform variant. This means
that the algorithm has some execution where some process p delivers some
message m without delivering a message m′ that causally precedes m. Given
that we assume a model where processes do not commit suicide, p might very
well be correct, in which case it violates even the non-uniform variant. 2

DRAFT 203 (22/11/2004)

Solutions CHAPTER 6. ORDERING

Solution 6.4 When removing a message m from the past, we can also remove
all the messages that causally depend on this message—and then recursively
those that causally precede these. This means that a message stored in the
past must be stored with its own, distinct past. 2

Solution 6.5 If the deterministic sorting is done prior to the proposal, and
not a posteriori upon a decision, the processes would not agree on a set but on
a sequence, i.e., an ordered set. If they then toDeliver the messages according
to this order, we would still ensure the total order property.

If the messages that we agree on through consensus are not sorted deter-
ministically within every batch (neither a priori nor a posteriori), then the
total order property is not ensured. Even if the processes decide on the same
batch of messages, they might toDeliver the messages within this batch in a
different order. In fact, the total order property would only be ensured with
respect to the batches of messages, and not to the messages themselves. We
thus get a coarser granularity in the total order.

We could avoid using the deterministic sort function at the cost of propos-
ing a single message at a time in the consensus abstraction. This means that
we would need exactly as many consensus instances as there are messages
exchanged between the processes. If messages are generated very slowly by
processes, the algorithm ends up using one consensus instance per message
anyway. If the messages are generated rapidly, then it is beneficial to use
several messages per instance: within one instance of consensus, several mes-
sages would be gathered, i.e., every message of the consensus algorithm would
concern several messages to toDeliver. Agreeing on several messages at the
same time reduces the number of times we use the consensus protocol. 2

DRAFT 204 (22/11/2004)

CHAPTER 6. ORDERING Historical Notes

Historical Notes

• The causal broadcast abstraction was defined by Birman and Joseph
in (Birman and Joseph 1987a) following the notion of causality initially
introduced by Lamport (Lamport 1978).

• In this chapter, we presented algorithms that implement causal broadcast
assuming that all messages are broadcast to all processes in the system. It
is also possible to ensure causal delivery in the cases where individual mes-
sages may be sent to an arbitrary subset of group members, but the algo-
rithms require a significantly larger amount of control information (Raynal,
Schiper, and Toueg 1991).

• Similarly, we considered that messages need to be totally ordered were
broadcast to all processes in the system, and hence it was fine to have
all the processes participate in the ordering activity. It is also possible to
consider a total order multicast abstraction where the sender can select
the subset of processes to which the message needs to be sent, and require
that no other process besides the sender and the multicast set participates
in the ordering. The algorithms in this case are rather tricky (Rodrigues,
Guerraoui, and Schiper 1998; Guerraoui and Schiper 2001).

• Our no-waiting causal broadcast algorithm was inspired by one of the earli-
est implementations of causal ordering, included in the ISIS toolkit (Birman
and Joseph 1987b).

• Our waiting causal broadcast algorithms was based on the notion of vector
clocks introduced in (Fidge 1988; Ladin, Liskov, Shrira, and Ghemawat
1990; Schwarz and Mattern 1992).

• The total order broadcast abstraction was specified by Schneider (Schnei-
der 1990), following the work on state machine replication by Lamport.
Our total order broadcast algorithm is inspired by (Chandra and Toueg
1996).

• Our total order broadcast specification and algorithms in the crash-
recovery model are inspired by (Boichat, Dutta, Frolund, and Guerraoui
2003; Rodrigues and Raynal 2003).

.

DRAFT 205 (22/11/2004)

7. Coordination

I know what you’re thinking punk, you’re thinking did he fire six shots or
only five? Well, to tell you the truth I kinda forgot myself in all this
excitement. But being this here’s the 44 Magnum, the most powerful

handgun in the world and would blow your head clean off, you’ve got to ask
yourself one question, Do I feel lucky? Well do ya punk?.

(Dirty Harry.)

This chapter considers agreement abstractions where, like in consensus,
the processes need to decide on a common value. Unlike in consensus however,
the value that the processes need to decide on cannot be any value proposed.
It should obey some specific coordination requirements.

Examples of abstractions we will study here include terminating reliable
broadcast, (non-blocking) atomic commitment, leader election, group mem-
bership, and view-synchronous communication. We will mainly give here fail-
stop, consensus-based, algorithms that implement these abstractions. In fact,
a common characteristic of these abstractions is that they cannot be imple-
mented in a fail-noisy model, and hence neither in a fail-silent nor in a fail-
recovery model. (We will discuss this impossibility through the exercices.)
We will also discuss randomized implementations of these algorithms.

7.1 Terminating Reliable Broadcast

7.1.1 Overview

As its name indicates, terminating reliable broadcast is a form of reliable
broadcast with a termination property.

To explain the underlying intuition, consider the case where a given pro-
cess pi is known to have the obligation of broadcasting some message to all
processes in the system. In other words, pi is a source of information in the

7.1. TRB CHAPTER 7. COMMITMENT

system and all processes must perform some specific processing according to
the message m to be delivered from pi. All the remaining processes are thus
waiting for pi’s message. If pi uses a best-effort broadcast and does not crash,
then its message m will be seen by all correct processes. Consider now the
case where pi crashed and some process pj detects that pi has crashed with-
out having seen m. Does this means that m was not broadcast? Not really.
It is possible that pi crashed while broadcasting m: some processes may have
received m whereas others have not. Process pj needs to know whether it
should keep on waiting for m, or if it can know at some point that m will
never be delivered by any process.

At this point, one may think that the problem could be avoided if pi had
used a uniform reliable broadcast primitive to broadcast m. Unfortunately,
this is not the case. Consider process pj in the example above. The use of a
uniform reliable broadcast primitive would ensure that, if some other process
pk delivered m, then pj would eventually deliver m also. However, pj cannot
decide if it should wait for m or not.

The terminating reliable broadcast (TRB) abstraction ensures precisely
that every process pj either delivers the message m or some indication F
that m will not be delivered. This indication is given in the form of a specific
message to the processes: it is however assumed that the indication is not like
any other message, i.e., it does not belong to the set of possible messages. The
TRB abstraction is an agreement one because the processes do all deliver the
same message, i.e., either message m or message F .

7.1.2 Specifications

The properties of terminating reliable broadcast abstraction are depicted in
Module 7.1. It is important to notice that the abstraction is defined for a
specific originator process, denoted by src in Module 7.1. A process declares
itself as the originator by broadcasting a message m and indicating itself as
the source. A process indicates that it participates in the terminating reliable
broadcast by broadcasting an empty message. We consider the uniform vari-
ant of the problem where agreement is uniformly required among any pair of
processes, be them correct or faulty.

7.1.3 Fail-Stop Algorithm: Consensus-Based TRB

Algotithm 7.1 implements TRB using three underlying abstractions: a perfect
failure detector, a uniform consensus and a best-effort broadcast.

The algorithm works by having the source of the message m disseminate m
to all correct processes using a best-effort broadcast. Every process waits until
it either gets the message broadcast by the sender process or it detects the
crash of the originator process. The assumption of a perfect failure detector
and the validity property of the broadcast ensures that the process cannot

DRAFT 208 (22/11/2004)

CHAPTER 7. COMMITMENT 7.1. TRB

Module:

Name: TerminatingReliableBroadcast (trb).

Events:

Request: 〈 trbBroadcast, src, m 〉: Used to initiate a terminating reliable
broadcast for process src.

Indication: 〈 trbDeliver, src, m 〉: Used to deliver message m broadcast
by process src (or F in the case src crashes).

Properties:

TRB1: Termination: Every correct process eventually delivers exactly one
message.

TRB2: Validity: If the sender src is correct and broadcasts a message m,
then src eventually delivers m.

TRB3: Integrity: If a correct process delivers a message m then either
m = F or m was previously broadcast by src.

TRB5: Uniform Agreement: If any process delivers a message m, then
every correct process eventually delivers m.

Module 7.1 Interface and properties of terminating reliable broadcast.

wait forever. Then all processes run a consensus to agree on whether to deliver
m or a to deliver the failure notification F . The processes that got m propose
it to consensus and those who detected the crash of the sender, src, propose
F . The result of the consensus is the value delivered by the TRB algorithm.

