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Abstract—Atomic Broadcast is a fundamental problem of distributed systems: It states that messages must be delivered in the same

order to their destination processes. This paper describes a solution to this problem in asynchronous distributed systems in which

processes can crash and recover. A Consensus-based solution to Atomic Broadcast problem has been designed by Chandra and

Toueg for asynchronous distributed systems where crashed processes do not recover. We extend this approach: It transforms any

Consensus protocol suited to the crash-recovery model into an Atomic Broadcast protocol suited to the same model. We show that

Atomic Broadcast can be implemented requiring few additional log operations in excess of those required by the Consensus. The

paper also discusses how additional log operations can improve the protocol in terms of faster recovery and better throughput. To

illustrate the use of the protocol, the paper also describes a solution to the replica management problem in asynchronous distributed

systems in which processes can crash and recover. The proposed technique makes a bridge between established results on Weighted

Voting and recent results on the Consensus problem.

Index Terms—Distributed fault-tolerance, asynchronous systems, atomic broadcast, consensus, crash/recovery, quorum, replica

management, weighted voting.
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1 INTRODUCTION

ATOMIC Broadcast is one of the most important agree-
ment problems encountered in the design and in the

implementation of fault-tolerant distributed systems. This
problem consists of providing processes with a commu-
nication primitive that allows them to broadcast and deliver
messages in such a way that processes agree not only on the
set of messages they deliver but also on the order of
message deliveries. Atomic Broadcast (sometimes called
Total Order Broadcast) has been identified as a basic
communication primitive in many systems [27]. It is
particularly useful to implement fault-tolerant services by
using software-based replication [16]. By employing this
primitive to disseminate updates, all correct copies of a
service deliver the same set of updates in the same order,
and, consequently, the state of the service is kept consistent.

Solutions to the Atomic Broadcast problem in asynchro-
nous systems prone to process crash (no-recovery) failures
are now well-known [8], [11], [28]. In this model, process
crashes are definitive (i.e., once crashed, a process never
recovers), so a failed process is a crashed process.
Unfortunately, the crash no-recovery model is unrealistic
for the major part of applications. That is why, in this paper,
we consider the more realistic crash-recovery model. In this
model, processes can crash and later recover. We assume

that when a process crashes 1) it loses the content of its
volatile memory and 2) the set of messages that has been
delivered while it was crashed is also lost. This model is
well-suited to feature real distributed systems that support
user applications. Real systems provide processes with
stable storage that make them able to cope with crash
failures. A stable storage allows a process to log critical
data. But, in order to be efficient, a protocol must not
consider all its data as critical and must not log a critical
data every time it is updated (the protocol proposed in this
paper addresses these efficiency issues).

It has been shown in [8] that Atomic Broadcast and
Consensus are equivalent problems in asynchronous systems
prone to process crash (no-recovery) failures. The Con-
sensus problem is defined in the following way: Each
process proposes an initial value to the others, and, despite
failures, all correct processes have to agree on a common
value (called decision value), which has to be one of the
proposed values. Unfortunately, this apparently simple
problem has no deterministic solution in asynchronous
distributed systems that are subject to even a single process
crash failure: this is the so-called Fischer-Lynch-Paterson’s
(FLP) impossibility result [10]. The FLP impossibility result
has motivated researchers to find a set of minimal
assumptions that, when satisfied by a distributed system,
makes Consensus solvable in this system. The concept of
unreliable failure detector introduced by Chandra and
Toueg constitutes an answer to this challenge [8]. From a
practical point of view, an unreliable failure detector can be
seen as a set of oracles: Each oracle is attached to a process
and provides it with information regarding the status of
other processes. An oracle can make mistakes, for instance,
by not suspecting a failed process or by suspecting a not
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failed one. Although failure detectors were originally
defined for asynchronous systems where processes can
crash but never recover, the concept has been extended to
the crash-recovery model [1], [19], [25].

Chandra and Toueg have also shown how to transform
any Consensus protocol into an Atomic Broadcast protocol
in the asynchronous crash (no-recovery) model [8]. In the
present paper, we follow a similar line of work and we
show how to transform a protocol that solves Consensus
into the crash-recovery model in a protocol that solves
Atomic Broadcast in the same model. Thus, our protocol
assumes a solution to the Consensus problem in the crash-
recovery model (such protocols are described in [1], [19]). A
less modular approach to solve Atomic Broadcast in the
crash-recovery model has been described in [21]. An
attempt to decompose this protocol is described in [7].

Our transformation owns several interesting properties.
First, it does not require the explicit use of failure detectors
(although those are required to solve the Consensus
problem). Thus, it is not bound to any particular failure
detection mechanism. It relies on a gossip mechanism for
message dissemination, avoiding the problem of reliable
multicast in the crash-recovery model. Also, it allows
recovering processes to avoid explicitly invoking Consen-
sus for those instances that already have a decided
outcome. Additionally, our solution is nonblocking [4],
i.e., as long as the system allows Consensus to terminate,
the Atomic Broadcast is live. Finally, but not the least, we
show that Atomic Broadcast can be implemented with few
additional log operations in excess of those required by the
Consensus.

