
TXSeries™

 

for

 

Multiplatforms

CICS

 

Application

 

Programming

 

Guide

 

Version

 

5.1

  

SC09-4460-03

  

���





TXSeries™

 

for

 

Multiplatforms

CICS

 

Application

 

Programming

 

Guide

 

Version

 

5.1

  

SC09-4460-03

  

���



Note

 

Before

 

using

 

this

 

information

 

and

 

the

 

product

 

it

 

supports,

 

be

 

sure

 

to

 

read

 

the

 

general

 

information

 

under

 

“Notices”

 

on

 

page

 

287.

Fourth

 

Edition

 

(March

 

2004)

 

This

 

edition

 

replaces

 

SC09-4460-02.

 

Order

 

publications

 

through

 

your

 

IBM

 

representative

 

or

 

through

 

the

 

IBM

 

branch

 

office

 

serving

 

your

 

locality.

 

©

 

Copyright

 

International

 

Business

 

Machines

 

Corporation

 

1999,

 

2004.

 

All

 

rights

 

reserved.

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

–

 

Use,

 

duplication

 

or

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

Corp.

 



Contents

 

Figures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. vii

 

Tables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. ix

 

About

 

this

 

book

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

Who

 

should

 

read

 

this

 

book

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

Document

 

organization

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

How

 

to

 

send

 

your

 

comments

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

Conventions

 

used

 

in

 

this

 

book

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

Part

 

1.

 

Writing

 

applications

  

.

 

.

 

.

 

.

 

. 1

 

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

  

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Why

 

use

 

CICS?

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

What

 

does

 

CICS

 

do

 

for

 

you?

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

CICS

 

transaction

 

processing

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

The

 

CICS

 

family

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Transaction

 

processing

 

terms

 

and

 

concepts

  

.

 

.

 

. 4

 

Distributed

 

transaction

 

processing

  

.

 

.

 

.

 

.

 

.

 

. 5

 

Developing

 

applications

 

within

 

CICS

  

.

 

.

 

.

 

.

 

. 5

 

Developing

 

client/server

 

applications

  

.

 

.

 

.

 

.

 

. 7

 

How

 

CICS

 

runs

 

your

 

transactions

  

.

 

.

 

.

 

.

 

.

 

.

 

. 8

 

Components

 

of

 

the

 

CICS

 

runtime

 

system

 

.

 

.

 

.

 

. 9

 

How

 

CICS

 

executes

 

your

 

transactions

  

.

 

.

 

.

 

. 10

 

The

 

CICS

 

application

 

programming

 

interface

 

(API)

 

11

 

How

 

to

 

split

 

the

 

program

 

logic

  

.

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Summary

 

of

 

API

 

presentation

 

services

  

.

 

.

 

.

 

. 12

 

Summary

 

of

 

API

 

data

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

. 13

 

Summary

 

of

 

API

 

business

 

logic

 

.

 

.

 

.

 

.

 

.

 

.

 

. 14

 

Summary

 

of

 

API

 

problem

 

determination

 

logic

 

.

 

. 15

 

CICS

 

application

 

development

 

tools

  

.

 

.

 

.

 

.

 

.

 

. 16

 

Presentation

 

interface

 

development

  

.

 

.

 

.

 

.

 

. 16

 

Application

 

program

 

translation

  

.

 

.

 

.

 

.

 

.

 

. 16

 

Application

 

program

 

debugging

  

.

 

.

 

.

 

.

 

.

 

. 17

 

Using

 

transactions

 

to

 

call

 

your

 

program

  

.

 

.

 

.

 

. 18

 

Summary

 

of

 

commands

 

used

 

in

 

application

 

development

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 18

 

Summary

 

of

 

CICS-supplied

 

transactions

 

used

 

in

 

application

 

development

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 18

 

A

 

sample

 

transaction

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 20

 

Prerequisites

 

for

 

the

 

“Hello

 

World”

 

transaction

 

20

 

To

 

create

 

a

 

“Hello

 

World”

 

application

  

.

 

.

 

.

 

. 20

 

To

 

run

 

the

 

“Hello

 

World”

 

transaction

 

.

 

.

 

.

 

.

 

. 20

 

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 21

 

CICS

 

transaction

 

design

 

efficiency

 

considerations

 

.

 

. 21

 

CICS

 

program

 

design

 

efficiency

 

considerations

 

22

 

Transaction

 

data

 

storage

 

considerations

  

.

 

.

 

.

 

. 25

 

Data

 

management

 

storage

 

considerations

  

.

 

.

 

. 31

 

CICS

 

environment

 

efficiency

 

considerations

  

.

 

. 36

 

Efficiency

 

issues

 

for

 

CICS

 

locking

 

functions

  

.

 

. 38

 

Performance

 

considerations

 

for

 

CICS

 

developers

  

.

 

. 42

 

Improving

 

performance

 

of

 

CICS

 

application

 

programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 42

 

Improving

 

performance

 

of

 

database

 

access

  

.

 

.

 

. 45

 

Improving

 

performance

 

of

 

DB2

 

file

 

management

 

46

 

Improving

 

performance

 

of

 

Oracle

 

file

 

management

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 46

 

Using

 

CICS

 

with

 

WebSphere

 

MQ

  

.

 

.

 

.

 

.

 

.

 

.

 

. 46

 

Chapter

 

3.

 

Programming

 

constraints

 

49

 

General

 

programming

 

considerations

 

.

 

.

 

.

 

.

 

.

 

. 49

 

Tabs

 

in

 

map

 

and

 

program

 

sources

 

.

 

.

 

.

 

.

 

.

 

. 49

 

The

 

use

 

of

 

DCE

 

and

 

operating

 

system

 

functions

 

49

 

Names

 

reserved

 

for

 

CICS

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 49

 

Thread

 

safety

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 50

 

CICS-safe

 

functions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 50

 

Using

 

the

 

COBOL

 

compilers

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 51

 

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

COBOL

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 52

 

Data

 

declarations

 

needed

 

in

 

COBOL

  

.

 

.

 

.

 

.

 

. 52

 

COBOL

 

program

 

invocation

 

environment

 

(Micro

 

Focus

 

Server

 

Express

 

COBOL

 

only)

 

On

 

CICS

 

on

 

Open

 

Systems

 

only

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 53

 

COBOL

 

program

 

invocation

 

environment

 

(IBM

 

COBOL

 

only)

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 53

 

Calling

 

programs

 

from

 

COBOL

 

.

 

.

 

.

 

.

 

.

 

.

 

. 53

 

Working

 

storage

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

 

Recursion

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

 

Available

 

memory

 

(Micro

 

Focus

 

Server

 

Express

 

COBOL

 

On

 

CICS

 

on

 

Open

 

Systems

 

only)

  

.

 

.

 

. 55

 

Mixing

 

languages

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

 

Passing

 

integer

 

data

 

between

 

C

 

or

 

C++

 

and

 

COBOL

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 56

 

Returning

 

from

 

COBOL

 

programs

 

.

 

.

 

.

 

.

 

.

 

. 56

 

Releasing

 

resources

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 56

 

Object-oriented

 

COBOL

 

support

  

.

 

.

 

.

 

.

 

.

 

. 57

 

Compiling

 

EBCDIC-enabled

 

COBOL

 

programs

 

57

 

Restrictions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 58

 

Using

 

the

 

C

 

and

 

the

 

C++

 

compilers

  

.

 

.

 

.

 

.

 

.

 

. 58

 

Argument

 

values

 

in

 

C

 

and

 

C++

  

.

 

.

 

.

 

.

 

.

 

. 59

 

Delay

 

processing

 

the

 

task

 

(EXEC

 

CICS

 

DELAY)

 

59

 

Start

 

a

 

task

 

(EXEC

 

CICS

 

START)

  

.

 

.

 

.

 

.

 

.

 

. 59

 

Time

 

arguments

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 60

 

Defaulting

 

options

 

in

 

CICS

 

commands

  

.

 

.

 

.

 

. 60

 

Data

 

declarations

 

needed

 

in

 

C

 

and

 

C++

  

.

 

.

 

.

 

. 61

 

C

 

and

 

C++

 

program

 

invocation

 

environment

  

.

 

. 61

 

Restriction

 

in

 

cached

 

programs

 

using

 

variables

 

in

 

static

 

storage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 62

 

EXEC

 

CICS

 

address

 

COMMAREA

 

.

 

.

 

.

 

.

 

.

 

. 62

 

Calling

 

programs

 

from

 

C

 

or

 

C++

  

.

 

.

 

.

 

.

 

.

 

. 62

 

Mixing

 

languages

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 62

 

EXEC

 

CICS

 

address

 

EIB

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 62

 

Releasing

 

resources

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

String

 

handling

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

C++

 

considerations

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Returning

 

from

 

C

 

and

 

C++

 

programs

 

.

 

.

 

.

 

.

 

. 63

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

iii

 

|

 

|

 

|

 

|

 

|



Using

 

the

 

IBM

 

PL/I

 

compiler

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Restriction

 

in

 

cached

 

programs

 

using

 

variables

 

in

 

static

 

storage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

PL/I

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

PL/I

 

program

 

invocation

 

environment

  

.

 

.

 

.

 

. 65

 

Calling

 

programs

 

from

 

PL/I

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 65

 

Data

 

declarations

 

needed

 

for

 

PL/I

 

.

 

.

 

.

 

.

 

.

 

. 65

 

OPTIONS(MAIN)

 

specification

  

.

 

.

 

.

 

.

 

.

 

.

 

. 66

 

Mixing

 

languages

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 66

 

Returning

 

from

 

PL/I

 

programs

 

.

 

.

 

.

 

.

 

.

 

.

 

. 66

 

Releasing

 

resources

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 66

 

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 67

 

What

 

are

 

the

 

presentation

 

services?

  

.

 

.

 

.

 

.

 

.

 

. 67

 

Terminal

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 67

 

How

 

text

 

is

 

formatted

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 68

 

Printing

 

the

 

text

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 69

 

Terminal

 

services

 

design

 

considerations

  

.

 

.

 

.

 

. 71

 

Basic

 

mapping

 

support

 

(BMS)

 

services

  

.

 

.

 

.

 

.

 

. 71

 

Developing

 

applications

 

that

 

use

 

BMS

 

services

 

71

 

Using

 

BMS

 

services

 

in

 

application

 

programs

  

.

 

. 81

 

BMS

 

design

 

considerations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 94

 

Sending

 

unformatted

 

data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 94

 

Sending

 

formatted

 

data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 95

 

Using

 

the

 

BMS

 

macros

 

to

 

code

 

BMS

 

map

 

sets

  

.

 

.

 

. 97

 

Defining

 

a

 

map

 

set

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 98

 

Defining

 

maps

 

within

 

a

 

map

 

set

  

.

 

.

 

.

 

.

 

.

 

. 98

 

Defining

 

fields

 

within

 

a

 

BMS

 

map

 

.

 

.

 

.

 

.

 

.

 

. 99

 

Defining

 

field

 

groups

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 99

 

Terminating

 

a

 

map

 

set

 

definition

  

.

 

.

 

.

 

.

 

.

 

. 99

 

Coding

 

the

 

BMS

 

definition

 

macros

  

.

 

.

 

.

 

.

 

. 100

 

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

101

 

Relationship

 

between

 

CICS

 

and

 

file

 

managers

  

.

 

. 101

 

SFS

 

consistency,

 

isolation,

 

and

 

locking

  

.

 

.

 

.

 

. 101

 

DB2

 

concurrency

 

and

 

locking

  

.

 

.

 

.

 

.

 

.

 

.

 

. 102

 

Oracle

 

concurrency

 

and

 

locking

  

.

 

.

 

.

 

.

 

.

 

. 103

 

CICS

 

and

 

SFS

 

performance

 

with

 

large

 

files

  

.

 

. 103

 

Mixed

 

resource

 

manager

 

applications

  

.

 

.

 

.

 

.

 

. 105

 

File

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 105

 

Using

 

a

 

VSAM

 

perspective

 

to

 

examine

 

distributed

 

CICS

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 105

 

The

 

types

 

of

 

files

 

used

 

by

 

CICS

  

.

 

.

 

.

 

.

 

.

 

. 107

 

Accessing

 

files

 

from

 

CICS

 

application

 

programs

 

120

 

Queue

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 130

 

Transient

 

data

 

queue

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

. 130

 

Temporary

 

storage

 

queue

 

services

  

.

 

.

 

.

 

.

 

. 133

 

Journal

 

services

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 137

 

CICS

 

journaling

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 138

 

Journal

 

records

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 139

 

Journal

 

output

 

synchronization

  

.

 

.

 

.

 

.

 

.

 

. 140

 

Relational

 

database

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 141

 

SQL

 

restrictions

 

and

 

relational

 

database

 

services

 

142

 

An

 

example

 

transaction

 

for

 

XA-enabled

 

relational

 

databases

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 145

 

Writing

 

a

 

CICS

 

application

 

program

 

by

 

using

 

an

 

ODBC

 

API

 

that

 

accesses

 

a

 

Microsoft

 

SQL

 

Server

 

database

 

(CICS

 

for

 

Windows

 

only)

  

.

 

.

 

.

 

.

 

. 151

 

File

 

processing

 

using

 

EXTFH

 

with

 

non-CICS

 

applications

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 157

 

Using

 

DB2

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

 

.

 

.

 

.

 

.

 

.

 

. 159

 

Using

 

Oracle

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 161

 

Using

 

SFS

 

EXTFH

 

with

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Net

 

Express

 

runtime

  

.

 

.

 

. 164

 

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

173

 

Introduction

 

to

 

business

 

logic

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 173

 

Task

 

initiation

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 173

 

Program

 

execution

 

services

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 174

 

Application

 

program

 

logical

 

levels

  

.

 

.

 

.

 

.

 

. 174

 

Link

 

to

 

another

 

program

 

anticipating

 

return

  

.

 

. 175

 

Transfer

 

control

 

from

 

one

 

program

 

to

 

another

 

175

 

Passing

 

data

 

to

 

other

 

programs

  

.

 

.

 

.

 

.

 

.

 

. 175

 

Passing

 

integer

 

data

 

between

 

programs

  

.

 

.

 

. 179

 

Timer

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 179

 

Expiration

 

times

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 180

 

Request

 

identifiers

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 181

 

START

 

TRANSID

 

commands

  

.

 

.

 

.

 

.

 

.

 

.

 

. 181

 

Synchronization

 

services

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 181

 

Storage

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 182

 

Task-private

 

storage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 183

 

Task-shared

 

storage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 183

 

CICS

 

private

 

shared

 

storage

  

.

 

.

 

.

 

.

 

.

 

.

 

. 184

 

Logical

 

unit

 

of

 

work

 

(LUW)

 

services

  

.

 

.

 

.

 

.

 

. 184

 

Possibility

 

of

 

transaction

 

deadlock

 

and

 

its

 

avoidance

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

 

Techniques

 

for

 

avoiding

 

transaction

 

deadlock

 

185

 

Configuration

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 186

 

EXEC

 

CICS

 

ADDRESS

 

and

 

EXEC

 

CICS

 

ASSIGN

 

commands

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 186

 

INQUIRE

 

and

 

SET

 

commands

 

.

 

.

 

.

 

.

 

.

 

.

 

. 187

 

EXEC

 

interface

 

block

 

(EIB)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 187

 

Part

 

2.

 

Migrating

 

Applications

  

.

 

.

 

. 189

 

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 191

 

Preparing

 

to

 

migrate

 

your

 

applications

 

.

 

.

 

.

 

.

 

. 191

 

What

 

is

 

migration?

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 191

 

Controlling

 

the

 

migration

 

process

  

.

 

.

 

.

 

.

 

. 191

 

Coexistence

 

strategies

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 194

 

Tests

 

and

 

parallel

 

running

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 195

 

Migrating

 

data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 196

 

Migration

 

and

 

the

 

CICS-supplied

 

transactions

 

197

 

Migration

 

and

 

CICS

 

resource

 

definitions

  

.

 

.

 

. 198

 

Migration

 

and

 

programming

 

compatibility

  

.

 

.

 

. 198

 

Source

 

language

 

and

 

compiler

 

considerations

 

for

 

migration

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 198

 

Other

 

programming

 

considerations

 

for

 

migration

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 199

 

Migration

 

and

 

the

 

API

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 201

 

Overview

 

of

 

migration

 

and

 

the

 

API

  

.

 

.

 

.

 

.

 

. 201

 

Presentation

 

services

 

API

 

migration

  

.

 

.

 

.

 

.

 

. 202

 

Data

 

services

 

API

 

migration

  

.

 

.

 

.

 

.

 

.

 

.

 

. 205

   

iv

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

||
||

|
|
||

 

|

 

|

 

|



Part

 

3.

 

Compiling

 

Applications

  

.

 

. 211

 

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 213

 

The

 

PL/I

 

compiler

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 213

 

Examples

 

(CICS

 

for

 

Windows)

  

.

 

.

 

.

 

.

 

.

 

. 213

 

Source

 

directories

 

and

 

link

 

libraries

  

.

 

.

 

.

 

.

 

.

 

. 214

 

Translating,

 

compiling,

 

and

 

link-editing

 

in

 

one

 

step

 

214

 

Prerequisite

 

Tasks

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 214

 

Procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

Caching

 

transaction

 

programs

 

and

 

NEWCOPY

 

(CICS

 

for

 

Windows)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

Translating,

 

compiling

 

and

 

link-editing

 

in

 

separate

 

steps

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 216

 

How

 

translation

 

works

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 217

 

Pre-translating

 

COBOL

 

copybooks

  

.

 

.

 

.

 

.

 

. 218

 

The

 

translation

 

procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 218

 

Requirements

 

for

 

compiling

 

CICS

 

application

 

programs

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 218

 

Compiling

 

and

 

linking

 

a

 

C

 

application

 

program

 

(CICS

 

on

 

Open

 

Systems)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 219

 

Compiling

 

and

 

linking

 

a

 

C

 

application

 

program

 

(CICS

 

for

 

Windows)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 219

 

Compiling

 

and

 

linking

 

a

 

C++

 

program

 

(CICS

 

on

 

Open

 

Systems)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 220

 

Compiling

 

and

 

linking

 

a

 

C++

 

program

 

(CICS

 

for

 

Windows)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 222

 

Compiling

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application

 

program

 

(CICS

 

on

 

Open

 

Systems)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 225

 

Compiling

 

a

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

application

 

program

 

(CICS

 

for

 

Windows)

  

.

 

.

 

. 226

 

Compiling

 

an

 

IBM

 

COBOL

 

application

 

program

 

(CICS

 

for

 

Windows)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 228

 

Compiling

 

an

 

IBM

 

COBOL

 

application

 

program

 

(CICS

 

on

 

Open

 

Systems)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 229

 

Compiling

 

a

 

PL/I

 

application

 

program

 

.

 

.

 

.

 

. 229

 

Part

 

4.

 

Debugging

 

Applications

 

231

 

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 233

 

Error-handling

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 233

 

Handling

 

error

 

conditions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 233

 

Letting

 

the

 

program

 

continue

  

.

 

.

 

.

 

.

 

.

 

.

 

. 234

 

Passing

 

control

 

to

 

a

 

specified

 

label

  

.

 

.

 

.

 

.

 

. 237

 

Relying

 

on

 

the

 

system

 

default

 

action

  

.

 

.

 

.

 

. 239

 

Mixing

 

methods

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 242

 

How

 

CICS

 

keeps

 

track

 

of

 

what

 

to

 

do

  

.

 

.

 

.

 

. 242

 

Handling

 

attention

 

identifiers

 

(EXEC

 

CICS

 

HANDLE

 

AID)

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 243

 

Abend

 

handling

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 244

 

Coding

 

considerations

 

for

 

recovery

  

.

 

.

 

.

 

.

 

. 246

 

Debugging

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 247

 

Using

 

the

 

API

 

for

 

trace

 

services

  

.

 

.

 

.

 

.

 

.

 

. 247

 

Dump

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 250

 

Performance

 

monitoring

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

The

 

monitoring

 

service

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

Statistics

 

services

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 252

 

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 253

 

Preparing

 

your

 

application

 

for

 

testing

  

.

 

.

 

.

 

.

 

. 253

 

Useful

 

tools

 

for

 

identifying

 

problems

  

.

 

.

 

.

 

. 253

 

Preparing

 

your

 

testing

 

environment

  

.

 

.

 

.

 

.

 

. 254

 

Using

 

standard

 

CICS

 

facilities

 

to

 

test

 

your

 

application

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 254

 

Trace

 

and

 

dump

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 254

 

Journals

 

and

 

error

 

handling

  

.

 

.

 

.

 

.

 

.

 

.

 

. 255

 

Using

 

CICS-supplied

 

transactions

 

to

 

test

 

your

 

application

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 255

 

Using

 

Temporary

 

Storage

 

Browse

 

(CEBR)

  

.

 

.

 

. 255

 

Using

 

Command

 

Level

 

Interpreter

 

(CECI)

 

and

 

Syntax

 

Checker

 

(CECS)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 256

 

Using

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)

  

.

 

. 257

 

Using

 

CDCN

 

and

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

(xldb)

 

with

 

CICS

 

for

 

AIX

 

only

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 258

 

Using

 

a

 

compiler’s

 

integrated

 

debugging

 

tool

 

to

 

debug

 

CICS

 

applications

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 263

 

Using

 

debugging

 

tools

 

integrated

 

with

 

compilers

 

running

 

on

 

CICS

 

for

 

Windows

  

.

 

.

 

. 263

 

Using

 

debugging

 

tools

 

integrated

 

with

 

compilers

 

running

 

on

 

CICS

 

on

 

Open

 

Systems

  

. 269

 

Part

 

5.

 

Appendixes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 273

 

Appendix.

 

CICS

 

commands

 

used

 

in

 

application

 

programming

  

.

 

.

 

.

 

.

 

.

 

. 275

 

cicsmap

 

-

 

generate

 

BMS

 

map

 

files

  

.

 

.

 

.

 

.

 

.

 

. 276

 

cicstran

 

-

 

translates

 

source

 

code

  

.

 

.

 

.

 

.

 

.

 

.

 

. 278

 

cicstcl

 

-

 

translate,

 

compile,

 

and

 

link

  

.

 

.

 

.

 

.

 

.

 

. 281

 

Bibliography

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 285

 

Notices

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 287

 

Trademarks

 

and

 

service

 

marks

  

.

 

.

 

.

 

.

 

.

 

.

 

. 288

 

Index

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 291

  

Contents

 

v



vi

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Figures

  

1.

  

Locking

 

(exclusive

 

control)

 

during

 

updates

 

to

 

nonrecoverable

 

files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 39

  

2.

  

Locking

 

(exclusive

 

control)

 

during

 

updates

 

to

 

recoverable

 

files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 39

  

3.

  

COBOL

 

example

 

using

 

SEND

 

TEXT

 

to

 

print

 

data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 70

  

4.

  

Example

 

output

 

from

 

SEND

 

TEXT

 

.

 

.

 

.

 

.

 

. 71

  

5.

  

Fixed-length

 

record

 

example

  

.

 

.

 

.

 

.

 

.

 

. 111

  

6.

  

Variable-length

 

record

 

example

  

.

 

.

 

.

 

.

 

. 112

  

7.

  

Application

 

programming

 

logical

 

levels

 

175

  

8.

  

Use

 

of

 

INPUTMSG

 

in

 

a

 

linked

 

chain

 

178

  

9.

  

Transaction

 

deadlock

 

(generalized)

  

.

 

.

 

.

 

. 185

 

10.

  

Deciding

 

whether

 

to

 

take

 

the

 

system

 

default

 

241

 

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

vii

 

|

 

|



viii

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Tables

  

1.

  

Road

 

map

 

for

 

the

 

CICS

 

Application

 

Programming

 

Guide

 

book

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

  

2.

  

Conventions

 

used

 

in

 

this

 

book

  

.

 

.

 

.

 

.

 

.

 

. xii

  

3.

  

Road

 

map

 

for

 

Writing

 

applications

  

.

 

.

 

.

 

.

 

. 1

  

4.

  

Non-CICS-safe

 

functions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 50

  

5.

  

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

COBOL

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 52

  

6.

  

EXEC

 

CICS

 

default

 

options

 

for

 

C

 

and

 

C++

 

60

  

7.

  

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

PL/I

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

  

8.

  

Functions

 

supported

 

with

 

minimum

 

function

 

BMS

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 72

  

9.

  

Suffixes

 

used

 

for

 

input

 

map

 

data

 

structures

 

82

 

10.

  

Suffixes

 

used

 

for

 

output

 

map

 

data

 

structures

 

82

 

11.

  

Rules

 

for

 

acquiring

 

storage

  

.

 

.

 

.

 

.

 

.

 

.

 

. 86

 

12.

  

EXEC

 

CICS

 

SEND

 

MAP

 

options

  

.

 

.

 

.

 

.

 

. 87

 

13.

  

Rules

 

for

 

cursor

 

positioning

  

.

 

.

 

.

 

.

 

.

 

.

 

. 88

 

14.

  

EXEC

 

CICS

 

ASSIGN

 

options

 

.

 

.

 

.

 

.

 

.

 

.

 

. 88

 

15.

  

Comparison

 

of

 

VSAM

 

data

 

set

 

types

 

and

 

SFS

 

files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 108

 

16.

  

Fixed-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

.

 

.

 

.

 

.

 

.

 

. 114

 

17.

  

Fixed-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

  

.

 

.

 

. 114

 

18.

  

Variable-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

.

 

.

 

.

 

.

 

.

 

. 115

 

19.

  

Variable-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

  

.

 

.

 

. 115

 

20.

  

Variable-length

 

KSDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

.

 

.

 

.

 

.

 

.

 

. 115

 

21.

  

Variable-length

 

KSDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

  

.

 

.

 

. 115

 

22.

  

Fixed-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

.

 

.

 

.

 

.

 

.

 

. 117

 

23.

  

Fixed-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

  

.

 

.

 

. 117

 

24.

  

Variable-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

.

 

.

 

.

 

.

 

.

 

. 117

 

25.

  

Variable-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

  

.

 

.

 

. 117

 

26.

  

Variable-length

 

ESDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

.

 

.

 

.

 

.

 

.

 

. 118

 

27.

  

Variable-length

 

ESDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

  

.

 

.

 

. 118

 

28.

  

RRDS

 

files

 

in

 

VSAM

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 119

 

29.

  

RRDS

 

files

 

in

 

emulated

 

in

 

DB2

 

.

 

.

 

.

 

.

 

.

 

. 119

 

30.

  

Journal

 

record

 

format

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 139

 

31.

  

Example

 

transaction

 

column

 

definitions

 

145

 

32.

  

Sample

 

transaction

 

for

 

an

 

XA-enabled

 

database

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 149

 

33.

  

Support

 

required

 

for

 

updating

 

files

 

from

 

non-CICS

 

applications

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 157

 

34.

  

Environment

 

variables

 

used

 

with

 

the

 

DB2

 

EXTFH

 

on

 

Windows

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 160

 

35.

  

Environment

 

variables

 

used

 

with

 

the

 

Oracle

 

EXTFH

 

on

 

Windows

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 163

 

36.

  

EXTFH

 

File

 

Type

 

Mappings

 

.

 

.

 

.

 

.

 

.

 

.

 

. 170

 

37.

  

Environment

 

Variables

 

for

 

Accessing

 

SFS

 

Features

 

from

 

EXTFH

 

Applications

  

.

 

.

 

.

 

. 171

 

38.

  

Road

 

map

 

for

 

Migrating

 

applications

 

189

 

39.

  

Road

 

map

 

for

 

Compiling

 

applications

 

211

 

40.

  

Source

 

directories

 

and

 

link

 

libraries

  

.

 

.

 

.

 

. 214

 

41.

  

Setting

 

compile

 

and

 

link

 

options

 

for

 

cicstcl

 

(CICS

 

on

 

Open

 

Systems)

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 214

 

42.

  

Setting

 

compile

 

and

 

link

 

options

 

for

 

cicstcl

 

(CICS

 

for

 

Windows)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

43.

  

File

 

names

 

used

 

by

 

the

 

cicstran

 

command

 

216

 

44.

  

Programming

 

Language

 

support

  

.

 

.

 

.

 

.

 

. 219

 

45.

  

Road

 

map

 

for

 

Debugging

 

applications

 

231

 

46.

  

Extensions

 

of

 

incoming

 

files

 

and

 

resulting

 

intermediate

 

files

 

and

 

transaction

 

programs

 

on

 

CICS

 

on

 

Open

 

Systems

  

.

 

.

 

.

 

.

 

.

 

.

 

. 281

 

47.

  

Extensions

 

of

 

incoming

 

files

 

and

 

resulting

 

intermediate

 

files

 

and

 

transaction

 

programs

 

on

 

CICS

 

for

 

Windows

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 282

 

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

ix

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|

 

|



x

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



About

 

this

 

book

 

This

 

book

 

describes

 

the

 

IBM®

 

TXSeries™

 

CICS®

 

application

 

programming

 

interface

 

(API).

 

It

 

contains

 

information

 

needed

 

to

 

prepare

 

application

 

programs

 

using

 

CICS

 

on

 

AIX®,

 

HP-UX,

 

Solaris,

 

and

 

Windows

 

systems.

 

Supported

 

programming

 

languages

 

include

 

COBOL,

 

PL/I,

 

C,

 

and

 

C++.

 

(HP-UX

 

does

 

not

 

support

 

C++;

 

HP-UX

 

and

 

Solaris

 

do

 

not

 

support

 

PL/I.)

 

Who

 

should

 

read

 

this

 

book

 

The

 

information

 

about

 

developing

 

applications

 

is

 

intended

 

mainly

 

for:

 

v

   

Experienced

 

application

 

programmers

 

who

 

are

 

relatively

 

new

 

to

 

CICS.

 

v

   

Experienced

 

CICS

 

application

 

programmers

 

who

 

need

 

to

 

know

 

the

 

difference

 

between

 

application

 

programming

 

for

 

TXSeries

 

CICS

 

and

 

for

 

other

 

CICS

 

products.

 

Systems

 

administrators

 

and

 

systems

 

analysts

 

might

 

also

 

find

 

the

 

information

 

in

 

this

 

book

 

useful.

 

The

 

information

 

about

 

migration

 

is

 

intended

 

for

 

those

 

responsible

 

for

 

planning

 

and

 

implementing

 

the

 

migration

 

to

 

or

 

from

 

TXSeries

 

CICS.

 

It

 

is

 

not

 

intended

 

for

 

those

 

users

 

for

 

whom

 

TXSeries

 

CICS

 

is

 

their

 

first

 

CICS

 

system.

 

Document

 

organization

  

Table

 

1.

 

Road

 

map

 

for

 

the

 

CICS

 

Application

 

Programming

 

Guide

 

book

 

If

 

you

 

want

 

to...

 

Refer

 

to...

 

Know

 

more

 

about

 

application

 

programming,

 

designing

 

efficient

 

applications,

 

programming

 

constraints,

 

and

 

coding

 

for

 

the

 

presentation,

 

data,

 

and

 

business

 

services.

 

Part

 

1,

 

“Writing

 

applications,”

 

on

 

page

 

1.

 

Migrate

 

your

 

applications

 

to

 

and

 

from

 

CICS

 

on

 

Open

 

Systems

 

Chapter

 

7,

 

“Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS,”

 

on

 

page

 

191.

 

Translate,

 

compile,

 

and

 

link-edit

 

your

 

applications

 

Chapter

 

8,

 

“Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs,”

 

on

 

page

 

213.

 

Code

 

your

 

applications

 

for

 

problem

 

determination,

 

test,

 

and

 

debugging

 

Chapter

 

9,

 

“Coding

 

for

 

problem

 

determination,”

 

on

 

page

 

233.

 

Understand

 

the

 

commands

 

used

 

in

 

application

 

programming

 

“CICS

 

commands

 

used

 

in

 

application

 

programming,”

 

on

 

page

 

275.

 

Read

 

about

 

the

 

conventions

 

used

 

in

 

this

 

book.

 

xii.

 

Read

 

about

 

the

 

CICS

 

on

 

Open

 

Systems

 

library

 

and

 

related

 

books.

 

“Bibliography”

 

on

 

page

 

285.

   

Chapter

 

1

 

introduces

 

concepts

 

discussed

 

in

 

subsequent

 

chapters,

 

which

 

describe

 

how

 

to

 

develop

 

CICS

 

applications

 

contain

 

guidance

 

material

 

and

 

should

 

be

 

used

 

in

 

conjunction

 

with

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

and

 

the

 

CICS

 

Intercommunication

 

Guide.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

xi



This

 

book

 

contains

 

information

 

about

 

all

 

TXSeries

 

CICS

 

products.

 

Where

 

the

 

information

 

is

 

different

 

for

 

a

 

specific

 

operating

 

system,

 

it

 

is

 

presented

 

as

 

follows:

 

v

   

If

 

the

 

information

 

is

 

brief,

 

the

 

information

 

is

 

qualified

 

by

 

the

 

product

 

name

 

in

 

line

 

with

 

the

 

text,

 

usually

 

in

 

a

 

list

 

or

 

enclosed

 

in

 

parenthesis.

 

Refer

 

to

 

the

 

following

 

example:

 

–

   

/usr/lpp/cics

 

on

 

AIX

 

–

   

/opt/cics

 

on

 

HP-UX

 

–

   

/opt/cics

 

on

 

Solaris.
v

   

If

 

the

 

information

 

is

 

more

 

that

 

a

 

few

 

words,

 

but

 

smaller

 

than

 

a

 

page,

 

it

 

is

 

presented

 

as

 

shown:

   

On

 

CICS

 

for

 

AIX

 

only

 

Before

 

you

 

begin

 

using

 

the

 

“Hello

 

World”

 

transaction,

 

make

 

sure

 

that

 

CICS

 

was

 

installed

 

with

 

both

 

the

 

development

 

and

 

the

 

production

 

system

 

environments.

How

 

to

 

send

 

your

 

comments

 

Your

 

feedback

 

is

 

important

 

in

 

helping

 

to

 

provide

 

the

 

most

 

accurate

 

and

 

highest

 

quality

 

information.

 

If

 

you

 

have

 

any

 

comments

 

about

 

this

 

book

 

or

 

any

 

other

 

TXSeries

 

documentation,

 

send

 

your

 

comments

 

by

 

e-mail

 

to

 

idrcf@hursley.ibm.com.

 

Be

 

sure

 

to

 

include

 

the

 

name

 

of

 

the

 

book,

 

the

 

document

 

number

 

of

 

the

 

book,

 

the

 

version

 

of

 

TXSeries,

 

and,

 

if

 

applicable,

 

the

 

specific

 

location

 

of

 

the

 

information

 

you

 

are

 

commenting

 

on

 

(for

 

example,

 

a

 

page

 

number

 

or

 

table

 

number).

 

Conventions

 

used

 

in

 

this

 

book

 

TXSeries

 

documentation

 

uses

 

the

 

following

 

typographical

 

and

 

keying

 

conventions.

  

Table

 

2.

 

Conventions

 

used

 

in

 

this

 

book

 

Convention

 

Meaning

 

Bold

 

Indicates

 

values

 

you

 

must

 

use

 

literally,

 

such

 

as

 

commands,

 

functions,

 

and

 

resource

 

definition

 

attributes

 

and

 

their

 

values.

 

When

 

referring

 

to

 

graphical

 

user

 

interfaces

 

(GUIs),

 

bold

 

also

 

indicates

 

menus,

 

menu

 

items,

 

labels,

 

buttons,

 

icons,

 

and

 

folders.

 

Monospace

 

Indicates

 

text

 

you

 

must

 

enter

 

at

 

a

 

command

 

prompt.

 

Monospace

 

also

 

indicates

 

screen

 

text

 

and

 

code

 

examples.

 

Italics

 

Indicates

 

variable

 

values

 

you

 

must

 

provide

 

(for

 

example,

 

you

 

supply

 

the

 

name

 

of

 

a

 

file

 

for

 

file_name).

 

Italics

 

also

 

indicates

 

emphasis

 

and

 

the

 

titles

 

of

 

books.

 

<

 

>

 

Enclose

 

the

 

names

 

of

 

keys

 

on

 

the

 

keyboard.

 

<Ctrl-x>

 

Where

 

x

 

is

 

the

 

name

 

of

 

a

 

key,

 

indicates

 

a

 

control-character

 

sequence.

 

For

 

example,

 

<Ctrl-c>

 

means

 

hold

 

down

 

the

 

Ctrl

 

key

 

while

 

you

 

press

 

the

 

c

 

key.

 

<Return>

 

Refers

 

to

 

the

 

key

 

labeled

 

with

 

the

 

word

 

Return,

 

the

 

word

 

Enter,

 

or

 

the

 

left

 

arrow.

 

%

 

Represents

 

the

 

UNIX®

 

command-shell

 

prompt

 

for

 

a

 

command

 

that

 

does

 

not

 

require

 

root

 

privileges.

 

#

 

Represents

 

the

 

UNIX

 

command-shell

 

prompt

 

for

 

a

 

command

 

that

 

requires

 

root

 

privileges.

 

C:\>

 

Represents

 

the

 

Windows
®

 

command

 

prompt.

 

>

 

When

 

used

 

to

 

describe

 

a

 

menu,

 

shows

 

a

 

series

 

of

 

menu

 

selections.

 

For

 

example,

 

″Select

 

File

 

>

 

New″

 

means

 

″From

 

the

 

File

 

menu,

 

select

 

the

 

New

 

command.″

   

xii

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

2.

 

Conventions

 

used

 

in

 

this

 

book

 

(continued)

 

Convention

 

Meaning

 

Entering

 

commands

 

When

 

instructed

 

to

 

“enter”

 

or

 

“issue”

 

a

 

command,

 

type

 

the

 

command

 

and

 

then

 

press

 

<Return>.

 

For

 

example,

 

the

 

instruction

 

“Enter

 

the

 

ls

 

command”

 

means

 

type

 

ls

 

at

 

a

 

command

 

prompt

 

and

 

then

 

press

 

<Return>.

 

[

 

]

 

Enclose

 

optional

 

items

 

in

 

syntax

 

descriptions.

 

{

 

}

 

Enclose

 

lists

 

from

 

which

 

you

 

must

 

choose

 

an

 

item

 

in

 

syntax

 

descriptions.

 

|

 

Separates

 

items

 

in

 

a

 

list

 

of

 

choices

 

enclosed

 

in

 

{

 

}

 

(braces)

 

in

 

syntax

 

descriptions.

 

...

 

Ellipses

 

in

 

syntax

 

descriptions

 

indicate

 

that

 

you

 

can

 

repeat

 

the

 

preceding

 

item

 

one

 

or

 

more

 

times.

 

Ellipses

 

in

 

examples

 

indicate

 

that

 

information

 

was

 

omitted

 

from

 

the

 

example

 

for

 

the

 

sake

 

of

 

brevity.

 

IN

 

In

 

function

 

descriptions,

 

indicates

 

parameters

 

whose

 

values

 

are

 

used

 

to

 

pass

 

data

 

to

 

the

 

function.

 

These

 

parameters

 

are

 

not

 

used

 

to

 

return

 

modified

 

data

 

to

 

the

 

calling

 

routine.

 

(Do

 

not

 

include

 

the

 

IN

 

declaration

 

in

 

your

 

code.)

 

OUT

 

In

 

function

 

descriptions,

 

indicates

 

parameters

 

whose

 

values

 

are

 

used

 

to

 

return

 

modified

 

data

 

to

 

the

 

calling

 

routine.

 

These

 

parameters

 

are

 

not

 

used

 

to

 

pass

 

data

 

to

 

the

 

function.

 

(Do

 

not

 

include

 

the

 

OUT

 

declaration

 

in

 

your

 

code.)

 

INOUT

 

In

 

function

 

descriptions,

 

indicates

 

parameters

 

whose

 

values

 

are

 

passed

 

to

 

the

 

function,

 

modified

 

by

 

the

 

function,

 

and

 

returned

 

to

 

the

 

calling

 

routine.

 

These

 

parameters

 

serve

 

as

 

both

 

IN

 

and

 

OUT

 

parameters.

 

(Do

 

not

 

include

 

the

 

INOUT

 

declaration

 

in

 

your

 

code.)

 

$CICS

 

Indicates

 

the

 

full

 

path

 

name

 

where

 

the

 

CICS®

 

product

 

is

 

installed;

 

for

 

example,

 

C:\opt\TXSeries\cics

 

on

 

Windows®

 

or

 

/opt/cics

 

on

 

Solaris.

 

If

 

the

 

environment

 

variable

 

named

 

CICS

 

is

 

set

 

to

 

the

 

product

 

path

 

name,

 

you

 

can

 

use

 

the

 

examples

 

exactly

 

as

 

shown;

 

otherwise,

 

you

 

must

 

replace

 

all

 

instances

 

of

 

$CICS

 

with

 

the

 

CICS

 

product

 

path

 

name.

 

CICS

 

on

 

Open

 

Systems

 

Refers

 

collectively

 

to

 

the

 

CICS

 

product

 

for

 

all

 

supported

 

UNIX

 

platforms.

 

TXSeries®

 

CICS

 

Refers

 

collectively

 

to

 

the

 

CICS

 

for

 

AIX®,

 

CICS

 

for

 

HP-UX,

 

CICS

 

for

 

Solaris,

 

and

 

CICS

 

for

 

Windows

 

products.

 

CICS

 

Refers

 

generically

 

to

 

the

 

CICS

 

on

 

Open

 

Systems

 

and

 

CICS

 

for

 

Windows

 

products.

 

References

 

to

 

a

 

specific

 

version

 

of

 

a

 

CICS

 

on

 

Open

 

Systems

 

product

 

are

 

used

 

to

 

highlight

 

differences

 

between

 

CICS

 

on

 

Open

 

Systems

 

products.

 

Other

 

CICS

 

products

 

in

 

the

 

CICS

 

Family

 

are

 

distinguished

 

by

 

their

 

operating

 

system

 

(for

 

example,

 

CICS

 

for

 

OS/2®

 

or

 

IBM®

 

mainframe-based

 

CICS

 

for

 

the

 

ESA,

 

MVS™,

 

and

 

VSE

 

platforms).

    

About

 

this

 

book

 

xiii

|
|
|
|
|

|
|



xiv

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Part

 

1.

 

Writing

 

applications

  

Table

 

3.

 

Road

 

map

 

for

 

Writing

 

applications

 

If

 

you

 

want

 

to...

 

Refer

 

to...

 

Look

 

up

 

transaction

 

processing,

 

look

 

up

 

the

 

application

 

programming

 

interface,

 

see

 

the

 

application

 

development

 

tools,

 

view

 

a

 

sample

 

transaction.

 

Chapter

 

1,

 

“Introduction

 

to

 

CICS

 

application

 

programming,”

 

on

 

page

 

3

 

Design

 

efficient

 

applications

 

that

 

store

 

data

 

within

 

and

 

across

 

transactions,

 

know

 

about

 

data

 

operations,

 

Look

 

up

 

CICS

 

locking

 

and

 

updating

 

files

 

from

 

non-CICS

 

applications.

 

Chapter

 

2,

 

“CICS

 

application

 

design

 

considerations,”

 

on

 

page

 

21

 

Look

 

up

 

programming

 

constraints

 

caused

 

by

 

COBOL,

 

C

 

and

 

C++

 

compilers.

 

Chapter

 

3,

 

“Programming

 

constraints,”

 

on

 

page

 

49

 

Look

 

up

 

coding

 

for

 

presentation

 

services.

 

Chapter

 

4,

 

“Coding

 

for

 

presentation

 

services,”

 

on

 

page

 

67

 

Look

 

up

 

coding

 

for

 

data

 

services.

 

Chapter

 

5,

 

“Coding

 

for

 

data

 

services,”

 

on

 

page

 

101

 

Look

 

up

 

coding

 

for

 

business

 

logic

 

parts

 

of

 

the

 

application.

 

Chapter

 

6,

 

“Coding

 

for

 

business

 

logic,”

 

on

 

page

 

173.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

1



2

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

This

 

chapter

 

provides

 

you

 

with

 

an

 

introduction

 

to

 

application

 

programming

 

concepts

 

used

 

in

 

the

 

CICS

 

application

 

programming

 

interface.

 

The

 

topics

 

discussed

 

are:

 

v

   

Transaction

 

processing

 

with

 

CICS

 

from

 

a

 

CICS

 

family

 

perspective

 

v

   

How

 

CICS

 

runs

 

your

 

transactions

 

v

   

The

 

CICS

 

application

 

programming

 

interface

 

(API)

 

v

   

The

 

CICS

 

application

 

development

 

tools

Why

 

use

 

CICS?

 

Online

 

transaction-processing

 

systems

 

(OLTP)

 

can

 

provide

 

accurate,

 

up-to-date

 

information

 

within

 

seconds,

 

from

 

terminals

 

that

 

can

 

give

 

direct

 

access

 

to

 

data

 

held

 

either

 

as

 

files

 

or

 

databases.

 

Developing

 

such

 

a

 

system

 

would

 

be

 

a

 

major

 

undertaking,

 

particularly

 

if

 

you

 

had

 

to

 

write

 

all

 

your

 

own

 

control

 

programs

 

for

 

handling

 

terminals,

 

files,

 

and

 

databases,

 

and

 

provide

 

your

 

own

 

transaction

 

processing

 

mechanisms.

 

However,

 

CICS

 

supplies

 

all

 

the

 

transaction

 

processing

 

and

 

resource

 

management

 

functions,

 

allowing

 

you

 

to

 

concentrate

 

on

 

developing

 

application

 

programs

 

to

 

meet

 

your

 

organization’s

 

business

 

needs.

 

What

 

does

 

CICS

 

do

 

for

 

you?

 

CICS

 

controls

 

OLTP

 

application

 

programs

 

in

 

a

 

distributed

 

transaction

 

processing

 

(DTP)

 

environment.

 

CICS

 

handles

 

interactions

 

between

 

terminal

 

users

 

and

 

your

 

application

 

programs.

 

Your

 

programs

 

gain

 

access

 

to

 

the

 

CICS

 

facilities

 

with

 

straightforward,

 

high-level

 

commands.

 

CICS

 

provides:

 

v

   

Communication

 

functions

 

to

 

terminals

 

and

 

systems

 

required

 

by

 

application

 

programs

 

v

   

Control

 

of

 

concurrently

 

running

 

programs

 

serving

 

online

 

users

 

v

   

Facilities

 

for

 

accessing

 

databases

 

and

 

files

 

v

   

The

 

ability

 

to

 

communicate

 

with

 

other

 

CICS

 

family

 

members

 

using

 

Systems

 

Network

 

Architecture

 

(SNA)

 

and

 

Transmission

 

Control

 

Protocol/Internet

 

Protocol(TCP/IP)

 

v

   

Interactive

 

facilities

 

to

 

configure

 

your

 

system

 

v

   

Recovery

 

processing

 

and

 

data

 

protection

 

if

 

a

 

problem

 

occurs

CICS

 

transaction

 

processing

 

This

 

section

 

describes

 

general

 

concepts

 

used

 

in

 

CICS

 

application

 

programming.

 

The

 

CICS

 

family

 

of

 

products

 

is

 

described,

 

as

 

well

 

as

 

transaction

 

processing,

 

distributed

 

and

 

cooperative

 

transaction

 

processing,

 

and

 

LAN-based

 

client/server

 

transaction

 

processing.

 

The

 

CICS

 

family

 

The

 

Customer

 

Information

 

Control

 

System

 

(CICS)

 

is

 

a

 

general-purpose

 

data

 

communication

 

and

 

online

 

transaction-processing

 

system

 

that

 

is

 

capable

 

of

 

supporting

 

a

 

network

 

of

 

many

 

thousands

 

of

 

terminals.

 

It

 

acts

 

as

 

a

 

specialized

 

operating

 

system

 

that

 

provides

 

the

 

environment

 

for

 

the

 

execution

 

of

 

online

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

3



application

 

programs,

 

including

 

interfaces

 

to

 

files

 

and

 

database

 

products.

 

The

 

CICS

 

family

 

has

 

a

 

long

 

history

 

and

 

wide

 

acceptance

 

in

 

transaction

 

processing.

 

The

 

key

 

features

 

of

 

the

 

CICS

 

family

 

are

 

the

 

common

 

application

 

programming

 

interface

 

and

 

easy-to-use

 

communications.

 

These

 

allow

 

significant

 

source

 

compatibility

 

and

 

access

 

to

 

data

 

and

 

services

 

across

 

CICS

 

systems.

 

The

 

members

 

of

 

the

 

CICS

 

family

 

satisfy

 

these

 

requirements

 

in

 

various

 

ways.

 

The

 

CICS

 

family

 

members

 

are

 

often

 

grouped

 

when

 

describing

 

common

 

characteristics.

 

Those

 

groups

 

are:

 

v

   

IBM

 

CICS

 

for

 

Windows

 

v

   

CICS

 

on

 

Open

 

Systems

 

–

   

CICS

 

for

 

AIX

 

offers

 

CICS

 

capabilities

 

for

 

transaction

 

processing

 

on

 

the

 

IBM

 

RISC

 

System/6000,

 

the

 

IBM

 

workstation

 

for

 

scientific

 

and

 

commercial

 

applications.

 

–

   

IBM

 

CICS

 

for

 

HP-UX

 

offers

 

CICS

 

capabilities

 

for

 

transaction

 

processing

 

on

 

Hewlett-Packard’s

 

HP

 

9000

 

Series

 

800

 

Corporate

 

Business

 

Servers.

 

–

   

CICS

 

for

 

Solaris

 

offers

 

CICS

 

capabilities

 

for

 

transaction

 

processing

 

on

 

the

 

SUN

 

Solaris

 

Operating

 

Environment.
v

   

IBM

 

mainframe-based

 

CICS

 

–

   

CICS

 

for

 

MVS/ESA

 

for

 

the

 

MVS/ESA

 

environment

 

provides

 

transaction

 

processing

 

for

 

large

 

mainframe

 

centers

 

and

 

for

 

large

 

distributed

 

sites.

 

–

   

CICS/MVS

 

for

 

the

 

MVS/XA

 

and

 

MVS/ESA

 

environments

 

also

 

provides

 

transaction

 

processing

 

for

 

the

 

large

 

mainframe

 

center.

 

–

   

CICS/VSE

 

for

 

the

 

VSE/ESA

 

environment

 

provides

 

transaction

 

processing

 

for

 

the

 

intermediate

 

central

 

site

 

as

 

well

 

as

 

distributed

 

user

 

locations

 

requiring

 

volume

 

transaction

 

processing.

 

–

   

CICS/DOS/VS

 

for

 

the

 

VSE/SP

 

environment

 

provides

 

transaction

 

processing

 

for

 

small-

 

to

 

medium-sized

 

businesses.

 

The

 

following

 

CICS

 

products

 

are

 

also

 

available:

 

v

   

CICS/400

 

for

 

the

 

OS/400

 

environment

 

provides

 

CICS

 

capabilities

 

for

 

online

 

transaction

 

processing

 

on

 

the

 

AS/400,

 

the

 

IBM

 

midrange

 

processor

 

for

 

business

 

and

 

commercial

 

applications.

 

v

   

CICS

 

OS/2

 

provides

 

CICS

 

capabilities

 

for

 

transaction

 

processing

 

on

 

PCs

 

running

 

OS/2.

 

It

 

also

 

provides

 

transaction

 

processing

 

for

 

the

 

distributed

 

location

 

where

 

the

 

PC

 

can

 

access

 

data

 

locally

 

or

 

at

 

the

 

mainframe.

See

 

CICS

 

Family:

 

API

 

Structure

 

and

 

CICS

 

Family:

 

Interproduct

 

Communication

 

for

 

related

 

information.

 

Transaction

 

processing

 

terms

 

and

 

concepts

 

A

 

transaction

 

is

 

a

 

unit

 

of

 

processing

 

that

 

consists

 

of

 

one

 

or

 

more

 

application

 

programs.

 

A

 

transaction

 

is

 

initiated

 

by

 

a

 

single

 

request,

 

often

 

from

 

a

 

terminal,

 

usually

 

using

 

a

 

four-character

 

transaction

 

identifier.

 

A

 

transaction

 

may

 

require

 

the

 

initiation

 

of

 

one

 

or

 

more

 

tasks

 

for

 

its

 

execution.

 

A

 

task

 

is

 

a

 

single

 

instance

 

of

 

the

 

execution

 

of

 

a

 

transaction.

 

CICS,

 

in

 

conjunction

 

with

 

the

 

operating

 

system,

 

manages

 

the

 

control

 

of

 

multiple

 

tasks

 

by

 

allocating

 

a

 

system

 

process

 

to

 

each

 

task.

 

Then,

 

while

 

one

 

task

 

is

 

waiting

 

(for

 

example,

 

to

 

read

 

a

 

file

 

or

 

to

 

get

 

a

 

response

 

from

 

a

 

terminal),

 

the

 

operating

 

system

 

can

 

give

 

control

 

to

 

another

 

task.

   

4

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



The

 

processing

 

done

 

by

 

the

 

transaction

 

processing

 

system

 

can

 

be

 

grouped

 

into

 

logical

 

units

 

of

 

work

 

(LUWs).

 

Each

 

LUW

 

is

 

a

 

set

 

of

 

related

 

changes

 

to

 

data.

 

For

 

example,

 

in

 

an

 

accounting

 

system,

 

one

 

LUW

 

comprises

 

updating

 

accounts

 

payable,

 

updating

 

the

 

books,

 

and

 

creating

 

a

 

check.

 

The

 

work

 

performed

 

by

 

each

 

LUW

 

is

 

completely

 

separate

 

from

 

the

 

work

 

performed

 

by

 

any

 

other

 

LUW.

 

If

 

the

 

LUW

 

changes

 

multiple

 

resources

 

they

 

are

 

either

 

all

 

changed

 

successfully

 

or

 

none

 

of

 

them

 

are.

 

The

 

transaction

 

processing

 

system

 

ensures

 

that,

 

when

 

there

 

are

 

multiple

 

users

 

accessing

 

the

 

resources,

 

the

 

partial

 

changes

 

made

 

in

 

one

 

LUW

 

are

 

not

 

made

 

available

 

to

 

other

 

users

 

until

 

the

 

LUW

 

is

 

completed.

 

Once

 

an

 

LUW

 

has

 

been

 

completed,

 

its

 

changes

 

are

 

permanent.

 

For

 

more

 

information

 

on

 

transaction

 

processing,

 

see

 

Concepts

 

and

 

Planning.

 

Distributed

 

transaction

 

processing

 

CICS

 

provides

 

a

 

large

 

set

 

of

 

intercommunication

 

services

 

between

 

its

 

family

 

members.

 

These

 

services

 

support:

 

v

   

Function

 

shipping,

 

which

 

enables

 

application

 

programs

 

to

 

access

 

resources

 

in

 

another

 

CICS

 

system.

 

v

   

Distributed

 

transaction

 

processing,

 

which

 

enables

 

transactions

 

running

 

in

 

one

 

CICS

 

system

 

to

 

initiate

 

and

 

communicate

 

synchronously

 

with

 

transactions

 

in

 

another

 

CICS

 

system.

 

v

   

Distributed

 

program

 

link

 

(DPL),

 

which

 

allow

 

CICS

 

transactions

 

to

 

link

 

to

 

programs

 

on

 

any

 

connected

 

CICS

 

system.

 

For

 

example,

 

CICS

 

applications

 

can

 

have

 

access

 

to

 

programs

 

that

 

access

 

databases

 

on

 

a

 

host

 

system.

 

v

   

Asynchronous

 

transaction

 

processing,

 

which

 

allows

 

a

 

CICS

 

transaction

 

to

 

initiate

 

an

 

independent

 

transaction

 

in

 

a

 

connected

 

system

 

and

 

to

 

pass

 

data

 

to

 

it.

 

v

   

Transaction

 

routing,

 

which

 

allows

 

operators

 

of

 

terminals

 

owned

 

by

 

one

 

CICS

 

system

 

to

 

run

 

transactions

 

in

 

any

 

connected

 

CICS

 

system.

 

v

   

Advanced

 

program-to-program

 

communications

 

(APPC),

 

which

 

enables

 

CICS

 

programs

 

to

 

send

 

and

 

receive

 

data

 

from

 

a

 

program

 

running

 

in

 

a

 

remote

 

system.

 

Programming

 

using

 

APPC

 

conversations

 

is

 

called

 

Distributed

 

Transaction

 

Programming

 

(DTP).

 

See

 

the

 

CICS

 

Intercommunication

 

Guide

 

for

 

information

 

about

 

writing

 

application

 

programs

 

in

 

a

 

CICS

 

intercommunication

 

environment.

 

See

 

the

 

CICS

 

Family:

 

API

 

Structure

 

and

 

the

 

CICS

 

Family:

 

Interproduct

 

Communication

 

for

 

related

 

information.

 

Developing

 

applications

 

within

 

CICS

 

CICS

 

is

 

a

 

general

 

purpose

 

online

 

transaction

 

processing

 

(OLTP)

 

system

 

that

 

provides

 

an

 

environment

 

for

 

running

 

online

 

transactions.

 

You

 

write

 

a

 

CICS

 

program

 

in

 

much

 

the

 

same

 

way

 

as

 

you

 

write

 

any

 

other

 

program.

 

Most

 

of

 

the

 

processing

 

logic

 

is

 

expressed

 

in

 

standard

 

language

 

statements,

 

but

 

you

 

use

 

CICS

 

commands

 

for

 

some

 

functions.

 

These

 

commands

 

are

 

typically

 

embedded

 

in

 

your

 

application,

 

preceded

 

by

 

the

 

phrase

 

EXEC

 

CICS.

 

For

 

example:

 

EXEC

 

CICS

 

SET

 

FILE(myfile)

 

OPEN

 

The

 

program

 

source

 

file

 

is

 

then

 

translated

 

(using

 

the

 

cicstran

 

program)

 

prior

 

to

 

being

 

compiled,

 

though

 

translation

 

and

 

compilation

 

can

 

be

 

done

 

in

 

one

 

step

 

with

 

the

 

cicstcl

 

command.

 

See

 

Chapter

 

8,

 

“Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs,”

 

on

 

page

 

213

 

for

 

more

 

information.

 

CICS

 

on

 

Open

 

Systems

 

and

 

CICS

 

for

 

Windows

 

support

 

various

 

compilers

 

and

 

languages.

   

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

5



CICS

 

for

 

AIX

 

supports

 

the

 

following:

 

v

   

IBM

 

C

 

and

 

C++

 

for

 

AIX

 

v

   

IBM

 

VisualAge

 

C++

 

v

   

IBM

 

COBOL

 

Set

 

for

 

AIX

 

v

   

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

v

   

IBM

 

PL/I

 

v

   

Java

 

Development

 

Kit

 

(JDK)

 

CICS

 

for

 

Solaris

 

supports

 

the

 

following:

 

v

   

Sun

 

Workshop

 

Compilers

 

C/C++

 

v

   

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

CICS

 

for

 

HP-UX

 

supports

 

the

 

following:

 

v

   

HP-UX

 

C/ANSI

 

C

 

v

   

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

CICS

 

for

 

Windows

 

supports

 

the

 

following:

 

v

   

IBM

 

Visual

 

Age

 

C++

 

for

 

Windows

 

v

   

Microsoft

 

Visual

 

C++

 

v

   

IBM

 

VisualAge

 

COBOL

 

for

 

Windows

 

v

   

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

v

   

IBM

 

VisualAge

 

PL/I

 

Enterprise

 

See

 

the

 

TXSeries

 

Release

 

Notes

 

for

 

the

 

specific

 

versions

 

of

 

this

 

software

 

supported

 

for

 

the

 

current

 

release.

 

How

 

a

 

CICS-based

 

application

 

differs

 

from

 

a

 

batch

 

application

 

Recovery

 

processing

 

for

 

an

 

online

 

application

 

is

 

more

 

complex

 

than

 

for

 

a

 

batch

 

system.

 

In

 

a

 

batch

 

application,

 

input

 

data

 

is

 

prepared

 

before

 

processing

 

begins.

 

The

 

data

 

is

 

then

 

supplied

 

to

 

the

 

batch

 

process

 

in

 

an

 

orderly

 

sequence,

 

which

 

is

 

controlled

 

and

 

predictable.

 

With

 

a

 

batch

 

program,

 

you

 

can

 

repeat

 

the

 

processing,

 

or

 

continue

 

it

 

from

 

the

 

point

 

of

 

failure.

 

In

 

a

 

CICS

 

application,

 

input

 

data

 

is

 

not

 

prepared.

 

The

 

application

 

user

 

enters

 

the

 

data

 

as

 

needed

 

while

 

the

 

application

 

is

 

running,

 

and

 

the

 

data

 

arrives

 

in

 

an

 

unpredictable

 

sequence.

 

With

 

an

 

online

 

application,

 

you

 

cannot

 

simply

 

rerun

 

the

 

application

 

or

 

continue

 

from

 

the

 

point

 

of

 

failure

 

because

 

the

 

state

 

of

 

the

 

process

 

is

 

unknown.

 

Online

 

application

 

programs

 

require

 

mechanisms

 

to

 

ensure

 

that

 

each

 

resource

 

associated

 

with

 

an

 

interrupted

 

online

 

application

 

is

 

returned

 

to

 

a

 

known

 

state,

 

so

 

that

 

processing

 

can

 

be

 

restarted

 

safely.

 

Application

 

program

 

development

 

life

 

cycle

 

Application

 

program

 

design

 

is

 

an

 

iterative

 

process.

 

Decisions

 

about

 

the

 

user

 

interface

 

affect

 

transaction

 

definitions,

 

which

 

in

 

turn,

 

cause

 

a

 

slight

 

change

 

in

 

specifications,

 

and

 

the

 

whole

 

cycle

 

begins

 

again.

 

A

 

simple

 

development

 

life

 

cycle

 

can

 

include

 

steps

 

to:

 

1.

   

Define

 

the

 

problem:

 

Specify

 

broadly,

 

the

 

function

 

required.

 

This

 

will

 

come

 

from

 

the

 

user

 

departments

 

within

 

your

 

organization.

 

2.

   

Design

 

the

 

transactions:

 

You

 

need

 

to

 

define

 

transactions

 

and

 

logical

 

units

 

of

 

work

 

(LUWs)

 

to

 

perform

 

the

 

defined

 

functions.

 

You

 

must

 

consider

 

several

 

points

 

when

 

designing

 

these

 

transactions:

 

v

   

The

 

requirements

 

imposed

 

by

 

the

 

environment.

 

This

 

includes

 

terminal

 

type

 

and

 

size,

 

data

 

storage

 

format,

 

and

 

security

 

requirements.

   

6

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

The

 

machine

 

usage,

 

response

 

times

 

and

 

transaction

 

availability.

 

v

   

The

 

type,

 

size,

 

and

 

quantity

 

of

 

records

 

to

 

be

 

processed.

 

v

   

The

 

IBM

 

3270

 

Information

 

Display

 

System

 

that

 

CICS

 

emulates.

 

This

 

is

 

how

 

your

 

applications

 

communicate

 

with

 

the

 

application

 

user.

 

v

   

The

 

efficiency

 

and

 

usability

 

of

 

the

 

application.

 

These

 

are

 

major

 

goals

 

in

 

any

 

application.

 

v

   

The

 

screen

 

layout

 

of

 

your

 

user

 

interface,

 

the

 

consistency

 

between

 

screens,

 

the

 

number

 

of

 

expected

 

keystrokes,

 

and

 

the

 

number

 

of

 

confirmation

 

messages

 

issued

 

to

 

reassure

 

users.

 

v

   

The

 

difference

 

in

 

constraints

 

between

 

online

 

processing

 

and

 

batch

 

applications.

 

v

   

The

 

exceptional

 

conditions

 

that

 

come

 

with

 

new

 

considerations

 

for

 

an

 

online

 

environment.

 

v

   

The

 

level

 

of

 

programming

 

specifications

 

and

 

the

 

availability

 

of

 

up-to-date

 

system

 

information.
3.

   

Write

 

the

 

application

 

program:

 

Considerations

 

include:

 

v

   

Choosing

 

a

 

programming

 

language

 

v

   

Deciding

 

how

 

your

 

application

 

program

 

uses

 

the

 

BMS

 

screens

 

v

   

Defining

 

screens

 

with

 

Basic

 

Mapping

 

Support

 

(BMS)

 

v

   

Saving

 

data

 

and

 

communicating

 

between

 

transactions
4.

   

Translate

 

and

 

compile

 

the

 

application

 

program.

 

5.

   

Test

 

the

 

application

 

program.

Developing

 

client/server

 

applications

 

In

 

TXSeries

 

CICS

 

there

 

are

 

two

 

application

 

programming

 

interfaces

 

that

 

allow

 

non-CICS

 

applications

 

in

 

a

 

client

 

system

 

to

 

use

 

the

 

facilities

 

of

 

CICS

 

in

 

a

 

connected

 

server

 

system.

 

Those

 

interfaces

 

are:

 

v

   

The

 

external

 

call

 

interface

 

(ECI)

 

v

   

The

 

external

 

presentation

 

interface

 

(EPI)

The

 

external

 

call

 

interface

 

(ECI)

 

With

 

the

 

ECI,

 

you

 

can

 

write

 

applications

 

that:

 

v

   

Call

 

a

 

CICS

 

program

 

in

 

a

 

CICS

 

server

 

from

 

a

 

non-CICS

 

program

 

v

   

Connect

 

to

 

several

 

servers

 

at

 

the

 

same

 

time

 

v

   

Have

 

several

 

outstanding

 

program

 

calls

 

at

 

the

 

same

 

time

 

v

   

Access

 

CICS

 

programs,

 

files,

 

transient

 

data

 

queues,

 

temporary

 

storage,

 

and

 

transactions

 

v

   

Exchange

 

data

 

between

 

the

 

client

 

and

 

the

 

server

 

The

 

ECI

 

application

 

programs

 

make

 

synchronous

 

or

 

asynchronous

 

calls.

 

Synchronous

 

calls

 

return

 

control

 

when

 

the

 

called

 

program

 

completes;

 

the

 

information

 

returned

 

is

 

immediately

 

available.

 

Asynchronous

 

calls

 

return

 

control

 

without

 

reference

 

to

 

the

 

completion

 

of

 

the

 

called

 

program,

 

and

 

the

 

application

 

is

 

notified

 

when

 

the

 

information

 

becomes

 

available.

 

Calls

 

may

 

be

 

extended,

 

that

 

is

 

a

 

single

 

logical

 

unit

 

of

 

work

 

may

 

cover

 

more

 

than

 

one

 

successive

 

call,

 

though

 

only

 

one

 

call

 

can

 

be

 

active

 

for

 

each

 

logical

 

unit

 

of

 

work

 

at

 

a

 

time.

 

The

 

application

 

can

 

manage

 

multiple

 

logical

 

units

 

of

 

work

 

concurrently

 

if

 

it

 

uses

 

asynchronous

 

calls.

 

The

 

called

 

program

 

can:

 

v

   

Update

 

resources

 

on

 

its

 

own

 

system.

   

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

7



v

   

Use

 

distributed

 

program

 

link

 

(DPL)

 

to

 

call

 

CICS

 

programs

 

on

 

other

 

systems.

 

v

   

Access

 

resources

 

on

 

other

 

CICS

 

systems

 

with

 

function

 

shipping

 

or

 

distributed

 

transaction

 

processing

 

(DTP).

 

The

 

ECI

 

consists

 

of

 

three

 

types

 

of

 

calls:

 

1.

   

Program

 

link

 

calls

 

that

 

cause

 

a

 

CICS

 

program

 

to

 

be

 

executed

 

on

 

a

 

CICS

 

server.

 

2.

   

Status

 

information

 

calls

 

that

 

retrieve

 

status

 

information

 

about

 

the

 

application

 

and

 

its

 

connection

 

to

 

the

 

CICS

 

server.

 

3.

   

Reply

 

solicitation

 

calls

 

that

 

retrieve

 

information

 

after

 

asynchronous

 

program

 

link

 

or

 

asynchronous

 

status

 

information

 

calls.

 

Also

 

available

 

with

 

the

 

ECI

 

is

 

the

 

ability

 

to

 

retrieve

 

information

 

about

 

available

 

servers

 

to

 

which

 

the

 

calls

 

are

 

directed.

 

The

 

external

 

presentation

 

interface

 

(EPI)

 

With

 

the

 

EPI,

 

you

 

can

 

write

 

applications

 

that:

 

v

   

Allow

 

a

 

non-CICS

 

application

 

program

 

to

 

be

 

viewed

 

as

 

a

 

3270

 

terminal

 

by

 

a

 

CICS

 

server

 

system

 

to

 

which

 

it

 

is

 

connected.

 

v

   

Connect

 

to

 

several

 

servers

 

at

 

the

 

same

 

time.

 

v

   

Have

 

several

 

outstanding

 

program

 

calls

 

at

 

the

 

same

 

time.

 

v

   

Schedule

 

transactions,

 

where

 

the

 

application

 

acts

 

as

 

the

 

principal

 

facility.

 

In

 

CICS

 

servers

 

that

 

support

 

access

 

through

 

the

 

EPI,

 

other

 

CICS

 

transactions

 

running

 

in

 

the

 

server

 

can

 

use

 

the

 

START

 

command

 

to

 

schedule

 

transactions

 

that

 

will

 

use

 

the

 

non-CICS

 

application

 

as

 

their

 

principal

 

facility.

 

When

 

a

 

transaction

 

is

 

initiated,

 

3270

 

datastreams

 

and

 

events

 

are

 

passed

 

between

 

the

 

CICS

 

server

 

and

 

the

 

application.

 

The

 

application

 

can

 

present

 

the

 

contents

 

of

 

the

 

terminal

 

I/O

 

to

 

its

 

user

 

in

 

any

 

manner

 

appropriate

 

to

 

the

 

application’s

 

operating

 

environment.

 

Transactions

 

may

 

be

 

routed

 

to

 

other

 

CICS

 

systems

 

by

 

standard

 

transaction

 

routing.

 

Resources

 

on

 

other

 

CICS

 

systems

 

can

 

be

 

accessed

 

with

 

function

 

shipping.

 

The

 

EPI

 

consists

 

of

 

functions,

 

data

 

structures,

 

and

 

events.

 

The

 

EPI

 

functions

 

define

 

application

 

programming

 

calls,

 

such

 

as

 

installing

 

new

 

terminals

 

to

 

be

 

controlled

 

by

 

the

 

process,

 

sending

 

data

 

from

 

a

 

terminal,

 

and

 

terminating

 

the

 

process.

 

The

 

EPI

 

data

 

structures

 

define

 

EPI

 

data,

 

such

 

as

 

reason

 

codes,

 

details

 

of

 

events,

 

terminal

 

details,

 

and

 

sense

 

codes.

 

The

 

EPI

 

events

 

are

 

used

 

to

 

respond

 

to

 

events

 

that

 

occur

 

against

 

a

 

terminal,

 

such

 

as

 

when

 

a

 

transaction

 

sends

 

data

 

and

 

is

 

expecting

 

a

 

reply.

 

Writing

 

ECI

 

and

 

EPI

 

application

 

programs

 

ECI

 

and

 

EPI

 

application

 

programs

 

that

 

run

 

on

 

CICS

 

on

 

Open

 

Systems

 

clients

 

may

 

be

 

written

 

in

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I.

 

Programs

 

that

 

do

 

not

 

make

 

operating

 

system

 

specific

 

calls

 

are

 

portable

 

between

 

CICS

 

on

 

Open

 

Systems

 

clients

 

and

 

other

 

IBM

 

CICS

 

Universal

 

Client

 

products.

 

Application

 

programs

 

can

 

use

 

the

 

facilities

 

of

 

both

 

the

 

ECI

 

and

 

the

 

EPI.

 

See

 

the

 

CICS

 

Family:

 

Client/Server

 

Programming

 

for

 

related

 

information.

 

How

 

CICS

 

runs

 

your

 

transactions

 

This

 

section

 

describes

 

how

 

CICS

 

transactions

 

and

 

application

 

programs

 

are

 

run.

   

8

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Note:

  

The

 

term

 

program

 

can

 

have

 

different

 

meanings

 

in

 

different

 

contexts.

 

Therefore,

 

the

 

terms

 

CICS

 

program,

 

application

 

program,

 

executable,

 

COBOL

 

program,

 

and

 

loadable

 

object

 

are

 

used

 

when

 

the

 

use

 

of

 

program

 

is

 

otherwise

 

misleading

 

or

 

unclear.

 

Components

 

of

 

the

 

CICS

 

runtime

 

system

 

The

 

major

 

components

 

of

 

TXSeries

 

CICS

 

are:

 

v

   

The

 

IBM

 

CICS

 

clients

 

that

 

you

 

use

 

to

 

attach

 

to

 

a

 

CICS

 

region

 

and

 

through

 

which

 

you

 

run

 

CICS

 

transactions.

 

v

   

The

 

transaction

 

scheduler,

 

a

 

component

 

that

 

receives

 

requests

 

to

 

run

 

transactions,

 

prioritizes

 

and

 

schedules

 

them,

 

and

 

dispatches

 

them

 

to

 

an

 

application

 

server

 

for

 

processing.

 

v

   

A

 

pool

 

of

 

application

 

servers

 

that

 

execute

 

the

 

transactions

 

and

 

interact

 

with

 

the

 

CICS

 

on

 

Open

 

Systems

 

client

 

processes

 

to

 

send

 

and

 

receive

 

terminal

 

input

 

and

 

output.

 

v

   

One

 

or

 

more

 

Structured

 

File

 

Servers

 

(SFS)

 

that

 

house

 

the

 

CICS

 

files,

 

intrapartition

 

transient

 

data

 

queues,

 

auxiliary

 

temporary

 

storage

 

queues

 

belonging

 

to

 

your

 

region,

 

and

 

asynchronous

 

processing

 

local

 

queues.

 

v

   

A

 

PPC

 

Gateway

 

server

 

used

 

for

 

intersystem

 

communication

 

across

 

SNA

 

networks.

 

A

 

PPC

 

Gateway

 

server

 

is

 

only

 

required

 

for

 

synchronization

 

level

 

2

 

communications

 

across

 

SNA.

Interacting

 

with

 

the

 

CICS

 

region

 

On

 

CICS

 

for

 

Windows

 

you

 

interact

 

with

 

a

 

CICS

 

region

 

through

 

the

 

CICS

 

on

 

Open

 

Systems

 

clients

 

or

 

by

 

using

 

Telnet

 

in

 

conjunction

 

with

 

the

 

cicsteld

 

process.

 

On

 

CICS

 

on

 

Open

 

Systems

 

you

 

interact

 

with

 

a

 

CICS

 

region

 

by

 

running

 

either

 

the

 

cicsterm

 

or

 

cicsteld

 

process

 

or

 

a

 

replaceable

 

CICS

 

client

 

process

 

on

 

your

 

local

 

terminal.

 

cicstermp

 

runs

 

on

 

a

 

printer.

 

These

 

are

 

all

 

multi-threaded

 

CICS

 

processes.

 

Your

 

local

 

terminal

 

does

 

not

 

have

 

to

 

be

 

located

 

on

 

the

 

same

 

node

 

as

 

the

 

region

 

to

 

which

 

you

 

wish

 

to

 

be

 

attached,

 

and

 

it

 

is

 

not

 

necessary

 

to

 

have

 

all

 

your

 

CICS

 

on

 

Open

 

Systems

 

client

 

processes

 

on

 

the

 

same

 

nodes.

 

Because

 

of

 

this

 

flexibility,

 

CICS

 

communicates

 

between

 

a

 

CICS

 

client

 

and

 

the

 

region

 

by

 

using

 

remote

 

procedure

 

calls

 

(RPCs).

 

If

 

your

 

terminal

 

is

 

remote

 

to

 

the

 

node

 

housing

 

the

 

region,

 

network

 

traffic

 

is

 

involved

 

in

 

sending

 

the

 

RPC

 

to

 

and

 

from

 

your

 

CICS

 

on

 

Open

 

Systems

 

client

 

process.

 

If

 

it

 

is

 

local,

 

no

 

network

 

traffic

 

is

 

involved,

 

but

 

a

 

communication

 

path

 

still

 

has

 

to

 

be

 

set

 

up

 

between

 

the

 

CICS

 

on

 

Open

 

Systems

 

client

 

process

 

and

 

the

 

region.

 

The

 

CICS

 

on

 

Open

 

Systems

 

client

 

processes

 

communicate

 

using

 

RPCs

 

both

 

with

 

the

 

transaction

 

scheduler

 

and

 

the

 

application

 

server

 

processing

 

the

 

current

 

transaction.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

and

 

the

 

CICS

 

Administration

 

Guide

 

for

 

related

 

information.

 

Transaction

 

scheduler

 

This

 

CICS

 

component

 

is

 

responsible

 

for

 

scheduling

 

and

 

dispatching

 

the

 

transaction

 

to

 

be

 

run.

 

Each

 

user,

 

device

 

and

 

transaction

 

has

 

an

 

associated

 

priority;

 

when

 

you

 

submit

 

a

 

transaction

 

the

 

scheduler

 

computes

 

an

 

overall

 

priority

 

for

 

it

 

which

 

it

 

uses

 

to

 

prioritize

 

requests

 

in

 

times

 

of

 

heavy

 

demand.