An execution of the algorithm is illustrated in Figure 7.1. Process p1

crashes while broadcasting m. Therefore p2 and p3 get m but p4 does not.
The remaining processes use the consensus module to decide which value must
be delivered. In the example of the figure the processes decide to deliver m
but F would be also a possible outcome (since p1 has crashed).

p1

p2

p3

p4

trbBroadcast (p1, m)

ucPropose (m)

ucPropose (m)

ucPropose (F)

crash (p1)

ucDecide (m) trbDeliver (m)

trbDeliver (m)

trbDeliver (m)

uniform consensus

Figure 7.1. Sample execution of terminating reliable broadcast.

Correctness. The integrity property of best-effort broadcast and the validity
property of consensus ensure that if a process trbDelivers a message m, then

DRAFT 209 (22/11/2004)

7.1. TRB CHAPTER 7. COMMITMENT

Algorithm 7.1 Consensus-based terminating reliable broadcast algorithm.

Implements:
TerminatingReliableBroadcast (trb).

Uses:
BestEffortBroadcast (beb).
UniformConsensus (uc);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
proposal := src := ⊥;
correct := Π;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 trbBroadcast, pi, m 〉 do
src := pi;
if (src = self) then trigger 〈 bebBroadcast, m 〉;

upon event 〈 bebDeliver, src, m 〉 do
proposal := m;

upon (src 6∈ correct) do
proposal := Fsrc;

upon (proposal 6= ⊥) do
trigger 〈 ucPropose, proposal 〉;

upon event 〈 ucDecide, decided 〉 do
trigger 〈 trbDeliver, src, decided 〉

either m is F or m was trbBroadcast by src. The no-duplication property
of best-effort broadcast and the integrity property of consensus ensure that
no process trbDelivers more than one message. The completeness property
of the failure detector, the validity property of best-effort broadcast and the
termination property of consensus ensure that every correct process eventu-
ally trbDelivers a message. The agreement property of consensus ensures that
of terminating reliable broadcast. Consider now the validity property of ter-
minating reliable broadcast. Consider that src does not crash and trbBroad-
casts a message m 6= F . By the accuracy property of the failure detector, no
process detects the crash of src. By the validity property of best-effort broad-
cast, every correct process bebDelivers m and proposes m to consensus. By
the termination property of consensus, all correct processes, including src,
eventually decide and trbDeliver a message m.

Performance. The algorithm requires the execution of the consensus abstrac-
tion. In addition to the cost of consensus, the algorithm exchanges N−1 mes-

DRAFT 210 (22/11/2004)

CHAPTER 7. COMMITMENT 7.2. NBAC

sages and requires one additional communication step (for the initial best-
effort broadcast).

Variation. Our TRB specification has a uniform agreement property. As for
reliable broadcast, we could specify a regular variant of TRB with a regular
agreement property. By using a regular consensus abstraction instead of uni-
form consensus, we can automatically obtain a regular terminating reliable
broadcast abstraction.

7.2 Non-blocking Atomic Commit

7.2.1 Overview

The unit of data processing in a distributed information systems is the trans-
action. This can be viewed as a portion of a program delimited by two primi-
tives: begin and end. The transaction is typically expected to be atomic in two
senses. (1. Concurrency atomicity) Transactions appear to execute one after
the other and this serialisability is usually guaranteed using some form of
distributed locking or some form of optimistic concurrency control. (2. Failure
atomicity) Every transaction appears to execute either completely (it said to
commit) or not at all (it is said to abort). Ensuring this form of atomicity in a
distributed environment is not trivial because the transaction might have ac-
cessed information on different processes (i.e., different data managers) and
these need to make sure that they all discard this information or they all
make it visible. In other words, they all need to agree on the same outcome
for the transaction. An additional difficulty lies here in the facts that some
processes might not be able to commit the transaction (as we discuss below).

The non-blocking atomic commit (NBAC) abstraction is precisely used
to solve this problem in a reliable way. The processes, each representing a
data manager, agree on the outcome of a transaction. The outcome is either
to commit the transaction, say to decide 1, or to abort the transaction, say
to decide 0. The outcome depends of the initial proposals of the processes.
Every process proposes an initial vote for the transaction: 0 or 1. Voting
1 for a process means that the process is willing and able to commit the
transaction.

• Typically, by voting 1, a process witnesses the absence of any problem
during the execution of the transaction. Furthermore, the process promises
to make the update of the transaction permanent. This in particular means
that the process has stored the temporary update of the transaction in
stable storage: should it crash and recover, it can install a consistent state
including all updates of the committed transaction.

• By voting 0, a data manager process vetos the commitment of the transac-
tion. Typically, this can occur if the process cannot commit the transaction

DRAFT 211 (22/11/2004)

7.2. NBAC CHAPTER 7. COMMITMENT

Module:

Name: Non-Blocking Atomic Commit (nbac).

Events:

Request: 〈 nbacPropose, v 〉: Used to propose a value for the commit (0
or 1).

Indication: 〈 nbacDecide, v 〉: Used to indicate the decided value for nbac.

Properties:

NBAC1: Agreement No two processes decide different values.

NBAC2: Integrity No process decides twice.

NBAC3: Abort-Validity 0 can only be decided if some process proposes
0 or crashes.

NBAC4: Commit-Validity 1 can only be decided if no process proposes
0.

NBAC5: Termination Every correct process eventually decides.

Module 7.2 Interfaces and properties of NBAC.

for an application-related reason, e.g., not enough money for a bank trans-
fer in a specific node, for a concurrency control reason, e.g., there is a risk
of violating serialisability in a database system, or a storage reason, e.g.,
the disk is full and there is no way to guarantee the persistence of the
transaction’s updates.

At first glance, the problem looks like consensus: the processes propose 0
or 1 and need to decide on a common final value 0 or 1. There is however a
fundamental difference: in consensus, any value decided is valid as long as it
was proposed. In the atomic commitment problem, the decision 1 cannot be
taken if any of the processes had proposed 0. It is indeed a veto right that is
expressed with a 0 vote.

7.2.2 Specifications

NBAC is characterized by the properties listed in Module 7.2. Without the
termination property, the abstraction is simply called atomic commit (or
atomic commitment).

7.2.3 Fail-Stop Algorithm: Consensus-Based NBAC

Algorithm 7.2 implements NBAC using three underlying abstractions: a per-
fect failure detector, a consensus and a best-effort broadcast.

The algorithm works as follows. Every process pi broadcasts its proposal
(0 or 1) to all, and waits, for every process pj , either to get the proposal of pj

or to detect the crash of pj . If pi detects the crash of any other process or gets a

DRAFT 212 (22/11/2004)

CHAPTER 7. COMMITMENT 7.2. NBAC

Algorithm 7.2 Consensus-based non-blocking atomic commit algorithm.

Implements:
NonBlockingAtomicCommit (nbac).

Uses:
BestEffortBroadcast (beb).
Consensus (uc);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
delivered := ∅;
correct := Π;
proposal := 1;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon event 〈 nbacPropose, v 〉 do
trigger 〈 bebBroadcast, v 〉;

upon event 〈 bebDeliver, pi, v 〉 do
delivered := delivered ∪{pi} ;
proposal := proposal * v;

upon (correct \ delivered = ∅) do
if correct 6= Π then

proposal := 0;
trigger 〈 ucPropose, proposal 〉;

upon event 〈 ucDecide, decided 〉 do
trigger 〈 nbacDecide, decided 〉

proposal 0 from any process, then pi invokes consensus with 0 as its proposal.
If pi gets the proposal 1 from all processes, then pi invokes consensus with 1
as a proposal. Then the processes decide for NBAC following the outcome of
consensus.