Chandra and Toueg’s approach and ours are similar in
the sense that both of them transform a Consensus protocol
into an Atomic Broadcast protocol. But, as they consider
different models (crash no-recovery and crash-recovery,
respectively), they use different techniques. This comes
from the fact that we have to cope with process crashes and
message losses (that is why our protocol requires a
gossiping mechanism, which is not necessary in a crash-
no recovery + no message loss model). Additionally, while
being crashed, a process may miss a large number of
message exchanges; therefore, efficient methods to recover
its state must be defined. Finally, subtle problems arise in
the definition of the properties of the atomic multicast
primitive since message deliveries must be logged. Actu-
ally, when solving a distributed system problem, modifying
the underlying system model very often requires the design
of new protocols more appropriate to those models [17].

This paper also shows how the primitive can be applied
to implement quorum-based replication. Weighted voting
[13] is a well-known technique to manage replication in the
crash-recovery model. The technique consists of assigning
votes to each replica and defining quorums for read and
write operations. Quorums for conflicting operations,
namely read/write and write/write, must overlap such
that conflicts can be detected. To ensure that an operation
only succeeds if a quorum is achieved, each operation must
be encapsulated within a transaction [5]. It should be noted
that, in asynchronous systems, these solutions must also
rely on variants of Consensus to decide the outcome of

transactions [15]. This paper explores an alternative path to
the implementation of quorum-based replication that relies
on the use of our Atomic Broadcast primitive. By employing
this primitive to disseminate updates, all correct copies of a
service process the same set of updates in the same order
and the service state is kept consistent. The proposed
technique makes: 1) a bridge between established results on
Weighted Voting and recent results on the Consensus
problem and 2) a bridge between the active replication
model in the synchronous crash (no-recovery) model and
the asynchronous crash-recovery model.

The paper is organized as follows: Section 2 defines the
crash-recovery model and the Atomic Broadcast problem in
such a model. Then, Section 3 presents the underlying
building blocks on top of which the proposed protocol is
built, namely, a transport protocol and a Consensus
protocol suited to the crash-recovery model. A minimal
version of our Atomic Broadcast protocol for the crash-
recovery model is then presented in Section 4. The impact of
additional log operations on the protocol is discussed in
Section 5. Section 6 shows how the protocol can be used to
implement quorum-based replication. Section 7 relates the
Atomic Broadcast problem in the crash-recovery with other
relevant problems. Finally, Section 8 concludes the paper.

2 ATOMIC BROADCAST IN THE CR-MODEL

2.1 The Crash-Recovery Model

We consider a system consisting of a finite set of processes
� ¼ fp; . . . ; qg. At a given time, a process is either up or
down. When it is up, a process progresses at its own speed
behaving according to its specification (i.e., it correctly
executes its program text). While being up, a process can
fail by crashing: It then stops working and becomes down. A
down process can later recover: It then becomes up again
and restarts by invoking a recovery procedure. So, the
occurrence of the local event crash(respectively, recover)
generated by the local environment of a process, makes this
process transit from up to down (respectively, from down
to up).

A process is equipped with two local memories: a
volatile memory and a stable storage. The primitives log
and retrieve allow an up process to access its stable storage.
When it crashes, a process definitely loses the content of its
volatile memory; the content of a stable storage is not
affected by crashes.

Processes communicate and synchronize by sending and
receiving messages through channels. We assume there is a
bidirectional channel between each pair of processes.
Channels are not necessarily FIFO; moreover, they can
duplicate messages. Message transfer delays are finite but
arbitrary. Even if channels are reliable, the combination of
crashes, recoveries, and arbitrary message transfer delays
can entail message losses: The set of messages that arrive at
a process while it is down are lost. Thus, the protocol must
be prepared to recover from messages losses.

2.2 Atomic Broadcast

Atomic Broadcast allows processes to reliably broadcast
messages and to receive them in the same delivery order.
Basically, it is a reliable broadcast plus an agreement on a
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single delivery order. We assume that all messages are
distinct. This can be easily ensured by adding an identity to
each message, an identity being composed of a pair (local
sequence number, sender identity). To ensure that sequence
numbers are unique despite crash and recoveries, the local
sequence number must include an incarnation number that
is logged in stable memory and incremented whenever a
process recovers.

At the syntactical level, Atomic Broadcast is composed of
two primitives: A-broadcastðmÞ (used to send messages)
and �p ¼ A-deliver-sequence() (used by the upper layer to
obtain the sequence of ordered messages). As in [8], when a
process executes A-broadcastðmÞ we say that it “A-broad-
casts” m. We also define a Boolean predicate A-delivered

ðm;�pÞ which evaluates to “true” is m 2 �p or “false”
otherwise. We also say that some process p “A-delivers” m

if A-deliveredðm; A-deliver-sequenceðÞÞ is “true” at p.
In the context of asynchronous distributed systems

where processes can crash and recover, the semantics1 of
Atomic Broadcast is defined by the four following properties:
Validity, Integrity, Termination, and Total Order. This means
that any protocol implementing these communication
primitives in such a crash/recovery context has to satisfy
these properties:

. Validity. If a process A-delivers a message m, then
some process has A-broadcast m.