 

When

 

able

 

to

 

do

 

so,

 

it

 

dispatches

 

the

 

transaction

 

request

 

to

 

an

 

available

 

application

 

server

 

for

 

processing.

   

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

9



The

 

scheduler

 

communicates

 

with

 

the

 

application

 

server

 

and

 

the

 

CICS

 

on

 

Open

 

Systems

 

client.

 

The

 

scheduler,

 

as

 

the

 

controller

 

of

 

the

 

overall

 

workload,

 

also

 

controls

 

the

 

number

 

of

 

application

 

servers

 

in

 

the

 

region.

 

Application

 

servers

 

An

 

application

 

server

 

is

 

a

 

multi-threaded

 

CICS

 

process

 

providing

 

a

 

complete

 

environment

 

for

 

running

 

a

 

CICS

 

transaction.

 

If

 

your

 

transaction

 

is

 

conversational,

 

it

 

will

 

be

 

processed

 

by

 

exactly

 

one

 

application

 

server,

 

but

 

if

 

it

 

is

 

pseudoconversational

 

each

 

transaction

 

in

 

the

 

sequence

 

may

 

in

 

turn

 

be

 

executed

 

by

 

a

 

different

 

server.

 

When

 

you

 

configure

 

CICS,

 

you

 

specify

 

the

 

minimum

 

and

 

maximum

 

number

 

of

 

servers

 

for

 

your

 

region.

 

The

 

transaction

 

scheduler

 

ensures

 

that

 

this

 

minimum

 

number

 

is

 

always

 

present,

 

and

 

creates

 

and

 

destroys

 

servers

 

up

 

to

 

the

 

defined

 

maximum

 

number

 

depending

 

on

 

the

 

overall

 

workload.

 

All

 

the

 

application

 

servers

 

in

 

the

 

pool

 

have

 

to

 

be

 

located

 

on

 

the

 

same

 

node,

 

but

 

do

 

not

 

need

 

to

 

be

 

on

 

the

 

same

 

node

 

as

 

the

 

CICS

 

on

 

Open

 

Systems

 

client.

 

They

 

communicate

 

with

 

each

 

other

 

using

 

signals

 

and

 

shared

 

memory,

 

and

 

use

 

RPCs

 

to

 

communicate

 

with

 

the

 

other

 

components

 

of

 

the

 

region.

 

Structured

 

File

 

Server

 

(SFS)

 

Your

 

region

 

will

 

use

 

one

 

or

 

more

 

SFSs,

 

or

 

optionally

 

a

 

relational

 

database

 

supported

 

by

 

your

 

system,

 

such

 

as

 

DB2

 

on

 

AIX..

 

CICS

 

provides

 

several

 

commands

 

to

 

allow

 

you

 

to

 

access

 

SFS

 

files.

 

In

 

addition,

 

intrapartition

 

transient

 

data

 

queues,

 

auxiliary

 

temporary

 

storage

 

queues,

 

and

 

asynchronous

 

processing

 

local

 

queues

 

store

 

their

 

data

 

in

 

SFS

 

files.

 

All

 

access

 

to

 

SFSs

 

occurs

 

through

 

application

 

servers;

 

the

 

application

 

server,

 

a

 

server

 

in

 

its

 

own

 

right

 

to

 

CICS,

 

becomes

 

a

 

client

 

of

 

SFS.

 

There

 

is

 

no

 

need

 

to

 

locate

 

all

 

the

 

SFSs

 

on

 

the

 

same

 

node,

 

or

 

on

 

the

 

same

 

node

 

as

 

the

 

application

 

servers.

 

Communication

 

is

 

with

 

RPCs.

 

PPC

 

Gateway

 

server

 

A

 

region

 

can

 

use

 

one

 

or

 

more

 

PPC

 

Gateway

 

server

 

servers

 

to

 

access

 

SNA

 

hosts.

 

As

 

with

 

SFS,

 

an

 

application

 

server

 

becomes

 

a

 

client

 

of

 

the

 

PPC

 

Gateway

 

server.

 

See

 

the

 

CICS

 

Intercommunication

 

Guide

 

for

 

more

 

information

 

about

 

using

 

the

 

PPC

 

Gateway

 

server

 

to

 

access

 

SNA

 

hosts.

 

How

 

CICS

 

executes

 

your

 

transactions

 

There

 

are

 

two

 

steps

 

in

 

this

 

process:

 

1.

   

Requesting

 

a

 

transaction

 

to

 

be

 

run

 

2.

   

Executing

 

the

 

transaction

Requesting

 

a

 

transaction

 

to

 

be

 

run

 

When

 

you

 

enter

 

a

 

CICS

 

transaction

 

identifier

 

through

 

an

 

CICS

 

on

 

Open

 

Systems

 

client,

 

the

 

transaction

 

scheduler

 

selects

 

an

 

application

 

server

 

to

 

run

 

the

 

transaction.

 

Executing

 

the

 

transaction

 

When

 

you

 

link-edit

 

a

 

CICS

 

program

 

to

 

be

 

run

 

under

 

CICS

 

(for

 

example

 

using

 

cicstcl

 

to

 

translate,

 

compile

 

and

 

link),

 

the

 

object

 

you

 

create

 

is

 

not

 

directly

 

executable

 

by

 

the

 

operating

 

system

 

both

 

because

 

it

 

contains

 

some

 

unresolved

 

symbols

 

and

 

because

 

it

 

expects

 

to

 

be

 

run

 

by

 

a

 

CICS

 

application

 

server.

 

The

 

CICS

 

application

 

server

 

provides

 

a

 

complete

 

environment

 

for

 

running

 

the

 

loadable

 

objects

 

produced

 

by

 

cicstcl.

 

To

 

run

 

your

 

transaction,

 

CICS

 

looks

 

up

 

the

 

name

 

and

 

location

 

of

 

its

 

first

 

CICS

 

program,

 

and

 

uses

 

the

 

operating

 

system

 

dynamic

 

loading

 

facility

 

to

 

load

 

that

 

program

 

into

 

the

 

application

 

server.

 

The

 

unresolved

 

symbols

 

in

 

the

 

program

 

are

 

then

 

resolved

 

by

 

symbols

 

provided

 

by

 

the

 

server

 

and

 

the

 

program

   

10

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



begins

 

execution.

 

This

 

applies

 

irrespective

 

of

 

the

 

language

 

the

 

program

 

is

 

written

 

in.

 

Programs

 

produced

 

by

 

the

 

supported

 

compilers

 

are

 

shared

 

automatically

 

between

 

multiple

 

application

 

servers

 

on

 

the

 

same

 

machine.

 

A

 

copy

 

of

 

the

 

program

 

is

 

loaded

 

by

 

each

 

application

 

server

 

that

 

is

 

requested

 

to

 

run

 

it.

 

The

 

CICS

 

application

 

programming

 

interface

 

(API)

 

CICS

 

offers

 

a

 

common

 

set

 

of

 

programming

 

commands

 

that

 

are

 

used

 

to

 

request

 

CICS

 

services

 

from

 

an

 

application

 

program.

 

This

 

set

 

of

 

commands

 

is

 

referred

 

to

 

as

 

the

 

application

 

programming

 

interface

 

(API).

 

Because

 

the

 

API

 

is

 

common

 

to

 

all

 

CICS

 

family

 

members,

 

CICS

 

applications

 

can

 

be

 

moved

 

from

 

one

 

platform

 

to

 

another.

 

The

 

commands

 

are

 

statements

 

that

 

you

 

include

 

at

 

appropriate

 

points

 

in

 

your

 

application

 

program

 

to

 

perform

 

a

 

variety

 

of

 

programming

 

functions.

 

If

 

you

 

are

 

familiar

 

with

 

CICS

 

mainframe

 

products,

 

you

 

should

 

note

 

that

 

TXSeries

 

CICS

 

support

 

command-level,

 

but

 

not

 

macro-level,

 

application

 

programs.

 

You

 

can

 

find

 

full

 

reference

 

information

 

for

 

each

 

of

 

the

 

CICS

 

commands

 

available

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Refer

 

also

 

to

 

Chapter

 

7,

 

“Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS,”

 

on

 

page

 

191

 

for

 

information

 

about

 

preparing

 

applications

 

developed

 

on

 

other

 

platforms

 

to

 

run

 

with

 

either

 

CICS

 

on

 

Open

 

Systems

 

or

 

CICS

 

for

 

Windows.

 

Note:

  

TXSeries

 

CICS

 

support

 

a

 

subset

 

of

 

the

 

CICS

 

API

 

commands.

 

When

 

migrating

 

applications,

 

it

 

is

 

important

 

to

 

note

 

that

 

some

 

commands

 

are

 

not

 

available

 

with

 

all

 

CICS

 

products.

 

Refer

 

to

 

the

 

application

 

programming

 

information

 

for

 

each

 

CICS

 

product

 

as

 

well

 

as

 

CICS

 

Family:

 

API

 

Structure

 

for

 

details.

 

How

 

to

 

split

 

the

 

program

 

logic

 

The

 

basis

 

of

 

application

 

design

 

is

 

the

 

split

 

of

 

program

 

logic

 

into

 

modules,

 

in

 

much

 

the

 

same

 

way

 

as

 

for

 

traditional

 

modular

 

and

 

structured

 

programming.

 

In

 

general

 

terms,

 

there

 

are

 

three

 

parts

 

to

 

an

 

application:

 

v

   

Presentation

 

services

 

v

   

Data

 

services

 

v

   

Business

 

logic

 

v

   

Problem

 

determination

 

logic

Presentation

 

services

 

Presentation

 

services

 

are

 

used

 

for

 

communication

 

between

 

the

 

end

 

user

 

and

 

the

 

transaction

 

processing

 

system.

 

Presentation

 

services

 

interface

 

with

 

the

 

presentation

 

management

 

facilities

 

of

 

the

 

system,

 

which

 

may

 

or

 

may

 

not

 

be

 

part

 

of

 

CICS.

  

See

 

“Summary

 

of

 

API

 

presentation

 

services”

 

on

 

page

 

12

 

and

 

Chapter

 

4,

 

“Coding

 

for

 

presentation

 

services,”

 

on

 

page

 

67

 

for

 

information

 

about

 

the

 

CICS

 

commands

 

and

 

facilities

 

provided

 

for

 

presentation

 

services.

 

Data

 

services

 

Data

 

services

 

are

 

used

 

to

 

retrieve

 

and

 

update

 

data.

 

Data

 

services

 

interface

 

with

 

the

 

CICS

 

data

 

management

 

facilities.

  

See

 

“Summary

 

of

 

API

 

data

 

services”

 

on

 

page

 

13

 

and

 

Chapter

 

5,

 

“Coding

 

for

 

data

 

services,”

 

on

 

page

 

101

 

for

 

information

 

about

 

the

 

CICS

 

commands

 

and

 

facilities

 

provided

 

for

 

data

 

services.

 

Business

 

logic

 

Business

 

logic,

 

which

 

forms

 

the

 

bulk

 

of

 

the

 

processing,

 

performs

 

the

 

data

   

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

11



manipulation

 

and

 

computation

 

required

 

by

 

the

 

transaction.

 

Subdivide

 

your

 

business

 

logic

 

in

 

such

 

a

 

way

 

that

 

each

 

module

 

provides

 

a

 

separate

 

service.

 

For

 

example,

 

you

 

could

 

have

 

modules

 

for:

 

v

   

Checking

 

the

 

validity

 

of

 

your

 

input

 

data

 

v

   

Handling

 

communications

 

v

   

Performing

 

data

 

access

 

v

   

Accessing

 

system

 

information

 

v

   

Setting

 

up

 

your

 

processing

 

environment

 

v

   

Requesting

 

system

 

services

 

This

 

technique

 

of

 

dividing

 

up

 

your

 

business

 

logic

 

is

 

known

 

as

 

isolation.

 

Designing

 

your

 

applications

 

in

 

this

 

way

 

can

 

give

 

you

 

a

 

number

 

of

 

benefits,

 

such

 

as:

 

v

   

Enhanced

 

portability

 

for

 

distribution

 

of

 

applications

 

across

 

CICS

 

platforms.

 

v

   

Enhanced

 

programmer

 

productivity

 

because

 

code

 

can

 

be

 

reused

 

in

 

other

 

applications.

 

v

   

Reduced

 

maintenance

 

costs

 

because

 

similar

 

functions

 

are

 

grouped

 

together,

 

making

 

it

 

easier

 

to

 

locate

 

and

 

modify

 

code.

 

v

   

Well-defined

 

interfaces,

 

making

 

it

 

easier

 

to

 

add

 

new

 

modules

 

or

 

to

 

replace

 

outdated

 

ones.

 

See

 

“Summary

 

of

 

API

 

business

 

logic”

 

on

 

page

 

14

 

and

 

Chapter

 

6,

 

“Coding

 

for

 

business

 

logic,”

 

on

 

page

 

173

 

for

 

information

 

about

 

the

 

CICS

 

commands

 

and

 

services

 

provided

 

for

 

business

 

logic.

  

Refer

 

also

 

to

 

“Using

 

CICS-supplied

 

transactions

 

to

 

test

 

your

 

application”

 

on

 

page

 

255.

 

Problem

 

determination

 

logic

 

Problem

 

determination

 

logic

 

is

 

used

 

to

 

handle

 

error

 

situations

 

and

 

to

 

aid

 

in

 

the

 

development

 

and

 

debugging

 

of

 

applications.

  

See

 

“Summary

 

of

 

API

 

problem

 

determination

 

logic”

 

on

 

page

 

15

 

and

 

Chapter

 

9,

 

“Coding

 

for

 

problem

 

determination,”

 

on

 

page

 

233

 

for

 

information

 

about

 

the

 

CICS

 

commands

 

and

 

services

 

provided

 

for

 

problem

 

determination

 

logic.

 

For

 

information

 

about

 

application

 

programming

 

for

 

distributed

 

transaction

 

processes,

 

refer

 

to

 

the

 

CICS

 

Intercommunication

 

Guide.

 

Summary

 

of

 

API

 

presentation

 

services

 

There

 

are

 

two

 

ways

 

to

 

write

 

applications

 

that

 

interact

 

with

 

terminals

 

in

 

CICS:

 

v

   

Basic

 

Mapping

 

Support

 

(BMS)

 

v

   

Terminal

 

Services

Using

 

Basic

 

Mapping

 

Support

 

(BMS)

 

in

 

CICS

 

BMS

 

provides

 

both

 

device

 

and

 

format

 

independence

 

for

 

display

 

terminals

 

and

 

printers.

 

Device

 

independence

 

means

 

that

 

you

 

do

 

not

 

need

 

to

 

know

 

the

 

control

 

characteristics

 

of

 

the

 

terminal.

 

Format

 

independence

 

simplifies

 

the

 

positioning

 

of

 

data

 

on

 

the

 

terminal,

 

and

 

allows

 

CICS

 

to

 

adapt

 

displays

 

for

 

different

 

terminals

 

without

 

any

 

change

 

to

 

the

 

application

 

program.

 

If

 

you

 

are

 

familiar

 

with

 

CICS

 

on

 

other

 

platforms

 

you

 

will

 

be

 

aware

 

that

 

BMS

 

provides

 

three

 

levels

 

of

 

support,

 

called

 

minimum,

 

standard,

 

and

 

full

 

function.

 

CICS

 

on

 

Open

 

Systems

 

and

 

IBM

 

CICS

 

for

 

Windows

 

support

 

minimum

 

function

 

BMS

   

12

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



and

 

some

 

standard

 

function

 

(see

 

“BMS

 

functions

 

supported

 

in

 

CICS”

 

on

 

page

 

72).

 

This

 

allows

 

you

 

to

 

code

 

source

 

maps

 

that

 

describe

 

the

 

prompts

 

and

 

inputs

 

on

 

your

 

screen,

 

which

 

you

 

process

 

using

 

the

 

BMS

 

processor.

 

You

 

then

 

code

 

CICS

 

commands

 

in

 

your

 

application

 

to

 

send

 

and

 

receive

 

these

 

maps

 

to

 

and

 

from

 

the

 

terminal.

 

The

 

commands

 

you

 

can

 

use

 

for

 

this

 

purpose

 

are:

 

v

   

SEND

 

TEXT

 

v

   

SEND

 

CONTROL

 

v

   

SEND

 

MAP

 

v

   

HANDLE

 

AID

 

v

   

RECEIVE

 

MAP

See

 

“Basic

 

mapping

 

support

 

(BMS)

 

services”

 

on

 

page

 

71

 

for

 

information

 

on

 

these

 

commands.

 

Using

 

terminal

 

services

 

in

 

CICS

 

Terminal

 

services

 

allow

 

you

 

to

 

connect

 

a

 

wide

 

variety

 

of

 

terminals

 

to

 

the

 

CICS

 

system.

 

The

 

terminal

 

services

 

commands

 

are:

 

v

   

CONVERSE

 

v

   

RECEIVE

 

v

   

SEND

 

v

   

SEND

 

TEXT

 

v

   

WAIT

 

TERMINAL

These

 

commands

 

use

 

ASCII

 

3270

 

datastreams

 

to

 

communicate

 

with

 

the

 

terminal.

 

These

 

commands

 

are

 

discussed

 

in

 

“Terminal

 

services”

 

on

 

page

 

67.

 

Note:

  

Advanced

 

use

 

of

 

these

 

commands

 

requires

 

a

 

knowledge

 

of

 

3270

 

data

 

streams

 

and

 

the

 

various

 

capabilities

 

of

 

terminals.

 

Summary

 

of

 

API

 

data

 

services

 

Data

 

services

 

refer

 

to

 

the

 

storage

 

of

 

data

 

in

 

files,

 

queues,

 

journals

 

and

 

databases

 

and

 

the

 

ways

 

in

 

which

 

you

 

can

 

retrieve

 

the

 

data.

 

Data

 

services

 

include

 

the

 

following

 

facilities.

 

File

 

services

 

CICS

 

allows

 

you

 

to

 

access

 

user

 

files

 

managed

 

by

 

an

 

Encina

 

Structured

 

File

 

Server

 

(SFS)

 

as

 

VSAM

 

files.

 

VSAM

 

refers

 

to

 

the

 

Virtual

 

Storage

 

Access

 

Method

 

that

 

provides

 

direct

 

or

 

sequential

 

processing

 

of

 

fixed-

 

and

 

variable-length

 

records

 

on

 

direct

 

access

 

devices.

 

For

 

more

 

information

 

about

 

how

 

CICS

 

accesses

 

SFS

 

files

 

as

 

VSAM

 

files,

 

see

 

“VSAM

 

emulation

 

by

 

SFS

 

and

 

distributed

 

CICS”

 

on

 

page

 

108

 

and

 

for

 

more

 

information

 

about

 

how

 

CICS

 

accesses

 

DB2

 

files

 

as

 

VSAM

 

files,

 

see

 

“VSAM

 

emulation

 

by

 

DB2

 

and

 

distributed

 

CICS”

 

on

 

page

 

113.

 

SFS

 

files

 

support

 

keyed,

 

sequential,

 

and

 

relative

 

access.

 

Files

 

can

 

be

 

defined

 

as

 

recoverable

 

or

 

non-recoverable.

 

CICS

 

cooperates

 

with

 

SFS

 

to

 

provide

 

the

 

transactional

 

properties

 

for

 

accessing

 

recoverable

 

files.

 

In

 

addition

 

to

 

the

 

usual

 

file

 

facilities

 

that

 

allow

 

you

 

to

 

read

 

from,

 

write

 

to,

 

and

 

delete

 

a

 

file,

 

CICS

 

provides

 

a

 

file

 

browse

 

function.

 

You

 

select

 

the

 

record

 

at

 

which

 

you

 

want

 

the

 

browse

 

to

 

start.

 

You

 

can

 

then

 

read

 

each

 

record

 

in

 

the

 

file

 

in

 

turn,

 

either

 

forwards

 

or

 

backwards

 

through

 

the

 

file.

   

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

13



Queue

 

services

 

CICS

 

provides

 

some

 

special

 

storage

 

areas

 

of

 

its

 

own,

 

called

 

transient

 

data

 

queues

 

and

 

temporary

 

storage

 

queues.

 

The

 

transient

 

data

 

service

 

handles

 

queues

 

of

 

data

 

to

 

be

 

sent

 

to

 

terminals,

 

such

 

as

 

printers,

 

and

 

to

 

sequential

 

files.

 

The

 

temporary

 

storage

 

service

 

provides

 

an

 

internal

 

scratchpad.

 

Both

 

of

 

these

 

storage

 

types

 

can

 

be

 

made

 

recoverable.

 

Journal

 

services

 

CICS

 

provides

 

facilities

 

for

 

creating

 

and

 

managing

 

journals.

 

A

 

journal

 

is

 

a

 

set

 

of

 

special-purpose

 

sequential

 

files

 

and

 

may

 

be

 

used,

 

for

 

example,

 

to

 

keep

 

an

 

audit

 

trail

 

or

 

system

 

log.

 

See

 

also

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Relational

 

database

 

services

 

CICS

 

allows

 

access

 

to

 

relational

 

databases

 

that

 

provide

 

a

 

programmable

 

interface

 

through

 

Structured

 

Query

 

Language

 

(SQL)

 

commands

 

in

 

COBOL,

 

C,

 

C++

 

or

 

PL/I.

 

See

 

“SQL

 

restrictions

 

and

 

relational

 

database

 

services”

 

on

 

page

 

142

 

for

 

information

 

about

 

usage

 

and

 

restrictions.

 

Summary

 

of

 

API

 

business

 

logic

 

Business

 

logic

 

refers

 

to

 

the

 

manipulation

 

of

 

data

 

from

 

the

 

time

 

it

 

is

 

retrieved

 

from

 

storage

 

to

 

the

 

time

 

when

 

it

 

is

 

either

 

presented

 

to

 

the

 

user

 

or

 

updated.

 

The

 

following

 

sections

 

list

 

the

 

commands

 

used

 

for

 

business

 

logic.

 

Program

 

execution

 

services

 

A

 

transaction

 

is

 

not

 

limited

 

to

 

running

 

a

 

single

 

program.

 

You

 

can

 

get

 

one

 

program

 

to

 

call

 

another,

 

and

 

you

 

can

 

return

 

a

 

request

 

to

 

run

 

another

 

transaction

 

when

 

this

 

transaction

 

completes.

 

The

 

commands

 

are:

 

v

   

LINK

 

v

   

RETURN

 

v

   

XCTL

 

These

 

commands

 

are

 

discussed

 

in

 

“Program

 

execution

 

services”

 

on

 

page

 

174.

 

Timer

 

services

 

Timer

 

services

 

are

 

provided

 

that

 

enable

 

you

 

to

 

start

 

and

 

control

 

transactions.

 

The

 

commands

 

are:

 

v

   

ASKTIME

 

v

   

CANCEL

 

v

   

DELAY

 

v

   

FORMATTIME

 

v

   

RETRIEVE

 

v

   

START

 

v

   

SUSPEND

 

These

 

commands

 

are

 

discussed

 

in

 

“Timer

 

services”

 

on

 

page

 

179.

 

Synchronization

 

services

 

Synchronization

 

services

 

enable

 

serialized

 

access

 

to

 

resources.

 

The

 

commands

 

are:

 

v

   

DEQ

 

v

   

ENQ

 

These

 

commands

 

are

 

discussed

 

in

 

“Synchronization

 

services”

 

on

 

page

 

181.

   

14

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Storage

 

services

 

Storage

 

areas

 

and

 

commands

 

that

 

manage

 

task

 

storage

 

are

 

provided.

 

The

 

commands

 

are:

 

v

   

ADDRESS

 

v

   

FREEMAIN

 

v

   

GETMAIN

 

v

   

LOAD

 

v

   

RELEASE

 

These

 

commands

 

are

 

discussed

 

in

 

“Storage

 

services”

 

on

 

page

 

182.

 

Logical

 

unit

 

of

 

work

 

(LUW)

 

services

 

Commands

 

are

 

available

 

to

 

delimit

 

logical

 

units

 

of

 

work

 

in

 

your

 

transaction.

 

The

 

commands

 

used

 

for

 

this

 

purpose

 

are:

 

v

   

RETURN

 

v

   

SYNCPOINT

 

These

 

commands

 

are

 

discussed

 

in

 

“Logical

 

unit

 

of

 

work

 

(LUW)

 

services”

 

on

 

page

 

184.

 

Configuration

 

services

 

Commands

 

are

 

available

 

to

 

enquire

 

upon

 

and

 

dynamically

 

configure

 

CICS

 

runtime

 

resource

 

definitions,

 

such

 

as

 

files

 

and

 

transactions.

 

The

 

commands

 

you

 

can

 

use

 

for

 

this

 

purpose

 

are:

 

v

   

ASSIGN

 

v

   

INQUIRE

 

and

 

SET

 

These

 

commands

 

are

 

discussed

 

in

 

“Configuration

 

services”

 

on

 

page

 

186.

 

Refer

 

to

 

the

 

CICS

 

Administration

 

Reference

 

and

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

additional

 

guidance

 

information

 

on

 

the

 

use

 

of

 

INQUIRE

 

and

 

SET.

 

Intersystem

 

communication

 

services

 

As

 

described

 

in

 

“Distributed

 

transaction

 

processing”

 

on

 

page

 

5,

 

CICS

 

provides

 

commands

 

that

 

enable

 

distributed

 

transaction

 

processing

 

(DTP)

 

between

 

a

 

CICS

 

region

 

and

 

any

 

system

 

supporting

 

APPC

 

protocol.

 

The

 

commands

 

are:

 

v

   

ALLOCATE

 

v

   

CONNECT

 

PROCESS

 

v

   

CONVERSE

 

v

   

EXTRACT

 

ATTRIBUTES

 

v

   

EXTRACT

 

PROCESS

 

v

   

FREE

 

v

   

ISSUE

 

ABEND

 

v

   

ISSUE

 

CONFIRMATION

 

v

   

ISSUE

 

ERROR

 

v

   

ISSUE

 

PREPARE

 

v

   

ISSUE

 

SIGNAL

 

v

   

RECEIVE

 

v

   

SEND

 

v

   

WAIT

 

CONVID

See

 

also

 

the

 

CICS

 

Intercommunication

 

Guide.

 

Summary

 

of

 

API

 

problem

 

determination

 

logic

 

Problem

 

determination

 

logic

 

refers

 

to

 

the

 

services

 

provided

 

to

 

aid

 

in

 

error

 

handling

 

and

 

application

 

programming

 

debugging.

   

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

15



Error

 

handling

 

As

 

described

 

in

 

“Error-handling

 

services”

 

on

 

page

 

233,

 

a

 

number

 

of

 

commands

 

allow

 

you

 

to

 

handle

 

exception

 

conditions

 

that

 

might

 

arise

 

during

 

the

 

running

 

of

 

your

 

applications.

 

Those

 

commands

 

are:

 

v

   

ABEND

 

v

   

HANDLE

 

ABEND

 

v

   

HANDLE

 

CONDITION

 

v

   

IGNORE

 

CONDITION

 

v

   

POP

 

HANDLE

 

v

   

PUSH

 

HANDLE

Debugging

 

services

 

As

 

described

 

in

 

Chapter

 

9,

 

“Coding

 

for

 

problem

 

determination,”

 

on

 

page

 

233,

 

commands

 

are

 

available

 

to

 

help

 

you

 

debug

 

application

 

programs.

 

The

 

commands

 

are:

 

v

   

TRACE

 

v

   

ENTER

 

v

   

DUMP

Performance

 

monitoring

 

As

 

described

 

in

 

“Performance

 

monitoring

 

services”

 

on

 

page

 

251,

 

commands

 

are

 

available

 

to

 

help

 

you

 

analyze

 

the

 

performance

 

of

 

your

 

system

 

and

 

of

 

individual

 

transactions,

 

thereby

 

helping

 

to

 

determine

 

problems.

 

The

 

commands

 

used

 

for

 

this

 

are:

 

v

   

COLLECT

 

STATISTICS

 

v

   

ENTER

 

v

   

INQUIRE

 

STATISTICS

 

v

   

PERFORM

 

STATISTICS

 

RECORD

 

v

   

SET

 

STATISTICS

CICS

 

application

 

development

 

tools

 

This

 

information

 

introduces

 

you

 

to

 

the

 

tools

 

provided

 

in

 

CICS

 

that

 

enable

 

you

 

to

 

develop

 

and

 

debug

 

transactions.

 

Presentation

 

interface

 

development

 

Use

 

the

 

CICS

 

BMS

 

processor

 

to

 

translate

 

BMS

 

source

 

files,

 

which

 

contain

 

the

 

definitions

 

of

 

map

 

sets,

 

to

 

produce

 

a

 

symbolic

 

map

 

and

 

a

 

physical

 

map.

 

The

 

symbolic

 

map

 

is

 

a

 

programming

 

source

 

language

 

data

 

structure

 

(a

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

structure)

 

used

 

by

 

the

 

compiler

 

to

 

resolve

 

source

 

language

 

references

 

to

 

fields

 

in

 

the

 

map.

 

The

 

physical

 

map

 

contains

 

the

 

information

 

necessary

 

to

 

display

 

the

 

map

 

on

 

a

 

physical

 

terminal,

 

and

 

contains

 

instructions

 

for

 

embedding

 

control

 

characters

 

within

 

a

 

datastream

 

in

 

order

 

to

 

achieve

 

this.

 

Application

 

program

 

translation

 

Application

 

programs

 

that

 

include

 

CICS

 

API

 

commands

 

are

 

processed

 

by

 

the

 

command

 

language

 

translator

 

(cicstran)

 

that

 

translates

 

the

 

CICS

 

API

 

commands

 

into

 

statements

 

in

 

the

 

language

 

used.

 

This

 

translator

 

accepts

 

as

 

input

 

a

 

source

 

program

 

written

 

in

 

COBOL,

 

C,

 

or

 

C++,

 

where

 

CICS

 

API

 

commands

 

are

 

coded,

 

and

 

produces

 

as

 

output

 

an

 

equivalent

 

source

 

program

 

where

 

each

 

command

 

is

 

translated

 

into

 

statements

 

in

 

the

 

language

 

of

 

the

 

source

 

program.

 

You

 

can

 

then

 

compile

 

and

 

link-edit

 

your

 

programs

 

using

 

the

 

COBOL,

 

C,

 

or

 

C++

 

compilers.

   

16

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Alternatively,

 

you

 

can

 

request

 

that

 

your

 

source

 

program

 

is

 

translated,

 

compiled,

 

and

 

link-edited

 

in

 

one

 

step

 

cicstcl.

 

The

 

advantage

 

of

 

using

 

this

 

alternative

 

is

 

that

 

CICS

 

uses

 

the

 

correct

 

compilers

 

and

 

sets

 

up

 

the

 

options

 

required

 

by

 

CICS

 

for

 

translation.

 

The

 

IBM

 

PL/I

 

compiler

 

has

 

an

 

integrated

 

CICS

 

processor.

 

This

 

means

 

that

 

it

 

is

 

unnecessary

 

(and

 

indeed

 

not

 

possible)

 

to

 

run

 

a

 

separate

 

CICS

 

translator

 

step

 

for

 

CICS

 

programs

 

written

 

in

 

IBM

 

PL/I.

 

You

 

should

 

therefore

 

only

 

use

 

either

 

cicstcl

 

or

 

the

 

IBM

 

PL/I

 

invoked

 

directly

 

and

 

not

 

attempt

 

to

 

use

 

cicstran.

 

Chapter

 

8,

 

“Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs,”

 

on

 

page

 

213

 

provides

 

full

 

details.

 

Application

 

program

 

debugging

 

CICS

 

provides

 

a

 

transaction

 

called

 

the

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)

 

that

 

enables

 

you

 

to

 

debug

 

an

 

application

 

program

 

that

 

has

 

been

 

preprocessed

 

with

 

the

 

-e

 

option

 

(on

 

cicstran

 

or

 

cicstcl)

 

without

 

modifying

 

the

 

program.

 

The

 

facility

 

displays

 

the

 

state

 

of

 

the

 

application

 

program

 

at

 

the

 

CICS

 

interception

 

points

 

and

 

allows

 

you

 

to

 

interact

 

with

 

the

 

debugging

 

tool

 

before

 

returning

 

control

 

to

 

the

 

application

 

code.

 

See

 

“Using

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)”

 

on

 

page

 

257

 

for

 

additional

 

information.

 

The

 

Animator

 

tool

 

enables

 

you

 

to

 

test

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

application

 

program

 

online

 

without

 

modifying

 

the

 

program.

 

This

 

tool

 

intercepts

 

execution

 

of

 

the

 

application

 

program

 

at

 

various

 

points

 

before

 

displaying

 

information

 

about

 

the

 

program.

 

Any

 

screens

 

sent

 

by

 

the

 

application

 

program

 

are

 

displayed

 

by

 

the

 

tools,

 

so

 

that

 

you

 

can

 

converse

 

with

 

the

 

application

 

program

 

during

 

testing

 

just

 

as

 

you

 

would

 

on

 

the

 

production

 

system.

 

See

 

“Using

 

a

 

compiler’s

 

integrated

 

debugging

 

tool

 

to

 

debug

 

CICS

 

applications”

 

on

 

page

 

263.

 

You

 

can

 

also

 

debug

 

C,

 

C++,

 

and

 

IBM

 

COBOL

 

programs

 

by

 

using

 

debugging

 

services

 

provided

 

by

 

the

 

relevant

 

compiler.

 

See

 

“Using

 

debugging

 

tools

 

integrated

 

with

 

compilers

 

running

 

on

 

CICS

 

for

 

Windows”

 

on

 

page

 

263.

 

CICS

 

also

 

provides

 

supplied

 

transactions

 

CECI

 

and

 

CECS

 

for

 

the

 

interpretive

 

execution

 

and

 

syntax

 

checking

 

of

 

commands.

 

See

 

“Using

 

Command

 

Level

 

Interpreter

 

(CECI)

 

and

 

Syntax

 

Checker

 

(CECS)”

 

on

 

page

 

256.

   

CICS

 

for

 

AIX

 

only

 

The

 

IBM

 

Application

 

Debugging

 

Program

 

provides

 

the

 

ability

 

to

 

debug

 

IBM

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

programs.

 

There

 

are

 

a

 

number

 

of

 

facilities

 

to

 

go

 

with

 

the

 

debugging

 

tool:

    

A

 

CICS-supplied

 

transaction,

 

CDCN,

 

that

 

turns

 

the

 

debugging

 

tool

 

on

 

and

 

off.

 

See

 

also

 

the

 

CICS

 

Administration

 

Reference.

    

A

 

region-wide

 

attribute,

 

AllowDebugging

 

with

 

settings

 

yes

 

and

 

no,

 

to

 

control

 

whether

 

the

 

debugging

 

tool

 

can

 

be

 

used

 

within

 

the

 

region.

    

Two

 

Transaction

 

Definitions

 

(TD)

 

entries:

 

–

   

DFHCDCN0

 

(for

 

the

 

CICS-supplied

 

program)

 

–

   

DFHCDCN

 

(for

 

the

 

CICS-supplied

 

mapset)

   

The

 

cicstcl

 

-a

 

flag.

 

See

 

“cicstcl

 

-

 

translate,

 

compile,

 

and

 

link”

 

on

 

page

 

281.

  

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

17

|
|

|
|



Using

 

transactions

 

to

 

call

 

your

 

program

 

In

 

CICS,

 

the

 

term

 

transaction

 

is

 

used

 

to

 

describe

 

a

 

fundamental

 

unit

 

of

 

work,

 

consisting

 

of

 

one

 

or

 

more

 

application

 

programs,

 

that

 

is

 

initiated

 

by

 

a

 

single

 

request.

 

A

 

transaction

 

is

 

identified

 

by

 

a

 

transaction

 

identifier

 

(tranid)

 

and

 

this

 

transaction

 

identifier

 

is

 

used

 

to

 

call

 

your

 

application

 

program

 

in

 

the

 

CICS

 

runtime

 

environment.

 

Because

 

both

 

the

 

transaction

 

and

 

program

 

are

 

defined

 

to

 

CICS

 

(see

 

the

 

CICS

 

Administration

 

Reference),

 

you

 

can

 

use

 

CICS

 

on

 

Open

 

Systems

 

clients,

 

the

 

cicsterm

 

command

 

(CICS

 

on

 

Open

 

Systems),

 

or

 

the

 

cicsteld

 

command

 

to

 

run

 

the

 

transaction

 

and,

 

therefore,

 

run

 

your

 

application

 

program.

 

The

 

transaction

 

is

 

executed

 

under

 

the

 

control

 

of

 

CICS,

 

which

 

provides

 

the

 

services

 

requested

 

by

 

each

 

API

 

command.

 

The

 

cicsterm

 

and

 

cicsteld

 

commands

 

are

 

described

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

Note:

  

This

 

is

 

a

 

high-level

 

description

 

of

 

how

 

to

 

call

 

your

 

program

 

from

 

a

 

transaction.

 

For

 

more

 

detailed

 

information,

 

see

 

“How

 

CICS

 

runs

 

your

 

transactions”

 

on

 

page

 

8.

 

Summary

 

of

 

commands

 

used

 

in

 

application

 

development

 

As

 

an

 

application

 

programmer,

 

you

 

use

 

the

 

following

 

commands:

 

cicsmap

 

(Generate

 

map).

 

This

 

command

 

takes

 

raw

 

Basic

 

Mapping

 

Support

 

(BMS)

 

macros

 

and

 

generates

 

either

 

logical

 

maps,

 

or

 

physical

 

maps,

 

as

 

specified

 

by

 

the

 

map

 

input.

 

See

 

“Basic

 

mapping

 

support

 

(BMS)

 

services”

 

on

 

page

 

71.

 

cicstran

 

(Translate

 

application

 

source

 

program).

 

The

 

input

 

to

 

this

 

command

 

language

 

translator

 

is

 

the

 

COBOL,

 

C,

 

or

 

C++

 

source

 

code

 

that

 

you

 

have

 

written

 

that

 

contains

 

embedded

 

CICS

 

API

 

commands.

 

The

 

output

 

is

 

program

 

source

 

in

 

which

 

each

 

CICS

 

API

 

command

 

has

 

been

 

translated

 

into

 

statements

 

in

 

the

 

supporting

 

language.

 

The

 

translator

 

ignores

 

any

 

embedded

 

Structured

 

Query

 

Language

 

(SQL)

 

statements

 

within

 

the

 

source

 

program.

 

Notes:

  

1.

   

As

 

the

 

Data

 

Language

 

1

 

(DL/I)

 

database

 

access

 

language

 

is

 

not

 

supported

 

by

 

CICS

 

on

 

Open

 

Systems

 

or

 

IBM

 

CICS

 

for

 

Windows,

 

DL/I

 

commands

 

encountered

 

by

 

the

 

translator

 

are

 

ignored.

 

2.

   

cicstran

 

cannot

 

be

 

used

 

to

 

translate

 

IBM

 

PL/I

 

source

 

code.

 

cicstcl

 

This

 

command

 

performs

 

the

 

translation

 

of

 

the

 

application

 

program

 

(as

 

performed

 

by

 

the

 

cicstran

 

command),

 

and

 

also

 

compiles

 

and

 

links

 

the

 

generated

 

program

 

source.

Note:

  

Compiling

 

and

 

link-editing

 

CICS

 

applications

 

requires

 

using

 

thread-safe

 

compilers.

 

See

 

“Requirements

 

for

 

compiling

 

CICS

 

application

 

programs”

 

on

 

page

 

218

 

and

 

“Thread

 

safety”

 

on

 

page

 

50.

 

Summary

 

of

 

CICS-supplied

 

transactions

 

used

 

in

 

application

 

development

 

As

 

an

 

application

 

programmer,

 

you

 

use

 

the

 

following

 

CICS-supplied

 

transactions.

 

For

 

more

 

information

 

on

 

any

 

of

 

these

 

transactions,

 

see

 

CICS

 

Application

 

Programming

 

Reference.

   

18

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Data

 

Conversion

 

(CALF)

 

This

 

transaction

 

is

 

used

 

to

 

convert

 

data

 

structured

 

in

 

the

 

Virtual

 

Storage

 

Access

 

Method

 

(VSAM)

 

format

 

to

 

the

 

file

 

format

 

used

 

in

 

CICS

 

on

 

Open

 

Systems

 

or

 

CICS

 

for

 

Windows.

 

Note:

  

VSAM

 

is

 

an

 

access

 

method

 

for

 

indexed

 

or

 

sequential

 

processing

 

of

 

fixed-

 

and

 

variable-length

 

records

 

on

 

direct

 

access

 

devices.

 

The

 

records

 

in

 

a

 

VSAM

 

data

 

set

 

or

 

file

 

can

 

be

 

organized

 

in

 

logical

 

sequence

 

by

 

means

 

of

 

a

 

key

 

field

 

(key

 

sequence),

 

in

 

the

 

physical

 

sequence

 

in

 

which

 

they

 

are

 

written

 

on

 

the

 

data

 

set

 

or

 

file

 

(entry

 

sequence),

 

or

 

by

 

means

 

of

 

a

 

relative-record

 

number.

 

See

 

“VSAM

 

emulation

 

by

 

SFS

 

and

 

distributed

 

CICS”

 

on

 

page

 

108

 

for

 

more

 

information.

  

CICS

 

for

 

AIX

 

only

 

CICS

 

Transaction

 

Diagnosis

 

Configuration

 

(CDCN)

 

This

 

transaction

 

turns

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

on

 

and

 

off.

  

CICS

 

on

 

open

 

systems

 

only

 

CICS

 

Animator

 

Debug

 

Configuration

 

Transaction

 

(CADB)

 

This

 

transaction

 

allows

 

users

 

to

 

configure

 

CICS

 

to

 

enable

 

debugging

 

of

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application

 

programs

 

with

 

Animator.

Temporary

 

Storage

 

Browse

 

(CEBR)

 

This

 

transaction

 

is

 

used

 

to

 

browse

 

temporary

 

storage

 

queues

 

and

 

transient

 

data

 

queues.

 

CEBR

 

may

 

be

 

useful

 

for

 

debugging.

  

For

 

more

 

information,

 

see

 

“Using

 

Temporary

 

Storage

 

Browse

 

(CEBR)”

 

on

 

page

 

255.

 

Command

 

Level

 

Interpreter

 

(CECI)

 

and

 

Command

 

Level

 

Syntax

 

Checker

 

(CECS)

 

CECI

 

allows

 

you

 

to

 

check

 

the

 

syntax

 

of,

 

interpret,

 

and

 

run

 

CICS

 

API

 

commands.

 

CECS

 

transaction

 

allows

 

you

 

to

 

check

 

the

 

syntax

 

of

 

CICS

 

API

 

commands.

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)

 

The

 

CEDF

 

transaction

 

allows

 

you

 

to

 

use

 

the

 

Execution

 

Diagnostic

 

Facility

 

(EDF)

 

that

 

enables

 

you

 

to

 

debug

 

a

 

CICS

 

application

 

program.

 

Runtime

 

Resources

 

Management

 

Facility

 

(CEMT)

 

This

 

transaction

 

allows

 

you

 

to

 

inquire

 

about

 

CICS

 

resources

 

in

 

the

 

runtime

 

environment

 

and

 

to

 

dynamically

 

change

 

their

 

control

 

parameters.

 

“Using

 

the

 

API

 

for

 

trace

 

services”

 

on

 

page

 

247

 

and

 

“Dump”

 

on

 

page

 

250

 

describe

 

how

 

you

 

can

 

use

 

CEMT

 

for

 

testing

 

and

 

debugging

 

your

 

application

 

program.

 

“Performance

 

monitoring

 

services”

 

on

 

page

 

251

 

describes

 

how

 

you

 

can

 

use

 

CEMT

 

to

 

gather

 

statistics.

  

Chapter

 

1.

 

Introduction

 

to

 

CICS

 

application

 

programming

 

19

|
|
|
|



A

 

sample

 

transaction

 

This

 

information

 

shows

 

you

 

how

 

to

 

write

 

a

 

simple

 

CICS

 

transaction

 

that

 

sends

 

a

 

message

 

to

 

your

 

terminal.

 

Use

 

this

 

exercise

 

to

 

perform

 

a

 

simple

 

test

 

of

 

your

 

system

 

and

 

to

 

become

 

familiar

 

with

 

some

 

of

 

the

 

CICS

 

application

 

programming

 

concepts.

 

On

 

CICS

 

for

 

Windows,

 

you

 

can

 

also

 

refer

 

to

 

the

 

Installation

 

Verification

 

Programs

 

(IVP),

 

which

 

can

 

be

 

found

 

in

 

opt\cics\samples\IVP.

 

The

 

IVP

 

programs

 

are

 

documented

 

in

 

Planning

 

and

 

Installation

 

Guide.

 

Prerequisites

 

for

 

the

 

“Hello

 

World”

 

transaction

 

Before

 

you

 

begin,

 

make

 

sure

 

that:

 

v

   

CICS

 

is

 

installed

 

with

 

both

 

the

 

development

 

and

 

the

 

production

 

system

 

environments.

 

v

   

You

 

either

 

have

 

CICS

 

administrator

 

authority

 

for

 

the

 

region

 

you

 

are

 

working

 

with

 

or

 

you

 

are

 

able

 

to

 

ask

 

someone

 

with

 

this

 

authority

 

to

 

add

 

the

 

necessary

 

resource

 

definitions.

 

v

   

You

 

have

 

a

 

DCE

 

account.

 

The

 

DCE

 

administrator

 

can

 

set

 

this

 

up

 

for

 

you.

To

 

create

 

a

 

“Hello

 

World”

 

application

 

1.

   

Set

 

your

 

PATH

 

environment

 

variable

 

to

 

the

 

value

 

shown

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

2.

   

Use

 

an

 

editor

 

to

 

create

 

the

 

following

 

C

 

source

 

file

 

called

 

WORLDPRG.ccs:

 

int

 

main()

 

{

 

char

 

Hello[]

 

=

 

"Hello

 

world!";

 

EXEC

 

CICS

 

SEND

 

FROM(Hello)

 

LENGTH(12)

 

ERASE;

 

EXEC

 

CICS

 

RETURN;

 

}

 

3.

   

Run

 

cicstcl

 

-lC

 

WORLDPRG.ccs

 

to

 

create

 

an

 

executable

 

called

 

“WORLDPRG”

 

on

 

CICS

 

on

 

Open

 

Systems

 

and

 

“WORLDPRG.dll”

 

on

 

CICS

 

for

 

Windows.

 

4.

   

Have

 

someone

 

with

 

CICS

 

administrator

 

authority:

 

a.

   

Add

 

a

 

definition

 

of

 

the

 

program

 

WORLDPRG

 

to

 

the

 

same

 

running

 

region

 

you

 

are

 

allowed

 

access

 

to.

 

b.

   

Add

 

a

 

definition

 

of

 

a

 

transaction

 

called

 

“HELO”

 

to

 

run

 

this

 

program

 

on

 

the

 

same

 

running

 

region.

 

Note:

  

It

 

is

 

recommended

 

that

 

you

 

have

 

these

 

definitions

 

deleted

 

when

 

they

 

are

 

no

 

longer

 

required.

To

 

run

 

the

 

“Hello

 

World”

 

transaction

 

1.

   

Check

 

that

 

the

 

PATH

 

environment

 

variable

 

is

 

set

 

to

 

the

 

value

 

shown

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

2.

   

You

 

are

 

now

 

in

 

a

 

position

 

to

 

run

 

the

 

transaction

 

you

 

have

 

created.

 

To

 

do

 

this,

 

log

 

on

 

to

 

DCE

 

by

 

using

 

the

 

dce_login

 

utility.

 

3.

   

To

 

access

 

CICS

 

facilities,

 

you

 

need

 

to

 

run

 

an

 

CICS

 

on

 

Open

 

Systems

 

client.

 

For

 

example,

 

to

 

get

 

this

 

access

 

on

 

CICS

 

on

 

Open

 

Systems,

 

enter

 

cicsterm

 

on

 

the

 

command-line.

 

4.

   

Now

 

enter

 

HELO

 

as

 

the

 

transaction

 

id.

 

If

 

all

 

worked

 

correctly,

 

“HELLO

 

WORLD”

 

is

 

displayed

 

on

 

your

 

terminal.

 

5.

   

It

 

is

 

good

 

practice

 

to

 

press

 

CLEAR

 

before

 

entering

 

the

 

next

 

transaction.

  

20

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

This

 

chapter

 

discusses

 

how

 

to

 

design

 

CICS

 

applications

 

to

 

maximize

 

their

 

performance

 

and

 

efficiency.

 

CICS

 

application

 

design

 

entails

 

consideration

 

of

 

several

 

areas

 

including:

 

v

   

CICS

 

transaction

 

design

 

modes

 

v

   

CICS

 

program

 

design

 

modes

 

v

   

Transaction

 

data

 

storage

 

options

 

v

   

Data

 

management

 

storage

 

options

 

v

   

CICS

 

environment

 

factors

 

v

   

CICS

 

locking

 

function

 

behavior

 

v

   

Performance

 

considerations

 

for

 

CICS

 

developers

 

v

   

Using

 

CICS

 

with

 

WebSphere

 

MQ

CICS

 

transaction

 

design

 

efficiency

 

considerations

 

A

 

primary

 

efficiency

 

consideration

 

for

 

online

 

transactions

 

is

 

whether

 

to

 

design

 

transactions

 

to

 

occur

 

in

 

nonconversational,

 

conversational

 

or

 

pseudoconversational

 

mode.

 

A

 

nonconversational

 

transaction

 

has

 

only

 

one

 

input—the

 

one

 

that

 

causes

 

the

 

transaction

 

to

 

be

 

invoked.

 

The

 

transaction

 

processes

 

that

 

input,

 

displays

 

a

 

response

 

to

 

the

 

screen,

 

and

 

terminates.

 

Nonconversational

 

transactions

 

use

 

system

 

resources

 

for

 

only

 

short

 

time

 

periods.

 

A

 

conversational

 

transaction

 

involves

 

more

 

than

 

one

 

input

 

from

 

the

 

terminal,

 

so

 

that

 

the

 

transaction

 

and

 

the

 

user

 

enter

 

into

 

a

 

kind

 

of

 

conversation.

 

In

 

a

 

conversational

 

transaction,

 

processor

 

utilization

 

times,

 

even

 

including

 

the

 

time

 

for

 

accessing

 

files,

 

are

 

considerably

 

shorter

 

than

 

the

 

time

 

required

 

to

 

transmit

 

the

 

input

 

from

 

the

 

terminal

 

to

 

the

 

processor

 

(terminal

 

transmission

 

time).

 

Furthermore,

 

terminal

 

transmission

 

times

 

are

 

considerably

 

shorter

 

than

 

user

 

response

 

times.

 

Consequently,

 

conversational

 

transactions

 

use

 

storage

 

and

 

other

 

resources

 

for

 

much

 

longer

 

time

 

periods

 

than

 

nonconversational

 

transactions.

 

A

 

pseudoconversational

 

transaction

 

is

 

one

 

in

 

which

 

a

 

series

 

of

 

nonconversational

 

transactions

 

are

 

embedded

 

in

 

a

 

single

 

sequence.

 

This

 

sequence

 

looks

 

to

 

the

 

user

 

like

 

a

 

single

 

conversational

 

transaction

 

involving

 

several

 

screens

 

of

 

input.

 

Each

 

transaction

 

in

 

the

 

sequence

 

handles

 

one

 

input,

 

sends

 

back

 

a

 

response,

 

and

 

terminates.

 

As

 

a

 

result,

 

pseudoconversational

 

programming

 

uses

 

storage

 

and

 

other

 

resources

 

for

 

shorter

 

periods

 

of

 

time

 

compared

 

to

 

conversational

 

transactions.

 

Before

 

a

 

pseudoconversational

 

transaction

 

terminates,

 

it

 

can

 

pass

 

data

 

forward

 

for

 

use

 

by

 

the

 

next

 

transaction

 

that

 

is

 

initiated

 

from

 

the

 

same

 

terminal,

 

whenever

 

that

 

transaction

 

arrives.

 

By

 

using

 

the

 

TRANSID

 

option

 

of

 

the

 

RETURN

 

command,

 

a

 

pseudoconversational

 

transaction

 

can

 

specify

 

what

 

the

 

next

 

transaction

 

is

 

to

 

be.

 

However,

 

be

 

aware

 

that

 

if

 

another

 

transaction

 

is

 

started

 

for

 

that

 

device,

 

it

 

might

 

interrupt

 

the

 

pseudoconversational

 

chain

 

that

 

you

 

have

 

designed,

 

unless

 

you

 

specify

 

the

 

IMMEDIATE

 

option

 

on

 

the

 

RETURN

 

command.

 

In

 

this

 

case,

 

the

 

transaction

 

that

 

is

 

specified

 

by

 

the

 

TRANSID

 

command

 

is

 

attached,

 

regardless

 

of

 

any

 

other

 

transactions

 

that

 

are

 

queued

 

for

 

this

 

terminal.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

21

|

|
|
|
|
|
|
|
|
|



Nonconversational

 

transactions

 

are

 

embedded

 

in

 

conversational

 

and

 

pseudoconversational

 

transaction

 

modes;

 

therefore

 

this

 

discussion

 

will

 

focus

 

on

 

the

 

two

 

latter

 

design

 

modes.

 

This

 

section

 

discusses

 

the

 

impact

 

of

 

a

 

choice

 

of

 

conversational

 

or

 

pseudoconversational

 

transaction

 

design

 

mode

 

on

 

the

 

following

 

areas:

 

v

   

Contention

 

resources

 

–

   

Storage

 

use

 

–

   

Processor

 

use
v

   

Exclusive

 

use

 

resources

 

–

   

Response

 

time

 

constraints

 

–

   

Recovery

 

and

 

integrity

 

constraints

 

–

   

Order

 

completeness

 

constraints

 

–

   

Uninterrupted

 

transaction

 

constraints
v

   

Performance

 

profile

 

issues

 

–

   

Performance

 

costs

 

-

   

Consumption

 

of

 

processing

 

power

 

-

   

Throughput,

 

response

 

time,

 

and

 

predictability

 

-

   

Availability

 

of

 

application

 

servers
–

   

Performance

 

benefits

 

of

 

operational

 

control
v

   

Program-terminal

 

communications

 

–

   

Screen

 

integrity

 

–

   

Warning

 

capability

CICS

 

program

 

design

 

efficiency

 

considerations

 

Efficient

 

CICS

 

program

 

design

 

includes

 

incorporating

 

use

 

of

 

the

 

following

 

operating

 

system

 

and

 

language

 

facilities:

 

v

   

Shareable,

 

loadable,

 

and

 

executable

 

operating

 

system

 

objects

 

v

   

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL

 

API

 

commands

 

v

   

COBOL

 

PERFORM

 

and

 

CALL

 

commands

 

v

   

C

 

program

 

function

 

calls

 

and

 

single

 

executable

 

objects

 

v

   

C++

 

Object

 

Oriented

 

design

 

v

   

Internal

 

and

 

external

 

procedures

 

and

 

functions

 

in

 

PL/I

 

programs

Shareable,

 

loadable,

 

and

 

executable

 

operating

 

system

 

objects

 

Operating

 

systems

 

minimize

 

storage

 

requirements

 

for

 

normal

 

executables

 

by

 

sharing

 

program

 

code

 

to

 

the

 

extent

 

possible.

 

If

 

two

 

or

 

more

 

copies

 

of

 

the

 

same

 

program

 

are

 

running,

 

each

 

runs

 

inside

 

its

 

own

 

process

 

and

 

each

 

is

 

given

 

a

 

separate

 

data

 

area,

 

the

 

operating

 

system

 

loads

 

only

 

one

 

copy

 

of

 

the

 

program

 

text.

 

Use

 

the

 

operating

 

system’s

 

dynamic

 

load

 

facility

 

when

 

you

 

call

 

a

 

CICS

 

program.

 

The

 

operating

 

system’s

 

dynamic

 

load

 

facility

 

enables

 

the

 

program

 

text

 

being

 

loaded

 

to

 

be

 

shared

 

by

 

multiple

 

processes.

 

Although,

 

the

 

standard

 

way

 

of

 

invoking

 

other

 

programs

 

is

 

to

 

use

 

the

 

fork

 

(on

 

CICS

 

on

 

Open

 

Systems)

 

or

 

CreateProcess

 

(on

 

CICS

 

for

 

Windows)

 

or

 

exec

 

system

 

calls

 

(or

 

variants),

 

do

 

not

 

use

 

these

 

in

 

CICS

 

programs

 

to

 

call

 

a

 

CICS

 

program

 

because

 

CICS

 

programs

 

are

 

not

 

normal

 

executables.

 

By

 

using

 

the

 

system’s

 

dynamic

 

load

 

facility,

 

you

 

minimize

 

the

 

amount

 

of

 

storage

 

that

 

CICS

 

requires.

 

It

 

is

 

worth

 

doing

 

this

 

for

 

programs

 

that

 

are

 

likely

 

to

 

be

 

heavily

 

used

 

by

 

multiple

 

concurrent

 

users.

   

22

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



You

 

can

 

use

 

the

 

dynamic

 

load

 

facility

 

for

 

functions

 

within

 

your

 

program.

 

If

 

you

 

have

 

a

 

function

 

that

 

is

 

common

 

to

 

several

 

programs,

 

then

 

you

 

can

 

minimize

 

your

 

storage

 

requirements

 

by

 

making

 

it

 

shared

 

and

 

dynamically

 

loadable.

 

CICS

 

links

 

to

 

the

 

dynamic

 

load

 

facility

 

through

 

the

 

cicstcl

 

utility.

 

The

 

following

 

command

 

example

 

displays

 

the

 

command

 

on

 

the

 

AIX

 

platform.

   

On

 

CICS

 

for

 

AIX

 

only

 

The

 

linker

 

called

 

by

 

the

 

CICS

 

utility

 

cicstcl

 

does

 

not

 

produce

 

shareable

 

objects

 

by

 

default,

 

but

 

you

 

can

 

specify

 

this

 

by

 

passing

 

the

 

flag

 

-bM:SRE

 

through

 

to

 

the

 

linker.

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL

 

commands

 

The

 

CICS

 

commands

 

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL

 

are

 

powerful

 

CICS

 

facilities

 

that

 

are

 

similar

 

to

 

function

 

calls

 

and

 

overlays.

 

COBOL,

 

C,

 

C++

 

and

 

PL/I,

 

offer

 

facilities

 

similar

 

to

 

EXEC

 

CICS

 

LINK.

 

For

 

example,

 

function

 

calls

 

in

 

C

 

and

 

C++

 

or

 

PERFORM

 

and

 

CALL

 

usage

 

in

 

COBOL

 

function

 

similarly

 

to

 

the

 

EXEC

 

CICS

 

LINK

 

command.

 

However,

 

these

 

languages

 

do

 

not

 

offer

 

a

 

counterpart

 

to

 

EXEC

 

CICS

 

XCTL.

 

There

 

are

 

circumstances

 

in

 

which

 

it

 

is

 

preferable

 

to

 

use

 

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL

 

rather

 

than

 

the

 

facilities

 

provided

 

by

 

the

 

various

 

languages.

 

Some

 

examples

 

of

 

circumstances

 

when

 

these

 

commands

 

are

 

useful

 

include

 

these

 

conditions:

 

v

   

These

 

CICS

 

API

 

commands

 

are

 

helpful

 

when

 

applied

 

to

 

abend

 

handling,

 

exceptional

 

conditions,

 

and

 

attention

 

identifiers.

 

For

 

example,

 

if

 

you

 

have

 

a

 

common

 

input-handling

 

function

 

that

 

uses

 

the

 

EXEC

 

CICS

 

RECEIVE

 

command,

 

then

 

it

 

may

 

be

 

preferable

 

to

 

call

 

it

 

with

 

EXEC

 

CICS

 

LINK.

 

By

 

using

 

the

 

EXEC

 

CICS

 

LINK

 

command,

 

the

 

input-handling

 

function

 

can

 

set

 

its

 

own

 

attention

 

identifier

 

handlers.

 

v

   

The

 

EXEC

 

CICS

 

LINK

 

command

 

is

 

helpful

 

when

 

it

 

is

 

employed

 

to

 

distribute

 

the

 

processing

 

using

 

the

 

distributed

 

program

 

link

 

(DPL)

 

facility.

 

This

 

enables

 

you

 

to

 

distribute

 

the

 

processing

 

of

 

your

 

application

 

to

 

where

 

the

 

data

 

resides.

 

For

 

example,

 

if

 

your

 

region

 

needs

 

to

 

apply

 

a

 

series

 

of

 

updates

 

to

 

a

 

transient

 

data

 

queue

 

that

 

exists

 

in

 

a

 

remote

 

region,

 

it

 

may

 

be

 

more

 

efficient

 

to

 

do

 

this

 

using

 

DPL

 

than

 

function

 

shipping

 

each

 

request

 

individually.

 

To

 

achieve

 

this

 

without

 

using

 

EXEC

 

CICS

 

LINK

 

will

 

mean

 

you

 

will

 

have

 

to

 

use

 

a

 

remote

 

procedure

 

call

 

facility

 

of

 

some

 

kind,

 

for

 

example

 

the

 

one

 

provided

 

by

 

DCE.

 

v

   

The

 

EXEC

 

CICS

 

LINK

 

command

 

can

 

be

 

helpful

 

in

 

reducing

 

the

 

amount

 

of

 

code

 

you

 

need

 

to

 

write.

 

v

   

The

 

EXEC

 

CICS

 

XCTL

 

command

 

is

 

helpful

 

when

 

you

 

have

 

a

 

situation

 

in

 

which

 

the

 

calling

 

function

 

does

 

not

 

need

 

to

 

receive

 

control

 

back

 

after

 

the

 

invoked

 

function

 

is

 

called.

 

In

 

these

 

circumstances

 

it

 

is

 

preferable

 

to

 

use

 

EXEC

 

CICS

 

XCTL

 

than

 

EXEC

 

CICS

 

LINK

 

because

 

less

 

storage

 

is

 

used

 

in

 

the

 

application

 

server.

 

v

   

The

 

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL

 

commands

 

are

 

helpful

 

if

 

you

 

are

 

planning

 

on

 

migrating

 

the

 

system

 

you

 

are

 

writing

 

to

 

another

 

CICS

 

platform.

 

Using

 

these

 

CICS

 

API

 

commands

 

is

 

preferable

 

even

 

at

 

the

 

cost

 

of

 

some

 

efficiency.

COBOL

 

PERFORM

 

and

 

CALL

 

commands

 

In

 

COBOL,

 

you

 

can

 

use

 

the

 

CALL

 

statement

 

to

 

execute

 

another

 

COBOL

 

program

 

as

 

part

 

of

 

the

 

calling

 

one.

 

The

 

called

 

program

 

can

 

either

 

be

 

statically

 

linked-in

 

with

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

23



the

 

caller,

 

or

 

it

 

can

 

be

 

dynamically

 

loaded.

 

Statically

 

linking

 

in

 

the

 

called

 

program

 

is

 

faster

 

but

 

inflexible;

 

dynamically

 

loading

 

a

 

called

 

program

 

can

 

be

 

slower

 

but

 

more

 

flexible.

 

Furthermore,

 

by

 

dynamically

 

loading

 

a

 

called

 

program,

 

you

 

can

 

arrange

 

for

 

the

 

called

 

program

 

to

 

be

 

shared.

 

In

 

this

 

instance,

 

the

 

first

 

call

 

to

 

it

 

will

 

be

 

comparatively

 

slow,

 

but

 

subsequent

 

calls

 

will

 

be

 

faster

 

while

 

it

 

remains

 

loaded.

 

You

 

should

 

be

 

aware

 

that

 

when

 

you

 

take

 

this

 

approach

 

you

 

are

 

not

 

descending

 

a

 

CICS

 

logical

 

level.

 

(See

 

“Application

 

program

 

logical

 

levels”

 

on

 

page

 

174.)

 

Finally,

 

in

 

designing

 

your

 

COBOL

 

applications,

 

avoid

 

recursion.

 

COBOL

 

products

 

used

 

with

 

TXSeries

 

CICS

 

other

 

than

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

(on

 

Open

 

Systems)

 

and

 

Micro

 

Focus

 

Net

 

Express

 

(on

 

Windows)

 

provide

 

only

 

a

 

limited

 

support

 

for

 

recursion.

 

For

 

example,

 

a

 

COBOL

 

program

 

can

 

be

 

coded

 

in

 

such

 

a

 

way

 

that

 

it

 

can

 

use

 

EXEC

 

CICS

 

LINK

 

to

 

directly

 

LINK

 

to

 

itself,

 

but

 

a

 

set

 

of

 

COBOL

 

programs

 

cannot

 

be

 

coded

 

to

 

indirectly

 

LINK

 

recursively.

 

In

 

an

 

example

 

of

 

two

 

programs,

 

progA

 

and

 

progB,

 

progA

 

can

 

directly

 

LINK

 

to

 

itself

 

(provided

 

it

 

has

 

been

 

coded

 

to

 

do

 

so),

 

but

 

progA

 

cannot

 

LINK

 

to

 

progB

 

and

 

then

 

have

 

progB

 

LINK

 

back

 

to

 

progA.

 

If

 

you

 

are

 

using

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Micro

 

Focus

 

Net

 

Express,

 

you

 

can

 

use

 

recursion

 

using

 

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL.

 

You

 

must

 

specify

 

the

 

/DATA-CONTEXT

 

flag

 

when

 

you

 

compile

 

the

 

COBOL

 

programs.

 

Each

 

time

 

the

 

program

 

is

 

called,

 

it

 

gets

 

a

 

new

 

copy

 

of

 

working

 

storage.

 

C

 

program

 

function

 

calls

 

and

 

single

 

executable

 

objects

 

The

 

C

 

language

 

encourages

 

the

 

division

 

of

 

related

 

functions

 

into

 

one

 

or

 

more

 

source

 

files

 

that

 

are

 

compiled

 

separately

 

and

 

then

 

combined

 

to

 

form

 

an

 

executable

 

object.

 

Each

 

of

 

the

 

source

 

files

 

that

 

you

 

combine

 

into

 

a

 

single

 

CICS

 

program

 

can

 

include

 

EXEC

 

CICS

 

statements,

 

but

 

you

 

should

 

be

 

aware

 

that

 

when

 

you

 

make

 

a

 

function

 

call

 

in

 

C

 

to

 

a

 

function

 

that

 

includes

 

the

 

CICS

 

API,

 

you

 

are

 

not

 

descending

 

a

 

CICS

 

logical

 

level.

 

Logical

 

levels

 

only

 

apply

 

to

 

the

 

use

 

of

 

the

 

EXEC

 

CICS

 

LINK

 

command.

 

If

 

you

 

need

 

to

 

inherit

 

the

 

same

 

set

 

of

 

attention

 

identifier

 

handlers

 

as

 

the

 

calling

 

function,

 

you

 

should

 

make

 

a

 

function

 

call;

 

if

 

your

 

called

 

function

 

needs

 

a

 

new

 

set,

 

then

 

you

 

should

 

make

 

it

 

into

 

a

 

CICS

 

program

 

and

 

call

 

it

 

with

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL.

 

It

 

is

 

more

 

efficient

 

to

 

call

 

it

 

as

 

a

 

C

 

function.

 

C

 

programs

 

can

 

include

 

static

 

data

 

(similar

 

to

 

working

 

storage

 

in

 

COBOL).

 

CICS

 

programs

 

written

 

in

 

C

 

are

 

given

 

a

 

fresh

 

copy

 

of

 

their

 

static

 

data

 

for

 

the

 

only

 

first

 

instance

 

of

 

the

 

program.

 

C++

 

Object

 

Oriented

 

design

 

The

 

C++

 

language

 

provides

 

object

 

oriented

 

programming

 

through

 

such

 

facilities

 

as

 

objects,

 

data

 

abstraction,

 

inheritance,

 

and

 

polymorphism.

 

Normally,

 

each

 

class

 

declaration

 

and

 

definition

 

is

 

in

 

separate

 

header

 

and

 

source

 

files,

 

but

 

this

 

is

 

not

 

mandatory.

 

The

 

individual

 

object

 

files

 

can

 

be

 

combined

 

into

 

one

 

executable

 

program

 

or

 

archived

 

into

 

shareable

 

class

 

libraries

 

against

 

which

 

the

 

executable

 

is

 

linked.

 

Each

 

of

 

the

 

source

 

files

 

that

 

you

 

combine

 

into

 

CICS

 

programs

 

or

 

class

 

libraries

 

can

 

contain

 

EXEC

 

CICS

 

statements.

 

Neither

 

function

 

calls

 

nor

 

method

 

invocation

 

affect

 

CICS

 

logical

 

levels,

 

so

 

the

 

EXEC

 

CICS

 

LINK

 

command

 

must

 

be

 

used

 

when

 

a

 

logical

 

level

 

is

 

desired.

   

24

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



When

 

using

 

CICS

 

statements

 

in

 

class

 

templates,

 

the

 

statements

 

must

 

be

 

translated

 

before

 

the

 

template

 

class

 

definition

 

is

 

included

 

in

 

any

 

program.

 

In

 

header

 

files,

 

avoid

 

using

 

CICS

 

statements

 

in

 

inline

 

functions

 

and

 

methods.

 

Perform

 

all

 

initialization

 

of

 

static

 

objects

 

in

 

CICS

 

C++

 

cached

 

programs

 

in

 

the

 

object

 

constructors,

 

since

 

they

 

are

 

initialized

 

only

 

once.

 

Explicitly

 

delete

 

any

 

dynamically

 

allocated

 

storage.

 

Note:

  

Do

 

not

 

use

 

CICS

 

statements

 

in

 

static

 

object

 

constructors

 

or

 

destructors.

 

Static

 

constructors

 

and

 

destructors

 

are

 

called

 

outside

 

a

 

CICS

 

Logical

 

Unit

 

of

 

Work,

 

and

 

so

 

using

 

CICS

 

statements

 

at

 

these

 

points

 

can

 

cause

 

abends.

 

Internal

 

and

 

external

 

procedures

 

and

 

functions

 

in

 

PL/I

 

programs

 

PL/I

 

programs

 

can

 

consist

 

of

 

multiple

 

internal

 

and

 

external

 

procedures

 

and

 

functions

 

containing

 

CICS

 

calls.

 

A

 

function

 

or

 

procedure

 

call

 

does

 

not

 

descend

 

a

 

logical

 

level;

 

logical

 

levels

 

apply

 

only

 

to

 

LINKS.

 

Calls

 

to

 

external

 

procedures

 

and

 

functions

 

have

 

their

 

condition

 

handling

 

suspended

 

across

 

these

 

calls.

 

The

 

HANDLE

 

ABEND

 

LABEL

 

command

 

is

 

not

 

supported

 

in

 

PL/I.

 

Transaction

 

data

 

storage

 

considerations

 

Storage

 

options

 

on

 

a

 

transaction

 

system

 

require

 

consideration

 

to

 

achieve

 

efficiency.

 

This

 

section

 

discusses

 

the

 

effects

 

on

 

efficiency

 

for

 

storage

 

options

 

in

 

the

 

following

 

areas:

 

v

   

Storing

 

data

 

within

 

a

 

transaction

 

–

   

Transaction

 

Work

 

Area

 

(TWA)

 

–

   

User

 

storage

 

acquired

 

by

 

EXEC

 

CICS

 

GETMAIN

 

without

 

SHARED

 

option

 

–

   

COMMAREA

 

in

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

–

   

TIOA

 

in

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

with

 

INPUTMSG

 

–

   

Program

 

storage
v

   

Sharing

 

data

 

across

 

transactions

 

–

   

Temporary

 

Storage

 

–

   

Common

 

Work

 

Area

 

(CWA)

 

–

   

Terminal

 

user

 

area

 

(TUA)

 

–

   

COMMAREA

 

in

 

a

 

RETURN

 

–

   

TIOA

 

in

 

a

 

RETURN

 

with

 

INPUTMSG

 

–

   

Display

 

screen

 

–

   

Intrapartition

 

transient

 

data

 

–

   

Your

 

own

 

files

 

–

   

User

 

storage

 

acquired

 

by

 

GETMAIN

 

with

 

SHARED

 

option

Storing

 

data

 

within

 

a

 

transaction

 

Storage

 

facilities

 

that

 

exist

 

over

 

the

 

lifetime

 

of

 

a

 

transaction

 

include:

 

v

   

Transaction

 

work

 

area

 

(TWA)

 

v

   

User

 

storage

 

(obtained

 

by

 

EXEC

 

CICS

 

GETMAIN

 

commands

 

issued

 

without

 

the

 

SHARED

 

option)

 

v

   

COMMAREA

 

in

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

command

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

25

|

|



v

   

TIOA

 

in

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

with

 

INPUTMSG

 

v

   

Program

 

storage

 

All

 

of

 

these

 

areas

 

are

 

main

 

storage

 

facilities

 

and

 

come

 

from

 

the

 

same

 

basic

 

source:

 

the

 

task

 

private

 

pool

 

of

 

the

 

application

 

server.

 

(See

 

“Application

 

servers”

 

on

 

page

 

10)

 

None

 

of

 

them

 

are

 

recoverable,

 

and

 

none

 

can

 

be

 

protected

 

by

 

resource-level

 

security

 

keys.

 

They

 

differ,

 

however,

 

in

 

accessibility

 

and

 

duration

 

and,

 

therefore,

 

each

 

meets

 

a

 

different

 

set

 

of

 

storage

 

needs.

 

The

 

TIOA

 

is

 

a

 

storage

 

area

 

that

 

is

 

associated

 

with

 

a

 

terminal,

 

and

 

is

 

allocated

 

from

 

the

 

task

 

shared

 

pool.

 

Transaction

 

work

 

area

 

(TWA):

   

The

 

size

 

of

 

the

 

transaction

 

work

 

area

 

is

 

determined

 

by

 

the

 

TWASize

 

option

 

in

 

the

 

Transaction

 

Definitions

 

(TD).

 

If

 

this

 

is

 

given

 

a

 

non-zero

 

value,

 

the

 

TWA

 

is

 

always

 

allocated,

 

it

 

lasts

 

for

 

the

 

entire

 

duration

 

of

 

the

 

transaction,

 

and

 

it

 

is

 

accessible

 

to

 

all

 

of

 

the

 

programs

 

in

 

the

 

transaction.

 

Processor

 

overhead

 

associated

 

with

 

using

 

the

 

TWA

 

is

 

minimal.

 

You

 

do

 

not

 

need

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command

 

to

 

access

 

it,

 

and

 

you

 

address

 

it

 

using

 

a

 

single

 

EXEC

 

CICS

 

ADDRESS

 

command.

 

The

 

TWA

 

is

 

suitable

 

for

 

fairly

 

small

 

data

 

storage

 

requirements

 

and

 

for

 

larger

 

requirements

 

that

 

are

 

both

 

relatively

 

fixed

 

in

 

size

 

and

 

are

 

used

 

more

 

or

 

less

 

for

 

the

 

duration

 

of

 

the

 

transaction.

 

Because

 

the

 

TWA

 

exists

 

for

 

the

 

entire

 

transaction,

 

a

 

large

 

TWA

 

size

 

has

 

much

 

greater

 

benefit

 

for

 

conversational

 

than

 

for

 

pseudoconversational

 

transactions.

 

User

 

storage

 

acquired

 

by

 

GETMAIN

 

without

 

SHARED

 

option:

   

User

 

storage

 

is

 

available

 

to

 

all

 

the

 

programs

 

in

 

a

 

transaction,

 

but

 

some

 

effort

 

is

 

required

 

to

 

pass

 

it

 

across

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL.

 

However,

 

its

 

size

 

is

 

not

 

fixed,

 

and

 

it

 

can

 

be

 

obtained

 

(using

 

EXEC

 

CICS

 

GETMAIN

 

commands)

 

just

 

when

 

the

 

transaction

 

requires

 

it

 

and

 

returned

 

as

 

soon

 

as

 

it

 

is

 

no

 

longer

 

needed.

 

Consequently,

 

user

 

storage

 

is

 

useful

 

for

 

large

 

storage

 

requirements

 

that

 

either

 

are

 

variable

 

in

 

size

 

or

 

have

 

a

 

shorter

 

duration

 

than

 

the

 

transaction.

 

This

 

storage

 

is

 

freed

 

at

 

task

 

termination

 

if

 

it

 

is

 

not

 

explicitly

 

freed

 

by

 

the

 

transaction

 

or

 

is

 

shared

 

storage.

 

An

 

EXEC

 

CICS

 

GETMAIN

 

command

 

involves

 

a

 

large

 

amount

 

of

 

processor

 

overhead.

 

Therefore,

 

use

 

it

 

only

 

for

 

large

 

amounts

 

of

 

storage.

 

For

 

smaller

 

storage

 

amounts,

 

use

 

the

 

TWA

 

,

 

or

 

group

 

the

 

requests

 

together

 

into

 

a

 

larger

 

request.

