Gossip

João Leitão DiAINP -LASIGE

Alinnament

....

Motivação

Exemplos Scamp

Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Patch e verificação

Tutulo

Referências

Gossip

Membership algorithms for gossip

João Leitão DiAINP - LASIGE

16 de Outubro de 2006

P-SON: Probabilistically-Structured Overlay Networks

Alinhamento

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

Gossip

Motivação

Exemplos Scamp

Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5 Descrição Resultados

Resultados Avaliação dos resultados Patch e verificação

futuro

- Protocolos de disseminação epidémica
- Membership em algoritmos de gossip
- Exemplos de algoritmos de membership
 - Scamp
 - Cyclon
 - NeEM 0.5
- Avaliação comparativa entre o Cyclon e o NeEM 0.5
 - Descrição do processo de avaliação
 - Resultados
 - Avaliação dos resultados
 - Patch e verificação
- Trabalho futuro
- Referências

Protocolos de disseminação epidémica Motivação

Gossip

João Leitão DiAINP -

Alinhamento

Gossip

Motivaçã

Scamp Cyclon

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados

Trabalho futuro

eferências

- Baixo suporte nas infra-estruturas actuais ao nível rede para broadcast e multicast.
- Existe no entanto necessidade de aplicações que suportem disseminação de informação para um número elevado de nós, eventualmente geograficamente dispersos.
- A realização de broadcast ao nível aplicacional de forma ingénua - não é escalável.

Solução:

Distribuir a carga de comunicação por todos os nós participantes.

Protocolos de disseminação epidémica Intuição

Gossip

Gossip

Biologia:

Forma como uma epidemia se espalha numa população: epidemic.

Sociologia:

Forma como um boato se espalha numa sociedade: gossip.

Gossip

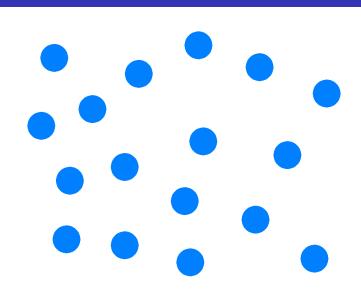
João Leitão DiAINP -LASIGE

dinhament

Gossip

Motivação

Exemplos


Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Tuturo

Gossip

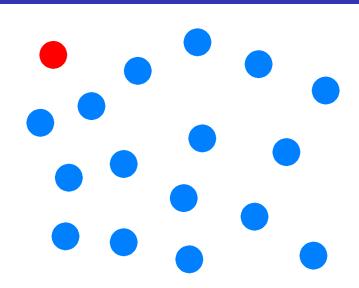
João Leitão DiAINP -LASIGE

dinhament

Gossip

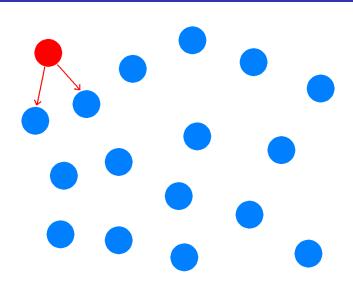
Motivação

Exemplos

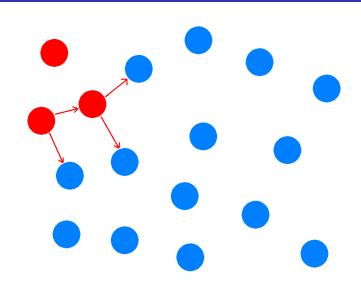

Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e


Trabalho

Trabalho futuro


Gossip

Gossip

Gossip

Gossip

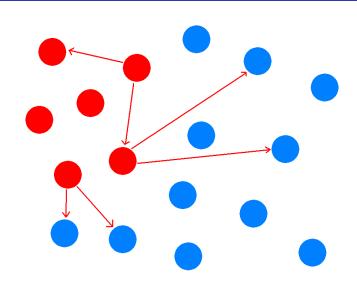
Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação


Exemplos Scamp Cyclon

NeEM 0.5 Cyclon v.s

Descrição Resultados Avaliação dos resultados

Patch e verificaçã

Trabalho

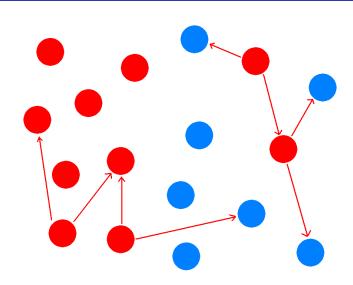
Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação


Exemplos Scamp Cyclon

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

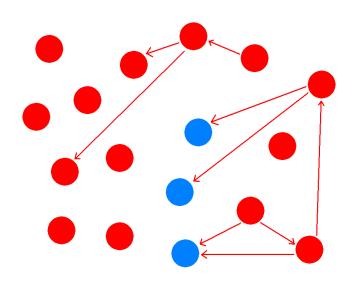
Trabalho futuro

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip


Motivação

Scamp Cyclon

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

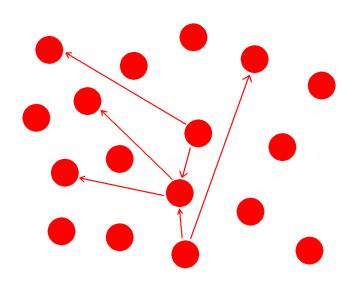
Trabalho

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip


Motivação

Scamp Cyclon

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

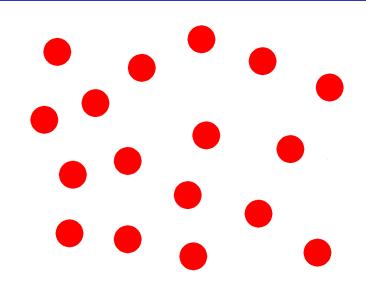
Gossip

DiAINP -LASIGE

dinhamen[.]

Gossip

Motivação


Exemplos Scamp

Scamp Cyclon NeEM 0.5

NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Protocolos de disseminação epidémica

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

Gossip

Motivação

Scamp Cyclon NeFM 0.5

Cyclon v.s NeEM 0.5 Descrição

Descrição Resultados Avaliação dos resultados Patch e verificação

Trabalho futuro

Referências

- Quando um nó recebe uma mensagem pela primeira vez:
 - Guarda-a (ou o seu identificador).
 - Reenvia a mensagem para um certo número de nós (fanout).
- Quando um nó recebe uma mensagem que já conhece:
 - Ignora-a.

Existe um problema associado ao crescimento até ao infinito da lista de identificadores das mensagens recebidas.

Já existem soluções publicadas para resolver este problema.

Protocolos de disseminação epidémica Vantagens

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivaca

Exemplos Scamp Cyclon

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Referências

Distribuição da carga

A carga é distribuída de forma uniforme por todos os nós.

Robustez

A elevada redundância do protocolo torna-o tolerante a faltas, tanto no caso de faltas de omissão, como faltas de paragem.

Protocolos de disseminação epidémica Vantagens

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivaca

Scamp Cyclon

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalho futuro

e oforências

Escalabilidade

Está demonstrado que a carga a suportar pelos nós cresce de forma logarítmica com o número de nós no sistema.

Atomicidade forte

Se um nó usar um fanout de log(n) + k, a probabilidade de todos os nós receberem a mensagem é de:

$$e^{-e^{-k}}$$

Membership em algoritmos de gossip Problemas com o gossip

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

Gossip

Motivação

Exemplos Scamp Cyclon

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados

Traball futuro

eferências

No entanto os algoritmos de gossip possuem algumas limitações, entre elas:

- Assume uniformidade na distribuição das perdas de mensagens.
- Consome bastantes recursos da rede.
- Apresenta redundância excessiva.

Assume que os nós possuem uma vista global do sistema. Para dar as garantias probabilistas do algoritmo, é necessário que os nós seleccionem os destinos das suas retransmissões de forma uniformemente aleatória entre todos os nós do sistema. Uma vista global não é escalável.

Membership em algoritmos de gossip

Gossip

João Leitão DiAINP -

Alinhamento

0000.р

Motivação

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados Patch e

Trabalh futuro

Referências

Necessário um mecanismo escalável que forneça um serviço de membership para protocolos deste género.

Este serviço que pode ser genericamente designado por *Peer Sampling Service* deve:

- Fornecer a cada nó uma vista parcial dos membros do sistema.
 - A escolha de elementos desta vista parcial deve ser equivalente a uma escolha aleatória uniforme sobre todos os elementos do sistema.
 - Deve ser tolerante a faltas.
- Permitir a adição de novos elementos ao sistema.
- Capaz de eliminar eventualmente nós que se desliguem ou falhem.

Exemplos de algoritmos de membership

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

Exemplos

Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Referências

Existem várias formas de implementar este serviço:

- Algoritmos centralizados
- Algoritmos descentralizados
 - Reactivos
 - Cíclicos / Periódicos

Exemplos de algoritmos de membership Overlay network

Gossip

João Leitão DiAINP -LASIGE

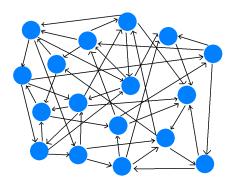
Alinhamento

Gossip

Motivaçã

Exemplos

Scamp Cyclon NeEM 0.5


Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Referências

Os algoritmos de membership, ao distribuirem a informação de filiação dos membros do sistema pelos vários nós, acabam por construir uma *overlay network*.

Scamp

Gossip

Scamp

- É um protocolo descentralizado reactivo.
- Proposto por Genesh, Kermarrec, Massoulié.
- Os nós quando se querem juntar enviam uma subscription request para um nó presente na overlay.
- Um nó ao receber uma subscription request reenvia-a para todos os elementos da sua vista local e cria c cópias adicionais que envia para nós aleatórios da sua vista local.
- Um nó ao receber uma forwarded subscription request referente a um nó que não se encontre já na sua lista local irá "aceitar" esta com uma certa probabilidade p que depende do tamanho da sua vista. Se não aceitar, envia-a para um nó aleatório da sua vista local.