. Integrity. Let �p be the delivery sequence at a given
process p. A message m appears at most once in �p.

. Termination. For any message m, 1) if the process
that issues A-broadcast ðmÞ returns from A-broad-
cast ðmÞ and eventually remains permanently up, or
2) if a process A-delivers a message m, then all
processes that eventually remain up A-deliver m.

. Total Order. Let �p be the sequence of messages A-
delivered to process p. For any pair ðp; qÞ, either �p is a
prefix of �q or �q is a prefix of �p.

The validity property specifies which messages can be
A-delivered by processes: It states that the set of
A-delivered messages cannot contain spurious messages.
The integrity property states there are no duplicates. The
termination property specifies the situations where a
message m has to be A-delivered. The total order
property specifies that there is a single total order in
which messages are A-delivered. This is an Agreement
property that, joined to the termination property, makes
the problem nontrivial.

Note the subtle difference in the definition of the Integrity
property with regard to its formulation in the crash-no
recovery model. Typically, Integrity is formulated in terms
of preventing the same message from being delivered twice
(to avoid duplication). However, consider the following two
scenarios:

. Case 1. p delivers a given message m and crashes; p
recovers.

. Case 2. p is about to deliver m (but has not done so
yet); p crashes; p recovers.

These two scenarios are indistinguishable. We address
this problem by avoiding an explicit A-deliver primitive and
by using instead the �p ¼ A-deliver-sequenceðÞ call. Note
also that an application that crashes and recovers may have
to maintain its own log to memorize which messages have
been processed before the crash.

3 UNDERLYING BUILDING BLOCKS

The protocol proposed in Section 4 is based on two
underlying building blocks: a Transport Protocol and a
protocol solving the Uniform Consensus problem. This
section describes their properties and interfaces.

3.1 Transport Protocol

The transport protocol allows processes to exchange
messages. A process sends a message by invoking a send
or multisend primitive.2 Both primitives are unreliable: The
channel can lose messages but it is assumed to be fair, i.e., if
a message is sent infinitely often by a process p, then it can
be received infinitely often by its receiver [23]. When a
message arrives at a process, it is deposited in its input
buffer that is a part of its volatile memory. The process will
consume it by invoking a receive primitive. If the input
buffer is empty, this primitive blocks its caller until a
message arrives.

3.2 Consensus Interface

In the Consensus problem, each process proposes a value
and all correct processes have to decide on some value v
that is related to the set of proposed values [10]. The
interface with the Consensus module is defined in terms of
two primitives: propose and decided. As in previous works
(e.g., [8]), when a process p invokes proposeðwÞ, where w is
its proposal to the Consensus, we say that p “proposes” w
(when multiple instances of consensus are required,
propose accepts an additional parameter, the instance
identifier, proposeðk; wÞ). A process proposes by logging
its initial value on stable storage; this is the only logging
required by our basic version of the protocol. In the same
way, when p invokes decided and gets v as a result, we say
that p “decides” v (denoted decidedðvÞ).

The definition of the Consensus problem requires a
definition of a “correct process.” As the words “correct”
and “faulty” are used with a precise meaning in the crash
(no-recovery) model [8], for clarity purpose, we define their
equivalents in the crash-recovery model, namely, “good”
and “bad” processes (we use the terminology of [1]).

Note that a process may crash and later recover and
reissue propose for a given instance of consensus more than
once. In any case, if the consensus has terminated, the
consensus module will always return the result of that
instance to the invoking process. In our solution, we will
enforce that if a recovered process reissues propose for a
given instance of consensus, it proposes exactly the same
values as in the previous invocations.

3.3 Good and Bad Processes

A good process is a process that eventually remains
permanently up. A bad process is a process that is not
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good. So, after some time, a good process never crashes. On
the other hand, after some time, a bad process either
permanently remains crashed or oscillates between crashes
(down periods) and recoveries (up periods). From a
practical point of view, a good process is a process that,
after some time, remains up long enough to complete the
upper layer protocol. In the Atomic Broadcast problem, for
example, this means that a good process that invokes
A-broadcastðmÞ will eventually terminate this invocation (it
is possible that this termination occurs only after some
(finite) number of crashes). It is important to note that,
when considering a process, the words “up” and “down”
refer to its current state (as seen by an external observer),
while the words “good” and “bad” refer to its whole
execution.

A bad process can oscillate between crashes and
recoveries. Such a behavior can, in some circumstances,
prevent the progress of good processes. Hence, in the
following, we assume that a bad process eventually
remains crashed forever. It follows that a good process
eventually remains permanently up, while a bad process
eventually remains permanently down. The difficulty in
designing protocols in such a context lies in the fact that,
at any time, given any process p (that is currently up or
down), it is not known if p is actually good or bad.

3.4 Consensus Definition

The definition of the Consensus problem in the crash-
recovery model is obtained from the one given in the crash
(no-recovery) model by replacing “correct process” by
“good process.” Each process pi has an initial value vi that
it proposes to the others, and all good processes have to
decide on a single value that has to be one of the proposed
values. More precisely, the Consensus problem is defined
by the following three properties (we actually consider the
Uniform version [8] of the Consensus problem):

. Termination. If all good processes propose, every
good process eventually decides some value.