 

Although

 

the

 

storage

 

acquired

 

by

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command

 

may

 

be

 

held

 

somewhat

 

longer

 

when

 

using

 

combined

 

requests,

 

the

 

processor

 

overhead

 

and

 

the

 

reference

 

set

 

size

 

are

 

both

 

reduced.

 

COMMAREA

 

in

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

command:

   

A

 

communication

 

area

 

(COMMAREA)

 

is

 

a

 

command-level

 

facility

 

used

 

to

 

transfer

 

information

 

between

 

two

 

programs

 

within

 

a

 

transaction

 

or

 

between

 

two

 

transactions

 

from

 

the

 

same

 

terminal.

 

For

 

further

 

information,

 

see

 

“Passing

 

data

 

to

 

other

 

programs”

 

on

 

page

 

175.

 

TIOA

 

in

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

command

 

with

 

INPUTMSG:

   

A

 

terminal

 

data

 

area

 

(TIOA)

 

is

 

a

 

facility

 

that

 

tnsfers

 

terminal

 

data

 

between

 

two

 

programs

 

within

 

a

 

transaction

 

or

 

between

 

two

 

transactions

 

from

 

the

 

same

 

terminal.

 

For

 

further

 

information,

 

see

 

“Passing

 

data

 

to

 

other

 

programs”

 

on

 

page

 

175.

 

Program

 

storage:

   

In

 

COBOL,

 

when

 

the

 

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL

 

commands

 

invoke

 

the

 

program,

 

a

 

new

 

copy

 

of

 

the

 

working

 

storage

 

is

 

loaded.

 

However,

 

programs

 

called

 

with

 

the

 

CALL

 

statement

 

use

 

existing

 

working

 

storage

   

26

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|

|
|

|

|
|
|
|
|



if

 

the

 

program

 

has

 

already

 

been

 

invoked.

 

In

 

C

 

and

 

C++,

 

recursive

 

invocations

 

of

 

a

 

program

 

in

 

the

 

same

 

transaction

 

share

 

one

 

copy

 

of

 

its

 

statics

 

and

 

external

 

data.

 

Sharing

 

data

 

across

 

transactions

 

The

 

following

 

sections

 

discuss

 

how

 

data

 

can

 

be

 

shared

 

intra-

 

and

 

inter-transaction.

 

A

 

common

 

characteristic

 

between

 

all

 

of

 

these

 

storage

 

areas

 

is

 

that

 

they

 

perform

 

optimally

 

for

 

a

 

small-to-medium

 

amount

 

of

 

data,

 

very

 

often

 

of

 

a

 

nonpermanent

 

nature.

 

These

 

transient

 

data

 

and

 

temporary

 

storage

 

service

 

API

 

commands

 

allow

 

access

 

to

 

sequential

 

and

 

random

 

access

 

queues.

 

The

 

efficiency

 

aspects

 

of

 

intrapartition

 

transient

 

data

 

queues

 

and

 

of

 

temporary

 

storage

 

are

 

discussed

 

in

 

“Sharing

 

data

 

across

 

transactions.”

 

CICS

 

facilities

 

that

 

exist

 

beyond

 

the

 

end

 

of

 

a

 

task

 

are:

 

v

   

Temporary

 

storage

 

v

   

Common

 

work

 

area

 

(CWA)

 

v

   

Terminal

 

user

 

area

 

(TUA)

 

v

   

COMMAREA

 

in

 

a

 

RETURN

 

v

   

TIOA

 

in

 

a

 

RETURN

 

with

 

INPUTMSG

 

v

   

Display

 

screen

 

v

   

Intrapartition

 

transient

 

data

 

v

   

Operating

 

System

 

files

 

v

   

Storage

 

acquired

 

by

 

GETMAIN

 

with

 

SHARED

 

option

 

The

 

last

 

three

 

items

 

provide

 

more

 

flexibility

 

and

 

function

 

than

 

the

 

other

 

listed

 

items;

 

therefore,

 

their

 

use

 

incurs

 

more

 

overhead.

 

You

 

can

 

use

 

any

 

of

 

these

 

methods

 

for

 

passing

 

data

 

either

 

within

 

transactions

 

or

 

across

 

transactions.

 

With

 

the

 

exception

 

of

 

COMMAREA

 

and

 

the

 

display

 

screen,

 

data

 

stored

 

in

 

these

 

facilities

 

is

 

available

 

to

 

any

 

transaction

 

in

 

the

 

system.

 

Subject

 

to

 

resource-level

 

security

 

restrictions

 

for

 

transient

 

data

 

and

 

temporary

 

storage

 

queues,

 

any

 

transaction

 

may

 

write

 

to

 

them

 

and

 

any

 

transaction

 

may

 

read

 

them.

 

The

 

operating

 

system

 

also

 

provides

 

shared

 

memory

 

facilities

 

which

 

you

 

can

 

use

 

to

 

share

 

data

 

between

 

transactions,

 

but

 

you

 

will

 

be

 

reducing

 

application

 

portability

 

if

 

you

 

use

 

these

 

schemes.

 

Temporary

 

storage:

   

Temporary

 

storage

 

is

 

the

 

primary

 

CICS

 

facility

 

for

 

storing

 

data

 

that

 

must

 

be

 

available

 

to

 

multiple

 

transactions.

 

Data

 

items

 

in

 

temporary

 

storage

 

are

 

kept

 

in

 

queues

 

whose

 

names

 

are

 

assigned

 

dynamically

 

by

 

the

 

program

 

storing

 

the

 

data.

 

You

 

do

 

not

 

need

 

to

 

define

 

temporary

 

storage

 

queues

 

in

 

the

 

resource

 

definitions,

 

unlike

 

transient

 

data

 

queues.

 

A

 

temporary

 

storage

 

queue

 

containing

 

multiple

 

items

 

can

 

be

 

thought

 

of

 

as

 

a

 

miniature

 

file

 

whose

 

records

 

can

 

be

 

addressed

 

either

 

sequentially

 

or

 

directly,

 

by

 

item

 

number.

 

If

 

a

 

queue

 

contains

 

only

 

a

 

single

 

item,

 

it

 

can

 

be

 

thought

 

of

 

as

 

a

 

named

 

scratchpad

 

area.

 

Temporary

 

storage

 

is

 

implemented

 

in

 

two

 

different

 

ways.

 

Which

 

one

 

is

 

used

 

for

 

a

 

particular

 

queue

 

is

 

determined

 

by

 

what

 

is

 

specified

 

on

 

the

 

command

 

that

 

creates

 

the

 

first

 

item.

 

MAIN

 

means

 

that

 

the

 

queue

 

is

 

kept

 

in

 

memory,

 

and

 

AUXILIARY

 

means

 

that

 

the

 

queue

 

is

 

written

 

to

 

disk

 

storage.

 

For

 

either

 

method,

 

CICS

 

maintains

 

an

 

index

 

of

 

items

 

in

 

main

 

storage.

 

Both

 

these

 

methods

 

have

 

characteristics

 

that

 

you

 

should

 

bear

 

in

 

mind:

 

v

   

Main

 

temporary

 

storage

 

requires

 

much

 

more

 

virtual

 

storage

 

than

 

does

 

auxiliary

 

temporary

 

storage.

 

In

 

general,

 

you

 

should

 

use

 

it

 

only

 

for

 

small

 

queues

 

that

 

have

 

short

 

lifetimes

 

or

 

are

 

accessed

 

frequently.

 

Auxiliary

 

temporary

 

storage

 

is

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

27

|



specifically

 

designed

 

for

 

relatively

 

large

 

amounts

 

of

 

data

 

that

 

have

 

a

 

relatively

 

long

 

lifetime

 

or

 

are

 

accessed

 

infrequently.

 

v

   

You

 

can

 

make

 

queues

 

in

 

auxiliary

 

storage

 

recoverable,

 

but

 

not

 

queues

 

in

 

main

 

storage.

 

Only

 

one

 

transaction

 

at

 

a

 

time

 

can

 

update

 

a

 

recoverable

 

temporary

 

storage

 

queue.

 

If

 

you

 

choose

 

to

 

make

 

queues

 

recoverable,

 

bear

 

in

 

mind

 

the

 

possibility

 

of

 

enqueues.

 

v

   

If

 

a

 

task

 

tries

 

to

 

write

 

to

 

temporary

 

storage

 

and

 

there

 

is

 

no

 

space

 

available,

 

CICS

 

suspends

 

it.

 

The

 

task

 

is

 

not

 

resumed

 

until

 

some

 

other

 

task

 

frees

 

the

 

necessary

 

space

 

in

 

the

 

file.

 

This

 

can

 

produce

 

unexplained

 

response

 

delays,

 

especially

 

if

 

the

 

waiting

 

task

 

owns

 

exclusive-use

 

resources,

 

in

 

which

 

case

 

all

 

other

 

tasks

 

needing

 

those

 

resources

 

must

 

also

 

wait.

 

You

 

can

 

use

 

the

 

NOSUSPEND

 

option

 

to

 

avoid

 

this;

 

see

 

“The

 

NOSUSPEND

 

option”

 

on

 

page

 

37.

 

v

   

It

 

can

 

be

 

more

 

efficient

 

to

 

use

 

main

 

temporary

 

storage

 

exclusively

 

in

 

very

 

low-volume

 

systems

 

that

 

have

 

no

 

need

 

for

 

recovery.

 

The

 

following

 

points

 

apply

 

to

 

temporary

 

storage

 

in

 

general:

 

v

   

You

 

must

 

use

 

a

 

CICS

 

command

 

every

 

time

 

data

 

is

 

written

 

to

 

or

 

read

 

from

 

a

 

temporary

 

storage

 

queue,

 

and

 

CICS

 

must

 

find

 

or

 

insert

 

the

 

data

 

using

 

its

 

internal

 

index.

 

This

 

means

 

that

 

the

 

overhead

 

for

 

using

 

main

 

temporary

 

storage

 

is

 

greater

 

than

 

for

 

the

 

CWA

 

or

 

terminal

 

user

 

area.

 

With

 

auxiliary

 

storage,

 

often

 

the

 

most

 

frequently

 

used,

 

there

 

is

 

usually

 

file

 

I/O

 

as

 

well,

 

which

 

increases

 

overhead

 

even

 

more.

 

v

   

You

 

need

 

not

 

allocate

 

temporary

 

storage

 

until

 

it

 

is

 

required;

 

you

 

need

 

to

 

keep

 

it

 

only

 

as

 

long

 

as

 

it

 

is

 

required,

 

and

 

the

 

item

 

size

 

is

 

not

 

fixed

 

until

 

you

 

issue

 

the

 

command

 

that

 

creates

 

it.

 

This

 

makes

 

it

 

a

 

good

 

choice

 

for

 

relatively

 

high-volume

 

data

 

and

 

data

 

that

 

varies

 

in

 

length

 

or

 

duration.

 

v

   

The

 

fact

 

that

 

temporary

 

storage

 

queues

 

are

 

named

 

as

 

they

 

are

 

created

 

provides

 

a

 

very

 

powerful

 

form

 

of

 

random

 

access

 

to

 

saved

 

data.

 

You

 

can

 

access

 

scratchpad

 

areas

 

for

 

terminals,

 

file

 

records,

 

and

 

so

 

on,

 

simply

 

by

 

including

 

the

 

terminal

 

name

 

or

 

record

 

key

 

in

 

the

 

queue

 

name.

 

v

   

Resource-level

 

protection

 

is

 

available

 

for

 

temporary

 

storage.

Common

 

work

 

area

 

(CWA):

   

The

 

common

 

work

 

area

 

(CWA)

 

is

 

a

 

single

 

control

 

block

 

that

 

is

 

allocated

 

at

 

system

 

startup

 

time

 

and

 

it

 

exists

 

for

 

the

 

region.

 

The

 

size

 

is

 

fixed

 

by

 

specifying

 

a

 

value

 

for

 

the

 

CWASize

 

parameter

 

in

 

the

 

Region

 

Definition

 

(RD).

 

This

 

means

 

that

 

the

 

CWA

 

has

 

the

 

following

 

characteristics:

 

v

   

There

 

is

 

almost

 

no

 

overhead

 

in

 

storing

 

or

 

retrieving

 

data

 

from

 

the

 

CWA.

 

Transaction

 

programs

 

must

 

issue

 

one

 

ADDRESS

 

command

 

to

 

get

 

the

 

address

 

of

 

the

 

area

 

but,

 

after

 

that,

 

they

 

can

 

access

 

it

 

directly.

 

v

   

Data

 

in

 

the

 

CWA

 

is

 

not

 

recovered

 

if

 

a

 

transaction

 

or

 

the

 

system

 

fails.

 

v

   

It

 

is

 

not

 

subject

 

to

 

resource-level

 

security.

 

v

   

CICS

 

does

 

not

 

regulate

 

use

 

of

 

the

 

CWA.

 

All

 

programs

 

in

 

all

 

applications

 

that

 

use

 

the

 

CWA

 

must

 

follow

 

the

 

same

 

rules

 

for

 

shared

 

use.

 

The

 

content

 

of

 

and

 

access

 

to

 

the

 

CWA

 

will

 

be

 

one

 

of

 

the

 

design

 

issues

 

that

 

you

 

will

 

need

 

to

 

discuss

 

with

 

application

 

developers.

 

It

 

is

 

sensible

 

to

 

supply

 

a

 

copybook

 

or

 

include

 

file

 

to

 

describe

 

the

 

contents.

 

v

   

The

 

CWA

 

is

 

especially

 

suitable

 

for

 

small

 

amounts

 

of

 

data,

 

such

 

as

 

status

 

information,

 

that

 

are

 

read

 

or

 

updated

 

frequently

 

by

 

multiple

 

programs

 

in

 

an

 

application.

 

v

   

The

 

CWA

 

is

 

not

 

suitable

 

for

 

large-volume

 

or

 

short-lived

 

data

 

because

 

it

 

is

 

always

 

allocated.

   

28

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

You

 

must

 

ensure

 

that

 

data

 

used

 

in

 

one

 

transaction

 

does

 

not

 

overlay

 

data

 

used

 

in

 

another,

 

by

 

following

 

the

 

rules

 

for

 

shared

 

use

 

discussed

 

above.

 

v

   

You

 

must

 

ensure

 

that

 

programs

 

do

 

not

 

overrun

 

the

 

end

 

of

 

the

 

CWA

 

as

 

this

 

corrupts

 

the

 

storage

 

areas

 

in

 

the

 

Task

 

Shared

 

Pool,

 

causing

 

other

 

transactions

 

to

 

fail.

Terminal

 

user

 

area

 

(TCTUA):

   

The

 

terminal

 

user

 

area

 

is

 

defined

 

using

 

the

 

TCTUALen

 

option

 

in

 

the

 

Terminal

 

Definitions

 

(WD).

 

If

 

this

 

length

 

is

 

not

 

zero,

 

the

 

address

 

of

 

the

 

area

 

can

 

be

 

obtained

 

with

 

an

 

EXEC

 

CICS

 

ADDRESS

 

command.

 

Terminal

 

user

 

areas

 

have

 

the

 

following

 

characteristics

 

in

 

common

 

with

 

the

 

CWA:

 

v

   

Minimal

 

processor

 

overhead

 

(only

 

one

 

ADDRESS

 

command

 

needed)

 

v

   

No

 

recovery

 

v

   

No

 

resource-level

 

security

 

v

   

No

 

regulation

 

of

 

use

 

by

 

CICS

 

v

   

Fixed

 

length

 

v

   

Unsuitable

 

for

 

large-volume

 

or

 

short-lived

 

data

 

Unlike

 

the

 

CWA,

 

however,

 

the

 

terminal

 

user

 

area

 

for

 

a

 

particular

 

terminal

 

is

 

usually

 

shared

 

only

 

among

 

transactions

 

using

 

that

 

terminal.

 

It

 

is

 

therefore

 

useful

 

for

 

storing

 

small

 

amounts

 

of

 

data

 

of

 

fairly

 

standard

 

length

 

between

 

a

 

series

 

of

 

pseudoconversational

 

transactions.

 

Another

 

difference

 

is

 

that

 

it

 

is

 

not

 

necessarily

 

permanently

 

allocated,

 

because

 

the

 

terminal

 

user

 

area

 

only

 

exists

 

while

 

the

 

Terminal

 

Definition

 

is

 

set

 

up.

 

The

 

Terminal

 

User

 

Area

 

is

 

allocated

 

from

 

system

 

startup

 

for

 

nonautoinstall

 

terminals

 

and

 

when

 

the

 

Terminal

 

Definition

 

is

 

generated

 

for

 

autoinstall

 

terminals.

 

It

 

is

 

discarded

 

for

 

autoinstalled

 

terminals

 

when

 

their

 

destination

 

is

 

deleted.

 

Using

 

the

 

terminal

 

user

 

area

 

in

 

this

 

way

 

does

 

not

 

require

 

special

 

discipline

 

among

 

using

 

transactions,

 

because

 

data

 

is

 

always

 

read

 

by

 

the

 

transaction

 

following

 

the

 

one

 

that

 

wrote

 

it.

 

However,

 

if

 

you

 

use

 

terminal

 

user

 

areas

 

to

 

store

 

longer-term

 

data

 

(for

 

example,

 

terminal

 

or

 

operator

 

information

 

needed

 

by

 

an

 

entire

 

application),

 

they

 

require

 

the

 

same

 

care

 

as

 

the

 

CWA

 

to

 

ensure

 

that

 

data

 

used

 

in

 

one

 

transaction

 

does

 

not

 

overlay

 

data

 

used

 

in

 

another.

 

You

 

should

 

also

 

take

 

care

 

not

 

to

 

exceed

 

the

 

length

 

of

 

the

 

allocated

 

terminal

 

user

 

areas,

 

because

 

this

 

causes

 

corruption

 

in

 

other

 

storage

 

areas

 

allocated

 

from

 

the

 

CICS

 

Task

 

Shared

 

Pool.

 

COMMAREA

 

in

 

an

 

EXEC

 

CICS

 

RETURN

 

command:

   

The

 

COMMAREA

 

is

 

used

 

to

 

pass

 

information

 

between

 

application

 

programs.

 

For

 

further

 

information,

 

see

 

“Passing

 

data

 

to

 

other

 

programs”

 

on

 

page

 

175.

 

TIOA

 

in

 

an

 

EXEC

 

CICS

 

RETURN

 

command

 

with

 

INPUTMSG:

   

The

 

TIOA

 

is

 

used

 

to

 

pass

 

terminal

 

data

 

between

 

application

 

programs.

 

For

 

further

 

information,

 

see

 

“Passing

 

data

 

to

 

other

 

programs”

 

on

 

page

 

175.

 

Display

 

screen:

   

You

 

can

 

also

 

store

 

data

 

between

 

pseudoconversational

 

transactions

 

from

 

a

 

display

 

terminal

 

in

 

the

 

display

 

screen

 

itself.

 

For

 

example,

 

if

 

users

 

make

 

errors

 

in

 

data

 

that

 

they

 

enter,

 

the

 

transaction

 

usually

 

points

 

out

 

the

 

errors

 

on

 

the

 

screen

 

(with

 

highlights

 

or

 

messages),

 

sets

 

the

 

next

 

transaction

 

identifier

 

to

 

point

 

to

 

itself

 

(so

 

that

 

it

 

processes

 

the

 

corrected

 

input),

 

and

 

returns

 

to

 

CICS.

 

The

 

transaction

 

has

 

two

 

ways

 

of

 

using

 

the

 

valid

 

data.

 

It

 

can

 

save

 

it

 

(for

 

example,

 

in

 

the

 

COMMAREA)

 

and

 

pass

 

it

 

on

 

for

 

the

 

next

 

time

 

it

 

is

 

run.

 

In

 

this

 

case,

 

the

 

transaction

 

must

 

merge

 

the

 

changed

 

data

 

on

 

the

 

screen

 

with

 

the

 

data

 

from

 

previous

 

entries.

 

Alternatively,

 

it

 

can

 

save

 

the

 

data

 

on

 

the

 

screen

 

by

 

not

 

turning

 

off

 

the

 

modified

 

data

 

tags

 

of

 

the

 

keyed

 

fields.

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

29

|

|
|
|



Saving

 

the

 

data

 

on

 

the

 

screen

 

is

 

easy

 

to

 

code,

 

but

 

has

 

two

 

limitations.

 

First,

 

you

 

should

 

not

 

use

 

it

 

with

 

screens

 

that

 

contain

 

large

 

amounts

 

of

 

data

 

if

 

the

 

likelihood

 

of

 

errors

 

is

 

high.

 

This

 

is

 

because

 

of

 

the

 

additional

 

line

 

traffic

 

needed

 

to

 

resend

 

the

 

unchanged

 

data.

 

(This

 

does

 

not

 

apply

 

to

 

locally-attached

 

terminals.)

 

Second,

 

if

 

the

 

user

 

presses

 

the

 

CLEAR

 

key,

 

the

 

screen

 

data

 

is

 

lost,

 

and

 

the

 

transaction

 

must

 

be

 

able

 

to

 

recover

 

from

 

this.

 

You

 

can

 

avoid

 

this

 

by

 

defining

 

the

 

CLEAR

 

key

 

to

 

mean

 

CANCEL

 

or

 

QUIT,

 

if

 

this

 

is

 

appropriate

 

for

 

the

 

application

 

concerned.

 

Data

 

other

 

than

 

keyed

 

data

 

may

 

also

 

be

 

stored

 

on

 

the

 

screen.

 

This

 

data

 

can

 

be

 

protected

 

from

 

changes

 

(except

 

those

 

caused

 

by

 

CLEAR)

 

and

 

can

 

be

 

nondisplay,

 

if

 

necessary.

 

Intrapartition

 

transient

 

data:

   

Intrapartition

 

transient

 

data

 

has

 

some

 

characteristics

 

in

 

common

 

with

 

auxiliary

 

temporary

 

storage.

 

Like

 

temporary

 

storage,

 

intrapartition

 

transient

 

data

 

consists

 

of

 

queues

 

of

 

data,

 

kept

 

together

 

in

 

a

 

single

 

data

 

set,

 

with

 

an

 

index

 

that

 

CICS

 

maintains

 

in

 

main

 

storage.

 

You

 

can

 

use

 

transient

 

data

 

for

 

many

 

of

 

the

 

purposes

 

for

 

which

 

you

 

would

 

use

 

auxiliary

 

temporary

 

storage,

 

but

 

there

 

are

 

some

 

important

 

differences:

 

v

   

Transient

 

data

 

queue

 

names

 

must

 

be

 

defined

 

in

 

the

 

Transient

 

Data

 

Definitions

 

(TDD)

 

before

 

CICS

 

is

 

started.

 

You

 

cannot

 

define

 

them

 

arbitrarily

 

at

 

the

 

time

 

the

 

data

 

is

 

created.

 

Thus,

 

transient

 

data

 

does

 

not

 

have

 

the

 

same

 

dynamic

 

characteristics

 

as

 

temporary

 

storage.

 

v

   

Transient

 

data

 

queues

 

must

 

be

 

read

 

sequentially,

 

and

 

each

 

item

 

can

 

be

 

read

 

only

 

once.

 

That

 

is,

 

after

 

a

 

transaction

 

reads

 

an

 

item,

 

that

 

item

 

is

 

removed

 

from

 

the

 

queue

 

and

 

is

 

not

 

available

 

to

 

any

 

other

 

transaction.

 

In

 

contrast,

 

items

 

in

 

temporary

 

storage

 

queues

 

may

 

be

 

read

 

either

 

sequentially

 

or

 

directly

 

(by

 

item

 

number).

 

They

 

can

 

be

 

read

 

any

 

number

 

of

 

times

 

and

 

are

 

never

 

removed

 

from

 

the

 

queue

 

until

 

the

 

entire

 

queue

 

is

 

purged.

 

These

 

two

 

characteristics

 

make

 

transient

 

data

 

inappropriate

 

for

 

scratchpad

 

data

 

but

 

suitable

 

for

 

queued

 

data

 

such

 

as

 

audit

 

trails

 

and

 

output

 

to

 

be

 

printed.

 

In

 

fact,

 

for

 

data

 

that

 

is

 

read

 

sequentially

 

once,

 

transient

 

data

 

is

 

preferable

 

to

 

temporary

 

storage.

 

v

   

Items

 

in

 

a

 

temporary

 

storage

 

queue

 

can

 

be

 

changed;

 

items

 

in

 

transient

 

data

 

cannot.

 

v

   

Transient

 

data

 

queues

 

are

 

always

 

written

 

to

 

a

 

data

 

set.

 

(There

 

is

 

no

 

form

 

of

 

transient

 

data

 

that

 

corresponds

 

to

 

main

 

temporary

 

storage.)

 

v

   

You

 

can

 

define

 

transient

 

data

 

queues

 

so

 

that

 

writing

 

items

 

to

 

the

 

queue

 

causes

 

a

 

specific

 

transaction

 

to

 

be

 

initiated

 

(for

 

example,

 

to

 

process

 

the

 

queue).

 

Temporary

 

storage

 

has

 

nothing

 

that

 

corresponds

 

to

 

this

 

‘trigger’

 

mechanism,

 

although

 

you

 

may

 

be

 

able

 

to

 

use

 

a

 

START

 

command

 

to

 

perform

 

a

 

similar

 

function.

 

v

   

Transient

 

data

 

has

 

more

 

varied

 

recovery

 

options

 

than

 

temporary

 

storage.

 

It

 

can

 

be

 

physically

 

or

 

logically

 

recoverable.

 

v

   

Because

 

the

 

commands

 

for

 

intrapartition

 

and

 

extrapartition

 

transient

 

data

 

are

 

identical,

 

you

 

can

 

switch

 

easily

 

between

 

the

 

internal

 

CICS

 

facility

 

(intrapartition)

 

and

 

an

 

external

 

data

 

set.

 

To

 

do

 

this,

 

you

 

need

 

only

 

change

 

the

 

TDD,

 

not

 

your

 

application

 

programs.

 

Temporary

 

storage

 

has

 

no

 

corresponding

 

function

 

of

 

this

 

kind.

Operating

 

System

 

files:

   

You

 

can

 

also

 

use

 

operating

 

system

 

files

 

to

 

save

 

data

 

between

 

transactions.

 

This

 

method

 

probably

 

has

 

the

 

largest

 

overhead

 

in

 

terms

 

of

   

30

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



instructions

 

processed,

 

buffers,

 

control

 

blocks,

 

and

 

user

 

programming

 

requirements,

 

but

 

does

 

provide

 

extra

 

function

 

and

 

flexibility.

 

Not

 

only

 

can

 

you

 

define

 

files

 

as

 

recoverable

 

resources,

 

but

 

you

 

can

 

log

 

changes

 

to

 

them

 

for

 

forward

 

recovery.

 

You

 

can

 

also

 

use

 

resource-level

 

security.

 

User

 

storage

 

acquired

 

by

 

GETMAIN

 

with

 

shared

 

option:

   

The

 

SHARED

 

option

 

of

 

the

 

GETMAIN

 

command

 

can

 

be

 

used

 

to

 

acquire

 

storage

 

that

 

is

 

shared

 

between

 

transactions.

 

For

 

further

 

information,

 

see

 

“Storage

 

services”

 

on

 

page

 

182.

 

Data

 

management

 

storage

 

considerations

 

This

 

section

 

provides

 

an

 

overview

 

of

 

the

 

data

 

storage

 

facilities

 

used

 

in

 

data

 

management

 

and

 

suggests

 

where

 

to

 

store

 

your

 

data.

 

The

 

CICS

 

data

 

storage

 

facilities

 

are:

 

v

   

File

 

services

 

CICS

 

uses

 

file

 

services

 

to

 

read,

 

update,

 

add,

 

delete,

 

and

 

browse

 

data

 

in

 

local

 

or

 

remote

 

files.

 

See

 

“File

 

services”

 

on

 

page

 

105.

 

v

   

Queue

 

services

 

In

 

addition

 

to

 

the

 

permanent

 

data

 

that

 

is

 

the

 

basis

 

of

 

your

 

application,

 

you

 

possibly

 

need

 

to

 

create

 

temporary

 

data

 

for

 

purposes

 

like

 

processing

 

requests

 

and

 

passing

 

data

 

between

 

tasks

 

or

 

programs.

 

CICS

 

provides

 

queue

 

services

 

for

 

this.

 

The

 

advantage

 

of

 

CICS

 

queue

 

services

 

is

 

that

 

they

 

persist

 

over

 

multiple

 

executions

 

of

 

CICS

 

and

 

can

 

represent

 

permanent

 

data.

 

See

 

“Queue

 

services”

 

on

 

page

 

130.

 

v

   

Relational

 

database

 

services

 

CICS

 

allows

 

access

 

to

 

relational

 

databases

 

that

 

provide

 

a

 

programmable

 

interface

 

through

 

Structured

 

Query

 

Language

 

(SQL)

 

commands

 

in

 

either

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

programs.

 

v

   

Journal

 

services

 

CICS

 

provides

 

facilities

 

for

 

creating

 

and

 

managing

 

journals

 

during

 

CICS

 

processing.

 

A

 

journal

 

is

 

a

 

set

 

of

 

special-purpose

 

sequential

 

files.

 

Journals

 

can

 

contain

 

any

 

and

 

all

 

data

 

the

 

user

 

needs

 

to

 

facilitate

 

subsequent

 

reconstruction

 

of

 

events

 

or

 

data

 

changes.

 

See

 

“Journal

 

services”

 

on

 

page

 

137.

 

See

 

also

 

“Data

 

services

 

API

 

migration”

 

on

 

page

 

205.

 

Issues

 

affecting

 

your

 

data

 

management

 

storage

 

decisions

 

The

 

list

 

below

 

summarizes

 

the

 

key

 

issues

 

to

 

consider

 

in

 

deciding

 

which

 

of

 

the

 

CICS

 

data

 

storage

 

facilities

 

meets

 

the

 

needs

 

of

 

your

 

application

 

data.

 

A

 

more

 

detailed

 

discussion

 

on

 

each

 

issue

 

follows

 

this

 

summary

 

list.

 

v

   

Structure

 

and

 

function

 

You

 

must

 

consider

 

the

 

structure

 

of

 

your

 

data

 

to

 

ensure

 

a

 

match

 

between

 

the

 

application

 

programming

 

interface,

 

data,

 

and

 

your

 

processing

 

requirements.

 

You

 

also

 

need

 

to

 

match

 

the

 

auxiliary

 

function

 

in

 

the

 

facility

 

to

 

your

 

needs

 

when

 

managing

 

the

 

data.

 

v

   

Sharing

 

and

 

distribution

 

You

 

need

 

to

 

consider:

 

–

   

How

 

much

 

data

 

is

 

shared

 

among

 

regions

 

–

   

How

 

much

 

data

 

is

 

accessed

 

outside

 

CICS

 

–

   

How

 

much

 

data

 

is

 

distributed

 

among

 

multiple

 

processors
v

   

Data

 

integrity

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

31



For

 

shared

 

or

 

distributed

 

data,

 

you

 

must

 

consider

 

data

 

integrity.

 

Programming

 

requirements

 

to

 

ensure

 

data

 

integrity

 

are

 

more

 

complex

 

when

 

data

 

is

 

shared

 

or

 

distributed.

 

v

   

Data

 

backup

 

and

 

recovery

 

If

 

your

 

data

 

is

 

vital,

 

you

 

must

 

consider

 

how

 

to

 

recover

 

the

 

data

 

if

 

it

 

is

 

lost.

 

Recovery

 

might

 

be

 

provided

 

by

 

CICS

 

or

 

another

 

facility.

 

Programming

 

requirements

 

to

 

ensure

 

recoverability

 

are

 

more

 

complex

 

when

 

data

 

is

 

shared

 

or

 

distributed.

 

v

   

Portability

 

If

 

you

 

need

 

to

 

store

 

or

 

access

 

your

 

data

 

from

 

multiple

 

platforms

 

(AIX

 

and

 

MVS

 

for

 

example),

 

you

 

must

 

ensure

 

that

 

your

 

choice

 

is

 

supported

 

in

 

all

 

potential

 

environments.

 

Possible

 

future

 

cross-platform

 

requirements

 

also

 

need

 

to

 

be

 

considered.

 

v

   

Performance

 

Some

 

forms

 

of

 

storage

 

are

 

much

 

more

 

efficient

 

than

 

others.

 

There

 

is

 

generally

 

a

 

trade-off

 

between

 

performance

 

and

 

function,

 

so

 

you

 

must

 

balance

 

your

 

other

 

requirements

 

against

 

your

 

performance

 

requirements.

Structure

 

and

 

function:

   

The

 

most

 

important

 

difference

 

between

 

data

 

stored

 

by

 

a

 

database

 

management

 

system

 

and

 

data

 

stored

 

in

 

either

 

flat

 

files

 

or

 

queues

 

is

 

the

 

structure

 

that

 

the

 

storage

 

manager

 

imposes

 

on

 

the

 

data.

 

This

 

structure

 

dictates

 

the

 

application

 

programming

 

interface

 

to

 

the

 

data

 

and

 

determines

 

how

 

easy

 

or

 

hard

 

it

 

is

 

to

 

store

 

and

 

retrieve

 

the

 

data

 

for

 

a

 

particular

 

processing

 

requirement.

 

If

 

the

 

data

 

is

 

complex,

 

the

 

structure

 

can

 

be

 

the

 

overriding

 

consideration.

 

A

 

related

 

difference

 

is

 

where

 

knowledge

 

of

 

the

 

data

 

structure

 

is

 

stored.

 

In

 

a

 

database

 

management

 

system

 

(DBMS),

 

the

 

logical

 

structure

 

of

 

the

 

data

 

resides

 

in

 

the

 

DBMS.

 

The

 

physical

 

structure

 

can

 

be

 

changed

 

considerably

 

without

 

changing

 

application

 

code.

 

In

 

flat

 

files,

 

the

 

logical

 

structure

 

of

 

the

 

data

 

is

 

embedded

 

in

 

the

 

programs

 

using

 

it,

 

and

 

logical

 

and

 

physical

 

structures

 

coincide.

 

DBMSs

 

provide

 

services

 

and

 

utilities

 

for

 

managing

 

recovery,

 

sharing

 

and

 

distribution

 

that

 

can

 

be

 

essential

 

to

 

your

 

application.

 

If

 

your

 

data

 

is

 

voluminous,

 

recovery

 

and

 

other

 

management

 

functions

 

can

 

dictate

 

that

 

you

 

use

 

a

 

DBMS.

 

Sharing

 

and

 

distribution:

   

Another

 

storage

 

consideration

 

is

 

the

 

potential

 

users

 

of

 

the

 

data.

 

Will

 

users

 

access

 

the

 

data

 

from

 

more

 

than

 

one

 

CICS

 

platform?

 

Is

 

the

 

access

 

made

 

concurrently

 

or

 

serially?

 

The

 

inability

 

to

 

share

 

data

 

has

 

historically

 

been

 

an

 

impediment

 

to

 

application

 

growth

 

and

 

change.

 

The

 

problems

 

arise

 

as

 

follows:

 

v

   

Increases

 

occur

 

in

 

both

 

the

 

size

 

of

 

the

 

data

 

and

 

the

 

frequency

 

with

 

which

 

the

 

data

 

is

 

accessed:

 

Growth

 

in

 

demands

 

for

 

data

 

occur

 

because

 

applications

 

grow

 

in

 

volume

 

beyond

 

expectations,

 

or

 

a

 

successful

 

application

 

spawns

 

other

 

applications

 

which

 

make

 

use

 

the

 

same

 

data.

 

The

 

applications

 

no

 

longer

 

fit

 

on

 

the

 

processor

 

where

 

they

 

began,

 

and

 

sometimes,

 

they

 

cannot

 

fit

 

on

 

the

 

largest

 

system

 

available.

 

These

 

applications

 

have

 

to

 

be

 

split

 

into

 

multiple

 

CICS

 

regions,

 

and

 

possibly,

 

the

 

data

 

needs

 

to

 

be

 

shared

 

among

 

these

 

regions.

 

v

   

Requirements

 

change

 

for

 

data

 

access

 

availability:

 

Applications

 

originally

 

intended

 

to

 

be

 

online

 

for

 

only

 

part

 

of

 

the

 

day

 

can

 

grow

 

to

 

demand

 

24-hour

 

availability.

 

Data

 

sharing

 

becomes

 

necessary

 

because

 

there

 

is

 

no

 

time

 

when

 

CICS

 

is

 

not

 

operating

 

to

 

run

 

the

 

associated

 

batch

 

cycle.

 

This

 

associated

 

processing

 

must

 

be

 

done

 

while

 

CICS

 

is

 

running.

   

32

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

Reporting

 

requirements

 

change

 

due

 

to

 

increasing

 

time

 

demands

 

in

 

the

 

business

 

environment:

 

Batch

 

reports

 

require

 

time

 

to

 

program,

 

and

 

results

 

can

 

be

 

obtained

 

on

 

an

 

established

 

time

 

cycle.

 

Today’s

 

business

 

environment

 

can

 

demand

 

instant

 

access

 

to

 

the

 

data

 

maintained

 

by

 

an

 

application.

 

In

 

addition,

 

business

 

requirements

 

can

 

call

 

for

 

spontaneous

 

manipulation

 

of

 

data

 

for

 

analytical

 

purposes.

 

When

 

the

 

data

 

is

 

critical

 

to

 

business

 

operations,

 

time

 

constraints

 

prohibit

 

programming

 

those

 

reports

 

individually.

 

The

 

data

 

must

 

be

 

available

 

to

 

be

 

shared

 

with

 

a

 

query

 

manager

 

or

 

report

 

generator.

 

Current

 

hardware

 

and

 

software

 

makes

 

it

 

practical

 

to

 

distribute

 

a

 

single

 

database

 

among

 

several

 

remote

 

locations.

 

This

 

distribution

 

enables

 

the

 

data

 

to

 

be

 

kept

 

local

 

to

 

the

 

code

 

which

 

most

 

often

 

uses

 

it;

 

yet,

 

it

 

permits

 

access

 

by

 

other

 

users.

 

This

 

can

 

improve

 

response

 

time;

 

however,

 

it

 

also

 

introduces

 

the

 

need

 

to

 

ensure

 

data

 

integrity

 

and

 

recovery

 

capability

 

in

 

the

 

event

 

of

 

a

 

communication

 

failure.

 

Data

 

integrity:

   

Data

 

integrity

 

is

 

an

 

issue

 

with

 

all

 

shared

 

data.

 

There

 

is

 

no

 

problem

 

if

 

all

 

of

 

the

 

parties

 

sharing

 

the

 

data

 

only

 

read

 

it.

 

However,

 

when

 

even

 

one

 

party

 

updates

 

data,

 

there

 

is

 

a

 

risk

 

that

 

data

 

can

 

become

 

obsolete

 

while

 

other

 

parties

 

are

 

reading

 

it.

 

This

 

loss

 

of

 

read

 

integrity

 

has

 

varying

 

importance,

 

depending

 

on

 

the

 

task.

 

If

 

the

 

task

 

is

 

to

 

check

 

the

 

data

 

on

 

a

 

customer’s

 

charge

 

card

 

balance

 

and

 

authorize

 

a

 

large

 

purchase,

 

it

 

might

 

be

 

critical.

 

If

 

the

 

task

 

is

 

to

 

analyze

 

the

 

customer’s

 

buying

 

habits,

 

it

 

might

 

be

 

less

 

so.

 

If

 

more

 

than

 

one

 

party

 

can

 

update

 

the

 

files,

 

there

 

is

 

greater

 

risk

 

to

 

data

 

integrity.

 

If

 

two

 

tasks

 

read

 

the

 

same

 

data

 

item

 

with

 

intent

 

to

 

update,

 

updates

 

made

 

by

 

the

 

first

 

task

 

are

 

lost

 

when

 

the

 

second

 

task

 

updates.

 

This

 

occurs

 

because

 

the

 

second

 

task

 

is

 

working

 

from

 

a

 

copy

 

of

 

the

 

data

 

that

 

does

 

not

 

reflect

 

the

 

changes

 

made

 

by

 

the

 

first.

 

This

 

phenomenon

 

of

 

the

 

lost

 

update

 

almost

 

always

 

matters,

 

and

 

most

 

systems

 

protect

 

you

 

against

 

it

 

by

 

enforcing

 

write

 

integrity.

 

Write

 

integrity

 

can

 

be

 

maintained

 

by

 

serializing

 

all

 

updates.

 

Serializing

 

is

 

done

 

by

 

locking

 

data

 

as

 

soon

 

as

 

a

 

task

 

expresses

 

intent

 

to

 

update

 

and

 

delaying

 

any

 

other

 

task

 

that

 

wants

 

to

 

update

 

the

 

same

 

data

 

until

 

the

 

holder

 

of

 

the

 

lock

 

updates

 

and

 

releases

 

the

 

lock.

 

Read

 

integrity

 

can

 

be

 

accomplished

 

the

 

same

 

way

 

if

 

readers,

 

as

 

well

 

as

 

updaters,

 

lock

 

the

 

data.

 

However,

 

since

 

locks

 

imply

 

delays,

 

full

 

read

 

integrity

 

is

 

usually

 

optional.

 

To

 

work,

 

locks

 

must

 

be

 

imposed

 

by

 

a

 

program

 

that

 

has

 

control

 

over

 

all

 

the

 

potential

 

users

 

of

 

the

 

data.

 

Database

 

managers,

 

the

 

access

 

methods,

 

CICS,

 

and

 

the

 

operating

 

system

 

all

 

do

 

some

 

locking

 

to

 

prevent

 

conflicts

 

among

 

the

 

users

 

they

 

control.

 

Among

 

the

 

tasks

 

in

 

a

 

single

 

region,

 

CICS

 

enforces

 

write

 

integrity

 

and,

 

optionally,

 

partial

 

read

 

integrity.

 

However,

 

CICS

 

cannot

 

control

 

the

 

effects

 

of

 

sharing

 

by

 

outside

 

users,

 

and

 

the

 

type

 

of

 

sharing

 

that

 

can

 

be

 

done

 

with

 

integrity

 

varies

 

significantly

 

among

 

the

 

various

 

storage

 

facilities.

 

Internal

 

data

 

consistency:

   

The

 

integrity

 

losses

 

just

 

described

 

occur

 

because

 

tasks

 

running

 

in

 

parallel

 

can

 

access

 

a

 

single

 

item

 

of

 

data

 

while

 

it

 

is

 

undergoing

 

change.

 

Another

 

integrity

 

issue

 

arises

 

when

 

there

 

are

 

processing

 

relationships

 

between

 

two

 

or

 

more

 

items

 

of

 

data.

 

For

 

example,

 

you

 

have

 

one

 

body

 

of

 

data

 

representing

 

accounts

 

payable

 

and

 

another

 

representing

 

your

 

purchase

 

ledger.

 

If

 

you

 

pay

 

a

 

supplier,

 

you

 

need

 

to

 

update

 

both

 

your

 

ledger

 

(to

 

reflect

 

the

 

money

 

paid

 

out)

 

and

 

your

 

accounts

 

payable

 

(to

 

indicate

 

payment

 

has

 

taken

 

place),

 

and

 

you

 

need

 

to

 

write

 

a

 

check.

 

You

 

need

 

to

 

do

 

all

 

three

 

updates

 

together

 

to

 

maintain

 

the

 

consistency

 

(integrity)

 

of

 

your

 

data.

 

The

 

single

 

logical

 

change

 

to

 

your

 

data

 

is

 

made

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

33



up

 

of

 

all

 

three

 

updates

 

together.

 

If

 

your

 

task

 

fails

 

after

 

making

 

any

 

one

 

of

 

the

 

updates,

 

you

 

need

 

some

 

way

 

to

 

remove

 

that

 

all

 

updates,

 

so

 

the

 

data

 

is

 

internally

 

consistent.

 

Database

 

management

 

systems

 

generally

 

provide

 

integrity

 

for

 

the

 

data

 

they

 

manage.

 

Changes

 

to

 

databases

 

are

 

considered

 

provisional

 

until

 

the

 

task

 

making

 

them

 

issues

 

a

 

request

 

to

 

commit

 

the

 

changes,

 

at

 

which

 

time

 

they

 

are

 

all

 

made

 

simultaneously.

 

However,

 

a

 

database

 

manager

 

provides

 

this

 

kind

 

of

 

integrity

 

only

 

to

 

data

 

under

 

its

 

control.

 

CICS

 

extends

 

the

 

concept

 

to

 

allow

 

you

 

to

 

define

 

a

 

set

 

of

 

related

 

changes

 

to

 

data

 

stored

 

in

 

different

 

facilities,

 

including

 

direct

 

access

 

files,

 

queues,

 

and

 

database

 

managers.

 

CICS

 

guarantees

 

that

 

if

 

it

 

cannot

 

complete

 

all

 

the

 

changes

 

to

 

protected

 

data

 

in

 

a

 

single

 

logical

 

unit

 

of

 

work

 

(LUW),

 

it

 

makes

 

none

 

of

 

them.

 

For

 

example,

 

if

 

you

 

have

 

made

 

half

 

of

 

a

 

sequence

 

of

 

related

 

updates

 

when

 

a

 

computer

 

fails,

 

CICS

 

backs

 

out

 

the

 

changes

 

it

 

has

 

made

 

so

 

far

 

in

 

the

 

logical

 

unit

 

of

 

work

 

before

 

resuming.

 

In

 

general,

 

you

 

decide

 

which

 

data

 

is

 

to

 

be

 

protected

 

in

 

this

 

way,

 

although

 

sometimes

 

database

 

managers

 

have

 

a

 

say

 

in

 

the

 

matter.

 

Not

 

all

 

types

 

of

 

data

 

are

 

eligible,

 

and

 

if

 

the

 

integrity

 

of

 

your

 

data

 

is

 

vital,

 

you

 

must

 

consider

 

this

 

when

 

you

 

choose

 

how

 

to

 

store

 

it.

 

Dynamic

 

backout

 

and

 

recovery:

  

There

 

are

 

two

 

situations

 

in

 

which

 

updates

 

to

 

resources

 

can

 

possibly

 

need

 

to

 

be

 

undone:

 

an

 

individual

 

task

 

can

 

fail

 

part

 

way

 

through

 

an

 

LUW,

 

or

 

the

 

whole

 

system

 

can

 

fail.

 

(LUWs

 

generally

 

coincide

 

with

 

tasks,

 

although

 

it

 

is

 

possible

 

to

 

break

 

a

 

task

 

into

 

multiple

 

LUWs;

 

an

 

LUW

 

never

 

spans

 

tasks.)

 

The

 

resources

 

updated

 

within

 

a

 

single

 

LUW

 

can

 

belong

 

to

 

more

 

than

 

one

 

resource

 

manager.

 

When

 

this

 

situation

 

occurs,

 

CICS

 

recovery

 

actions

 

include

 

the

 

joint

 

responsibility

 

of

 

all

 

the

 

resource

 

managers

 

involved.

 

For

 

example,

 

when

 

you

 

are

 

using

 

an

 

XA-compliant

 

relational

 

database

 

management

 

system

 

(RDBMS),

 

CICS

 

acts

 

as

 

the

 

XA-compliant

 

transaction

 

manager

 

and

 

controls

 

the

 

backout

 

actions

 

both

 

of

 

itself

 

(as

 

a

 

resource

 

manager)

 

and

 

of

 

the

 

RDBMS;

 

on

 

the

 

other

 

hand,

 

SFS

 

is

 

itself

 

a

 

recoverable

 

resource

 

manager.

 

Therefore,

 

although

 

CICS

 

keeps

 

track

 

of

 

such

 

recoverable

 

entities

 

as

 

transient

 

data

 

queue

 

read

 

and

 

write

 

pointers,

 

it

 

is

 

SFS

 

that

 

performs

 

the

 

major

 

backout

 

and

 

recovery

 

work.

 

CICS

 

saves

 

the

 

original

 

and

 

current

 

state

 

of

 

all

 

of

 

its

 

recoverable

 

data

 

that

 

has

 

been

 

changed

 

in

 

the

 

current

 

LUW.

 

It

 

saves

 

this

 

information

 

in

 

the

 

Region

 

Pool.

 

If

 

the

 

LUW

 

needs

 

to

 

be

 

rolled

 

back,

 

CICS

 

simply

 

discards

 

the

 

current

 

state

 

information,

 

leaving

 

the

 

data

 

in

 

its

 

original

 

state.

 

It

 

also

 

instructs

 

all

 

of

 

the

 

resource

 

managers

 

involved

 

in

 

the

 

LUW

 

to

 

roll

 

back

 

their

 

work.

 

When

 

there

 

is

 

a

 

failure

 

that

 

results

 

in

 

the

 

abnormal

 

termination

 

of

 

a

 

CICS

 

region,

 

on

 

restart,

 

CICS

 

has

 

to

 

process

 

every

 

LUW

 

that

 

was

 

incomplete

 

at

 

the

 

time

 

of

 

the

 

failure.

 

Whether

 

or

 

not

 

other

 

resource

 

managers

 

have

 

to

 

do

 

likewise

 

is

 

dependent

 

upon

 

whether

 

they

 

also

 

failed.

 

For

 

example:

 

a

 

region

 

has

 

only

 

one

 

SFS

 

was

 

running,

 

and

 

that

 

server

 

did

 

not

 

fail.

 

In

 

this

 

case,

 

the

 

server

 

is

 

still

 

running,

 

and

 

it

 

is

 

necessary

 

to

 

restart

 

only

 

CICS.

 

Restoring

 

the

 

state

 

of

 

recoverable

 

resources

 

after

 

a

 

system

 

failure

 

requires

 

an

 

external

 

record

 

of

 

all

 

the

 

work

 

that

 

needs

 

to

 

be

 

redone.

 

For

 

this

 

purpose,

 

CICS

 

is

 

configured

 

to

 

periodically

 

take

 

snapshots

 

(checkpoints)

 

of

 

the

 

states

 

of

 

all

 

recoverable

 

resources.

 

On

 

restart,

 

CICS

 

reads

 

the

 

checkpoint

 

to

 

reestablish

 

the

   

34

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



states

 

of

 

the

 

recoverable

 

resources

 

at

 

the

 

time

 

the

 

checkpoint

 

was

 

written,

 

and

 

then

 

processes

 

all

 

relevant

 

information

 

held

 

for

 

the

 

region.

 

The

 

frequency

 

with

 

which

 

this

 

checkpoint

 

occurs

 

is

 

configurable.

 

Refer

 

to

 

the

 

CheckpointInterval

 

attribute

 

described

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

Guaranteeing

 

integrity

 

across

 

an

 

LUW

 

involves

 

the

 

need

 

to

 

protect

 

all

 

involved

 

tasks

 

so

 

that

 

other

 

LUWs

 

cannot

 

update

 

them

 

until

 

the

 

current

 

LUW

 

ends.

 

This

 

guarantees

 

that

 

only

 

the

 

LUW

 

having

 

the

 

failed

 

transactions

 

needs

 

to

 

be

 

rolled

 

back.

 

Therefore,

 

the

 

locks

 

that

 

prevent

 

concurrent

 

updates

 

must

 

be

 

extended

 

to

 

the

 

end

 

of

 

the

 

LUW.

 

Extending

 

the

 

locks,

 

of

 

course,

 

increases

 

the

 

associated

 

delays.

 

If

 

a

 

task

 

just

 

wants

 

to

 

read

 

data

 

that

 

has

 

been

 

updated

 

in

 

an

 

uncommitted

 

LUW,

 

it

 

might

 

use

 

data

 

that

 

is

 

subsequently

 

changed

 

because

 

the

 

LUW

 

that

 

wrote

 

it

 

failed.

 

To

 

ensure

 

read

 

integrity

 

in

 

this

 

situation,

 

readers

 

as

 

well

 

as

 

updaters

 

of

 

uncommitted

 

data

 

must

 

be

 

locked

 

out

 

until

 

the

 

updating

 

LUW

 

ends.

 

Data

 

backup

 

and

 

recovery:

  

The

 

task

 

of

 

keeping

 

backup

 

copies

 

is

 

more

 

complicated

 

with

 

online

 

systems,

 

because

 

the

 

data

 

is

 

constantly

 

changing.

 

One

 

way

 

to

 

handle

 

backups

 

is

 

to

 

make

 

a

 

full

 

copy

 

periodically,

 

and

 

keep

 

a

 

record

 

of

 

subsequent

 

changes.

 

In

 

this

 

way,

 

you

 

can

 

reconstruct

 

the

 

current

 

data

 

by

 

reapplying

 

these

 

changes

 

to

 

the

 

most

 

recent

 

full

 

copy.

 

Another

 

way

 

to

 

handle

 

backups

 

is

 

to

 

write

 

duplicate

 

copies

 

of

 

critical

 

databases.

 

This

 

can

 

be

 

done

 

synchronously,

 

so

 

that

 

the

 

two

 

copies

 

are

 

kept

 

exactly

 

the

 

same,

 

or

 

asynchronously,

 

where

 

the

 

backup

 

copy

 

can

 

be

 

slightly

 

behind

 

the

 

primary

 

one.

 

Many

 

users

 

keep

 

one

 

copy

 

physically

 

remote

 

from

 

the

 

normal

 

processing

 

site.

 

In

 

addition

 

to

 

the

 

time

 

and

 

operational

 

complexity

 

of

 

making

 

the

 

copies,

 

there

 

are

 

online

 

costs

 

associated

 

with

 

protecting

 

your

 

data.

 

First,

 

there

 

is

 

the

 

overhead

 

of

 

recording

 

the

 

changes.

 

(Recovery

 

requires

 

an

 

image

 

of

 

each

 

changed

 

resource

 

after

 

the

 

change.)

 

Second,

 

these

 

after

 

images

 

must

 

be

 

recorded

 

on

 

an

 

external

 

medium

 

by

 

the

 

time

 

the

 

task

 

making

 

them

 

reaches

 

syncpoint.

 

This

 

requirement

 

ensures

 

that

 

even

 

if

 

CICS

 

malfunctions

 

at

 

that

 

time,

 

no

 

committed

 

changes

 

are

 

lost

 

in

 

the

 

process.

 

Furthermore,

 

this

 

external

 

recording

 

of

 

the

 

after

 

image

 

requires

 

that

 

the

 

task

 

wait

 

for

 

the

 

I/O

 

to

 

complete

 

before

 

the

 

syncpoint

 

processing

 

can

 

be

 

completed.

 

Considerations

 

involved

 

in

 

deciding

 

how

 

to

 

handle

 

backups

 

include

 

the

 

following

 

issues:

 

v

   

Is

 

your

 

data

 

is

 

voluminous

 

or

 

volatile?

 

v

   

How

 

long

 

does

 

it

 

take

 

to

 

make

 

the

 

copies?

 

v

   

How

 

frequently

 

are

 

backups

 

required?

 

v

   

How

 

long

 

can

 

your

 

business

 

sustain

 

an

 

outage

 

while

 

you

 

rebuild

 

your

 

data

 

after

 

an

 

accident?

The

 

business

 

demands

 

and

 

the

 

data

 

storage

 

facilities

 

available

 

in

 

each

 

situation

 

will

 

dictate

 

your

 

approach

 

to

 

backup

 

requirements.

 

The

 

following

 

operational

 

concerns

 

are

 

relevant

 

to

 

backup

 

decisions:

 

v

   

Who

 

will

 

perform

 

the

 

process

 

and

 

how

 

much

 

automation

 

is

 

required?

 

(This

 

is

 

particularly

 

important

 

if

 

more

 

than

 

one

 

form

 

of

 

data

 

storage

 

is

 

involved.)

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

35



v

   

Is

 

there

 

sufficient

 

operations

 

staff

 

to

 

perform

 

the

 

day

 

to

 

day

 

requirements

 

of

 

taking

 

backups,

 

maintaining

 

the

 

storage

 

devices,

 

and

 

ensuring

 

data

 

availability

 

that

 

meets

 

the

 

time

 

requirements?

Portability:

   

The

 

location

 

where

 

the

 

transaction

 

processing

 

occurs

 

is

 

more

 

flexible

 

in

 

a

 

distributed

 

system.

 

This

 

makes

 

your

 

design

 

decisions

 

more

 

complex.

 

We

 

recommend

 

that

 

you

 

design

 

your

 

transactions

 

so

 

that

 

the

 

business

 

logic

 

is

 

separate

 

from

 

the

 

user

 

interface.

 

This

 

allows

 

you

 

to

 

execute

 

the

 

two

 

parts

 

on

 

different

 

processors.

 

The

 

execution

 

can

 

occur

 

entirely

 

either

 

under

 

IBM

 

CICS

 

for

 

Windows

 

or

 

CICS

 

on

 

Open

 

Systems,

 

or

 

it

 

can

 

occur

 

under

 

other

 

CICS

 

products.

 

With

 

the

 

proper

 

precautions,

 

the

 

CICS

 

platform

 

on

 

which

 

the

 

business

 

logic

 

executes

 

can

 

be

 

changed

 

without

 

changing

 

your

 

application.

 

If

 

a

 

platform

 

change

 

is

 

likely

 

to

 

be

 

required,

 

portability

 

must

 

be

 

considered

 

when

 

you

 

choose

 

how

 

to

 

store

 

your

 

data.

 

Refer

 

to

 

Chapter

 

7,

 

“Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS,”

 

on

 

page

 

191

 

for

 

migration

 

considerations.

 

Also

 

refer

 

to

 

the

 

API

 

command

 

descriptions

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference,

 

where

 

differences

 

are

 

noted

 

for

 

each

 

individual

 

command.

 

Performance:

   

For

 

most

 

online

 

applications,

 

the

 

major

 

component

 

of

 

transaction

 

processing

 

time

 

is

 

occupied

 

with

 

the

 

reading

 

and

 

writing

 

of

 

externally

 

stored

 

data.

 

The

 

task

 

waits

 

for

 

physical

 

I/O

 

to

 

occur,

 

and

 

the

 

depth

 

of

 

the

 

embedded

 

directory

 

level

 

(pathlength)

 

used

 

for

 

storage

 

and

 

retrieval

 

consumes

 

the

 

greater

 

share

 

of

 

the

 

transaction

 

time.

 

Therefore,

 

the

 

greatest

 

impact

 

on

 

the

 

performance

 

and

 

resource

 

requirements

 

of

 

your

 

application

 

comes

 

from

 

your

 

choice

 

of

 

data

 

storage

 

facilities

 

and

 

the

 

way

 

you

 

use

 

any

 

given

 

facility.

 

In

 

addition

 

to

 

the

 

functional

 

requirements,

 

your

 

design

 

needs

 

to

 

consider

 

the

 

following

 

performance

 

trade

 

offs:

 

v

   

In

 

general,

 

the

 

longer

 

the

 

pathlength,

 

the

 

more

 

performance

 

is

 

reduced.

 

Longer

 

Pathlength

 

are

 

associated

 

with

 

the

 

power

 

of

 

the

 

language

 

function.

 

The

 

more

 

powerful

 

language

 

functions

 

are

 

associated

 

with

 

programming

 

productivity.

 

Your

 

design

 

often

 

trades

 

between

 

performance

 

and

 

productivity.

 

v

   

The

 

more

 

universal

 

the

 

sharing,

 

the

 

more

 

performance

 

is

 

enhanced.

 

But,

 

data

 

sharing

 

requires

 

significant

 

programming

 

effort

 

to

 

ensure

 

the

 

proper

 

management

 

of

 

the

 

data.

 

This

 

can

 

make

 

developing

 

and

 

maintaining

 

the

 

application

 

more

 

costly.

 

However,

 

designing

 

the

 

application

 

to

 

ensure

 

easy

 

maintenance

 

can

 

result

 

in

 

reduced

 

performance.

There

 

are

 

no

 

right

 

answers

 

to

 

these

 

trade-off

 

decisions.

 

It

 

is

 

critical

 

to

 

understand

 

the

 

issues

 

and

 

to

 

make

 

trade-off

 

decisions

 

consciously

 

during

 

the

 

design

 

phase.

 

It

 

is

 

particularly

 

important

 

to

 

understand

 

the

 

expectations

 

for

 

response

 

time

 

and

 

transaction

 

volume.

 

These

 

aspects,

 

along

 

with

 

recovery,

 

integrity,

 

sharing,

 

and

 

other

 

requirements,

 

must

 

be

 

carefully

 

examined

 

to

 

ensure

 

that

 

your

 

design

 

choices

 

meet

 

objectives

 

in

 

performance,

 

as

 

well

 

as

 

in

 

function.

 

CICS

 

environment

 

efficiency

 

considerations

 

To

 

know

 

how

 

programming

 

techniques

 

can

 

affect

 

the

 

performance

 

and

 

efficiency

 

of

 

the

 

CICS

 

system,

 

it

 

is

 

necessary

 

to

 

understand

 

a

 

little

 

about

 

the

 

environment

 

in

 

which

 

CICS

 

operates.

 

This

 

section

 

discusses

 

the

 

following

 

factors:

 

v

   

Wait

 

conditions

 

v

   

Auxiliary

 

trace

 

v

   

The

 

NOSUSPEND

 

option

 

v

   

Access

 

permissions

 

for

 

maps

 

and

 

transaction

 

programs

 

v

   

CICS

 

commands

 

lengths

  

36

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Wait

 

conditions

 

In

 

some

 

CICS

 

products,

 

it

 

is

 

possible

 

to

 

inadvertently

 

stop

 

all

 

CICS

 

activity

 

by

 

using

 

a

 

facility

 

that

 

causes

 

an

 

operating

 

system

 

wait.

 

This

 

can

 

only

 

occur

 

in

 

CICS

 

for

 

system

 

dumps,

 

whether

 

operator

 

or

 

software

 

initiated.

 

Auxiliary

 

trace

 

Efficiency

 

can

 

be

 

improved

 

by

 

using

 

auxiliary

 

trace

 

to

 

review

 

your

 

application

 

programs.

 

It

 

can

 

identify

 

many

 

common

 

coding

 

problems,

 

such

 

as:

 

v

   

unnecessary

 

code

 

v

   

too

 

many

 

or

 

too

 

large

 

EXEC

 

CICS

 

GETMAIN

 

commands

 

v

   

failure

 

to

 

release

 

storage

 

when

 

it

 

is

 

no

 

longer

 

needed

 

v

   

failure

 

to

 

unlock

 

records

 

held

 

for

 

exclusive

 

control

 

that

 

are

 

no

 

longer

 

needed

 

v

   

unintended

 

logic

 

loops.

The

 

NOSUSPEND

 

option

 

The

 

default

 

action

 

for

 

the

 

ENQBUSY,

 

NOJBUFSP,

 

NOSPACE,

 

QBUSY,

 

and

 

SYSBUSY

 

conditions

 

is

 

to

 

suspend

 

the

 

execution

 

of

 

the

 

application

 

until

 

the

 

required

 

resource

 

(for

 

example,

 

a

 

queue)

 

becomes

 

available,

 

and

 

then

 

resume

 

processing

 

the

 

command.

 

The

 

commands

 

that

 

can

 

cause

 

these

 

conditions

 

are:

 

EXEC

 

CICS

 

ALLOCATE,

 

EXEC

 

CICS

 

CONNECT

 

PROCESS,

 

EXEC

 

CICS

 

ENQ,

 

EXEC

 

CICS

 

JOURNAL,

 

EXEC

 

CICS

 

READQ

 

TD,

 

and

 

EXEC

 

CICS

 

WRITEQ

 

TS.

 

With

 

these

 

commands,

 

you

 

can

 

use

 

the

 

NOSUSPEND

 

option

 

to

 

inhibit

 

this

 

waiting

 

and

 

to

 

cause

 

an

 

immediate

 

return

 

to

 

the

 

instruction

 

in

 

the

 

application

 

program

 

following

 

the

 

command.

 

(In

 

the

 

case

 

of

 

the

 

EXEC

 

CICS

 

ALLOCATE

 

command,

 

this

 

option

 

is

 

known

 

as

 

the

 

NOQUEUE

 

option.)

 

If

 

you

 

do

 

not

 

use

 

the

 

NOSUSPEND

 

option,

 

the

 

suspended

 

applications

 

attempt

 

to

 

obtain

 

the

 

required

 

resource

 

periodically

 

until

 

it

 

becomes

 

available.

 

This

 

can

 

consume

 

significant

 

resources.

 

For

 

example,

 

processor

 

time

 

can

 

be

 

wasted,

 

or

 

the

 

user

 

can

 

be

 

prevented

 

from

 

typing

 

anything

 

by

 

a

 

terminal

 

lock

 

until

 

the

 

resource

 

is

 

available.

 

Access

 

permissions

 

for

 

maps

 

and

 

transaction

 

programs

 

When

 

you

 

produce

 

a

 

transaction

 

program

 

or

 

map

 

using

 

the

 

CICS

 

commands

 

cicstcl,

 

cicsmap,

 

or

 

cicstran,

 

followed

 

by

 

the

 

link-edit

 

stage,

 

you

 

must

 

ensure

 

that

 

the

 

resultant

 

file

 

is

 

either

 

readable

 

by

 

the

 

group

 

cics

 

or

 

has

 

public

 

access.

 

CICS

 

commands

 

lengths

 

When

 

a

 

CICS

 

command

 

includes

 

a

 

LENGTH

 

operand,

 

the

 

data

 

type

 

used

 

usually

 

places

 

a

 

theoretical

 

upper

 

limit

 

of

 

32K

 

bytes

 

on

 

the

 

length.

 

In

 

practice,

 

the

 

limits

 

are

 

less

 

than

 

this

 

and

 

vary

 

for

 

each

 

command.

 

The

 

limits

 

depend

 

on

 

file

 

definitions,

 

recoverability

 

requirements,

 

buffer

 

sizes,

 

and

 

local

 

networking

 

characteristics.

 

Length

 

options:

   

In

 

the

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

languages,

 

the

 

translator

 

deals

 

with

 

lengths.

 

Refer

 

to

 

the

 

individual

 

command

 

descriptions

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

details

 

of

 

when

 

you

 

need

 

to

 

specify

 

the

 

LENGTH

 

option.

 

In

 

most

 

cases,

 

the

 

LENGTH

 

option

 

must

 

be

 

specified

 

if

 

SET

 

is

 

used;

 

the

 

syntax

 

of

 

each

 

command

 

and

 

its

 

associated

 

options

 

show

 

whether

 

this

 

rule

 

applies.

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

37



For

 

journaling

 

commands,

 

the

 

restrictions

 

apply

 

to

 

the

 

sum

 

of

 

the

 

LENGTH

 

and

 

PFXLENG

 

values.

 

For

 

further

 

details,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Note

 

that

 

for

 

journal

 

records,

 

the

 

journal

 

buffer

 

size

 

may

 

impose

 

a

 

limit

 

lower

 

than

 

24KB.

 

Recommendation:

   

For

 

any

 

command,

 

24KB

 

is

 

a

 

good

 

working

 

limit

 

for

 

LENGTH

 

specifications.

 

Subject

 

to

 

user-specified

 

record

 

and

 

buffer

 

sizes,

 

this

 

limit

 

is

 

unlikely

 

either

 

to

 

cause

 

an

 

error

 

or

 

to

 

place

 

a

 

constraint

 

on

 

applications.

 

You

 

will

 

probably

 

not

 

find

 

a

 

24KB

 

limit

 

too

 

much

 

of

 

a

 

hindrance;

 

online

 

programs

 

do

 

not

 

often

 

handle

 

such

 

large

 

amounts

 

of

 

data

 

for

 

the

 

sake

 

of

 

efficiency

 

and

 

response

 

time.

 

Note:

  

The

 

value

 

in

 

the

 

LENGTH

 

operand

 

should

 

never

 

exceed

 

the

 

length

 

of

 

the

 

data

 

area

 

addressed

 

by

 

the

 

command.

 

Efficiency

 

issues

 

for

 

CICS

 

locking

 

functions

 

This

 

section

 

describes

 

the

 

following

 

locking

 

functions

 

performed

 

by

 

the

 

Structured

 

File

 

Server

 

(SFS)

 

and

 

IBM’s

 

DB2

 

when

 

processing

 

transactions:

 

v

   

Implicit

 

locking

 

on

 

recoverable

 

and

 

nonrecoverable

 

files

 

v

   

Implicit

 

locking

 

on

 

recoverable

 

transient

 

data

 

queues

 

v

   

Implicit

 

locking

 

on

 

recoverable

 

temporary

 

storage

 

queues

 

v

   

Explicit

 

locking

Note:

  

Locking

 

(implicit

 

or

 

explicit)

 

on

 

data

 

resources

 

protects

 

data

 

integrity,

 

but

 

can

 

affect

 

performance

 

if

 

several

 

tasks

 

attempt

 

to

 

operate

 

on

 

the

 

same

 

data

 

resource

 

at

 

the

 

same

 

time.

 

The

 

effect

 

of

 

locking

 

on

 

performance,

 

however,

 

is

 

minimized

 

by

 

using

 

short

 

Logical

 

Units

 

of

 

Work

 

(LUW).

 

Implicit

 

locking

 

on

 

nonrecoverable

 

and

 

recoverable

 

files

 

This

 

section

 

discusses

 

the

 

following

 

locking

 

functions:

 

v

   

the

 

locking

 

provided

 

when

 

DB2

 

is

 

used

 

to

 

manage

 

CICS

 

queues

 

and

 

files

 

v

   

the

 

implicit

 

locking

 

(exclusive

 

control)

 

that

 

SFS

 

provides

 

when

 

you

 

update

 

nonrecoverable

 

files,

 

and

 

v

   

the

 

extended

 

locking

 

actions

 

that

 

SFS

 

provides

 

when

 

you

 

update

 

recoverable

 

files

Note:

  

DB2

 

handles

 

all

 

files

 

as

 

recoverable

 

files.

 

For

 

nonrecoverable

 

SFS

 

files,

 

SFS

 

locks

 

the

 

record

 

during

 

an

 

update.

 

Figure

 

1

 

on

 

page

 

39

 

shows

 

two

 

tasks

 

updating

 

the

 

same

 

record.

 

Task

 

A

 

is

 

given

 

exclusive

 

control

 

of

 

the

 

record

 

between

 

the

 

EXEC

 

CICS

 

READ

 

UPDATE

 

and

 

EXEC

 

CICS

 

WRITE

 

commands.

 

During

 

this

 

period,

 

Task

 

B

 

waits.

    

38

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Figure

 

2

 

illustrates

 

two

 

tasks

 

updating

 

the

 

same

 

record

 

in

 

recoverable

 

SFS

 

files

 

or

 

DB2

 

files.

 

Task

 

A

 

is

 

given

 

exclusive

 

control

 

of

 

the

 

record

 

until

 

the

 

update

 

is

 

committed

 

(at

 

the

 

end

 

of

 

the

 

LUW).

 

During

 

this

 

period,

 

Task

 

B

 

waits.

  

The

 

extended

 

period

 

of

 

exclusive

 

control

 

is

 

needed

 

to

 

avoid

 

the

 

possibility

 

of

 

an

 

update

 

committed

 

by

 

one

 

task

 

being

 

backed

 

out

 

by

 

another

 

task.

 

Consider

 

what

 

could

 

happen

 

if

 

you

 

used

 

the

 

nonextended

 

exclusive

 

control

 

shown

 

in

 

Figure

 

1.

 

If

 

Task

 

B

 

reads

 

the

 

data

 

after

 

Task

 

A

 

wrote

 

it

 

but

 

before

 

the

 

syncpoint

 

(which

 

it

 

could

 

with

 

nonrecoverable

 

files),

 

and

 

Task

 

A

 

then

 

backs

 

out

 

its

 

changes,

 

Task

 

B

 

would

 

have

 

the

 

incorrect

 

value.

 

START READ
UPDATE

WRITE

Exclusive Control
during update

READ
UPDATE

WRITE

Exclusive Control
during update

START

Wait

Task A

Task B

Sync-
point

Sync-
point

  

Figure

 

1.

 

Locking

 

(exclusive

 

control)

 

during

 

updates

 

to

 

nonrecoverable

 

files

START READ
UPDATE

WRITE

READ
UPDATE

WRITESTART

Task A

Task B

Exclusive Control extends to
end of LUW

Sync-
point

Exclusive Control
until end of LUW

Wait Sync-
point

  

Figure

 

2.

 

Locking

 

(exclusive

 

control)

 

during

 

updates

 

to

 

recoverable

 

files

  

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

39



To

 

avoid

 

this

 

problem,

 

whenever

 

a

 

transaction

 

issues

 

a

 

command

 

that

 

changes

 

a

 

recoverable

 

file

 

(or

 

reads

 

from

 

a

 

recoverable

 

file

 

prior

 

to

 

update),

 

SFS

 

and

 

DB2

 

automatically

 

locks

 

the

 

updated

 

record

 

until

 

the

 

change

 

is

 

committed

 

(that

 

is,

 

until

 

the

 

end

 

of

 

the

 

LUW).

 

Thus

 

in

 

Figure

 

2

 

on

 

page

 

39,

 

Task

 

B

 

would

 

not

 

be

 

able

 

to

 

access

 

the

 

record

 

until

 

Task

 

A

 

had

 

committed

 

its

 

change

 

at

 

the

 

end

 

of

 

the

 

LUW.

 

Hence,

 

it

 

becomes

 

impossible

 

for

 

Task

 

B’s

 

update

 

to

 

be

 

lost

 

by

 

a

 

backout

 

of

 

Task

 

A.

 

The

 

file

 

control

 

commands

 

that

 

invoke

 

automatic

 

locking

 

in

 

this

 

way

 

are:

 

v

   

EXEC

 

CICS

 

READ

 

(for

 

UPDATE)

 

v

   

EXEC

 

CICS

 

WRITE

 

v

   

EXEC

 

CICS

 

DELETE

Note:

  

Locking

 

can

 

lead

 

to

 

transaction

 

deadlock.

 

If

 

a

 

transaction

 

requests

 

a

 

record

 

for

 

update

 

that

 

is

 

being

 

updated

 

by

 

another

 

task,

 

the

 

second

 

task

 

is

 

locked

 

until

 

the

 

first

 

update

 

is

 

complete.

 

When

 

a

 

transaction

 

issues

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command

 

(for

 

any

 

file,

 

recoverable

 

or

 

not),

 

SFS

 

or

 

DB2

 

maintain

 

exclusive

 

control

 

of

 

the

 

record

 

until

 

an

 

EXEC

 

CICS

 

REWRITE

 

(or

 

UNLOCK

 

or

 

DELETE)

 

command

 

is

 

issued.

 

Two

 

EXEC

 

CICS

 

READ

 

UPDATE

 

commands

 

for

 

records

 

in

 

the

 

same

 

file

 

without

 

an

 

intervening

 

EXEC

 

CICS

 

REWRITE

 

command

 

will

 

raise

 

the

 

INVREQ

 

condition.

 

For

 

recoverable

 

files,

 

you

 

should

 

not

 

use

 

unique

 

key

 

alternate

 

indexes

 

to

 

allocate

 

unique

 

resources

 

(represented

 

by

 

the

 

alternate

 

key).

 

This

 

is

 

because

 

backout

 

failure

 

may

 

occur

 

in

 

the

 

following

 

set

 

of

 

circumstances:

 

v

   

A

 

task

 

deletes

 

or

 

updates

 

a

 

record

 

(through

 

the

 

base

 

or

 

another

 

alternate

 

index

 

and

 

the

 

alternate

 

index

 

key

 

is

 

changed.

 

v

   

Before

 

the

 

end

 

of

 

the

 

first

 

task’s

 

LUW,

 

a

 

second

 

task

 

inserts

 

a

 

new

 

record

 

with

 

the

 

original

 

alternate

 

index

 

key,

 

or

 

changes

 

an

 

existing

 

alternate

 

index

 

key

 

to

 

that

 

of

 

the

 

original

 

one.

 

v

   

The

 

first

 

task

 

fails

 

and

 

CICS

 

attempts

 

to

 

back

 

it

 

out.

 

The

 

backout

 

fails

 

because

 

a

 

duplicate

 

key

 

is

 

detected

 

in

 

the

 

alternate

 

index.

 

There

 

was

 

no

 

locking

 

on

 

the

 

alternate

 

index

 

key

 

to

 

prevent

 

the

 

second

 

task

 

taking

 

it

 

before

 

the

 

end

 

of

 

the

 

first

 

task’s

 

LUW.

 

If

 

there

 

is

 

an

 

application

 

requirement

 

for

 

this

 

sort

 

of

 

operation,

 

the

 

File

 

Server’s

 

locking

 

mechanism

 

must

 

reserve

 

the

 

key

 

until

 

the

 

end

 

of

 

the

 

LUW.

 

To

 

ensure

 

that

 

the

 

data

 

being

 

read

 

is

 

up

 

to

 

date,

 

the

 

application

 

program

 

should

 

issue

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command

 

(rather

 

than

 

a

 

simple

 

READ),

 

thus

 

locking

 

on

 

the

 

data

 

until

 

the

 

end

 

of

 

the

 

LUW.

 

Implicit

 

locking

 

on

 

logically

 

recoverable

 

transient

 

data

 

queues

 

CICS

 

provides

 

a

 

facility

 

for

 

locking

 

logically

 

recoverable

 

(as

 

distinct

 

from

 

physically

 

recoverable)

 

transient

 

data

 

queues

 

in

 

a

 

similar

 

way

 

to

 

that

 

for

 

recoverable

 

files.