Correctness. The agreement property of NBAC directly follows from that of
consensus. The no-duplication property of best-effort broadcast and the in-
tegrity property of consensus ensure that no process nbacDecides twice. The
termination property of NBAC follows from the validity property of best-
effort broadcast, the termination property of consensus, and the complete-
ness property of the failure detector. Consider now the validity properties of
NBAC. The commit-validity property requires that 1 is decided only if all
processes propose 1. Assume by contradiction that some process pi nbacPro-
poses 0 whereas some process pj nbacDecides 1. By the algorithm, for pj to
nbacDecide 1, it must have decided 1, i.e., through the consensus abstraction.
By the validity property of consensus, some process pk must have proposed 1
to the consensus abstraction. By the validity property of best-effort broadcast,

DRAFT 213 (22/11/2004)

7.3. LEADER ELECTION CHAPTER 7. COMMITMENT

there are two cases to consider: (1) either pi crashes before pk bebDelivers pi’s
proposal or (2) pk bebDelivers pi’s proposal. In both cases, by the algorithm,
pk proposes 0 to consensus: a contradiction. Consider now the abort-validity
property of NBAC. This property requires that 0 is decided only if some pro-
cess nbacProposes 0 or crashes. Assume by contradiction that all processes
nbacPropose 1 and no process crashes, whereas some process pi nbacDecides
0. For pi to nbacDecide 0, by the validity property of consensus, some process
pk must propose 0. By the algorithm and the accuracy property of the failure
detector, pk would only propose 0 if some process nbacProposes 0 or crashes:
a contradiction.

Performance. The algorithm requires the execution of the consensus abstrac-
tion. In addition to the cost of consensus, the algorithm exchanges N 2 mes-
sages and requires one additional communication step (for the initial best-
effort broadcast).

Variation. One could define a non-uniform variant of NBAC, i.e., by requiring
only agreement and not uniform agreement. However, this abstraction would
not be useful in a practical setting to control the termination of a transaction
in a distributed database system. Indeed, the very fact that some process has
decided to commit a transaction is important, say the process has delivered
some cash through an ATM. Even if that process has crashed, its decision is
important and other processes should reach the same outcome.

7.3 Leader Election

7.3.1 Overview

The leader election abstraction consists in choosing one process to be se-
lected as a unique representative of the group of processes in the system. For
this abstraction to be useful in a distributed setting, a new leader should be
elected if the current leader crashes. Such abstraction is in case indeed useful
in a primary-backup replication scheme for instance. Following this scheme,
a set of replica processes coordinate their activities to provide the illusion
of a unique fault-tolerant (highly-available) service. Among the set of replica
processes, one is chosen as the leader. This leader process, sometimes called
the primary, is supposed to treat the requests submitted by the client pro-
cesses, on behalf of the other replicas, called backups. Before a leader returns
a reply to a given client, it updates its backups to keep them up to date. If
the leader crashes, one of the backups is elected as the new leader, i.e., the
new primary.

7.3.2 Specification

We define the leader election abstraction more precisely through a specific
primtive, denoted by leLeader which, when invoked on a process at some

DRAFT 214 (22/11/2004)

CHAPTER 7. COMMITMENT 7.3. LEADER ELECTION

Module:

Name: LeaderElection (le).

Events:

Indication: 〈 leLeader 〉pi: Used to indicate that process pi is now the
leader.

Properties:

LE1: Either there is no correct process, or some correct process is even-
tually the leader.

LE2: If a process pi is leader, then all other leaders have crashed.

Module 7.3 Interface and properties of leader election.

given time, means that the process is elected leader from that time on. The
properties of the abstraction are given in Module7.3.

The first property ensures the eventul presence of a correct leader. Clearly,
it might be the case that, at some point in time, no process is leader. It
might also be the case that no leader is up. The property ensures however
that, unless there is no correct process, some correct process is eventually
elected leader. The second property ensures the stability of the leader. In
other words, it ensures that the only reason to change the leader is if it
crashes. Indirectly, this property precludes the possibility for two processes
to be leader at the same time. In this sense, the leader election abstraction we
consider here is strictly stronger than the eventually accurate leader election
notion we introduced earlier in the manuscript.

7.3.3 Fail-Stop Algorithm: Monarchical Leader Election

Algorithm 7.3 implements the leader election abstraction assuming a perfect
failure detector. The algorithm assumes the existence of a total order among
processes agreed on a priori. This is encapsulated by some function O. (This
could also be known to the user of the leader election abstraction, e.g., the
clients of a primary-backup replication scheme, for optimization purposes).

This function O associates to every process, those that precede it in the
ranking. A process can only become leader if those that precede it have
crashed. Think of the function as representing the royal ordering in a monar-
chical system. The prince becomes leader if and only if the queen dies. If the
prince dies, may be his little sister is the next on the list, etc. Typically, we
would assume that O(p1) = ∅, O(p2) = {p1}, O(p3) = {p1, p2}, and so forth.
The order in this case is p1; p2; p3; ...

Correctness. Property LE1 follows from the completeness property of the
failure detector whereas property LE2 follows from the accuracy property of
the failure detector.

DRAFT 215 (22/11/2004)

7.4. GROUP MEMBERSHIP CHAPTER 7. COMMITMENT

Algorithm 7.3 Monarchical leader election algorithm.

Implements:
LeaderElection (le);

Uses:
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
suspected := ∅;

upon event 〈 crash, pi 〉 do
suspected := suspected ∪{pi};

upon event O(self) ⊂ suspected do
trigger 〈 leLeader, self 〉;

Performance. The process of becoming a leader is a local operation. The
time to react to a failure and become the new leader depends on the latency
of the failure detector.

7.4 Group Membership

7.4.1 Overview

In the previous sections, our algorithms were required to make decisions based
on the information about which processes were operational or crashed. This
information is provided by the failure detector module available at each pro-
cess. However, the output of failure detector modules at different processes
is not coordinated. This means that different processes may get notifications
of failures of other processes in different orders and, in this way, obtain a
different perspective of the system evolution. One of the roles of a member-
ship service is to provide consistent information about which processes have
crashed and which processes have not.

Another role of a membership service is to allow new processes to leave
and join the set of processes that are participating in the computation, or
let old processes voluntarily leave this set. As with failure information, the
result of leave and join operations should be provided to correct processes in
a consistent way.

To simplify the presentation, we will consider here just the case of pro-
cess crashes, i.e., the initial membership of the group is the complete set of
processes and subsequent membership changes are solely caused by crashes.
Hence, we do not consider explicit join and leave operations.

DRAFT 216 (22/11/2004)

CHAPTER 7. COMMITMENT 7.4. GROUP MEMBERSHIP

Module:

Name: Membership (memb).

Events:

Indication: 〈 membView, g, V i 〉 Used to deliver update membership
information in the form of a view. The variable g denotes the group id. A
view V i is a tuple (i, M), where i is a unique view identifier and M is the
set of processes that belong to the view.

Properties:

Memb1: Self inclusion: If a process p installs view V i = (i, Mi), then
p ∈ Mi.

Memb2: Local Monotonicity: If a process p installs view V j = (j, Mj)
after installing V i = (i, Mi), then j > i.

Memb3: Initial view: Every correct process installs V 0 = (0, Π).

Memb4: Agreement: If a correct process installs V i, then every correct
process also installs V i.

Memb5: Completeness: If a process p crashes, then eventually every cor-
rect process installs V i = (i, Mi) with p 6∈ Mi.

Memb6: Accuracy: If some process installs a view V i = (i, Mi) and q 6∈
Mi, then q has crashed.

Module 7.4 Interface and properties of group membership.

7.4.2 Specification

We name the set of processes that participate in the computation a group.
The current membership of the group is called a group view . Each view
V i = (i, Mi) is a tuple that contains a unique view identifier i and a
set of member processes M . We consider here a linear group member-
ship service, where all correct processes see the same sequence of views:
V 0 = (0, M0), V

1 = (1, M1), As we have noted before, the initial view
of all processes V 0 includes the complete set of processes Π in the system. A
process that delivers a view V i is said to install view V i. The membership
abstraction is characterized by the properties listed in Module 7.4.

7.4.3 Fail-Stop Algorithm: Consensus-Based Group Membership

Algorithm 7.4 implements the group membership abstraction assuming a con-
sensus and a perfect failure detector. At initialization, each process installs
the initial view with all the processes in the system. From that point on,
the algorithm remains idle until a process is detected to have crashed. Since
different processes may detect crashes in different orders, a new view is not
generated immediately. Instead, a consensus is executed to decide which pro-
cesses are to be included in the next view. The wait flag is used to prevent

DRAFT 217 (22/11/2004)

7.4. GROUP MEMBERSHIP CHAPTER 7. COMMITMENT

Algorithm 7.4 Consensus-based group membership algorithm.