Gossip

João Leitão DiAINP -LASIGE

Minhamento

Gossip

Motivação

Evennlos

Scamp

Cyclon NeEM 0.

Cyclon v.s

Descrição Resultados Avaliação dos resultados

Trabalh

. . . .

Gossip

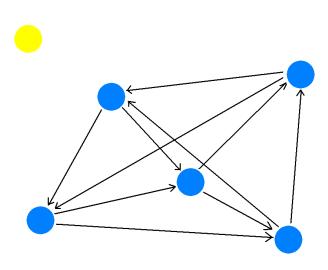
João Leitão DiAINP -

Alinhamen[.]

Gossir

Motivação

Exemplos


Scamp

Cyclon NeEM 0.

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

João Leitão DiAINP -LASIGE

Minhament

Gossip

Motivação

Evennlos


Scamp

Cyclon NeEM 0.

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

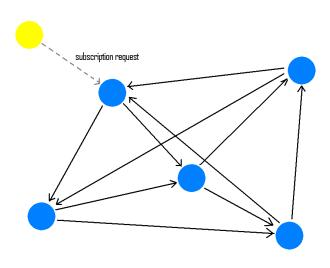
João Leitão DiAINP -LASIGE

Alinhament

Gossin

Motivação

Exemplos


Scamp Cyclon

Cyclon NeEM 0.

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

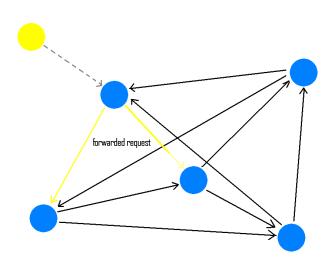
João Leitão DiAINP -LASIGE

linhament

Gossip

Motivação

Exemplos


Scamp Cyclon

NeEM 0.

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

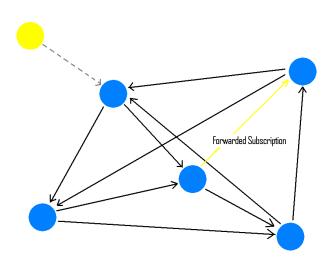
João Leitão DiAINP -LASIGE

dinhament

Gossip

Motivação

Exemplos


Scamp Cyclon

Cyclon NeEM 0.

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Gossip

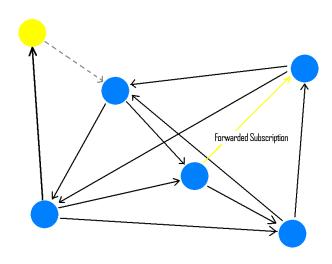
João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

Exemplos


Scamp Cyclon

Cyclon NeEM 0.

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

João Leitão DiAINP -LASIGE

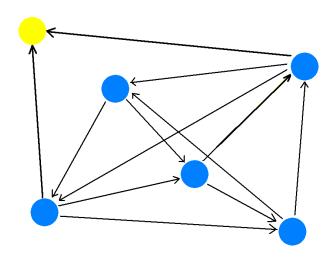
dinhament

Gossip

Motivação

motivação

Exemplos Scamp


Cyclon NeFM 0

Cyclon v.s

Descrição Resultados Avaliação dos resultados

Patch e verifica

Trabalh futuro

Gossip

João Leitão DiAINP -LASIGE

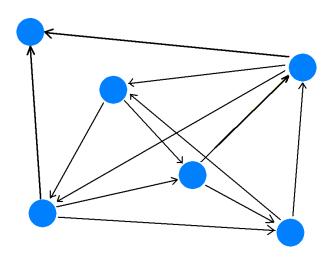
dinhament

Gossip

Motivação

iviotivação

Exemplos Scamp


Cyclon NeFM 0

Cyclon v.

NeEM 0.5

Resultados
Avaliação dos
resultados
Patch e

Trabalh

Scamp

Gossip

Scamp

- Os nós mantêm uma PartialView (vista local) com os nós para onde enviam mensagens de gossip.
- Existe ainda uma lista *InView* com os nós de onde os nós recebem mensagens de gossip.
- Existe um mecanismo explícito para um nó sair do grupo (que passa por este enviar para os nós na sua InView um pedido para substituir a entrada do próprio com as entradas referentes aos nós na sua *InView*).
- Este algoritmo requer um mecanismo explícito para detectar a morte de nós, que é implementado através de mensagens de heartbeat.

Scamp

Gossip

Scamp

Propriedades interessantes

- Distribuição dos tamanhos das vistas locais convergem para log(n).
- Segundo os autores, apresenta propriedades similares a um algoritmo de gossip com vistas globais.