. Uniform Validity. If a process decides v, then v was
proposed by some process.

. Uniform Agreement. No two processes (good or bad)
decide differently.

3.5 Enriching the Model to Solve Consensus

As noted previously, the Consensus problem has no
deterministic solution in the simple crash (no-recovery)
model. This model has to be enriched with a failure detector
that, albeit unreliable, satisfies some minimal conditions in
order that the Consensus be solvable. The crash-recovery
model has also to be augmented with a failure detector so
that the Consensus can be solved. With this aim, different
types of failure detectors have been proposed. The protocol
proposed in [19] uses failure detectors that outputs list of
“suspects”; so, their outputs are bounded. Aquilera et al. [1]
uses failure detectors whose outputs are unbounded (in
addition to lists of suspects, the outputs include counters).
The advantage of the later is that they do not require the
failure detector to predict the future behavior of bad
processes. A positive feature of our protocol is that it does
not require the explicit use of failure detectors (although
these are required to solve the Consensus problem). Thus, it
is not bound to any particular failure detector mechanism.

4 A CRASH-RECOVERY ATOMIC BROADCAST

PROTOCOL

4.1 Basic Principles

The proposed protocol borrows some of its principles from
the total order protocol designed for the crash (no-recovery)
model that is described in [8].

As illustrated in Fig. 1, the protocol interfaces the upper
layer through two variables: the Unordered set and the
Agreed queue. Messages requested to be atomically broad-
cast are added to the Unordered set. Ordered messages are
inserted in the Agreed queue, according to their relative
order. The Agreed is a representation of the delivery
sequence. Operations on the Unordered and Agreed variables
must be idempotent, i.e., if the same message is added
twice, the result is the same as if it is added just once (since
message have unique identifiers, duplicates can be detected
and eliminated).

The protocol requires the use of a Consensus protocol
and of an unreliable (but fair) transport protocol offering
the send, multisend, and receive primitives described in
Section 3. The transport protocol is used to gossip
information among processes. The interface with the
Consensus protocol is provided by the propose and decided
primitives. The propose primitive accepts two parameters:
an integer, identifying a given instance of the Consensus,
and a proposed value (a set of messages) for that instance.
When a Consensus execution terminates, the decided
primitive returns the messages decided by that instance of
the Consensus in the variable result. The Consensus
primitives must also be idempotent: Upon recovery, a
process may (re-)invoke these primitives for a Consensus
instance that has already started or even terminated.

The Atomic Broadcast protocol works in consecutive
rounds. In each round, messages from the Unordered set
are proposed to Consensus and the resulting decided
messages moved to the Agreed queue. Processes periodi-
cally gossip their round number and their Unordered set
of messages to other processes. This mechanism provides
the basis for the dissemination of unordered messages
among good processes.

4.2 Protocol Description

We now provide a more detailed description of the
protocol. The protocol is illustrated in Figs. 2 and 3. The
state of each process p is composed of:

. kp: the round counter (initialized to 0);

. Proposedp: an array of sets of messages proposed to
Consensus. Proposedp½kp� is the set of messages
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proposed to the kpth Consensus. All entries of the
array are initialized to ? (? means “this entry of the
array has not yet been used”);

. Unorderedp: a set of unordered messages, requested
for broadcast (initialized to ;);

. Agreedp: a queue of already ordered messages
(initialized to ?);

. gossip-kp: a variable that keeps the value of the
highest Consensus round known as already decided
(this value is obtained via the gossiping mechanism).

The first four variables can be structured as two pairs of
variables. The (kp; Proposedp) pair is related to the current
(and previous) Consensus in which p is (was) involved. The
(Agreedp, Unorderedp) pair is related to the upper layer
interface. Statements associated with message receptions
and transmission (A-broadcast) are executed with mutual

exclusion with regard to each other. The sequencer task and
the gossip task constitute the core of the protocol. Both tasks
access atomically the variables kp and Unorderedp.

A-broadcastðmÞ issued by process p consists of adding m
to its set Unorderedp. Then, the protocol constructs the
common delivery order. A-deliver issued by p takes the next
message from the Agreedp queue and A-delivers it to the
upper layer application. The activation of the protocol is
similar in the initial case and in the recovery case: the gossip
and sequencer tasks are started (line a).

4.3 The Gossip Task

This task is responsible for disseminating periodically a
relevant part of the current state of processes. The gossip
messages sent by a process p, namely GOSSIP-R(kp) and
GOSSIP-M(m), contain its round number and the messages
in its set of unordered messages. The goal of the gossip task
is twofold. First, it ensures the dissemination of data
messages, such that they are eventually proposed to
Consensus by all good processes. Second, it allows a
process that has been down to know which is the most
up-to-date round.

Upon reception of a GOSSIP message, an active process p
updates its Unorderedp set and checks if the sender q has a
higher round number (kp > kq). In this case, p records that it
has lagged behind by updating the gossip-kp variable. This
variable is used by the sequencer task to get the result of the
Consensus p has missed.