Uses:
UniformConsensus (uc);
PerfectFailureDetector (P);

upon event 〈 Init 〉 do
current-id := 0;
current-membership := Π;
next-membership := Π;
current-view := (current-id, current-membership);
wait := false;
trigger 〈 memView, g, current-view 〉;

upon event 〈 crash, pi 〉 do
next-membership := next-membership \{pi};

upon (current-membership 6= next-membership) ∧ (¬ wait) do
wait := true;
trigger 〈 ucPropose, current-id+1, next-membership 〉;

upon event 〈 ucDecided, id, memb 〉 do
current-id := id;
current-membership := memb;
next-membership := current-membership ∩ next-membership;
current-view := (current-id, current-membership);
wait := false;
trigger 〈 membView, g, current-view 〉

a process to start a new consensus before the previous consensus terminates.
When consensus decides, a new view is delivered and the current-membership
and next-membership are updated. Note that a process pi may install a view
containing a process that pi already knows to be crashed. In this case, pi will,
immediately after installing that view, initiate a new consensus to trigger the
installation of another view.

An execution of the membership algorithm is illustrated in Figure 7.2. In
the execution, both p1 and p2 crash. Process p3 detects the crash of p2 and
initiates the consensus to define a new view. Process p4 detects the crash of p1

and proposes a different view to consensus. As a result of the first consensus,
p1 is excluded from the view. Since p3 has already detected the crash of p2,
p3 starts a new consensus to exclude p2. Eventually, p4 also detects the crash
of p2 and also participates in the consensus for the third view. This view only
includes the correct processes.

Correctness. self inclusion, local monotonicity, and initial view follow from
the algorithm. The agreement property follows from consensus. The complete-
ness property follows from the completeness property of the failure detector
and the accuracy property follows from the accuracy property of the failure
detector.

DRAFT 218 (22/11/2004)

CHAPTER 7. COMMITMENT 7.5. VSC

p1

p2

p3

p4

crash (p2)

crash (p1)

membView (p2, p3, p4)membView (p1, p2, p3, p4)

ucPropose (p3, p4)

uniform consensus

ucPropose (p2, p3, p4)

ucPropose (p1, p3, p4)

membView (p3, p4)

crash (p1)
ucPropose (p3, p4)

crash (p2)

Figure 7.2. Sample execution of the membership algorithm.

Performance. The algorithm requires at most one consensus execution for
each process that crashes.

7.5 View-Synchronous Communication

7.5.1 Overview

Early in the book we have introduced the problem of reliable broadcast (see
Section 3.3). We recall here that the goal of reliable broadcast if to ensure
that if a message is delivered to a process, then it is delivered to all correct
processes (uniform definition). In the previous section, we have introduced a
membership service; this service is responsible for providing to the application
information about which processes are correct and which have failed. We
now discuss the subtle issues that arise when you try to combine these two
abstractions!

Let us assume that processes of a group g are exchanging messages and
that one of these processes, say f , fails. Assume also that this failure is
detected and that the membership service intalls a new view V i = (i, Mi)
such f 6∈ Mi. Assume now that, after V i has been installed, at some process
p arrives a message m originally sent by f . Note that such a run is possible
as, in order to ensure reliably delivered, messages originally sent by f can be
relayed by other processes. Clearly, it is counter-intuitive for the application
programmer to receive a message from a process f , after f has been declared
to be failed and expelled from the group view. Therefore, it would be desirable
to discard m. Unfortunatly, it may also happen that some other process q
has already delivered m before delivering view V i. So, in this scenario, one
may be faced with two conflicting goals: To provide reliable broadcast the
message must be delivered at q but, at the same time, to be consistent with
the view information, the message should be discarded at q!

To solve this contradiction one needs a new abstraction. In fact, what
is needed is to ensure that the instalation of views is ordered with regard

DRAFT 219 (22/11/2004)

7.5. VSC CHAPTER 7. COMMITMENT

to the message flow. If a message m is delivered to a correct process before
the instalation of V i, it should be delivered before the view change to all
processes that install V i. If, by any chance, m would be delivered after the
instalation of V i, then m is simply discarded at all processes. The abstraction
that preserves this ordering constraint is called view-synchrony(Birman and
Joseph 1987b), as it gives the illusion that failures are synchronous, i.e., they
occur at the same point in time with regard to the message flow. Note that the
combination of properties VS1 and VS2 eliminates the contradiction raised
earlier.

7.5.2 Specification

View synchronous communication is characterized by the properties depicted
in Mod.7.5 (in addition to the properties already state for reliable broadcast).
In these properties we state that a process delivers (sends) a message m in
view V i if it delivers (sends) the message m after installing view V i and
before installing V i+1.

In the specification we introduce an alternative definition of view syn-
chrony, captured by property VS2’ (Sending view delivery). This alternative
definition, called Strong View Synchrony (Friedman and van Renesse 1995),
offers stronger guarantees as it ensures that messages are always delivered
in the view they were sent. Note that the view inclusion property allows for
messages to be sent in a view and to be delivered in a later view, as long as
the sender remains correct.

To implement strong view synchrony, the interface with the upper layers
need to be augmented to prevent the transmission of new messages whenever
a new view needs to be installed. Note that since messages have to be delivered
in the view they are sent, if new messages are continuously sent then the
installation of the new view may be indefinitely postponed. Therefore, the
interface of a view synchronous service includes three new events: block, block-
ok and block-release. The block event is used by the view synchronous service
to request the upper layers to stop sending messages in the current view.
The block-ok event is used by the client of the view synchronous service to
acknowledge the block request. The block-release event is used by the view
synchronous service to notify the upper layers that messages canbe sent again.

Note that with regard to the properties enforced on the messages ex-
changed, the properties of view synchrony can be combined with the prop-
erties of regular and uniform reliable broadcast and, optionally, with the
properties of causal order, resulting in different possible flavors of virtually
synchronous communication. For instance, Mod. 7.6 depicts the combination
of view synchrony with regular reliable causal order.

DRAFT 220 (22/11/2004)

CHAPTER 7. COMMITMENT 7.5. VSC

Module:

Name: ViewSynchrony (vs).

Events:

Request: 〈 vsBroadcast, g, m 〉: Used to broadcast message m to a group
g.

Indication: 〈 vsDeliver, g, src, m 〉: Used to deliver message m sent by
process src in group g.

Indication: 〈 vsView, g, V i 〉 Used to deliver update membership infor-
mation in the form of a view. A view V i is a tuple (i, M), where i is a
unique view identifier and M is the set of processes that belong to the
view.

Indication: 〈 vsBlock, g 〉 Used by the view synchronous layer to block
the application.

Request: 〈 vsBlockOk, g 〉: Used by the application to confirm the trans-
mission of new messages will be temporarily blocked.

Indication: 〈 vsRelease, g 〉 Used by the view synchronous layer to release
a communication in the group.

Properties:

VS1: Same view delivery: If two processes p and q both receive message
m, they receive m in the same view.

VS2: View inclusion: If a process p receives in view V i a message m from
q , then q ∈ V i.

VS2’: Sending view delivery: If a process p receives a message m from q
in view V i, then m was sent by q in view V i.

Module 7.5 Interface and properties of view synchronous communication.

7.5.3 Fail-Stop Algorithm: TRB-Based View-Synchrony

An algorithm to implement regular causal strong view synchronous commu-
nication is depicted in Alg. 7.5. The algorithm works by performing a flush
procedure before installing each new view. The flush procedure requires co-
ordination among processes in a view and it is possible that new views arrive
before the flush is complete. Therefore, new views are kept in a list of pending-
views.

The flush is initiated by requesting the application to stop sending mes-
sages in the view. When this requests is granted, the process stops delivering
new messages from the underlying reliable causal order module. Then, using
a terminating reliable broadcast, it sends to the remaining members of the
group the set of messages that have been delivered up to that point. All the
remaining processes to do same. Eventually, when all TRBs are concluded,
each process has the set of messages delivered by every other correct process.