Cyclon

Gossip

João Leitão DiAINP -LASIGE

Alinhament

00331p

Motivaçã

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5 Descrição Resultados

Resultados Avaliação do resultados Patch e verificação

141410

- É um protocolo descentralizado periódico.
- Proposto por Voulgaris, Gavidia, van Steen.
- Os nós possuem vistas locais com tamanho fixo.
- A cada elemento na vista local de um nó encontra-se associado um valor numérico age que é incrementado em uma unidade sempre que o nó efectua um shuffle.
- Os nós realizam shuffle periodicamente.

Cyclon Mecanismo de shuffle

Gossip

Cvclon

Periodicamente um nó realiza os seguintes passos:

- Incrementa o age de todos os nós na sua vista local.
- Seleciona um elemento Q com maior age e mais L 1 outros elementos aleatórios.
- Substitui a entrada de Q com uma entrada do próprio nó com age a zero.
- Envia todas as entradas anteriores ao seu vizinho Q, e recebe deste uma lista não maior que L.
- Realiza uma operação de *merge* entre a sua vista local e a lista recebida de Q.
- Se não receber uma resposta de Q elimina esta da sua vista.

Gossip

João Leitão DiAINP -LASIGE

Alinhament

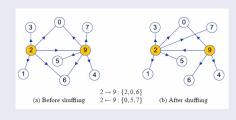
dossip

Motivação

Scamp Cyclon

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e verificação


Traball futuro

Referências

Garante conectividade

Num ambiente livre de falhas, a operação de *shuffling* garante que se mantém a conectividade da *overlay*.

Inversão de direcção

Cyclon

Propriedades do mecanismo de shuffle

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

Gossi

Motivaçã

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

futuro

Peferências

Baixo impacto nos graus dos nós

Este mecanismo não produz rápidas mudanças de popularidade nos nós da *overlay*.

Convergente

As propriedades do grafo correspondente à *overlay* mantida por este protocolo (*shortest path* e *clustering*) convergem para valores muito baixos de forma bastante rápida.

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivaçã

Scamp Cyclon

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados Patch e

futuro

- Os nós quando se querem juntar enviam um pedido (join) para um nó presente na overlay: Introducer.
- Um nó, ao receber um pedido de join de um novo nó, inicia c (tamanho da vista local) random walks com o identificador do nó, colocando nestes um TTL (time to live) relativamente pequeno (5 ou 6).
- Um nó onde uma random walk termine substitui um nó da sua vista local pelo novo nó, enviando de seguida para este o identificador do nó substituído.

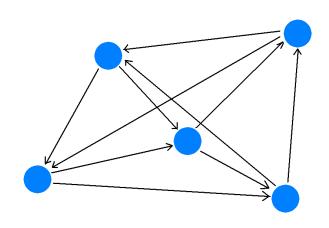
Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação


Exemplos Scamp

Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

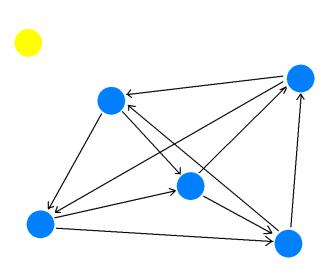
Gossip

João Leitão DiAINP -

Alinhament

Gossin

Motivação


Motivação

Scamp Cyclon

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

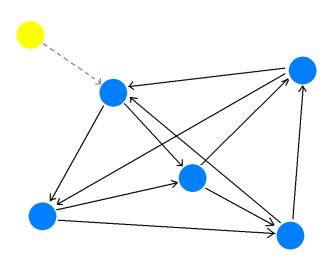
Trabalho

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip


Motivação

Exemplos Scamp Cyclon

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

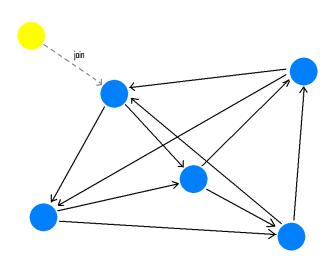
Trabalho

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip


Motivação

Exemplos
Scamp
Cyclon

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

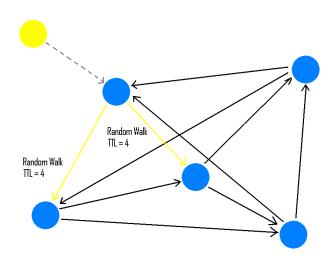
Trabalho

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip


Motivação

Exemplos Scamp Cyclon

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

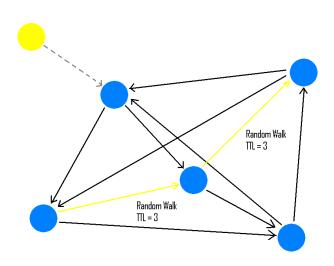
Gossip

João Leitão DiAINP -

Alinhament

Gossip

Motivação


Exemplos Scamp

Scamp Cyclon NeEM 0.5

NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

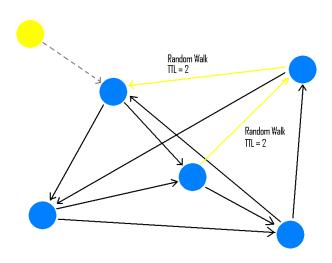
Trabalho futuro

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossin


Motivação

Exemplos Scamp Cyclon

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

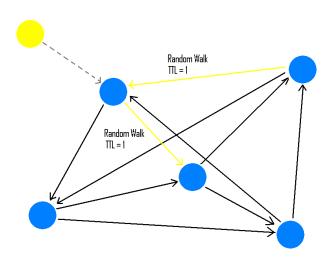
Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossin

Motivação


Scamp Cyclon

NeEM 0.5

NeEM 0.5

Descrição
Resultados
Avaliação dos
resultados
Patch e

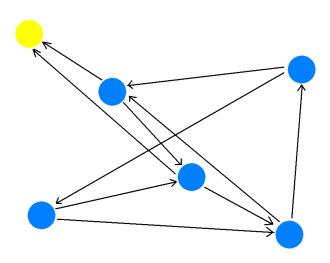
Trabalho

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossin


Motivação

Exemplos Scamp Cyclon

NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

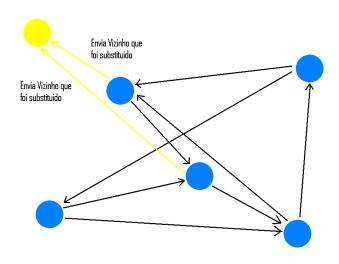
Trabalho

Gossip

João Leitão DiAINP -

Alinhament

Gossip


Motivação

Scamp Cyclon

Cyclon v.s.

Descrição Resultados Avaliação dos resultados Patch e

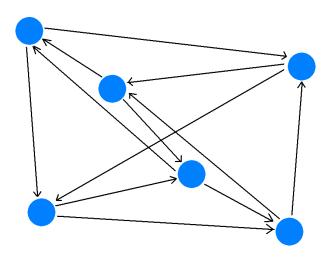
Traba

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip


Motivação

Scamp Cyclon

Cyclon v.s.

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

NeEM 0.5

Gossip

João Leitão DiAINP -LASIGE

Alinhamen

Gossip

Motivaçã

Exemplos

Cyclon

NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabal futuro

- É um protocolo descentralizado periódico.
- Proposto por J.O.Pereira, L.Rodrigues, et al.
- Os nós possuem vistas locais com tamanho fixo.

NeEM 0.5

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

0000.р

Motivaçã

Scamp Cyclon

NeEM 0.5

NeEM 0.5

Descrição
Resultados
Avaliação dos
resultados
Patch e
verificação

Traball futuro

- Um nó que se queira juntar à overlay envia um pedido de join a um elemento já presente.
- Um nó ao receber um pedido de join:
 - Envia uma mensagem de shuffle com o identificador do novo nó para todos os nós presentes na sua vista local.
 - Adiciona o novo nó à sua vista local.
- Quando um nó recebe uma mensagem de shuffle:
 - Introduz o novo elemento na sua vista local com uma probabilidade alfa.
 - Caso n\u00e3o introduza o novo elemento, reenvia a mensagem de shuffle para um vizinho aleat\u00f3rio.

Gossip

João Leitão DiAINP -LASIGE

Alinhamen[.]

Gossip

Motivação

.......

Scamp

NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

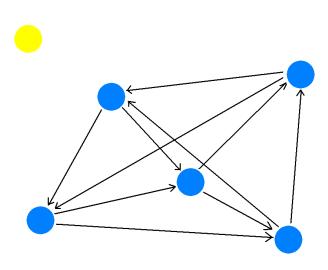
João Leitão DiAINP -

Alinhament

Gossic

Motivação

Evemplos


Scamp

NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

João Leitão DiAINP -LASIGE

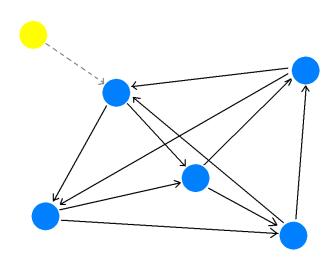
Alinhament

Gossin

Motivação

...----

Scamp


NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados

Patch e verificaç

Trabalho

Gossip

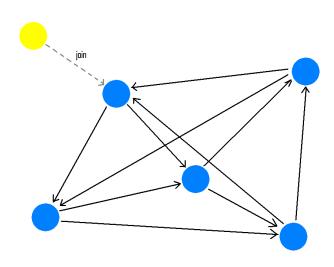
João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

_ .