4.4 The Sequencer Task

This task is the heart of the ordering protocol [8]. The protocol
proceeds in rounds. In the round k, a process p proposes its
Unorderedp set to the kth instance of Consensus. Before
starting the Consensus, the proposed value is saved in stable
storage.Note that the proposeprimitivemust be idempotent:
In case of crash and recovery, it may be called for the same
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roundmore thanonce.The result of theConsensus is the set of
messages to be assigned sequence number k. Thesemessages
are moved (according to a deterministic rule) from the
Unorderedp set to theAgreedp queue. Then, the roundnumber
kp is incremented and the messages that remain in the
Unorderedp set are proposed by process p during the next
Consensus. The sequencer task has to execute some statements
atomicallywith respect to theprocessing ofGOSSIPmessages.
This is indicated by bracketing with “[“ and “]” the
corresponding statements in the sequencer task.

To avoid running unnecessary instances of Consensus, a
process does not start a new round unless it has some
messages to propose or it knows it has lagged behind other
processes. In the later case, it can propose an empty set as
the initial value for those Consensus it has missed (this is
because for those Consensus a decision has already been
taken without taking p’s proposal into account).

4.5 Logging into Stable Storage

Logging is used to create checkpoints from which a
recovering process can continue its execution and conse-
quently make the protocol live. So, at a critical point, the
values of relevant variables are logged into stable storage.
In this paper, we are interested in discussing a protocol that
makes a minimal number of checkpoints (independently of
those required by the underlying Consensus protocols).
Thus, we only log the initial value proposed for each
Consensus round. This guarantees that if process p crashes
before the Consensus decides, p will propose the same
value again after recovering. We will later argue that this
logging step cannot be avoided.

Note that we do not log the Unorderedp set or the
Agreedp queue. The Agreedp queue is reconstructed upon
recovery from the results of past Consensus rounds by the
replay procedure. To ensure that messages proposed to
Atomic Broadcast are not lost, the A-broadcastðmÞ primitive
does not return until the message m is in the agree queue. If
the process fails before that, there is no guaranty that the
message has been logged, so the message may have or may
have not been A-broadcasted. In the latter case, it is the
same as if the process has failed immediately before calling
A-broadcastðmÞ. Note that these design options that aim at
minimizing the number of logging operations, do not
necessarily provide the more efficient implementation.
Alternative designs are discussed below.

4.6 Recovery

Since the protocol only logs the initial values proposed for

each instance of Consensus, the current round kp and the

Agreedp queue have to be reconstructed upon recovery. The

current round is simply the round for which no initial value

has been proposed yet. The agreed queue can be recon-

structed by reading the results of the Consensus instances

that have terminated. Thus, before forking the sequencer and

gossip tasks, the process parses the log of proposed and

agreed values (kept internally by Consensus).

4.7 Discussion

The following observations can be made on the protocol
behavior:

. (P1). The sequence of consecutive round numbers
logged by a process p is not decreasing.

. (P2). If process p has logged kp whose value is k, then
its variable kp will always be � k.

. (P3). If a good process joins round k, then all good
processes eventaully join a round � k.

. (P4). For any k, whatever the number of times p
participates in consensus numbered k, the value it
proposes to this consensus is always the same
(despite crashes and despite total/partial consensus
reexecutions).

. (P5). For any k, whatever the number of times p
participates in consensus numbered k, the result
value is the same each time the invocation of
decidedðk; :Þ terminates at p (3). (This property
follows from the consensus specification.)

. (P6). Any message m A-broadcast by a good process
is eventually deposited in Unorderedp or Agreedp by
any good process p.

. (P7). Any message m A-delivered by a process is
eventually deposited in Agreedp by any good
process p.

The Integrity property follows from the � operation on

the Agreedp queue that adds any message m at most once

into this queue. The Validity property directly follows from

the fact the protocol does not create messages. The Total

Order property follows from the use of the underlying

consensus and from the appropriate management of the

Agreedp queue. The Termination property follows from the

previous observations, the fact consensus executions termi-

nate, and the assumption that a bad process eventually

remains crashed.

4.8 On the Minimal Logging

Our solution only requires the logging of the initial

proposed value for each round of Consensus. We argue

that this logging operation is required for every atomic

protocol that uses Consensus as a black box. In fact, all

Consensus protocols for the crash-recovery model we are

aware of assume that a process p proposes a value by

writing it on stable storage. For instance, upon recovery, the

protocol of [1] checks the stable storage to see if a initial

value has been proposed.

4.9 Performance

Since we assume that processes can crash and recover and

that channels are lossy, and no bounds are established for

maximum number of faults a correct process/channel may

exhibit, we can only evaluate the performance of the

algorithm in terms of the number of messages m, protocol

steps s, and the log operations l, required to perform a given

operation. Also, since we use the consensus module as a

black box, the performance of our protocol is a function of

the performance figures of the consensus box

ðmcðnÞ; scðnÞ; lcðnÞÞ:
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The protocol requires the dissemination of each message

to all processes before the consensus, for a total of nþ ncðnÞ
messages and 1þ scðnÞ steps. Since only a log operation is

required in each round, the total number of log operations

is 1þ lsðnÞ. Note that several messages may be ordered in a

single consensus round, therefore the number of messages,

steps, and log operations does not necessarily increase

linearly with the number of atomic broadcast operations.