 

Note

 

that

 

if

 

DB2

 

is

 

used

 

as

 

the

 

file

 

manager

 

for

 

CICS,

 

all

 

transient

 

data

 

(TD)

 

queues

 

are

 

treated

 

as

 

logically

 

recoverable.

 

Transient

 

data

 

control

 

commands

 

that

 

invoke

 

implicit

 

locking

 

are:

 

v

   

WRITEQ

 

TD

 

v

   

READQ

 

TD

 

v

   

DELETEQ

 

TD

  

40

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Thus,

 

for

 

example:

 

v

   

If

 

a

 

task

 

issues

 

an

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

command

 

to

 

a

 

particular

 

destination,

 

CICS

 

locks

 

that

 

write

 

destination

 

until

 

the

 

end

 

of

 

the

 

task

 

(or

 

LUW).

 

While

 

the

 

destination

 

is

 

locked:

 

–

   

Another

 

task

 

attempting

 

to

 

write

 

to

 

the

 

same

 

destination

 

is

 

suspended.

 

–

   

Another

 

task

 

attempting

 

to

 

read

 

from

 

the

 

same

 

destination

 

is

 

allowed

 

to

 

read

 

only

 

committed

 

data

 

(not

 

data

 

that

 

is

 

being

 

written

 

in

 

a

 

currently

 

incomplete

 

LUW).

 

When

 

trying

 

to

 

read

 

uncommitted

 

data,

 

the

 

task

 

suspends

 

until

 

that

 

data

 

is

 

committed,

 

unless

 

the

 

NOSUSPEND

 

option

 

is

 

used

 

on

 

the

 

READQ

 

command.
v

   

If

 

a

 

task

 

issues

 

an

 

EXEC

 

CICS

 

READQ

 

TD

 

command

 

to

 

a

 

particular

 

destination,

 

CICS

 

locks

 

that

 

read

 

destination

 

until

 

the

 

end

 

of

 

task

 

(or

 

LUW).

 

While

 

the

 

destination

 

is

 

locked:

 

–

   

Another

 

task

 

attempting

 

to

 

read

 

from

 

the

 

same

 

destination

 

is

 

suspended.

 

–

   

Another

 

task

 

attempting

 

to

 

write

 

to

 

the

 

same

 

destination

 

is

 

allowed

 

to

 

do

 

so.

 

CICS

 

locks

 

that

 

write

 

destination

 

until

 

end

 

of

 

task

 

(or

 

LUW).

Implicit

 

locking

 

on

 

recoverable

 

temporary

 

storage

 

queues

 

CICS

 

provides

 

the

 

locking

 

protection

 

facility

 

for

 

recoverable

 

temporary

 

storage

 

queues

 

in

 

a

 

similar

 

way

 

to

 

that

 

for

 

recoverable

 

files.

 

There

 

is

 

one

 

minor

 

difference;

 

when

 

the

 

file

 

manager

 

is

 

SFS,

 

locking

 

is

 

not

 

invoked

 

for

 

EXEC

 

CICS

 

READQ

 

TS

 

commands,

 

therefore

 

it

 

is

 

possible

 

for

 

one

 

task

 

to

 

read

 

a

 

temporary

 

storage

 

queue

 

record

 

while

 

another

 

is

 

updating

 

the

 

same

 

record

 

(this

 

allows

 

the

 

reading

 

of

 

uncommitted

 

data,

 

or

 

“dirty

 

reads”).

 

To

 

avoid

 

this,

 

it

 

is

 

necessary

 

to

 

use

 

explicit

 

locking

 

on

 

temporary

 

storage

 

queues

 

where

 

concurrently

 

executing

 

tasks

 

can

 

read

 

and

 

change

 

queues

 

with

 

the

 

same

 

temporary

 

storage

 

identifier.

 

Temporary

 

storage

 

control

 

commands

 

that

 

invoke

 

implicit

 

locking

 

are:

 

v

   

EXEC

 

CICS

 

WRITEQ

 

TS

 

v

   

EXEC

 

CICS

 

DELETEQ

 

TS

Explicit

 

locking

 

(by

 

the

 

application

 

programmer)

 

CICS

 

provides

 

the

 

following

 

explicit

 

locking

 

commands:

 

v

   

EXEC

 

CICS

 

ENQ

 

RESOURCE

 

v

   

EXEC

 

CICS

 

DEQ

 

RESOURCE

 

These

 

commands

 

can

 

be

 

useful

 

in

 

certain

 

applications

 

where,

 

for

 

example,

 

the

 

installation

 

wants:

 

v

   

To

 

protect

 

data

 

that

 

is

 

not

 

automatically

 

protected

 

by

 

CICS

 

for

 

example,

 

when

 

the

 

data

 

is

 

written

 

into

 

the

 

common

 

work

 

area

 

(CWA).

 

v

   

To

 

prevent

 

transaction

 

deadlock

 

by

 

locking

 

on

 

records

 

that

 

might

 

be

 

updated

 

by

 

more

 

than

 

one

 

task

 

concurrently.

 

v

   

To

 

protect

 

a

 

temporary

 

storage

 

queue

 

from

 

being

 

read

 

and

 

updated

 

concurrently.

 

To

 

be

 

effective,

 

however,

 

all

 

transactions

 

must

 

adhere

 

to

 

the

 

same

 

convention.

 

A

 

transaction

 

that

 

accesses

 

the

 

CWA

 

without

 

using

 

the

 

agreed

 

ENQ

 

and

 

DEQ

 

commands

 

will

 

not

 

be

 

suspended,

 

and

 

protection

 

will

 

be

 

violated.

 

It

 

follows

 

that

 

you

 

will

 

need

 

installation

 

standards.

 

After

 

a

 

task

 

has

 

issued

 

an

 

EXEC

 

CICS

 

ENQ

 

RESOURCE

 

(data

 

area)

 

command,

 

any

 

other

 

task

 

that

 

issues

 

an

 

EXEC

 

CICS

 

ENQ

 

RESOURCE

 

command

 

with

 

the

 

same

 

data

 

area

 

parameter

 

is

 

suspended

 

until

 

the

 

task

 

issues

 

a

 

matching

 

EXEC

 

CICS

 

DEQ

 

RESOURCE

 

(data

 

area)

 

command,

 

or

 

until

 

the

 

LUW

 

ends,

 

unless

 

the

 

NOSUSPEND

 

option

 

is

 

used.

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

41



Note:

  

The

 

concurrent

 

use

 

of

 

locks

 

against

 

more

 

than

 

one

 

resource

 

introduces

 

the

 

possibility

 

of

 

transaction

 

deadlock.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

and

 

the

 

CICS

 

Administration

 

Guide

 

for

 

related

 

information.

 

Performance

 

considerations

 

for

 

CICS

 

developers

 

This

 

section

 

identifies

 

the

 

performance

 

issues

 

that

 

generally

 

fall

 

into

 

the

 

domain

 

of

 

the

 

developer.

 

Improving

 

performance

 

of

 

CICS

 

application

 

programs

 

Writers

 

of

 

CICS

 

application

 

programs

 

need

 

to

 

consider

 

the

 

following

 

points:

 

v

   

The

 

impact

 

of

 

storage

 

class,

 

see

 

“Selecting

 

the

 

appropriate

 

class

 

of

 

storage.”

 

v

   

The

 

value

 

of

 

using

 

BMS

 

map

 

suffixing,

 

see

 

“BMS

 

map

 

suffixing.”

 

v

   

The

 

value

 

of

 

shared

 

libraries,

 

see

 

“Resident

 

options

 

and

 

shared

 

libraries”

 

on

 

page

 

43.

 

v

   

The

 

importance

 

of

 

avoids

 

locks,

 

see

 

“Avoiding

 

locks”

 

on

 

page

 

43.

 

v

   

The

 

impact

 

of

 

reading

 

programs,

 

see

 

“Reading

 

programs”

 

on

 

page

 

44.

 

v

   

The

 

value

 

of

 

caching

 

application

 

code,

 

see

 

“Using

 

the

 

program

 

cache”

 

on

 

page

 

44.

Selecting

 

the

 

appropriate

 

class

 

of

 

storage

 

v

   

EXEC

 

CICS

 

GETMAIN

 

GETMAIN

 

storage

 

is

 

allocated

 

with

 

a

 

mechanism

 

similar

 

to

 

operating

 

system

 

malloc

 

and

 

free

 

routines,

 

and

 

comes

 

from

 

the

 

process

 

data

 

segment.

 

CICS

 

imposes

 

a

 

limit,

 

configurable

 

in

 

the

 

Region

 

Definitions

 

(RD),

 

on

 

the

 

amount

 

of

 

this

 

type

 

of

 

storage

 

that

 

is

 

given

 

to

 

a

 

transaction

 

program.

 

This

 

class

 

of

 

storage

 

is

 

reclaimed

 

by

 

CICS

 

if

 

the

 

transaction

 

program

 

abends

 

or

 

terminates

 

without

 

releasing

 

it.

 

v

   

EXEC

 

CICS

 

GETMAIN

 

SHARED

 

GETMAIN

 

SHARED

 

is

 

allocated

 

from

 

storage

 

shared

 

between

 

all

 

CICS

 

tasks.

 

The

 

total

 

available

 

is

 

configured

 

in

 

the

 

region

 

database.

 

GETMAIN

 

SHARED

 

remains

 

allocated

 

until

 

explicitly

 

freed

 

by

 

a

 

transaction

 

program.

 

v

   

Stack

 

You

 

can

 

use

 

the

 

C

 

language

 

function

 

alloca

 

to

 

allocate

 

stack

 

storage

 

for

 

automatic

 

variables

 

and

 

dynamically

 

sized

 

automatic

 

variables.

 

This

 

storage

 

is

 

the

 

quickest

 

to

 

allocate

 

and

 

deallocate

 

and

 

is

 

automatically

 

cleaned

 

up

 

when

 

the

 

function

 

exits

 

or

 

the

 

transaction

 

program

 

abends.

 

The

 

application

 

programmer

 

must

 

ensure

 

that

 

this

 

memory

 

is

 

freed

 

at

 

an

 

appropriate

 

time.

 

Because

 

it

 

is

 

not

 

simple

 

to

 

defend

 

against

 

the

 

possibility

 

that

 

a

 

transaction

 

program

 

will

 

abend

 

while

 

holding

 

malloc

 

storage,

 

it

 

is

 

normal

 

for

 

transaction

 

programs

 

to

 

use

 

EXEC

 

CICS

 

GETMAIN

 

instead.

BMS

 

map

 

suffixing

 

Device-specific

 

maps

 

are

 

found

 

more

 

quickly

 

than

 

device-independent

 

maps.

 

Creation

 

of

 

both

 

types

 

of

 

maps

 

is

 

described

 

in

 

the

 

CICS

 

Application

 

Programming

 

Guide.

   

42

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|

|
|

|
|

|

|
|
|
|
|
|
|
|



Resident

 

options

 

and

 

shared

 

libraries

  

On

 

CICS

 

for

 

AIX

 

only

 

The

 

size

 

of

 

a

 

C,

 

IBM

 

COBOL,

 

or

 

PL/I

 

transaction

 

program

 

can

 

be

 

determined

 

by

 

using

 

the

 

size

 

-f

 

command.

  

On

 

the

 

HP-UX

 

or

 

Solaris

 

platforms

 

The

 

size

 

of

 

the

 

C

 

transaction

 

program

 

can

 

be

 

determined

 

by

 

using

 

the

 

size

 

-f

 

command.

 

When

 

the

 

size

 

-f

 

command

 

is

 

used,

 

the

 

fields

 

text

 

(program

 

code),

 

data

 

(initialized

 

data),

 

and

 

bss

 

(zeroed

 

data)

 

are

 

relevant.

 

Operating-system

 

programs

 

typically

 

make

 

heavy

 

use

 

of

 

shared

 

libraries

 

to

 

reduce

 

code

 

size.

 

The

 

use

 

of

 

shared

 

libraries

 

for

 

programs

 

containing

 

CICS

 

dependencies,

 

such

 

as

 

EXEC

 

CICS

 

calls,

 

is

 

not

 

currently

 

supported.

 

However,

 

you

 

can

 

still

 

possibly

 

benefit

 

from

 

using

 

shared

 

libraries

 

for

 

common

 

functions

 

that,

 

although

 

called

 

from

 

a

 

CICS

 

program,

 

do

 

not

 

themselves

 

contain

 

any

 

CICS

 

dependencies.

 

On

 

UNIX,

 

the

 

size

 

of

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program

 

can

 

be

 

determined

 

with

 

the

 

ls

 

-l

 

command.

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

are

 

managed

 

by

 

the

 

CICS

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime.

 

It

 

is

 

possible

 

for

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

to

 

invoke

 

other

 

Server

 

Express

 

COBOL

 

programs

 

using

 

EXEC

 

CICS

 

LINK,

 

and

 

to

 

access

 

C

 

functions

 

by

 

rebuilding

 

the

 

CICS

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

or

 

by

 

using

 

EXEC

 

CICS

 

LINK.

 

Using

 

EXEC

 

CICS

 

LINK

 

for

 

this

 

purpose

 

can

 

cause

 

a

 

reduction

 

in

 

storage

 

use

 

at

 

the

 

expense

 

of

 

processing

 

time.

 

Avoiding

 

locks

 

Transaction

 

programs

 

can

 

run

 

concurrently

 

as

 

long

 

as

 

they

 

do

 

not

 

depend

 

on

 

or

 

update

 

the

 

same

 

data.

 

If

 

they

 

do

 

require

 

the

 

same

 

data,

 

the

 

second

 

transaction

 

must

 

possibly

 

wait

 

until

 

the

 

first

 

transaction

 

reaches

 

syncpoint.

 

You

 

can

 

design

 

your

 

application

 

to

 

minimize

 

the

 

amount

 

of

 

contention

 

for

 

locks.

 

For

 

example,

 

suppose

 

that

 

you

 

must

 

keep

 

a

 

count

 

in

 

a

 

file

 

of

 

the

 

number

 

of

 

transactions

 

executed

 

in

 

your

 

system.

 

Every

 

transaction

 

needs

 

to

 

contain

 

statements

 

like

 

the

 

following:

 

EXEC

 

CICS

 

READ

 

FILE("count_file")

 

UPDATE

 

...

 

;

 

count

 

=

 

count

 

+

 

1

 

;

 

EXEC

 

CICS

 

REWRITE

 

FILE("count_file")

 

;

 

Therefore,

 

every

 

transaction

 

needs

 

a

 

lock

 

on

 

this

 

record.

 

You

 

get

 

better

 

concurrency

 

if

 

you

 

do

 

this

 

as

 

the

 

last

 

action

 

before

 

syncpoint;

 

that

 

way,

 

the

 

lock

 

is

 

held

 

for

 

the

 

shortest

 

possible

 

time.

 

You

 

get

 

even

 

better

 

concurrency

 

if

 

you

 

can

 

maintain

 

several

 

counters,

 

perhaps

 

keyed

 

on

 

transaction

 

type,

 

or

 

perhaps

 

keyed

 

on

 

a

 

random

 

number,

 

which

 

can

 

then

 

be

 

summarized

 

when

 

the

 

total

 

is

 

required.

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

43



Reading

 

programs

  

On

 

CICS

 

for

 

AIX

 

only

 

Programs

 

written

 

in

 

C,

 

IBM

 

COBOL,

 

or

 

PL/I

 

are

 

mapped

 

into

 

storage

 

from

 

the

 

file

 

system,

 

and

 

so

 

require

 

very

 

little

 

paging

 

space.

  

On

 

the

 

HP-UX

 

and

 

Solaris

 

platforms

 

Programs

 

written

 

in

 

C

 

are

 

mapped

 

into

 

storage

 

from

 

the

 

file

 

system,

 

and

 

so

 

require

 

very

 

little

 

paging

 

space.

 

Programs

 

written

 

in

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

are

 

explicitly

 

read

 

from

 

the

 

file

 

system

 

in

 

such

 

a

 

way

 

that

 

each

 

application

 

server

 

makes

 

its

 

own

 

copy

 

the

 

first

 

time

 

that

 

application

 

server

 

runs

 

that

 

transaction

 

program.

 

For

 

a

 

system

 

with

 

a

 

large

 

number

 

of

 

application

 

servers

 

and

 

a

 

large

 

number

 

of

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

transaction

 

programs,

 

this

 

can

 

significantly

 

increase

 

the

 

virtual

 

storage

 

requirement.

 

Using

 

the

 

program

 

cache

 

Caching

 

a

 

program

 

improves

 

performance

 

because

 

reloading

 

costs

 

are

 

saved

 

when

 

the

 

program

 

is

 

used.

 

The

 

following

 

options

 

affect

 

program

 

caching:

 

v

   

The

 

Region

 

Definitions

 

(RD)

 

ProgramCacheSize

 

attribute.

 

Programs

 

in

 

all

 

languages

 

except

 

Java

 

and

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

 

are

 

cached

 

only

 

if

 

at

 

the

 

time

 

a

 

program

 

is

 

loaded,

 

the

 

Program

 

Definitions

 

(PD)

 

Resident

 

attribute

 

is

 

set

 

to

 

yes

 

and

 

the

 

number

 

of

 

cached

 

programs

 

in

 

use

 

has

 

not

 

reached

 

the

 

maximum

 

number.

 

A

 

resident

 

program

 

is

 

not

 

loaded

 

again

 

until

 

one

 

of

 

the

 

following

 

occurs:

 

–

   

A

 

SET

 

PROGRAM

 

NEWCOPY

 

or

 

SET

 

PROGRAM

 

COPY(NEWCOPY)

 

command

 

is

 

issued.

 

Note:

  

On

 

Windows

 

systems,

 

a

 

file

 

on

 

disk

 

cannot

 

be

 

removed

 

or

 

overwritten

 

while

 

a

 

copy

 

of

 

it

 

is

 

in

 

the

 

cache.

 

Therefore,

 

new

 

copies

 

of

 

programs

 

on

 

Windows

 

can

 

be

 

used

 

only

 

if

 

they

 

are

 

not

 

cached.

 

–

   

The

 

value

 

of

 

the

 

Resident

 

attribute

 

is

 

changed

 

to

 

no.

 

–

   

The

 

cache

 

is

 

full

 

and

 

the

 

program

 

is

 

removed

 

to

 

make

 

room

 

for

 

a

 

new

 

entry.

 

In

 

this

 

case,

 

the

 

least-recently

 

used

 

program

 

is

 

removed,

 

leaving

 

more-frequently

 

used

 

programs

 

in

 

the

 

cache.

 

Because

 

individual

 

programs

 

in

 

use

 

are

 

not

 

removed

 

from

 

the

 

cache,

 

it

 

is

 

recommended

 

that

 

the

 

cache

 

size

 

allow

 

programs

 

at

 

every

 

logical

 

level

 

to

 

be

 

cached

 

when

 

EXEC

 

CICS

 

LINK

 

is

 

used.

 

v

   

The

 

environment

 

variable

 

COBSW

 

is

 

set

 

to

 

lnn

 

where

 

nn

 

is

 

the

 

cache

 

size

 

in

 

bytes.

 

This

 

is

 

a

 

Micro

 

Focus

 

Server

 

Express

 

and

 

Net

 

Express

 

environment

 

variable

 

that

 

sets

 

the

 

length

 

of

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

 

program

 

cache.

 

This

 

variable

 

is

 

defined

 

in

 

the

 

region’s

 

environment

 

file.

 

Java

 

programs

 

can

 

be

 

cached

 

by

 

the

 

Java

 

runtime

 

controlled

 

through

 

the

 

Java

 

Virtual

 

Machine

 

(JVM).

 

Programs

 

are

 

loaded

 

into

 

the

 

cache

 

in

 

the

 

sequence

 

in

 

which

 

they

 

are

 

accessed.

 

Note:

    

44

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

Programs

 

are

 

cached

 

for

 

each

 

application

 

server,

 

so

 

a

 

new

 

copy

 

of

 

the

 

program

 

has

 

no

 

effect

 

on

 

an

 

application

 

server

 

if

 

the

 

application

 

server

 

has

 

not

 

yet

 

run

 

the

 

program.

 

v

   

The

 

SET

 

PROGRAM

 

NEWCOPY

 

or

 

SET

 

PROGRAM

 

COPY(NEWCOPY)

 

commands

 

for

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Net

 

Express

 

program

 

remove

 

every

 

program

 

previously

 

loaded

 

by

 

the

 

application

 

server,

 

so

 

a

 

fresh

 

copy

 

of

 

every

 

such

 

program

 

is

 

used

 

after

 

one

 

of

 

these

 

commands

 

is

 

run,

 

not

 

just

 

the

 

program

 

for

 

which

 

the

 

SET

 

PROGRAM

 

NEWCOPY

 

or

 

SET

 

PROGRAM

 

COPY(NEWCOPY)

 

command

 

is

 

issued.

 

These

 

commands

 

have

 

no

 

effect

 

on

 

Java

 

programs.

Improving

 

performance

 

of

 

database

 

access

 

The

 

following

 

list

 

provides

 

some

 

tips

 

to

 

help

 

you

 

design

 

applications

 

to

 

access

 

data

 

files

 

more

 

efficiently:

 

v

   

If

 

you

 

use

 

non-XA

 

databases,

 

your

 

applications

 

need

 

to

 

issue

 

the

 

EXEC

 

CICS

 

CONNECT

 

command

 

to

 

start

 

the

 

database

 

server

 

for

 

each

 

transaction.

 

Such

 

frequent

 

connections

 

use

 

a

 

lot

 

of

 

system

 

resources.

 

Applications

 

can

 

reuse

 

an

 

XA-managed

 

database

 

connection

 

over

 

and

 

over

 

while

 

the

 

application

 

server

 

is

 

running

 

without

 

needing

 

to

 

call

 

EXEC

 

CICS

 

CONNECT

 

repeatedly.

 

v

   

Minimize

 

the

 

number

 

of

 

interactions

 

between

 

a

 

CICS

 

transaction

 

program

 

and

 

a

 

file

 

system

 

such

 

as

 

the

 

SFS

 

server

 

or

 

the

 

database

 

product.

 

Calls

 

made

 

between

 

the

 

CICS

 

transaction

 

program

 

and

 

the

 

file

 

system

 

significantly

 

add

 

to

 

the

 

overall

 

time

 

it

 

takes

 

to

 

complete

 

the

 

program.

 

To

 

reduce

 

this

 

time,

 

you

 

consider

 

using

 

dynamic

 

SQL

 

calls

 

or

 

calls

 

to

 

SQL

 

stored

 

procedures,

 

which

 

allow

 

you

 

to

 

process

 

several

 

rows

 

or

 

several

 

files

 

in

 

one

 

activation.

 

For

 

instructions

 

on

 

how

 

use

 

any

 

of

 

these

 

features,

 

see

 

the

 

SQL

 

documentation

 

supplied

 

with

 

your

 

database

 

product.

 

v

   

If

 

the

 

majority

 

of

 

the

 

transactions

 

do

 

not

 

need

 

to

 

access

 

a

 

database,

 

then

 

use

 

a

 

database

 

that

 

supports

 

XA

 

dynamic

 

registration.

 

If

 

the

 

database

 

supports

 

XA

 

dynamic

 

registration,

 

then

 

CICS

 

can

 

arrange

 

to

 

drive

 

syncpoint

 

in

 

the

 

database

 

only

 

when

 

the

 

database

 

is

 

actually

 

updated

 

for

 

the

 

given

 

transaction.

 

This

 

can

 

reduce

 

the

 

time

 

it

 

takes

 

to

 

syncpoint

 

when

 

you

 

are

 

running

 

in

 

an

 

environment

 

with

 

multiple

 

XA

 

databases

 

and

 

CICS

 

file

 

control

 

files.

 

In

 

such

 

an

 

environment,

 

transactions

 

usually

 

update

 

data

 

managed

 

by

 

only

 

some

 

of

 

the

 

applications.

 

v

   

Avoid

 

overusing

 

SQL

 

operations

 

that

 

declare

 

cursors

 

or

 

prepare

 

dynamic

 

SQL.

 

Typically,

 

SQL

 

operations

 

that

 

declare

 

cursors

 

(EXEC

 

SQL

 

DECLARE

 

CursorName)

 

or

 

prepare

 

dynamic

 

SQL

 

commands

 

(EXEC

 

SQL

 

PREPARE)

 

are

 

relatively

 

expensive,

 

compared

 

with

 

the

 

SQL

 

operations

 

(OPEN,

 

FETCH,

 

EXECUTE,

 

CLOSE).

 

Consider

 

using

 

these

 

more

 

expensive

 

calls

 

only

 

once

 

per

 

transaction

 

program.

 

A

 

programming

 

style

 

such

 

as

 

is

 

shown

 

below

 

can

 

be

 

more

 

appropriate

 

if

 

it

 

is

 

supported

 

by

 

your

 

database

 

product.

 

EXEC

 

SQL

 

OPEN

 

...

 

;

 

if

 

(SQLCODE

 

==

 

{cursor-not-declared}

 

)

 

{

    

EXEC

 

SQL

 

DECLARE

 

...

 

;

    

EXEC

 

SQL

 

OPEN

 

...

 

;

 

}

 

EXEC

 

SQL

 

FETCH

 

...

 

;

 

EXEC

 

SQL

 

CLOSE

 

...

 

;

 

v

   

DB2

 

provides

 

a

 

choice

 

of

 

two

 

types

 

of

 

table

 

spaces:

 

–

   

System

 

Managed

 

Space

 

(SMS)

 

Table

 

Space,

 

where

 

operating

 

system

 

file

 

manager

 

calls

 

are

 

used

 

to

 

control

 

the

 

storage

 

space.

   

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

45



–

   

Database

 

Managed

 

Space

 

(DMS)

 

Table

 

Space,

 

where

 

the

 

database

 

manager

 

controls

 

the

 

storage

 

space.
By

 

default,

 

DB2

 

uses

 

SMS

 

Table

 

Space.

 

It

 

is

 

recommended

 

however,

 

that

 

DMS

 

Table

 

Space

 

is

 

used

 

with

 

CICS

 

since,

 

in

 

general,

 

it

 

provides

 

a

 

performance

 

improvement.

 

See

 

the

 

DB2:

 

Administration

 

Guide

 

for

 

details

 

on

 

how

 

to

 

create

 

DMS

 

table

 

space.

 

See

 

also

 

“Improving

 

performance

 

of

 

database

 

access”

 

on

 

page

 

45

 

for

 

more

 

information

 

about

 

CICS

 

and

 

database

 

performance.

 

Improving

 

performance

 

of

 

DB2

 

file

 

management

 

A

 

performance

 

advantage

 

can

 

be

 

gained

 

from

 

using

 

DB2

 

single-phase

 

commit

 

optimization

 

where

 

the

 

additional

 

data

 

integrity

 

provided

 

by

 

the

 

XA

 

interface

 

two-phase

 

commit

 

protocol

 

is

 

not

 

required.

 

In

 

general,

 

DB2

 

single-phase

 

commit

 

optimization

 

provides

 

an

 

improvement

 

in

 

performance

 

over

 

SFS

 

file

 

management.

 

Improving

 

performance

 

of

 

Oracle

 

file

 

management

 

Refer

 

to

 

the

 

Oracle

 

performance

 

tuning

 

guide

 

for

 

any

 

performance

 

enhancements.

 

Using

 

CICS

 

with

 

WebSphere

 

MQ

 

CICS

 

supports

 

access

 

to

 

WebSphere

 

MQ

 

queues

 

through

 

XA

 

or

 

non-XA

 

connections,

 

using

 

MQ

 

API

 

calls

 

in

 

CICS

 

programs.

 

v

   

With

 

an

 

XA

 

connection

 

to

 

WebSphere

 

MQ,

 

CICS

 

uses

 

a

 

two-phase

 

commit

 

protocol

 

to

 

ensure

 

that

 

all

 

resources

 

within

 

the

 

logical

 

unit

 

of

 

work

 

are

 

updated

 

together.

 

The

 

CICS

 

transaction

 

must

 

issue

 

an

 

MQCONN

 

call

 

in

 

order

 

to

 

access

 

WebSphere

 

MQ

 

resources.

 

v

   

With

 

a

 

non-XA

 

connection

 

to

 

WebSphere

 

MQ,

 

the

 

MQ

 

API

 

is

 

not

 

managed

 

within

 

the

 

CICS

 

logical

 

unit

 

of

 

work,

 

so

 

you

 

must

 

use

 

manual

 

methods

 

to

 

make

 

the

 

two

 

systems

 

consistent.

 

To

 

do

 

this,

 

you

 

must

 

issue

 

EXEC

 

CICS

 

SYNCPOINT

 

to

 

commit

 

updates

 

to

 

CICS

 

resources

 

(or

 

let

 

this

 

happen

 

implicitly

 

at

 

the

 

end

 

of

 

the

 

transaction),

 

and

 

issue

 

the

 

relevant

 

MQ

 

API

 

calls

 

to

 

commit

 

updates

 

to

 

MQ

 

resources.

For

 

both

 

XA

 

and

 

non-XA

 

connections

 

to

 

WebSphere

 

MQ,

 

CICS

 

transactions

 

that

 

access

 

WebSphere

 

MQ

 

resources

 

must

 

either:

 

v

   

Invoke

 

the

 

MQDISC

 

call

 

before

 

returning

 

to

 

CICS

 

or
v

   

Install

 

the

 

Task

 

termination

 

exit

 

sample

 

program

 

provided

 

by

 

WebSphere

 

MQ

The

 

MQDISC

 

call

 

or

 

the

 

WebSphere

 

MQ

 

Task

 

termination

 

exit

 

sample

 

perform

 

the

 

necessary

 

clean

 

up

 

of

 

WebSphere

 

MQ

 

resources.

 

If

 

you

 

install

 

the

 

WebSphere

 

MQ

 

Task

 

termination

 

exit

 

sample,

 

it

 

is

 

invoked

 

by

 

CICS

 

during

 

normal

 

and

 

abnormal

 

task

 

termination.

 

If

 

you

 

do

 

not

 

either

 

install

 

the

 

WebSphere

 

MQ

 

Task

 

termination

 

exit

 

sample,

 

or

 

call

 

MQDISC

 

before

 

returning

 

to

 

CICS,

 

you

 

will

 

experience

 

unexpected

 

CICS

 

application

 

server

 

abends

 

during

 

subsequent

 

transaction

 

runs.

 

For

 

information

 

about

 

the

 

WebSphere

 

MQ

 

Task

 

termination

 

exit

 

sample

 

and

 

how

 

to

 

install

 

it,

 

see

 

the

 

WebSphere

 

MQ

 

System

 

Administration

 

Guide.

 

Refer

 

to

 

the

 

CICS

 

Administration

 

Guide

 

for

 

information

 

about

 

how

 

to

 

configure

 

WebSphere

 

MQ

 

with

 

CICS

 

using

 

XA

 

and

 

non-XA

 

connections,

 

and

 

about

 

building

 

CICS/MQ

   

46

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|

|

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|
|
|

|
|
|

|
|
|
|



applications.

  

Chapter

 

2.

 

CICS

 

application

 

design

 

considerations

 

47

|



48

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

3.

 

Programming

 

constraints

 

A

 

number

 

of

 

topics

 

need

 

to

 

be

 

considered

 

when

 

writing

 

CICS

 

application

 

programs.

 

This

 

discusses

 

each

 

of

 

the

 

following

 

topics

 

in

 

detail:

 

v

   

Using

 

COBOL

 

compilers

 

v

   

Using

 

C

 

and

 

C++

 

compilers

 

v

   

Using

 

PL/I

 

compilers

 

v

   

Tabs

 

in

 

map

 

and

 

program

 

sources

 

v

   

The

 

use

 

of

 

DCE,

 

and

 

operating

 

system

 

functions

 

v

   

Names

 

that

 

are

 

reserved

 

by

 

CICS

 

v

   

Thread

 

safety

 

v

   

CICS-safe

 

functions

General

 

programming

 

considerations

 

This

 

section

 

contains

 

topics

 

of

 

general

 

interest

 

to

 

consider

 

when

 

writing

 

CICS

 

application

 

programs.

 

Tabs

 

in

 

map

 

and

 

program

 

sources

 

CICS

 

requires

 

that

 

map

 

and

 

program

 

sources

 

follow

 

strict

 

formatting

 

rules.

 

For

 

example,

 

a

 

comma

 

in

 

column

 

72

 

is

 

used

 

to

 

identify

 

a

 

continuation,

 

and

 

the

 

continued

 

line

 

must

 

begin

 

in

 

column

 

16.

 

Be

 

aware

 

that

 

some

 

editors

 

use

 

hidden

 

tab

 

characters.

 

cicstran

 

and

 

cicsmap

 

report

 

these

 

as

 

errors.

 

The

 

use

 

of

 

DCE

 

and

 

operating

 

system

 

functions

 

You

 

can

 

use

 

functions

 

from

 

libraries

 

provided

 

by

 

the

 

operating

 

system

 

and

 

DCE

 

in

 

your

 

CICS

 

application

 

programs,

 

but

 

you

 

should

 

be

 

cautious

 

in

 

so

 

doing

 

for

 

the

 

following

 

reasons:

 

v

   

Possible

 

difficulties

 

in

 

migrating

 

an

 

IBM

 

CICS

 

for

 

Windows

 

or

 

CICS

 

on

 

Open

 

Systems

 

application

 

to

 

run

 

on

 

another

 

CICS

 

product.

 

These

 

functions

 

will

 

need

 

to

 

be

 

recoded

 

if

 

the

 

other

 

operating

 

system

 

does

 

not

 

have

 

identical

 

function.

 

v

   

Restrictions

 

placed

 

on

 

the

 

use

 

of

 

these

 

functions.

 

The

 

following

 

topics

 

discuss

 

these

 

functions.

Names

 

reserved

 

for

 

CICS

 

Do

 

not

 

define

 

maps,

 

tables,

 

or

 

programs

 

that

 

begin

 

with

 

the

 

letters

 

DFH

 

and

 

do

 

not

 

define

 

transactions

 

or

 

transient

 

data

 

queues

 

that

 

begin

 

with

 

the

 

letter

 

C.

 

These

 

are

 

reserved

 

for

 

CICS

 

internal

 

use.

 

As

 

a

 

general

 

rule,

 

avoid

 

the

 

use

 

of

 

the

 

following

 

as

 

names

 

for

 

user

 

variables:

 

v

   

EXEC

 

v

   

CICS

 

v

   

END-EXEC

 

v

   

Or

 

names

 

starting

 

with:

 

–

   

CICS

 

–

   

cics

 

–

   

DFH

 

–

   

ERZ

 

–

   

FAA

 

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

49



Thread

 

safety

 

Compile

 

all

 

CICS

 

programs

 

by

 

using

 

the

 

thread

 

safe

 

version

 

of

 

a

 

runtime

 

language

 

library.

 

As

 

discussed

 

in

 

“How

 

CICS

 

runs

 

your

 

transactions”

 

on

 

page

 

8,

 

your

 

application

 

programs

 

run

 

in

 

a

 

multi-threaded

 

process.

 

Certain

 

types

 

of

 

function

 

may

 

not

 

behave

 

correctly

 

when

 

called

 

consecutively

 

from

 

two

 

or

 

more

 

threads.

 

These

 

functions

 

should

 

either

 

not

 

be

 

used,

 

or

 

they

 

should

 

only

 

be

 

called

 

using

 

a

 

serialization

 

technique.

 

For

 

example,

 

any

 

function

 

that

 

keeps

 

static

 

data

 

between

 

calls

 

(such

 

as

 

ctime)

 

should

 

not

 

be

 

used.

   

On

 

CICS

 

on

 

Open

 

Systems

 

The

 

operating

 

system

 

provides

 

a

 

replacement

 

library,

 

as

 

an

 

example

 

libc_r

 

for

 

libc,

 

that

 

contains

 

thread-safe

 

replacements

 

for

 

the

 

functions

 

that

 

are

 

not

 

thread-safe.

 

In

 

some

 

cases,

 

function

 

names

 

have

 

been

 

changed.

 

For

 

example,

 

the

 

replacement

 

thread-safe

 

version

 

of

 

ctime

 

is

 

called

 

ctime_r.

  

On

 

CICS

 

for

 

Windows

 

Functions

 

should

 

only

 

be

 

used

 

from

 

the

 

compiler

 

or

 

operating

 

system

 

thread-safe

 

libraries.

Note:

  

Use

 

only

 

the

 

main

 

thread

 

in

 

a

 

CICS

 

application

 

to

 

perform

 

EXEC

 

CICS

 

calls

 

or

 

do

 

any

 

XA

 

work.

 

CICS-safe

 

functions

 

Even

 

if

 

a

 

function

 

is

 

thread

 

safe,

 

you

 

cannot

 

always

 

use

 

it

 

in

 

the

 

CICS

 

environment.

 

Functions

 

that

 

you

 

can

 

use

 

in

 

CICS

 

application

 

programs

 

without

 

restrictions

 

are

 

called

 

CICS-safe

 

functions.

 

The

 

functions

 

and

 

services

 

below

 

are

 

not

 

CICS

 

safe

 

and

 

must

 

not

 

be

 

used

 

at

 

all,

 

or

 

at

 

best,

 

used

 

with

 

caution.

 

In

 

many

 

cases,

 

CICS

 

uses

 

these

 

functions

 

and

 

services

 

itself;

 

their

 

use

 

in

 

application

 

programs

 

possibly

 

causes

 

CICS

 

to

 

behave

 

unpredictably.

 

Note:

  

The

 

absence

 

of

 

a

 

function

 

from

 

this

 

list

 

does

 

not

 

imply

 

or

 

guarantee

 

that

 

it

 

is

 

CICS

 

safe.

  

Table

 

4.

 

Non-CICS-safe

 

functions

 

Function

 

or

 

Service

 

Restriction

 

Any

 

function

 

that

 

is

 

not

 

thread

 

safe

 

Do

 

not

 

use.

 

exec

 

(without

 

fork)

 

Do

 

not

 

use.

 

setlocale

 

Do

 

not

 

use.

 

Shared

 

memory

 

functions

 

Do

 

not

 

attach

 

memory

 

at

 

the

 

address

 

specified

 

with

 

the

 

Region

 

Definitions

 

(RD)

 

RegionPoolBase

 

attribute.

 

CICS

 

uses

 

this

 

address

 

for

 

region

 

pool

 

shared

 

memory.

 

CICS

 

internal

 

functions

 

Do

 

not

 

use.

 

exit

 

or

 

_exit

 

Do

 

not

 

use.

   

50

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

4.

 

Non-CICS-safe

 

functions

 

(continued)

 

Function

 

or

 

Service

 

Restriction

 

fork

 

Refer

 

to

 

the

 

DCE

 

application

 

programming

 

information.

 

stdin,

 

stdout,

 

stderr

 

Do

 

not

 

use

 

these

 

streams.

 

kill

 

Do

 

not

 

send

 

signals

 

to

 

any

 

CICS

 

process.

 

raise

 

Do

 

not

 

use.

 

assert

 

Do

 

not

 

use.

 

abort

 

Do

 

not

 

use.

 

sigprocmask

 

Do

 

not

 

use.

 

signals

 

Do

 

not

 

use.

 

cin

 

cout

 

cerr

 

Do

 

not

 

use

 

these

 

iostream

 

objects.

 

DCE

 

asynchronous

 

cancellation

 

Do

 

not

 

use.

 

DCE

 

threads

 

You

 

can

 

create

 

threads

 

but

 

you

 

must

 

not

 

use

 

any

 

CICS

 

facility

 

in

 

them.

 

Encina

 

TRAN

 

Do

 

not

 

use.

 

Encina

 

Transactional

 

C

 

Do

 

not

 

use.

 

Encina

 

threadTid

 

Do

 

not

 

use.

 

catch(...)

 

(in

 

C++

 

programs)

 

Any

 

exceptions

 

not

 

generated

 

by

 

the

 

application

 

must

 

be

 

rethrown

 

(using

 

throw

 

with

 

no

 

argument).

   

See

 

the

 

CICS

 

Problem

 

Determination

 

Guide

 

for

 

related

 

information.

 

Using

 

the

 

COBOL

 

compilers

 

Some

 

points

 

to

 

consider

 

are:

 

v

   

The

 

CICS

 

API

 

supported

 

in

 

COBOL:

 

The

 

full

 

CICS

 

API,

 

as

 

detailed

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference,

 

is

 

supported

 

for

 

COBOL

 

application

 

programs.

  

On

 

CICS

 

for

 

AIX

 

or

 

CICS

 

for

 

HP-UX

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

only

 

v

   

The

 

character

 

sets

 

supported:

 

Double

 

Byte

 

Character

 

Set

 

(DBCS)

 

is

 

supported.

 

v

   

COMP-5:

 

The

 

COMP-5

 

message

 

is

 

an

 

information

 

message,

 

and

 

not

 

a

 

warning

 

message.

 

The

 

message

 

is

 

produced

 

for

 

the

 

first

 

occurrence

 

of

 

a

 

COMP-5

 

variable

 

found

 

by

 

the

 

compiler.

 

The

 

message

 

format

 

is:

       

O2

   

CICS-FN-CODE

          

PIC

 

S9(4)

 

COMP-5

 

SYNC

 

**209-I******************************************

 

**

    

COMP-5

 

is

 

machine

 

specific

 

format.

 

(future

 

occurrences

 

not

                                           

indicated)

 

v

   

Argument

 

values

 

in

 

COBOL:

 

Argument

 

values

 

in

 

EXEC

 

CICS

 

commands

 

in

 

COBOL

 

programs

 

are

 

described

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

v

   

Comments:

 

Comments

 

are

 

allowed

 

in

 

the

 

middle

 

of

 

EXEC

 

CICS

 

commands.

 

When

 

these

 

programs

 

are

 

translated,

 

the

 

comments

 

are

 

retained.

  

Chapter

 

3.

 

Programming

 

constraints

 

51



Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

COBOL

 

CICS

 

command

 

options

 

that

 

have

 

default

 

values

 

are

 

shown

 

in

 

the

 

following

 

table:

  

Table

 

5.

 

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

COBOL

 

Commands

 

Options

 

Defaults

 

from

 

READ,

 

READNEXT,

 

READPREV,

 

READQ

 

TD,

 

READQ

 

TS,

 

RETRIEVE

 

LENGTH

 

INTO

 

DUMP

 

LENGTH

 

(unless

 

FLENGTH

 

is

 

specified)

 

FROM

 

JOURNAL,

 

REWRITE,

 

START,

 

WRITE,

 

WRITEQ

 

TD,

 

WRITEQ

 

TS

 

LENGTH

 

FROM

 

CONVERSE

 

FROMLENGTH

 

(unless

 

FROMFLENGTH

 

is

 

specified)

 

FROM

 

CONVERSE

 

TOLENGTH

 

(unless

 

TOFLENGTH

 

is

 

specified)

 

INTO

 

CONVERSE

 

MAXLENGTH

 

or

 

MAXFLENGTH

 

with

 

no

 

argument

 

INTO

 

RECEIVE

 

LENGTH

 

(unless

 

FLENGTH

 

is

 

specified)

 

INTO

 

RECEIVE

 

MAXLENGTH

 

or

 

MAXFLENGTH

 

with

 

no

 

argument

 

INTO

 

SEND

 

LENGTH

 

(unless

 

FLENGTH

 

is

 

specified)

 

FROM

 

LINK,

 

XCTL,

 

RETURN

 

LENGTH

 

COMMAREA

 

CONNECT

 

PROCESS

 

PROCLENGTH

 

PROCNAME

 

CONNECT

 

PROCESS

 

PIPLENGTH

 

PIPLIST

 

JOURNAL

 

PFXLENG

 

PREFIX

 

RECEIVE

 

MAP('MAPNAME')

 

without

 

INTO

 

or

 

SET

 

INTO

 

MAP

 

SEND

 

MAP('MAPNAME')

 

without

 

FROM

 

or

 

MAP

 

ONLY

 

FROM

 

MAP

   

Data

 

declarations

 

needed

 

in

 

COBOL

 

The

 

EXEC

 

Interface

 

Block

 

(EIB)

 

data

 

declaration

 

is

 

provided

 

automatically.

 

The

 

following

 

mapping

 

of

 

data

 

types

 

in

 

EIB

 

fields

 

is

 

used:

 

v

   

16-bit

 

binary

 

integers

 

are

 

defined

 

as

 

PIC

 

S9(4)

 

COMP

 

v

   

32-bit

 

binary

 

integers

 

are

 

defined

 

as

 

PIC

 

S9(8)

 

COMP

 

v

   

Character

 

strings

 

are

 

defined

 

as

 

PIC

 

X(n),

 

where

 

n

 

is

 

the

 

number

 

of

 

bytes

 

The

 

following

 

data

 

declarations

 

are

 

available

 

in

 

CICS-supplied

 

COBOL

 

copybooks:

 

v

   

BMS

 

screen

 

attribute

 

definitions

 

(DFHBMSCA)

 

v

   

Attention

 

key

 

definitions

 

(DFHAID)

 

For

 

more

 

information

 

about

 

the

 

DFHBMSCA

 

and

 

DFHAID

 

COBOL

 

copybooks,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

   

52

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



COBOL

 

program

 

invocation

 

environment

 

(Micro

 

Focus

 

Server

 

Express

 

COBOL

 

only)

 

On

 

CICS

 

on

 

Open

 

Systems

 

only

   

On

 

CICS

 

on

 

Open

 

Systems

 

CICS

 

application

 

programs

 

written

 

in

 

COBOL

 

language

 

must

 

be

 

compiled

 

(using

 

cicstcl,

 

for

 

example)

 

into

 

either

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

intermediate

 

files

 

(.int)

 

or

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

code

 

files

 

(.gnt),

 

suitable

 

for

 

dynamic

 

loading

 

by

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

run-time

 

system.

 

The

 

files

 

created

 

are

 

not

 

directly

 

executable

 

using

 

cobrun,

 

since

 

they

 

contain

 

some

 

unresolved

 

symbols

 

that

 

are

 

expected

 

to

 

be

 

provided

 

from

 

the

 

invoking

 

CICS

 

application

 

server

 

(see

 

“Application

 

servers”

 

on

 

page

 

10).

 

To

 

run

 

your

 

transaction,

 

CICS

 

looks

 

up

 

the

 

name

 

and

 

location

 

of

 

a

 

CICS

 

program,

 

and

 

uses

 

the

 

dynamic

 

loading

 

facility

 

provided

 

by

 

the

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

run-time

 

system

 

to

 

load

 

and

 

run

 

the

 

program

 

in

 

the

 

CICS

 

application

 

server

  

On

 

CICS

 

for

 

Windows

 

CICS

 

applications

 

written

 

in

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

can

 

be

 

compiled

 

using

 

the

 

cicstcl

 

command

 

for

 

use

 

with

 

or

 

without

 

Animator.

 

The

 

cicstcl

 

command

 

produces

 

files

 

with

 

the

 

suffix

 

cbmfmt.

COBOL

 

program

 

invocation

 

environment

 

(IBM

 

COBOL

 

only)

 

CICS

 

application

 

programs

 

written

 

in

 

IBM

 

COBOL

 

must

 

be

 

compiled

 

(using

 

cicstcl

 

for

 

example)

 

into

 

executables

 

that

 

are

 

linked

 

with

 

thread-safe

 

libraries.

 

These

 

executables

 

must

 

have

 

a

 

suffix

 

of

 

ibmcob

 

for

 

identification

 

by

 

CICS.

 

Calling

 

programs

 

from

 

COBOL

 

CICS

 

enables

 

your

 

COBOL

 

programs

 

to

 

use

 

the

 

CALL

 

statement

 

to

 

call

 

other

 

programs.

 

With

 

the

 

CALL

 

statement

 

you

 

can

 

invoke

 

a

 

separate

 

COBOL

 

program

 

whether

 

or

 

not

 

it

 

contains

 

CICS

 

commands

 

or

 

CICS

 

dependencies.

   

Chapter

 

3.

 

Programming

 

constraints

 

53



On

 

CICS

 

for

 

Windows

 

Dynamically

 

called

 

COBOL

 

subprograms

 

should

 

be

 

built

 

as

 

dlls

 

and

 

have

 

the

 

file

 

suffix

 

.dll.

 

A

 

dynamically

 

called

 

COBOL

 

program

 

must

 

reside

 

in

 

a

 

directory

 

that

 

is

 

included

 

in

 

the

 

following

 

environment

 

variables:

 

v

   

For

 

IBM

 

COBOL

 

programs:

 

COBPATH

 

v

   

For

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

 

programs:

 

COBDIR

 

Ensure

 

that

 

the

 

environment

 

variable

 

is

 

in

 

the

 

System

 

environment

 

for

 

use

 

within

 

CICS.

 

COBPATH

 

and

 

COBDIR

 

are

 

defined

 

by

 

the

 

compilers

 

at

 

installation

 

time.

 

For

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

programs,

 

all

 

COBOL

 

calls

 

check

 

for

 

the

 

program

 

in

 

the

 

PD

 

database

 

the

 

first

 

time

 

the

 

program

 

is

 

called.

 

If

 

there

 

is

 

no

 

PD

 

entry,

 

the

 

run-time

 

looks

 

for

 

the

 

program

 

in

 

the

 

COBDIR

 

directory.

 

After

 

the

 

first

 

call

 

to

 

this

 

program,

 

disabling

 

the

 

program

 

has

 

no

 

effect.

   

On

 

CICS

 

on

 

Open

 

Systems

 

A

 

COBOL

 

program

 

must

 

reside

 

on

 

one

 

of

 

the

 

following

 

directories:

 

v

   

The

 

CICS

 

bin

 

directory:

 

$CICS/bin

 

Note:

  

Refer

 

to

 

xii

 

for

 

a

 

description

 

of

 

how

 

$CICS

 

is

 

used

 

to

 

represent

 

the

 

product

 

pathname.

 

v

   

If

 

it

 

is

 

specified

 

as

 

a

 

file

 

name

 

or

 

a

 

base

 

name

 

in

 

a

 

CALL

 

statement,

 

it

 

can

 

reside

 

in:

 

/var/cics_regions/region/bin

 

v

   

If

 

it

 

is

 

specified

 

as

 

a

 

full

 

pathname

 

in

 

the

 

CALL

 

statement

 

it

 

can

 

reside

 

anywhere

 

in

 

the

 

file

 

system.

 

If

 

a

 

program

 

that

 

calls

 

a

 

CICS

 

program

 

is

 

processed

 

by

 

the

 

CICS

 

translator,

 

the

 

CALL

 

statement

 

must

 

pass

 

the

 

addresses

 

of

 

DFHEIBLK

 

and

 

DFHCOMMAREA

 

as

 

the

 

first

 

two

 

parameters,

 

whether

 

or

 

not

 

any

 

other

 

parameters

 

are

 

passed.

 

The

 

call

 

has

 

the

 

form

 

shown

 

in

 

the

 

following

 

example:

      

CALL

 

’PROG’

 

USING

 

DFHEIBLK

 

DFHCOMMAREA

 

PARM1

 

PARM2

 

In

 

the

 

called

 

program

 

PROG,

 

the

 

CICS

 

translator

 

inserts

 

DFHEIBLK

 

and

 

DFHCOMMAREA

 

into

 

the

 

linkage

 

section

 

and

 

into

 

the

 

USING

 

list

 

of

 

the

 

procedure

 

division

 

statement.

 

You

 

code

 

the

 

procedure

 

division

 

statement

 

normally.

 

In

 

the

 

previous

 

example,

 

this

 

is:

 

PROCEDURE

 

DIVISION

 

USING

 

PARM1

 

PARM2

 

The

 

translator

 

inserts

 

DFHEIBLK

 

and

 

DFHCOMMAREA

 

into

 

this

 

statement

 

before

 

PARM1.

   

54

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Note:

  

The

 

CALL

 

and

 

PROCEDURE

 

DIVISION

 

statements

 

shown

 

above

 

are

 

examples

 

only.

 

PARM1

 

and

 

PARM2

 

are

 

not

 

mandatory.

 

Working

 

storage

 

Applications

 

written

 

in

 

COBOL

 

are

 

given

 

a

 

fresh

 

copy

 

of

 

their

 

working

 

storage

 

when

 

they

 

are

 

first

 

used

 

within

 

a

 

transaction.

 

It

 

is

 

not

 

possible

 

for

 

CICS

 

to

 

arrange

 

cancellation

 

of

 

anything

 

but

 

the

 

top

 

level

 

CICS

 

program.

 

If

 

you

 

wish

 

to

 

have

 

working

 

storage

 

for

 

such

 

programs

 

set

 

to

 

the

 

initial

 

state

 

both

 

within

 

and

 

across

 

transactions,

 

you

 

must

 

ensure

 

these

 

programs

 

are

 

cancelled

 

individually.

 

If

 

you

 

are

 

using

 

Micro

 

Focus

 

Net

 

Express

 

COBOL,

 

every

 

program

 

is

 

given

 

new

 

working

 

storage

 

if

 

the

 

/DATA-CONTEXT

 

flag

 

was

 

specified

 

when

 

the

 

program

 

was

 

compiled.

 

Recursion

 

Applications

 

written

 

in

 

COBOL

 

should

 

avoid

 

using

 

recursion.

 

See

 

“COBOL

 

PERFORM

 

and

 

CALL

 

commands”

 

on

 

page

 

23

 

for

 

more

 

information.

 

Available

 

memory

 

(Micro

 

Focus

 

Server

 

Express

 

COBOL

 

On

 

CICS

 

on

 

Open

 

Systems

 

only)

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

allows

 

you

 

to

 

set

 

the

 

amount

 

of

 

available

 

memory

 

for

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

run-time

 

system

 

(RTS)

 

using

 

the

 

-l

 

run-time

 

switch.

 

Unless

 

all

 

available

 

memory

 

has

 

been

 

used

 

up,

 

the

 

RTS

 

performs

 

logical

 

EXEC

 

CICS

 

CANCELs,

 

where

 

a

 

logical

 

EXEC

 

CICS

 

CANCEL

 

flushes

 

all

 

file

 

buffers

 

but

 

does

 

not

 

release

 

memory.

 

The

 

RTS

 

loads

 

programs

 

that

 

have

 

been

 

logically

 

canceled

 

in

 

preference

 

to

 

reloading

 

from

 

disk;

 

the

 

memory

 

is

 

used

 

as

 

a

 

form

 

of

 

cache.

 

This

 

can

 

give

 

performance

 

advantages,

 

but

 

there

 

is

 

no

 

way

 

for

 

CICS

 

to

 

force

 

the

 

memory

 

to

 

be

 

freed.

 

If

 

you

 

want

 

to

 

force

 

a

 

reload

 

from

 

disk

 

in

 

order

 

to

 

pick

 

up

 

a

 

new

 

copy

 

of

 

a

 

program,

 

for

 

example,

 

then

 

you

 

must

 

set

 

the

 

memory

 

switch

 

to

 

zero

 

in

 

the

 

environment

 

file

 

in

 

your

 

region

 

directory

 

(for

 

example

 

COBSW=-l0)

 

to

 

force

 

the

 

run-time

 

to

 

reload

 

from

 

disk.

 

Alternatively,

 

you

 

may

 

force

 

a

 

reload

 

from

 

disk

 

for

 

each

 

separate

 

program

 

using

 

CEMT

 

SET

 

PROGRAM(program_name)

 

NEWCOPY,

 

where

 

program_name

 

corresponds

 

to

 

the

 

definition

 

in

 

the

 

Program

 

Definitions

 

(PD).

 

If

 

you

 

experience

 

problems

 

running

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

transactions

 

after

 

using

 

NEWCOPY,

 

try

 

resubmitting

 

the

 

transaction

 

to

 

overcome

 

the

 

problem.

 

Mixing

 

languages

 

A

 

run

 

unit

 

is

 

a

 

running

 

set

 

of

 

one

 

or

 

more

 

programs

 

that

 

communicate

 

with

 

each

 

other

 

by

 

COBOL

 

CALL

 

statements.

 

It

 

is

 

an

 

execution

 

of

 

a

 

single

 

entry

 

as

 

defined

 

in

 

the

 

Program

 

Definitions

 

(PD).

 

PD

 

entries

 

are

 

not

 

required

 

for

 

called

 

subprograms.

 

In

 

a

 

CICS

 

environment,

 

a

 

run

 

unit

 

is

 

entered

 

at

 

the

 

start

 

of

 

a

 

CICS

 

task,

 

or

 

invoked

 

by

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

command.

 

Be

 

aware

 

of

 

three

 

rules

 

governing

 

calls

 

between

 

COBOL

 

and

 

C

 

or

 

C++

 

programs

 

under

 

CICS.

   

Chapter

 

3.

 

Programming

 

constraints

 

55

|
|
|



v

   

COBOL

 

programs

 

that

 

contain

 

CICS

 

commands

 

can

 

CALL

 

C

 

or

 

C++

 

programs

 

as

 

long

 

as

 

the

 

called

 

C

 

or

 

C++

 

programs

 

do

 

not

 

contain

 

any

 

CICS

 

commands.

 

v

   

C

 

or

 

C++

 

programs

 

that

 

contain

 

CICS

 

commands

 

can

 

CALL

 

COBOL

 

programs

 

as

 

long

 

as

 

the

 

called

 

COBOL

 

programs

 

do

 

not

 

contain

 

any

 

CICS

 

commands.

 

v

   

COBOL

 

programs

 

can

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

to

 

a

 

C

 

or

 

C++

 

program

 

regardless

 

of

 

whether

 

or

 

not

 

the

 

C

 

or

 

C++

 

program

 

contains

 

CICS

 

commands.

 

Therefore,

 

if

 

your

 

COBOL

 

program

 

invokes

 

a

 

C

 

or

 

C++

 

program

 

that

 

contains

 

CICS

 

commands

 

(or

 

vice

 

versa),

 

use

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

rather

 

than

 

the

 

COBOL

 

CALL

 

statement.

 

Passing

 

integer

 

data

 

between

 

C

 

or

 

C++

 

and

 

COBOL

 

If

 

you

 

want

 

to

 

pass

 

integer

 

data

 

between

 

C

 

or

 

C++

 

and

 

COBOL

 

programs

 

in

 

a

 

COMMAREA,

 

the

 

data

 

items

 

must

 

be

 

decalred

 

in

 

COBOL

 

as

 

COMP-5,

 

otherwise

 

the

 

byte

 

ordering

 

of

 

the

 

data

 

is

 

incorrect

 

and

 

the

 

values

 

are

 

corrupted.

 

Returning

 

from

 

COBOL

 

programs

 

There

 

are

 

various

 

methods

 

of

 

returning

 

from

 

a

 

COBOL

 

program:

 

GOBACK

 

Returns

 

control

 

to

 

calling

 

program

 

or

 

to

 

CICS.

 

EXIT

 

PROGRAM

 

Returns

 

control

 

to

 

the

 

calling

 

program

 

when

 

issued

 

from

 

a

 

subprogram

 

invoked

 

by

 

a

 

COBOL

 

CALL.

 

When

 

issued

 

from

 

a

 

top

 

level

 

procedure

 

division,

 

as

 

in

 

a

 

program

 

invoked

 

directly

 

by

 

CICS,

 

or

 

by

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL,

 

it

 

is

 

ignored.

 

STOP

 

RUN

 

Must

 

not

 

be

 

used

 

in

 

CICS

 

programs

 

because

 

it

 

causes

 

the

 

application

 

server

 

to

 

terminate.

 

EXEC

 

CICS

 

RETURN

 

Terminates

 

the

 

program

 

normally.

 

EXEC

 

CICS

 

XCTL

 

Terminates

 

the

 

program

 

normally.

 

EXEC

 

CICS

 

ABEND

 

Terminates

 

the

 

program

 

abnormally.

Releasing

 

resources

 

In

 

short-lived

 

processes,

 

any

 

resources

 

(such

 

as

 

file

 

handles

 

and

 

memory)

 

will

 

be

 

automatically

 

released.

 

Since

 

CICS

 

uses

 

long-running

 

application

 

servers,

 

this

 

release

 

will

 

not

 

be

 

automatically

 

done

 

at

 

the

 

end

 

of

 

a

 

transaction.

 

CICS

 

will

 

only

 

clean

 

up

 

the

 

CICS

 

resources

 

that

 

it

 

owns

 

(such

 

as

 

EXEC

 

CICS

 

GETMAIN

 

storage).

 

Therefore

 

it

 

is

 

important

 

that

 

if

 

a

 

CICS

 

program

 

calls

 

a

 

function

 

such

 

as

 

open

 

directly,

 

a

 

corresponding

 

close

 

must

 

be

 

called

 

before

 

the

 

end

 

of

 

the

 

program.

 

If

 

close

 

is

 

not

 

called,

 

the

 

system

 

may

 

run

 

out

 

of

 

resources.

 

The

 

resources

 

affected

 

by

 

this

 

consideration

 

include

 

memory

 

segments,

 

semaphores,

 

locks

 

and

 

file

 

handles.

   

56

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Object-oriented

 

COBOL

 

support

 

In

 

a

 

CICS

 

application

 

program

 

written

 

in

 

IBM

 

COBOL

 

Set

 

for

 

AIX,

 

you

 

can

 

use

 

the

 

INVOKE

 

statement

 

to

 

invoke

 

methods

 

written

 

in

 

IBM

 

COBOL

 

Set

 

for

 

AIX

 

as

 

long

 

as

 

the

 

methods

 

do

 

not

 

use

 

CICS

 

commands.

 

You

 

cannot

 

use

 

EXEC

 

CICS

 

LINK

 

to

 

access

 

COBOL

 

methods

 

directly.

 

However,

 

you

 

can

 

link

 

to

 

another

 

COBOL

 

program

 

which

 

invokes

 

methods

 

directly.

 

Compiling

 

EBCDIC-enabled

 

COBOL

 

programs

 

EBCDIC-to-ASCII

 

data

 

conversion

 

can

 

be

 

necessary

 

for

 

communications

 

between

 

a

 

CICS

 

for

 

Windows

 

system

 

and

 

a

 

remote

 

mainframe

 

or

 

CICS/400

 

system.

 

For

 

example,

 

if

 

you

 

use

 

function

 

shipping

 

to

 

access

 

file

 

records

 

from

 

a

 

mainframe,

 

the

 

data

 

must

 

be

 

converted

 

from

 

EBCDIC

 

to

 

ASCII

 

in

 

order

 

to

 

be

 

usable

 

by

 

the

 

ASCII

 

program

 

on

 

the

 

CICS

 

for

 

Windows

 

workstation.

 

Often,

 

resource

 

definition

 

templates

 

must

 

be

 

defined

 

to

 

identify

 

the

 

type

 

of

 

conversion

 

to

 

be

 

applied

 

to

 

the

 

data.

 

To

 

avoid

 

the

 

need

 

to

 

set

 

up

 

these

 

conversion

 

tables

 

or

 

to

 

ensure

 

the

 

collating

 

sequence

 

compatibility

 

of

 

mainframe

 

applications,

 

you

 

can

 

use

 

the

 

cicscobinsert

 

utility

 

to

 

compile

 

EBCDIC-enabled

 

programs

 

to

 

run

 

on

 

a

 

CICS

 

for

 

Windows

 

workstation.

 

Such

 

EBCDIC-enabled

 

programs

 

are

 

supported

 

by

 

Micro

 

Focus

 

Net

 

Express

 

version

 

3.0

 

or

 

later.

 

Note:

  

Use

 

in

 

EBCDIC-enabled

 

programs

 

of

 

the

 

Front-End

 

Programming

 

Interface

 

(FEPI),

 

Basic

 

Mapping

 

Support

 

(BMS)

 

macros,

 

and

 

pretranslated

 

copybooks

 

is

 

not

 

supported.

 

Support

 

of

 

EXEC

 

SQL

 

calls

 

is

 

provided

 

through

 

Micro

 

Focus

 

Net

 

Express.

 

To

 

create

 

an

 

EBCDIC-enabled

 

program,

 

first

 

write

 

the

 

source

 

code

 

on

 

the

 

workstation

 

in

 

ASCII

 

or

 

download

 

the

 

source

 

code

 

from

 

the

 

mainframe,

 

using

 

EBCDIC

 

to

 

ASCII

 

conversion

 

in

 

the

 

usual

 

way.

 

Then

 

set

 

the

 

Micro

 

Focus

 

Net

 

Express

 

option

 

CHARSET

 

to

 

EBCDIC,

 

as

 

shown

 

in

 

the

 

following

 

example:

 

set

 

COBOPTS=/CHARSET(EBCDIC)

 

Then

 

translate

 

the

 

program

 

on

 

the

 

workstation.

 

Use

 

the

 

cicscobinsert

 

utility

 

to

 

provide

 

a

 

necessary

 

conversion

 

for

 

alphanumeric

 

literals

 

during

 

interaction

 

between

 

applications

 

and

 

CICS.

 

See

 

“Using

 

Micro

 

Focus

 

Net

 

Express

 

to

 

compile

 

EBCDIC-enabled

 

COBOL

 

programs”

 

on

 

page

 

227

 

for

 

information

 

on

 

how

 

to

 

use

 

this

 

utility

 

with

 

the

 

cicstcl

 

or

 

cicstran

 

commands.

 

The

 

Micro

 

Focus

 

Net

 

Express

 

compiler

 

converts

 

alphanumeric

 

literals

 

to

 

EBCDIC.

 

It

 

does

 

not

 

convert

 

character

 

constants

 

represented

 

in

 

hexadecimal

 

format.

 

As

 

a

 

result,

 

these

 

constants

 

must

 

exist

 

as

 

their

 

hexadecimal

 

equivalent

 

EBCDIC

 

values.

 

See

 

your

 

compiler

 

documentation

 

for

 

more

 

information.

 

Programs

 

compiled

 

with

 

the

 

EBCDIC

 

directive

 

run

 

as

 

EBCDIC

 

programs;

 

for

 

example,

 

PIC

 

9

 

fields

 

hold

 

values

 

from

 

X’F0’

 

through

 

X’F9’.

 

When

 

an

 

application

 

is

 

run

 

and

 

an

 

EXEC

 

CICS

 

call

 

is

 

made,

 

character

 

values

 

are

 

converted

 

from

 

EBCDIC

 

to

 

ASCII

 

and

 

from

 

ASCII

 

to

 

EBCDIC

 

as

 

required.

 

Examples

 

of

 

fields

 

and

 

arguments

 

that

 

are

 

converted

 

in

 

this

 

way

 

include

 

the

 

following:

 

v

   

EIBTRNID

 

and

 

EIBTRMID

 

field

 

values.

 

v

   

Arguments

 

to

 

EXEC

 

CICS

 

commands.

 

The

 

content

 

of

 

data

 

areas

 

passed

 

to

 

EXEC

 

CICS

 

commands

 

is

 

not

 

converted.

   

Chapter

 

3.

 

Programming

 

constraints

 

57



Restrictions

 

You

 

should

 

not

 

use

 

COBOL

 

statements

 

to

 

request

 

operating

 

system

 

functions

 

that

 

can

 

be

 

requested

 

from

 

the

 

CICS

 

API.

 

You

 

should

 

also

 

not

 

use

 

the

 

following

 

COBOL

 

statements:

 

v

   

STOP

 

RUN

 

v

   

DISPLAY

 

If

 

the

 

PROGRAM-ID

 

statement

 

is

 

used,

 

the

 

program

 

name

 

must

 

be

 

the

 

same

 

as

 

the

 

filename.

 

The

 

PROGRAM-ID

 

is

 

used

 

by

 

the

 

COBOL

 

compilers

 

as

 

the

 

entry-point

 

name,

 

defaulting

 

to

 

upper-case.

 

On

 

CICS

 

on

 

Open

 

Systems

 

you

 

can

 

use

 

compiler

 

options

 

to

 

allow

 

a

 

mixed-case

 

entry-point

 

name,

 

but

 

CICS

 

does

 

not

 

support

 

mixed-case

 

for

 

Micro

 

Focus

 

Server

 

Express

 

COBOL,

 

and

 

supports

 

mixed

 

case

 

for

 

IBM

 

COBOL

 

only

 

if

 

you

 

compile

 

and

 

link

 

in

 

separate

 

steps

 

and

 

do

 

not

 

use

 

cicstcl.

 

On

 

CICS

 

for

 

Windows,

 

CICS

 

does

 

not

 

support

 

mixed-case

 

entry-point

 

names

 

for

 

IBM

 

COBOL

 

or

 

Micro

 

Focus

 

Net

 

Express

 

COBOL.

 

Micro

 

Focus

 

Net

 

Express

 

programs

 

are

 

never

 

unloaded

 

from

 

memory.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Using

 

the

 

C

 

and

 

the

 

C++

 

compilers

 

If

 

you

 

are

 

writing

 

CICS

 

application

 

programs

 

in

 

C

 

and

 

C++,

 

you

 

must

 

use

 

a

 

compiler

 

that

 

can

 

link

 

with

 

thread-safe

 

libraries

 

(see

 

“Thread

 

safety”

 

on

 

page

 

50).

 

It

 

is

 

recommended

 

that

 

you

 

use

 

cicstcl

 

to

 

compile

 

your

 

application

 

programs

 

because

 

this

 

CICS

 

command

 

uses

 

the

 

thread-safe

 

compilers.

 

Note:

  

For

 

C

 

and

 

C++

 

transaction

 

programs,

 

the

 

main()

 

function

 

must

 

be

 

contained

 

in

 

a

 

.ccs

 

file

 

because

 

it

 

must

 

be

 

translated.

 

The

 

full

 

CICS

 

API,

 

as

 

detailed

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

,

 

is

 

supported

 

for

 

C

 

and

 

C++

 

application

 

programs,

 

with

 

the

 

exception

 

of

 

those

 

commands

 

related

 

to

 

nonstructured

 

exception

 

handling:

 

v

   

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

(with

 

or

 

without

 

a

 

label)

 

v

   

EXEC

 

CICS

 

HANDLE

 

AID

 

(with

 

or

 

without

 

a

 

label)

 

v

   

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

v

   

EXEC

 

CICS

 

PUSH

 

HANDLE

 

v

   

EXEC

 

CICS

 

POP

 

HANDLE

 

v

   

EXEC

 

CICS

 

HANDLE

 

ABEND

 

(label)

 

Use

 

of

 

these

 

commands

 

is

 

diagnosed

 

by

 

the

 

translator.

 

In

 

a

 

C

 

and

 

C++

 

application,

 

every

 

EXEC

 

CICS

 

command

 

is

 

treated

 

as

 

if

 

it

 

has

 

the

 

NOHANDLE

 

option

 

specified.

 

This

 

option

 

overrides

 

the

 

default

 

action

 

when

 

an

 

un-handled

 

condition

 

occurs,

 

which

 

is

 

to

 

map

 

the

 

condition

 

to

 

a

 

transaction

 

abend,

 

and

 

means

 

that

 

control

 

always

 

flows

 

to

 

the

 

next

 

instruction

 

after

 

an

 

EXEC

 

CICS

 

command.

 

The

 

application

 

must

 

test

 

for

 

a

 

normal

 

response

 

and

 

take

 

appropriate

 

action

 

if

 

any

 

condition

 

has

 

occurred.

   

58

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



EXEC

 

CICS

 

HANDLE

 

ABEND

 

PROGRAM

 

commands

 

are

 

allowed,

 

but

 

you

 

cannot

 

use

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

and

 

EXEC

 

CICS

 

POP

 

HANDLE.

 

Argument

 

values

 

in

 

C

 

and

 

C++

 

Argument

 

values

 

in

 

EXEC

 

CICS

 

commands

 

in

 

C

 

and

 

C++

 

programs

 

are

 

described

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

When

 

CICS

 

requires

 

a

 

pointer

 

argument

 

for

 

data-area

 

or

 

pointer-ref

 

argument

 

types,

 

the

 

translator

 

will

 

insert

 

the

 

ampersand

 

(&)

 

if

 

you

 

have

 

not

 

already

 

specified

 

it.

 

New

 

time

 

arguments

 

are

 

supplied

 

for

 

use

 

with

 

C

 

and

 

C++

 

programs

 

that

 

cannot

 

have

 

a

 

packed

 

decimal

 

data

 

type.

 

The

 

commands

 

affected

 

are:

 

v

   

EXEC

 

CICS

 

START

 

v

   

EXEC

 

CICS

 

DELAY

 

These

 

time

 

fields

 

have

 

previously

 

been

 

defined

 

as

 

data-type

 

hhmmss

 

-

 

packed

 

decimal.

 

These

 

fields

 

are

 

of

 

two

 

kinds:

 

1.

   

An

 

elapsed

 

time

 

interval

 

2.

   

A

 

time-of-day

 

value,

 

relative

 

to

 

the

 

preceding

 

midnight.

Delay

 

processing

 

the

 

task

 

(EXEC

 

CICS

 

DELAY)

    

FOR

 

has

 

the

 

same

 

meaning

 

as

 

the

 

INTERVAL

 

option

 

used

 

with

 

COBOL

 

programs

 

(interval

 

of

 

time).

 

UNTIL

 

has

 

the

 

same

 

meaning

 

as

 

the

 

TIME

 

option

 

(absolute

 

time).

 

The

 

following

 

is

 

an

 

example

 

of

 

the

 

EXEC

 

CICS

 

DELAY

 

command:

      

EXEC

 

CICS

 

DELAY

 

UNTIL

 

HOURS(2)

 

MINUTES(15)

 

SECONDS(37);

 

Start

 

a

 

task

 

(EXEC

 

CICS

 

START)

  

DELAY

 

��

 

EXEC

 

CICS

 

DELAY

 

�

 

�

 

FOR

 

HOURS(data-value)

 

MINUTES(data-value)

 

SECONDS(data-value)

 

UNTIL

 

HOURS(data-value)

 

MINUTES(data-value)

 

SECONDS(data-value)

 

��

   

Chapter

 

3.

 

Programming

 

constraints

 

59



AFTER

 

has

 

the

 

same

 

meaning

 

as

 

the

 

INTERVAL

 

option

 

(interval

 

of

 

time).

 

AT

 

has

 

the

 

same

 

meaning

 

as

 

the

 

TIME

 

option

 

(absolute

 

time).

 

Time

 

arguments

 

HOURS(hh)

 

The

 

option

 

specifies

 

the

 

hours

 

time

 

argument.

 

The

 

argument

 

(hh)

 

is

 

defined

 

as

 

a

 

32

 

bit

 

binary

 

data

 

value.

 

MINUTES(mm)

 

The

 

option

 

specifies

 

the

 

minutes

 

time

 

argument.

 

The

 

argument

 

(mm)

 

is

 

defined

 

as

 

a

 

32

 

bit

 

binary

 

data

 

value.

 

SECONDS(ss)

 

The

 

option

 

specifies

 

the

 

seconds

 

time

 

argument.

 

The

 

argument

 

(ss)

 

is

 

defined

 

as

 

a

 

32

 

bit

 

binary

 

data

 

value.

  

If

 

more

 

than

 

one

 

of

 

the

 

time

 

components

 

(HOURS,

 

MINUTES,

 

SECONDS)

 

is

 

specified,

 

the

 

omitted

 

ones

 

will

 

be

 

assumed

 

to

 

have

 

a

 

zero

 

value

 

and

 

the

 

permitted

 

ranges

 

will

 

be:

 

1.

   

Hours

 

-

 

0

 

to

 

99

 

2.

   

Minutes

 

-

 

0

 

to

 

59

 

3.

   

Seconds

 

-

 

0

 

to

 

59

 

If

 

only

 

one

 

time

 

component

 

(HOURS,

 

MINUTES,

 

SECONDS)

 

is

 

specified,

 

the

 

permitted

 

range

 

will

 

be

 

0

 

to

 

the

 

equivalent

 

of

 

99

 

hours

 

59

 

minutes

 

and

 

59

 

seconds.

 

Defaulting

 

options

 

in

 

CICS

 

commands

 

The

 

LENGTH

 

option

 

must

 

always

 

be

 

supplied

 

in

 

CICS

 

commands

 

in

 

C

 

or

 

C++

 

language

 

application

 

programs,

 

except

 

on

 

EXEC

 

CICS

 

SEND

 

MAP,

 

EXEC

 

CICS

 

RECEIVE

 

MAP,

 

EXEC

 

CICS

 

READ,

 

EXEC

 

CICS

 

READNEXT,

 

EXEC

 

CICS

 

READPREV,

 

EXEC

 

CICS

 

REWRITE,

 

and

 

EXEC

 

CICS

 

WRITE.

 

You

 

can

 

omit

 

the

 

FROM

 

option

 

on

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command

 

and

 

the

 

INTO

 

option

 

on

 

an

 

EXEC

 

RECEIVE

 

MAP

 

command,

 

provided

 

the

 

MAP

 

option

 

is

 

a

 

literal

 

string.

 

The

 

defaults

 

are

 

shown

 

in

 

the

 

following

 

table:

  

Table

 

6.

 

EXEC

 

CICS

 

default

 

options

 

for

 

C

 

and

 

C++

 

Commands

 

Option

 

Defaults

 

to

 

EXEC

 

CICS

 

SEND

 

MAP('MAP1')

 

FROM

 

&map1.map1o

 

START

 

��

 

EXEC

 

CICS

 

START

 

�

 

�

 

AFTER

 

HOURS(data-value)

 

MINUTES(data-value)

 

SECONDS(data-value)

 

AT

 

HOURS(data-value)

 

MINUTES(data-value)

 

SECONDS(data-value)

 

��

   

60

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

6.