Scamp

NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Gossip

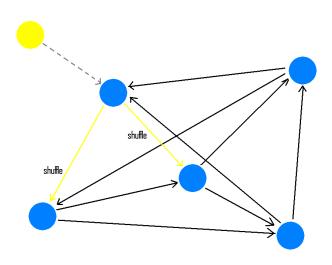
João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

...----


Scamp

NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalho

Gossip

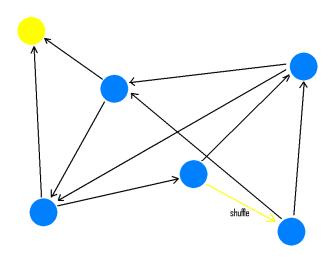
João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

····otivaça.


Scamp

NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

João Leitão DiAINP -LASIGE

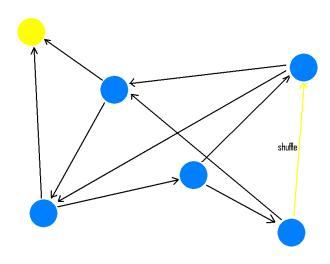
Alinhament

Gossip

Motivação

iviotivação

Scamp


NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados

Patch e verificaç

Trabalho futuro

Gossip

João Leitão DiAINP -LASIGE

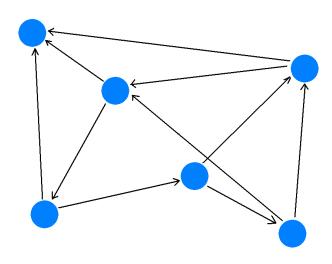
Alinhament

Gossip

Motivação

...----

Scamp


NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Patch e verificaç

Trabalho futuro

NeEM 0.5

Gossip

NeEM 0.5

- Periodicamente, os nós enviam para um vizinho aleatório uma mensagem de shuffle com o identificador de um outro vizinho.
- Quando um nó quer adicionar um novo elemento à sua vista local e esta encontra-se "cheia" elimina um elemento aleatoriamente.

Gossip

João Leitão DiAINP -

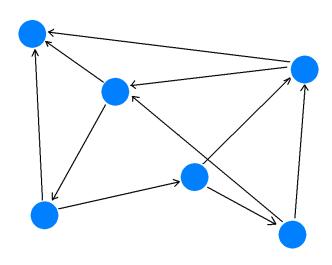
Alinhament

C---:-

Motivação

_ .

Scamp


NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Patch e verificaç

Trabalho futuro

Gossip

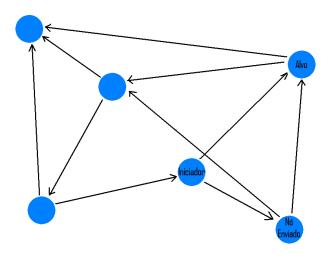
João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

IVIOLIVAÇA


Scamp

NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados

verificaç

Gossip

João Leitão DiAINP -

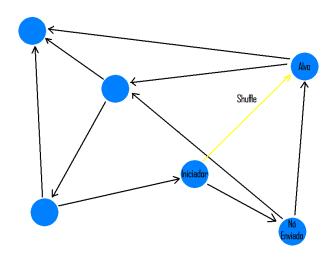
Alinhament

. .

Motivação

iviotivaça.

Scamp


NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados

Patch e verificaç

Trabalho

Gossip

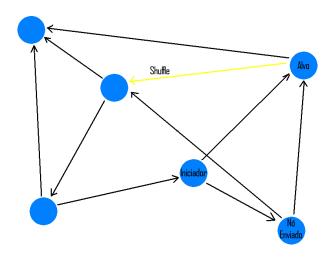
João Leitão DiAINP -

Alinhament

Gossip

Motivação

Evennler


Scamp

NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Gossip

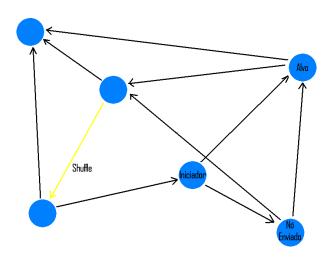
João Leitão DiAINP -LASIGE

Alinhament

Gossin

Motivação

Scamp


NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

tuturo

Gossip

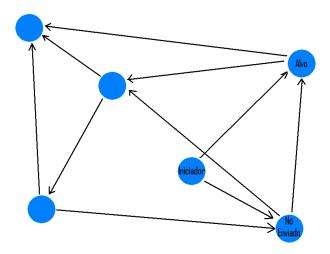
João Leitão DiAINP -LASIGE

Alinhament

C

Motivação

iviotivaçai


Scamp

NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

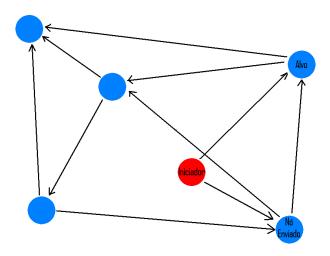
Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossin

Motivação


Scamp

NeEM 0.5

Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

Trabalh

Avaliação comparativa entre o Cyclon e o NeEM 0.5

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5

> Descrição Resultados Avaliação do resultados Patch e

Trabalho

Referências

Shortest path

A média do caminho mais curto entre um nó e todos os restantes nós. É uma medida do diâmetro da *overlay*.