DRAFT 221 (22/11/2004)

7.5. VSC CHAPTER 7. COMMITMENT

Module:

Name: (regular) CausalStrongViewSynchrony (csvs).

Events:

〈 csvsBroadcast, g, m 〉, 〈 csvsDeliver, g, src, m 〉, 〈 vsView, g, V i 〉, 〈 vs-
Block, g 〉, 〈 vsBlockOk, g 〉, 〈 vsRelease, g 〉: with the same meaning and
interface of view synchronous communication.

Properties:

VS1, VS2’: from view synchronous communication.

RB1-RB4: from reliable broadcast.

CB1-CB2: from causal order.

Module 7.6 Interface and properties of (regular) causal strong VS.

A union of all these sets is taken as the set of messages to be delivered before
a new view is installed.

An example of the execution of the algorithm is presented in Fig.7.3. Pro-
cess p1 sends messages m1 and m2 before crashing. Message m1 is delivered
by p3 and p4 but not by p2. On the other hand, m2 is delivered by p2 but not
by p3 and p4. There is also a third message that is delivered by all correct
processes before the flush procedure is initiated. When the underlying mem-
bership module delivers a new view, excluding p1 from the group, a TRB is
initiated for each process in the previous view. Each TRB includes the set
of messages that have been locally delivered. For instance, the TRB from p2

includes m1 and m3 since m2 has not yet been delivered. The union of these
sets, {m1, m2, m3} is the set of messages that have to be delivered before
installing the new view. Note that m1 is eventually delivered to p2 by the
underlying reliable broadcast module, but it will be discarded (the same will
happen to m2 with regard to p3 and p4).

The reader must be aware that this algorithm is not very efficient, as it
requires the parallel execution of several instances of consensus (one for each
process in the view). It is possble to optimize the algorithm by running a
single instance of consensus to agree both on the new membership and on
the set of messages to be delivered before the group change.

Correctness. Upon transmission, a message is immediately delivered to its
sender. On the other hand, a view is not installed until a correct process
stops sending messages in the previous view. This ensures the sending view
delivery property. If a message m is delivered to a process p and p remain
correct, p will add m to the set of messages to e delivered before the next
view. According to the TRB properties, all correct processes will receive this
set, and merge it with the corresponding sets received from other correct
processes. Since the union of these sets is delivered before the installation
of the new view, both same view delivery and the reliability guarantees are
ensured.

DRAFT 222 (22/11/2004)

CHAPTER 7. COMMITMENT 7.5. VSC

Algorithm 7.5 Regular causal strong view synchronous communication.

Implements:
(regular) CausalStrongViewSynchrony (csvs);

Uses:
TerminatingReliableBroadcast (trb); Membership (memb); ReliableCausalOrder (rco);

upon event 〈 Init 〉 do
pending-views := ∅; delivered := ∅; trb-done := ∅;
current-view := ⊥; next-view := ⊥; flushing := false; blocked := true;

upon event 〈 memView, V i = (i, M) 〉 do
if i = 0 do //first view

current-view := V 0; blocked := false; trigger 〈 vsView, g, V 0 〉; trigger 〈 vsRelease, g 〉
else

addToTail (pending-views, V i) ;

upon event 〈 csvsBroadcast, g,m 〉 ∧¬ blocked do
delivered := delivered ∪ {(self, m)};
trigger 〈 csvsDeliver, g, self, m 〉;
trigger 〈 rcoBroadcast, [Data, current-view.id, m] 〉;

upon event 〈 rcoDeliver, srcm,[Data, vid, m] 〉 do
if (current-view.id = vid) ∧ ((srcm, m) 6∈ delivered) do

delivered := delivered ∪ {(srcm, m)};
trigger 〈 csvsDeliver, g, srcm, m 〉;

upon (pending-views 6= ∅) ∧ (flushing = false) do
next-view := removeFromHead (pending-views); flushing := true;
trigger 〈 vsBlock, g 〉;

upon event 〈 vsBlockOk, g 〉 do
blocked := true; trb-done := ∅;
forall pi ∈ current-view.memb do

if pi = self do trigger 〈 trbBroadcast, current-view.id, pi, delivered 〉;
else trigger 〈 trbBroadcast, current-view.id, pi, ⊥ 〉;

upon event 〈 trbDeliver, vid, pi, del 〉 do
trb-done := trb-done ∪{pi};
forall (srcm, m) ∈ del: (srcm, m) 6∈ delivered do

delivered := delivered ∪ { (srcm, m) };
trigger 〈 csvsDeliver, g, srcm, m 〉;

upon (trb-done = current-view.memb) ∧ blocked do
current-view := next-view; flushing := false; blocked := false;
trigger 〈 vsView, g, current-view 〉; trigger 〈 vsRelease, g 〉

Performance. The algorithm requires the parallel execution of a TRB for
each process in the old view in order to install the new view.

DRAFT 223 (22/11/2004)

7.6. PROBABILISTIC MEMBERSHIP CHAPTER 7. COMMITMENT

p1

p2

p3

p4

vsView (p1, p2, p3, p4)

m1 discarded

vsView (p2, p3, p4)

m1

m2m1

m3

membView (p2, p3, p4)

m2

m2

TRB (p4)
TRB (p3)

TRB (p2)
TRB (p1)

(m1, m2, m3)

F (m2, m3)

(m1, m3)
(m1, m3)

Figure 7.3. Sample excution of view change algorithm.

7.6 Probabilistic Partial Membership

Both probabilistic broadcast algorithms presented in Chapter 3 so far require
processes to randomly select, among the complete set of processes in the sys-
tem, a subset of k processes to gossip messages to. Therefore, the algorithms
implicitly assume that each process has a global knowledge of the complete
membership of the processes in the system. This assumption has two main
limitations:

• In large scale systems, it is not realistic to assume that the membership
does not change. Assuming a dynamic membership would mean here that
every process should keep track of all changes in the global system.

• One of the strongest advantages of probabilistic approaches is their scalabil-
ity. However, when considering very large systems, it may not be practical,
or even feasible, to store the complete membership of the system at each
process.

Fortunately, probabilistic approaches can also be used to manage the
membership information. One possible solution consists of having each pro-
cess store just a partial view of the complete membership. For instance, every
process would store a fixed number of processes in the system, i.e., every pro-
cess would have a set of acquaintances. This is also called the view of the
process.

7.6.1 Specification

Naturally, to ensure connectivity, views of different processes must overlap
at least at one process, and a larger overlap is desirable for fault-tolerance.

DRAFT 224 (22/11/2004)

CHAPTER 7. COMMITMENT 7.6. PROBABILISTIC MEMBERSHIP

Furthermore, the union of all views should include all processes in the system.
If processes in the system are uniformly distributed among the views, it can be
shown that a probabilistic broadcast algorithm preserves the same properties
as an algorithm that relies on full membership information.

To be completed

7.6.2 Randomized Algorithm: Probabilistic Broadcast with
Partial Membership

The problem is then to derive an algorithm that allows new processes to join
the system and that promotes an uniform distribution of processes among the
view. The basic idea consists of having processes gossip information about the
contents of their local views. The nice thing is that this (partial) membership
information may be piggybacked in data messages. Using this information,
processes may “mix” their view with the views of the processes they receive
messages from, by randomly discarding old members and inserting new mem-
bers.

Algorithm 7.6 illustrates the idea. It works by managing three variables:
view, that maintains the partial membership; subs that maintains a set of
processes that are joining the membership; and, unsubs, a set of processes
that want to leave the membership. Each of these sets has a maximum size,
viewsz, subssz, and unsubssz respectively. If during the execution of the algo-
rithm, these sets become larger than the maximum size, elements are removed
at random until the maximum size is reached. Processes periodically gossip
(and merge) their subs and unsubs sets. The partial view is updated accord-
ing to the information propagated in these sets. Note that, as a result of
new subscriptions, new members are added and some members are randomly
removed from the partial view. Members removed from the partial view, say
due to the overflow of the table where each process stores the identities of its
acquaintances, are added to the subs set, allowing them to be later inserted in
the partial view of other members. It is of course assumed that each process
is initialized with a set of known group members.