 

EXEC

 

CICS

 

default

 

options

 

for

 

C

 

and

 

C++

 

(continued)

 

Commands

 

Option

 

Defaults

 

to

 

EXEC

 

CICS

 

RECEIVE

 

MAP('MAP1')

 

INTO

 

&map1.map1i

   

Data

 

declarations

 

needed

 

in

 

C

 

and

 

C++

 

The

 

EXEC

 

Interface

 

Block

 

(EIB)

 

data

 

declaration

 

is

 

provided

 

automatically.

 

Within

 

a

 

C

 

application

 

program,

 

fields

 

in

 

the

 

EIB

 

are

 

referred

 

to

 

in

 

lowercase

 

and

 

fully

 

qualified

 

as,

 

for

 

example,

 

dfheiptr->eibtrnid,

 

in

 

contrast

 

to

 

EIBTRNID

 

as

 

used

 

in

 

other

 

CICS

 

applications.

 

The

 

following

 

mapping

 

of

 

data

 

types

 

in

 

EIB

 

fields

 

is

 

used:

 

v

   

8-bit

 

unsigned

 

binary

 

integers

 

are

 

defined

 

as

 

cics_ubyte_t

 

v

   

16-bit

 

unsigned

 

binary

 

integers

 

are

 

defined

 

as

 

cics_ushort_t

 

v

   

16-bit

 

signed

 

binary

 

integers

 

are

 

defined

 

as

 

cics_sshort_t

 

v

   

32-bit

 

unsigned

 

binary

 

integers

 

are

 

defined

 

as

 

cics_ulong_t

 

v

   

32-bit

 

signed

 

binary

 

integers

 

are

 

defined

 

as

 

cics_slong_t

 

v

   

Single

 

character

 

fields

 

are

 

defined

 

as

 

cics_char_t

 

v

   

Character

 

strings

 

are

 

defined

 

as

 

cics_char_t

 

arrays

 

v

   

Boolean

 

data

 

is

 

defined

 

as

 

cics_bool_t

 

The

 

following

 

data

 

declarations

 

are

 

available

 

in

 

CICS-supplied

 

C

 

or

 

C++

 

include

 

files:

 

v

   

BMS

 

screen

 

attribute

 

definitions

 

(dfhbmsca.h)

 

v

   

Attention

 

key

 

definitions

 

(dfhaid.h)

 

For

 

more

 

information

 

about

 

the

 

dfhbmsca.h

 

and

 

dfhaid.h

 

header

 

files,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

C

 

and

 

C++

 

program

 

invocation

 

environment

 

Two

 

arguments

 

are

 

normally

 

passed

 

to

 

a

 

C

 

or

 

C++

 

main

 

procedure:

 

argc

 

and

 

argv.

 

The

 

argc

 

argument

 

is

 

the

 

number

 

of

 

command

 

line

 

arguments

 

with

 

which

 

the

 

program

 

was

 

invoked,

 

and

 

the

 

argv

 

argument

 

is

 

a

 

pointer

 

to

 

an

 

array

 

of

 

character

 

strings

 

that

 

contain

 

the

 

command-line

 

arguments,

 

one

 

per

 

string.

 

CICS

 

programs

 

do

 

not

 

have

 

genuine

 

command-line

 

arguments;

 

instead,

 

the

 

following

 

scheme

 

is

 

used:

 

argc

     

4

 

argv[0]

  

The

 

transaction

 

id

 

under

 

which

 

the

 

program

 

is

 

running

 

argv[1]

  

A

 

pointer

 

to

 

the

 

EIB

 

argv[2]

  

A

 

pointer

 

to

 

the

 

commarea

 

(or

 

NULL)

 

argv[3]

  

The

 

commarea

 

length

 

Note

 

that

 

this

 

scheme

 

differs

 

from

 

other

 

approaches

 

used

 

by

 

the

 

CICS

 

family

 

where

 

only

 

the

 

transaction

 

identifier

 

(tranid)

 

is

 

provided

 

and

 

the

 

value

 

for

 

argc

 

is

 

set

 

to

 

1.

 

When

 

you

 

link-edit

 

an

 

application

 

program

 

to

 

be

 

run

 

under

 

CICS

 

(using

 

cicstcl,

 

for

 

example),

 

the

 

object

 

you

 

create

 

is

 

not

 

directly

 

executable

 

by

 

the

 

operating

 

system

 

both

 

because

 

it

 

contains

 

some

 

unresolved

 

symbols

 

and

 

because

 

it

 

expects

 

to

 

be

 

run

 

by

 

the

 

CICS

 

application

 

server.

 

The

 

CICS

 

application

 

server

 

(see

 

“Application

 

servers”

 

on

 

page

 

10)

 

provides

 

a

 

complete

 

environment

 

for

 

running

 

the

 

loadable

 

objects

 

produced

 

by

 

cicstcl.

 

To

 

run

 

your

 

transaction,

 

CICS

 

looks

 

up

 

the

 

name

 

and

 

location

 

of

 

a

 

CICS

 

program,

 

and

 

uses

 

the

 

operating

 

system

 

dynamic

   

Chapter

 

3.

 

Programming

 

constraints

 

61



loading

 

facility

 

to

 

load

 

that

 

program

 

into

 

the

 

application

 

server.

 

The

 

unresolved

 

symbols

 

in

 

the

 

program

 

are

 

then

 

resolved

 

by

 

symbols

 

provided

 

by

 

the

 

server

 

and

 

the

 

program

 

begins

 

execution.

   

On

 

CICS

 

for

 

AIX

 

only

 

If

 

you

 

are

 

compiling

 

a

 

program

 

that

 

uses

 

non

 

ANSI

 

extensions,

 

compile

 

using

 

the

 

extended

 

mode.

 

Also,

 

the

 

same

 

options

 

apply

 

to

 

cicstcl.

 

If

 

you

 

are

 

compiling

 

a

 

transaction

 

program

 

that

 

uses

 

non-ANSI

 

extensions,

 

add

 

the

 

following

 

to

 

your

 

cicstcl

 

arguments:

 

CCFLAGS=-qlanglvl=extended

  

IBM

 

C++

 

executables

 

must

 

have

 

a

 

suffix

 

of

 

.ibmcpp

 

for

 

identification

 

by

 

CICS.

 

Restriction

 

in

 

cached

 

programs

 

using

 

variables

 

in

 

static

 

storage

 

When

 

C

 

or

 

C++

 

programs

 

are

 

cached,

 

variables

 

in

 

static

 

storage

 

are

 

not

 

reinitialized

 

when

 

the

 

program

 

is

 

re-invoked.

 

This

 

is

 

useful

 

where

 

database

 

connections

 

(among

 

other

 

things)

 

are

 

stored

 

as

 

variables

 

in

 

static

 

storage

 

and

 

are

 

required

 

to

 

be

 

kept

 

between

 

successive

 

invocations

 

as

 

this

 

provides

 

a

 

large

 

performance

 

benefit.

 

BMS

 

maps

 

may

 

be

 

stored

 

as

 

static,

 

which

 

allows

 

previous

 

data

 

to

 

be

 

shown

 

on

 

the

 

screen.

 

If

 

you

 

do

 

not

 

want

 

this

 

because

 

of

 

the

 

possiblity

 

of

 

security

 

exposures,

 

either

 

change

 

the

 

code

 

so

 

that

 

the

 

variables

 

in

 

static

 

storage

 

are

 

not

 

used,

 

or

 

do

 

not

 

cache

 

the

 

program.

 

EXEC

 

CICS

 

address

 

COMMAREA

 

The

 

address

 

of

 

the

 

communication

 

area

 

is

 

not

 

passed

 

as

 

an

 

argument

 

to

 

a

 

C

 

or

 

C++

 

main

 

function.

 

This

 

means

 

that

 

C

 

functions

 

must

 

use

 

EXEC

 

CICS

 

ADDRESS

 

COMMAREA

 

to

 

obtain

 

the

 

address

 

of

 

the

 

communications

 

area.

 

Calling

 

programs

 

from

 

C

 

or

 

C++

 

CICS

 

C

 

or

 

C++

 

programs

 

are

 

only

 

given

 

a

 

fresh

 

copy

 

of

 

their

 

static

 

data

 

for

 

the

 

first

 

instance

 

of

 

the

 

program.

 

You

 

should

 

not

 

use

 

static

 

data

 

in

 

programs

 

that

 

are

 

called

 

recursively.

 

Mixing

 

languages

 

A

 

run

 

unit

 

in

 

CICS

 

C

 

or

 

C++

 

is

 

a

 

single

 

CICS

 

C

 

or

 

C++

 

program.

 

A

 

CICS

 

transaction

 

can

 

consist

 

of

 

many

 

run

 

units,

 

each

 

of

 

which

 

can

 

be

 

in

 

a

 

different

 

language,

 

provided

 

that

 

programs

 

written

 

in

 

one

 

language

 

communicate

 

with

 

programs

 

written

 

in

 

another

 

language

 

only

 

by

 

using

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

commands.

 

EXEC

 

CICS

 

address

 

EIB

 

The

 

ADDRESS

 

of

 

the

 

exec

 

interface

 

block

 

(EIB)

 

is

 

not

 

passed

 

as

 

an

 

argument

 

to

 

a

 

C

 

or

 

C++

 

main

 

function.

 

This

 

means

 

that

 

C

 

functions

 

must

 

use

 

EXEC

 

CICS

 

ADDRESS

 

EIB

 

to

 

obtain

 

the

 

address

 

of

 

the

 

EIB.

   

62

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



If

 

you

 

specify

 

the

 

RESP

 

option

 

or

 

the

 

RESP2

 

option

 

or

 

both

 

in

 

an

 

EXEC

 

CICS

 

statement,

 

you

 

must

 

specify

 

EXEC

 

CICS

 

ADDRESS

 

EIB(dfheiptr)

 

beforehand.

 

The

 

name

 

dfheiptr

 

is

 

required.

 

Omitting

 

this

 

step

 

causes

 

the

 

transaction

 

to

 

abend

 

with

 

an

 

abend

 

code

 

of

 

ASRA.

 

Releasing

 

resources

 

In

 

short-lived

 

operating

 

system

 

processes,

 

any

 

resources

 

(such

 

as

 

file

 

handles

 

and

 

memory)

 

will

 

be

 

automatically

 

released.

 

Since

 

CICS

 

uses

 

long-running

 

application

 

servers,

 

this

 

release

 

will

 

not

 

be

 

automatically

 

done

 

at

 

the

 

end

 

of

 

a

 

transaction.

 

CICS

 

will

 

only

 

clean

 

up

 

the

 

CICS

 

resources

 

that

 

it

 

owns

 

(such

 

as

 

EXEC

 

CICS

 

GETMAIN

 

storage).

 

Therefore

 

it

 

is

 

important

 

that

 

if

 

a

 

CICS

 

program

 

calls

 

a

 

function

 

such

 

as

 

open

 

directly,

 

a

 

corresponding

 

close

 

must

 

be

 

called

 

before

 

the

 

end

 

of

 

the

 

program.

 

If

 

close

 

is

 

not

 

called,

 

the

 

system

 

may

 

run

 

out

 

of

 

resources.

 

The

 

resources

 

affected

 

by

 

this

 

consideration

 

include

 

memory

 

segments,

 

semaphores,

 

locks

 

and

 

file

 

handles.

 

String

 

handling

 

CICS

 

does

 

not

 

generally

 

support

 

the

 

C

 

convention

 

of

 

delimiting

 

strings

 

using

 

a

 

null

 

byte.

 

Instead,

 

strings

 

are

 

padded

 

with

 

spaces

 

to

 

their

 

maximum

 

length.

 

All

 

strings

 

output

 

from

 

CICS

 

are

 

always

 

space

 

padded,

 

and

 

therefore

 

cannot

 

be

 

used

 

directly

 

by

 

C

 

string

 

manipulation

 

functions.

 

You

 

should

 

take

 

care

 

in

 

passing

 

strings

 

terminated

 

with

 

a

 

null

 

to

 

the

 

CICS

 

interface.

 

This

 

will

 

work

 

in

 

situations

 

where

 

the

 

option

 

concerned

 

is

 

not

 

of

 

a

 

fixed

 

length,

 

but

 

will

 

not

 

work

 

for

 

fixed

 

length

 

options.

 

For

 

example,

 

a

 

CICS

 

file

 

name

 

can

 

be

 

up

 

to

 

eight

 

characters

 

in

 

length,

 

so

 

you

 

can

 

open

 

the

 

literal

 

“ABCD”

 

and

 

CICS

 

will

 

handle

 

this

 

correctly.

 

But,

 

temporary

 

storage

 

queue

 

names

 

(including

 

REQID

 

on

 

certain

 

commands)

 

must

 

be

 

exactly

 

8

 

bytes.

 

Therefore,

 

CICS

 

will

 

take

 

whatever

 

bytes

 

happen

 

to

 

be

 

after

 

the

 

null

 

following

 

“ABCD”

 

as

 

part

 

of

 

the

 

TSQ

 

name.

 

C++

 

considerations

 

Do

 

not

 

use

 

iostream

 

objects

 

in

 

CICS

 

programs.

 

Do

 

not

 

place

 

CICS

 

statements

 

in

 

header

 

files

 

as

 

part

 

of

 

an

 

inline

 

function

 

definition.

 

CICS

 

statements

 

in

 

class

 

templates

 

must

 

be

 

translated

 

before

 

the

 

inclusion

 

of

 

the

 

template

 

class

 

definition

 

in

 

any

 

program.

 

C++

 

allows

 

the

 

creation

 

of

 

new

 

objects

 

on

 

the

 

heap

 

and

 

it

 

is

 

important

 

that

 

these

 

objects

 

are

 

deleted

 

after

 

use

 

to

 

avoid

 

memory

 

leaks.

 

Ensure

 

that

 

all

 

initialization

 

is

 

done

 

within

 

the

 

object

 

constructors.

 

You

 

should

 

also

 

ensure

 

that

 

your

 

prodDir

 

is

 

set

 

to

 

the

 

path

 

of

 

any

 

class

 

libraries

 

used

 

in

 

your

 

CICS

 

environment

 

file.

 

Do

 

not

 

use

 

CICS

 

statements

 

in

 

static

 

object

 

constructors

 

or

 

destructors.

 

Static

 

constructors

 

and

 

destructors

 

are

 

called

 

outside

 

a

 

CICS

 

Logical

 

Unit

 

of

 

Work,

 

and

 

so

 

using

 

CICS

 

statements

 

at

 

these

 

points

 

can

 

cause

 

abends.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Returning

 

from

 

C

 

and

 

C++

 

programs

 

There

 

are

 

various

 

methods

 

of

 

returning

 

from

 

a

 

C

 

or

 

C++

 

program:

   

Chapter

 

3.

 

Programming

 

constraints

 

63



return

 

Returns

 

control

 

to

 

calling

 

program

 

or

 

to

 

CICS.

 

exit,

 

abort,

 

and

 

_exit

 

These

 

must

 

not

 

be

 

used

 

in

 

CICS

 

programs

 

because

 

they

 

cause

 

the

 

application

 

server

 

to

 

terminate.

 

EXEC

 

CICS

 

RETURN

 

Terminates

 

the

 

program

 

normally.

 

EXEC

 

CICS

 

XCTL

 

Terminates

 

the

 

program

 

normally.

 

EXEC

 

CICS

 

ABEND

 

Terminates

 

the

 

program

 

abnormally.

Using

 

the

 

IBM

 

PL/I

 

compiler

 

CICS

 

application

 

programs

 

written

 

in

 

IBM

 

PL/I

 

must

 

be

 

compiled

 

(using

 

cicstcl

 

for

 

example)

 

into

 

executables

 

that

 

are

 

linked

 

with

 

thread-safe

 

libraries.

 

These

 

executables

 

must

 

have

 

a

 

suffix

 

of

 

ibmpli

 

for

 

identification

 

by

 

CICS.

 

The

 

full

 

CICS

 

API,

 

as

 

detailed

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

,

 

is

 

supported

 

for

 

PL/I

 

application

 

programs,

 

with

 

the

 

exception

 

of

 

HANDLE

 

ABEND

 

LABEL.

 

Restriction

 

in

 

cached

 

programs

 

using

 

variables

 

in

 

static

 

storage

 

When

 

PL/I

 

programs

 

are

 

cached,

 

variables

 

in

 

static

 

storage

 

are

 

not

 

reinitialized

 

when

 

the

 

program

 

is

 

re-invoked.

 

This

 

is

 

the

 

desired

 

behavior

 

as

 

database

 

connections

 

(among

 

other

 

things)

 

are

 

stored

 

as

 

variables

 

in

 

static

 

storage

 

and

 

it

 

is

 

required

 

that

 

these

 

to

 

be

 

kept

 

between

 

successive

 

invocations

 

as

 

this

 

provides

 

a

 

large

 

performance

 

benefit.

 

BMS

 

maps

 

may

 

be

 

stored

 

as

 

statics

 

and

 

this

 

may

 

allow

 

previous

 

data

 

to

 

be

 

shown

 

on

 

the

 

screen.

 

If

 

this

 

behavior

 

is

 

not

 

desired,

 

such

 

as

 

the

 

possibility

 

of

 

security

 

exposures,

 

either

 

the

 

code

 

should

 

be

 

changed

 

so

 

that

 

variables

 

in

 

static

 

storage

 

are

 

not

 

used,

 

or

 

the

 

program

 

should

 

not

 

be

 

cached.

 

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

PL/I

 

CICS

 

command

 

options

 

that

 

have

 

default

 

values

 

are

 

shown

 

in

 

the

 

following

 

table:

  

Table

 

7.

 

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

PL/I

 

Commands

 

Options

 

Defaults

 

from

 

READ,

 

READNEXT,

 

READPREV,

 

READQ

 

TD,

 

READQ

 

TS,

 

RETRIEVE

 

LENGTH

 

INTO

 

DUMP

 

LENGTH

 

(unless

 

FLENGTH

 

is

 

specified)

 

FROM

 

JOURNAL,

 

REWRITE,

 

START,

 

WRITE,

 

WRITEQ

 

TD,

 

WRITEQ

 

TS

 

LENGTH

 

FROM

 

CONVERSE

 

FROMLENGTH

 

(unless

 

FROMFLENGTH

 

is

 

specified)

 

FROM

 

CONVERSE

 

TOLENGTH

 

(unless

 

TOFLENGTH

 

is

 

specified)

 

INTO

   

64

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

7.

 

Default

 

options

 

in

 

EXEC

 

CICS

 

commands

 

for

 

PL/I

 

(continued)

 

Commands

 

Options

 

Defaults

 

from

 

CONVERSE

 

MAXLENGTH

 

or

 

MAXFLENGTH

 

with

 

no

 

argument

 

INTO

 

RECEIVE

 

LENGTH

 

(unless

 

FLENGTH

 

is

 

specified)

 

INTO

 

RECEIVE

 

MAXLENGTH

 

or

 

MAXFLENGTH

 

with

 

no

 

argument

 

INTO

 

SEND

 

LENGTH

 

(unless

 

FLENGTH

 

is

 

specified)

 

FROM

 

LINK,

 

XCTL,

 

RETURN

 

LENGTH

 

COMMAREA

 

CONNECT

 

PROCESS

 

PROCLENGTH

 

PROCNAME

 

CONNECT

 

PROCESS

 

PIPLENGTH

 

PIPLIST

 

JOURNAL

 

PFXLENG

 

PREFIX

 

RECEIVE

 

MAP('MAPNAME')

 

without

 

INTO

 

or

 

SET

 

INTO

 

MAP

 

SEND

 

MAP('MAPNAME')

 

without

 

FROM

 

or

 

MAP

 

ONLY

 

FROM

 

MAP

   

PL/I

 

program

 

invocation

 

environment

 

When

 

you

 

link-edit

 

an

 

application

 

program

 

to

 

be

 

run

 

under

 

CICS

 

(using

 

cicstcl,

 

for

 

example),

 

the

 

object

 

you

 

create

 

is

 

not

 

directly

 

executable

 

by

 

the

 

operating

 

system

 

both

 

because

 

it

 

contains

 

some

 

unresolved

 

symbols

 

and

 

because

 

it

 

expects

 

to

 

be

 

run

 

by

 

the

 

CICS

 

application

 

server.

 

The

 

CICS

 

application

 

server

 

(see

 

“Application

 

servers”

 

on

 

page

 

10)

 

provides

 

a

 

complete

 

environment

 

for

 

running

 

the

 

loadable

 

objects

 

produced

 

by

 

cicstcl.

 

To

 

run

 

your

 

transaction,

 

CICS

 

looks

 

up

 

the

 

name

 

and

 

location

 

of

 

a

 

CICS

 

program,

 

and

 

uses

 

the

 

operating

 

system

 

dynamic

 

loading

 

facility

 

to

 

load

 

that

 

program

 

into

 

the

 

application

 

server.

 

The

 

unresolved

 

symbols

 

in

 

the

 

program

 

are

 

then

 

resolved

 

by

 

symbols

 

provided

 

by

 

the

 

server

 

and

 

the

 

program

 

begins

 

execution.

 

PL/I

 

executables

 

must

 

have

 

a

 

suffix

 

of

 

.ibmpli.

 

Calling

 

programs

 

from

 

PL/I

 

CICS

 

PL/I

 

programs

 

are

 

only

 

given

 

a

 

fresh

 

copy

 

of

 

their

 

static

 

data

 

for

 

the

 

first

 

instance

 

of

 

the

 

program.

 

You

 

should

 

not

 

use

 

static

 

data

 

in

 

programs

 

that

 

are

 

called

 

recursively.

 

Data

 

declarations

 

needed

 

for

 

PL/I

 

The

 

EXEC

 

Interface

 

Block

 

(EIB)

 

data

 

declaration

 

is

 

provided

 

automatically.

 

The

 

following

 

mapping

 

of

 

PL/I

 

expressions

 

in

 

EIB

 

fields

 

is

 

used:

 

v

   

Halfword

 

binary

 

values

 

are

 

defined

 

as

 

FIXED

 

BIN(15)

 

v

   

Fullword

 

binary

 

values

 

are

 

defined

 

as

 

FIXED

 

BIN(31)

 

v

   

Character

 

strings

 

are

 

defined

 

as

 

CHAR(n),

 

where

 

n

 

is

 

the

 

number

 

of

 

bytes

 

For

 

more

 

information,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

   

Chapter

 

3.

 

Programming

 

constraints

 

65



OPTIONS(MAIN)

 

specification

 

If

 

OPTIONS(MAIN)

 

is

 

specified

 

for

 

a

 

PL/I

 

program,

 

the

 

program

 

can

 

be

 

the

 

first

 

program

 

of

 

a

 

transaction,

 

or

 

control

 

can

 

be

 

passed

 

to

 

it

 

by

 

means

 

of

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

XCTL

 

command.

 

If

 

OPTIONS(MAIN)

 

is

 

not

 

specified,

 

the

 

program

 

cannot

 

be

 

the

 

first

 

program

 

in

 

a

 

transaction,

 

nor

 

have

 

control

 

passed

 

to

 

it

 

by

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

XCTL

 

command.

 

The

 

definition

 

of

 

the

 

EIB

 

(DFHEIBLK)

 

is

 

generated

 

in

 

each

 

program,

 

based

 

upon

 

the

 

pointer

 

variable

 

DFHEIPTR.

 

In

 

programs

 

declared

 

with

 

OPTIONS(MAIN),

 

the

 

DFHEIPTR

 

variable

 

is

 

set

 

up

 

to

 

address

 

the

 

EIB

 

on

 

entry.

 

In

 

programs

 

other

 

than

 

those

 

declared

 

with

 

OPTIONS(MAIN),

 

addressability

 

to

 

the

 

EIB

 

is

 

the

 

user’s

 

responsibility.

 

Addressability

 

can

 

be

 

achieved

 

by

 

using

 

the

 

command:

 

EXEC

 

CICS

 

ADDRESS

 

EIB(DFHEIPTR)

 

Addressability

 

can

 

also

 

be

 

achieved

 

by

 

passing

 

the

 

EIB

 

address

 

or

 

the

 

values

 

of

 

particular

 

EIB

 

fields

 

as

 

arguments

 

to

 

the

 

CALL

 

statement

 

that

 

invokes

 

the

 

external

 

procedure.

 

Mixing

 

languages

 

A

 

run

 

unit

 

in

 

CICS

 

PL/I

 

is

 

a

 

single

 

CICS

 

PL/I

 

program.

 

A

 

CICS

 

transaction

 

can

 

consist

 

of

 

many

 

run

 

units,

 

each

 

of

 

which

 

can

 

be

 

in

 

a

 

different

 

language,

 

provided

 

that

 

programs

 

written

 

in

 

one

 

language

 

communicate

 

with

 

programs

 

written

 

in

 

another

 

language

 

only

 

by

 

using

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

commands.

 

Returning

 

from

 

PL/I

 

programs

 

There

 

are

 

various

 

methods

 

of

 

returning

 

from

 

a

 

PL/I

 

program:

 

EXEC

 

CICS

 

RETURN

 

Terminates

 

the

 

program

 

normally.

 

EXEC

 

CICS

 

XCTL

 

Terminates

 

the

 

program

 

normally.

 

EXEC

 

CICS

 

ABEND

 

Terminates

 

the

 

program

 

abnormally.

Releasing

 

resources

 

In

 

short-lived

 

operating

 

system

 

processes,

 

any

 

resources

 

(such

 

as

 

file

 

handles

 

and

 

memory)

 

will

 

be

 

automatically

 

released.

 

Since

 

CICS

 

uses

 

long-running

 

application

 

servers,

 

this

 

release

 

will

 

not

 

be

 

automatically

 

done

 

at

 

the

 

end

 

of

 

a

 

transaction.

 

CICS

 

will

 

only

 

clean

 

up

 

the

 

CICS

 

resources

 

that

 

it

 

owns

 

(such

 

as

 

EXEC

 

CICS

 

GETMAIN

 

storage).

 

Therefore

 

it

 

is

 

important

 

that

 

if

 

a

 

CICS

 

program

 

calls

 

a

 

function

 

such

 

as

 

“open”

 

directly,

 

a

 

corresponding

 

“close”

 

must

 

be

 

called

 

before

 

the

 

end

 

of

 

the

 

program.

 

If

 

“close”

 

is

 

not

 

called,

 

the

 

system

 

may

 

run

 

out

 

of

 

resources.

 

The

 

resources

 

affected

 

by

 

this

 

consideration

 

include

 

memory

 

segments,

 

semaphores,

 

locks

 

and

 

file

 

handles.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

   

66

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

This

 

chapter

 

describes

 

how

 

to

 

write

 

application

 

programs

 

that

 

use

 

the

 

CICS

 

presentation

 

services.

 

What

 

are

 

the

 

presentation

 

services?

 

CICS

 

provides

 

two

 

API

 

services

 

that

 

handle

 

the

 

presentation

 

interface

 

with

 

the

 

end-user.

 

These

 

can

 

be

 

thought

 

of

 

as

 

a

 

low-level

 

interface

 

and

 

a

 

high-level

 

interface:

 

Terminal

 

services

 

The

 

low-level

 

interface

 

is

 

called

 

terminal

 

services.

 

This

 

interface

 

allows

 

you

 

to

 

communicate

 

with

 

the

 

terminal

 

using

 

3270

 

datastreams.

 

See

 

“Terminal

 

services.”

 

Basic

 

mapping

 

support

 

(BMS)

 

The

 

high-level

 

interface

 

is

 

Basic

 

Mapping

 

Support

 

(BMS).

 

This

 

facility

 

allows

 

you

 

to

 

define

 

your

 

presentation

 

logic

 

in

 

terms

 

of

 

maps

 

containing

 

fields.

 

You

 

define

 

these

 

maps

 

externally

 

to

 

the

 

applications

 

program

 

with

 

BMS

 

macros.

 

On

 

CICS

 

for

 

Windows

 

and

 

CICS

 

on

 

Open

 

Systems,

 

BMS

 

macros

 

are

 

coded

 

manually.

 

See

 

“Basic

 

mapping

 

support

 

(BMS)

 

services”

 

on

 

page

 

71

 

and

 

“Using

 

the

 

BMS

 

macros

 

to

 

code

 

BMS

 

map

 

sets”

 

on

 

page

 

97.

Terminal

 

services

 

The

 

CICS

 

terminal

 

services

 

allow

 

user-written

 

application

 

programs,

 

terminals,

 

and

 

logical

 

units

 

to

 

communicate

 

using

 

API

 

commands.

 

Terminal

 

services

 

handle

 

data

 

translation,

 

transaction

 

identification,

 

synchronization

 

of

 

input

 

and

 

output

 

operations,

 

and

 

the

 

session

 

control

 

needed

 

to

 

read

 

from

 

or

 

write

 

to

 

a

 

terminal.

 

This

 

frees

 

the

 

application

 

from

 

the

 

responsibility

 

of

 

controlling

 

terminals.

 

During

 

processing,

 

an

 

application

 

program

 

is

 

connected

 

to

 

one

 

terminal

 

for

 

one

 

task.

 

The

 

terminal

 

services

 

monitor

 

which

 

task

 

is

 

associated

 

with

 

which

 

terminal,

 

and

 

determine

 

which

 

task

 

is

 

to

 

be

 

initiated.

 

In

 

intercommunications,

 

terminal

 

services

 

are

 

also

 

used

 

to

 

control

 

communication

 

with

 

logical

 

units

 

(LU)

 

or

 

with

 

another

 

CICS

 

system.

 

An

 

LU

 

can

 

represent

 

a

 

terminal

 

either

 

directly,

 

or

 

indirectly,

 

through

 

a

 

program

 

stored

 

in

 

a

 

subsystem

 

controller.

 

CICS

 

for

 

Windows

 

supports

 

terminals

 

with

 

a

 

process

 

known

 

as

 

a

 

CICS

 

local

 

terminal.

 

The

 

client

 

process

 

is

 

responsible

 

for

 

reading

 

user

 

input,

 

communicating

 

with

 

an

 

attached

 

region

 

to

 

run

 

transactions,

 

receiving

 

output

 

from

 

those

 

transactions,

 

and

 

displaying

 

it

 

to

 

the

 

end-user.

 

The

 

supplied

 

CICS

 

client

 

cicsterm

 

(CICS

 

on

 

Open

 

Systems)

 

and

 

cicsteld

 

processes

 

contain

 

an

 

IBM

 

3270

 

Information

 

Display

 

System

 

datastream

 

emulation

 

which

 

supports

 

a

 

subset

 

of

 

the

 

3270

 

protocol.

 

CICS

 

on

 

Open

 

Systems

 

clients,

 

cicsterm,

 

and

 

cicsteld

 

however,

 

cannot

 

emulate

 

all

 

I/O

 

devices,

 

such

 

as

 

card

 

readers.

 

To

 

enable

 

you

 

to

 

use

 

these

 

devices

 

from

 

CICS,

 

and

 

to

 

allow

 

you

 

to

 

write

 

enhanced

 

3270

 

emulations,

 

the

 

CICS

 

on

 

Open

 

Systems

 

clients

 

cicsterm

 

and

 

cicsteld

 

processes

 

are

 

replaceable.

 

Information

 

about

 

CICS

 

on

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

67



Open

 

Systems

 

clients

 

cicsterm

 

and

 

cicsteld,

 

and

 

about

 

writing

 

your

 

own

 

versions

 

of

 

the

 

replaceable

 

code

 

is

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

You

 

can

 

use

 

terminal

 

services

 

to

 

communicate

 

with

 

a

 

remote

 

system

 

by

 

means

 

of

 

distributed

 

transaction

 

processing

 

(DTP),

 

which

 

is

 

described

 

fully

 

in

 

the

 

CICS

 

Intercommunication

 

Guide.

 

You

 

can

 

use

 

the

 

following

 

API

 

commands

 

to

 

use

 

the

 

terminal

 

services

 

(provided

 

they

 

apply

 

to

 

your

 

terminal

 

or

 

logical

 

unit):

 

RECEIVE

 

Read

 

data

 

from

 

a

 

terminal

 

or

 

logical

 

unit.

 

SEND

 

Write

 

data

 

to

 

a

 

terminal

 

or

 

logical

 

unit.

 

SEND

 

TEXT

 

Write

 

text

 

to

 

a

 

terminal

 

or

 

logical

 

unit

 

that

 

is

 

formatted

 

in

 

such

 

as

 

way

 

that

 

words

 

are

 

not

 

split

 

across

 

lines.

 

CONVERSE

 

Converse

 

with

 

a

 

terminal

 

or

 

logical

 

unit.

 

WAIT

 

TERMINAL

 

Synchronize

 

terminal

 

input/output

 

for

 

a

 

transaction.

 

ISSUE

 

SIGNAL

 

Send

 

an

 

asynchronous

 

interrupt.

  

Other

 

services

 

available

 

in

 

response

 

to

 

terminal

 

services

 

commands

 

apply

 

to

 

specific

 

types

 

of

 

terminal.

 

Because

 

CICS

 

supports

 

many

 

different

 

terminal

 

types,

 

it

 

provides

 

a

 

number

 

of

 

special

 

services.

 

In

 

particular,

 

there

 

are

 

many

 

commands

 

for

 

communicating

 

with

 

display

 

devices

 

such

 

as

 

those

 

members

 

of

 

the

 

IBM

 

3270

 

Information

 

Display

 

System

 

family.

 

Use

 

the

 

EXEC

 

CICS

 

SEND

 

TEXT

 

command

 

to

 

send

 

text

 

to

 

a

 

terminal.

 

The

 

text

 

is

 

split

 

into

 

lines

 

of

 

the

 

same

 

width

 

as

 

the

 

terminal,

 

such

 

that

 

words

 

are

 

not

 

broken

 

across

 

line

 

boundaries.

 

If

 

the

 

text

 

exceeds

 

a

 

page,

 

it

 

is

 

split

 

into

 

pages

 

that

 

fit

 

on

 

the

 

terminal.

 

The

 

data

 

area

 

containing

 

the

 

text

 

to

 

be

 

sent

 

is

 

specified

 

in

 

the

 

FROM

 

option.

 

The

 

LENGTH

 

option

 

specifies

 

the

 

length

 

of

 

this

 

area.

 

To

 

help

 

control

 

the

 

format

 

of

 

the

 

display,

 

the

 

text

 

may

 

contain

 

embedded

 

new-line

 

characters

 

and

 

embedded

 

blanks.

 

How

 

text

 

is

 

formatted

 

When

 

formatting

 

the

 

text,

 

BMS

 

splits

 

it

 

into

 

lines

 

of

 

length

 

less

 

than

 

or

 

equal

 

to

 

the

 

terminal

 

page

 

width.

 

BMS

 

pads

 

the

 

ends

 

of

 

lines

 

with

 

blanks

 

rather

 

than

 

splitting

 

words.

 

BMS

 

starts

 

each

 

line

 

with

 

a

 

single

 

blank

 

corresponding

 

to

 

the

 

3270

 

attribute

 

byte.

 

On

 

a

 

3270,

 

the

 

attribute

 

byte

 

is

 

set

 

to

 

unprotected,

 

autoskip,

 

and

 

normal

 

intensity.

 

If

 

a

 

line

 

of

 

text

 

ends

 

with

 

a

 

non-blank

 

character,

 

and

 

the

 

next

 

character

 

is

 

a

 

blank,

 

BMS

 

processes

 

the

 

data

 

as

 

if

 

it

 

were

 

a

 

sentence,

 

that

 

is,

 

the

 

blank

 

is

 

removed

 

and

 

the

 

next

 

character

 

is

 

positioned

 

in

 

the

 

second

 

column

 

of

 

the

 

next

 

line,

 

which

 

is

 

the

 

starting

 

column

 

for

 

text.

 

Where

 

a

 

line

 

of

 

text

 

ends

 

with

 

a

 

blank

 

and

 

the

 

next

 

character

 

is

 

also

 

a

 

blank,

 

BMS

 

honors

 

all

 

blanks

 

to

 

process

 

the

 

data

 

as

 

if

 

it

 

were

 

in

 

table

 

format.

   

68

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



If

 

the

 

FROM

 

data

 

area

 

contains

 

more

 

text

 

than

 

can

 

fit

 

on

 

a

 

single

 

screen,

 

BMS

 

creates

 

another

 

screen

 

of

 

formatted

 

text

 

and

 

overwrites

 

the

 

previous

 

screen.

 

If

 

the

 

ERASE

 

option

 

is

 

used,

 

then

 

the

 

previous

 

screen

 

is

 

erased

 

before

 

the

 

new

 

screen

 

is

 

written,

 

thus

 

improving

 

the

 

presentation

 

of

 

the

 

text.

 

Printing

 

the

 

text

  

CICS

 

for

 

Windows:

   

See

 

the

 

CICS

 

Clients:

 

Administration

 

for

 

information

 

about

 

using

 

CICS

 

on

 

Open

 

Systems

 

client

 

services

 

to

 

print

 

the

 

text.

  

CICS

 

on

 

Open

 

Systems:

   

Printed

 

text

 

is

 

formatted

 

such

 

that

 

words

 

are

 

not

 

broken

 

across

 

line

 

boundaries

 

and,

 

if

 

the

 

text

 

exceeds

 

a

 

page,

 

it

 

is

 

split

 

into

 

pages.

 

To

 

print

 

text:

 

1.

   

Start

 

cicstermp,

 

the

 

CICS

 

printer

 

emulator,

 

as

 

shown:

 

cicstermp

 

-r

 

region

 

-n

 

netname

 

where

 

netname

 

is

 

the

 

network

 

name

 

specified

 

in

 

the

 

Terminal

 

Definitions

 

(WD)

 

entry

 

that

 

represents

 

the

 

printer.

 

Refer

 

to

 

the

 

CICS

 

Administration

 

Reference

 

for

 

additional

 

information,

 

such

 

as

 

how

 

to

 

specify

 

a

 

print

 

command

 

when

 

cicstermp

 

is

 

started.

 

2.

   

Use

 

either

 

EXEC

 

CICS

 

START

 

or

 

CECI

 

START,

 

as

 

shown:

 

EXEC

 

CICS

 

START

 

TRANSID(transid)

 

TERMID(termid)

 

END-EXEC.

   

CECI

 

START

 

TRANSID(transid)

 

TERMID(termid)

 

where

 

transid

 

is

 

the

 

application

 

that

 

issues

 

the

 

SEND

 

TEXT

 

PRINT

 

command

 

(see

 

Figure

 

3

 

on

 

page

 

70),

 

and

 

termid

 

is

 

the

 

printer

 

model

 

entry

 

defined

 

in

 

the

 

WD.

 

If

 

cicstermp

 

is

 

running,

 

these

 

commands

 

send

 

the

 

text

 

to

 

the

 

printer

 

specified

 

by

 

the

 

principal

 

facility

 

named

 

with

 

the

 

TERMID(termid)

 

option.

 

If

 

cicstermp

 

is

 

not

 

running,

 

then

 

the

 

START

 

command

 

is

 

queued

 

until

 

cicstermp

 

is

 

started.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

69



The

 

output

 

will

 

read

 

as

 

shown

 

in

 

Figure

 

4

 

on

 

page

 

71

 

(in

 

80

 

column

 

mode):

        

01

 

TEXT-LENGTH

 

PIC

 

S9(4)

 

COMP-4

     

VALUE

 

+792.

       

*

       

01

 

PRINT-LINE.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’ONCE-UPON

 

A

 

TIME,

 

THERE

 

WERE

 

THREE

 

BEARS’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’,

 

DADDY

 

BEAR,

 

MUMMY

 

BEAR,

 

AND

 

LITTLE

 

BAB’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’Y

 

BEAR.

 

ONE

 

DAY,

 

EARLY

 

IN

 

THE

 

MORNING

 

BE’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’FORE

 

BREAKFAST,

 

THEY

 

ALL

 

WENT

 

OUT

 

FOR

 

A

 

’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’WALK,

 

LEAVING

 

THE

 

PORRIDGE

 

TO

 

COOL

 

ON

 

TH’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’E

 

KITCHEN

 

TABLE.

 

WHILE

 

THEY

 

WERE

 

AWAY,

 

G’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’OLDILOCKS

 

CAME

 

UPON

 

THE

 

HOUSE

 

WHILE

 

SHE

 

’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’WAS

 

SKIPPING

 

THROUGH

 

THE

 

FOREST

 

AND,

 

UPO’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’N

 

SEEING

 

THE

 

PORRIDGE

 

SITTING

 

INVITINGLY’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’

 

ON

 

THE

 

TABLE,

 

DECIDED

 

THAT

 

SHE

 

WAS

 

HUNG’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’RY

 

AND

 

PROMPTLY

 

ATE

 

EVERY

 

BOWL

 

OF

 

PORRID’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’GE

 

IN

 

SIGHT.

 

FEELING

 

TIRED,

 

SHE

 

THEN

 

RET’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’IRED

 

TO

 

THE

 

BEDROOM

 

AND

 

FELL

 

ASLEEP

 

IN

 

T’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’HE

 

BABY

 

BEARS

 

BED.

 

WELL,

 

YOU

 

CAN

 

IMAGINE’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’

 

THE

 

COMMOTION

 

WHEN

 

THE

 

BEARS

 

GOT

 

BACK.

 

’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’IT

 

WAS

 

ALL

 

SORTED

 

OUT,

 

THOUGH,

 

WHEN

 

THEY’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’

 

WENT

 

UPSTAIRS

 

AND

 

FOUND

 

GOLDILOCKS

 

-

 

TH’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’EY

 

DECIDED

 

THAT

 

SHE’’D

 

TASTE

 

MUCH

 

BETTER

 

’.

           

05

  

FILLER

              

PIC

 

X(40)

            

VALUE

               

’THAN

 

THE

 

PORRIDGE

 

ANYWAY

 

SO

 

THEY

 

ATE

 

HER’.

           

05

  

FILLER

              

PIC

 

X(32)

            

VALUE

               

’

 

WITH

 

SOME

 

FRIED

 

WILD

 

MUSHROOMS.’.

          

LINKAGE

 

SECTION.

        

01

  

DFHCOMMAREA

                   

PIC

 

S9(4)

 

COMP.

        

PROCEDURE

 

DIVISION.

        

EXEC

 

CICS

 

SEND

 

TEXT

 

FROM(PRINT-LINE)

           

LENGTH(TEXT-LENGTH)

           

FREEKB

           

PRINT

           

END-EXEC.

 

Figure

 

3.

 

COBOL

 

example

 

using

 

SEND

 

TEXT

 

to

 

print

 

data

  

70

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Terminal

 

services

 

design

 

considerations

 

To

 

ensure

 

the

 

efficiency

 

of

 

applications

 

using

 

terminal

 

services,

 

you

 

should

 

consider

 

the

 

following

 

guidelines:

 

v

   

Keep

 

the

 

length

 

of

 

the

 

datastream

 

short.

 

Good

 

screen

 

design

 

and

 

effective

 

use

 

of

 

the

 

3270

 

features,

 

significantly

 

affect

 

the

 

number

 

of

 

bytes

 

to

 

be

 

sent

 

in

 

the

 

remote

 

procedure

 

call

 

(RPC)

 

and

 

potentially

 

therefore

 

across

 

the

 

network.

 

It

 

is

 

particularly

 

important

 

to

 

keep

 

the

 

number

 

of

 

terminal

 

transmissions

 

as

 

small

 

as

 

possible

 

as,

 

in

 

most

 

cases,

 

this

 

may

 

be

 

the

 

slowest

 

part

 

of

 

the

 

path

 

a

 

transaction

 

takes.

 

The

 

efficiency

 

of

 

the

 

datastream

 

therefore

 

affects

 

both

 

response

 

time

 

and

 

line

 

usage.

 

v

   

Use

 

CONVERSE

 

rather

 

than

 

SEND/RECEIVE.

 

If

 

you

 

program

 

it

 

to

 

be

 

conversational,

 

use

 

CONVERSE

 

rather

 

than

 

SEND/RECEIVE

 

(or

 

a

 

(SEND

 

WAIT)/

 

RECEIVE

 

sequence).

 

They

 

are

 

functionally

 

equivalent,

 

but

 

CONVERSE

 

only

 

crosses

 

the

 

CICS

 

services

 

interface

 

once,

 

which

 

saves

 

processor

 

time.

 

v

   

Avoid

 

using

 

unnecessary

 

transactions.

 

For

 

example,

 

avoid

 

situations

 

that

 

may

 

cause

 

users

 

to

 

enter

 

an

 

invalid

 

transaction

 

or

 

to

 

use

 

the

 

CLEAR

 

key

 

unnecessarily,

 

thus

 

adding

 

to

 

terminal

 

input,

 

task

 

control

 

processing,

 

terminal

 

output,

 

and

 

overhead.

 

Good

 

screen

 

design

 

and

 

standardized

 

PF/PA

 

key

 

assignments

 

should

 

minimize

 

this.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Basic

 

mapping

 

support

 

(BMS)

 

services

 

Basic

 

mapping

 

support

 

(BMS)

 

is

 

an

 

interface

 

between

 

CICS

 

and

 

CICS

 

application

 

programs

 

that

 

move

 

3270

 

datastreams

 

to

 

and

 

from

 

a

 

terminal.

 

BMS

 

formats

 

input

 

and

 

output

 

display

 

data

 

in

 

response

 

to

 

BMS

 

commands

 

and

 

programs

 

using

 

device

 

information

 

defined

 

in

 

the

 

Terminal

 

Definitions

 

(WD)

 

and

 

formatting

 

information

 

from

 

the

 

maps

 

prepared

 

for

 

the

 

application

 

program.

 

On

 

both

 

TXSeries

 

CICS

 

you

 

can

 

code

 

map

 

definition

 

macros

 

and

 

use

 

the

 

cicsmap

 

command

 

to

 

generate

 

the

 

maps.

 

This

 

is

 

described

 

in

 

“Using

 

the

 

BMS

 

macros

 

to

 

code

 

BMS

 

map

 

sets”

 

on

 

page

 

97.

 

Developing

 

applications

 

that

 

use

 

BMS

 

services

 

BMS

 

provides

 

a

 

front-end

 

interface

 

to

 

3270

 

protocol.

 

Because

 

of

 

this,

 

you

 

don’t

 

need

 

to

 

know

 

the

 

details

 

of

 

3270

 

protocol.

 

However,

 

because

 

some

 

3270

 

protocol

  

ONCE

 

UPON

 

A

 

TIME,

 

THERE

 

WERE

 

THREE

 

BEARS,

 

DADDY

 

BEAR,

 

MUMMY

 

BEAR,

 

AND

 

LITTLE

  

BABY

 

BEAR.

 

ONE

 

DAY,

 

EARLY

 

IN

 

THE

 

MORNING

 

BEFORE

 

BREAKFAST,

 

THEY

 

ALL

 

WENT

 

OUT

  

FOR

 

A

 

WALK,

 

LEAVING

 

THE

 

PORRIDGE

 

TO

 

COOL

 

ON

 

THE

 

KITCHEN

 

TABLE.

 

WHILE

 

THEY

 

WERE

  

AWAY,

 

GOLDILOCKS

 

CAME

 

UPON

 

THE

 

HOUSE

 

WHILE

 

SHE

 

WAS

 

SKIPPING

 

THROUGH

 

THE

 

FOREST

  

AND,

 

UPON

 

SEEING

 

THE

 

PORRIDGE

 

SITTING

 

INVITINGLY

 

ON

 

THE

 

TABLE,

 

DECIDED

 

THAT

 

SHE

  

WAS

 

HUNGRY

 

AND

 

PROMPTLY

 

ATE

 

EVERY

 

BOWL

 

OF

 

PORRIDGE

 

IN

 

SIGHT.

 

FEELING

 

TIRED,

 

SHE

  

THEN

 

RETIRED

 

TO

 

THE

 

BEDROOM

 

AND

 

FELL

 

ASLEEP

 

IN

 

THE

 

BABY

 

BEARS

 

BED.

 

WELL,

 

YOU

  

CAN

 

IMAGINE

 

THE

 

COMMOTION

 

WHEN

 

THE

 

BEARS

 

GOT

 

BACK.

 

IT

 

WAS

 

ALL

 

SORTED

 

OUT,

  

THOUGH,

 

WHEN

 

THEY

 

WENT

 

UPSTAIRS

 

AND

 

FOUND

 

GOLDILOCKS

 

-

 

THEY

 

DECIDED

 

THAT

 

SHE’D

  

TASTE

 

MUCH

 

BETTER

 

THAN

 

THE

 

PORRIDGE

 

ANYWAY

 

SO

 

THEY

 

ATE

 

HER

 

WITH

 

SOME

 

FRIED

 

WILD

  

MUSHROOMS.

 

Figure

 

4.

 

Example

 

output

 

from

 

SEND

 

TEXT

  

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

71



terminology

 

is

 

used

 

in

 

the

 

following

 

discussions,

 

it

 

would

 

be

 

helpful

 

to

 

refer

 

to

 

the

 

IBM

 

3270

 

Information

 

Display

 

Programmer’s

 

Reference.

 

BMS

 

lets

 

you

 

separate

 

the

 

tasks

 

of

 

display

 

design

 

and

 

CICS

 

application

 

programming

 

by

 

interpreting

 

generalized

 

device-independent

 

application

 

program

 

output

 

commands,

 

and

 

by

 

generating

 

device-dependent

 

datastreams

 

for

 

specific

 

output

 

devices.

 

BMS

 

also

 

transforms

 

incoming

 

datastreams

 

into

 

a

 

form

 

acceptable

 

to

 

application

 

programs.

 

BMS

 

determines

 

the

 

format

 

of

 

the

 

datastream

 

for

 

the

 

terminal

 

from

 

the

 

device

 

on

 

which

 

the

 

task

 

is

 

running,

 

not

 

from

 

the

 

application

 

program.

 

You

 

can

 

use

 

the

 

same

 

BMS

 

input

 

or

 

output

 

commands

 

in

 

your

 

application

 

program

 

for

 

different

 

types

 

of

 

devices.

 

A

 

single

 

BMS

 

command

 

in

 

your

 

program

 

applies

 

equally

 

to

 

various

 

devices

 

because

 

BMS

 

interprets

 

commands

 

differently

 

for

 

different

 

device

 

types.

 

BMS

 

commands

 

are

 

quite

 

simple,

 

because

 

all

 

the

 

low-level

 

formatting

 

information

 

is

 

held

 

separately,

 

in

 

maps.

 

Consequently

 

your

 

application

 

programs

 

are

 

easier

 

to

 

write

 

and

 

less

 

affected

 

by

 

changes

 

to

 

the

 

system

 

or

 

its

 

devices.

 

You

 

can

 

make

 

changes

 

independently

 

of

 

your

 

application

 

programs

 

just

 

by

 

changing

 

the

 

maps.

 

BMS

 

functions

 

supported

 

in

 

CICS

 

The

 

following

 

table

 

shows

 

the

 

functions

 

supported

 

with

 

minimum

 

function

 

BMS

 

in

 

TXSeries

 

CICS:

  

Table

 

8.

 

Functions

 

supported

 

with

 

minimum

 

function

 

BMS

 

BMS

 

function

 

Is

 

the

 

function

 

provided?

 

Basic

 

3270

 

displays

 

and

 

printers

 

Yes

 

Default

 

and

 

alternate

 

screen

 

sizes

 

Yes

 

Extended

 

attributes

 

Yes

 

Formfeed

 

control

 

Yes

 

Command-level

 

requests

 

Yes

 

Non

 

ACCUM

 

SEND

 

MAP

 

TERMINAL

 

No

 

RECEIVE

 

MAP

 

and

 

RECEIVE

 

MAP

 

FROM

 

Yes

 

map

 

set

 

suffixing

 

Yes

 

GDDM

 

coordination

 

No

 

Aligned

 

and

 

unaligned

 

maps

 

No

 

Out

 

of

 

sequence

 

input

 

maps

 

Yes

 

Block

 

data

 

Yes

 

Automatic

 

setting

 

of

 

WCC

 

character

 

line

 

width

 

Yes

 

ERASE,

 

ERASEUP,

 

FORMFEED,

 

CURSOR,

 

and

 

WCC

 

on

 

BMS

 

SENDs

 

Yes

   

In

 

addition

 

to

 

minimum

 

function

 

support,

 

TXSeries

 

CICS

 

also

 

support

 

the

 

use

 

of

 

the

 

EXEC

 

CICS

 

SEND

 

TEXT

 

command

 

with

 

the

 

following

 

options:

 

v

   

FROM(data-area)

 

v

   

LENGTH

 

v

   

CURSOR

 

v

   

FORMFEED

 

v

   

ERASE

 

v

   

PRINT

   

72

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

FREEKB

 

v

   

ALARM

 

v

   

NLEOM

 

SEND

 

TEXT

 

is

 

included

 

in

 

standard

 

function

 

BMS

 

support.

 

The

 

existing

 

maps

 

you

 

migrate

 

from

 

other

 

CICS

 

family

 

members

 

are

 

processed

 

within

 

the

 

TXSeries

 

CICS

 

environment

 

with

 

the

 

limitation

 

that

 

minimum

 

function

 

BMS

 

and

 

SEND

 

TEXT

 

with

 

the

 

limited

 

options

 

is

 

supported.

 

This

 

supports

 

the

 

IBM

 

3270

 

and

 

IBM

 

3270-like

 

range

 

of

 

displays

 

and

 

printers,

 

except

 

for

 

SNA

 

character

 

string

 

printers.

 

(SNA

 

character

 

string

 

refers

 

to,

 

in

 

SNA,

 

a

 

character

 

string

 

composed

 

of

 

EBCDIC

 

controls,

 

optionally

 

intermixed

 

with

 

end-user

 

data,

 

that

 

is

 

carried

 

within

 

a

 

request

 

or

 

response

 

unit.)

 

How

 

BMS

 

affects

 

programming

 

Different

 

versions

 

of

 

a

 

display

 

map

 

can

 

exploit

 

the

 

features

 

of

 

different

 

devices.

 

By

 

having

 

the

 

screen

 

data

 

in

 

fields

 

(that

 

is,

 

defining

 

data

 

as

 

having

 

field

 

format),

 

you

 

can

 

address

 

predefined

 

fields

 

in

 

a

 

display

 

symbolically

 

by

 

name

 

from

 

within

 

your

 

application,

 

without

 

knowing

 

the

 

actual

 

screen

 

positions

 

of

 

those

 

fields.

 

Changing

 

field

 

data

 

to

 

and

 

from

 

its

 

displayable

 

form

 

is

 

called

 

mapping.

 

Although

 

the

 

same

 

fields

 

must

 

appear

 

in

 

all

 

versions

 

of

 

a

 

display,

 

you

 

can

 

move

 

them

 

around

 

in

 

different

 

versions.

 

A

 

suffixing

 

mechanism

 

enables

 

BMS

 

to

 

associate

 

a

 

display

 

version

 

with

 

the

 

kind

 

of

 

device

 

to

 

which

 

it

 

applies.

 

The

 

BMS

 

processor

 

The

 

BMS

 

processor

 

accepts

 

files

 

containing

 

a

 

series

 

of

 

BMS

 

macro

 

instructions

 

that

 

were

 

coded

 

in

 

a

 

map

 

source

 

file.

 

The

 

input

 

file

 

name

 

must

 

have

 

extension

 

.bms.

 

The

 

following

 

describes

 

the

 

map

 

source

 

files

 

and

 

associated

 

input

 

files.

 

BMS

 

maps:

   

Maps

 

specify

 

to

 

BMS

 

how

 

field

 

data

 

is

 

to

 

be

 

formatted.

 

Maps

 

are

 

not

 

needed

 

for

 

text

 

data.

 

Every

 

BMS

 

mapping

 

command

 

names

 

a

 

map

 

that

 

contains

 

formatting

 

instructions.

 

Each

 

map

 

has

 

two

 

forms:

 

physical

 

and

 

symbolic.

 

BMS

 

formats

 

a

 

display

 

for

 

a

 

given

 

device

 

by

 

embedding

 

control

 

characters

 

in

 

the

 

datastream.

 

A

 

physical

 

map

 

tells

 

BMS

 

how

 

to

 

do

 

this.

 

A

 

symbolic

 

map

 

is

 

a

 

source

 

language

 

data

 

structure

 

that

 

is

 

used

 

to

 

resolve

 

source

 

program

 

references

 

to

 

fields

 

in

 

the

 

map.

 

It

 

is

 

also

 

known

 

as

 

a

 

logical

 

map.

 

Note:

  

C

 

language

 

symbolic

 

maps

 

must

 

be

 

byte-packed.

 

Maps

 

must

 

belong

 

to

 

a

 

map

 

set.

 

You

 

usually

 

group

 

related

 

maps

 

together

 

into

 

one

 

map

 

set.

 

You

 

define

 

a

 

map

 

set

 

by

 

coding

 

a

 

series

 

of

 

BMS

 

macro

 

instructions.

 

BMS

 

maps

 

are

 

generated

 

by

 

the

 

BMS

 

map

 

processor

 

from

 

BMS

 

source

 

files

 

containing

 

three

 

types

 

of

 

macros.

 

The

 

first

 

of

 

these

 

macros

 

defines

 

the

 

map

 

set

 

itself,

 

the

 

second

 

defines

 

the

 

first

 

or

 

only

 

map,

 

the

 

last

 

defines

 

fields

 

within

 

those

 

maps.

 

The

 

field

 

macros

 

define

 

the

 

field

 

size,

 

shape,

 

position

 

(the

 

row

 

and

 

column),

 

potential

 

content,

 

and

 

characteristics

 

(such

 

as

 

protected

 

or

 

unprotected,

 

and

 

bright

 

or

 

dark).

 

You

 

define

 

map

 

sets,

 

maps,

 

and

 

fields

 

within

 

maps

 

with

 

the

 

following

 

macros:

 

DFHMSD

 

Defines

 

a

 

group

 

of

 

related

 

maps,

 

known

 

as

 

a

 

map

 

set.

 

DFHMDI

 

Defines

 

a

 

single

 

map

 

within

 

a

 

map

 

set.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

73



DFHMDF

 

Defines

 

a

 

single

 

field

 

within

 

a

 

map.

 

To

 

map

 

screen

 

display

 

information

 

into

 

the

 

application

 

program,

 

you

 

use

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command.

 

In

 

order

 

to

 

send

 

data

 

from

 

an

 

application

 

program

 

to

 

a

 

display

 

screen

 

or

 

printer

 

you

 

use

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

You

 

use

 

the

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

command

 

to

 

transmit

 

device

 

control

 

orders.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

CICS

 

also

 

provides

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command.

 

This

 

command

 

passes

 

control

 

within

 

an

 

application

 

program

 

as

 

a

 

result

 

of

 

an

 

attention

 

identifier

 

(AID)

 

being

 

received

 

from

 

a

 

display

 

device.

 

On

 

TXSeries

 

CICS

 

the

 

cicsmap

 

command

 

processes

 

a

 

source

 

file

 

containing

 

BMS

 

macros,

 

and

 

generates

 

either

 

a

 

symbolic

 

map

 

or

 

maps,

 

or

 

a

 

physical

 

map

 

or

 

maps,

 

or

 

both

 

as

 

specified

 

by

 

the

 

map

 

input.

 

You

 

use

 

command

 

line

 

options

 

to

 

control

 

the

 

generation

 

of

 

symbolic

 

or

 

physical

 

maps.

 

See

 

“cicsmap

 

-

 

generate

 

BMS

 

map

 

files”

 

on

 

page

 

276.

 

The

 

map

 

sets

 

required

 

in

 

your

 

region

 

are

 

defined

 

in

 

a

 

Program

 

Definitions

 

(PD)

 

entry

 

as

 

described

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

For

 

the

 

following

 

descriptions,

 

the

 

term

 

processed

 

means

 

processed

 

with

 

the

 

cicsmap

 

command,

 

and

 

the

 

term

 

defined

 

means

 

defined

 

in

 

a

 

Program

 

Definitions

 

(PD)

 

entry.

 

Symbolic

 

Map

 

A

 

symbolic

 

description

 

map

 

set

 

definition

 

is

 

processed

 

and

 

defined

 

in

 

the

 

subdirectory.

 

The

 

member

 

name

 

is

 

usually

 

the

 

same

 

as

 

the

 

map

 

set

 

name,

 

but

 

it

 

need

 

not

 

be.

 

Alternatively,

 

the

 

symbolic

 

map

 

can

 

be

 

copied

 

or

 

inserted

 

directly

 

into

 

the

 

application

 

program.

 

Physical

 

Map

 

A

 

physical

 

map

 

set

 

definition

 

is

 

processed

 

and

 

defined

 

in

 

the

 

CICS

 

region’s

 

bin

 

subdirectory.

  

When

 

you

 

define

 

the

 

physical

 

map,

 

you

 

should

 

consider

 

whether

 

to

 

add

 

a

 

suffix

 

to

 

its

 

name.

 

See

 

“Map

 

set

 

suffixing”

 

for

 

more

 

detail.

 

The

 

reason

 

for

 

suffixing

 

a

 

map

 

is

 

that

 

you

 

might

 

wish

 

to

 

produce

 

alternative

 

versions

 

of

 

it

 

for

 

different

 

emulator

 

models.

 

Note:

  

The

 

cicsmap

 

command

 

takes

 

no

 

notice

 

of

 

DFHMSD

 

TYPE=operand.

 

Symbolic

 

and

 

physical

 

maps

 

are

 

generated

 

depending

 

on

 

the

 

options

 

supplied

 

to

 

the

 

processes.

Map

 

set

 

suffixing:

   

If

 

you

 

want

 

to

 

execute

 

the

 

same

 

transaction

 

from

 

more

 

than

 

one

 

type

 

of

 

emulator,

 

you

 

might

 

need

 

to

 

use

 

BMS

 

map

 

set

 

suffixing.

 

If

 

you

 

are

 

prepared

 

to

 

use

 

the

 

same

 

map

 

to

 

format

 

data

 

for

 

all

 

your

 

emulators,

 

you

 

need

 

not

 

read

 

the

 

rest

 

of

 

this

 

section.

 

If

 

however,

 

you

 

wish

 

to

 

organize

 

output

 

data

 

according

 

to

 

the

 

emulator

 

in

 

use,

 

making

 

best

 

use

 

of

 

its

 

features,

 

you

 

ought

 

to

 

consider

 

suffixing

 

map

 

sets.

 

To

 

avoid

 

problems

 

at

 

the

 

assembly

 

stage,

 

do

 

one

 

of

 

the

 

following:

 

v

   

Use

 

SUFFIX

 

or

 

TERM

 

on

 

your

 

DFHMSD

 

maps

 

(in

 

which

 

case,

 

you

 

can

 

safely

 

use

 

the

 

same

 

name

 

for

 

your

 

map

 

set

 

and

 

your

 

maps).

 

v

   

Make

 

sure

 

you

 

use

 

different

 

names

 

on

 

your

 

DFHMSD

 

and

 

DFHMDI

 

macros.

  

74

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



When

 

a

 

BMS

 

command

 

requests

 

a

 

mapping

 

operation

 

for

 

an

 

80-column

 

terminal,

 

CICS

 

adds

 

a

 

suffixed

 

‘M’

 

to

 

the

 

map

 

set

 

name

 

specified

 

in

 

the

 

command,

 

and

 

attempts

 

to

 

load

 

a

 

map

 

set

 

with

 

that

 

suffixed

 

name.

 

For

 

example,

 

if

 

the

 

terminal

 

is

 

80

 

columns

 

wide,

 

and

 

the

 

map

 

set

 

name

 

is

 

MYMAP,

 

CICS

 

will

 

use

 

a

 

map

 

set

 

with

 

the

 

name

 

of

 

MYMAPM.

 

If

 

MYMAPM

 

is

 

not

 

found,

 

MYMAP

 

is

 

used.

 

Terminals

 

that

 

are

 

132

 

columns

 

wide

 

do

 

not

 

use

 

a

 

suffixed

 

map

 

set.

 

Finally,

 

you

 

should

 

ask

 

your

 

system

 

programmer

 

to

 

ensure

 

that

 

your

 

physical

 

maps

 

are

 

defined

 

with

 

the

 

correct

 

suffixes.

 

In

 

particular,

 

you

 

may

 

need

 

to

 

know

 

the

 

following

 

points

 

about

 

suffixing:

 

v

   

If

 

you

 

specify

 

TERM

 

or

 

SUFFIX

 

on

 

your

 

DFHMSD

 

macro,

 

you

 

should

 

ensure

 

that

 

the

 

physical

 

map

 

set

 

is

 

defined

 

using

 

the

 

correctly

 

suffixed

 

name.

 

v

   

You

 

can

 

code

 

SUFFIX,

 

instead

 

of

 

TERM,

 

on

 

DFHMSD

 

if

 

you

 

need

 

to

 

create

 

a

 

special

 

version

 

of

 

a

 

map.

 

v

   

You

 

should

 

ensure

 

that

 

the

 

Region

 

Definitions

 

(RD)

 

SufficesSupported

 

attribute

 

is

 

set

 

to

 

yes

 

to

 

ensure

 

suffixed

 

maps

 

are

 

loaded

 

at

 

run

 

time.

 

The

 

physical

 

mapset

 

name

 

is

 

made

 

up

 

from

 

the

 

mapset

 

name

 

on

 

the

 

DFHMSD

 

macro

 

suffixed

 

by

 

a

 

1-character

 

value

 

determined

 

from

 

the

 

TERM

 

or

 

SUFFIX

 

operand

 

of

 

the

 

macro.

 

For

 

example:

 

TESTMAP

 

DFHMSD

 

MODE=INOUT,CTRL=(FREEKB,FRSET),TERM=3270,

               

*

                

LANG=COBOL,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE

 

In

 

this

 

case,

 

M

 

is

 

appended

 

because

 

TERM=3270

 

is

 

specified.

 

For

 

further

 

information

 

about

 

the

 

DFHMSD

 

macro,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

In

 

this

 

way,

 

if

 

you

 

generate

 

a

 

base

 

mapset

 

TESTMAP

 

as

 

well

 

as

 

a

 

suffixed

 

mapset

 

TESTMAPM

 

when

 

you

 

issue

 

a

 

mapping

 

command

 

such

 

as

 

EXEC

 

CICS

 

SEND

 

MAP(...)

 

MAPSET(TESTMAP),

 

CICS

 

will

 

use

 

the

 

map

 

from

 

the

 

unsuffixed

 

mapset

 

unless

 

the

 

DEVICE

 

TYPE

 

is

 

a

 

3270

 

when

 

it

 

uses

 

the

 

map

 

from

 

the

 

suffixed

 

mapset.

 

In

 

this

 

way

 

you

 

can

 

modify

 

your

 

maps

 

within

 

the

 

different

 

mapsets

 

to

 

suit

 

different

 

device

 

types.

 

How

 

to

 

use

 

the

 

BMS

 

processor:

   

The

 

BMS

 

processor

 

accepts

 

map

 

source

 

files

 

containing

 

a

 

series

 

of

 

BMS

 

macro

 

instructions.

 

You

 

can

 

create

 

these

 

BMS

 

macro

 

instructions

 

by:

 

v

   

Migrating

 

them

 

from

 

another

 

CICS

 

family

 

member

 

v

   

Typing

 

the

 

macros

 

in

 

with

 

a

 

standard

 

editor

 

The

 

source

 

file

 

consists

 

of

 

a

 

map

 

set

 

which

 

in

 

turn

 

is

 

broken

 

into

 

a

 

number

 

of

 

maps

 

and

 

fields.

 

You

 

declare

 

the

 

map

 

set

 

using

 

a

 

map

 

set

 

macro,

 

you

 

declare

 

each

 

map

 

using

 

the

 

map

 

macro,

 

and

 

you

 

declare

 

the

 

fields

 

using

 

the

 

field

 

definition

 

macros.

 

The

 

BMS

 

processor

 

processes

 

the

 

macros

 

to

 

produce

 

the

 

symbolic

 

and

 

physical

 

map

 

files.

 

The

 

symbolic

 

map

 

file

 

is

 

a

 

programming

 

source

 

language

 

data

 

structure

 

(for

 

CICS

 

a

 

COBOL

 

DATA

 

DIVISION

 

definition

 

or

 

a

 

C

 

structure

 

or

 

a

 

PL/I

 

Structure)

 

which

 

you

 

include

 

in

 

your

 

application

 

program.

 

The

 

symbolic

 

map

 

allows

 

you

 

to

 

make

 

symbolic

 

references

 

to

 

display

 

fields

 

and

 

attributes.

 

CICS

 

loads

 

the

 

physical

 

map

 

file

 

into

 

the

 

runtime

 

environment,

 

and

 

uses

 

this

 

map

 

file

 

to

 

generate

 

the

 

display

 

control

 

data

 

to

 

drive

 

a

 

particular

 

display

 

device.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

75



You

 

invoke

 

the

 

BMS

 

processor

 

directly

 

from

 

the

 

command-line,

 

by

 

entering

 

the

 

required

 

options

 

for

 

the

 

cicsmap

 

command.

 

For

 

example:

 

cicsmap

 

mapset.bms

 

where

 

mapset

 

is

 

the

 

one

 

to

 

seven

 

character

 

map

 

set

 

name.

 

You

 

can

 

prefix

 

the

 

input

 

map

 

source

 

file

 

name

 

with

 

an

 

optional

 

pathname,

 

but

 

the

 

file

 

must

 

have

 

the

 

extension

 

.bms

 

on

 

it.

 

The

 

BMS

 

processor

 

places

 

the

 

output

 

physical

 

map

 

file

 

in

 

the

 

current

 

working

 

directory,

 

overwriting

 

any

 

previous

 

physical

 

map

 

file

 

for

 

the

 

same

 

map

 

source

 

file.

 

The

 

output

 

file

 

is

 

named:

 

.map

  

If

 

you

 

have

 

used

 

the

 

SUFFIX

 

or

 

TERM

 

option,

 

the

 

output

 

file

 

is

 

named:

 

.map

 

where

 

x

 

is

 

replaced

 

with

 

the

 

value

 

given

 

in

 

the

 

SUFFIX

 

and

 

TERM

 

operands

 

in

 

the

 

map

 

source

 

file.

 

The

 

BMS

 

processor

 

places

 

the

 

symbolic

 

map

 

file

 

in

 

the

 

following

 

for

 

COBOL:

 

in

 

the

 

following

 

for

 

C

 

or

 

C++:

 

mapset.h

 

and

 

in

 

the

 

following

 

for

 

PL/I

 

:

 

mapset.inc

 

The

 

symbolic

 

map

 

file

 

is

 

placed

 

in

 

the

 

current

 

working

 

directory,

 

overwriting

 

any

 

previous

 

symbolic

 

map

 

file

 

for

 

the

 

same

 

map

 

set.

 

No

 

maps

 

are

 

generated

 

if

 

the

 

BMS

 

processor

 

detects

 

any

 

errors

 

in

 

the

 

map

 

source

 

file.

 

The

 

contents

 

of

 

the

 

map

 

source

 

file

 

alter

 

the

 

operation

 

of

 

the

 

cicsmap

 

program.

 

The

 

LANG

 

option

 

you

 

associate

 

with

 

the

 

map

 

set

 

macro

 

(DFHMSD)

 

determines

 

the

 

output

 

of

 

cicsmap.

 

The

 

LANG

 

option

 

does

 

not

 

affect

 

the

 

production

 

of

 

the

 

physical

 

map

 

file.

 

To

 

generate

 

the

 

symbolic

 

map

 

file

 

where

 

the

 

target

 

language

 

is

 

COBOL,

 

set

 

the

 

option

 

LANG

 

in

 

the

 

map

 

set

 

macro

 

in

 

the

 

map

 

source

 

file

 

equal

 

to

 

‘COBOL’.

 

You

 

can

 

use

 

the

 

output

 

file

 

as

 

a

 

COBOL

 

copybook

 

file

 

using

 

the

 

COBOL

 

verb

 

COPY.

 

To

 

generate

 

the

 

symbolic

 

map

 

file

 

where

 

the

 

target

 

language

 

is

 

C,

 

set

 

the

 

option

 

LANG

 

in

 

the

 

map

 

set

 

macro

 

in

 

the

 

map

 

source

 

file

 

equal

 

to

 

'C'.

 

You

 

can

 

use

 

the

 

output

 

file

 

as

 

an

 

include

 

file.

 

To

 

generate

 

the

 

symbolic

 

map

 

file

 

where

 

the

 

target

 

language

 

is

 

PL/I,

 

set

 

the

 

option

 

LANG

 

in

 

the

 

map

 

set

 

macro

 

in

 

the

 

map

 

source

 

file

 

equal

 

to

 

‘PLI’.

 

You

 

can

 

use

 

the

 

output

 

file

 

as

 

a

 

PL/I

 

include

 

file.

 

3270

 

terminal

 

emulation

 

The

 

3270

 

datastream

 

conveys

 

both

 

displayable

 

data

 

characters

 

and

 

nondisplayable

 

control

 

characters

 

between

 

the

 

host

 

processor

 

and

 

an

 

emulator.

 

Using

 

BMS

 

commands,

 

you

 

do

 

not

 

have

 

to

 

understand

 

the

 

format

 

of

 

the

 

datastream.

 

Nevertheless,

 

you

 

need

 

to

 

know

 

the

 

range

 

of

 

things

 

the

 

datastream

 

allows

 

you

 

to

 

do.

 

This

 

section

 

describes

 

the

 

features

 

of

 

3270

 

emulators,

 

and

 

discusses

 

how

 

you

 

can

 

use

 

them.

   

76

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Input

 

operations:

   

When

 

you

 

have

 

typed

 

data

 

on

 

to

 

a

 

display,

 

you

 

will

 

probably

 

want

 

to

 

send

 

it

 

to

 

the

 

host

 

processor.

 

You

 

do

 

this

 

by:

 

v

   

Pressing

 

the

 

ENTER

 

key

 

v

   

Pressing

 

a

 

program

 

function

 

(PF)

 

key

 

Although

 

the

 

display

 

will

 

send

 

modified

 

data

 

when

 

you

 

press

 

PF

 

keys,

 

the

 

keys

 

are

 

not

 

normally

 

used

 

for

 

this.

 

Generally,

 

you

 

assign

 

a

 

specified

 

meaning

 

to

 

the

 

key

 

itself.

 

If

 

you

 

want

 

to

 

send

 

data

 

from

 

a

 

terminal

 

without

 

the

 

user

 

having

 

to

 

enter

 

it

 

explicitly,

 

you

 

can

 

set

 

the

 

modified

 

data

 

tag

 

(MDT)

 

for

 

the

 

required

 

field

 

in

 

the

 

output

 

to

 

the

 

terminal.

 

An

 

attention

 

identifier

 

(AID)

 

character

 

is

 

always

 

sent

 

to

 

the

 

host

 

processor

 

whenever

 

a

 

3270

 

input

 

operation

 

is

 

performed.

 

This

 

indicates

 

the

 

cause

 

of

 

the

 

input

 

operation.

 

CICS

 

ensures

 

that

 

an

 

application

 

program

 

receives

 

input

 

data

 

intended

 

for

 

it.

 

The

 

AID

 

allows

 

the

 

application

 

program

 

to

 

react

 

differently,

 

depending

 

on

 

the

 

input

 

operation.

 

The

 

effect

 

of

 

different

 

combinations

 

of

 

data

 

and

 

AIDs

 

depends

 

entirely

 

upon

 

the

 

design

 

of

 

the

 

application

 

program.

 

Output

 

operations:

   

An

 

emulator

 

can

 

receive

 

data

 

from

 

an

 

application

 

program,

 

as

 

well

 

as

 

send

 

data

 

to

 

it.

 

Some

 

of

 

the

 

data

 

can

 

be

 

displayed,

 

the

 

rest

 

consists

 

of

 

device

 

controls.

 

By

 

building

 

datastreams

 

containing

 

device

 

controls,

 

you

 

can,

 

for

 

example:

 

v

   

Unlock

 

the

 

keyboard

 

for

 

input

 

v

   

Reset

 

the

 

modified

 

data

 

tag

 

(the

 

MDT)

 

of

 

each

 

field

 

v

   

Erase

 

all

 

unprotected

 

fields

 

v

   

Position

 

the

 

cursor

 

The

 

way

 

you

 

use

 

these

 

features

 

is

 

up

 

to

 

you.

 

However,

 

they

 

can

 

improve

 

the

 

usability

 

of

 

your

 

application

 

program.

 

Display

 

field

 

concepts:

   

An

 

application

 

program

 

can

 

divide

 

a

 

screen

 

into

 

more

 

than

 

one

 

field.

 

The

 

fields

 

combine

 

to

 

produce

 

a

 

complete

 

screen

 

of

 

data.

 

A

 

field

 

starts

 

with

 

an

 

attribute

 

character,

 

continues

 

with

 

data

 

characters,

 

and

 

ends

 

at

 

the

 

next

 

attribute

 

character.