Clustering coefficient

É uma medida que mostra a percentagem de vizinhos de um nó que são vizinhos entre si.

In-degree

O *in-degree* de um nó define-se como sendo o número de nós na *overlay* que possuem o nó na sua vista local.

Descrição do processo de avaliação

Gossip

João Leitão DiAINP -LASIGE

Alinhament

оозэ.р

Motivaçã

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e verificação

futuro

- Foi utilizado o simulador **PeerSim** em modo *cycle based*.
- As simulações efectuadas tiveram durações típicas de 500 a 1000 ciclos.
- A maior parte das simulações foram feitas com 10000 nós, algumas foram verificadas para 100000 nós.
- Os valores de configuração usados para o Cyclon foram:
 - C 20 (local view size)
 - L 8 (shuffle length)
 - TTL 5 (time to live dos random walks)
- Os valores de configuração usados para o NeEM 0.5 foram:
 - F 20 (local view size)
 - alfa 0.2 (probabilidade de "aceitar" uma mensagem de shuffle)

Descrição do processo de avaliação

Mecanismo de inicialização do protocolo

Gossip

João Leitão DiAINP -LASIGE

Alinhament

G0331P

Motivaçã

Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5

Descrição Resultados Avaliação dos resultados Patch e

Trabalho futuro

- Foi utilizado o próprio mecanismo de join dos protocolos para inicializar a overlay no início da simulação.
- Foram implementados 3 mecanismos diferentes que diferem na selecção do nó de contacto:
 - Protocol One (foi o mais utilizado)
 - Protocol Line
 - Protocol Random
- O PeerSim disponibiliza ainda vários mecanismos de inicialização dos protocolos:
 - WireKOut
 - WireRingLatice
 - WireStar

Resultados Shortest path

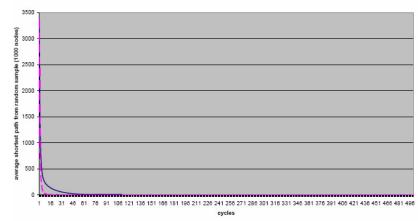
Gossip

DiAINP -

Δlinhamento

Motivação

Scamp Cyclon


Cyclon v.s NeEM 0.5

Descrição
Resultados
Avaliação dos
resultados

Trabalh

Referências

Comparação do average shortest path entre o Cyclon e o NeEM 0.5

average shortest path in cyclon — average shortest path in NeEM 0.5

Resultados Clustering Coefficient

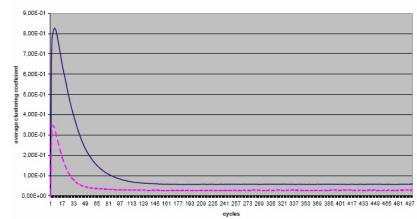
Gossip

João Leitão DiAINP -

Alinhament

Motivaçã

Exemplos


Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação do resultados Patch e

verificaçã

Resultados In-degree

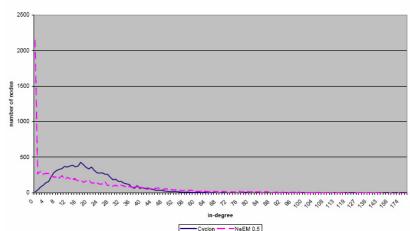
Gossip

João Leitão DiAINP -LASIGE

linhament

. .

Motivação


Exemplos Scamp Cyclon

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação do resultados

Trabal

Avaliação dos resultados

Clustering coefficient e shortest path

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

Gossip

Motivação

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5 Descrição Resultados

Avaliação dos resultados Patch e verificação

Traball futuro

Referências

- A nível de clustering coefficient o NeEM 0.5 parece converger mais rapidamente para valores baixos, obtendo valores ligeiramente melhores que o Cyclon.
- Em relação ao shortest path os valores obtidos por ambos os protocolos após convergência são idênticos; no entanto, o NeEM mais uma vez converge ligeiramente mais rápido.

Justificação:

O facto do Cyclon trocar grupos de nós em cada ciclo torna o protocolo ligeiramente mais lento na "distribuição" dos nós pela *overlay*.

Avaliação dos resultados *In-degree*

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivaçã

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Resultados Avaliação dos resultados

verificação

futuro

Referências

- Os resultados obtidos pelo Cyclon s\u00e3o ligeiramente diferentes dos apresentados no artigo.
- Por outro lado, os valores apresentados pelo NeEM 0.5 são bastante piores.
- Existem mais de 20% dos nós da rede que são completamente desconhecidos (in-degree com valor igual a zero).

Especialmente preocupante para algoritmos de gossip de push.

Avaliação dos resultados Verificação

Gossip

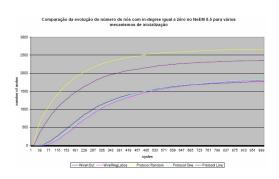
João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

Scamp Cyclon


Cyclon v.s NeEM 0.5

Resultados Avaliação dos resultados

verifica

Tuturo

Referências

Justificação:

O NeEM 0.5 não remove os elementos que faz circular nas mensagens de *shuffle*, o que leva a que o protocolo tenha um elevado impacto na "popularidade" dos nós na *overlay*.