When recovering, a process must first replay all previous

consensus and then obtain all broadcast that it has missed

while crashed. The second phase of recovery requires at

least two messages (and two steps).

5 AN ALTERNATIVE ATOMIC BROADCAST

PROTOCOL

We now present a number of modifications to our basic

protocol that, although increasing slightly, the complexity

and the number of log operationsmay provide some benefits

in practical systems. The protocol proposes a state transfer

mechanism and additional log operations to reduce the

recovery overhead and increase throughput. Additionally,

the protocol shows how to prevent the number of entries in
the logs from growing indefinitely, by taking application-
level checkpoints. The version of the protocol that takes into
account the previous considerations is illustrated in Figs. 4
and 5.

5.1 Avoiding the Replay Phase

In the previous protocol, we have avoided any logging
operation that is not strictly required to ensure protocol
correctness. In particular, we have avoided logging the
current round (kp) and agreed queue (Agreedp) since they
can be recomputed from the entries of the array proposedp
that have been logged. This forces the recovering process to
replay the actions taken for each Consensus result (i.e.,
insert the messages in the agreed queue according to the
predetermined deterministic rule).

Faster recovery can be obtained at the expense of
periodically checkpointing both variables. The frequency
of this checkpointing has no impact on correctness and is an
implementation choice (that must weight the cost of
checkpointing against the cost of replaying). Note that old
proposed values that are not going to be replayed can be
discarded from the log (line c).

5.2 Size of Logs and Application-Level Checkpoint

A problem with the current algorithm is that the size of the
logs grows indefinitely. A way to circumvent this behavior
is to rely on an application-level checkpointing. In some
applications, the state of the application will be determined
by the (totally ordered) messages delivered. Thus, instead
of logging all the messages, it might be more efficient to log
the application state which logically “contains” the Agreed
queue. For instance, when the Atomic Broadcast is used to
update replicated data, the most recent version of the data
can be logged instead of all the past updates. Thus, a
checkpoint of the application state can substitute the
associated prefix of the delivered message log.

In order to exploit this property, one needs to augment
the interface with the application layer with an upcall to
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obtain the application state (see Fig. 1). The upcall, state ¼
A-checkpointð�pÞ, accepts as an input parameter a sequence

of delivered messages and returns the application state that

“contains” those updates. A-checkpointð?) returns the

initial state of the application. In order to know which

messages are associated with a given checkpoint, a

checkpoint vector clock V Cð�pÞ is associated to each check-

point. The vector clock stores the sequence number of the

last message delivered from each process “contained” in the

checkpoint.4 An application-level checkpoint is defined by

the pair (A-checkpoint ð�pÞ; V Cð�pÞ). The sequence of

messages delivered to a process is redefined to include an

application checkpoint plus the sequence of messages

delivered after the checkpoint. A message m belongs to

the delivery sequence if it appears explicitly in the sequence

or if it is logically included in the application checkpoint

that initiates the sequence (this information is preserved by

the checkpoint vector clock).
In our protocol, the application state is periodically

checkpointed and the delivered messages in the Agreed
queue are replaced by the associated application-level
checkpoint. This not only offers a shorter replay phase but
also prevents the number of entries in the logs from
growing indefinitely.

5.3 State Transfer

In the basic protocol, a process that has been down becomes
aware that it has missed some Consensus rounds when it
detects that some other process is already in an higher
round of Consensus (through the gossip messages). When
this happens, it activates the Consensus instances that it has
missed in order to obtain the correspondent agreed
messages. A process that has been down for a long period
may have missed many Consensus and may require a long
time to “catch-up.”

An alternative design consists of having the most up-to-

date process to send a STATE message containing its current

round number kp and its Agreedp queue. When a process p

that is late receives a STATE message from a process q with a

higher round number (kp < kq), it stops its sequencer task

(line e), updates its state such that it catches up with that

process, and restarts its sequencer task from the updated

state (line f), effectively skipping the Consensus instances it

has missed.
Both approaches coexist in the final protocol. A late

process can recover by activating the Consensus instances

that it has missed or by receiving a STATE message. The

amount of desynchronization that triggers a state transfer

can be tuned through the variable � (line d).
Note that, for clarity, we have made the STATE message

to carry the complete Agreed queue. Simple optimizations

can minimize the amount of state to be transfered. For

instance, since the associated GOSSIP messages carries the

current round number of the late process, the STATE

message can be made to carry only those messages that

are not known by the recipient.

5.4 Sending Message Batches

For better throughput, it may be interesting to let the
application propose batches of messages to the Atomic
Broadcast protocol, which are then proposed in batch to a
single instance of Consensus. However, the definition of
Atomic Broadcast implies that every message that has been
proposed by a good process be eventually delivered. When
there are crashes, a way to ensure this property is not to
return from A-broadcastðmÞ before m is logged. In the basic
protocol, we wait until the message is ordered (and
internally logged by the Consensus). In order to return
earlier (and allow more messages to be proposed to be
include in the batch), the A-broadcast interface needs to log
the Unorderedp set.