It is important to notice that the probabilistic partial membership algo-
rithm can be viewed as an auxiliary service of the probabilistic broadcast
service presented above. When the two algorithms are used in combination,
the variable view of Algorithm 7.6 replaces the set Π in Algorithm 3.9. Ad-
ditionally, membership information can simply be piggybacked as control
information in the packets exchanged and part of the data gossiping activity.

DRAFT 225 (22/11/2004)

Hands-On CHAPTER 7. COMMITMENT

Algorithm 7.6 A randomized partial membership algorithm.

Implements:
Probabilistic Partial Membership (ppm).

Uses:
unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
view := set of known group members;
subs := ∅; unsubs := ∅;

every T units of time do
for 1 to fanout do

target := random (view);
trigger 〈 upp2pSend, target, [Gossip, subs, unsubs] 〉;

upon 〈 ppmJoin 〉 do
subs := subs ∪ { self };

upon 〈 ppmLeave 〉 do
unsubs := unsubs ∪ { self };

upon event 〈 up2pDeliver, pi, [Gossip, s, u] 〉 do
view := view \ u;
view := view ∪ s \ { self };
unsubs := unsubs ∪ u;
subs := subs ∪ s \ { self };
//trim variables
while | view | > viewsz do

target := random (view);
view := view \ { target };
subs := subs ∪ { target };

while | unsubs | > unsubssz do unsubs := unsubs \ { random(unsubs) };
while | subs | > subssz do subs := subs \ { random(subs) };

Hands-On

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.

DRAFT 226 (22/11/2004)

CHAPTER 7. COMMITMENT Hands-On

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done.

To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done. To-be-done. To-be-done. To-be-done. To-be-done.
To-be-done. To-be-done.

DRAFT 227 (22/11/2004)

Exercices CHAPTER 7. COMMITMENT

Exercices

Exercise 7.1 Can we implement TRB with the eventually perfect failure
detector 3P if we assume that at least one process can crash?

Exercise 7.2 Do we need the perfect failure detector P to implement TRB
(assuming that any number of processes can crash and every process can
trbBroadcast messages)?

Exercise 7.3 Devise two algorithms that, without consensus, implement
weaker specifications of NBAC where we replace the termination property
with the following ones:

• (1) weak termination: let pi be some process: if pi does not crash then all
correct processes eventually decide;

• (2) very weak termination: if no process crashes, then all processes decide.

Exercise 7.4 Can we implement NBAC with the eventually perfect failure
detector 3P if we assume that at least one process can crash? What if we
consider a weaker specification of NBAC where the agreement was not re-
quired?

Exercise 7.5 Do we need the perfect failure detector P to implement NBAC
if we consider a system where at least two processes can crash but a majority
is correct?

Exercise 7.6 Do we need the perfect failure detector P to implement NBAC
if we assume that at most one process can crash?

Exercise 7.7 Consider a specification of leader election where we require
that (1) there cannot be two leaders at the same time and (2) either there
is no correct process, or some correct process is eventually leader. Is this
specification sound? e.g., would it be useful for a primary-backup replication
scheme?

Exercise 7.8 What is the difference between the specification of leader elec-
tion given in the core of the chapter and a specification with the two properties
of the previous exercice and the following property: (3) (stability) a leader re-
mains leader until it crashes.

Exercise 7.9 Do we need the perfect failure detector P to implement a gen-
eral leader election abstraction where we could choose in advance the order
according to which the processes should be elected leaders?

DRAFT 228 (22/11/2004)

CHAPTER 7. COMMITMENT Solutions

Solutions

Solution 7.1 No. Consider TRBi, i.e., the sender is process pi. We discuss
below why it is impossible to implement TRBi with 3P if one process can
crash. Consider an execution E1 where process pi crashes initially and con-
sider some correct process pj . By the termination property of TRBi, there
must be a time T at which pj trbDelivers Fi. Consider an execution E2 that
is similar to E1 up to time T , except that pi is correct: pi’s messages are
delayed until after time T and the failure detector behaves as in E1 until
after time T . This is possible because the failure detector is only eventually
perfect. Up to time T , pj cannot distinguish E1 from E2 and trbDelibevers
Fi. By the agreement property of TRBi, pi must trbDeliver Fi as well. By the
termination property, pi cannot trbDeliver two messages and will contadict
the validity property of TRBi. 2

Solution 7.2 We explain below that if we have TRBi abstractions, for every
process pi, and if we consider a model where failures cannot be predicted,
then we can emulate a perfect failure detector. This means that the perfect
failure detector is not only sufficient to solve TRB, but also necessary. The
emulation idea is simple. Every process trbBroadcasts a series of messages
to all processes. Every process pj that trbDelivers Fi, suspects process pi.
The strong completeness property would trivially be satisfied. Consider the
strong accuracy property (i.e., no process is suspected before it crashes). If
pj trbDelivers Fi, then pi is faulty. Given that we consider a model where
failures cannot be predicted, pi must have crashed. 2

Solution 7.3 The idea of the first algorithm is the following. It uses a perfect
failure detector. All processes bebBroadcast their proposal to process pi. This
process would collect the proposals from all that it does not suspect and
compute the decision: 1 if all processes propose 1 and 0 otherwise, i.e., if some
process proposes 0 or is suspected to have crashed. Then pi bebBroadcasts
the decision to all and decide. Any process that bebDelivers the message
decides accordingly. If pi crashes, then all processes are blocked. Of course,
the processes can figure out the decision by themselves if pi crashes after some
correct process has decided, or if some correct process decides 0. However,
if all correct processes propose 1 and pi crashes before any correct process,
then no correct process can decide.

This algorithm is also called the Two-Phase Commit (2PC) algorithm. It
implements a variant of atomic commitment that is blocking.

The second algorithm is simpler. All processes bebBroadcast their propos-
als to all. Every process waits from proposals from all. If a process bebDelivers
1 from all it decides 1, otherwise, it decides 0. (This algorithm does not make
use of any failure detector.) 2

DRAFT 229 (22/11/2004)

Solutions CHAPTER 7. COMMITMENT

Solution 7.4 No. The reason is similar to that of exercice 7.4. Consider an
execution E1 where all processes are correct and propose 1, except some
process pi which proposes 0 and crashes initially. By the abort-validity prop-
erty, all correct processes decide 0. Let T be the time at which one of these
processes, say pj , decides 0. Consider an execution E2 that is similar to E1

except that pi proposes 1. Process pj cannot distinguish the two executions
(because pi did not send any message) and decides 0 at time T . Consider
now an execution E3 that is similar to E2, except that pi is correct but its
messages are all delayed until after time T . The failure detector behaves in
E3 as in E2: this is possible because it is only eventually perfect. In E3, pj

decides 0 and violates commit-validity: all processes are correct and propose
1.

In this argumentation, the agreement property of NBAC was not explic-
itly needed. This shows that even a specification of NBAC where agreement
was not needed could not be implemented with an eventually perfect failure
detector if some process crashes. 2

Solution 7.5 If we assume that a minority of processes can crash, then the
perfect failure detector is not needed. To show that, we exhibit a failure
detector that, in a precise sense, is strictly weaker than the perfect failure
detector and that helps solving NBAC.

The failure detector in question is denoted by ?P , and called the anony-
mously perfect perfect failure detector. This failure detector ensures the strong
completess and eventual strong accuracy of an eventually perfect failure detec-
tor, plus the following anonymous detection property: every correct process
suspects outputs a specific value F iff some process has crashed.

Given that we assume a majority of correct processes, then failure detector
?P implements uniform consensus and we can build a consensus module. Now
we give the idea of an algorithm that uses ?P and a consensus module to
implement NBAC.

The idea of the algorithm is the following. All processes bebBroadcast
their proposal to all. Every process pi waits either (1) to bebDeliver 1 from
all processes, (2) to bebDeliver 0 from some process, or (3) to output F . In
case (1), pi invokes consensus with 1 as a proposed value. In cases (2) and
(3), pi invokes consensus with 0. Then pi decides the value output by the
consensus module.