 

A

 

field

 

can

 

contain

 

only

 

a

 

single

 

character

 

or

 

it

 

can

 

span

 

several

 

lines,

 

as

 

the

 

last

 

character

 

on

 

a

 

line

 

is

 

logically

 

followed

 

by

 

the

 

first

 

character

 

on

 

the

 

next

 

line.

 

If

 

the

 

screen

 

width

 

is

 

the

 

same

 

as

 

the

 

map

 

width,

 

BMS

 

allows

 

a

 

field

 

to

 

wrap

 

around

 

from

 

the

 

end

 

of

 

one

 

line

 

to

 

the

 

start

 

of

 

the

 

next.

 

Because

 

of

 

the

 

dependence

 

on

 

resource

 

definitions,

 

it

 

is

 

not

 

recommended

 

that

 

an

 

application

 

design

 

should

 

depend

 

on

 

this

 

function.

 

Normally,

 

a

 

display

 

is

 

divided

 

into

 

several

 

fields

 

by

 

the

 

program,

 

but

 

it

 

is

 

possible

 

to

 

have

 

a

 

display

 

with

 

no

 

fields

 

(no

 

attribute

 

characters).

 

This

 

occurs

 

when

 

you

 

press

 

the

 

CLEAR

 

key;

 

such

 

unformatted

 

displays

 

are

 

not

 

supported

 

by

 

BMS

 

and

 

the

 

use

 

of

 

the

 

CLEAR

 

key

 

causes

 

a

 

MAPFAIL

 

in

 

BMS.

 

An

 

application

 

program

 

can

 

use

 

the

 

HANDLE

 

AID

 

command

 

to

 

detect

 

the

 

use

 

of

 

the

 

CLEAR

 

key.

 

An

 

application

 

programmer

 

can

 

use

 

the

 

HANDLE

 

CONDITION

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

77



command

 

to

 

detect

 

a

 

MAPFAIL

 

condition.

 

(See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.)

 

An

 

attempt

 

to

 

read

 

from

 

a

 

cleared

 

screen

 

raises

 

the

 

MAPFAIL

 

condition.

 

Attribute

 

character:

   

The

 

attribute

 

character

 

is

 

always

 

the

 

first

 

character

 

of

 

a

 

field.

 

It

 

occupies

 

a

 

character

 

position

 

on

 

the

 

screen

 

but

 

appears

 

as

 

a

 

blank.

 

Attribute

 

characters

 

can

 

convey

 

the

 

following

 

field

 

attributes:

 

Unprotected

 

You

 

can

 

enter

 

any

 

keyboard

 

character

 

into

 

an

 

unprotected

 

field.

 

Numeric-only

  

A

 

numeric-only

 

field

 

is

 

unprotected.

 

On

 

a

 

data

 

entry

 

keyboard,

 

a

 

numeric-only

 

field

 

causes

 

a

 

numeric

 

shift

 

to

 

occur.

 

Protected

 

Data

 

cannot

 

be

 

entered

 

in

 

a

 

protected

 

field.

 

If

 

the

 

operator

 

attempts

 

to

 

enter

 

data,

 

the

 

keyboard

 

is

 

locked.

 

Stopper

 

fields

 

following

 

variable-length

 

data

 

fields

 

are

 

normally

 

defined

 

with

 

protected

 

attribute

 

characters.

 

If

 

the

 

operator

 

attempts

 

to

 

enter

 

more

 

characters

 

than

 

the

 

variable-length

 

data

 

field

 

can

 

contain,

 

the

 

stopper

 

field

 

following

 

it

 

will

 

cause

 

the

 

keyboard

 

to

 

be

 

locked.

 

Autoskip

 

An

 

autoskip

 

field

 

is

 

a

 

protected

 

field

 

that

 

automatically

 

skips

 

the

 

cursor

 

to

 

the

 

next

 

unprotected

 

field.

 

Keyword

 

fields

 

and

 

stopper

 

fields

 

following

 

fixed-length

 

data

 

fields

 

are

 

normally

 

defined

 

with

 

autoskip

 

attribute

 

characters.

 

Normal

 

intensity

 

A

 

normal

 

intensity

 

field

 

displays

 

the

 

data

 

at

 

the

 

normal

 

operating

 

intensity.

 

Bright

 

intensity

 

A

 

bright

 

intensity

 

field

 

displays

 

the

 

data

 

at

 

a

 

brighter

 

than

 

normal

 

intensity.

 

This

 

is

 

often

 

used

 

to

 

highlight

 

keywords,

 

errors,

 

or

 

operator

 

messages.

 

Nondisplay

 

A

 

nondisplay

 

field

 

does

 

not

 

display

 

the

 

data

 

on

 

the

 

screen

 

for

 

operator

 

viewing

 

and

 

does

 

not

 

print

 

the

 

field

 

data.

 

This

 

might

 

be

 

used

 

to

 

enter

 

security

 

data

 

when

 

the

 

screen

 

is

 

visible

 

to

 

others.

 

This

 

attribute

 

characteristic

 

should

 

be

 

used

 

with

 

care,

 

as

 

the

 

operator

 

loses

 

the

 

ability

 

to

 

verify

 

the

 

data

 

entered

 

in

 

a

 

nondisplay

 

field.

 

This

 

field

 

might

 

also

 

be

 

used

 

to

 

store

 

messages

 

on

 

the

 

screen.

 

The

 

messages

 

can

 

be

 

displayed

 

later

 

by

 

changing

 

the

 

attribute

 

character

 

to

 

bright

 

or

 

normal

 

intensity.

 

Base

 

color

 

A

 

base

 

color

 

image

 

is

 

produced

 

by

 

using

 

the

 

PROTECT

 

and

 

INTENSIFY

 

attributes

 

of

 

the

 

3270

 

standard

 

datastream

 

to

 

select

 

four

 

colors:

 

white

 

bright,

 

protected

 

red

 

bright,

 

unprotected

 

blue

 

normal,

 

protected

 

green

 

normal,

 

unprotected

 

The

 

protect

 

attribute

 

retains

 

its

 

protect

 

function

 

when

 

conveying

 

color

 

information.

 

This

 

characteristic

 

only

 

applies

 

to

 

color

 

monitors,

 

and

 

if

 

you

 

have

 

not

 

set

 

the

 

color

 

attributes

 

for

 

the

 

field

 

in

 

BMS,

 

the

 

display

 

defaults

 

to

 

a

 

standard

 

setup

 

which

 

varies

 

from

 

terminal

 

to

 

terminal

 

(for

 

example,

 

green

 

for

 

normal

 

intensity,

 

white

 

for

 

bright).

   

78

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Extended

 

color

 

Extended

 

color

 

attributes

 

in

 

an

 

extended

 

data

 

stream

 

determine

 

the

 

colors

 

of

 

display

 

elements.

 

The

 

datastream

 

can

 

specify

 

the

 

colors

 

of

 

multicharacter

 

fields.

 

Seven

 

colors

 

can

 

be

 

selected:

 

blue,

 

red,

 

pink,

 

green,

 

turquoise,

 

yellow,

 

and

 

neutral.

  

As

 

soon

 

as

 

an

 

extended

 

color

 

attribute

 

is

 

received,

 

the

 

display

 

treats

 

the

 

whole

 

image

 

as

 

an

 

extended

 

color

 

image.

 

Fields

 

that

 

have

 

no

 

color

 

attribute

 

adopt

 

the

 

default

 

colors

 

(green

 

for

 

normal

 

intensity,

 

white

 

for

 

bright).

 

If

 

the

 

color

 

control

 

switch

 

has

 

been

 

set

 

to

 

base

 

color,

 

the

 

part

 

of

 

the

 

image

 

that

 

has

 

already

 

been

 

displayed

 

will

 

change

 

from

 

base

 

color

 

to

 

default

 

color.

 

Such

 

a

 

change,

 

which

 

could

 

disturb

 

an

 

operator,

 

can

 

be

 

avoided

 

by

 

applying

 

an

 

extended

 

color

 

attribute

 

to

 

the

 

first

 

field

 

in

 

any

 

image

 

that

 

uses

 

extended

 

color.

  

The

 

device

 

interprets

 

extended

 

color

 

attributes

 

to

 

determine

 

the

 

colors

 

of

 

fields

 

in

 

an

 

image.

 

Extended

 

highlighting

 

Extended

 

highlighting

 

can

 

be

 

applied

 

to

 

characters,

 

or

 

character

 

fields,

 

in

 

a

 

display

 

that

 

uses

 

the

 

extended

 

data

 

stream.

 

It

 

can

 

take

 

one

 

of

 

three

 

forms:

 

BLINK,

 

REVERSE,

 

or

 

UNDERSCORE.

 

Modified

 

data

 

tag

 

(MDT)

 

The

 

modified

 

data

 

tag

 

is

 

turned

 

on

 

when

 

fields

 

are

 

modified

 

by

 

the

 

operator.

 

When

 

the

 

operator

 

presses

 

the

 

ENTER

 

key

 

or

 

a

 

PF

 

key,

 

only

 

fields

 

that

 

have

 

been

 

modified

 

by

 

the

 

operator

 

or

 

selected

 

by

 

the

 

cursor

 

select

 

are

 

transmitted

 

to

 

the

 

processor.

 

The

 

program

 

may

 

send

 

fields

 

to

 

the

 

terminal

 

with

 

the

 

modified

 

data

 

tag

 

already

 

on

 

to

 

guarantee

 

that

 

the

 

field

 

will

 

be

 

returned

 

with

 

the

 

next

 

inbound

 

transmission.

 

Insert-cursor

 

indicator

 

The

 

insert-cursor

 

indicator

 

is

 

not

 

a

 

field

 

attribute.

 

Instead,

 

it

 

places

 

the

 

cursor

 

under

 

the

 

first

 

data

 

character

 

of

 

the

 

field.

 

If

 

the

 

insert-cursor

 

indicator

 

is

 

specified

 

for

 

more

 

than

 

one

 

field,

 

the

 

cursor

 

is

 

placed

 

under

 

the

 

first

 

data

 

character

 

of

 

the

 

last

 

field

 

specified.

  

Not

 

all

 

devices

 

support

 

all

 

the

 

attributes.

 

BMS

 

ensures

 

that

 

attributes

 

which

 

are

 

not

 

supported

 

by

 

the

 

device

 

(as

 

specified

 

in

 

the

 

emulator

 

definition

 

or

 

determined

 

by

 

an

 

automatic

 

query

 

of

 

the

 

device

 

following

 

logon)

 

are

 

ignored

 

when

 

building

 

the

 

datastream.

 

Note:

  

The

 

unprotected,

 

protected,

 

and

 

autoskip

 

characteristics

 

of

 

the

 

attribute

 

character

 

are

 

mutually

 

exclusive.

 

Only

 

one

 

may

 

be

 

selected

 

for

 

each

 

field.

 

The

 

normal,

 

bright,

 

and

 

nondisplay

 

characteristics

 

of

 

the

 

attribute

 

character

 

are

 

mutually

 

exclusive.

 

Only

 

one

 

may

 

be

 

selected

 

for

 

each

 

field.

Programmed

 

symbols:

   

As

 

well

 

as

 

the

 

standard

 

display

 

symbol

 

sets,

 

some

 

devices

 

can

 

have

 

optional

 

additional

 

symbol

 

store.

 

Support

 

for

 

this

 

feature

 

is

 

limited

 

in

 

CICS

 

for

 

AIXand

 

IBM

 

CICS

 

for

 

Windows

 

to

 

selection

 

of

 

the

 

default

 

Double-Byte

 

Character

 

Set

 

for

 

the

 

device

 

(PS=8).

 

This

 

feature

 

uses

 

the

 

extended

 

data

 

stream.

 

Field

 

Outlining:

   

Field

 

outlining

 

allows

 

lines

 

to

 

be

 

included

 

above,

 

below,

 

to

 

the

 

left,

 

or

 

to

 

the

 

right

 

of

 

a

 

field.

 

You

 

can

 

use

 

these

 

lines

 

in

 

any

 

combination

 

to

 

construct

 

boxes

 

around

 

fields

 

or

 

groups

 

of

 

fields.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

79



Screen

 

layout

 

design

 

CICS

 

provides

 

an

 

emulation

 

of

 

the

 

features

 

of

 

the

 

IBM

 

3270

 

Information

 

Display

 

System.

 

These

 

features

 

allow

 

you

 

to

 

design

 

screen

 

layouts

 

for

 

operator

 

convenience

 

and

 

efficiency.

 

The

 

success

 

of

 

an

 

online

 

system

 

depends

 

on

 

its

 

ease-of-use,

 

screen

 

clarity,

 

and

 

terminal

 

operator

 

acceptance.

 

The

 

following

 

features

 

of

 

some

 

IBM

 

3270

 

Information

 

Display

 

System

 

screens

 

make

 

it

 

easier

 

for

 

the

 

layout

 

designer

 

to

 

fulfil

 

these

 

requirements:

 

v

   

Color

 

v

   

Field

 

highlighting

 

v

   

Programmed

 

symbols

 

v

   

Easy

 

correction

 

v

   

Field

 

delimiters

 

or

 

stoppers

 

(to

 

control

 

the

 

length

 

of

 

data

 

entered)

 

The

 

first

 

step

 

in

 

designing

 

3270

 

screen

 

layouts

 

is

 

to

 

divide

 

the

 

screen

 

into

 

functional

 

areas

 

such

 

as

 

a

 

title

 

area,

 

an

 

application

 

data

 

area,

 

and

 

a

 

message

 

area.

 

The

 

CICS

 

local

 

terminals

 

on

 

Windows,

 

cicslterm,

 

the

 

CICS

 

3270

 

Terminal

 

Emulator,

 

and

 

the

 

CICS

 

on

 

Open

 

Systems

 

client

 

on

 

Open

 

Systems,

 

cicsterm,

 

support

 

the

 

following

 

screen

 

sizes:

 

v

   

80

 

columns

 

by

 

24

 

rows

 

v

   

80

 

columns

 

by

 

32

 

rows

 

v

   

80

 

columns

 

by

 

43

 

rows

 

v

   

132

 

columns

 

by

 

27

 

rows

Title

 

area:

   

The

 

title

 

area

 

of

 

a

 

screen

 

should

 

identify

 

the

 

program

 

that

 

displays

 

the

 

data.

 

Data

 

fields

 

from

 

the

 

same

 

file

 

can

 

appear

 

in

 

the

 

same

 

screen

 

locations

 

for

 

different

 

applications,

 

permitting

 

the

 

operator

 

to

 

become

 

familiar

 

with

 

fields

 

by

 

their

 

screen

 

location.

 

You

 

can

 

use

 

a

 

title

 

to

 

help

 

the

 

operator

 

recognize

 

the

 

application.

 

The

 

title

 

area

 

is

 

normally

 

the

 

top

 

one

 

or

 

two

 

lines

 

of

 

the

 

screen

 

and

 

may

 

contain

 

a

 

page

 

number

 

(if

 

you

 

require

 

more

 

than

 

one

 

page),

 

field

 

headings,

 

and

 

other

 

data

 

besides

 

the

 

title.

 

Application

 

data

 

area:

   

The

 

application

 

data

 

area

 

comprises

 

the

 

main

 

portion

 

of

 

the

 

screen.

 

Data

 

from

 

one

 

or

 

more

 

records

 

in

 

the

 

same

 

file

 

or

 

multiple

 

files

 

is

 

entered

 

by

 

you,

 

or

 

displayed

 

for

 

you,

 

depending

 

on

 

the

 

application

 

requirements.

 

Three

 

kinds

 

of

 

field

 

are

 

usually

 

found

 

in

 

this

 

area:

 

keyword,

 

data,

 

and

 

stopper.

 

Keyword

 

fields

 

Contain

 

constant

 

data

 

sent

 

by

 

the

 

program

 

to

 

identify

 

the

 

contents

 

of

 

a

 

data

 

field.

 

For

 

example,

 

a

 

keyword

 

field

 

containing:

 

ACCOUNT

 

BALANCE:

 

can

 

precede

 

and

 

identify

 

a

 

data

 

field

 

containing:

 

$129.54.

 

A

 

keyword

 

field

 

can

 

also

 

be

 

used

 

in

 

a

 

data

 

entry

 

application

 

to

 

identify

 

the

 

data

 

being

 

entered.

 

For

 

example:

 

ENTER

 

QUANTITY:

 

Data

 

fields

 

Contain

 

data

 

that

 

the

 

application

 

program

 

retrieves

 

and

 

displays.

 

The

 

data

 

may

 

appear

 

exactly

 

as

 

stored

 

in

 

a

 

file,

 

or

 

it

 

may

 

be

 

changed

 

by

 

the

 

application

 

program.

 

Data

 

fields

 

may

 

also

 

be

 

left

 

blank

 

for

 

the

 

user

 

to

 

enter

 

data.

 

The

 

application

 

program

 

can

 

use

 

the

 

entered

 

data

 

to

 

make

   

80

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



changes

 

to

 

a

 

record

 

or

 

to

 

alter

 

the

 

processing

 

of

 

the

 

program.

 

In

 

some

 

cases,

 

it

 

may

 

be

 

appropriate

 

for

 

the

 

program

 

to

 

display

 

characters

 

in

 

an

 

entry

 

data

 

field

 

to

 

guide

 

the

 

operator

 

in

 

entering

 

the

 

data.

 

For

 

example:

 

DATE:

 

MMDDYY

 

means

 

enter

 

month,

 

day,

 

year,

 

each

 

having

 

two

 

characters.

 

Stopper

 

fields

 

On

 

data

 

entry

 

screens

 

restrict

 

the

 

length

 

of

 

the

 

data

 

fields.

 

Stopper

 

fields

 

containing

 

no

 

data

 

are

 

used

 

to

 

define

 

the

 

space

 

between

 

data

 

fields

 

and

 

to

 

stop

 

the

 

operator

 

from

 

entering

 

too

 

many

 

characters

 

in

 

a

 

field.

 

For

 

example,

 

a

 

field

 

containing

 

a

 

street

 

address

 

may

 

be

 

20

 

characters

 

long,

 

but

 

for

 

screen

 

layout

 

reasons

 

the

 

screen

 

layout

 

designer

 

provides

 

an

 

entire

 

line

 

of

 

the

 

display

 

for

 

this

 

field.

 

To

 

prevent

 

you

 

from

 

keying

 

more

 

than

 

20

 

characters

 

on

 

this

 

line,

 

the

 

layout

 

designer

 

defines

 

a

 

stopper

 

field

 

starting

 

in

 

the

 

twenty-first

 

position

 

of

 

the

 

line.

 

The

 

stopper

 

field

 

is

 

protected,

 

restricting

 

the

 

operator

 

to

 

the

 

20-character

 

field.

 

Terminating

 

reverse

 

video:

   

If

 

you

 

have

 

a

 

field

 

with

 

reverse

 

video

 

on,

 

and

 

you

 

want

 

to

 

delimit

 

the

 

characteristics

 

of

 

the

 

field

 

before

 

it

 

reaches

 

to

 

the

 

next

 

field,

 

you

 

can

 

define

 

a

 

stopper

 

field

 

in

 

between.

 

For

 

example,

 

on

 

CICS

 

on

 

Open

 

Systems

 

suppose

 

you

 

want

 

a

 

map

 

to

 

look

 

like

 

this,

 

where

 

both

 

fields

 

are

 

in

 

reverse

 

video

 

and

 

there

 

is

 

nothing

 

in

 

between:

 

Hello

 

World

   

Bye

 

World

 

You

 

define

 

the

 

source

 

bms

 

map

 

as

 

follows:

 

MAP1

    

DFHMSD

 

TYPE=&SYSPARM,MODE=INOUT,LANG=COBOL,STORAGE=AUTO,

       

X

                

TIOAPFX=YES

 

MAP1

    

DFHMDI

 

SIZE=(30,60),MAPATTS=(COLOR,HILIGHT),DSATTS=(COLOR,

     

X

                

HILIGHT),LINE=1,COLUMN=1,COLOR=GREEN,HILIGHT=REVERSE

         

DFHMDF

 

POS=(6,10),LENGTH=11,ATTRB=(UNPROT,NORM),CASE=MIXED,

    

X

                

INITIAL=’Hello

 

World’

         

DFHMDF

 

POS=(6,22),ATTRB=(ASKIP,NORM),LENGTH=0

         

DFHMDF

 

POS=(10,10),LENGTH=9,ATTRB=(UNPROT,NORM),CASE=MIXED,

    

X

                

INITIAL=’Bye

 

World’

         

DFHMDF

 

POS=(10,20),ATTRB=(ASKIP,NORM),LENGTH=0

 

MAP1

    

DFHMSD

 

TYPE=FINAL

 

Message

 

area:

   

You

 

use

 

the

 

message

 

area

 

of

 

a

 

screen

 

to

 

send

 

instructions

 

or

 

messages

 

to

 

assist

 

the

 

user

 

in

 

processing

 

a

 

transaction.

 

You

 

should

 

separate

 

the

 

message

 

area

 

from

 

the

 

application

 

data

 

area

 

to

 

allow

 

communication

 

with

 

the

 

user,

 

without

 

disturbing

 

the

 

application

 

data.

 

The

 

message

 

area

 

is

 

normally

 

the

 

bottom

 

one

 

or

 

two

 

lines

 

of

 

the

 

screen.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Using

 

BMS

 

services

 

in

 

application

 

programs

 

Application

 

programs

 

use

 

EXEC

 

CICS

 

SEND

 

and

 

EXEC

 

CICS

 

RECEIVE

 

commands

 

to

 

send

 

and

 

receive

 

data.

 

The

 

following

 

describes

 

the

 

syntax

 

of

 

these

 

and

 

other

 

commands

 

and

 

demonstrates

 

their

 

use.

 

Symbolic

 

map

 

data

 

structures

 

The

 

symbolic

 

map

 

data

 

structures

 

that

 

result

 

from

 

executing

 

map

 

and

 

field

 

definition

 

macros

 

contain

 

extended

 

versions

 

of

 

the

 

fields,

 

each

 

one

 

consisting

 

of

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

81



subfields.

 

Each

 

subfield

 

can

 

be

 

referred

 

to

 

by

 

its

 

name,

 

which

 

is

 

the

 

name

 

assigned

 

to

 

the

 

field,

 

plus

 

a

 

single-letter

 

suffix.

 

Each

 

kind

 

of

 

subfield

 

has

 

a

 

different

 

suffix.

 

Furthermore,

 

the

 

whole

 

input

 

or

 

output

 

data

 

structure

 

can

 

be

 

addressed

 

by

 

its

 

suffixed

 

name.

 

The

 

suffixed

 

name

 

of

 

an

 

input

 

map

 

is

 

its

 

original

 

name

 

extended

 

by

 

the

 

suffix

 

I.

 

The

 

corresponding

 

suffix

 

for

 

the

 

output

 

map

 

is

 

O.

 

Input

 

map

 

data

 

structures:

   

The

 

suffixes

 

used

 

to

 

address

 

subfields,

 

and

 

the

 

contents

 

of

 

those

 

subfields,

 

in

 

input

 

maps

 

are:

  

Table

 

9.

 

Suffixes

 

used

 

for

 

input

 

map

 

data

 

structures

 

F

 

A

 

flag

 

byte.

 

This

 

is

 

normally

 

set

 

to

 

X'00'.

 

If

 

the

 

field

 

has

 

been

 

modified

 

but

 

no

 

data

 

is

 

sent

 

(that

 

is,

 

the

 

field

 

is

 

cleared)

 

the

 

flag

 

byte

 

is

 

set

 

to

 

X'80'.

 

I

 

Input

 

data

 

read

 

from

 

the

 

display.

 

It

 

is

 

set

 

to

 

X'00'

 

if

 

no

 

data

 

is

 

entered

 

for

 

that

 

field.

 

L

 

A

 

16-bit

 

binary

 

length

 

value.

 

This

 

defines

 

the

 

number

 

of

 

characters

 

that

 

are

 

typed

 

into

 

the

 

data

 

field

 

before

 

it

 

is

 

read

 

by

 

BMS.

   

Input

 

field

 

suffixes:

   

Having

 

read

 

data,

 

a

 

program

 

can

 

process

 

it

 

by

 

issuing

 

ordinary

 

application

 

programming

 

commands

 

that

 

address

 

fields

 

by

 

name.

 

Consider

 

a

 

field,

 

called

 

INPUT,

 

in

 

an

 

input

 

map.

 

A

 

program

 

can

 

test

 

that

 

either

 

its

 

length

 

field

 

INPUTL

 

contains

 

a

 

value

 

greater

 

than

 

zero

 

(data

 

has

 

been

 

entered)

 

or

 

that

 

its

 

flag

 

byte

 

INPUTF

 

indicates

 

that

 

the

 

field

 

has

 

been

 

cleared.

 

If

 

INPUTL

 

contains

 

a

 

value

 

greater

 

than

 

zero,

 

you

 

can,

 

for

 

example,

 

move

 

the

 

first

 

INPUTL

 

characters

 

from

 

INPUTI

 

to

 

another

 

data

 

area.

 

The

 

suffix

 

on

 

the

 

data

 

structure

 

for

 

the

 

whole

 

map

 

enables

 

you

 

to

 

manipulate

 

the

 

whole

 

data

 

structure.

 

For

 

example,

 

you

 

can

 

write

 

simple

 

commands

 

to

 

copy

 

the

 

whole

 

structure

 

into

 

another

 

data

 

area.

 

Output

 

map

 

data

 

structures:

   

The

 

suffixes

 

used

 

to

 

address

 

subfields,

 

and

 

the

 

contents

 

of

 

those

 

subfields,

 

in

 

output

 

maps

 

are:

  

Table

 

10.

 

Suffixes

 

used

 

for

 

output

 

map

 

data

 

structures

 

A

 

An

 

attribute

 

byte

 

defining

 

the

 

characteristics

 

of

 

the

 

field

 

(for

 

example,

 

protected

 

or

 

unprotected).

 

C

 

An

 

attribute

 

byte

 

specifying

 

the

 

color

 

of

 

the

 

field.

 

E

 

(C

 

only).

 

This

 

suffix

 

is

 

appended

 

to

 

the

 

field

 

name

 

to

 

derive

 

a

 

structure

 

which

 

occurs

 

n

 

times

 

(where

 

n

 

is

 

specified

 

by

 

the

 

OCCURS

 

operand

 

of

 

the

 

DFHMDF

 

macro).

 

H

 

An

 

attribute

 

byte

 

defining

 

the

 

highlighting

 

to

 

be

 

used

 

within

 

a

 

field

 

in

 

a

 

display.

 

M

 

An

 

attribute

 

byte

 

defining

 

that

 

SO/SI

 

creation

 

is

 

to

 

be

 

used.

 

SO/SI

 

(shift

 

in/shift

 

out)

 

refers

 

to

 

code

 

extension

 

characters

 

that

 

are

 

used

 

to

 

substitute

 

graphic

 

characters

 

in

 

standard

 

character

 

sets.

 

O

 

Output

 

data

 

to

 

be

 

sent

 

to

 

the

 

display.

 

The

 

program

 

usually

 

stores

 

data

 

in

 

such

 

a

 

field

 

before

 

sending

 

the

 

map.

 

If

 

the

 

contents

 

of

 

the

 

field

 

begin

 

with

 

a

 

null

 

character,

 

the

 

whole

 

field

 

is

 

ignored,

 

the

 

contents

 

of

 

the

 

display

 

field

 

being

 

taken

 

from

 

the

 

physical

 

map.

 

If

 

you

 

want

 

to

 

send

 

a

 

blank

 

field,

 

you

 

must

 

store

 

blanks

 

in

 

the

 

symbolic

 

map

 

data

 

structure.

 

Being

 

non-null,

 

this

 

overrides

 

the

 

contents

 

of

 

the

 

physical

 

map.

 

P

 

An

 

attribute

 

byte

 

defining

 

the

 

programmed

 

symbol

 

set

 

to

 

be

 

used

 

within

 

a

 

field

 

in

 

a

 

display.

   

82

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

10.

 

Suffixes

 

used

 

for

 

output

 

map

 

data

 

structures

 

(continued)

 

U

 

An

 

attribute

 

byte

 

defining

 

the

 

outline

 

to

 

be

 

used.

   

If

 

you

 

want

 

to

 

use

 

programmed

 

symbols,

 

you

 

must

 

ensure

 

that

 

a

 

suitable

 

symbol

 

set

 

has

 

been

 

sent

 

to

 

the

 

device.

 

If

 

MODE=INOUT

 

is

 

specified,

 

the

 

“fieldnameA”

 

subfield

 

is

 

defined

 

in

 

the

 

input

 

map

 

data

 

structure.

 

(If

 

you

 

are

 

using

 

COBOL,

 

you

 

will

 

find

 

that

 

compiler

 

errors

 

occur

 

if

 

a

 

MOVE

 

statement

 

modifying

 

an

 

attribute

 

byte

 

is

 

qualified

 

to

 

refer

 

to

 

the

 

output

 

map.)

 

Subfields

 

with

 

suffixes

 

H,

 

P,

 

C,

 

U,

 

and

 

M

 

are

 

only

 

generated

 

if

 

the

 

corresponding

 

attribute

 

types

 

are

 

included

 

in

 

the

 

DSATTS

 

operand

 

of

 

the

 

DFHMDI

 

or

 

DFHMSD

 

macros.

 

As

 

with

 

input

 

data

 

fields,

 

a

 

program

 

can

 

address

 

individual

 

subfields

 

in

 

an

 

output

 

field,

 

verifying

 

or

 

changing

 

their

 

contents.

 

For

 

example,

 

an

 

application

 

program

 

can

 

check

 

a

 

calculated

 

data

 

value,

 

say

 

BALANCE.

 

If

 

the

 

value

 

is

 

found

 

to

 

be

 

negative,

 

the

 

highlight

 

attribute

 

constant

 

(BALANCEH)

 

in

 

a

 

field

 

called

 

BALANCE

 

can

 

be

 

set

 

to

 

produce

 

highlighted

 

characters

 

when

 

displayed.

 

The

 

data

 

value

 

in

 

the

 

field

 

occupies

 

subfield

 

BALANCEO.

 

You

 

can

 

also

 

manipulate

 

the

 

whole

 

output

 

data

 

structure

 

using

 

its

 

suffixed

 

name.

 

For

 

example,

 

you

 

can

 

copy

 

data

 

into

 

it

 

from

 

another

 

area.

 

Note:

  

You

 

must

 

set

 

this

 

area

 

to

 

nulls

 

before

 

using

 

its

 

corresponding

 

physical

 

map

 

in

 

an

 

output

 

operation.

 

Otherwise,

 

you

 

can

 

obtain

 

unpredictable

 

results.

 

By

 

doing

 

this,

 

you

 

ensure

 

that

 

fields

 

and

 

attributes

 

in

 

the

 

output

 

display

 

inherit

 

the

 

default

 

contents

 

of

 

the

 

physical

 

map,

 

not

 

whatever

 

happens

 

to

 

be

 

in

 

the

 

symbolic

 

data

 

structure.

 

The

 

following

 

examples

 

shows

 

how

 

you

 

might

 

do

 

this

 

in

 

COBOL,

 

C

 

and

 

PL/I:

 

COBOL

 

example:

    

MOVE

 

LOW-VALUES

 

TO

 

MAPO

   

C

 

example:

        

memset(&mapo,0x0,sizeof(mapo));

 

PL/I

 

example:

 

DCL

 

STR

 

BASED

 

CHAR(32767);

  

...

 

SUBSTR(ADDR(MAPO)->STR,1,STG(MAPO))

 

=

 

LOW(STG(MAPO));

 

Attribute

 

constants:

   

Subfield

 

suffixing

 

allows

 

an

 

application

 

program

 

to

 

change

 

the

 

data

 

within

 

a

 

data

 

structure.

 

However,

 

the

 

bit

 

patterns

 

representing

 

particular

 

attributes

 

are

 

difficult

 

to

 

remember,

 

so

 

CICS

 

provides

 

a

 

list

 

of

 

named

 

standard

 

attribute

 

bytes.

 

You

 

can

 

code

 

these

 

names

 

in

 

a

 

program

 

instead

 

of

 

their

 

hexadecimal

 

equivalents.

 

To

 

use

 

them,

 

you

 

must

 

copy

 

the

 

list

 

(a

 

supplied

 

copybook

 

stored

 

in

 

the

 

system

 

source

 

library

 

at

 

installation)

 

into

 

your

 

program,

 

using

 

the

 

name

 

DFHBMSCA.

 

For

 

information

 

about

 

the

 

attribute

 

constants

 

and

 

their

 

meanings,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Using

 

attribute

 

constants

 

and

 

subfield

 

suffixing,

 

a

 

program

 

can

 

modify

 

field

 

attributes

 

using

 

simple

 

commands.

 

The

 

following

 

examples

 

show

 

how

 

you

 

could

 

(1)

 

put

 

data

 

into

 

an

 

output

 

data

 

field

 

and

 

(2)

 

set

 

the

 

highlighting

 

attribute

 

of

 

the

 

output

 

data

 

field:

 

COBOL

 

example:

        

MOVE

 

CUSTNO

 

TO

 

ACCOUNTO....

 

(1)

        

MOVE

 

DFHBLINK

 

TO

 

ACCOUNTH..

 

(2)

  

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

83



C

 

example:

        

accounto=CUSTNO;...........

 

(1)

        

accounth=DFHBLINK;.........

 

(2)

 

PL/I

 

example:

        

accounto=CUSTNO;...........

 

(1)

        

accounth=DFHBLINK;.........

 

(2)

 

Refer

 

to

 

the

 

IBM

 

3270

 

Information

 

Display

 

Programmer’s

 

Reference

 

for

 

information

 

about

 

determining

 

the

 

value

 

of

 

an

 

attribute

 

constant.

 

Invalid

 

data:

   

BMS

 

does

 

not

 

check

 

the

 

validity

 

of

 

attribute

 

and

 

data

 

values

 

in

 

the

 

symbolic

 

data

 

structure.

 

However

 

BMS

 

does

 

ensure

 

that

 

attributes

 

are

 

not

 

sent

 

to

 

emulators

 

that

 

do

 

not

 

support

 

them.

 

Invalid

 

data

 

may

 

be

 

transmitted

 

to

 

the

 

emulator.

 

Some

 

emulators

 

can

 

detect

 

this

 

invalid

 

data

 

and

 

send

 

error

 

information

 

to

 

CICS.

 

Sending

 

data

 

to

 

a

 

display:

   

You

 

use

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command

 

to

 

send

 

mapped

 

data

 

to

 

a

 

display.

 

(See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.)

 

You

 

can

 

send

 

three

 

kinds

 

of

 

data,

 

depending

 

on

 

what

 

options

 

you

 

specify,

 

as

 

follows:

 

v

   

Constant

 

display

 

data

 

(with

 

attributes)

 

such

 

as

 

headings,

 

footings,

 

prompt

 

fields,

 

and

 

comments.

 

v

   

Variable

 

display

 

data

 

(with

 

attributes)

 

such

 

as

 

user

 

data

 

or

 

warning

 

messages.

 

v

   

Device

 

control

 

data

 

such

 

as

 

instructions

 

to

 

clear

 

the

 

screen,

 

or

 

activate

 

an

 

alarm,

 

before

 

displaying

 

data.

 

The

 

MAP

 

option

 

names

 

the

 

map

 

that

 

is

 

used

 

to

 

format

 

the

 

data,

 

and

 

the

 

MAPSET

 

option

 

names

 

the

 

map

 

set

 

to

 

which

 

the

 

map

 

belongs.

 

If

 

the

 

MAPSET

 

option

 

is

 

omitted

 

in

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

command,

 

the

 

name

 

in

 

the

 

MAP

 

option

 

is

 

taken

 

as

 

the

 

map

 

set

 

name.

 

In

 

its

 

simplest

 

form,

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command

 

is

 

used

 

as

 

follows:

 

1.

   

The

 

application

 

program

 

assigns

 

values

 

to

 

variables

 

named

 

in

 

the

 

symbolic

 

description

 

map.

 

2.

   

The

 

program

 

issues

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

This

 

uses

 

the

 

application

 

data

 

in

 

the

 

application

 

data

 

structure

 

to

 

replace

 

default

 

data

 

and

 

attributes

 

in

 

the

 

physical

 

map,

 

and

 

sends

 

the

 

modified

 

map

 

to

 

the

 

display.

 

For

 

example,

 

if

 

the

 

first

 

map

 

in

 

a

 

map

 

set

 

called

 

DISPLAY

 

is

 

an

 

output

 

map

 

of

 

the

 

same

 

name,

 

the

 

map

 

can

 

be

 

displayed

 

using

 

the

 

command:

 

SEND

 

MAP('DISPLAY')

 

However,

 

the

 

omission

 

of

 

the

 

MAPSET

 

option

 

in

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

command

 

is

 

not

 

recommended.

 

Another

 

map,

 

called

 

ERROR,

 

in

 

the

 

same

 

map

 

set

 

can

 

be

 

displayed

 

by:

 

SEND

 

MAP('ERROR')

 

MAPSET('DISPLAY')

 

By

 

default,

 

BMS

 

displays

 

application

 

data

 

or

 

attribute

 

data

 

from

 

the

 

application

 

data

 

structure

 

rather

 

than

 

default

 

data

 

from

 

the

 

physical

 

map.

 

To

 

override

 

this

 

for

 

a

 

given

 

field,

 

your

 

program

 

must

 

set

 

the

 

corresponding

 

subfield

 

in

 

the

 

data

 

structure

 

to

 

hexadecimal

 

zeros

 

(X'00').

 

before

 

issuing

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

command,

 

or

 

use

 

the

 

MAPONLY

 

option.

   

84

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Composite

 

displays:

   

If

 

your

 

program

 

sends

 

a

 

succession

 

of

 

maps

 

to

 

a

 

display,

 

the

 

final

 

form

 

of

 

the

 

display

 

depends

 

on

 

both

 

the

 

design

 

of

 

the

 

maps,

 

and

 

the

 

form

 

of

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

For

 

example,

 

if

 

the

 

final

 

map

 

fills

 

the

 

screen,

 

or

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command

 

includes

 

the

 

ERASE

 

option,

 

it

 

obliterates

 

all

 

previous

 

output.

 

However,

 

if

 

you

 

design

 

your

 

maps

 

to

 

occupy

 

different

 

parts

 

of

 

the

 

screen,

 

or

 

to

 

overlay

 

each

 

other

 

only

 

partially,

 

you

 

can

 

combine

 

them

 

to

 

produce

 

the

 

final

 

display.

 

Refreshing

 

and

 

modifying

 

displays:

   

You

 

use

 

the

 

MAPONLY

 

option

 

of

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command

 

to

 

build

 

a

 

display

 

using

 

data

 

from

 

the

 

physical

 

map,

 

without

 

inserting

 

user

 

data.

 

This

 

can

 

be

 

useful

 

when

 

sending

 

a

 

menu

 

to

 

a

 

display,

 

as

 

no

 

data

 

is

 

sent

 

with

 

the

 

map,

 

and

 

input

 

data

 

fields

 

regain

 

their

 

default

 

data

 

values

 

(perhaps

 

blank).

 

You

 

use

 

the

 

DATAONLY

 

option

 

to

 

modify

 

the

 

variable

 

data

 

in

 

a

 

display

 

that

 

has

 

already

 

been

 

created

 

by

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

BMS

 

transmits

 

variable

 

data

 

but

 

no

 

physical

 

map

 

data.

 

No

 

data

 

is

 

sent

 

for

 

fields

 

that

 

you

 

have

 

cleared

 

to

 

hexadecimal

 

zeros

 

(X'00').

 

You

 

can

 

use

 

EXEC

 

CICS

 

SEND

 

MAP

 

DATAONLY

 

to

 

ensure

 

that

 

only

 

changed

 

fields

 

are

 

sent.

 

Getting

 

storage

 

for

 

a

 

data

 

structure:

   

You

 

have

 

now

 

seen

 

how

 

to

 

map

 

data

 

from

 

one

 

or

 

more

 

data

 

structures.

 

Depending

 

on

 

how

 

you

 

define

 

your

 

map

 

sets,

 

a

 

program

 

might

 

have

 

to

 

issue

 

commands

 

to

 

acquire

 

main

 

storage

 

for

 

the

 

data

 

structures

 

it

 

uses.

 

It

 

does

 

this

 

by

 

issuing

 

EXEC

 

CICS

 

GETMAIN

 

commands.

 

You

 

can

 

usually

 

avoid

 

having

 

to

 

code

 

EXEC

 

CICS

 

GETMAIN

 

commands

 

by

 

coding

 

STORAGE=AUTO

 

on

 

the

 

DFHMSD

 

macro.

 

It

 

has

 

been

 

assumed

 

so

 

far

 

in

 

this

 

information

 

that

 

every

 

output

 

map

 

has

 

its

 

own

 

data

 

structure.

 

However,

 

you

 

might

 

decide

 

that

 

this

 

uses

 

too

 

much

 

storage.

 

To

 

save

 

storage,

 

you

 

can

 

specify

 

that

 

different

 

maps

 

are

 

to

 

use

 

the

 

same

 

storage

 

area.

 

You

 

do

 

this

 

by

 

coding

 

BASE=name

 

(or

 

nothing

 

at

 

all),

 

instead

 

of

 

STORAGE=AUTO,

 

on

 

the

 

DFHMSD

 

macro.

 

This

 

section

 

describes

 

what

 

happens

 

when

 

you

 

code

 

each

 

operand

 

for

 

each

 

language,

 

and

 

how

 

it

 

affects

 

application

 

programs.

 

For

 

information

 

about

 

using

 

the

 

BASE

 

operand,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Remember

 

that,

 

however

 

you

 

acquire

 

storage,

 

you

 

should

 

clear

 

its

 

contents

 

before

 

issuing

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

If

 

you

 

do

 

not

 

do

 

this,

 

existing

 

data

 

in

 

storage

 

can

 

modify

 

the

 

output

 

display

 

unpredictably.

 

If

 

you

 

use

 

EXEC

 

CICS

 

GETMAIN

 

to

 

acquire

 

storage,

 

you

 

can

 

clear

 

the

 

storage

 

by

 

coding

 

the

 

INITIMG

 

option.

 

Refer

 

to

 

Table

 

11

 

on

 

page

 

86.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

85



Table

 

11.

 

Rules

 

for

 

acquiring

 

storage

 

The

 

rules

 

for

 

COBOL

 

are:

 

When

 

STORAGE=AUTO,

 

the

 

data

 

structure

 

must

 

be

 

copied

 

into

 

the

 

working-storage

 

section.

 

CICS

 

acquires

 

storage

 

automatically

 

for

 

every

 

map;

 

you

 

do

 

not

 

have

 

to

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command.

 

When

 

BASE=name,

 

the

 

map

 

set

 

must

 

be

 

copied

 

into

 

the

 

linkage

 

section.

 

You

 

must

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command

 

to

 

acquire

 

enough

 

main

 

storage

 

to

 

contain

 

the

 

largest

 

map

 

in

 

the

 

set.

 

When

 

nothing

 

is

 

specified,

 

or

 

when

 

the

 

map

 

set

 

is

 

copied

 

into

 

the

 

working-storage

 

section,

 

you

 

don’t

 

have

 

to

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command,

 

but

 

you

 

should

 

place

 

the

 

largest

 

map

 

first

 

in

 

the

 

set.

 

If

 

the

 

map

 

set

 

is

 

copied

 

into

 

the

 

linkage

 

section,

 

you

 

must

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command

 

to

 

get

 

storage

 

for

 

it.

 

When

 

you

 

use

 

EXEC

 

CICS

 

GETMAIN

 

to

 

get

 

main

 

storage

 

for

 

a

 

COBOL

 

map,

 

you

 

must

 

ensure

 

that

 

you

 

establish

 

addressability

 

for

 

the

 

map.

 

The

 

rules

 

for

 

C

 

or

 

C++

 

are:

 

STORAGE=AUTO

 

specifies

 

that

 

the

 

symbolic

 

description

 

maps

 

are

 

to

 

be

 

declared

 

as

 

having

 

the

 

AUTOMATIC

 

storage

 

class.

 

If

 

STORAGE=AUTO

 

is

 

not

 

specified,

 

they

 

are

 

declared

 

as

 

pointers.

 

You

 

cannot

 

specify

 

both

 

BASE=name

 

and

 

STORAGE=AUTO

 

for

 

the

 

same

 

map

 

set.

 

If

 

STORAGE=AUTO

 

is

 

specified

 

and

 

TIOAPFX

 

is

 

not,

 

TIOAPFX=YES

 

is

 

assumed.

 

TIOAPFX

 

is

 

the

 

12-byte

 

terminal

 

input/output

 

area

 

(TIOA)

 

prefix.

 

When

 

BASE=name,

 

you

 

must

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command

 

that

 

gets

 

at

 

least

 

enough

 

main

 

storage

 

to

 

contain

 

the

 

largest

 

symbolic

 

map

 

in

 

the

 

map

 

sets

 

sharing

 

this

 

base.

 

The

 

name

 

specified

 

in

 

the

 

BASE

 

operand

 

is

 

used

 

as

 

the

 

name

 

of

 

the

 

pointer

 

variable

 

on

 

which

 

the

 

symbolic

 

description

 

map

 

is

 

based.

 

The

 

rules

 

for

 

PL/I

 

are:

 

When

 

STORAGE=AUTO,

 

CICS

 

acquires

 

storage

 

automatically

 

for

 

every

 

map;

 

you

 

do

 

not

 

have

 

to

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command.

 

When

 

BASE=name,

 

you

 

must

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command

 

that

 

gets

 

at

 

least

 

enough

 

main

 

storage

 

to

 

contain

 

the

 

largest

 

symbolic

 

map

 

in

 

the

 

map

 

sets

 

sharing

 

this

 

base.

 

The

 

name

 

specified

 

in

 

the

 

BASE

 

operand

 

is

 

used

 

as

 

the

 

name

 

of

 

the

 

pointer

 

variable

 

on

 

which

 

the

 

symbolic

 

description

 

map

 

is

 

based.

 

If

 

you

 

omit

 

this

 

operand,

 

the

 

default

 

name

 

(BMSMAPBR)

 

is

 

used

 

for

 

the

 

pointer

 

variable.

 

You

 

must

 

establish

 

addressability

 

for

 

the

 

based

 

structures.

 

When

 

nothing

 

is

 

specified

 

you

 

must

 

code

 

an

 

EXEC

 

CICS

 

GETMAIN

 

command

 

that

 

sets

 

the

 

pointer

 

BMSMAPBR

 

to

 

the

 

address

 

of

 

the

 

acquired

 

data

 

area.

 

The

 

EXEC

 

CICS

 

GETMAIN

 

command

 

must

 

get

 

at

 

least

 

enough

 

storage

 

to

 

contain

 

the

 

largest

 

symbolic

 

map

 

in

 

the

 

map

 

sets.

   

Alternative

 

data

 

structures:

   

The

 

examples

 

so

 

far

 

have

 

shown

 

EXEC

 

CICS

 

SEND

 

MAP

 

commands

 

that

 

contain

 

literal

 

field

 

map

 

names.

 

If

 

the

 

field

 

map

 

name

 

referenced

 

by

 

your

 

program

 

is

 

to

 

be

 

a

 

variable,

 

you

 

need

 

to

 

code

 

the

 

additional

 

options,

 

FROM

 

and

 

LENGTH,

 

on

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

Also

 

you

 

can

 

use

 

your

 

own

 

data

 

area

 

rather

 

than

 

the

 

data

 

structures

 

from

 

the

 

symbolic

   

86

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



description

 

map,

 

even

 

when

 

use

 

you

 

use

 

a

 

literal

 

map

 

name.

 

FROM

 

enables

 

you

 

to

 

display

 

data

 

stored

 

in

 

a

 

data

 

area

 

other

 

than

 

the

 

data

 

structure

 

for

 

the

 

symbolic

 

description

 

map.

 

FROM

 

and

 

MAPONLY

 

are

 

mutually

 

exclusive.

 

LENGTH

 

specifies

 

the

 

length

 

of

 

the

 

data

 

string

 

stored

 

in

 

the

 

FROM

 

data

 

area.

 

You

 

must

 

specify

 

the

 

LENGTH

 

option

 

if

 

the

 

data

 

to

 

be

 

mapped

 

is

 

shorter

 

than

 

the

 

data

 

area

 

expected

 

by

 

the

 

map.

 

Device

 

control

 

options:

   

As

 

well

 

as

 

transmitting

 

application

 

data

 

to

 

a

 

display,

 

BMS

 

can

 

relay

 

device

 

control

 

commands.

 

An

 

application

 

program

 

uses

 

options

 

of

 

the

 

EXEC

 

CICS

 

SEND

 

command

 

to

 

specify

 

which

 

controls

 

are

 

to

 

be

 

activated.

 

Alternatively,

 

it

 

can

 

use

 

the

 

BMS

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

command,

 

which

 

transmits

 

device

 

control

 

commands

 

without

 

also

 

sending

 

application

 

data.

 

For

 

example:

 

SEND

 

MAP(’ERROR’)

 

MAPSET(’DISPLAY’)

 

ERASE

 

erases

 

the

 

screen

 

before

 

data

 

is

 

displayed.

 

You

 

can

 

code

 

one

 

or

 

more

 

of

 

the

 

following

 

device

 

control

 

options

 

in

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

command;

 

they

 

are

 

shown

 

in

 

Table

 

12.

  

Table

 

12.

 

EXEC

 

CICS

 

SEND

 

MAP

 

options

 

ALARM

 

Sound

 

audible

 

alarm

 

on

 

displaying

 

data.

 

CURSOR

 

Specify

 

position

 

of

 

cursor

 

after

 

output.

 

The

 

cursor

 

position

 

is

 

a

 

16-bit

 

binary

 

value,

 

representing

 

the

 

absolute

 

screen

 

address

 

of

 

the

 

cursor.

 

However,

 

you

 

need

 

not

 

always

 

specify

 

a

 

value.

 

ERASE

 

Erase

 

screen

 

and

 

place

 

cursor

 

in

 

top

 

left-hand

 

corner

 

of

 

screen

 

before

 

output.

 

The

 

first

 

EXEC

 

CICS

 

SEND

 

MAP

 

command

 

of

 

any

 

CICS

 

application

 

program

 

should

 

specify

 

ERASE.

 

This

 

ensures

 

that

 

the

 

size

 

of

 

the

 

screen

 

is

 

set

 

to

 

default.

 

ERASEAUP

 

Erase

 

all

 

unprotected

 

fields

 

before

 

output.

 

FORMFEED

 

Send

 

a

 

form

 

feed

 

character

 

as

 

the

 

first

 

character

 

in

 

the

 

device-dependent

 

datastream.

 

FREEKB

 

Unlock

 

the

 

keyboard

 

for

 

data

 

input.

 

FRSET

 

Reset

 

all

 

modified

 

data

 

tags

 

(to

 

“not

 

modified”

 

state)

 

before

 

output.

 

PRINT

 

Start

 

printing

 

(when

 

emulator

 

is

 

a

 

printer).

   

The

 

CICS

 

local

 

terminals,

 

cicslterm,

 

The

 

CICS

 

3270

 

Terminal

 

Emulator,

 

and

 

cicsterm

 

support

 

the

 

following

 

screen

 

sizes:

 

v

   

80

 

columns

 

by

 

24

 

rows

 

v

   

80

 

columns

 

by

 

32

 

rows

 

v

   

80

 

columns

 

by

 

43

 

rows

 

v

   

132

 

columns

 

by

 

27

 

rows

Cursor

 

positioning:

   

You

 

can

 

control

 

the

 

positioning

 

of

 

the

 

display

 

cursor

 

in

 

three

 

different

 

ways,

 

as

 

described

 

in

 

Table

 

13

 

on

 

page

 

88.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

87



Table

 

13.

 

Rules

 

for

 

cursor

 

positioning

 

Normal

 

cursor

 

positioning

 

You

 

can

 

specify

 

a

 

two-byte

 

cursor

 

position

 

on

 

the

 

BMS

 

EXEC

 

CICS

 

SEND

 

commands.

 

This

 

enables

 

you

 

to

 

specify

 

the

 

absolute

 

value

 

of

 

the

 

cursor

 

position

 

on

 

the

 

screen

 

after

 

the

 

SEND

 

has

 

been

 

performed.

 

Note

 

that

 

the

 

first

 

location

 

on

 

the

 

display

 

screen

 

is

 

address

 

zero.

 

You

 

specify

 

the

 

address

 

in

 

parentheses

 

after

 

the

 

CURSOR

 

keyword,

 

as

 

follows:

 

CURSOR(44)

 

Insert

 

cursor

 

attribute

 

If

 

you

 

omit

 

the

 

CURSOR

 

option,

 

BMS

 

will

 

search

 

the

 

map

 

for

 

a

 

field

 

with

 

the

 

IC

 

attribute.

 

(You

 

would

 

have

 

given

 

it

 

this

 

attribute

 

by

 

coding

 

ATTRB=IC

 

on

 

the

 

DFHMDF

 

macro

 

for

 

the

 

field.)

 

If

 

there

 

is

 

more

 

than

 

one

 

field

 

with

 

the

 

IC

 

attribute,

 

BMS

 

places

 

the

 

cursor

 

at

 

the

 

beginning

 

of

 

the

 

last

 

one.

 

If

 

there

 

is

 

no

 

such

 

field,

 

BMS

 

places

 

the

 

cursor

 

at

 

the

 

cursor

 

position

 

from

 

the

 

map,

 

which

 

is

 

screen

 

address

 

zero.

 

If

 

you

 

omit

 

the

 

CURSOR

 

option

 

from

 

the

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

command,

 

the

 

cursor

 

position

 

remains

 

unchanged.

 

Symbolic

 

cursor

 

positioning

 

You

 

can

 

use

 

symbolic

 

cursor

 

positioning

 

instead

 

of

 

coding

 

an

 

explicit

 

value

 

on

 

the

 

CURSOR

 

option

 

of

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

To

 

do

 

this:

 

1.

   

Specify

 

MODE=INOUT

 

in

 

the

 

DFHMSD

 

macro.

 

2.

   

Set

 

the

 

length

 

of

 

the

 

field

 

(to

 

which

 

the

 

cursor

 

is

 

to

 

be

 

positioned)

 

to

 

-1.

 

3.

   

Execute

 

the

 

SEND

 

command,

 

specifying

 

CURSOR

 

without

 

an

 

argument.

CICS

 

then

 

places

 

the

 

cursor

 

under

 

the

 

first

 

data

 

byte

 

in

 

the

 

field

 

on

 

the

 

output

 

screen.

 

If

 

the

 

length

 

of

 

more

 

than

 

one

 

field

 

is

 

set

 

to

 

-1,

 

the

 

cursor

 

is

 

placed

 

at

 

the

 

beginning

 

of

 

the

 

first

 

of

 

those

 

fields.

 

If

 

you

 

use

 

symbolic

 

cursor

 

positioning

 

with

 

EXEC

 

CICS

 

SEND

 

CONTROL,

 

the

 

cursor

 

is

 

always

 

positioned

 

at

 

position

 

zero

 

of

 

the

 

panel.

   

Accessing

 

data

 

outside

 

the

 

program:

   

Sometimes

 

your

 

program

 

needs

 

access

 

to

 

information

 

held

 

by

 

CICS.

 

The

 

ASSIGN

 

command

 

allows

 

it

 

such

 

access.

 

Some

 

ASSIGN

 

options

 

apply

 

exclusively

 

to

 

BMS.

 

For

 

information

 

about

 

these

 

ASSIGN

 

options,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

However,

 

you

 

can

 

only

 

use

 

the

 

ASSIGN

 

options

 

that

 

are

 

concerned

 

with

 

the

 

position

 

or

 

size

 

of

 

the

 

maps.

 

Those

 

EXEC

 

CICS

 

ASSIGN

 

options

 

are

 

shown

 

in

 

Table

 

14.

  

Table

 

14.

 

EXEC

 

CICS

 

ASSIGN

 

options

 

MAPLINE

 

Requests

 

the

 

number

 

of

 

the

 

line,

 

on

 

a

 

display,

 

that

 

contains

 

the

 

origin

 

of

 

the

 

most

 

recently

 

sent

 

map.

 

MAPCOLUMN

 

Requests

 

the

 

number

 

of

 

the

 

column,

 

on

 

a

 

display,

 

that

 

contains

 

the

 

origin

 

of

 

the

 

most

 

recently

 

sent

 

map.

 

MAPWIDTH

 

Returns

 

the

 

width

 

of

 

the

 

most

 

recently

 

sent

 

map.

 

MAPHEIGHT

 

Returns

 

the

 

height

 

of

 

the

 

most

 

recently

 

sent

 

map.

    

88

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Receiving

 

data

 

from

 

a

 

display:

   

You

 

use

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

to

 

receive

 

data

 

from

 

a

 

display.

 

The

 

data

 

from

 

the

 

display

 

is

 

mapped

 

into

 

a

 

data

 

area

 

in

 

an

 

application

 

program.

 

For

 

information

 

about

 

the

 

full

 

syntax

 

of

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

.

 

The

 

MAP

 

option

 

names

 

the

 

map

 

that

 

is

 

used

 

to

 

convert

 

the

 

data

 

to

 

its

 

unformatted

 

form,

 

and

 

the

 

MAPSET

 

option

 

names

 

the

 

map

 

set

 

to

 

which

 

the

 

map

 

belongs.

 

The

 

effect

 

of

 

omitting

 

the

 

MAPSET

 

option

 

is

 

the

 

same

 

as

 

explained

 

for

 

a

 

EXEC

 

CICS

 

SEND

 

MAP

 

command.

 

For

 

example,

 

in

 

its

 

simplest

 

form,

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

is

 

coded

 

as:

 

RECEIVE

 

MAP(’DISPLAY’)

 

This

 

command

 

tells

 

BMS

 

to

 

map

 

the

 

input

 

data

 

into

 

a

 

symbolic

 

map

 

data

 

structure

 

called

 

DISPLAY.

 

The

 

example

 

assumes

 

that

 

the

 

name

 

of

 

the

 

map

 

set

 

is

 

also

 

DISPLAY.

 

Another

 

map,

 

MENU,

 

in

 

the

 

same

 

map

 

set

 

can

 

be

 

read

 

by:

 

RECEIVE

 

MAP(’MENU’)

 

MAPSET(’DISPLAY’)

 

This

 

command

 

tells

 

BMS

 

to

 

map

 

the

 

input

 

data

 

into

 

a

 

symbolic

 

map

 

data

 

structure

 

called

 

MENU.

 

After

 

an

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command,

 

your

 

program

 

can

 

determine

 

the

 

inbound

 

cursor

 

position

 

by

 

inspecting

 

the

 

value

 

stored

 

in

 

EIBCPOSN.

 

To

 

do

 

this,

 

the

 

application

 

program

 

must

 

be

 

informed

 

of

 

the

 

physical

 

layout

 

of

 

the

 

screen,

 

although

 

BMS

 

separates

 

the

 

screen

 

layout

 

from

 

the

 

application

 

for

 

other

 

interfaces.

 

Refer

 

to

 

the

 

following

 

list:

 

v

   

Receiving

 

data

 

into

 

an

 

alternative

 

data

 

structure

 

The

 

sample

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

commands

 

shown

 

above

 

use

 

a

 

literal

 

for

 

the

 

name

 

of

 

the

 

map

 

or

 

map

 

set.

 

You

 

can

 

also

 

use

 

a

 

variable

 

for

 

these

 

names,

 

in

 

which

 

case

 

you

 

must

 

use

 

one

 

of

 

the

 

options

 

INTO

 

or

 

SET.

 

If

 

you

 

code

 

INTO,

 

display

 

data

 

is

 

mapped

 

into

 

the

 

named

 

data

 

area

 

rather

 

than

 

into

 

the

 

data

 

structure

 

for

 

the

 

symbolic

 

description.

 

If

 

you

 

code

 

SET,

 

BMS

 

acquires

 

a

 

data

 

area

 

for

 

you,

 

maps

 

the

 

display

 

data

 

into

 

it,

 

and

 

stores

 

the

 

address

 

of

 

the

 

data

 

area

 

in

 

the

 

named

 

pointer

 

reference.

 

Note

 

that

 

this

 

data

 

area

 

includes

 

the

 

12-byte

 

terminal

 

input/output

 

area

 

(TIOA)

 

prefix,

 

if

 

present.

 

(The

 

TIOA

 

prefix

 

is

 

present

 

when

 

TIOAPFX=YES

 

is

 

coded

 

with

 

the

 

DFHMSD

 

macro.)

 

This

 

option

 

specifies

 

that

 

BMS

 

should

 

include

 

a

 

filler

 

in

 

the

 

symbolic

 

description

 

maps

 

to

 

allow

 

for

 

the

 

unused

 

TIOA

 

prefix

 

that

 

occurs

 

with

 

command-level

 

application

 

programs.

 

If

 

this

 

operand

 

is

 

not

 

specified,

 

the

 

BMS

 

processor

 

issues

 

a

 

warning

 

message

 

and

 

assumes

 

TIOAPFX=YES.

 

For

 

application

 

portability,

 

however,

 

you

 

should

 

always

 

code

 

it.

 

Refer

 

also

 

to

 

the

 

EXEC

 

CICS

 

GETMAIN

 

STORAGE=AUTO

 

description

 

in

 

“Getting

 

storage

 

for

 

a

 

data

 

structure”

 

on

 

page

 

85.

 

BMS

 

sets

 

the

 

receiving

 

area

 

to

 

hexadecimal

 

zeros

 

(X'00')

 

before

 

performing

 

the

 

EXEC

 

CICS

 

RECEIVE

 

operation,

 

so

 

you

 

should

 

save

 

any

 

data

 

in

 

this

 

area

 

before

 

performing

 

an

 

EXEC

 

CICS

 

RECEIVE

 

operation.

 

Furthermore,

 

if

 

you

 

depend

 

on

 

BMS

 

to

 

set

 

a

 

data

 

area

 

to

 

hexadecimal

 

zeros

 

(X'00')

 

for

 

you

 

during

 

an

 

EXEC

 

CICS

 

RECEIVE

 

operation,

 

you

 

should

 

be

 

aware

 

of

 

the

 

MAPFAIL

 

condition.

 

If

 

this

 

arises,

 

BMS

 

does

 

not

 

set

 

the

 

input

 

map

 

to

 

hexadecimal

 

zeros

 

(X'00').

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

89



If

 

an

 

operator

 

types

 

into

 

a

 

BMS

 

input

 

map,

 

but

 

does

 

not

 

fill

 

one

 

of

 

the

 

fields,

 

BMS

 

justifies

 

the

 

input

 

data,

 

and

 

pads

 

the

 

empty

 

part

 

of

 

the

 

field

 

according

 

to

 

predefined

 

rules.

 

These

 

depend

 

upon

 

what

 

you

 

specify

 

with

 

the

 

JUSTIFY

 

operand

 

of

 

the

 

DFHMDF

 

macro.

 

The

 

MAPFAIL

 

condition

 

can

 

occur

 

unexpectedly

 

after

 

an

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command.

 

For

 

example,

 

it

 

occurs

 

if

 

the

 

emulator

 

operator

 

presses

 

a

 

program

 

access

 

key

 

(such

 

as

 

PA1

 

or

 

PA2)

 

when

 

CICS

 

is

 

waiting

 

to

 

perform

 

an

 

EXEC

 

CICS

 

RECEIVE

 

command.

 

Therefore,

 

you

 

should

 

always

 

consider

 

using

 

the

 

RESP

 

option

 

and

 

inspecting

 

the

 

returned

 

code,

 

or

 

coding

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

for

 

the

 

MAPFAIL

 

condition.

 

v

   

Uppercase

 

translation

 

By

 

default,

 

the

 

data

 

to

 

be

 

mapped

 

is

 

assumed

 

to

 

come

 

from

 

an

 

emulator.

 

The

 

emulator

 

control

 

table

 

entry

 

for

 

the

 

terminal

 

can

 

specify

 

that

 

all

 

input

 

data

 

is

 

to

 

be

 

translated

 

to

 

uppercase.

 

You

 

can

 

override

 

this

 

for

 

any

 

individual

 

EXEC

 

CICS

 

RECEIVE

 

command

 

by

 

specifying

 

ASIS.

 

Note,

 

however,

 

that

 

ASIS

 

has

 

no

 

effect

 

on

 

the

 

first

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

of

 

a

 

transaction.

 

(This

 

means

 

that

 

ASIS

 

is

 

irrelevant

 

to

 

pseudoconversational

 

transactions,

 

which

 

issue

 

only

 

one

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command.)

 

v

   

Mapping

 

data

 

from

 

another

 

data

 

area

 

Sometimes,

 

you

 

need

 

to

 

perform

 

an

 

input

 

mapping

 

operation

 

in

 

two

 

stages;

 

accepting

 

and

 

storing

 

the

 

input

 

data

 

in

 

one

 

stage,

 

mapping

 

it

 

in

 

the

 

second.

 

For

 

example,

 

your

 

program

 

might

 

receive

 

(but

 

not

 

map)

 

data

 

using

 

an

 

emulator

 

control

 

EXEC

 

CICS

 

RECEIVE

 

command.

 

It

 

would

 

then

 

have

 

to

 

map

 

the

 

data

 

from

 

CICS

 

storage.

 

You

 

use

 

the

 

FROM

 

and

 

LENGTH

 

options

 

of

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

to

 

specify

 

that

 

data

 

is

 

to

 

be

 

mapped

 

from

 

a

 

data

 

area

 

instead

 

of

 

from

 

an

 

emulator.

 

FROM

 

names

 

the

 

data

 

area;

 

LENGTH

 

indicates

 

the

 

number

 

of

 

bytes

 

of

 

data

 

to

 

be

 

mapped.

 

If

 

the

 

data

 

is

 

produced

 

by

 

an

 

emulator

 

control

 

EXEC

 

CICS

 

RECEIVE

 

command,

 

the

 

LENGTH

 

value

 

of

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

must

 

match

 

that

 

specified

 

in

 

the

 

original

 

EXEC

 

CICS

 

RECEIVE

 

command.

 

After

 

an

 

EXEC

 

CICS

 

RECEIVE

 

MAP,

 

the

 

program

 

can

 

determine

 

the

 

type

 

of

 

attention

 

identifier

 

(AID)

 

by

 

inspecting

 

EIBAID.

 

You

 

cannot

 

issue

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

in

 

a

 

task

 

not

 

associated

 

with

 

an

 

emulator

 

because

 

BMS

 

needs

 

to

 

refer

 

to

 

emulator

 

information

 

to

 

analyze

 

the

 

datastream.

 

For

 

information

 

about

 

the

 

emulator

 

control

 

EXEC

 

CICS

 

RECEIVE

 

command,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

Note:

  

The

 

data

 

obtained

 

from

 

an

 

EXEC

 

CICS

 

RECEIVE

 

BUFFER

 

command

 

cannot

 

be

 

mapped

 

since

 

the

 

data

 

will

 

not

 

contain

 

SBA

 

(set

 

buffer

 

address)

 

orders

 

and

 

a

 

MAPFAIL

 

condition

 

will

 

be

 

raised.

Responding

 

to

 

emulator

 

input:

   

Some

 

operator

 

actions

 

cause

 

an

 

AID

 

to

 

be

 

sent

 

to

 

CICS.

 

Each

 

such

 

action

 

generates

 

a

 

different

 

AID.

 

The

 

AID

 

is

 

a

 

one-byte

 

character,

 

and

 

can

 

be

 

tested

 

by

 

an

 

application

 

program

 

by

 

inspecting

 

the

 

contents

 

of

 

the

 

EIBAID

 

field

 

and

 

comparing

 

it

 

to

 

the

 

values

 

supplied

 

in

 

the

 

DFHAID

 

copybook.

 

This

 

can

 

be

 

used

 

as

 

a

 

mechanism

 

for

 

controlling

 

program

 

flow.

 

The

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

controls

 

conditional

 

branching

 

caused

 

by

 

attention

 

identifiers.

 

If

 

either

 

the

 

RESP,

 

RESP2,

 

or

 

no

 

EXEC

 

CICS

 

HANDLE

 

option

 

has

 

been

 

specified,

 

the

 

HANDLE

 

AID

 

function

 

is

 

suspended

 

for

 

that

 

command.

 

v

   

Exception

 

conditions

 

On

 

input,

 

you

 

are

 

only

 

likely

 

to

 

encounter

 

a

 

MAPFAIL

 

exception

 

condition

 

when

 

using

 

minimum

 

function

 

BMS,

 

as

 

follows:

   

90

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



–

   

If

 

the

 

data

 

to

 

be

 

mapped

 

has

 

a

 

length

 

of

 

zero.

 

This

 

happens

 

if

 

a

 

PA

 

key

 

or

 

the

 

CLEAR

 

key

 

is

 

pressed.

 

–

   

If

 

an

 

AID

 

has

 

been

 

pressed

 

and

 

no

 

data

 

has

 

been

 

entered

 

and

 

no

 

fields

 

have

 

FRSET.

 

You

 

should

 

remember,

 

however,

 

that

 

an

 

exception

 

condition

 

is

 

not

 

necessarily

 

an

 

error

 

condition.

 

Sometimes

 

you

 

might

 

even

 

want

 

to

 

treat

 

an

 

exception

 

condition

 

as

 

part

 

of

 

the

 

normal

 

course

 

of

 

events.

 

Use

 

the

 

RESP

 

option

 

or

 

the

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

to

 

respond

 

to

 

exception

 

conditions.

 

For

 

information

 

about

 

the

 

BMS

 

commands,

 

and

 

the

 

default

 

system

 

action

 

they

 

invoke,

 

refer

 

to

 

the

 

list

 

of

 

conditions

 

documented

 

with

 

each

 

command.

 

The

 

commands

 

are

 

documented

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

v

   

EIBAID

 

field

 

A

 

program

 

can

 

examine

 

the

 

value

 

of

 

the

 

EIBAID

 

field

 

in

 

the

 

EIB

 

to

 

find

 

out

 

which

 

attention

 

key

 

has

 

been

 

pressed.

 

The

 

3270

 

emulator

 

transmits

 

an

 

AID

 

character,

 

which

 

is

 

stored

 

in

 

field

 

EIBAID.

 

The

 

program

 

can

 

compare

 

the

 

contents

 

of

 

EIBAID

 

with

 

the

 

constants

 

supplied

 

in

 

the

 

CICS

 

copybook

 

DFHAID.

 

Using

 

EIBAID

 

is

 

particularly

 

suited

 

to

 

a

 

structured

 

programming

 

environment.

 

For

 

information

 

about

 

DFHAID,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

v

   

HANDLE

 

AID

 

command

 

Instead

 

of

 

examining

 

the

 

contents

 

of

 

EIBAID,

 

you

 

can

 

use

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

to

 

pass

 

control

 

to

 

a

 

specified

 

label

 

when

 

CICS

 

receives

 

an

 

AID

 

from

 

a

 

display

 

device;

 

control

 

is

 

passed

 

after

 

the

 

input

 

operation

 

is

 

completed.

 

In

 

the

 

absence

 

of

 

an

 

EXEC

 

CICS

 

HANDLE

 

AID

 

for

 

an

 

AID,

 

control

 

returns

 

to

 

the

 

application

 

program

 

at

 

the

 

point

 

immediately

 

following

 

the

 

input

 

request.

 

You

 

can

 

suspend

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

using

 

the

 

PUSH

 

and

 

POP

 

commands.

 

Note

 

that

 

RESP

 

(which

 

invokes

 

NOHANDLE)

 

suspends

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

function

 

in

 

the

 

same

 

way

 

as

 

it

 

does

 

with

 

EXEC

 

CICS

 

HANDLE

 

CONDITION,

 

and

 

is

 

better

 

suited

 

to

 

a

 

structured

 

programming

 

environment.

 

An

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

takes

 

precedence

 

over

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command,

 

unless

 

the

 

exception

 

condition

 

stops

 

receipt

 

of

 

the

 

AID.

 

If

 

an

 

AID

 

is

 

received

 

during

 

an

 

input

 

operation

 

for

 

which

 

a

 

EXEC

 

CICS

 

HANDLE

 

AID

 

is

 

active,

 

control

 

passes

 

to

 

the

 

label

 

specified

 

in

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command,

 

regardless

 

of

 

any

 

exception

 

conditions

 

that

 

occur.

 

An

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

for

 

a

 

specified

 

AID

 

remains

 

active

 

until

 

the

 

task

 

is

 

terminated

 

or

 

until

 

another

 

EXEC

 

CICS

 

HANDLE

 

AID

 

is

 

issued

 

for

 

that

 

AID.

 

(If

 

no

 

label

 

is

 

specified

 

in

 

the

 

new

 

request,

 

the

 

existing

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

is

 

suspended.)

 

An

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

is

 

valid

 

only

 

for

 

the

 

program

 

in

 

which

 

it

 

is

 

issued.

 

Each

 

new

 

program

 

in

 

a

 

task

 

starts

 

without

 

any

 

active

 

EXEC

 

CICS

 

HANDLE

 

AID

 

settings.

 

When

 

control

 

returns

 

to

 

a

 

program

 

from

 

a

 

program

 

at

 

a

 

lower

 

logical

 

level,

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

commands

 

that

 

were

 

active

 

in

 

the

 

higher-level

 

program

 

before

 

control

 

was

 

transferred

 

from

 

it

 

are

 

reactivated,

 

and

 

any

 

EXEC

 

CICS

 

HANDLE

 

AID

 

commands

 

activated

 

in

 

the

 

lower-level

 

program

 

are

 

deactivated.

 

If

 

an

 

AID

 

covered

 

by

 

the

 

general

 

option

 

ANYKEY

 

is

 

received

 

and

 

there

 

is

 

no

 

active

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

for

 

the

 

specified

 

AID

 

but

 

there

 

is

 

an

 

active

 

EXEC

 

CICS

 

HANDLE

 

AID

 

ANYKEY

 

command,

 

control

 

passes

 

to

 

the

 

label

 

specified

 

in

 

this

 

command.

 

An

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

for

 

an

 

AID

 

overrides

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

ANYKEY

 

command

 

in

 

relation

 

to

 

that

 

AID.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

91



The

 

following

 

example

 

shows

 

an

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

that

 

specifies

 

one

 

label

 

(LAB1)

 

for

 

the

 

PA1

 

key

 

AID,

 

a

 

second

 

label

 

(LAB2)

 

for

 

the

 

PA2

 

and

 

PA3

 

key

 

attention

 

identifiers,

 

all

 

of

 

the

 

PF

 

key

 

attention

 

identifiers

 

except

 

PF10,

 

and

 

the

 

CLEAR

 

key

 

AID:

 

HANDLE

 

AID

 

PA1(LAB1)

 

ANYKEY(LAB2)

 

PF10

 

You

 

cannot

 

code

 

more

 

than

 

16

 

options

 

in

 

a

 

single

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command.

Copying

 

symbolic

 

description

 

maps

 

into

 

your

 

application

 

program

 

In

 

“Developing

 

applications

 

that

 

use

 

BMS

 

services”

 

on

 

page

 

71,

 

we

 

described

 

how

 

to

 

process

 

and

 

define

 

the

 

symbolic

 

version

 

of

 

a

 

map

 

set.

 

The

 

defined

 

version

 

of

 

a

 

map

 

set

 

(the

 

symbolic

 

storage

 

definition)

 

is

 

an

 

application

 

data

 

structure

 

that

 

must

 

be

 

copied

 

into

 

any

 

application

 

program

 

that

 

refers

 

to

 

fields

 

in

 

its

 

maps.

 

The

 

following

 

examples

 

show

 

you

 

how

 

to

 

copy

 

these

 

structures

 

for

 

each

 

programming

 

language.

 

In

 

these

 

examples,

 

mapset1,

 

mapset2,

 

and

 

mapset3

 

(COBOL

 

examples),

 

mapset1.h,

 

mapset2.h,

 

and

 

mapset3.h

 

(C

 

examples),

 

and

 

mapset1.inc,

 

mapset2.inc,

 

and

 

mapset3.inc

 

(PL/I

 

examples)

 

are

 

the

 

names

 

of

 

the

 

files

 

that

 

contain

 

the

 

BMS

 

symbolic

 

map

 

set

 

definition.

 

These

 

files

 

are

 

generated

 

by

 

the

 

cicsmap

 

command.

 

v

   

A

 

COBOL

 

program

 

must

 

contain

 

a

 

COBOL

 

COPY

 

statement

 

for

 

each

 

symbolic

 

map

 

set

 

definition.

 

Generally,

 

you

 

should

 

code

 

the

 

COPY

 

statements

 

in

 

the

 

working-storage

 

section

 

of

 

a

 

program.

 

This

 

saves

 

you

 

from

 

having

 

to

 

acquire

 

storage

 

for

 

them:

  

WORKING-STORAGE

 

SECTION.

  

COPY

 

mapset1.

  

COPY

 

mapset2.

  

COPY

 

mapset3.

  

.

  

.

 

where

 

mapset

 

is

 

the

 

one

 

to

 

seven

 

character

 

name

 

of

 

the

 

map

 

set.

 

v

   

A

 

C

 

or

 

C++

 

program

 

must

 

contain

 

an

 

#include

 

statement

 

for

 

each

 

symbolic

 

storage

 

definition:

   

#include

 

mapset1.h

   

#include

 

mapset2.h

   

#include

 

mapset3.h

  

.