5.5 Incremental Logging

As described, the protocol emphasizes the control locations
where values have to be logged. The actual size of these
values can be easily reduced. When logging a queue or a set
(such as the Unordered set), only its new part (with respect to
the previous logging) has to be logged. This means that a
log operation can be saved each time the current value of a
variable that has to be logged does not differ from its
previously logged value.

6 QUORUM-BASED REPLICA MANAGEMENT

In this section, we discuss how our atomic broadcast

primitive can be used to manage replicated objects in crash-

recovery systems. We use a client-server model, where

clients interact with servers using the send and multisend

primitives and server coordinate their actions using atomic

broadcast. We start by extending our definition of atomic

broadcast to allow different processes to initiate the same

broadcast (this will allow server replicas to initiate broad-

casts on behalf of client processes). Then, we show how the

extended primitive can be used to implement a quorum-

based voting technique to manage replicated servers.

6.1 Extending Atomic Broadcast

Usually, the Atomic Broadcast problem is defined assuming

that a single process in the system initiates a given

broadcast, i.e., that a single process issues A-broadcastðmÞ
for a given message m. In this section, we extend this

definition, by allowing the same broadcast to be initiated by

more than one process. We recall that each message has a

unique identifier that distinguishes it from any other

message in the system.
The purpose of this extension is to allow the set of

processes participating in the broadcast to play the role of a

group of servers, providing services to external client

processes. Broadcast messages are generated and uniquely

identified by these client processes which forward them to

the server replicas using an unreliable channel. One or

several servers will initiate the atomic broadcast to the set of

replicas, by invoking locally the A-broadcast primitive on

behalf of the (remote) clients. It should be noted that this

extension does not require any significant change to the

algorithm described previously.
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6.2 Atomic Broadcast for Quorum-Based Voting

Weighted voting [13] is a popular technique to increase the

availability of replicated data in networks subject to node

crashes or network partitions. The technique consists of

assigning votes to each replica and define quorums for read

read and write operations. Quorums for conflicting opera-

tions, namely read/write and write/write, must overlap

such that conflicts can be detected. To ensure that an

operation only succeeds if a quorum is achieved, each

operation must be encapsulated within a transaction [5].
Here, we propose a weighted voting variant based on

our atomic broadcast primitive. The technique can be used

to replicate objects where each transaction is either a read or

a write operation. Votes and quorums are assigned exactly

as in the transaction-based weighted-voting algorithms.

The atomic broadcast (and the underlying consensus) is

defined for the set of data replicas. To maximize avail-

ability, the majority condition used in the consensus

protocol must be defined using the weights assigned to

each replica (this can be achieved with a trivial extension to

the protocols of [1], [19], [25]).

6.2.1 Client Protocol

The client of the replicated service does not need to

participate in the atomic broadcast protocol. The client

code is depicted in Fig. 6. Since the channels are lossy and

processes can crash, the client periodically retransmits its

request until a quorum of replies is received. We assume

that each client assigns a unique identifier to each request.

This identifier is used by the servers to discard duplicate

requests and by the client to match replies with the

associated request. The read and write procedures simply

wait for a read quorum (or write quorum) of replies to be

collected. The reply carries the identifier of the request, the

data value, and version number. The highest version

number corresponds to the most recent value of the data,
which is returned by the read operation.

We avoid locking and keep data available during
updates. Thus, reads that are executed concurrently with
writes can either read the new or the old data value. To
ensure consistency of reads from the same process, each
client records the last version read in a variable timestamp
and discards replies containing older versions. It should be
noted that if clients communicate, either directly or by
writing/reading other servers, the timestamp must be
propagated as discussed in [22].

6.2.2 Server Protocol

The server code is depicted in the bottom part of Fig. 7.
Each replica keeps the data value and an associate version
number. All updates are serialized by the atomic broadcast
algorithm. Read operations do not need to be serialized and
are executed locally: The quorum mechanism ensures that
the client will get the most updated value. Upon reception
of a READ request, each replica simply sends a REPLY to the
client with its vote, data value, and version number. Upon
reception of a WRITE request, the replica first checks if the
associated update has already been processed (since the
system is asynchronous, the write request can be received
after the associated update): in such a case, it simply
acknowledges the operation. Otherwise, an UPDATE mes-
sage is created from the write request and atomically
broadcast in the group of replicas. Whenever an update is
delivered, the value of the data is updated accordingly and
the version number incremented. The fact that this update
has been applied is logged in the done variable. The
processing of the UPDATE reveals a subtle point regarding
the black-box interface between the atomic broadcast
protocol and the replication algorithm: When a server
recovers, it has to parse the sequence of delivered messages,
discarding already processed messages.
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6.2.3 Example

Fig. 8 illustrates the algorithm. The replicated service is
provided by four replicas R1, R2, R3, and R4 with assigned
votes of 3, 3, 2 and 1, respectively, for a total of nine votes.
In the example, we use a read quorum of 4 and a write
quorum of 6 (the sum of quorums for conflicting operations
must exceed the total number of votes in the system [13]).