Now we discuss in which sense ?P is strictly weaker than P. Assume a
system where at least two processes can crash. Consider an execution E1

where two processes pi and pj crash initially and E2 is an execution where
only pi initially crashes. Let pk be any correct process. Using ?P, at any time
T , process pk can confuse executions E1 and E2 if the messages of pj are
delayed. Indeed, pk will output F and know that some process has indeed
crashed but will not know which one.

DRAFT 230 (22/11/2004)

CHAPTER 7. COMMITMENT Solutions

Hence, in a system where two processes can crash but a majority is cor-
rect, then P is not needed to solve NBAC. There is a failure detector that is
strictly weaker and this failure detector solves NBAC. 2

Solution 7.6 We show below that in a system where at most one process
can crash, we can emulate a perfect failure detector if we can solve NBAC.
Indeed, the processes go through sequential rounds. In each round, the pro-
cesses bebBrodcast a message I-Am-Alive to all and trigger an instance of
NBAC (two instances are distinguished by the round number at which they
were triggered). In a given round r, every process waits to decide the out-
come of NBAC: if this outcome is 1, then pi moves to the next round. If the
outcome is 0, then pi waits to bebDeliver N − 1 messages and suspects the
missing message. Clearly, this algorithm emulates the behavior of a perfect
failure detector P in a system where at most one process crashes. 2

Solution 7.7 The specification looks simple but is actually bogus. Indeed,
nothing prevents an algorithm from changing leaders all the time: this would
comply with the specification. Such a leader election abstraction would be
useless, say for a primary-backup replication scheme, because even if a pro-
cess is leader, it would not know for how long and that would prevent it from
treating any request from the client. This is because we do not explicitly
handle any notion of time. In this context, to be useful, a leader must be
stable: once it is elected, it should remain leader until it crashes. 2

Solution 7.8 A specification with properties (1), (2) and (3) makes more
sense but still has an issue: we leave it up to the algorithm that implements
the leader election abstraction to choose the leader. In practice, we typi-
cally expect the clients of a replicated service to know which process is the
first leader, which is the second to be elected if the first has crashed, etc.
This is important for instance in failure-free executions where the clients of a
replicated service would consider sending their requests directly to the actual
leader instead of broadcasting the requests to all, i.e., for optimization issues.
Our specification, given in the core of the chapter, is based on the knowledge
of an ordering function that the processes should follow in the leader elec-
tion process. This function is not decided by the algorithm and can be made
available to the client of the leader election abstraction. 2

Solution 7.9 Yes. More precisely, we discuss below that if we have a leader
election abstraction, then we can emulate a perfect failure detector. This
means that the perfect failure detector is not only sufficient to solve leader
election, but also necessary. The emulation idea is simple. Every process pi

triggers N − 1 instances of leader election, each one for a process pj different
from pi. In instance j, O(pj) = ∅ and O(pi) = {pj}, for every pj 6= pi. When-
ever pi is elected leader in some instance j, pi accurately detects the crash of

DRAFT 231 (22/11/2004)

Solutions CHAPTER 7. COMMITMENT

pj . 2

DRAFT 232 (22/11/2004)

CHAPTER 7. COMMITMENT Historical Notes

Historical Notes

• The atomic commit problem was introduced by Gray (Gray 1978), together
with the two-phase commit algorithm, which we studied in the exercice
section.

• The non-blocking atomic commit (NBAC) problem was introduced by
Skeen (Skeen 1981). The NBAC algorithm presented in the chapter is a
modular variant of his decentralized three-phase. It is more modular in the
sense that we encapsulate many tricky issues of NBAC within consensus.

• The terminating broadcast problem, discussed in (Hadzilacos and Toueg
1994), is a variant of the Byzantine Generals problem (Lamport, Shostak,
and Pease 1982). Whereas the original Byzantine Generals problem con-
sider processes that might behave in an arbitrary manner and be, in partic-
ular, malicious, the terminating broadcast problem assumes that processes
may only fail by crashing.

• The group membership problem was initially discussed by Birman and
Joseph in the context of the Isis system (Birman and Joseph 1987a).

DRAFT 233 (22/11/2004)

References

Alpern, B. and F. Schneider (1985). Defining lineness. Technical Report TR85-650,
Cornell University.

Amir, Y., D. Dolev, S. Kramer, and D. Malki (1992, July). Ytransis: A communi-
cation sub-system for high availability. In 22nd Annual International Symposium
on Fault-Tolerant Computing (FTCS), Digest of Papers, pp. 76–84. IEEE.

Attiya, H., A. Bar-Noy, and D. Dolev (1995, June). Sharing memory robustly in
message passing systems. Journal of the ACM 1 (42).

Ben-Or, M. (1983). Another advantage of free choice: Completely asynchonous
agreement protocols. In Proceedings of 2nd ACM Symposium on Principles of
Distributed Computing (PODC’83), Montreal, Canada, pp. 27–30.

Birman, K., M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky (1999,
May). Bimodal multicast. ACM Transactions on Computer Systems 17 (2).

Birman, K. and T. Joseph (1987a, February). Reliable communication in the pres-
ence of failures. ACM Transactions on Computer Systems 1 (5).

Birman, K. and T. Joseph (1987b, February). Reliable Communication in the
Presence of Failures. ACM, Transactions on Computer Systems 5 (1).

Boichat, R., P. Dutta, S. Frolund, and R. Guerraoui (2001, January). Decon-
structing paxos. Technical Report 49, Swiss Federal Institute of Technology in
Lausanne, CH 1015, Lausanne.

Boichat, R., P. Dutta, S. Frolund, and R. Guerraoui (2003, March). Deconstructing
paxos. In ACM SIGACT News Distributed Computing Colomn, Number 34 (1).

Chandra, T., V. Hadzilacos, and S. Toueg (1996). The weakest failure detector for
consensus. Journal of the ACM .

Chandra, T. and S. Toueg (1996). Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM 43 (2), 225–267.

Cherriton, D. and W. Zwaenepoel (1985, May). Distributed process groups in the
v kernel. ACM Transactions on Computer Systems 3 (2).

Delporte-Gallet, C., H. Fauconnier, and R. Guerraoui (2002, October). Failure
detection lower bounds on consensus and registers. In Proc. of the International
Conference on Distributed Computing Systems (DISC’02).

Dutta, D. and R. Guerraoui (2002, July). The inherent price of indulgence. In Proc.
of the ACM Symposium on Principles of Distributed Computing (PODC’02).

Dwork, C., N. Lynch, and L. Stockmeyer (1988, April). Consensus in the presence
of partial synchrony. Journal of the ACM 35 (2), 288–323.

Eugster, P., R. Guerraoui, and P. Kouznetsov (2004, March). Delta reliabile
broadcast: A probabilistic measure of broadcast reliability. In Proceedings of
the IEEE International Conference on Distributed Computing Systems (ICDCS
2004), Tokyo, Japan.

Eugster, P., S. Handurukande, R. Guerraoui, A.-M. Kermarrec, and P. Kouznetsov
(2001, July). Lightweight probabilistic broadcast. In Proceedings of The Interna-

References References

tional Conference on Dependable Systems and Networks (DSN 2001), Goteborg,
Sweden.

Ezhilchelvan, P., A. Mostefaoui, and M. Raynal (2001, May). Randomized mul-
tivalued consensus. In Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, Magdeburg, Germany.

Felber, P. and R. Guerraoui (2000, March). Programming with object groups in
corba. IEEE Concurrency 8 (1), 48–58.

Fidge, C. (1988). Timestamps in Message-Passing Systems that Preserve the Partial
Ordering. In Proceedings of the 11th Australian Computer Science Conference.

Fischer, M., N. Lynch, and M. Paterson (1985, April). Impossibility of distributed
consensus with one faulty process. Journal of the Association for Computing
Machinery 32 (2), 374–382.

Friedman, R. and R. van Renesse (1995, March). Strong and weak virtual synchrony
in horus. Technical Report 95-1537, Department of Computer Science, Cornell
University.

Golding, R. and D. Long (1992, October). Design choices for weak-consistency
group communication. Technical Report UCSC–CRL–92–45, University of Cali-
fornia Santa Cruz.

Gray, C. and D. Cheriton (1989, December). Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, Litchfield Park, Arizona, pp.
202–210.

Gray, J. (1978). Notes on database operating systems. Lecture Notes in Computer
Science.