  

.

 

where

 

mapset

 

is

 

the

 

one

 

to

 

seven

 

character

 

name

 

of

 

the

 

map

 

set.

 

v

   

A

 

PL/I

 

program

 

must

 

contain

 

a

 

%INCLUDE

 

statement

 

for

 

each

 

symbolic

 

storage

 

definition:

 

%include

 

mapset1;

 

%include

 

mapset2;

 

%include

 

mapset3;

 

where

 

mapset

 

is

 

the

 

one

 

to

 

seven

 

character

 

name

 

of

 

the

 

map

 

set.

   

92

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



How

 

to

 

obtain

 

BMS

 

printed

 

output

  

CICS

 

for

 

Windows

 

To

 

obtain

 

printed

 

output

 

from

 

CICS,

 

use

 

cicsprnt,

 

which

 

is

 

provided

 

by

 

the

 

IBM

 

CICS

 

Universal

 

Client.

 

Applications

 

need

 

to

 

know

 

the

 

termid

 

of

 

the

 

printer,

 

so

 

that

 

the

 

application

 

program

 

can

 

direct

 

the

 

output

 

to

 

cicsprnt.

 

For

 

more

 

information

 

about

 

cicsprnt

 

see

 

the

 

CICS

 

Clients:

 

Administration.

  

CICS

 

on

 

Open

 

Systems

 

To

 

obtain

 

printed

 

output

 

from

 

CICS,

 

attach

 

a

 

cicstermp

 

to

 

a

 

printer.

 

Applications

 

need

 

to

 

know

 

the

 

termid

 

of

 

the

 

printer,

 

so

 

that

 

your

 

application

 

program

 

can

 

direct

 

the

 

output

 

to

 

the

 

cicstermp

 

process.

Note:

  

TXSeries

 

CICS

 

do

 

not

 

support

 

the

 

CICS

 

local

 

copy

 

key.

 

Very

 

often

 

you

 

will

 

want

 

printed

 

output

 

(hard

 

copy)

 

as

 

well

 

as,

 

or

 

instead

 

of,

 

the

 

screen

 

images

 

produced

 

by

 

a

 

transaction.

 

You

 

have

 

a

 

choice

 

of

 

methods

 

of

 

producing

 

such

 

output.

 

Which

 

one

 

you

 

choose

 

depends

 

on

 

your

 

requirements.

 

This

 

section

 

describes

 

one

 

method

 

available,

 

which

 

is

 

asynchronous

 

page

 

build

 

transaction.

 

A

 

3270

 

printer

 

contains

 

a

 

page

 

buffer.

 

BMS

 

moves

 

data

 

into

 

this

 

page

 

buffer

 

when

 

instructed

 

to

 

do

 

so

 

by

 

EXEC

 

CICS

 

SEND

 

MAP

 

or

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

commands.

 

The

 

page

 

buffer

 

is

 

printed

 

only

 

when

 

BMS

 

receives

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

or

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

command

 

containing

 

the

 

PRINT

 

option.

 

Likewise,

 

it

 

is

 

erased

 

only

 

if

 

BMS

 

receives

 

an

 

EXEC

 

CICS

 

SEND

 

MAP

 

or

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

command

 

that

 

specifies

 

the

 

ERASE

 

option.

 

These

 

properties

 

of

 

the

 

printer

 

make

 

it

 

possible

 

for

 

a

 

program

 

to

 

build

 

a

 

single

 

page

 

of

 

printed

 

output

 

from

 

a

 

series

 

of

 

maps.

 

Note:

  

Each

 

time

 

you

 

issue

 

an

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

PRINT

 

command,

 

the

 

output

 

is

 

spooled

 

to

 

a

 

file

 

in

 

the

 

/tmp

 

directory.

 

The

 

file

 

is

 

queued

 

to

 

the

 

printer

 

after

 

a

 

syncpoint

 

has

 

been

 

taken

 

or

 

when

 

the

 

transaction

 

completes.

 

Two

 

ways

 

of

 

printing

 

a

 

page

 

built

 

from

 

multiple

 

maps

 

are:

 

1.

   

Using

 

the

 

interval

 

control

 

START

 

command.

 

You

 

use

 

the

 

START

 

command

 

to

 

initiate

 

a

 

secondary

 

CICS

 

task.

 

This

 

is

 

a

 

print

 

task

 

if

 

the

 

TERMID

 

option

 

of

 

the

 

command

 

names

 

a

 

printer

 

as

 

its

 

principal

 

facility.

 

Your

 

initial

 

transaction

 

can

 

pass

 

data

 

to

 

the

 

print

 

task

 

by

 

specifying

 

the

 

FROM

 

and

 

LENGTH

 

options

 

of

 

the

 

START

 

command.

 

If

 

the

 

primary

 

transaction

 

has

 

already

 

created

 

a

 

series

 

of

 

output

 

data

 

structures

 

in

 

the

 

FROM

 

area,

 

the

 

secondary

 

transaction

 

can

 

map

 

the

 

data

 

into

 

the

 

printer

 

buffer,

 

then

 

initiate

 

printing

 

using

 

a

 

BMS

 

EXEC

 

CICS

 

SEND

 

with

 

the

 

PRINT

 

option.

 

2.

   

Using

 

a

 

transient

 

data

 

queue

 

with

 

a

 

trigger

 

level.

 

You

 

can

 

send

 

symbolic

 

map

 

data

 

structures

 

to

 

a

 

transient

 

data

 

queue

 

using

 

the

 

WRITEQ

 

command.

 

CICS

 

can

 

be

 

made

 

to

 

initiate

 

a

 

print

 

transaction

 

when

 

a

 

specific

 

number

 

of

 

records

 

have

 

been

 

written

 

to

 

the

 

queue.

 

The

 

name

 

of

 

the

 

transaction

 

to

 

be

 

initiated,

 

the

 

identifier

 

of

 

the

 

printer

 

that

 

is

 

to

 

be

 

its

 

principal

 

facility,

 

and

 

the

 

trigger

 

level

 

at

 

which

 

it

 

is

 

started,

 

are

 

defined

 

in

 

the

 

Transient

 

Data

 

resource

 

definition.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

93

|
|
|
|



Note,

 

however,

 

that

 

output

 

from

 

several

 

instances

 

of

 

your

 

transaction

 

may

 

be

 

interleaved

 

on

 

the

 

transient

 

data

 

queue.

 

This

 

can

 

be

 

avoided

 

if

 

all

 

the

 

data

 

to

 

be

 

printed

 

by

 

an

 

instance

 

of

 

your

 

transaction

 

is

 

stored

 

in

 

a

 

single

 

transient

 

data

 

queue

 

item.

 

Alternatively,

 

each

 

instance

 

of

 

your

 

transaction

 

can

 

get

 

exclusive

 

control

 

of

 

the

 

transient

 

data

 

queue

 

by

 

ENQ

 

and

 

DEQ

 

commands.

 

Blank

 

lines

 

and

 

3270

 

printers:

   

Every

 

line

 

in

 

a

 

map

 

for

 

a

 

3270

 

printer

 

must

 

contain

 

field

 

data

 

(blanks

 

if

 

necessary),

 

because

 

the

 

3270

 

does

 

not

 

print

 

empty

 

lines

 

(that

 

is,

 

lines

 

of

 

null

 

characters).

 

Setting

 

the

 

printer

 

page

 

width:

   

BMS

 

builds

 

device-dependent

 

datastreams

 

for

 

3270

 

printers

 

by

 

computing

 

set

 

buffer

 

address

 

(SBA)

 

orders

 

based

 

on

 

the

 

page

 

width

 

specified

 

by

 

the

 

NumColumns

 

attribute

 

in

 

the

 

Terminal

 

Definitions

 

(WD).

 

If

 

you

 

are

 

using

 

cicstermp,

 

you

 

must

 

set

 

NumColumns

 

to

 

132,

 

because

 

cicstermp

 

emulates

 

a

 

132

 

column

 

printer.

 

Form

 

feed

 

characters:

   

You

 

can

 

code

 

an

 

option,

 

called

 

FORMFEED,

 

on

 

the

 

EXEC

 

CICS

 

SEND

 

MAP

 

and

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

commands.

 

This

 

generates

 

a

 

form

 

feed

 

character

 

at

 

the

 

start

 

of

 

the

 

datastream.

 

If

 

you

 

code

 

this

 

option

 

for

 

an

 

emulator

 

that

 

does

 

not

 

support

 

form

 

feed,

 

CICS

 

simply

 

ignores

 

the

 

request.

 

The

 

form

 

feed

 

character

 

occupies

 

screen

 

position

 

1

 

(the

 

top

 

left-hand

 

corner)

 

on

 

a

 

3270

 

display

 

or

 

printer.

 

It

 

can

 

be

 

overwritten

 

by

 

other

 

data

 

sent

 

to

 

the

 

emulator,

 

in

 

which

 

case

 

form

 

feed

 

does

 

not

 

occur.

 

Be

 

careful

 

when

 

using

 

the

 

FORMFEED

 

option

 

on

 

an

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

command.

 

The

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

command

 

always

 

generates

 

a

 

complete

 

blank

 

page.

 

Thus

 

an

 

EXEC

 

CICS

 

SEND

 

CONTROL

 

FORMFEED

 

skips

 

to

 

a

 

new

 

page

 

and

 

also

 

sends

 

this

 

as

 

a

 

blank

 

page.

 

However,

 

as

 

described

 

earlier,

 

3270

 

printers

 

sometimes

 

suppress

 

null

 

lines

 

so

 

that

 

a

 

blank

 

page

 

is

 

printed

 

as

 

a

 

single

 

line.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference,

 

the

 

CICS

 

Administration

 

Reference,

 

and

 

the

 

CICS

 

Clients:

 

Administration

 

for

 

related

 

information.

 

BMS

 

design

 

considerations

 

To

 

ensure

 

the

 

efficiency

 

of

 

applications

 

using

 

BMS,

 

consider

 

the

 

following

 

points:

 

Good

 

screen

 

design

 

and

 

effective

 

use

 

of

 

the

 

3270

 

features

 

significantly

 

effects

 

the

 

number

 

of

 

bytes

 

to

 

be

 

sent

 

in

 

the

 

remote

 

procedure

 

call

 

(RPC)

 

and

 

potentially

 

therefore

 

across

 

the

 

network.

 

Consideration

 

should

 

be

 

given

 

to

 

minimizing

 

the

 

number

 

of

 

transmissions

 

to

 

a

 

terminal.

 

The

 

efficiency

 

of

 

the

 

datastream

 

affects

 

both

 

response

 

time

 

and

 

line

 

usage.

 

Sending

 

unformatted

 

data

 

If

 

your

 

output

 

to

 

a

 

terminal

 

is

 

entirely,

 

or

 

even

 

mostly,

 

unformatted

 

you

 

can

 

send

 

it

 

using

 

native

 

terminal

 

control

 

commands

 

rather

 

than

 

BMS

 

(that

 

is,

 

using

 

SEND

 

without

 

the

 

MAP

 

option).

 

This

 

command

 

is

 

much

 

more

 

efficient

 

in

 

terms

 

of

 

processor

 

overhead.

 

Do

 

not

 

use

 

square

 

brackets

 

[]

 

in

 

maps

 

or

 

native

 

terminal

 

control

 

commands

 

if

 

the

 

transaction

 

might

 

be

 

run,

 

with

 

transaction

 

routing,

 

from

 

an

 

EBCDIC

 

system.

 

CICS

 

does

 

not

 

support

 

square

 

brackets

 

in

 

non-ASCII

 

terminals.

   

94

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Sending

 

formatted

 

data

 

When

 

building

 

a

 

formatted

 

datastream

 

with

 

BMS,

 

you

 

should

 

bear

 

in

 

mind

 

the

 

factors

 

described

 

in

 

the

 

following

 

list:

 

Avoid

 

turning

 

on

 

modified

 

data

 

tags

 

unnecessarily

 

The

 

modified

 

data

 

tag

 

(MDT)

 

is

 

the

 

bit

 

in

 

the

 

attribute

 

byte

 

that

 

determines

 

whether

 

a

 

field

 

should

 

be

 

transmitted

 

from

 

a

 

terminal

 

to

 

CICS.

 

The

 

MDT

 

for

 

a

 

field

 

is

 

normally

 

turned

 

on

 

by

 

the

 

3270

 

emulator

 

(the

 

CICS

 

cicsterm

 

and

 

cicsteld

 

processes)

 

when

 

the

 

user

 

enters

 

data

 

into

 

a

 

field.

 

However,

 

you

 

can

 

also

 

turn

 

on

 

the

 

tag

 

when

 

you

 

send

 

a

 

map

 

to

 

the

 

screen,

 

either

 

by

 

specifying

 

FSET

 

in

 

the

 

map

 

or

 

by

 

sending

 

an

 

override

 

attribute

 

byte

 

that

 

has

 

the

 

tag

 

on.

 

You

 

should

 

never

 

set

 

the

 

tag

 

on

 

in

 

this

 

way

 

for

 

a

 

field

 

that

 

is

 

constant

 

in

 

the

 

map,

 

or

 

for

 

a

 

field

 

that

 

has

 

no

 

label

 

(and

 

therefore

 

is

 

not

 

sent

 

to

 

the

 

program

 

that

 

receives

 

the

 

map).

 

Also,

 

you

 

do

 

not

 

normally

 

need

 

to

 

specify

 

FSET

 

for

 

an

 

ordinary

 

input

 

field.

 

This

 

is

 

because

 

the

 

MDT

 

is

 

turned

 

on

 

automatically

 

in

 

any

 

field

 

in

 

which

 

the

 

user

 

enters

 

data.

 

This

 

is

 

then

 

included

 

in

 

the

 

next

 

SEND.

 

These

 

tags

 

remain

 

on,

 

no

 

matter

 

how

 

many

 

times

 

the

 

screen

 

is

 

sent,

 

until

 

explicitly

 

turned

 

off

 

by

 

the

 

program

 

(by

 

FRSET,

 

ERASEAUP,

 

ERASE,

 

or

 

by

 

an

 

override

 

attribute

 

with

 

the

 

tag

 

off).

 

You

 

can

 

store

 

information,

 

between

 

inputs,

 

that

 

the

 

user

 

did

 

not

 

enter

 

on

 

the

 

screen.

 

This

 

is

 

a

 

reason

 

for

 

turning

 

the

 

MDT

 

on

 

by

 

program.

 

However,

 

this

 

storage

 

technique

 

is

 

appropriate

 

only

 

to

 

small

 

amounts

 

of

 

data,

 

and

 

is

 

more

 

suitable

 

for

 

local

 

than

 

for

 

remote

 

terminals,

 

because

 

of

 

the

 

transmission

 

overhead

 

involved.

 

For

 

example,

 

this

 

technique

 

is

 

particularly

 

useful

 

for

 

storing

 

default

 

values

 

for

 

input

 

fields.

 

In

 

some

 

applications,

 

the

 

user

 

must

 

complete

 

a

 

screen

 

in

 

which

 

some

 

fields

 

already

 

contain

 

default

 

values.

 

A

 

user

 

who

 

does

 

not

 

want

 

to

 

change

 

a

 

default

 

just

 

skips

 

that

 

field.

 

The

 

program

 

processing

 

the

 

input

 

has

 

to

 

be

 

informed

 

what

 

these

 

defaults

 

are.

 

If

 

they

 

are

 

always

 

the

 

same,

 

they

 

can

 

be

 

supplied

 

as

 

constants

 

in

 

the

 

program.

 

If

 

they

 

are

 

variable,

 

however,

 

and

 

depend

 

on

 

earlier

 

inputs,

 

you

 

can

 

simply

 

save

 

them

 

on

 

the

 

screen

 

by

 

turning

 

the

 

MDT

 

on

 

with

 

FSET

 

in

 

the

 

map

 

that

 

writes

 

the

 

screen.

 

The

 

program

 

reading

 

the

 

screen

 

then

 

receives

 

the

 

default

 

value

 

from

 

a

 

user

 

who

 

does

 

not

 

change

 

the

 

field,

 

and

 

the

 

new

 

value

 

from

 

a

 

user

 

who

 

does.

 

Note:

  

The

 

saved

 

values

 

are

 

not

 

returned

 

to

 

the

 

screen

 

if

 

either

 

the

 

CLEAR,

 

PA1,

 

PA2,

 

or

 

PA3

 

key

 

is

 

pressed.

 

Use

 

FRSET

 

to

 

reduce

 

inbound

 

traffic

 

If

 

you

 

have

 

a

 

screen

 

with

 

many

 

input

 

fields,

 

which

 

you

 

may

 

have

 

to

 

read

 

several

 

times,

 

you

 

can

 

reduce

 

the

 

length

 

of

 

the

 

input

 

datastream

 

by

 

specifying

 

FRSET

 

when

 

you

 

write

 

back

 

to

 

the

 

screen

 

in

 

preparation

 

for

 

the

 

next

 

read.

 

FRSET

 

turns

 

off

 

the

 

MDTs,

 

so

 

that

 

fields

 

entered

 

before

 

that

 

write

 

are

 

not

 

present

 

unless

 

the

 

user

 

reenters

 

them

 

the

 

next

 

time.

 

If

 

you

 

are

 

dealing

 

with

 

a

 

relatively

 

full

 

screen

 

and

 

a

 

process

 

where

 

there

 

may

 

be

 

a

 

number

 

of

 

error

 

cycles

 

(or

 

repeat

 

transmissions

 

for

 

some

 

other

 

reason),

 

this

 

can

 

be

 

a

 

substantial

 

saving.

 

However,

 

because

 

only

 

changed

 

fields

 

are

 

sent

 

on

 

subsequent

 

reads,

 

the

 

program

 

must

 

save

 

input

 

from

 

each

 

cycle

 

and

 

merge

 

the

 

new

 

data

 

with

 

the

 

old.

 

This

 

is

 

not

 

necessary

 

if

 

you

 

are

 

not

 

using

 

FRSET,

 

because

 

the

 

MDTs

 

remain

 

on,

 

and

 

all

 

fields

 

are

 

sent

 

regardless

 

of

 

when

 

they

 

were

 

entered.

 

Do

 

not

 

send

 

blank

 

fields

 

to

 

the

 

screen

 

Sending

 

fields

 

that

 

consist

 

entirely

 

of

 

blanks

 

or

 

that

 

are

 

filled

 

out

 

on

 

the

 

right

 

by

 

trailing

 

blanks

 

to

 

the

 

screen

 

usually

 

wastes

 

line

 

capacity.

 

The

 

only

 

case

 

in

 

which

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

95



BMS

 

requires

 

you

 

to

 

do

 

this

 

is

 

when

 

you

 

need

 

to

 

erase

 

a

 

field

 

on

 

the

 

screen

 

that

 

currently

 

contains

 

data,

 

or

 

to

 

replace

 

it

 

with

 

data

 

shorter

 

than

 

that

 

currently

 

on

 

the

 

screen,

 

without

 

changing

 

the

 

rest

 

of

 

the

 

screen.

 

This

 

is

 

because

 

when

 

BMS

 

builds

 

the

 

datastream

 

representing

 

your

 

map,

 

it

 

includes

 

blanks

 

but

 

omits

 

nulls.

 

This

 

makes

 

the

 

output

 

datastream

 

shorter.

 

BMS

 

omits

 

any

 

field

 

whose

 

first

 

data

 

character

 

is

 

null,

 

regardless

 

of

 

subsequent

 

characters

 

in

 

the

 

field.

 

BMS

 

requires

 

you

 

to

 

initialize

 

to

 

nulls

 

any

 

area

 

to

 

be

 

used

 

to

 

build

 

a

 

map.

 

BMS

 

uses

 

nulls

 

in

 

attribute

 

positions

 

and

 

in

 

the

 

first

 

position

 

of

 

data

 

to

 

indicate

 

that

 

no

 

change

 

is

 

to

 

be

 

made

 

to

 

the

 

value

 

in

 

the

 

map.

 

If

 

you

 

are

 

reusing

 

a

 

map

 

area

 

in

 

a

 

program,

 

you

 

should

 

take

 

special

 

care

 

to

 

clear

 

it

 

in

 

this

 

way.

 

Use

 

the

 

MAPONLY

 

option

 

when

 

possible

 

The

 

MAPONLY

 

option

 

sends

 

only

 

the

 

constant

 

data

 

in

 

a

 

map,

 

and

 

does

 

not

 

merge

 

any

 

variable

 

data

 

from

 

the

 

program.

 

When

 

you

 

send

 

a

 

skeleton

 

screen

 

to

 

be

 

used

 

for

 

data

 

entry,

 

you

 

can

 

often

 

use

 

MAPONLY.

 

Send

 

only

 

changed

 

fields

 

to

 

a

 

screen

 

that

 

is

 

not

 

new

 

Sending

 

only

 

changed

 

fields

 

is

 

important

 

when,

 

for

 

example,

 

a

 

message

 

is

 

added

 

to

 

the

 

screen,

 

or

 

one

 

or

 

two

 

fields

 

on

 

an

 

input

 

screen

 

are

 

highlighted

 

to

 

show

 

errors.

 

In

 

these

 

situations,

 

you

 

should

 

use

 

the

 

DATAONLY

 

option

 

to

 

send

 

a

 

map

 

that

 

consists

 

of

 

nulls

 

except

 

for

 

the

 

changed

 

fields.

 

For

 

fields

 

in

 

which

 

only

 

the

 

attribute

 

byte

 

has

 

changed,

 

you

 

need

 

send

 

only

 

that

 

byte,

 

and

 

send

 

the

 

remaining

 

fields

 

as

 

nulls.

 

BMS

 

uses

 

this

 

input

 

to

 

build

 

a

 

datastream

 

consisting

 

of

 

only

 

the

 

fields

 

in

 

question,

 

and

 

all

 

other

 

fields

 

on

 

the

 

screen

 

will

 

remain

 

unchanged.

 

It

 

may

 

be

 

tempting

 

to

 

ignore

 

this

 

advice

 

and

 

send

 

an

 

unnecessarily

 

long

 

datastream.

 

For

 

example,

 

when

 

a

 

program

 

that

 

is

 

checking

 

an

 

input

 

screen

 

for

 

errors

 

finds

 

one,

 

there

 

are

 

two

 

options.

 

It

 

can

 

simply

 

add

 

the

 

error

 

information

 

to

 

the

 

input

 

map

 

(highlighted

 

attributes,

 

error

 

messages,

 

and

 

so

 

on)

 

and

 

resend

 

it,

 

or

 

it

 

can

 

build

 

an

 

entirely

 

new

 

screen,

 

consisting

 

of

 

just

 

the

 

error

 

and

 

message

 

fields.

 

The

 

former

 

is

 

slightly

 

easier

 

to

 

code

 

(you

 

do

 

not

 

need

 

to

 

have

 

two

 

map

 

areas

 

or

 

move

 

any

 

fields),

 

but

 

it

 

may

 

result

 

in

 

very

 

much

 

longer

 

transmissions

 

because

 

the

 

output

 

datastream

 

contains

 

the

 

correct

 

input

 

fields

 

as

 

well

 

as

 

the

 

error

 

and

 

message

 

fields.

 

In

 

fact,

 

it

 

may

 

even

 

be

 

longer

 

than

 

the

 

original

 

input

 

stream

 

because,

 

if

 

there

 

were

 

empty

 

or

 

short

 

fields

 

in

 

the

 

input,

 

BMS

 

will

 

have

 

replaced

 

the

 

missing

 

characters

 

with

 

blanks.

 

Design

 

data

 

entry

 

operations

 

to

 

reduce

 

line

 

traffic

 

Often,

 

users

 

are

 

required

 

to

 

complete

 

the

 

same

 

screen

 

several

 

times.

 

Only

 

the

 

data

 

changes

 

on

 

each

 

cycle;

 

the

 

titles,

 

field

 

labels,

 

instructions,

 

and

 

so

 

on

 

remain

 

unchanged.

 

In

 

this

 

situation,

 

when

 

an

 

entry

 

is

 

accepted

 

and

 

processed,

 

you

 

can

 

respond

 

with

 

a

 

SEND

 

CONTROL

 

ERASEAUP

 

(or

 

a

 

map

 

that

 

contains

 

only

 

a

 

short

 

confirmation

 

message

 

and

 

specifies

 

ERASEAUP).

 

This

 

causes

 

all

 

of

 

the

 

unprotected

 

fields

 

on

 

the

 

screen

 

(that

 

is,

 

all

 

of

 

the

 

input

 

data

 

from

 

the

 

last

 

entry)

 

to

 

be

 

erased

 

and

 

to

 

have

 

their

 

MDTs

 

reset.

 

The

 

labels

 

and

 

other

 

text,

 

which

 

are

 

in

 

protected

 

fields,

 

are

 

unchanged,

 

the

 

screen

 

is

 

ready

 

for

 

the

 

next

 

data-entry

 

cycle,

 

and

 

only

 

the

 

necessary

 

data

 

has

 

been

 

sent.

 

Compress

 

data

 

sent

 

to

 

the

 

screen

 

When

 

you

 

send

 

unformatted

 

data

 

to

 

the

 

screen,

 

or

 

create

 

a

 

formatted

 

screen

 

outside

 

BMS,

 

you

 

can

 

compress

 

the

 

data

 

further

 

by

 

inserting

 

set

 

buffer

 

address

 

(SBA)

 

and

 

repeat-to-address

 

(RA)

 

orders

 

into

 

the

 

data

 

stream.

 

SBA

 

allows

 

you

 

to

   

96

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



position

 

data

 

on

 

the

 

screen,

 

and

 

RA

 

causes

 

the

 

character

 

following

 

it

 

to

 

be

 

generated

 

from

 

the

 

current

 

point

 

in

 

the

 

buffer

 

until

 

a

 

specified

 

ending

 

address.

 

SBA

 

is

 

useful

 

whenever

 

there

 

are

 

substantial

 

unused

 

areas

 

on

 

the

 

screen

 

that

 

are

 

followed

 

by

 

data.

 

RA

 

is

 

useful

 

when

 

there

 

are

 

long

 

sequences

 

of

 

blanks

 

on

 

the

 

screen.

 

Note:

  

If

 

you

 

wish

 

to

 

insert

 

a

 

Set

 

Buffer

 

Address

 

(SBA)

 

into

 

the

 

datastream,

 

then

 

the

 

values

 

must

 

be

 

ASCII

 

and

 

not

 

EBCDIC.

 

Use

 

nulls

 

instead

 

of

 

blanks

 

You

 

should

 

note

 

that,

 

outside

 

BMS,

 

nulls

 

have

 

no

 

special

 

significance

 

in

 

an

 

output

 

datastream.

 

If

 

you

 

need

 

a

 

blank

 

area

 

on

 

a

 

screen,

 

you

 

can

 

send

 

either

 

blanks

 

or

 

nulls

 

to

 

it;

 

they

 

take

 

up

 

the

 

same

 

space

 

in

 

the

 

output

 

stream.

 

However,

 

if

 

the

 

blank

 

field

 

is

 

likely

 

to

 

be

 

changed

 

by

 

the

 

user

 

and

 

subsequently

 

read,

 

use

 

nulls,

 

because

 

they

 

are

 

not

 

transmitted

 

back.

 

Use

 

methods

 

that

 

avoid

 

the

 

need

 

for

 

nulls

 

or

 

blanks

 

For

 

any

 

large

 

area

 

of

 

a

 

screen

 

that

 

needs

 

to

 

be

 

blank,

 

you

 

should

 

consider

 

methods

 

other

 

than

 

transmitting

 

blanks

 

or

 

nulls;

 

for

 

example,

 

using

 

BMS,

 

putting

 

SBA

 

and

 

RA

 

orders

 

directly

 

into

 

the

 

data

 

stream,

 

or

 

using

 

the

 

ERASE

 

and

 

ERASEAUP

 

options.

 

If

 

there

 

are

 

no

 

explicit

 

references

 

to

 

color

 

in

 

the

 

BMS

 

map,

 

the

 

colors

 

specified

 

in

 

the

 

keymap

 

file

 

(.3270keys)

 

are

 

used

 

in

 

the

 

4-color

 

mode

 

operation.

 

On

 

CICS

 

for

 

Windows,

 

see

 

the

 

CICS

 

Clients:

 

Administration

 

for

 

default

 

color

 

definitions.

 

On

 

CICS

 

on

 

Open

 

Systems

 

the

 

default

 

.3270keys

 

file

 

has

 

the

 

color

 

definitions:

 

background

 

black

 

low

 

intensity

 

protected

 

cyan

 

low

 

intensity

 

unprotected

 

green

 

high

 

intensity

 

protected

 

white

 

high

 

intensity

 

unprotected

 

red

 

These

 

colors

 

display

 

the

 

4

 

different

 

combinations

 

of

 

protect

 

and

 

intensify

 

field

 

attributes.

 

For

 

example,

 

the

 

default

 

color

 

for

 

a

 

field

 

defined

 

as

 

unprotected

 

and

 

high

 

intensity

 

is

 

red;

 

if

 

the

 

characteristics

 

of

 

this

 

field

 

are

 

changed

 

to

 

unprotected,

 

the

 

color

 

changes

 

to

 

green

 

(the

 

default

 

value

 

for

 

unprotected).

 

Note

 

also

 

that

 

if

 

you

 

specify

 

COLOR=NEUTRAL

 

for

 

a

 

field,

 

the

 

field

 

is

 

displayed

 

in

 

white,

 

whereas

 

fields

 

that

 

do

 

not

 

have

 

the

 

COLOR

 

attributes

 

specified,

 

display

 

the

 

default

 

color.

 

Using

 

the

 

BMS

 

macros

 

to

 

code

 

BMS

 

map

 

sets

 

This

 

section

 

describes

 

the

 

three

 

macros

 

DFHMSD,

 

DFHMDI,

 

and

 

DFHMDF,

 

that

 

are

 

used

 

to

 

define

 

BMS

 

map

 

sets,

 

maps,

 

and

 

fields.

 

It

 

show

 

to

 

use

 

the

 

macros

 

to

 

define

 

a

 

simple

 

map

 

set,

 

and

 

how

 

to

 

catalog

 

this

 

mapset

 

for

 

use

 

by

 

application

 

programs.

 

The

 

following

 

macros

 

are

 

used

 

to

 

build

 

map

 

set

 

definitions:

 

Map

 

set

 

definition

 

macro

 

(DFHMSD)

  

The

 

DFHMSD

 

macro

 

defines

 

a

 

map

 

set.

 

A

 

map

 

set

 

contains

 

one

 

or

 

more

 

maps.

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

97



Map

 

definition

 

macro

 

(DFHMDI)

  

The

 

DFHMDI

 

macro

 

defines

 

a

 

map

 

within

 

the

 

map

 

set

 

defined

 

by

 

the

 

previous

 

DFHMSD

 

macro.

 

A

 

map

 

contains

 

zero

 

or

 

more

 

fields.

 

Field

 

definition

 

macro

 

(DFHMDF)

  

The

 

DFHMDF

 

macro

 

defines

 

a

 

field

 

within

 

a

 

map

 

defined

 

by

 

the

 

previous

 

DFHMDI

 

macro.

 

A

 

field

 

name

 

can

 

be

 

up

 

to

 

thirty

 

characters

 

long.

 

You

 

process

 

a

 

BMS

 

map

 

set

 

definition

 

to

 

generate

 

a

 

symbolic

 

description

 

map

 

or

 

a

 

physical

 

map

 

(or

 

both)

 

using

 

the

 

BMS

 

processor

 

cicsmap

 

command.

 

Note:

  

Before

 

CICS

 

can

 

load

 

a

 

physical

 

map,

 

you

 

must

 

define

 

a

 

Program

 

Definitions

 

(PD)

 

entry

 

for

 

it

 

with

 

the

 

ProgType

 

attribute

 

set

 

to

 

map.

 

The

 

following

 

information

 

provides

 

guidance

 

on

 

how

 

to

 

use

 

these

 

macros

 

to

 

define

 

map

 

sets.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

syntax

 

descriptions

 

of

 

these

 

macros.

 

Defining

 

a

 

map

 

set

 

Use

 

the

 

DFHMSD

 

macro

 

to

 

define

 

the

 

map

 

set.

 

This

 

macro

 

consists

 

of

 

operands

 

that

 

allow

 

you

 

to

 

define

 

the

 

basic

 

characteristics

 

of

 

the

 

map,

 

or

 

maps,

 

that

 

make

 

up

 

the

 

map

 

set.

 

Some

 

of

 

the

 

DFHMSD

 

operands

 

establish

 

defaults

 

for

 

the

 

DFHMDI

 

and

 

DFHMDF

 

macros.

 

Defining

 

maps

 

within

 

a

 

map

 

set

 

Each

 

map

 

in

 

a

 

map

 

set

 

is

 

defined

 

using

 

the

 

DFHMDI

 

macro.

 

This

 

macro

 

is

 

similar

 

in

 

form

 

to

 

DFHMSD

 

and

 

specifies

 

defaults

 

for

 

fields

 

within

 

the

 

map.

 

It

 

allows

 

you

 

to

 

override

 

some

 

of

 

the

 

options

 

inherited

 

from

 

DFHMSD,

 

and

 

to

 

specify

 

some

 

new

 

ones.

 

A

 

map

 

set

 

definition

 

must

 

contain

 

at

 

least

 

one

 

map

 

definition.

 

Where

 

you

 

have

 

more

 

than

 

one

 

map,

 

code

 

their

 

definitions

 

one

 

after

 

another.

 

The

 

number

 

of

 

maps

 

per

 

map

 

set

 

is

 

limited

 

to

 

a

 

maximum

 

of

 

9998.

 

(This

 

is

 

based

 

on

 

a

 

map

 

size

 

of

 

8

 

characters.)

 

All

 

maps

 

in

 

a

 

map

 

set

 

are

 

loaded

 

whenever

 

any

 

one

 

of

 

them

 

is

 

used.

 

If

 

all

 

the

 

maps

 

in

 

a

 

map

 

set

 

are

 

used

 

during

 

a

 

single

 

invocation

 

of

 

the

 

program,

 

the

 

single

 

load

 

of

 

all

 

maps

 

is

 

more

 

efficient

 

than

 

loading

 

each

 

map

 

as

 

it

 

is

 

required.

 

You

 

should

 

ensure

 

that

 

you

 

use

 

unique

 

names

 

for

 

maps

 

within

 

a

 

map

 

set,

 

or

 

within

 

multiple

 

map

 

sets

 

that

 

are

 

copied

 

into

 

one

 

application

 

program.

 

Another

 

reason

 

for

 

loading

 

several

 

maps

 

at

 

the

 

same

 

time

 

is

 

that

 

more

 

than

 

one

 

of

 

them

 

can

 

appear

 

on

 

the

 

screen

 

at

 

one

 

time.

 

This

 

is

 

because

 

a

 

map

 

definition

 

can

 

specify

 

where

 

a

 

map

 

is

 

to

 

be

 

placed

 

on

 

the

 

screen.

 

When

 

BMS

 

sends

 

a

 

map

 

to

 

a

 

display,

 

it

 

does

 

not

 

erase

 

the

 

existing

 

contents

 

of

 

the

 

display

 

unless

 

you

 

code

 

the

 

ERASE

 

option.

 

Instead,

 

it

 

uses

 

your

 

program

 

data,

 

plus

 

constant

 

map

 

data,

 

to

 

overlay

 

part

 

of

 

the

 

screen.

 

Therefore,

 

if

 

you

 

design

 

your

 

maps

 

so

 

that

 

they

 

occupy

 

different

 

parts

 

of

 

a

 

screen,

 

you

 

can

 

display

 

them

 

at

 

the

 

same

 

time.

 

Alternatively,

 

you

 

can

 

design

 

some

 

maps

 

in

 

a

 

map

 

set

 

so

 

that

 

they

 

overlay

 

one

 

another.

 

In

 

this

 

way,

 

you

 

can

 

erase

 

parts

 

of

 

the

 

contents

 

of

 

the

 

screen

 

without

 

affecting

 

the

 

rest.

 

A

 

map

 

usually

 

consists

 

of

 

one

 

or

 

more

 

data

 

fields.

 

Each

 

field

 

contains

 

display

 

data,

 

and

 

has

 

a

 

set

 

of

 

associated

 

attributes

 

that

 

are

 

initialized

 

by

 

coding

 

operands

 

in

 

a

   

98

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



DFHMDF

 

macro.

 

All

 

field

 

definition

 

macros

 

following

 

a

 

map

 

definition

 

macro

 

belong

 

to

 

that

 

map.

 

The

 

end

 

of

 

one

 

field

 

definition

 

is

 

indicated

 

by

 

the

 

beginning

 

of

 

another.

 

Defining

 

fields

 

within

 

a

 

BMS

 

map

 

The

 

DFHMDF

 

macro

 

is

 

used

 

to

 

specify

 

initial

 

attributes

 

to

 

be

 

given

 

to

 

fields

 

within

 

a

 

map.

 

Defining

 

field

 

groups

 

Very

 

often,

 

an

 

output

 

data

 

display

 

field

 

has

 

to

 

contain

 

several

 

subfields

 

that

 

share

 

the

 

same

 

display

 

attributes,

 

each

 

of

 

which

 

might

 

have

 

to

 

be

 

modified

 

separately.

 

On

 

output,

 

subfields

 

that

 

have

 

not

 

been

 

modified

 

by

 

the

 

program

 

can

 

adopt

 

default

 

data

 

values

 

from

 

the

 

output

 

map.

 

For

 

example,

 

a

 

display

 

can

 

include

 

a

 

date

 

field

 

with

 

a

 

day

 

subfield,

 

month

 

subfield,

 

and

 

year

 

subfield

 

(shown

 

later

 

in

 

the

 

example

 

of

 

a

 

map

 

definition

 

with

 

the

 

names

 

DD,

 

MM,

 

and

 

YY

 

respectively).

 

The

 

contents

 

of

 

the

 

year

 

subfield

 

remain

 

constant

 

over

 

a

 

relatively

 

long

 

period;

 

its

 

value

 

can

 

safely

 

be

 

taken

 

from

 

a

 

map.

 

However,

 

the

 

day

 

value

 

and

 

month

 

value

 

must

 

be

 

updated

 

regularly.

 

Similarly,

 

on

 

input

 

the

 

terminal

 

operator

 

can

 

enter

 

data

 

in

 

each

 

subfield

 

separately.

 

You

 

use

 

the

 

GRPNAME

 

operand

 

to

 

define

 

a

 

group

 

of

 

subfields

 

that

 

combine

 

to

 

produce

 

a

 

field.

 

The

 

start

 

of

 

the

 

group

 

is

 

indicated

 

by

 

a

 

DFHMDF

 

macro

 

with

 

the

 

GRPNAME

 

operand.

 

This

 

operand

 

defines

 

the

 

first

 

subfield,

 

and

 

specifies

 

the

 

attributes

 

and

 

name

 

of

 

the

 

group.

 

It

 

is

 

followed

 

by

 

other

 

DFHMDF

 

macros,

 

one

 

for

 

each

 

of

 

the

 

other

 

subfields.

 

Each

 

of

 

these

 

must

 

specify

 

the

 

group

 

name,

 

but

 

cannot

 

specify

 

attribute

 

values.

 

The

 

definition

 

of

 

the

 

group

 

is

 

terminated

 

by

 

a

 

DFHMDF

 

macro

 

that

 

specifies

 

a

 

different

 

group

 

name,

 

by

 

one

 

that

 

specifies

 

no

 

group

 

name,

 

or

 

by

 

a

 

DFHMDI

 

or

 

DFHMSD

 

macro.

 

Briefly,

 

a

 

group

 

of

 

fields

 

in

 

a

 

map

 

might

 

appear

 

as

 

follows

 

in

 

the

 

map

 

definition:

 

MAPSET

 

DFHMSD....

        

.

        

.

 

MAP

    

DFHMDI....

        

.

        

.

 

DD

     

DFHMDF

 

GRPNAME=DATE,POS=(6,40),LENGTH=2,ATTRB=...

        

.

 

MM

     

DFHMDF

 

GRPNAME=DATE,POS=(6,46),LENGTH=2

        

.

 

YY

     

DFHMDF

 

GRPNAME=DATE,POS=(6,52),LENGTH=2

        

.

 

FIELD

  

DFHMDF

 

LENGTH=5,COLOR=GREEN,...

        

DFHMSD

 

TYPE=FINAL

 

The

 

POS

 

operand

 

specifies

 

the

 

position

 

of

 

the

 

attribute

 

byte

 

of

 

the

 

field

 

even

 

though

 

subfields

 

of

 

a

 

group

 

(other

 

than

 

the

 

first)

 

do

 

not

 

have

 

attributes.

 

If

 

the

 

subfields

 

are

 

positioned

 

contiguously

 

with

 

no

 

intervening

 

blanks,

 

the

 

POS

 

operand

 

of

 

the

 

second

 

and

 

succeeding

 

subfields

 

must

 

specify

 

the

 

position

 

of

 

the

 

last

 

character

 

of

 

the

 

previous

 

subfield.

 

Terminating

 

a

 

map

 

set

 

definition

 

A

 

map

 

set

 

definition

 

ends

 

with

 

a

 

DFHMSD

 

macro

 

of

 

the

 

form:

 

[mapset]

 

DFHMSD

 

TYPE=FINAL

   

Chapter

 

4.

 

Coding

 

for

 

presentation

 

services

 

99



mapset

 

is

 

optional,

 

but

 

if

 

used

 

it

 

must

 

be

 

the

 

same

 

as

 

that

 

on

 

the

 

DFHMSD

 

macro

 

that

 

began

 

the

 

map

 

set.

 

Coding

 

the

 

BMS

 

definition

 

macros

 

When

 

coding

 

the

 

BMS

 

macros,

 

you

 

must

 

ensure

 

that

 

the

 

information

 

appears

 

in

 

the

 

correct

 

columns

 

so

 

that

 

it

 

can

 

be

 

processed

 

by

 

cicsmap.

 

Three

 

column

 

positions

 

are

 

significant:

 

StartCol

 

starting

 

column

 

(default

 

1).

 

ContCol

 

column

 

in

 

which

 

continuation

 

lines

 

must

 

begin

 

(default

 

16).

 

EndCol

 

last

 

column

 

before

 

continuation

 

marker

 

(default

 

71).

 

The

 

following

 

general

 

coding

 

rules

 

apply:

 

v

   

The

 

label

 

for

 

each

 

BMS

 

macro

 

must

 

start

 

in

 

StartCol.

 

v

   

The

 

macro

 

name

 

must

 

be

 

separated

 

from

 

its

 

label

 

and

 

first

 

operand

 

by

 

one

 

or

 

more

 

spaces.

 

v

   

Operands

 

must

 

be

 

separated

 

by

 

a

 

single

 

comma

 

(,);

 

spaces

 

should

 

be

 

used

 

with

 

care

 

because

 

they

 

cause

 

the

 

remainder

 

of

 

the

 

line

 

to

 

be

 

treated

 

as

 

a

 

comment.

 

v

   

Lines

 

containing

 

many

 

operands

 

can

 

be

 

continued

 

after

 

any

 

comma,

 

by

 

placing

 

a

 

nonblank

 

character

 

(usually

 

X)

 

in

 

the

 

position

 

after

 

EndCol

 

and

 

then

 

starting

 

a

 

new

 

line

 

with

 

the

 

first

 

character

 

of

 

a

 

new

 

operand

 

in

 

ContCol.

 

v

   

Blank

 

lines

 

and

 

tab

 

characters

 

are

 

not

 

allowed.

 

v

   

Comment

 

lines

 

are

 

indicated

 

by

 

placing

 

an

 

asterisk

 

(*)

 

in

 

StartCol.

 

v

   

All

 

macros

 

and

 

their

 

operands

 

(except

 

INITIAL

 

and

 

GINIT

 

data)

 

must

 

be

 

in

 

uppercase.

  

100

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

This

 

chapter

 

describes

 

how

 

to

 

write

 

application

 

programs

 

that

 

use

 

the

 

CICS

 

data

 

services.

 

The

 

discussion

 

covers

 

v

   

“Relationship

 

between

 

CICS

 

and

 

file

 

managers”

 

discusses

 

the

 

relationship

 

between

 

CICS

 

and

 

file

 

managers

 

–

   

SFS

 

consistency,

 

isolation,

 

and

 

locking

 

–

   

DB2

 

concurrency

 

and

 

locking

 

–

   

CICS

 

and

 

SFS

 

performance

 

with

 

large

 

files
v

   

“Mixed

 

resource

 

manager

 

applications”

 

on

 

page

 

105

 

discusses

 

the

 

use

 

of

 

mixed

 

resource

 

manager

 

applications.

 

v

   

“File

 

services”

 

on

 

page

 

105

 

discusses

 

how

 

CICS

 

maps

 

VSAM

 

requests

 

onto

 

SFS

 

files

 

or

 

DB2

 

tables.

 

v

   

“Queue

 

services”

 

on

 

page

 

130

 

discusses

 

the

 

use

 

of

 

queues

 

in

 

CICS

 

applications.

 

v

   

“Journal

 

services”

 

on

 

page

 

137

 

discusses

 

the

 

role

 

journal

 

services

 

plays

 

in

 

CICS

 

applications.

 

v

   

“SQL

 

restrictions

 

and

 

relational

 

database

 

services”

 

on

 

page

 

142

 

discusses

 

relational

 

database

 

issues.

 

v

   

“File

 

processing

 

using

 

EXTFH

 

with

 

non-CICS

 

applications”

 

on

 

page

 

157

 

discusses

 

file

 

processing

 

using

 

the

 

External

 

File

 

Handler.

Relationship

 

between

 

CICS

 

and

 

file

 

managers

 

You

 

can

 

manage

 

CICS

 

user

 

files

 

(files

 

defined

 

with

 

the

 

File

 

Definitions

 

(FD))

 

on

 

either

 

a

 

DB2

 

or

 

an

 

Encina

 

SFS

 

file

 

manager.

 

Both

 

file

 

managers

 

permit

 

two

 

or

 

more

 

regions

 

or

 

regions

 

and

 

non-CICS

 

applications

 

(such

 

as

 

batch

 

processing

 

programs)

 

to

 

share

 

data.

 

When

 

designing

 

systems

 

to

 

exploit

 

these

 

facilities,

 

consider

 

the

 

networking

 

costs

 

of

 

transferring

 

data

 

between

 

the

 

File

 

Manager

 

and

 

its

 

client,

 

and

 

the

 

benefits

 

of

 

distributing

 

the

 

processing

 

and

 

disk

 

access

 

load

 

between

 

several

 

machines.

 

CICS

 

attempts

 

to

 

minimize

 

network

 

traffic

 

by

 

avoiding

 

unnecessary

 

interactions

 

with

 

the

 

file

 

manager.

 

For

 

example,

 

at

 

the

 

end

 

of

 

a

 

transaction,

 

CICS

 

retains

 

an

 

SFS

 

open

 

file

 

descriptor

 

(OFD)

 

for

 

possible

 

reuse

 

where

 

a

 

region

 

uses

 

SFS

 

for

 

file

 

access

 

services.

 

Such

 

OFDs

 

are

 

released

 

when

 

a

 

file

 

is

 

closed,

 

either

 

by

 

an

 

explicit

 

EXEC

 

CICS

 

SET

 

FILE

 

CLOSED

 

request,

 

or

 

when

 

CICS

 

is

 

shut

 

down.

 

Note:

  

If

 

CICS

 

abends

 

or

 

is

 

canceled,

 

OFDs

 

may

 

not

 

be

 

released,

 

including

 

those

 

for

 

temporary

 

storage

 

queues

 

(TSQs)

 

and

 

transient

 

data

 

queues

 

(TDQs).

 

SFS

 

consistency,

 

isolation,

 

and

 

locking

 

The

 

variety

 

of

 

attribute

 

settings

 

and

 

locking

 

modes

 

available

 

with

 

SFS

 

OFDs

 

offer

 

design

 

efficiencies

 

to

 

CICS

 

applications.

 

Consider:

 

v

   

OFD

 

consistency

 

v

   

Isolation

 

level

 

v

   

Lock

 

modes

 

Refer

 

to

 

the

 

Encina

 

SFS

 

Programming

 

Guide

 

for

 

a

 

detailed

 

explanation

 

of

 

these

 

concepts.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

101

|



CICS

 

uses

 

SFS

 

OFD

 

attribute

 

settings

 

for

 

consistency

 

and

 

isolation

 

level

 

differently

 

based

 

on

 

the

 

value

 

of

 

the

 

Recoverable

 

attribute

 

in

 

the

 

File

 

Definitions

 

(FD):

 

v

   

If

 

a

 

file

 

is

 

specified

 

as

 

not

 

recoverable,

 

then

 

the

 

following

 

OFD

 

attributes

 

are

 

requested

 

by

 

CICS:

 

–

   

Consistency

 

:

 

sfs_nonTransactional

 

–

   

Isolation

 

:

 

sfs_nonTranCursorStability

 

Operations

 

using

 

OFDs

 

specified

 

as

 

not

 

recoverable

 

do

 

not

 

participate

 

in

 

user

 

transactions.

 

As

 

a

 

result,

 

an

 

EXEC

 

CICS

 

SYNCPOINT

 

ROLLBACK

 

does

 

not

 

undo

 

changes

 

made

 

with

 

such

 

OFDs.

 

Such

 

changes

 

are

 

immediately

 

visible

 

to

 

other

 

processes

 

reading

 

such

 

records.

 

v

   

If

 

a

 

file

 

is

 

specified

 

as

 

recoverable,

 

then

 

the

 

following

 

OFD

 

attributes

 

are

 

requested

 

by

 

CICS:

 

–

   

Consistency

 

:

 

sfs_Transactional

 

–

   

Isolation

 

:

 

sfs_cursorStability

 

Operations

 

using

 

OFDs

 

specified

 

as

 

recoverable

 

participate

 

in

 

user

 

transactions.

 

Changes

 

made

 

via

 

such

 

OFDs

 

do

 

not

 

become

 

visible

 

to

 

other

 

processes

 

until

 

the

 

transaction

 

reaches

 

EXEC

 

CICS

 

SYNCPOINT.

 

Greater

 

computing

 

resources

 

are

 

required

 

by

 

operations

 

using

 

OFDs

 

specified

 

as

 

recoverable

 

than

 

for

 

those

 

operations

 

using

 

OFDs

 

specified

 

as

 

not

 

recoverable.

 

SFS

 

offers

 

lock

 

modes

 

to

 

use

 

when

 

records

 

are

 

accessed.

 

CICS

 

uses

 

sfs_noLock

 

mode

 

when

 

reading

 

records

 

and

 

sfs_writeLock

 

mode

 

when

 

reading

 

records

 

to

 

update

 

them.

 

These

 

modes

 

allow

 

multiple

 

transactions

 

to

 

concurrently

 

read

 

a

 

record,

 

but

 

prevent

 

simultaneous

 

updates

 

of

 

the

 

record.

 

The

 

lock

 

modes

 

prevent

 

a

 

transaction

 

from

 

reading

 

data

 

for

 

update

 

that

 

has

 

been

 

written

 

via

 

a

 

recoverable

 

OFD

 

until

 

an

 

EXEC

 

CICS

 

SYNCPOINT

 

is

 

reached.

 

However,

 

a

 

straight

 

read-only

 

operation

 

can

 

see

 

the

 

changes

 

prior

 

to

 

the

 

EXEC

 

CICS

 

SYNCPOINT.

 

A

 

record

 

updated

 

via

 

a

 

recoverable

 

OFD

 

is

 

locked

 

for

 

writing

 

until

 

the

 

transaction

 

is

 

resolved

 

by

 

reaching

 

an

 

EXEC

 

CICS

 

SYNCPOINT.

 

As

 

a

 

result,

 

greater

 

interprocess

 

contention

 

occurs

 

when

 

a

 

recoverable

 

OFD

 

is

 

used.

 

DB2

 

concurrency

 

and

 

locking

 

When

 

DB2

 

is

 

used

 

to

 

manage

 

CICS

 

queue

 

and

 

user

 

files,

 

it

 

treats

 

all

 

files

 

as

 

recoverable,

 

regardless

 

of

 

the

 

value

 

set

 

in

 

the

 

FD

 

for

 

the

 

RECOVERABLE

 

attribute.

 

CICS

 

file

 

services

 

access

 

DB2

 

using

 

cursor

 

stability

 

isolation

 

level

 

and

 

with

 

record

 

locking

 

enabled.

 

This

 

configuration

 

impacts

 

the

 

behavior

 

and

 

concurrency

 

of

 

CICS

 

applications

 

in

 

a

 

number

 

of

 

ways.

 

v

   

An

 

application

 

does

 

not

 

retrieve

 

uncommitted

 

changes

 

performed

 

by

 

another

 

application.

 

Changes

 

made

 

by

 

a

 

CICS

 

transaction

 

do

 

not

 

become

 

visible

 

to

 

other

 

applications

 

until

 

the

 

transaction

 

reaches

 

EXEC

 

CICS

 

SYNCPOINT.

 

v

   

When

 

a

 

transaction

 

writes

 

records

 

to

 

a

 

file

 

in

 

which

 

a

 

browse

 

operation

 

has

 

already

 

been

 

started,

 

the

 

newly

 

inserted

 

records

 

are

 

not

 

visible

 

to

 

the

 

browse

 

operation.

 

The

 

browse

 

operation

 

displays

 

a

 

snapshot

 

of

 

committed

 

table

 

data

 

at

 

the

 

time

 

when

 

the

 

browse

 

operation

 

is

 

started.

 

v

   

Similarly,

 

changes

 

committed

 

to

 

a

 

file

 

by

 

other

 

applications

 

are

 

not

 

visible

 

to

 

a

 

browse

 

that

 

has

 

already

 

been

 

started.

 

v

   

Records

 

can

 

be

 

concurrently

 

read,

 

but

 

they

 

cannot

 

be

 

simultaneously

 

updated.

 

v

   

An

 

updated

 

record

 

is

 

locked

 

until

 

an

 

EXEC

 

CICS

 

SYNCPOINT

 

is

 

reached.

  

102

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Oracle

 

concurrency

 

and

 

locking

 

When

 

Oracle

 

is

 

used

 

to

 

manage

 

CICS

 

queue

 

and

 

user

 

files,

 

it

 

handless

 

all

 

files

 

as

 

recoverable,

 

regardless

 

of

 

the

 

value

 

that

 

is

 

set

 

in

 

the

 

FD

 

for

 

the

 

RECOVERABLE

 

attribute.

 

CICS

 

and

 

SFS

 

performance

 

with

 

large

 

files

 

The

 

BufferPoolSize

 

attribute,

 

which

 

is

 

in

 

the

 

CICS

 

SSD

 

definitions,

 

sets

 

the

 

size

 

of

 

the

 

I/O

 

buffer

 

that

 

is

 

in

 

the

 

SFS

 

server.

 

This

 

buffer

 

exists

 

only

 

to

 

allow

 

a

 

memory

 

image

 

of

 

sections

 

of

 

the

 

SFS

 

data

 

volume,

 

so

 

that

 

the

 

SFS

 

process

 

does

 

not

 

have

 

to

 

wait

 

for

 

the

 

data

 

volume

 

disk.

 

The

 

information

 

that

 

is

 

given

 

here

 

might

 

help

 

you

 

improve

 

the

 

performance

 

of

 

SFS:

 

v

   

A

 

large

 

I/O

 

buffer

 

might

 

seem

 

desirable,

 

but

 

that

 

buffer

 

is

 

in

 

the

 

private

 

data

 

segment

 

of

 

the

 

SFS

 

process,

 

which

 

also

 

contains

 

memory

 

that

 

is

 

allocated

 

to

 

manipulate

 

the

 

internal

 

structures

 

in

 

SFS.

 

These

 

internal

 

structures

 

can

 

use

 

a

 

large

 

amount

 

of

 

memory.

 

For

 

example,

 

320

 

000

 

records,

 

each

 

of

 

size

 

128

 

bytes,

 

4

 

indexes

 

of

 

size

 

8

 

bytes,

 

and

 

1

 

index

 

of

 

32

 

bytes

 

uses

 

approximately

 

110

 

MB

 

of

 

disk

 

space.

 

To

 

load

 

a

 

file

 

with

 

data,

 

you

 

need

 

about

 

160

 

MB

 

of

 

memory

 

in

 

the

 

SFS

 

private

 

data

 

segment.

 

If,

 

in

 

this

 

example,

 

a

 

BufferPoolSize

 

attribute

 

that

 

is

 

greater

 

than

 

73

 

000

 

is

 

used,

 

this

 

error

 

is

 

returned:

 

Not

 

enough

 

memory

 

in

 

InitiateBufWrite

 

The

 

following

 

command

 

would

 

set

 

the

 

size

 

of

 

the

 

buffer

 

to

 

70000:

 

Note

 

that

 

the

 

SFS

 

server

 

name

 

has

 

a

 

semicolon

 

where

 

normally

 

you

 

would

 

use

 

a

 

colon.

 

Also,

 

the

 

server

 

name

 

must

 

be

 

inside

 

quotes.

 

The

 

server

 

must

 

be

 

warm

 

started

 

in

 

either

 

case

 

to

 

get

 

the

 

change

 

to

 

take

 

effect.

Note:

  

The

 

svmon

 

-P

 

<pid>

 

command

 

is

 

very

 

useful

 

if

 

you

 

want

 

to

 

monitor

 

the

 

how

 

much

 

memory

 

the

 

data

 

segment

 

uses.

 

This

 

command

 

shows

 

the

 

total

 

amount

 

that

 

is

 

allocated

 

(in

 

the

 

InUse

 

column),

 

and

 

also

 

the

 

address

 

range

 

that

 

is

 

allocated

 

(in

 

the

 

Addr

 

Range

 

column).

 

The

 

data

 

segment

 

normally

 

grows

 

from

 

both

 

ends.

 

When

 

these

 

ends

 

meet,

 

either

 

an

 

InitiateBufWrite

 

error,

 

or

 

another

 

memory

 

error

 

occurs.

 

v

   

Before

 

the

 

I/O

 

buffer

 

is

 

full,

 

the

 

SFS

 

process

 

can

 

continue

 

to

 

run

 

efficiently;

 

that

 

is,

 

it

 

uses

 

at

 

least

 

100%

 

of

 

one

 

CPU

 

if

 

the

 

load

 

on

 

the

 

operating

 

system

 

allows

 

it.

 

The

 

disks

 

show

 

that

 

they

 

are

 

running

 

at

 

100%

 

capacity.

 

If

 

they

 

are

 

running

 

only

 

write

 

operations,

 

they

 

are

 

not

 

actually

 

slowing

 

down

 

the

 

SFS

 

process;

 

they

 

are

 

catching

 

up

 

with

 

the

 

I/O

 

buffer

 

asynchronously.

 

However,

 

when

 

the

 

I/O

 

buffer

 

is

 

full,

 

the

 

SFS

 

process

 

must

 

wait

 

for

 

the

 

data

 

to

 

be

 

written,

 

and

 

it

 

must

 

reread

 

data

 

from

 

disk

 

because

 

it

 

cannot

 

hold

 

it

 

all

 

in

 

the

 

buffer

 

at

 

the

 

same

 

time.

 

At

 

this

 

point,

 

many

 

read

 

operations

 

occur

 

on

 

the

 

data

 

disk,

 

the

 

CPU

 

uses

 

SFS

 

less,

 

and

 

the

 

loading

 

rate

 

decreases

 

greatly.

 

v

   

To

 

help

 

ensure

 

that

 

your

 

disk

 

write

 

operations

 

are

 

the

 

fastest

 

possible,

 

you

 

can

 

add

 

extra

 

data

 

volumes

 

to

 

an

 

SFS

 

server.

 

Although

 

the

 

basic

 

CICS

 

SSD

 

definitions

 

define

 

only

 

one

 

data

 

volume

 

for

 

an

 

SFS

 

server,

 

you

 

can

 

add

 

more

 

after

 

the

 

initial

 

cold

 

start

 

of

 

the

 

server.

 

To

 

add

 

more

 

data

 

volume,

 

type

 

the

 

following:

 

tkadmin

 

map

 

lvolsfs_newVol

 

sfs_newVol

 

64

 

tkadmin

 

enable

 

lvol

 

sfs_newVol

 

sfsadmin

 

add

 

lvol

 

sfs_newVol

 

where

 

sfs_newVol

 

is

 

the

 

AIX

 

logical

 

volume

 

name

 

that

 

was

 

already

 

defined

 

through

 

the

 

normal

 

AIX

 

facilities

 

(for

 

example,

 

smitty).

 

For

 

this

 

action

 

to

 

be

 

cicsupdateclass

 

-w

 

-c

 

ssd

 

-k

 

"/.;/cics/sfs/myServ"

 

-a

 

BufferPoolSize

 

–n

 

70000

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

103

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|



effective,

 

assign

 

the

 

AIX

 

logical

 

volume

 

to

 

a

 

different

 

physical

 

disk

 

from

 

the

 

disk

 

that

 

contains

 

the

 

first

 

data

 

volume

 

for

 

the

 

SFS

 

server.

 

By

 

using

 

different

 

physical

 

disks,

 

you

 

allow

 

write

 

operations

 

to

 

run

 

in

 

parallel.

 

You

 

can

 

then

 

assign

 

the

 

secondary

 

indexes

 

for

 

a

 

file

 

to

 

volumes

 

that

 

are

 

separate

 

from

 

the

 

actual

 

data

 

and

 

primary

 

index

 

(which

 

always

 

stay

 

together).

 

For

 

example:

 

sfsadmin

 

create

 

clusteredfile

 

mult.indices2

 

f1

 

byteArray

 

8

 

f2

 

byteArray

 

8

 

\

 

i1

 

-unique

 

1

 

f1

 

sfs_firstVol

 

sfsadmin

 

add

 

index

 

mult.indices

 

i2

 

1

 

f2

 

-volume

 

sfs_newVol

 

If

 

you

 

ever

 

cold

 

start

 

the

 

SFS

 

server,

 

you

 

must

 

rerun

 

the

 

lvol

 

commands

 

to

 

add

 

the

 

extra

 

volumes.

 

v

   

If

 

the

 

primary

 

index

 

has

 

already

 

put

 

into

 

sequence

 

the

 

input

 

data

 

for

 

a

 

particular

 

file,

 

and

 

no

 

secondary

 

indexes

 

are

 

active,

 

that

 

file

 

should

 

load

 

quickly.

 

SFS

 

slows

 

if

 

it

 

has

 

to

 

recalculate

 

unsequenced

 

indexes.

 

v

   

To

 

flush

 

the

 

I/O

 

buffer

 

to

 

disk,

 

type:

 

tkadmin

 

flush

 

lvol

 

This

 

command

 

flushes

 

all

 

data

 

volumes

 

for

 

the

 

server.

 

You

 

can

 

specify

 

which

 

data

 

volume

 

is

 

to

 

be

 

flushed,

 

if

 

you

 

have

 

more

 

than

 

one.

 

When

 

a

 

log

 

volume

 

becomes

 

almost

 

full,

 

SFS

 

tries

 

to

 

compress

 

it.

 

This

 

operation

 

can

 

take

 

a

 

long

 

time,

 

and

 

does

 

not

 

necessarily

 

create

 

enough

 

free

 

space.

 

In

 

this

 

condition,

 

you

 

might

 

find

 

the

 

tkadmin

 

force

 

checkpoint

 

command

 

useful.

 

Use

 

it

 

between

 

sfsadmin

 

and

 

cicssdt

 

commands

 

if

 

the

 

log

 

volume

 

is

 

likely

 

to

 

become

 

full.

 

This

 

command

 

completely

 

clears

 

the

 

log

 

file

 

only

 

if

 

all

 

data

 

has

 

been

 

flushed

 

to

 

disk.

 

v

   

To

 

determine

 

how

 

many

 

pages

 

to

 

allocate

 

in

 

the

 

SFS

 

Server,

 

you

 

can

 

use

 

the

 

rough

 

formulas

 

for

 

size

 

estimating.

 

For

 

example:

 

If

 

number

 

of

 

records

 

to

 

store

 

is

 

N,

 

the

 

width

 

of

 

the

 

record

 

is

 

w,

 

and

 

the

 

width

 

of

 

an

 

Index

 

is

 

x:

 

Pages

 

(that

 

is,

 

4096

 

bytes)

 

for

 

data

 

+

 

primary

 

index

 

=

 

N

 

*

 

(

 

28

 

+

 

x)

 

/

 

2650

 

+

 

N

 

*

 

w

 

/

 

4060

 

Pages

 

for

 

secondary

 

index

 

=

 

N

 

(

 

20

 

+

 

x)

 

/

 

2650

 

v

   

For

 

fast

 

loading:

 

–

   

Use

 

a

 

generous

 

log

 

volume

 

size.

 

It

 

might

 

need

 

to

 

be

 

a

 

few

 

times

 

larger

 

than

 

the

 

size

 

of

 

the

 

largest

 

file.

 

–

   

Increase

 

the

 

soft

 

data

 

segment

 

size

 

for

 

the

 

userid

 

to

 

52

 

4288

 

bytes

 

(in

 

512

 

byte

 

blocks)

 

so

 

that

 

the

 

full

 

256

 

MB

 

segment

 

can

 

be

 

used.

 

–

   

If

 

you

 

try

 

to

 

load

 

a

 

large

 

file,

 

and

 

all

 

indexes

 

are

 

active,

 

that

 

file

 

needs,

 

in

 

private

 

storage,

 

a

 

buffer

 

that

 

is

 

about

 

1.5

 

times

 

size

 

of

 

the

 

disk

 

data.

 

To

 

determine

 

the

 

maximum

 

I/O

 

buffer

 

size

 

that

 

you

 

can

 

use,

 

assume

 

the

 

starting

 

size

 

to

 

be

 

240

 

MB.

 

(It

 

could

 

be

 

from

 

approximately

 

240

 

MB

 

to

 

256

 

MB

 

depending

 

on

 

how

 

much

 

other

 

modules

 

in

 

the

 

process

 

use

 

the

 

remainder

 

of

 

the

 

memory.

 

The

 

ideal

 

maximum

 

is

 

256

 

MB,

 

the

 

segment

 

size.)

 

If

 

the

 

result

 

gives

 

a

 

buffer

 

that

 

is

 

smaller

 

than

 

the

 

disk

 

data

 

size,

 

you

 

might

 

find

 

it

 

just

 

as

 

fast

 

to

 

deactivate

 

some

 

of

 

the

 

indexes

 

(which

 

means

 

more

 

memory

 

available

 

for

 

the

 

I/O

 

buffer),

 

load

 

the

 

file,

 

then

 

reactivate

 

the

 

indexes.

 

–

   

Put

 

one

 

or

 

more

 

secondary

 

indexes

 

into

 

separate

 

data

 

volumes.

 

If

 

possible,

 

the

 

initial

 

load

 

should

 

have

 

at

 

least

 

one

 

nonsequenced

 

index

 

being

 

built

 

on

 

each

 

disk.
v

   

Multiple

 

SFS

 

servers

 

would

 

give

 

better

 

performance

 

if,

 

in

 

production,

 

these

 

conditions

 

exist:

 

–

   

A

 

particular

 

machine

 

has

 

real

 

memory

 

that

 

is

 

not

 

going

 

to

 

be

 

used

 

(that

 

is,

 

the

 

machine

 

is

 

not

 

regularly

 

going

 

to

 

swap

 

pages

 

to

 

the

 

paging

 

space).

   

104

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|
|
|

|
|
|

|
|

|
|
|

|

|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|



–

   

The

 

I/O

 

buffer

 

that

 

is

 

possible

 

with

 

the

 

256

 

MB

 

data

 

segment

 

cannot

 

hold

 

all

 

the

 

pages

 

of

 

SFS

 

files

 

that

 

are

 

in

 

frequent

 

use.

 

Multiple

 

SFS

 

servers

 

can

 

together

 

provide

 

more

 

than

 

256

 

MB

 

of

 

data

 

segments,

 

and

 

they

 

hold

 

more

 

data

 

in

 

memory

 

that

 

they

 

do

 

on

 

disk

Mixed

 

resource

 

manager

 

applications

 

CICS

 

coexists

 

and

 

complements

 

other

 

resource

 

managers

 

that

 

access

 

their

 

resources

 

through

 

COBOL,

 

C,

 

C++,

 

and

 

PL/I

 

programs.

 

Typically,

 

these

 

resource

 

managers

 

are

 

relational

 

database

 

management

 

systems

 

(RDBMSs)

 

using

 

the

 

SQL

 

language

 

embedded

 

in

 

COBOL,

 

C,

 

C++

 

and

 

PL/I

 

programs.

 

You

 

can

 

write

 

applications

 

that

 

access

 

CICS

 

and

 

RDBMS

 

resources

 

in

 

the

 

same

 

program.

 

Refer

 

to

 

your

 

RDBMS

 

manuals

 

for

 

information

 

on

 

how

 

to

 

develop

 

these

 

applications.

 

Generally:

 

v

   

RDBMSs

 

encourage

 

prototyping

 

and

 

suggest

 

to

 

novice

 

users

 

that

 

there

 

is

 

no

 

need

 

to

 

follow

 

conventional

 

design

 

strategies.

 

This

 

is

 

definitely

 

not

 

recommended

 

for

 

online

 

transaction

 

processing.

 

In

 

particular,

 

you

 

should

 

carefully

 

undertake

 

a

 

full

 

design

 

of

 

your

 

data

 

requirements.

 

v

   

SQL

 

is

 

a

 

set-level

 

language

 

(that

 

is,

 

it

 

operates

 

on

 

a

 

group

 

of

 

records

 

rather

 

than

 

individual

 

ones).

 

When

 

performing

 

update

 

operations,

 

a

 

large

 

number

 

of

 

records

 

could

 

be

 

locked

 

until

 

a

 

syncpoint

 

is

 

reached.

 

You

 

need

 

to

 

carefully

 

consider

 

performance

 

aspects

 

when

 

designing

 

update

 

operations.

File

 

services

 

File

 

services

 

commands

 

perform

 

the

 

functions

 

needed

 

to

 

read,

 

update,

 

add,

 

delete,

 

and

 

browse

 

data

 

in

 

local

 

or

 

remote

 

files.

 

When

 

used

 

locally,

 

these

 

commands

 

provide

 

access

 

to

 

files

 

managed

 

on

 

either

 

an

 

SFS

 

or

 

a

 

DB2

 

database.

 

Used

 

remotely,

 

the

 

commands

 

provide

 

access

 

to

 

the

 

underlying

 

file

 

manager

 

of

 

the

 

remote

 

system.

 

CICS

 

provides

 

an

 

interface

 

to

 

a

 

generic

 

record-oriented

 

file

 

manager,

 

regardless

 

of

 

the

 

file

 

manager,

 

the

 

type

 

of

 

file,

 

or

 

its

 

physical

 

organization.

 

Using

 

a

 

VSAM

 

perspective

 

to

 

examine

 

distributed

 

CICS

 

If

 

you

 

are

 

moving

 

to

 

CICS

 

for

 

Windows

 

or

 

to

 

CICS

 

on

 

Open

 

Systems

 

from

 

an

 

IBM

 

mainframe-based

 

CICS

 

platform,

 

you

 

possibly

 

are

 

familiar

 

with

 

Virtual

 

Storage

 

Access

 

Methods

 

(VSAM)

 

data

 

sets.

 

VSAM

 

is

 

an

 

access

 

method

 

for

 

direct

 

or

 

sequential

 

processing

 

of

 

fixed-length

 

and

 

variable-length

 

records

 

on

 

direct

 

access

 

devices.

 

VSAM

 

is

 

not

 

supported

 

by

 

your

 

operating

 

system,

 

but

 

the

 

CICS-supported

 

file

 

managers

 

provide

 

similar

 

facilities.

 

As

 

described

 

in

 

“Record

 

handling

 

in

 

CICS

 

files”

 

on

 

page

 

106,

 

TXSeries

 

CICS

 

emulate

 

VSAM.

 

For

 

reasons

 

of

 

portability

 

and

 

commonality

 

with

 

other

 

CICS

 

platforms,

 

the

 

commands

 

used

 

for

 

TXSeries

 

CICS

 

file

 

services

 

are

 

described

 

in

 

terms

 

of

 

VSAM

 

and

 

not

 

in

 

terms

 

of

 

the

 

file

 

managers.

 

The

 

VSAM

 

terminology

 

can

 

be

 

confusing

 

to

 

new

 

users

 

of

 

CICS.

 

Similarly,

 

users

 

migrating

 

applications

 

from

 

mainframe

 

systems

 

are

 

equally

 

unfamiliar

 

with

 

the

 

file

 

managers.

 

Because

 

of

 

this,

 

the

 

VSAM

 

discussions

 

define

 

the

 

most

 

important

 

VSAM

 

terms

 

and

 

correlates

 

them

 

to

 

their

 

CICS-supported

 

counterparts.

 

This

 

correlation

 

shows

 

how

 

CICS

 

file

 

services

 

map

 

onto

 

the

 

file

 

managers

 

used

 

by

 

CICS.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

105

|
|

|
|



Record

 

handling

 

in

 

CICS

 

files

 

The

 

records

 

in

 

a

 

VSAM

 

data

 

set

 

or

 

file

 

can

 

be

 

organized

 

in

 

any

 

of

 

three

 

ways:

 

logical

 

sequence

 

by

 

a

 

key

 

field

 

(key

 

sequence),

 

the

 

physical

 

sequence

 

in

 

which

 

they

 

are

 

written

 

on

 

the

 

data

 

set

 

or

 

file

 

(entry-sequence),

 

or

 

by

 

relative-record

 

number.

 

TXSeries

 

CICS

 

file

 

services

 

support:

 

v

   

Fixed-length

 

and

 

variable-length

 

records

 

v

   

Multiple

 

access

 

paths

 

to

 

the

 

same

 

file

 

v

   

Large

 

records

 

that

 

can

 

span

 

system

 

boundaries

 

(control

 

intervals,

 

disk

 

blocks)

 

v

   

Record-level

 

locking

 

(or

 

in

 

the

 

case

 

of

 

VSAM,

 

control-interval

 

locking).

 

If

 

you

 

are

 

familiar

 

with

 

VSAM,

 

you

 

need

 

to

 

be

 

aware

 

of

 

a

 

major

 

difference

 

between

 

VSAM

 

and

 

TXSeries

 

CICS

 

file

 

services.

 

You

 

do

 

not

 

just

 

define

 

files

 

and

 

records

 

to

 

the

 

file

 

managers,

 

as

 

is

 

done

 

using

 

VSAM.

 

When

 

using

 

TXSeries

 

CICS

 

file

 

services,

 

you

 

also

 

have

 

to

 

define

 

the

 

record

 

and

 

each

 

index

 

on

 

the

 

file

 

in

 

terms

 

of

 

its

 

constituent

 

fields.

 

Each

 

field

 

can

 

be

 

of

 

fixed

 

or

 

variable

 

length.

 

The

 

index

 

is

 

defined

 

with

 

the

 

File

 

Definitions

 

(FD)

 

IndexName

 

attribute.

 

Failure

 

to

 

define

 

the

 

index

 

results

 

in

 

error

 

messages

 

when

 

the

 

file

 

is

 

used.

 

CICS

 

cannot

 

access

 

a

 

file

 

that

 

has

 

more

 

than

 

one

 

variable-length

 

field

 

in

 

a

 

record.

 

Also,

 

if

 

a

 

record

 

contains

 

a

 

variable-length

 

field,

 

this

 

field

 

must

 

be

 

the

 

last

 

field

 

in

 

the

 

record.

 

In

 

IBM

 

mainframe-based

 

CICS,

 

the

 

CICS

 

transactional

 

support

 

overlays

 

VSAM;

 

some

 

of

 

the

 

restrictions

 

imposed

 

on

 

CICS

 

file

 

control

 

reflect

 

this.

 

The

 

file

 

managers

 

themselves

 

provide

 

full

 

transactional

 

support;

 

several

 

of

 

these

 

restrictions

 

could

 

be

 

lifted

 

in

 

CICS

 

for

 

Windows

 

or

 

CICS

 

on

 

Open

 

Systems.

 

For

 

example,

 

neither

 

file

 

manager

 

insists

 

that

 

a

 

transaction

 

is

 

limited

 

to

 

a

 

single

 

update

 

per

 

file

 

per

 

LUW,

 

whereas

 

VSAM

 

does.

 

In

 

order

 

to

 

preserve

 

application

 

portability,

 

both

 

to

 

and

 

from

 

IBM

 

mainframe-based

 

CICS,

 

TXSeries

 

CICS

 

have

 

retained

 

most

 

of

 

these

 

restrictions.

 

Using

 

primary

 

and

 

alternate

 

indexes

 

to

 

access

 

files

 

You

 

must

 

be

 

able

 

to

 

access

 

each

 

record

 

in

 

your

 

file

 

by

 

a

 

unique

 

key.

 

For

 

example,

 

you

 

can

 

have

 

records

 

in

 

a

 

personnel

 

file

 

that

 

have

 

as

 

their

 

key

 

an

 

employee

 

number.