In the example, replicas R1 and R4 are always up, replica
R2 crashes after the write but before the read operation, and
replica R3 is initially down and later recovers (dotted lines
denote crash periods). During the period in which replicas
R2 and R3 are both down, there is no write quorum but the
data is still available for read operations. Note that while
there is no write quorum, the consensus module (encapsu-
lated by the atomic broadcast primitive) blocks. The write
quorum is reestablished with the recovery of R3.

The example uses two distinct client processes: client C1
issues a write operation and client C2 a read operation. The
write operation is initiated by a multisend to all replicas
which, in turn, triggers an A-broadcast to disseminate the
update (and serialize it with regard to other updates). Since
the system is asynchronous, different replicas may receive
the update in different points in time. (In our example,
replica R4 receives the update later. The shaded zones
indicate that the update has been delivered to the
corresponding replica.) Nevertheless, the write operation
terminates as soon as a write quorum of replies is received;
delayed replies can be discarded by the client. The read
operation is initiated by a multisend to all replicas and
terminates when a read quorum is received. In our example,
replica R4 replies to the read request before receiving the
update from client C1, but since a read quorum is awaited,
at least one of the replies has the most recent version (R1 in
the example). The example also illustrates the recovery of
replica R3: When it recovers, both write and read operations
have terminated but the atomic broadcast algorithm
ensures that the missed update is eventually delivered
and that the replica state becomes consistent.

6.3 Discussion

Quorum-based techniques to manage replicated data
require the write operation to be applied to a number of

replicas satisfying a write quorum or applied to none. When
operations are performed in the context of a transaction, a
distributed atomic commit protocol [14] is used to decide
the outcome of the transaction. Naturally, the atomic
commit protocol must be carefully selected to preserve the
desired availability, otherwise, the execution of this proto-
col introduces a window of vulnerability in the system. For
instance, if a simple two-phase commit protocol is used, the
protocol may block even if a replica with a majority of votes
remain up [4].

The protocol proposed in this paper shows that
weighted voting can also be applied to a strategy that
relies on atomic broadcast to manage replicated data in
asynchronous crash-recovery systems. An advantage of
this approach is that locking is not required during
updates. On the other hand, logical clocks are required to
ensure consistent reads [22]. Our work can be seen as a
consensus-based extension of the work described in [21],
[7]. The proposed protocol can easily be tailored to
implement the ROWA strategy (Read One replica, Write
All). In that case, it encompasses distributed data manage-
ment protocols based on an atomic broadcast primitive that
has been designed in the no-failure model (e.g., [3], [24]).
Let us finally remark that votes can be dynamically
modified by adopting techniques described in [12].

7 RELATED PROBLEMS

7.1 Consensus versus Atomic Broadcast

In this paper, we have shown how to transform a
Consensus protocol for the asynchronous crash-recovery
model into an atomic broadcast protocol. It is easy to show
that the reduction in the other direction also holds [8]. To
propose a value, a process atomically broadcasts it; the first
value to be delivered can be chosen as the decided value.
Thus, both problems are equivalent in asynchronous crash-
recovery systems.

7.2 Atomic Broadcast and Transactional Systems

It has been shown that a deferred update replication model
for fully replication databases can exhibit a better through-
put if implemented with an Atomic Broadcast-based
termination protocol than if implemented with Atomic
Commitment [26]. The same report also proposes designs
for Atomic Broadcast protocols in the crash-recovery model,
but these solutions are not Consensus-based.

7.3 Total Order Multicast to Distinct Groups

In this paper, we have focused on the Atomic Broadcast
problem for a single group of processes. The problem of
efficiently implementing atomic multicast across different
groups in crash (no-recovery) asynchronous systems has
been solved in several papers [11], [28]. Since these
solutions are based on a Consensus primitive, it is possible
to extend them to crash-recovery systems using an
approach similar to the one that has been followed here.

7.4 Recovery in Group Communication Systems

In our approach, a process is never expelled from the
group of processes participating in Atomic Broadcast. An
alternative approach consists of excluding crashed or
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slow processes from the group and makes progress only
within the group of mutually-reachable processes that
remain active. In such case, the application must
explicitly execute some reintegration algorithm, to bring
recovering replicas up-to-date [6], [2], [20].

8 CONCLUSION

This paper has proposed an Atomic Broadcast primitive for
asynchronous crash-recovery distributed systems. Its con-
cept has been based on a building block implementing
Consensus. This building block is used as a black box, so
our solution is not bound to any particular implementation
of Consensus. The protocol is nonblocking in the following
sense: As long as the underlying Consensus is live, the
Atomic Broadcast protocol does not block good processes
despite the behavior of bad processes. Moreover, our
solution does not require the explicit use of failure detectors
(even though those are required to solve the underlying
Consensus). Thus, it is not bound to a particular failure
detection mechanism. Also, we have shown that Atomic
Broadcast can be solved with few additional log operations
in excess of those required by the Consensus. Finally, we
have discussed how additional log operations can improve
the protocol.

Weighted voting techniques are used to increase the
availability of replicated objects. This paper has shown that
an atomic broadcast primitive can be used to implement
weighted replicated objects in asynchronous crash-recovery
systems. In the proposed approach, updates are serialized
but reads can be performed in parallel.
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