Guerraoui, R. (2000, July). Indulgent algorithms. In Proc. of the ACM Symposium
on Principles of Distributed Computing (PODC’00).

Guerraoui, R. and R. Levy (2004, March). Robust emulations of a shared memory
in a crash-recovery model. In Proceedings of the IEEE International Conference
on Distributed Computing Systems (ICDCS 2004), Tokyo, Japan.

Guerraoui, R. and A. Schiper (2001). Genuine atomic multicast in asynchronous
distributed systems. Theoretical Computer Science 254, 297–316.

Gupta, I., A.-M. Kermarrec, and A. Ganesh (2002, October). Adaptive and efficient
epidemic-style protocols for reliable and scalable multicast. In Proceedings of
Symposium on Reliable and Distributed Systems (SRDS 2002), Osaka, Japan.

Hadzilacos, V. (1984). Issues of fault tolerance in concurrent computations. Tech-
nical Report 11-84, Harvard University, Ph.D thesis.

Hadzilacos, V. and S. Toueg (1994, May). A modular approach to fault-tolerant
broadcast and related problems. Technical Report 94-1425, Cornell University,
Dept of Computer Science, Ithaca, NY.

Herlihy, M. and J. Wing (1990, July). Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Sys-
tems 3 (12).

Israeli, A. and m. M. Li (1993). Bounded timestamps. Distributed Computing 4 (6),
205–209.

Kaashoek, F., A. Tanenbaum, S. Hummel, and H. Bal (1989, October). An efficient
reliable broadcast protocol. Operating Systems Review 4 (23).

Kermarrec, A.-M., L. Massoulie, and A. Ganesh (2000, October). Reliable proba-
bilistic communication in large-scale information dissemination systems. Tech-
nical Report MMSR-TR-2000-105, Microsoft Reserach, Cambridge, UK.

Kouznetsov, P., R. Guerraoui, S. Handurukande, and A.-M.Kermarrec (2001, Octo-
ber). Reducing noise in gossip-based reliable broadcast. In Proceedings of the 20th
Symposium on Reliable Distributed Systems (SRDS 2001), NewOrleans,USA.

DRAFT 236 (22/11/2004)

References References

Ladin, R., B. Liskov, L. Shrira, and S. Ghemawat (1990). Lazy replication: Ex-
ploiting the semantics of distributed services. In Proceedings of the Ninth Annual
ACM Symposium of Principles of Distributed Computing, pp. 43–57.

Lamport, L. (1977). Concurrent reading and writing. Communications of the
ACM 11 (20), 806–811.

Lamport, L. (1978, July). Time, clocks and the ordering of events in a distributed
system. Communications of the ACM 21 (7), 558–565.

Lamport, L. (1986a). On interprocess communication, part i: Basic formalism.
Distributed Computing 2 (1), 75–85.

Lamport, L. (1986b). On interprocess communication, part ii: Algorithms. Dis-
tributed Computing 2 (1), 86–101.

Lamport, L. (1989, May). The part-time parliament. Technical Report 49, Digital,
Systems Research Center, Palo Alto, California.

Lamport, L., R. Shostak, and M. Pease (1982, July). The byzantine generals prob-
lem. ACM Transactions on Prog. Lang. and Systems 4 (3).

Lin, M.-J. and K. Marzullo (1999, September). Directional gossip: Gossip in a wide
area network. In Proceedings of 3rd European Dependable Computing Conference,
pp. 364–379.

Lynch, N. and A. Shvartsman (1997). Robust emulation of shared memory using
dynamic quorum acknowledged broadcasts. In Proc. of the International Sym-
posium on Fault-Tolerant Computing Systems (FTCS’97).

Lynch, N. and A. Shvartsman (2002, October). Rambo: A reconfigurable atomic
memory service for dynamic networks. In Proc. of the International Conference
on Distributed Computing Systems (DISC’02).

Miranda, H., A. Pinto, and L. Rodrigues (2001, April). Appia, a flexible proto-
col kernel supporting multiple coordinated channels. In Proceedings of the 21st
International Conference on Distributed Computing Systems, Phoenix, Arizona,
pp. 707–710. IEEE.

Moser, L., P. Melliar-Smith, A. Agarwal, R. Budhia, C. Lingley-Ppadopoulos, and
T. Archambault (1995, June). The totem system. In Digest of Papers of the
25th International Symposium on Fault-Tolerant Computing Systems, pp. 61–66.
IEEE.

Neiger, G. and S. Toueg (1993, April). Simulating synchronized clocks and common
knowledge in distributed systems. Journal of the ACM 2 (40).

Peterson, G. (1983). Concurrent reading while writing. ACM Transactions on Prog.
Lang. and Systems 1 (5), 56–65.

Peterson, L., N. Bucholz, and R. Schlichting (1989). Preserving and using context
information in interprocess communication. ACM Transactions on Computer
Systems 7 (3), 217–246.

Powell, D., P. Barret, G. Bonn, M. Chereque, D. Seaton, and P. Verissimo (1994).
The delta-4 distributed fault-tolerant architecture. Readings in Distributed Sys-
tems, IEEE, Casavant and Singhal (eds).

Raynal, M., A. Schiper, and S. Toueg (1991, September). The causal ordering ab-
straction and a simple way to implement it. Information processing letters 39 (6),
343–350.

Rodrigues, L., R. Guerraoui, and A. Schiper (1998). Scalable atomic multicast. In
IEEE Proc. of IC3N’98.

Rodrigues, L., S. Handurukande, J. Pereira, R. Guerraoui, and A.-M. Kermarrec
(2003, June). Adaptive gossip-based broadcast. In Proceedings of the IEEE
International Symposium on Dependable Systems and Networks.

Rodrigues, L. and M. Raynal (2003). Atomic broadcast in asynchronous crash-
recovery distributed systems and its use in quorum-based replication. IEEE
Transactions on Knowledge and Data Engineering 15 (4).

DRAFT 237 (22/11/2004)

References References

Rodrigues, L. and P. Veŕıssimo (1992, October). xAMp: a Multi-primitive Group
Communications Service. In Proceedings of the 11th Symposium on Reliable
Distributed Systems (SRDS’11), Houston, Texas, pp. 112–121. IEEE.

Schneider, F. (1987). Decomposing properties into safety and lineness. Technical
Report TR87-874, Cornell University.

Schneider, F. (1990). Implementing fault-tolerant services with the state machine
approach. ACM Computing Surveys (22 (4)), 300–319.

Schneider, F., D. Gries, and R. Schlichting (1984). Fault-tolerant broadcasts. Sci-
ence of Computer Programming (4), 1–15.

Schwarz, R. and F. Mattern (1992, February). Detecting causal relationships in
distributed computations: In search of the holy grail. Technical report, Univ.
Kaiserslautern, Kaiserslautern, Germany.

Shao, C., E. Pierce, and J. Welch (2003, October). Multi-writer consistency con-
ditions for shared memory objects. In Proceedings of the 17th Symposium on
Distributed Computing (DISC 2003), Sorrento,Italy.

Skeen, D. (1981, July). A decentralized termination protocol. In Proceedings of
the 1st Symposium on Reliability in Distributed Software and Database Systems,
Pittsburgh, USA. IEEE.

van Renesse, T. Birman, K. and S. Maffeis (1996, April). Horus: A flexible group
communication system. Communications of the ACM 4 (39).

Vidyasankar, K. (1988, August). Converting lamport’s regular register to atomic
register. Information Processing Letters (28).

Vidyasankar, K. (1990, June). Concurrent reading while writing revisited. Dis-
tributed Computing 2 (4).

Vitanyi, P. and B. Awerbuch (1986). Atomic shared register by asynchronous
hardware. In Proc. of the IEEE Symposium on Foundations of Computer Science
(FOCS’86), pp. 233–243.

Wensley, J. e. a. (1978, October). The design and analysis of a fault-tolerant com-
puter for air craft control. IEEE 10 (66).

Xiao, Z., K. Birman, and R. van Renesse (2002, June). Optimizing buffer manage-
ment for reliable multicast. In Proceedings of The International Conference on
Dependable Systems and Networks (DSN 2002), Washington, USA.

DRAFT 238 (22/11/2004)