Patch e verificação

Gossip

João Leitão DiAINP -

Alinhament

Gossip

Motivação

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação dos resultados

Patch e verificação

futuro

Referências

Solução proposta: NeEM V2

Quando um nó anuncia outro através de uma mensagem de *shuffle* o nó anunciado é removido da vista local.

Patch e verificação WireKOut

Gossip

DiAINP -LASIGE

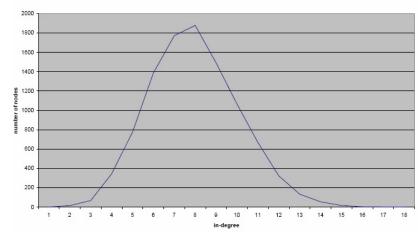
linhament

. .

Motivação

MOLIVAÇAC

Scamp Cyclon NeEM 0.5


Cyclon v.s NeEM 0.5

Descrição Resultados Avaliação do: resultados Patch e

verificação Trabalho

Referências

Distribuição do in-degree no NeEM 0.5 (inicialização com WireKOut)

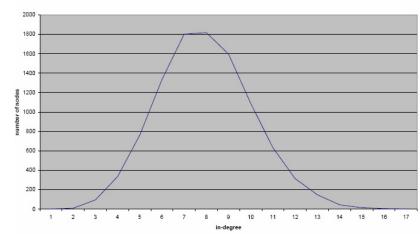
Patch e verificação Protocol One

Gossip

João Leitão DiAINP -LASIGE

Alinhament


Motivação


Exemplos Scamp

NeEM 0.5 Cyclon v.s

Descrição Resultados Avaliação dos resultados Patch e

verificação Trabalho

Trabalho futuro

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

dossip

Motivação

Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados Patch e

Trabalho futuro

Referências

Usando o príncipio do NeEM e do LoLa de termos ligações TCP para que o protocolo seja mais *Network Friendly*, poderemos usar uma abordagem híbrida em que temos dois tipos de comportamento do protocolo de *membership*:

- Um comportamento reactivo para fazer manutenção de uma membership pequena, que equivale às ligações TCP estabelecidas.
- Um comportamento cíclico para manter uma outra membership (eventualmente maior) com uma vista mais geral do grupo, e que servirá para "alimentar" a primeira.

Trabalho futuro

Gossip

João Leitão DiAINP -LASIGE

Alinhamento

Gossip

Motivacã

Scamp Cyclon

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados Patch e

Trabalho futuro

Referências

O *clustering coefficient* possui elevadas implicações nos protocolos de gossip.

- Se um nó conseguisse de forma local calcular um valor aproximado para o seu clustering coefficient seria possível que este decidisse melhorar a "qualidade da sua vista local".
- Uma abordagem que pode ser interessante seria realizar append às mensagens que são enviadas por gossip do caminho efectuado pela mensagem, e tentar fazer um cálculo aproximado com esta informação.
- Esta abordagem poderá ainda possibilitar melhorar a escolha de "alvos" de gossip para a própria mensagem, reduzindo o tráfego desnecessário na rede.

Referências

Gossip

João Leitão DiAINP -LASIGE

Alinhament

Gossip

Motivação

Exemplos Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados Patch e

Trabalho futuro

- Efficient Epidemic Multicast in Heterogeneous Networks -José Pereira, Rui Oliveira, Luís Rodrigues
- NEEM: Network-friendly Epidemic Multicast J. Pereira, L.Rodrigues, M.J.Monteiro, R.Oliveira, A.-M. Kermarrec
- Low Latency Probabilistic Broadcast in Wide Area
 Networks J.Pereira, L.Rodrigues, A.Pinto, R.Oliveira
- CYCLON: Inexpensive Membership Management for Unstructured P2P Overlay - Spyros Voulgaris, Daniela Gavidia, Maarten van Steen

Referências

Gossip

João Leitão DiAINP -LASIGE

Alinhament

00331P

Motivaçã

Scamp Cyclon NeEM 0.5

Cyclon v.s. NeEM 0.5 Descrição Resultados Avaliação dos resultados Patch e verificação

Trabalho futuro

- Peer-to-peer membership management for gossip-based protocols - Ayalvadi J. Ganesh, Anne-Marie Kermarrec, Laurent Massoulié
- SCAMP: Peer-to-peer lightweight membership service for large-scale group communication - Ayalvadi J. Ganesh, Anne-Marie Kermarrec, Laurent Massoulié
- The Peer Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementations - Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, Maarten van Steen
- HiScamp: self-organizing hierarchical membership protocol
 Ayalvadi J. Ganesh, Anne-Marie Kermarrec, Laurent
 Massoulié