 

No

 

matter

 

how

 

many

 

Smiths

 

there

 

are,

 

each

 

has

 

a

 

unique

 

employee

 

number.

 

The

 

employee

 

number

 

can

 

be

 

the

 

primary

 

key

 

to

 

the

 

base

 

file.

 

The

 

base

 

file

 

must

 

be

 

defined

 

to

 

CICS

 

in

 

the

 

File

 

Definitions

 

(FD).

 

Sometimes,

 

however,

 

you

 

want

 

to

 

access

 

the

 

same

 

set

 

of

 

records

 

in

 

different

 

ways.

 

For

 

example,

 

if

 

you

 

were

 

producing

 

a

 

telephone

 

directory

 

from

 

the

 

file,

 

you

 

would

 

want

 

to

 

list

 

people

 

by

 

name

 

rather

 

than

 

employee

 

number.

 

You

 

can

 

identify

 

records

 

in

 

a

 

file

 

with

 

an

 

alternate

 

or

 

secondary

 

key

 

instead

 

of

 

the

 

primary

 

key

 

described

 

above.

 

So

 

the

 

primary

 

key

 

is

 

the

 

employee

 

number,

 

and

 

the

 

employee

 

name

 

is

 

the

 

alternate

 

key.

 

Alternate

 

keys

 

are

 

just

 

like

 

the

 

primary

 

key

 

in

 

Key-sequenced

 

data

 

set

 

(KSDS)

 

fields

 

of

 

fixed

 

length

 

and

 

fixed

 

position

 

within

 

the

 

record.

 

(The

 

KSDS

 

file

 

type

 

is

 

discussed

 

in

 

“Key-sequenced

 

data

 

set

 

(KSDS)”

 

on

 

page

 

107.)

 

You

 

can

 

have

 

any

 

number

 

of

 

alternate

 

keys

 

and,

 

unlike

 

the

 

primary

 

or

 

base

 

key,

 

alternate

 

keys

 

need

 

not

 

be

 

unique.

 

To

 

continue

 

our

 

personnel

 

example,

 

the

 

employee’s

 

department

 

code

 

might

 

be

 

defined

 

as

 

a

 

further

 

alternate

 

key.

 

If

 

you

 

delete

 

an

 

Entry-sequenced

 

data

 

set

 

(ESDS)

 

record

 

via

 

an

 

alternate

 

index,

 

an

 

attempt

 

to

 

read

 

the

 

deleted

 

record

 

via

 

the

 

index,

 

results

 

in

 

the

 

condition

 

NOTFND.

   

106

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



(The

 

ESDS

 

file

 

type

 

is

 

discussed

 

in

 

“Entry-sequenced

 

data

 

set

 

(ESDS)”

 

on

 

page

 

108.)

 

An

 

attempted

 

read

 

on

 

the

 

same

 

deleted

 

record

 

via

 

the

 

RBA

 

results

 

in

 

the

 

condition

 

ILLOGIC.

 

A

 

separate

 

FD

 

entry

 

is

 

needed

 

for

 

each

 

index

 

by

 

which

 

you

 

access

 

a

 

file.

 

So

 

in

 

the

 

example

 

above,

 

you

 

would

 

have

 

one

 

entry

 

for

 

access

 

by

 

the

 

primary

 

index

 

using

 

the

 

employee

 

number,

 

and

 

a

 

second

 

entry

 

for

 

access

 

by

 

the

 

alternate

 

index

 

using

 

the

 

employee

 

name.

 

CICS

 

treats

 

an

 

alternate

 

index

 

as

 

though

 

it

 

were

 

a

 

KSDS,

 

although

 

the

 

keys

 

need

 

not

 

uniquely

 

identify

 

the

 

record.

 

Whenever

 

you

 

update

 

a

 

record,

 

all

 

keys

 

in

 

alternate

 

indexes

 

are

 

automatically

 

updated;

 

primary

 

keys

 

cannot

 

be

 

altered.

 

A

 

CICS

 

application

 

program

 

disregards

 

whether

 

it

 

is

 

accessing

 

a

 

file

 

by

 

its

 

primary

 

or

 

alternate

 

key.

 

See

 

the

 

CICS

 

Administration

 

Guide

 

and

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

The

 

types

 

of

 

files

 

used

 

by

 

CICS

 

CICS

 

uses

 

three

 

types

 

of

 

files:

 

v

   

Key-sequenced

 

data

 

set

 

(KSDS)

 

v

   

Entry-sequenced

 

data

 

set

 

(ESDS)

 

v

   

Relative

 

record

 

data

 

set

 

(RRDS)

Both

 

SFS

 

and

 

DB2

 

provide

 

emulation

 

for

 

these

 

file

 

types.

 

Key-sequenced

 

data

 

set

 

(KSDS)

 

A

 

key-sequenced

 

data

 

set

 

(KSDS)

 

has

 

each

 

of

 

its

 

records

 

identified

 

by

 

a

 

key.

 

The

 

key

 

of

 

each

 

record

 

is

 

simply

 

a

 

field

 

in

 

a

 

predefined

 

position

 

within

 

the

 

record.

 

Keys

 

within

 

a

 

KSDS

 

file

 

need

 

not

 

be

 

unique.

 

The

 

physical

 

order

 

of

 

the

 

records

 

depends

 

on

 

the

 

collating

 

sequence

 

of

 

the

 

key

 

field.

 

This

 

also

 

fixes

 

the

 

order

 

in

 

which

 

you

 

retrieve

 

records

 

when

 

you

 

browse

 

through

 

the

 

data

 

set.

 

An

 

index

 

relates

 

the

 

key

 

of

 

each

 

record

 

to

 

the

 

record’s

 

relative

 

location

 

in

 

the

 

data

 

set.

 

When

 

you

 

add

 

or

 

delete

 

records,

 

this

 

index

 

is

 

updated

 

accordingly.

 

When

 

you

 

write

 

a

 

KSDS

 

record,

 

you

 

must

 

specify

 

the

 

complete

 

key,

 

and

 

when

 

browsing,

 

you

 

must

 

provide

 

a

 

record

 

identification

 

field

 

(RIDFLD)

 

sufficiently

 

large

 

to

 

hold

 

the

 

complete

 

key.

 

When

 

you

 

use

 

a

 

generic

 

key,

 

you

 

must

 

specify

 

its

 

length

 

in

 

the

 

KEYLENGTH

 

option.

 

You

 

must

 

also

 

specify

 

the

 

GENERIC

 

option

 

on

 

the

 

command.

 

A

 

generic

 

key

 

cannot

 

have

 

a

 

key

 

length

 

equal

 

to

 

the

 

full

 

key

 

length.

 

You

 

must

 

define

 

it

 

to

 

be

 

shorter

 

than

 

the

 

complete

 

key.

 

You

 

can

 

also

 

specify

 

the

 

GTEQ

 

option

 

on

 

certain

 

commands,

 

for

 

both

 

complete

 

and

 

generic

 

keys.

 

The

 

GTEQ

 

option

 

causes

 

the

 

command

 

to

 

position

 

at,

 

or

 

apply

 

to,

 

the

 

matching

 

record

 

in

 

the

 

data

 

set.

 

If

 

no

 

match

 

is

 

located,

 

the

 

command

 

then

 

positions

 

at

 

the

 

record

 

with

 

the

 

next

 

higher

 

key.

 

When

 

accessing

 

a

 

data

 

set

 

by

 

way

 

of

 

an

 

alternate

 

index

 

path,

 

the

 

record

 

identified

 

is

 

the

 

one

 

with

 

the

 

next

 

higher

 

alternate

 

key

 

when

 

a

 

matching

 

record

 

cannot

 

be

 

found.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

107



Even

 

when

 

using

 

generic

 

keys,

 

always

 

use

 

a

 

storage

 

area

 

for

 

the

 

RIDFLD

 

equal

 

in

 

length

 

to

 

the

 

length

 

of

 

the

 

complete

 

key.

 

During

 

a

 

browse

 

operation,

 

after

 

retrieving

 

a

 

record,

 

CICS

 

copies

 

the

 

actual

 

identifier

 

of

 

the

 

record

 

retrieved

 

into

 

the

 

RIDFLD

 

area.

 

CICS

 

returns

 

a

 

complete

 

key

 

to

 

your

 

application,

 

even

 

when

 

you

 

specified

 

a

 

generic

 

key

 

on

 

the

 

command.

 

For

 

example,

 

a

 

generic

 

browse

 

through

 

a

 

KSDS

 

returns

 

the

 

complete

 

key

 

to

 

your

 

application

 

on

 

each

 

EXEC

 

CICS

 

READNEXT

 

and

 

EXEC

 

CICS

 

READPREV

 

command.

 

Entry-sequenced

 

data

 

set

 

(ESDS)

 

An

 

entry-sequenced

 

data

 

set

 

(ESDS)

 

is

 

one

 

in

 

which

 

each

 

record

 

is

 

identified

 

by

 

the

 

address

 

assigned

 

to

 

it

 

when

 

the

 

record

 

is

 

first

 

entered

 

into

 

the

 

data

 

set.

 

This

 

address

 

is

 

known

 

as

 

its

 

relative

 

byte

 

address

 

(RBA).

 

Records

 

are

 

held

 

in

 

an

 

ESDS

 

in

 

the

 

order

 

in

 

which

 

they

 

were

 

first

 

loaded

 

into

 

the

 

data

 

set.

 

New

 

records

 

added

 

to

 

an

 

ESDS

 

always

 

go

 

after

 

the

 

last

 

record

 

in

 

the

 

data

 

set.

 

You

 

can

 

not

 

alter

 

the

 

length

 

of

 

a

 

record,

 

and

 

you

 

can

 

not

 

delete

 

a

 

record

 

via

 

the

 

RBA

 

base.

 

The

 

only

 

way

 

to

 

delete

 

a

 

record

 

is

 

via

 

a

 

alternate

 

index.

 

After

 

a

 

record

 

has

 

been

 

stored

 

in

 

an

 

ESDS,

 

its

 

RBA

 

remains

 

constant.

 

The

 

browsing

 

function

 

retrieves

 

the

 

records

 

in

 

the

 

order

 

in

 

which

 

they

 

were

 

added

 

to

 

the

 

data

 

set.

 

You

 

use

 

the

 

RBA

 

option

 

on

 

most

 

file

 

control

 

services

 

commands

 

to

 

specify

 

that

 

the

 

RIDFLD

 

contains

 

the

 

RBA

 

of

 

the

 

record

 

to

 

be

 

accessed.

 

An

 

RBA

 

is

 

used

 

to

 

access

 

an

 

ESDS.

 

All

 

file

 

control

 

commands

 

that

 

refer

 

to

 

an

 

ESDS

 

base,

 

and

 

specify

 

a

 

RIDFLD,

 

must

 

specify

 

the

 

RBA

 

option.

 

The

 

following

 

list

 

shows

 

the

 

commands:

 

v

   

READ

 

v

   

READNEXT

 

v

   

READPREV

 

v

   

RESETBR

 

v

   

STARTBR

 

v

   

WRITE

Relative

 

record

 

data

 

set

 

(RRDS)

 

A

 

relative

 

record

 

data

 

set

 

(RRDS)

 

has

 

fixed-length

 

slots,

 

predefined

 

to

 

VSAM,

 

in

 

which

 

records

 

can

 

be

 

stored.

 

An

 

RRDS

 

record

 

is

 

always

 

fixed

 

length,

 

equal

 

to

 

the

 

slot

 

size.

 

A

 

record

 

in

 

an

 

RRDS

 

is

 

identified

 

by

 

the

 

relative

 

record

 

number

 

(RRN)

 

of

 

the

 

slot

 

that

 

holds

 

it.

 

When

 

a

 

new

 

record

 

is

 

added

 

to

 

an

 

RRDS,

 

VSAM

 

uses

 

the

 

number

 

you

 

supply

 

with

 

the

 

file

 

control

 

request.

 

You

 

use

 

the

 

RRN

 

option

 

on

 

most

 

file

 

control

 

services

 

commands

 

to

 

specify

 

that

 

the

 

RIDFLD

 

contains

 

the

 

relative

 

record

 

number

 

of

 

the

 

record

 

to

 

be

 

retrieved.

 

The

 

first

 

record

 

in

 

the

 

data

 

set

 

is

 

number

 

one.

 

All

 

the

 

file

 

control

 

commands

 

that

 

refer

 

to

 

an

 

RRDS,

 

and

 

specify

 

a

 

RIDFLD,

 

must

 

specify

 

the

 

RRN

 

keyword.

 

VSAM

 

emulation

 

by

 

SFS

 

and

 

distributed

 

CICS

 

The

 

correspondence

 

between

 

VSAM

 

data

 

set

 

types

 

and

 

SFS

 

file

 

types

 

is

 

shown

 

in

 

the

 

following

 

table:

  

Table

 

15.

 

Comparison

 

of

 

VSAM

 

data

 

set

 

types

 

and

 

SFS

 

files

 

VSAM

 

data

 

set

 

types

 

SFS

 

files

 

types

 

Key-sequenced

 

data

 

set

 

(KSDS)

 

Clustered

 

files

 

Entry-sequenced

 

data

 

set

 

(ESDS)

 

Entry-sequenced

 

files

 

Relative

 

record

 

data

 

set

 

(RRDS)

 

Relative

 

files

    

108

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



VSAM

 

emulation

 

of

 

KSDS

 

files

 

by

 

SFS:

   

SFS

 

clustered

 

files

 

are

 

used

 

to

 

emulate

 

KSDS

 

access

 

to

 

VSAM

 

data.

 

All

 

segments

 

of

 

keys

 

should

 

be

 

defined

 

as

 

being

 

in

 

ascending

 

sequence.

 

The

 

primary

 

key

 

should

 

not

 

allow

 

duplicate

 

key

 

values.

 

SFS

 

allows

 

keys

 

to

 

be

 

segmented,

 

that

 

is,

 

made

 

up

 

from

 

two

 

or

 

more

 

fields

 

in

 

any

 

position

 

in

 

the

 

record.

 

You

 

can

 

use

 

segmented

 

keys

 

in

 

TXSeries

 

CICS

 

where

 

file

 

services

 

are

 

provided

 

by

 

SFS.

 

However,

 

you

 

should

 

not

 

do

 

so

 

if

 

you

 

intend

 

to

 

migrate

 

your

 

CICS

 

applications

 

to

 

regions

 

where

 

files

 

services

 

are

 

provided

 

by

 

DB2,

 

or

 

to

 

a

 

CICS

 

product

 

that

 

does

 

not

 

support

 

segmented

 

keys.

 

Defining

 

keys

 

affects

 

the

 

order

 

of

 

presentation

 

of

 

records

 

in

 

the

 

following

 

ways:

 

v

   

If

 

keys

 

are

 

defined

 

using

 

fields

 

that

 

are

 

not

 

byte

 

arrays,

 

then

 

the

 

order

 

of

 

presentation

 

of

 

records

 

is

 

that

 

which

 

SFS

 

uses.

 

v

   

If

 

some

 

segments

 

of

 

a

 

key

 

are

 

defined

 

as

 

being

 

in

 

descending

 

sequence,

 

the

 

order

 

of

 

presentation

 

of

 

records

 

is

 

affected.

 

v

   

The

 

GTEQ

 

option

 

associated

 

with

 

CICS

 

commands

 

is

 

interpreted

 

in

 

the

 

context

 

of

 

the

 

ordering

 

of

 

the

 

records

 

used

 

by

 

SFS.

These

 

factors

 

affect

 

CICS

 

behavior

 

when

 

performing

 

EXEC

 

CICS

 

READ

 

and

 

EXEC

 

CICS

 

STARTBR

 

operations.

 

For

 

example,

 

consider

 

a

 

request

 

from

 

an

 

EXEC

 

CICS

 

READ

 

command

 

using

 

a

 

GTEQ

 

option

 

for

 

a

 

record

 

with

 

a

 

key

 

of

 

“ZZZZ”.

 

This

 

request

 

could

 

yield

 

a

 

record

 

whose

 

key

 

is

 

actually

 

“AAAA”

 

because

 

of

 

how

 

order

 

of

 

presentation

 

is

 

handled

 

by

 

SFS.

 

VSAM-based

 

CICS

 

and

 

distributed

 

CICS

 

interpret

 

the

 

EXEC

 

CICS

 

STARTBR

 

command

 

differently

 

due

 

to

 

the

 

SFS-imposed

 

record

 

ordering

 

used

 

by

 

distributed

 

CICS.

 

Under

 

VSAM-based

 

CICS,

 

an

 

EXEC

 

CICS

 

STARTBR

 

command

 

that

 

specifies

 

a

 

key

 

GTEQ

 

low

 

values

 

begins

 

the

 

search

 

with

 

the

 

first

 

or

 

last

 

records

 

in

 

the

 

file.

 

Distributed

 

CICS

 

always

 

interprets

 

an

 

EXEC

 

CICS

 

STARTBR

 

request

 

specifying

 

a

 

key

 

GTEQ

 

low

 

values

 

as

 

a

 

request

 

to

 

start

 

at

 

the

 

first

 

record

 

in

 

a

 

file.

 

Similarly,

 

a

 

request

 

for

 

a

 

key

 

of

 

high

 

values

 

is

 

always

 

interpreted

 

as

 

a

 

request

 

for

 

the

 

last

 

record

 

in

 

the

 

file.

 

The

 

record

 

ordering

 

imposed

 

by

 

SFS

 

has

 

precedence

 

irrespective

 

of

 

where

 

a

 

high

 

values

 

or

 

a

 

low

 

values

 

key

 

might

 

be

 

positioned

 

in

 

the

 

file.

 

These

 

potential

 

misinterpretations

 

can

 

be

 

avoided

 

by

 

using

 

the

 

sfs_byteArray

 

field

 

type.

 

CICS

 

allows

 

the

 

use

 

of

 

files

 

that

 

have

 

a

 

primary

 

index

 

that

 

is

 

not

 

unique.

 

It

 

also

 

allows

 

the

 

use

 

of

 

files

 

where

 

the

 

alternate

 

indexes

 

have

 

duplicates.

 

When

 

files

 

having

 

these

 

conditions

 

are

 

used,

 

CICS

 

limits

 

the

 

operations

 

which

 

you

 

can

 

perform.

 

This

 

limit

 

occurs

 

because

 

all

 

EXEC

 

CICS

 

READ

 

and

 

EXEC

 

CICS

 

READ

 

UPDATE

 

requests

 

can

 

access

 

only

 

the

 

first

 

of

 

a

 

set

 

of

 

duplicate

 

records.

 

This

 

can

 

be

 

useful

 

in

 

accessing

 

data

 

prepared

 

by

 

a

 

non-CICS

 

application.

 

VSAM

 

emulation

 

of

 

ESDS

 

files

 

by

 

SFS:

   

TXSeries

 

CICS

 

emulate

 

ESDS

 

using

 

the

 

SFS

 

entry-sequenced

 

file

 

organization.

 

The

 

RBA

 

is

 

mapped

 

onto

 

the

 

SFS

 

implicit

 

primary

 

index

 

for

 

the

 

file.

 

This

 

implicit

 

primary

 

file

 

index

 

is

 

known

 

as

 

an

 

entry

 

sequence

 

number

 

(ESN).

 

This

 

is

 

not

 

necessarily

 

the

 

actual

 

physical

 

position

 

of

 

the

 

record

 

in

 

the

 

file,

 

but

 

it

 

does

 

identify

 

the

 

record

 

as

 

unique.

 

The

 

RBA

 

returned

 

to

 

a

 

CICS

 

application

 

is

 

a

 

four-byte

 

unsigned

 

quantity.

 

This

 

is

 

derived

 

from

 

the

 

eight-byte

 

SFS

 

entry

 

sequence

 

number.

 

No

 

meaning

 

should

 

be

 

attached

 

to

 

the

 

actual

 

numeric

 

value

 

of

 

the

 

RBA.

 

These

 

RBA

 

values

 

should

 

be

 

treated

 

as

 

unique

 

identifiers

 

assigned

 

in

 

an

 

ascending

 

sequence.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

109



CICS

 

permits

 

access

 

to

 

files

 

containing

 

records

 

whose

 

ESNs

 

cannot

 

be

 

packed

 

into

 

a

 

32

 

bit

 

RBA.

 

However,

 

records

 

with

 

such

 

ESNs

 

cannot

 

be

 

read,

 

nor

 

can

 

new

 

records

 

be

 

added

 

to

 

such

 

files

 

because,

 

in

 

each

 

case,

 

no

 

RBA

 

can

 

be

 

returned

 

to

 

the

 

application.

 

VSAM

 

emulation

 

of

 

RRDS

 

files

 

by

 

SFS:

   

SFS

 

relative

 

files

 

are

 

used

 

to

 

emulate

 

RRDS

 

files.

 

SFS

 

requires

 

that

 

the

 

records

 

contain

 

one

 

field

 

to

 

hold

 

the

 

RRN

 

and

 

a

 

number

 

of

 

other

 

fixed-length

 

fields.

 

For

 

VSAM

 

emulation,

 

ensure

 

that

 

all

 

fields

 

other

 

than

 

the

 

RRN

 

field

 

be

 

of

 

type

 

sfs_byteArray.

 

The

 

RRN

 

is

 

mapped

 

onto

 

the

 

SFS

 

relative

 

slot

 

number

 

(RSN).

 

CICS

 

ensures

 

that

 

data

 

seen

 

by

 

CICS

 

applications

 

does

 

not

 

include

 

the

 

RRN

 

field.

 

Do

 

not

 

specify

 

any

 

secondary

 

(alternate)

 

indexes

 

for

 

these

 

files.

 

RRDS

 

files

 

with

 

alternate

 

indexes

 

can

 

be

 

accessed

 

with

 

their

 

RRNs

 

but

 

not

 

with

 

their

 

alternate

 

indexes.

 

If

 

such

 

files

 

are

 

used,

 

the

 

DUPREC

 

condition

 

occurs

 

if

 

an

 

insertion

 

or

 

an

 

updates

 

would

 

violate

 

uniqueness

 

constraints.

 

VSAM

 

alternate

 

index

 

emulation

 

by

 

SFS:

   

Alternate

 

indexes

 

are

 

emulated

 

using

 

SFS

 

secondary

 

(alternate)

 

indexes,

 

which,

 

like

 

that

 

primary

 

key

 

(index)

 

can

 

be

 

segmented.

 

Although

 

SFS

 

allows

 

relative

 

files

 

to

 

have

 

secondary

 

(alternate)

 

indexes,

 

CICS

 

does

 

not

 

support

 

this.

 

VSAM

 

record

 

emulation

 

by

 

SFS:

   

When

 

defining

 

files

 

to

 

SFS,

 

you

 

must

 

specify

 

the

 

fields

 

that

 

make

 

up

 

the

 

record.

 

For

 

portable

 

CICS

 

family

 

applications,

 

use

 

only

 

sfs_byteArray

 

and

 

sfs_varLenByteArray

 

type

 

fields.

 

Use

 

of

 

other

 

data

 

types

 

is

 

discussed

 

in

 

“Functionality

 

differences

 

with

 

SFS”

 

on

 

page

 

112.

 

The

 

CICS

 

API

 

does

 

not

 

permit

 

records

 

greater

 

than

 

32

 

KB

 

in

 

length

 

to

 

be

 

manipulated.

 

Therefore,

 

the

 

total

 

length

 

of

 

all

 

the

 

fields

 

in

 

your

 

records

 

must

 

be

 

less

 

than

 

or

 

equal

 

to

 

32

 

KB.

 

Fixed-length

 

records:

   

Fixed-length

 

records

 

must

 

consist

 

of

 

one

 

or

 

more

 

sfs_byteArray

 

fields,

 

the

 

sum

 

of

 

their

 

lengths

 

equal

 

to

 

the

 

required

 

record

 

length.

 

You

 

need

 

a

 

separate

 

field

 

for

 

each

 

index

 

to

 

the

 

file,

 

and

 

a

 

sufficient

 

number

 

of

 

other

 

fields

 

to

 

define

 

the

 

remainder

 

of

 

the

 

record.

 

For

 

example,

 

Figure

 

5

 

on

 

page

 

111

 

illustrates

 

a

 

VSAM

 

file

 

having

 

the

 

following

 

characteristics:

 

v

   

Record

 

length

 

is

 

20

 

bytes

 

v

   

Primary

 

index

 

has

 

a

 

key

 

that

 

is

 

five

 

bytes

 

long

 

and

 

begins

 

at

 

offset

 

four

 

v

   

Secondary

 

(alternate)

 

index

 

has

 

a

 

key

 

that

 

is

 

seven

 

bytes

 

long

 

and

 

begins

 

at

 

offset

 

eleven.

   

110

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



To

 

emulate

 

this

 

VSAM

 

file

 

to

 

SFS,

 

you

 

would

 

define

 

five

 

sfs_byteArray

 

fields

 

to

 

SFS

 

of

 

lengths

 

three,

 

five,

 

two,

 

seven,

 

and

 

three

 

respectively.

 

Variable-length

 

records:

   

To

 

define

 

a

 

VSAM

 

file

 

that

 

holds

 

variable-length

 

records

 

to

 

SFS:

 

1.

   

Specify

 

a

 

number

 

of

 

sfs_byteArray

 

fields

 

for

 

the

 

portion

 

of

 

the

 

record

 

holding

 

any

 

key

 

fields.

 

2.

   

Specify

 

one

 

sfs_varLenByteArray

 

type

 

field.

 

Define

 

the

 

length

 

of

 

this

 

field

 

so

 

that

 

the

 

total

 

record

 

length

 

is

 

the

 

maximum

 

length

 

you

 

need.

 

3.

   

The

 

variable-length

 

field

 

must

 

be

 

the

 

last

 

field

 

in

 

the

 

record.

Note:

  

The

 

size

 

of

 

the

 

variable-length

 

field

 

is

 

recorded

 

in

 

a

 

four-byte

 

header

 

to

 

the

 

field

 

by

 

SFS.

 

However,

 

the

 

data

 

that

 

is

 

visible

 

to

 

the

 

CICS

 

application

 

does

 

not

 

include

 

this

 

four-byte

 

header.

 

For

 

example,

 

Figure

 

6

 

on

 

page

 

112

 

shows

 

a

 

VSAM

 

file

 

having

 

a

 

variable-length

 

record

 

of

 

maximum

 

length

 

of

 

1000

 

bytes.

 

The

 

keys

 

for

 

this

 

record

 

are

 

in

 

the

 

same

 

positions

 

as

 

the

 

keys

 

for

 

the

 

record

 

discussed

 

in

 

Figure

 

5:

    

Figure

 

5.

 

Fixed-length

 

record

 

example

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

111



To

 

emulate

 

this

 

VSAM

 

file

 

with

 

its

 

variable-length

 

record,

 

you

 

define

 

five

 

sfs_byteArray

 

fields

 

to

 

SFS

 

of

 

lengths

 

three,

 

five,

 

two,

 

seven,

 

and

 

three

 

respectively,

 

and

 

one

 

sfs_varLenByteArray

 

of

 

maximum

 

length

 

979;

 

and

 

again

 

define

 

suitable

 

indexes.

 

Note

 

that

 

although

 

SFS’s

 

four-byte

 

header

 

to

 

a

 

variable-length

 

field

 

is

 

invisible

 

to

 

CICS,

 

a

 

CICS

 

application

 

can

 

make

 

use

 

of

 

the

 

field

 

to

 

convey

 

information

 

to

 

the

 

SFS.

 

A

 

CICS

 

application

 

can

 

write

 

a

 

40-byte

 

record

 

to

 

SFS

 

with

 

a

 

command

 

such

 

as:

 

EXEC

 

CICS

 

WRITE(FILE)

 

FROM(buffer)

 

LENGTH(40)

 

where

 

buffer

 

contains:

 

1

 

1

 

1

 

P

 

P

 

P

 

P

 

P

 

3

 

3

 

S

 

S

 

S

 

S

 

S

 

S

 

S

  

5

 

5

 

vvvvvvvvvvvvvvvvvvvv

 

CICS

 

arranged

 

that

 

the

 

actual

 

record

 

written

 

to

 

SFS

 

has

 

the

 

length

 

of

 

the

 

variable

 

field

 

of

 

the

 

record

 

(twenty

 

bytes)

 

placed

 

in

 

the

 

field

 

header.

 

Functionality

 

differences

 

with

 

SFS:

   

The

 

following

 

behavior

 

differences

 

are

 

important

 

to

 

understand

 

when

 

emulating

 

VSAM

 

files

 

in

 

SFS:

 

v

   

CICS

 

does

 

not

 

allow

 

simultaneous

 

access

 

to

 

SFS

 

files.

 

Security

 

facilities

 

are

 

provided

 

to

 

configure

 

SFS

 

and

 

CICS

 

so

 

that

 

simultaneous

 

access

 

is

 

restricted

 

or

 

prohibited.

 

v

   

CICS

 

can

 

access

 

SFS

 

records

 

containing

 

data

 

types

 

other

 

than

 

the

 

various

 

byte

 

arrays.

 

To

 

do

 

this,

 

you

 

must

 

be

 

aware

 

of

 

the

 

restrictions

 

imposed

 

by

 

SFS

 

on

 

manipulations

 

of

 

these

 

data

 

types.

 

–

   

Numeric

 

data

 

types:

 

SFS

 

does

 

not

 

accept

 

or

 

return

 

partial

 

fields

 

of

 

numeric

 

types

 

such

 

as

 

sfs_integer.

 

Ensure

 

that

 

applications

 

that

 

access

 

records

 

containing

 

such

 

fields

 

do

 

not

 

attempt

 

such

 

operations.

 

Examples

 

of

 

how

 

such

 

requests

 

occur

 

are:

 

EXEC

 

CICS

 

READ

 

INTO()

 

LENGTH()

 

...

 

where

 

the

 

specified

 

length

 

encompasses

 

only

 

part

 

of

 

a

 

numeric

 

field,

 

and:

 

EXEC

 

CICS

 

READ

 

INTO()

 

LENGTH()

            

RIDFLD()

 

GENERIC

 

KEYLENGTH()

   

Figure

 

6.

 

Variable-length

 

record

 

example

  

112

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



where

 

the

 

generic

 

key

 

specified

 

includes

 

only

 

part

 

of

 

an

 

integer

 

field.

 

–

   

String

 

data

 

types:

 

SFS

 

requires

 

that

 

strings

 

be

 

null

 

terminated.

 

If

 

data

 

is

 

supplied

 

which

 

is

 

not

 

null

 

terminated,

 

an

 

SFS

 

error

 

can

 

occur,

 

and

 

CICS

 

raises

 

an

 

ILLOGIC

 

condition.

 

v

   

CICS

 

does

 

not

 

permit

 

access

 

to

 

files

 

whose

 

records

 

contain

 

more

 

than

 

one

 

variable-length

 

field.

 

It

 

refuses

 

to

 

open

 

such

 

files.

 

v

   

SFS

 

permits

 

records

 

to

 

be

 

deleted

 

from

 

Entry

 

Sequenced

 

files.

 

CICS

 

does

 

not

 

support

 

this

 

function.

 

However,

 

non-CICS

 

processes

 

can

 

delete

 

records

 

from

 

such

 

files;

 

this

 

means

 

that

 

there

 

is

 

no

 

guarantee

 

that

 

the

 

first

 

record

 

in

 

an

 

ESDS

 

file

 

has

 

an

 

RBA

 

of

 

zero.

 

v

   

In

 

general,

 

the

 

use

 

of

 

native

 

SFS

 

calls

 

is

 

not

 

supported.

 

The

 

following

 

conditions

 

describe

 

the

 

exceptions

 

to

 

this

 

rule:

 

–

   

When

 

XA

 

resource

 

managers

 

are

 

not

 

used,

 

SFS

 

native

 

calls

 

are

 

supported.

 

XA

 

resource

 

managers

 

are

 

defined

 

with

 

Product

 

Definitions

 

(XAD)

 

entries.

 

–

   

SFS

 

native

 

calls

 

are

 

supported

 

when

 

recoverable

 

use

 

of

 

CICS

 

file

 

services

 

or

 

CICS

 

queues

 

is

 

simple

 

and

 

does

 

not

 

require

 

the

 

use

 

of

 

EXEC

 

CICS

 

SYNCPOINT

 

commands.

See

 

the

 

CICS

 

Administration

 

Guide

 

and

 

the

 

CICS

 

Intercommunication

 

Guide

 

for

 

related

 

information.

 

VSAM

 

emulation

 

by

 

DB2

 

and

 

distributed

 

CICS

 

CICS

 

can

 

accomplish

 

table

 

creation

 

in

 

DB2

 

using

 

the

 

following

 

methods:

 

v

   

The

 

cicsddt

 

tool

 

allows

 

the

 

interactive

 

creation

 

of

 

CICS

 

family

 

portable

 

table

 

structures.

 

(This

 

is

 

described

 

in

 

the

 

CICS

 

Administration

 

Guide

 

and

 

the

 

CICS

 

Administration

 

Reference.)

 

v

   

The

 

cicsdb2import

 

command

 

allows

 

the

 

creation

 

of

 

appropriate

 

DB2

 

tables

 

from

 

Schema

 

File

 

Definitions

 

(SCD).

 

(This

 

is

 

described

 

in

 

the

 

CICS

 

Administration

 

Guide

 

and

 

the

 

CICS

 

Administration

 

Reference.)

 

v

   

DB2

 

tables

 

can

 

also

 

be

 

created

 

using

 

the

 

DB2

 

External

 

File

 

Handler.)

 

v

   

DB2

 

tables

 

can

 

be

 

created

 

through

 

the

 

native

 

SQL

 

interfaces.

Each

 

of

 

these

 

utilities

 

supports

 

the

 

creation

 

of

 

appropriate

 

DB2

 

indexes.

 

It

 

is

 

important

 

that

 

all

 

tables

 

and

 

indexes

 

are

 

created

 

with

 

the

 

owner

 

designated

 

as

 

CICS.

 

Use

 

DB2

 

data

 

types

 

that

 

are

 

not

 

associated

 

with

 

a

 

coded

 

character

 

set

 

when

 

developing

 

CICS

 

family

 

portable

 

applications.

 

This

 

can

 

be

 

achieved

 

by

 

defining

 

columns

 

as

 

CHAR

 

or

 

VARCHAR

 

″FOR

 

BIT

 

DATA″,

 

or

 

by

 

using

 

BLOBs.

 

The

 

following

 

sections

 

give

 

more

 

information

 

on

 

the

 

structure

 

of

 

DB2

 

tables

 

required

 

for

 

CICS

 

family

 

portable

 

applications.

 

VSAM

 

emulation

 

of

 

KSDS

 

files

 

by

 

DB2:

   

A

 

series

 

of

 

DB2

 

data

 

types

 

that

 

are

 

not

 

associated

 

with

 

a

 

coded

 

character

 

set

 

must

 

be

 

used

 

to

 

create

 

the

 

table

 

definitions.

 

The

 

number

 

of

 

columns

 

defined

 

must

 

allow

 

for

 

each

 

and

 

every

 

index

 

against

 

the

 

file,

 

as

 

well

 

as

 

for

 

an

 

additional

 

number

 

of

 

columns

 

sufficient

 

to

 

define

 

the

 

remainder

 

of

 

the

 

record.

 

Tables

 

that

 

emulate

 

KSDS

 

files

 

must

 

be

 

created

 

with

 

a

 

unique,

 

primary

 

index.

 

For

 

performance

 

reasons,

 

it

 

is

 

recommended

 

that

 

you

 

also

 

create

 

a

 

corresponding

 

index

 

with

 

inverted

 

ordering.

 

For

 

instance,

 

the

 

following

 

command

 

creates

 

a

 

primary

 

index

 

on

 

the

 

ACCT

 

column

 

of

 

the

 

account

 

table:

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

113



CREATE

 

UNIQUE

 

INDEX

 

CICS.ACCT0

 

ON

 

CICS.ACCOUNT(ACCT)

 

In

 

addition,

 

a

 

corresponding

 

descending

 

index

 

should

 

be

 

created.

 

This

 

can

 

be

 

done

 

using

 

the

 

following

 

command:

 

CREATE

 

UNIQUE

 

INDEX

 

CICS.ACCT0@

 

ON

 

CICS.ACCOUNT(ACCT

 

DESC)

 

Similarly,

 

when

 

an

 

alternate

 

index

 

is

 

created,

 

the

 

corresponding

 

index

 

with

 

inverted

 

ordering

 

should

 

also

 

be

 

created.

 

This

 

process

 

of

 

creating

 

a

 

unique

 

primary

 

index

 

and

 

a

 

corresponding

 

index

 

having

 

an

 

inverted

 

order

 

applies

 

to

 

table

 

definitions

 

in

 

the

 

following

 

situations:

 

v

   

Fixed-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

v

   

Variable-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

v

   

Variable-length

 

KSDS

 

with

 

overlapping

 

alternate

 

index

 

fields.

The

 

following

 

sections

 

compare

 

the

 

procedures

 

for

 

creating

 

table

 

definitions

 

for

 

each

 

of

 

these

 

situations

 

in

 

VSAM

 

and

 

in

 

DB2

 

emulation.

 

Fixed-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields:

   

Table

 

16

 

and

 

Table

 

17

 

compare

 

the

 

procedures

 

for

 

creating

 

fixed-length

 

KSDS

 

records

 

in

 

VSAM

 

and

 

for

 

emulating

 

them

 

in

 

DB2:

  

Table

 

16.

 

Fixed-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

KSDS

 

definition

 

Primary

 

key

 

(offset

 

length)

   

1

    

5

 

Alt

 

key

 

1

 

(offset

 

length)

    

24

    

4

 

Alt

 

Key

 

2

 

(offset

 

length)

    

44

   

20

 

Record

 

size

 

(avg

 

max)

       

500

  

500

   

If

 

the

 

record

 

is

 

defined

 

as

 

fixed-length,

 

then

 

a

 

DB2

 

table

 

definition

 

can

 

be

 

created

 

using

 

a

 

series

 

of

 

CHAR

 

columns.

 

One

 

CHAR

 

column

 

is

 

required

 

for

 

each

 

key

 

field.

 

Additionally,

 

each

 

section

 

of

 

the

 

record

 

that

 

lies

 

before,

 

between,

 

and

 

after

 

the

 

keys

 

must

 

have

 

a

 

CHAR

 

column

 

to

 

define

 

it.

 

No

 

section

 

can

 

be

 

longer

 

that

 

254

 

characters.

  

Table

 

17.

 

Fixed-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

 

DB2

 

columns

 

PART1

   

CHAR(1)

   

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PKEY

    

CHAR(5)

   

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART2

   

CHAR(18)

  

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1

 

CHAR(4)

   

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART3

   

CHAR(16)

  

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY2

 

CHAR(20)

  

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART4

   

CHAR(254)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART5

   

CHAR(182)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

   

Variable-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields:

   

Table

 

18

 

on

 

page

 

115

 

and

 

Table

 

19

 

on

 

page

 

115

 

compare

 

the

 

procedures

 

for

 

creating

 

variable-length

 

KSDS

 

records

 

in

 

VSAM

 

and

 

for

 

emulating

 

them

 

in

 

DB2:

   

114

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

18.

 

Variable-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

KSDS

 

definition

 

Primary

 

key

 

(offset

 

length)

   

1

    

5

 

Alt

 

key

 

1

 

(offset

 

length)

    

24

    

4

 

Alt

 

Key

 

2

 

(offset

 

length)

    

44

   

20

 

Record

 

size

 

(avg

 

max)

       

200

  

200

   

If

 

the

 

record

 

is

 

defined

 

as

 

variable-length,

 

then

 

a

 

DB2

 

table

 

definition

 

can

 

be

 

created

 

using

 

a

 

series

 

of

 

CHAR

 

columns.

 

One

 

CHAR

 

column

 

is

 

required

 

for

 

each

 

index

 

field.

 

Additionally,

 

each

 

section

 

of

 

the

 

record

 

that

 

lies

 

before,

 

between,

 

and

 

after

 

the

 

indexes

 

must

 

have

 

one

 

CHAR

 

column

 

to

 

define

 

it.

 

The

 

final

 

column

 

is

 

defined

 

as

 

VARCHAR,

 

LONG

 

VARCHAR,

 

or

 

BLOB,

 

depending

 

on

 

the

 

maximum

 

record

 

length.

 

The

 

minimum

 

length

 

assumed

 

is

 

up

 

to

 

and

 

including

 

the

 

last

 

alternate

 

index.

  

Table

 

19.

 

Variable-length

 

KSDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

 

DB2

 

columns

 

PART1

   

CHAR(1)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PKEY

    

CHAR(5)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART2

   

CHAR(18)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1

 

CHAR(4)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART3

   

CHAR(16)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY2

 

CHAR(20)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART4

   

VARCHAR(436)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

   

Variable-length

 

KSDS

 

with

 

overlapping

 

alternate

 

index

 

fields:

   

Table

 

20

 

and

 

Table

 

21

 

compare

 

the

 

procedures

 

for

 

creating

 

variable-length

 

KSDS

 

records

 

in

 

VSAM

 

and

 

for

 

emulating

 

them

 

in

 

DB2.

 

These

 

examples

 

illustrate

 

the

 

handling

 

of

 

overlapping

 

alternate

 

index

 

fields:

  

Table

 

20.

 

Variable-length

 

KSDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

KSDS

 

definition

 

Primary

 

key

 

(offset

 

length)

   

1

    

5

 

Alt

 

key

 

1

 

(offset

 

length)

    

24

    

4

 

Alt

 

Key

 

2

 

(offset

 

length)

    

44

   

20

 

Record

 

size

 

(avg

 

max)

       

200

  

200

   

In

 

this

 

example,

 

the

 

first

 

index

 

comprises

 

columns

 

ALTKEY1A

 

and

 

ALTKEY1B,

 

while

 

the

 

second

 

index

 

comprises

 

columns

 

ALTKEY1B

 

and

 

ALTKEY2B.

 

While

 

DB2

 

allows

 

keys

 

to

 

be

 

segmented,

 

that

 

is

 

made

 

up

 

from

 

one

 

or

 

more

 

fields

 

in

 

any

 

position

 

in

 

the

 

record,

 

it

 

does

 

not

 

allow

 

you

 

to

 

utilize

 

segmented

 

keys

 

in

 

CICS

 

on

 

Open

 

Systems

 

where

 

file

 

services

 

are

 

provided

 

by

 

DB2.

  

Table

 

21.

 

Variable-length

 

KSDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

 

DB2

 

columns

 

PART1

    

CHAR(1)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PKEY

     

CHAR(5)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART2

    

CHAR(18)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1A

 

CHAR(2)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1B

 

CHAR(2)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY2B

 

CHAR(18)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART4

    

VARCHAR(454)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

    

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

115



Data

 

associated

 

with

 

a

 

coded

 

character

 

set:

   

Defining

 

keys

 

affects

 

the

 

order

 

of

 

presentation

 

of

 

records

 

in

 

the

 

following

 

ways:

 

v

   

If

 

keys

 

are

 

defined

 

using

 

fields

 

that

 

are

 

not

 

defined

 

as

 

FOR

 

BIT

 

DATA,

 

the

 

order

 

of

 

presentation

 

of

 

records

 

is

 

that

 

which

 

DB2

 

uses.

 

This

 

is

 

dependent

 

on

 

the

 

database

 

code

 

page

 

and

 

the

 

collation

 

sequence

 

specified

 

when

 

the

 

database

 

is

 

created.

 

v

   

The

 

GTEQ

 

option

 

associated

 

with

 

CICS

 

commands

 

is

 

interpreted

 

in

 

the

 

context

 

of

 

the

 

ordering

 

of

 

the

 

records

 

used

 

by

 

DB2.

 

This

 

impacts

 

CICS

 

behavior

 

when

 

performing

 

EXEC

 

CICS

 

READ

 

and

 

EXEC

 

CICS

 

STARTBR

 

operations.

 

For

 

example,

 

consider

 

a

 

request

 

from

 

an

 

EXEC

 

CICS

 

READ

 

command

 

using

 

a

 

GTEQ

 

option

 

for

 

a

 

record

 

with

 

a

 

key

 

of

 

“ZZZZ”.

 

This

 

request

 

could

 

yield

 

a

 

record

 

whose

 

key

 

is

 

actually

 

“AAAA”

 

because

 

of

 

how

 

order

 

of

 

presentation

 

is

 

handled

 

by

 

DB2.

 

VSAM-based

 

CICS

 

and

 

distributed

 

CICS

 

interpret

 

the

 

EXEC

 

CICS

 

STARTBR

 

commands

 

differently

 

due

 

to

 

the

 

DB2–imposed

 

record

 

ordering

 

used

 

by

 

CICS.

 

Under

 

VSAM-based

 

CICS,

 

an

 

EXEC

 

CICS

 

STARTBR

 

command

 

that

 

specifies

 

a

 

key

 

GTEQ

 

low

 

values

 

begins

 

the

 

search

 

at

 

the

 

first

 

or

 

last

 

records

 

in

 

the

 

file.

 

Distributed

 

CICS

 

always

 

interprets

 

an

 

EXEC

 

CICS

 

STARTBR

 

request

 

specifying

 

a

 

key

 

GTEQ

 

low

 

values

 

as

 

a

 

request

 

to

 

start

 

at

 

the

 

first

 

record

 

in

 

a

 

file.

 

Similarly,

 

a

 

request

 

for

 

a

 

key

 

of

 

high

 

values

 

is

 

always

 

interpreted

 

as

 

a

 

request

 

for

 

the

 

last

 

record

 

in

 

the

 

file.

 

The

 

record

 

ordering

 

imposed

 

by

 

DB2

 

has

 

precedence

 

irrespective

 

of

 

where

 

a

 

high

 

values

 

or

 

a

 

low

 

values

 

key

 

might

 

be

 

positioned

 

in

 

the

 

file.

 

These

 

potential

 

misinterpretations

 

can

 

be

 

avoided

 

by

 

using

 

the

 

FOR

 

BIT

 

DATA

 

column

 

types

 

when

 

defining

 

DB2

 

tables.

 

VSAM

 

emulation

 

of

 

ESDS

 

files

 

by

 

DB2:

   

CICS

 

emulates

 

ESDS

 

files

 

using

 

a

 

special

 

32-bit

 

RBA

 

column.

 

In

 

addition,

 

a

 

sufficient

 

number

 

of

 

other

 

columns

 

is

 

required

 

define

 

the

 

ESDS

 

record.

 

One

 

column

 

must

 

be

 

defined

 

for

 

each

 

and

 

every

 

index

 

against

 

the

 

file.

 

Furthermore,

 

a

 

sufficient

 

number

 

of

 

additional

 

columns

 

must

 

be

 

defined

 

to

 

encompass

 

the

 

remainder

 

of

 

the

 

record.

 

These

 

columns

 

cannot

 

be

 

associated

 

with

 

a

 

coded

 

character

 

set.

 

CICS

 

processing

 

ensures

 

that

 

data

 

seen

 

by

 

the

 

CICS

 

application

 

does

 

not

 

include

 

the

 

RBA

 

column.

 

When

 

a

 

CICS

 

facility,

 

such

 

as

 

cicsddt,

 

is

 

used

 

for

 

DB2

 

table

 

creation,

 

an

 

RBA

 

column

 

for

 

a

 

file

 

of

 

type

 

ESDS

 

is

 

automatically

 

generated.

 

However,

 

if

 

you

 

are

 

using

 

native

 

SQL

 

interfaces

 

to

 

create

 

a

 

table

 

to

 

emulate

 

an

 

ESDS

 

file,

 

then

 

you

 

must

 

ensure

 

that

 

the

 

first

 

column

 

in

 

the

 

table

 

is

 

named

 

RBA.

 

Furthermore,

 

this

 

column

 

must

 

be

 

defined

 

as

 

CHAR(4)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA.

 

Tables

 

that

 

emulate

 

ESDS

 

files

 

should

 

be

 

created

 

with

 

a

 

unique

 

primary

 

index

 

against

 

the

 

RBA

 

column.

 

For

 

performance

 

reasons,

 

it

 

is

 

recommended

 

that

 

you

 

also

 

create

 

a

 

corresponding

 

index

 

with

 

inverted

 

ordering.

 

For

 

instance,

 

if

 

you

 

create

 

an

 

ESDS

 

table

 

named

 

ESDSTAB,

 

a

 

primary

 

index

 

could

 

be

 

defined

 

as

 

follows:

 

CREATE

 

UNIQUE

 

INDEX

 

CICS.ESDSTAB0

 

ON

 

CICS.ESDSTAB(RBA)

 

A

 

corresponding

 

descending

 

index

 

should

 

be

 

created

 

by

 

using

 

the

 

following

 

command:

 

CREATE

 

UNIQUE

 

INDEX

 

CICS.ESDSTAB0@

 

ON

 

CICS.ESDSTAB(RBA

 

DESC)

 

Similarly,

 

when

 

an

 

alternate

 

index

 

is

 

created,

 

a

 

corresponding

 

index

 

with

 

inverted

 

ordering

 

should

 

also

 

be

 

created.

   

116

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



No

 

meaning

 

can

 

be

 

attached

 

to

 

the

 

actual

 

numeric

 

value

 

of

 

the

 

RBA.

 

These

 

RBA

 

values

 

are

 

treated

 

as

 

unique

 

identifiers

 

assigned

 

in

 

an

 

ascending

 

sequence.

 

This

 

process

 

of

 

creating

 

a

 

unique

 

primary

 

index

 

and

 

a

 

corresponding

 

index

 

having

 

an

 

inverted

 

order

 

applies

 

to

 

table

 

definitions

 

in

 

the

 

following

 

situations:

 

v

   

Fixed-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

v

   

Variable-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

v

   

Variable-length

 

ESDS

 

with

 

overlapping

 

alternate

 

index

 

fields.

The

 

following

 

sections

 

compare

 

the

 

procedures

 

for

 

creating

 

table

 

definitions

 

for

 

each

 

of

 

these

 

situations

 

in

 

VSAM

 

and

 

in

 

DB2

 

emulation.

 

The

 

ESDS

 

table

 

representation

 

closely

 

follows

 

the

 

equivalent

 

KSDS

 

case.

 

Fixed-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields:

   

Table

 

22

 

and

 

Table

 

23

 

illustrate

 

the

 

procedures

 

for

 

creating

 

fixed-length

 

ESDS

 

records

 

in

 

VSAM

 

and

 

for

 

emulating

 

them

 

in

 

DB2:

  

Table

 

22.

 

Fixed-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

ESDS

 

definition

 

Alt

 

key

 

1

 

(offset

 

length)

    

24

    

4

 

Alt

 

Key

 

2

 

(offset

 

length)

    

44

   

20

 

Record

 

size

 

(avg

 

max)

       

500

  

500

    

Table

 

23.

 

Fixed-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

 

DB2

 

columns

 

RBA

     

CHAR(4)

   

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART1

   

CHAR(24)

  

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1

 

CHAR(4)

   

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART2

   

CHAR(16)

  

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY2

 

CHAR(20)

  

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART3

   

CHAR(254)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART4

   

CHAR(182)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

   

Variable-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields:

   

Table

 

24

 

and

 

Table

 

25

 

illustrate

 

the

 

procedures

 

for

 

creating

 

variable-length

 

ESDS

 

records

 

in

 

VSAM

 

and

 

for

 

emulating

 

them

 

in

 

DB2:

  

Table

 

24.

 

Variable-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

ESDS

 

definition

 

Alt

 

key

 

1

 

(offset

 

length)

    

24

    

4

 

Alt

 

Key

 

2

 

(offset

 

length)

    

44

   

20

 

Record

 

size

 

(avg

 

max)

       

200

  

500

    

Table

 

25.

 

Variable-length

 

ESDS

 

with

 

no

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

 

DB2

 

columns

 

RBA

     

CHAR(4)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART1

   

CHAR(24)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1

 

CHAR(4)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART2

   

CHAR(16)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY2

 

CHAR(20)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART3

   

VARCHAR(436)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

    

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

117



Variable-length

 

ESDS

 

with

 

overlapping

 

alternate

 

index

 

fields:

   

Table

 

26

 

and

 

Table

 

27

 

illustrate

 

the

 

procedures

 

for

 

creating

 

variable-length

 

ESDS

 

records

 

in

 

VSAM

 

and

 

for

 

emulating

 

them

 

in

 

DB2.

 

These

 

examples

 

illustrate

 

the

 

handling

 

of

 

overlapping

 

alternate

 

index

 

fields:

  

Table

 

26.

 

Variable-length

 

ESDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

in

 

VSAM

 

ESDS

 

definition

 

Alt

 

key

 

1

 

(offset

 

length)

    

24

    

4

 

Alt

 

Key

 

2

 

(offset

 

length)

    

44

   

20

 

Record

 

size

 

(avg

 

max)

       

200

  

500

    

Table

 

27.

 

Variable-length

 

ESDS

 

with

 

overlapping

 

alternate

 

index

 

fields

 

emulated

 

in

 

DB2

 

DB2

 

columns

 

RBA

      

CHAR(4)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART1

    

CHAR(24)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1A

 

CHAR(2)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART2

    

CHAR(18)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1B

 

CHAR(2)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY2B

 

CHAR(18)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART4

    

VARCHAR(454)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

   

VSAM

 

emulation

 

of

 

RRDS

 

files

 

by

 

DB2:

   

CICS

 

emulates

 

RRDS

 

files

 

using

 

a

 

special

 

32-bit

 

RRN

 

column.

 

In

 

addition,

 

a

 

sufficient

 

number

 

of

 

additional

 

columns

 

must

 

be

 

defined

 

to

 

encompass

 

the

 

remainder

 

of

 

the

 

record.

 

These

 

columns

 

cannot

 

be

 

associated

 

with

 

a

 

coded

 

character

 

set.

 

CICS

 

processing

 

ensures

 

that

 

data

 

seen

 

by

 

the

 

CICS

 

application

 

does

 

not

 

include

 

the

 

RRN

 

column.

 

When

 

a

 

CICS

 

facility,

 

such

 

as

 

cicsddt,

 

is

 

used

 

for

 

DB2

 

table

 

creation,

 

an

 

RRN

 

column

 

for

 

a

 

file

 

of

 

type

 

RRDS

 

is

 

automatically

 

generated.

 

However,

 

if

 

you

 

are

 

using

 

native

 

SQL

 

interfaces

 

to

 

create

 

a

 

table

 

to

 

emulate

 

an

 

RRDS

 

file,

 

then

 

you

 

must

 

ensure

 

that

 

the

 

first

 

column

 

in

 

the

 

table

 

is

 

named

 

RRN.

 

Furthermore,

 

this

 

column

 

must

 

be

 

defined

 

as

 

CHAR(4)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA.

 

Tables

 

that

 

emulate

 

RRDS

 

files

 

should

 

be

 

created

 

with

 

a

 

unique

 

primary

 

index

 

against

 

the

 

RRN

 

column.

 

For

 

performance

 

reasons,

 

it

 

is

 

recommended

 

that

 

you

 

also

 

create

 

a

 

corresponding

 

index

 

with

 

inverted

 

ordering.

 

For

 

instance,

 

if

 

you

 

create

 

an

 

RRDS

 

table

 

named

 

RRDSTAB,

 

a

 

primary

 

index

 

could

 

be

 

defined

 

as

 

follows:

 

CREATE

 

UNIQUE

 

INDEX

 

CICS.RRDSTAB0

 

ON

 

CICS.RRDSTAB(RRN)

 

A

 

corresponding

 

descending

 

index

 

should

 

be

 

created

 

using

 

the

 

following

 

command:

 

CREATE

 

UNIQUE

 

INDEX

 

CICS.RRDSTAB0@

 

ON

 

CICS.RRDSTAB(RRN

 

DESC)

 

Do

 

not

 

specify

 

alternate

 

indexes

 

for

 

RRDS

 

files.

 

RRDS

 

files

 

with

 

alternate

 

indexes

 

can

 

be

 

accessed

 

with

 

their

 

RRNs

 

but

 

not

 

with

 

their

 

alternate

 

indexes.

 

If

 

such

 

files

 

are

 

used,

 

then

 

DUPREC

 

conditions

 

can

 

occur

 

if

 

insertions

 

or

 

updates

 

would

 

violate

 

uniqueness

 

constraints.

 

Table

 

28

 

on

 

page

 

119

 

and

 

Table

 

29

 

on

 

page

 

119

 

illustrate

 

the

 

procedures

 

for

 

creating

 

RRDS

 

files

 

in

 

VSAM

 

and

 

for

 

emulating

 

them

 

in

 

DB2:

   

118

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

28.

 

RRDS

 

files

 

in

 

VSAM

 

RRDS

 

definition

 

Record

 

size

 

(avg

 

max)

       

500

  

500

    

Table

 

29.

 

RRDS

 

files

 

in

 

emulated

 

in

 

DB2

 

RRDS

 

definitions

 

RBA

      

CHAR(4)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART1

    

CHAR(24)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1A

 

CHAR(2)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART2

    

CHAR(18)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY1B

 

CHAR(2)

      

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

ALTKEY2B

 

CHAR(18)

     

NOT

 

NULL

 

FOR

 

BIT

 

DATA

 

PART4

    

VARCHAR(454)

 

NOT

 

NULL

 

FOR

 

BIT

 

DATA

   

VSAM

 

alternate

 

index

 

emulation

 

by

 

DB2:

   

Alternate

 

indexes

 

are

 

emulated

 

using

 

DB2

 

secondary

 

indexes.

 

Although

 

DB2

 

allows

 

relative

 

files

 

to

 

have

 

secondary

 

indexes,

 

CICS

 

does

 

not

 

support

 

this.

 

VSAM

 

record

 

emulation

 

by

 

DB2:

   

The

 

CICS

 

API

 

does

 

not

 

permit

 

records

 

greater

 

the

 

32

 

KB

 

in

 

length

 

to

 

be

 

manipulated.

 

Therefore,

 

the

 

total

 

length

 

of

 

all

 

the

 

fields

 

in

 

your

 

records

 

must

 

be

 

less

 

than

 

or

 

equal

 

to

 

32

 

KB.

 

The

 

size

 

of

 

a

 

variable-length

 

field

 

in

 

DB2

 

is

 

recorded

 

in

 

a

 

prepended

 

header

 

to

 

the

 

field.

 

However,

 

the

 

data

 

visible

 

to

 

the

 

CICS

 

application

 

does

 

not

 

include

 

this

 

header.

 

Functionality

 

differences

 

with

 

DB2:

   

The

 

following

 

behavior

 

differences

 

are

 

important

 

to

 

understand

 

when

 

emulating

 

VSAM

 

files

 

in

 

DB2:

 

v

   

CICS

 

allows

 

simultaneous

 

access

 

to

 

DB2

 

files,

 

either

 

by

 

two

 

CICS

 

regions,

 

or

 

by

 

a

 

CICS

 

region

 

and

 

a

 

non-CICS

 

application.

 

Applications

 

need

 

to

 

be

 

designed

 

to

 

account

 

for

 

this

 

possibility.

 

Security

 

facilities

 

provided

 

to

 

configure

 

DB2

 

and

 

CICS

 

can

 

be

 

used

 

to

 

restricted

 

or

 

prohibited

 

simultaneous

 

access.

 

v

   

The

 

Numeric

 

and

 

Datetime

 

DB2

 

data

 

types

 

are

 

not

 

supported

 

by

 

CICS

 

and

 

cannot

 

be

 

accessed

 

by

 

CICS

 

applications.

 

v

   

CICS

 

allows

 

the

 

use

 

of

 

files

 

whose

 

primary

 

index

 

is

 

not

 

unique.

 

It

 

also

 

allows

 

the

 

use

 

of

 

files

 

where

 

the

 

alternate

 

indexes

 

have

 

duplicates.

 

When

 

files

 

with

 

these

 

conditions

 

are

 

used,

 

CICS

 

limits

 

the

 

operations

 

which

 

you

 

can

 

perform.

 

This

 

limit

 

occurs

 

because

 

all

 

EXEC

 

CICS

 

READ

 

and

 

EXEC

 

CICS

 

READ

 

UPDATE

 

requests

 

can

 

access

 

only

 

the

 

first

 

of

 

a

 

set

 

of

 

duplicate

 

records.

 

This

 

can

 

be

 

useful

 

in

 

accessing

 

data

 

prepared

 

by

 

some

 

non-CICS

 

application.

 

v

   

CICS

 

does

 

not

 

permit

 

access

 

to

 

files

 

whose

 

records

 

contain

 

more

 

than

 

one

 

variable-length

 

field.

 

It

 

refuses

 

to

 

open

 

such

 

files.

 

v

   

DB2

 

permits

 

records

 

to

 

be

 

deleted

 

from

 

entry

 

sequenced

 

files.

 

CICS

 

does

 

not

 

support

 

an

 

interface

 

to

 

this.

 

However,

 

non-CICS

 

processes

 

can

 

delete

 

records

 

from

 

such

 

files;

 

this

 

means

 

that

 

there

 

is

 

no

 

guarantee

 

that

 

the

 

first

 

record

 

in

 

an

 

ESDS

 

file

 

has

 

an

 

RBA

 

of

 

zero.

See

 

the

 

CICS

 

Administration

 

Guideand

 

the

 

CICS

 

Intercommunication

 

Guide

 

for

 

related

 

information.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

119



Differences

 

in

 

file

 

behavior

 

between

 

SFS

 

and

 

DB2

 

The

 

following

 

list

 

describes

 

some

 

differences

 

in

 

file

 

behavior

 

between

 

SFS

 

files

 

and

 

DB2

 

tables:

 

v

   

In

 

DB2,

 

the

 

maximum

 

length

 

for

 

any

 

char

 

field

 

is

 

254

 

bytes.

 

See

 

the

 

DB2

 

restrictions

 

documented

 

in

 

the

 

SQL

 

reference

 

manual.

 

v

   

All

 

records

 

over

 

4005

 

bytes

 

are

 

treated

 

as

 

variable

 

by

 

CICS

 

using

 

DB2

 

as

 

the

 

file

 

manager.

 

The

 

following

 

behaviors

 

occur

 

in

 

migrated

 

CICS

 

applications

 

that

 

were

 

originally

 

written

 

to

 

access

 

fixed-length

 

records

 

over

 

4005

 

bytes

 

long:

 

–

   

On

 

a

 

READ,

 

the

 

value

 

returned

 

in

 

the

 

length

 

field

 

is

 

the

 

true

 

length

 

of

 

the

 

data,

 

not

 

the

 

expected

 

fixed

 

length.

 

–

   

On

 

a

 

READ,

 

the

 

LENGTH

 

option

 

must

 

be

 

specified,

 

otherwise

 

LENGERR

 

is

 

returned.

 

When

 

DB2

 

is

 

used

 

as

 

the

 

file

 

manager,

 

files

 

over

 

4005

 

bytes

 

long

 

must

 

be

 

created

 

with

 

the

 

last

 

column

 

of

 

a

 

variable

 

type

 

(VARCHAR,

 

LONGVAR,

 

BLOB).

 

The

 

total

 

length

 

of

 

the

 

preceding

 

fixed

 

columns

 

cannot

 

exceed

 

4005

 

bytes.

 

v

   

The

 

process

 

of

 

migrating

 

CICS

 

files

 

from

 

SFS

 

to

 

DB2

 

is

 

subject

 

to

 

the

 

following

 

restrictions:

 

–

   

SFS

 

files

 

that

 

have

 

a

 

fixed

 

length

 

of

 

over

 

4005

 

bytes

 

must

 

be

 

redefined.

 

–

   

SFS

 

files

 

that

 

have

 

a

 

fixed

 

length

 

of

 

over

 

4005

 

bytes

 

and

 

have

 

key

 

fields

 

beyond

 

byte

 

4004

 

cannot

 

be

 

directly

 

migrated.

 

The

 

file

 

must

 

be

 

redesigned

 

to

 

ensure

 

all

 

key

 

fields

 

are

 

within

 

the

 

first

 

4005

 

bytes

 

of

 

the

 

record.

Accessing

 

files

 

from

 

CICS

 

application

 

programs

 

This

 

section

 

describes

 

the

 

following

 

functions

 

available

 

to

 

application

 

programs

 

for

 

accessing

 

files:

 

v

   

Reading

 

records

 

v

   

Updating

 

records

 

v

   

Deleting

 

records

 

v

   

Adding

 

records.

Each

 

of

 

these

 

functions

 

is

 

discussed

 

for

 

the

 

KSDS,

 

ESDS,

 

and

 

RRDS

 

file

 

types.

 

In

 

addition,

 

the

 

command

 

options

 

that

 

can

 

be

 

used

 

in

 

combination

 

with

 

file

 

services

 

commands

 

are

 

discussed.

 

Finally,

 

a

 

discussion

 

on

 

avoiding

 

transaction

 

deadlocks

 

is

 

included.

 

Reading

 

records

 

There

 

are

 

several

 

methods

 

of

 

reading

 

records,

 

including:

 

v

   

Direct

 

reading

 

v

   

Sequential

 

reading

 

(browsing)

 

v

   

Skip-sequential

 

browsing

If

 

the

 

file

 

contains

 

fixed-length

 

records,

 

and

 

if

 

the

 

application

 

program

 

provides

 

an

 

area

 

into

 

which

 

the

 

record

 

is

 

to

 

be

 

read,

 

that

 

area

 

must

 

be

 

of

 

the

 

defined

 

length.

 

If

 

the

 

file

 

contains

 

variable-length

 

records,

 

the

 

command

 

must

 

also

 

specify

 

the

 

maximum

 

length

 

of

 

the

 

area

 

provided

 

to

 

hold

 

the

 

records.

 

For

 

fixed-length

 

records

 

and

 

for

 

records

 

retrieved

 

into

 

CICS-provided

 

SET

 

storage,

 

no

 

length

 

argument

 

needs

 

to

 

be

 

specified.

 

However,

 

a

 

specified

 

length

 

argument

 

is

 

helpful

 

when

 

reading

 

fixed-length

 

records

 

without

 

using

 

a

 

SET

 

command.

 

The

 

specified

 

length

 

argument

 

ensures

 

that

 

the

 

record

 

being

 

read

 

is

 

not

 

too

 

long

 

for

 

the

 

available

 

data

 

area.

 

If

 

you

 

provide

 

the

 

length

 

argument,

 

CICS

 

uses

 

the

 

length

 

field

 

to

 

return

 

the

 

actual

 

length

 

of

 

the

 

record

 

retrieved.

   

120

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Direct

 

reading:

   

The

 

EXEC

 

CICS

 

READ

 

command

 

reads

 

records

 

in

 

a

 

file.

 

The

 

command

 

must

 

identify

 

the

 

record

 

you

 

want,

 

and

 

it

 

must

 

indicate

 

whether

 

the

 

record

 

is

 

to

 

be

 

read

 

into

 

an

 

area

 

of

 

storage

 

provided

 

by

 

your

 

application

 

program

 

(EXEC

 

CICS

 

READ

 

INTO),

 

or

 

into

 

CICS

 

SET

 

storage

 

acquired

 

by

 

file

 

control

 

(EXEC

 

CICS

 

READ

 

SET).

 

If

 

area

 

is

 

to

 

be

 

CICS

 

SET

 

storage,

 

the

 

address

 

of

 

the

 

data

 

in

 

the

 

CICS

 

SET

 

storage

 

is

 

returned

 

to

 

your

 

program.

 

The

 

length

 

of

 

time

 

that

 

the

 

CICS

 

SET

 

storage

 

remains

 

valid

 

depends

 

on

 

whether

 

the

 

EXEC

 

CICS

 

READ

 

command

 

is

 

issued

 

for

 

UPDATE

 

or

 

read-only

 

access.

 

The

 

SET

 

storage

 

for

 

a

 

non-update

 

EXEC

 

CICS

 

READ

 

command

 

survives

 

until

 

another

 

non-update

 

or

 

UPDATE

 

READ

 

command

 

(either

 

INTO

 

or

 

SET)

 

is

 

encountered

 

for

 

the

 

same

 

CICS

 

file.

 

The

 

SET

 

storage

 

for

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command

 

survives

 

until

 

the

 

next

 

EXEC

 

CICS

 

REWRITE,

 

EXEC

 

CICS

 

UNLOCK,

 

EXEC

 

CICS

 

DELETE

 

(without

 

RIDFLD)

 

or

 

EXEC

 

CICS

 

SYNCPOINT,

 

whichever

 

is

 

encountered

 

first.

 

For

 

both

 

UPDATE

 

and

 

non-update

 

commands,

 

you

 

must

 

identify

 

the

 

record

 

to

 

be

 

retrieved

 

by

 

the

 

record

 

identification

 

field

 

specified

 

in

 

the

 

RIDFLD

 

option.

 

Immediately

 

upon

 

completion

 

of

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command,

 

the

 

RIDFLD

 

data

 

area

 

is

 

available

 

for

 

reuse

 

by

 

the

 

application

 

program.

 

To

 

support

 

application

 

portability

 

to

 

VSAM

 

environments,

 

you

 

can

 

only

 

specify

 

one

 

UPDATE

 

operation

 

for

 

each

 

file

 

within

 

a

 

transaction

 

at

 

any

 

given

 

time.

 

Your

 

next

 

command

 

to

 

the

 

file

 

should

 

be

 

an

 

EXEC

 

CICS

 

REWRITE,

 

EXEC

 

CICS

 

DELETE

 

without

 

the

 

RIDFLD

 

option,

 

or

 

EXEC

 

CICS

 

UNLOCK.

 

Direct

 

reading

 

from

 

a

 

KSDS:

   

When

 

reading

 

from

 

a

 

KSDS,

 

you

 

identify

 

the

 

record

 

you

 

want

 

by

 

specifying

 

its

 

full

 

key.

 

However,

 

if

 

the

 

key

 

is

 

not

 

unique,

 

the

 

DUPREC

 

condition

 

occurs.

 

You

 

can

 

also

 

specify

 

a

 

partial

 

(generic)

 

key.

 

When

 

you

 

specify

 

a

 

partial

 

key,

 

both

 

SFS

 

and

 

DB2

 

retrieve

 

the

 

first

 

record

 

whose

 

leftmost

 

characters

 

match

 

the

 

partial

 

key.

 

Additionally,

 

you

 

can

 

retrieve

 

the

 

record

 

in

 

the

 

file

 

whose

 

key

 

is

 

greater

 

than

 

or

 

equal

 

to

 

the

 

full

 

key

 

provided

 

with

 

the

 

command.

 

Finally,

 

you

 

can

 

also

 

identify

 

the

 

record

 

you

 

want

 

by

 

providing

 

a

 

generic

 

key

 

together

 

with

 

the

 

greater

 

than

 

or

 

equal

 

option

 

(GTEQ)

 

.

 

An

 

EXEC

 

CICS

 

READ

 

command

 

raises

 

the

 

NOTFND

 

condition

 

if

 

no

 

record

 

with

 

the

 

key

 

specified

 

is

 

found.

 

Also,

 

the

 

NOTFND

 

condition

 

is

 

raised

 

if

 

no

 

record

 

is

 

found

 

with

 

a

 

key

 

greater

 

than

 

or

 

equal

 

to

 

the

 

specified

 

key

 

when

 

the

 

GTEQ

 

option

 

is

 

used.

 

Either

 

the

 

GTEQ

 

option

 

or

 

the

 

EQUAL

 

option

 

can

 

be

 

specified.

 

The

 

EQUAL

 

option

 

requests

 

a

 

record

 

having

 

an

 

exact

 

match

 

with

 

the

 

specified

 

key.

 

The

 

GTEQ

 

option

 

requests

 

a

 

record

 

with

 

the

 

first

 

key

 

greater

 

than

 

or

 

equal

 

to

 

the

 

specified

 

key.

 

Direct

 

reading

 

from

 

an

 

ESDS:

   

When

 

reading

 

from

 

an

 

ESDS,

 

you

 

identify

 

the

 

record

 

you

 

want

 

by

 

an

 

RBA.

 

Because

 

the

 

RBA

 

of

 

a

 

ESDS

 

record

 

cannot

 

change

 

(unless

 

the

 

file

 

is

 

reorganized),

 

your

 

application

 

program

 

can

 

keep

 

track

 

of

 

the

 

values

 

of

 

the

 

RBAs

 

corresponding

 

to

 

the

 

records

 

it

 

wants

 

to

 

access.

 

An

 

access

 

to

 

an

 

ESDS

 

specifying

 

an

 

incorrect

 

RBA,

 

or

 

an

 

RBA

 

where

 

there

 

is

 

no

 

record,

 

returns

 

the

 

ILLOGIC

 

condition.

 

Direct

 

reading

 

from

 

an

 

RRDS:

   

When

 

reading

 

from

 

an

 

RRDS,

 

you

 

identify

 

the

 

record

 

you

 

want

 

by

 

its

 

relative

 

record

 

number.

 

Again,

 

the

 

application

 

program

 

must

 

know

 

the

 

RRN

 

values

 

of

 

the

 

records

 

it

 

wants.

 

For

 

records

 

not

 

present

 

in

 

the

 

file,

 

the

 

NOTFND

 

condition

 

is

 

returned.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

121



Direct

 

reading

 

by

 

way

 

of

 

a

 

path:

   

If

 

a

 

KSDS

 

or

 

an

 

ESDS

 

has

 

an

 

alternate

 

index

 

and

 

an

 

appropriate

 

entry

 

in

 

the

 

File

 

Definition,

 

you

 

can

 

retrieve

 

a

 

record

 

in

 

the

 

file

 

by

 

using

 

the

 

alternate

 

key

 

that

 

you

 

set

 

up

 

in

 

the

 

alternate

 

index.

 

The

 

generic

 

option

 

and

 

the

 

greater

 

than

 

or

 

equal

 

option

 

still

 

work

 

in

 

the

 

same

 

way

 

as

 

for

 

a

 

read

 

from

 

a

 

KSDS

 

using

 

the

 

primary

 

key.

 

If

 

the

 

alternate

 

key

 

in

 

an

 

EXEC

 

CICS

 

READ

 

command

 

is

 

not

 

unique,

 

the

 

first

 

record

 

in

 

the

 

file

 

with

 

that

 

key

 

is

 

read,

 

and

 

you

 

get

 

the

 

DUPKEY

 

condition.

 

To

 

retrieve

 

other

 

records

 

with

 

the

 

same

 

alternate

 

key,

 

you

 

have

 

to

 

start

 

a

 

browse

 

operation

 

at

 

this

 

point.

 

Sequential

 

reading

 

(browsing):

   

The

 

EXEC

 

CICS

 

STARTBR

 

command

 

begins

 

the

 

browse

 

function.

 

You

 

must

 

identify

 

a

 

particular

 

record

 

in

 

the

 

same

 

way

 

for

 

a

 

browse

 

function

 

as

 

for

 

a

 

direct

 

read

 

function.

 

However,

 

EXEC

 

CICS

 

STARTBR

 

only

 

identifies

 

the

 

starting

 

position

 

for

 

the

 

browse;

 

it

 

does

 

not

 

retrieve

 

a

 

record.

 

You

 

can

 

reset

 

a

 

browse

 

at

 

any

 

time

 

using

 

the

 

EXEC

 

CICS

 

RESETBR

 

command.

 

Use

 

EXEC

 

CICS

 

RESETBR

 

to

 

define

 

a

 

new

 

starting

 

position

 

for

 

the

 

browse,

 

or

 

to

 

change

 

the

 

type

 

of

 

search

 

argument

 

used.

 

The

 

EXEC

 

CICS

 

READNEXT

 

command

 

reads

 

records

 

sequentially

 

from

 

the

 

file;

 

its

 

starting

 

point

 

is

 

set

 

by

 

the

 

EXEC

 

CICS

 

STARTBR

 

command.

 

Each

 

time

 

an

 

EXEC

 

CICS

 

READNEXT

 

command

 

is

 

processed,

 

CICS

 

updates

 

the

 

field

 

specified

 

in

 

the

 

RIDFLD

 

option

 

with

 

the

 

complete

 

key,

 

relative

 

byte

 

address,

 

or

 

relative

 

record

 

number

 

of

 

the

 

record

 

retrieved.

 

The

 

record

 

can

 

be

 

read

 

into

 

an

 

area

 

of

 

storage

 

supplied

 

by

 

the

 

application

 

program

 

(EXEC

 

CICS

 

READNEXT

 

INTO),

 

or

 

into

 

CICS-provided

 

SET

 

storage

 

(EXEC

 

CICS

 

READNEXT

 

SET).

 

In

 

the

 

latter

 

case,

 

the

 

CICS

 

SET

 

storage

 

remains

 

valid

 

until

 

the

 

next

 

EXEC

 

CICS

 

ENDBR

 

for

 

this

 

REQID,

 

or

 

EXEC

 

CICS

 

SYNCPOINT,

 

whichever

 

is

 

encountered

 

first.

 

The

 

EXEC

 

CICS

 

READPREV

 

command

 

performs

 

the

 

inverse

 

process

 

to

 

the

 

READNEXT

 

command;

 

it

 

reads

 

the

 

records

 

sequentially

 

backwards

 

from

 

the

 

starting

 

point

 

set

 

by

 

the

 

EXEC

 

CICS

 

STARTBR

 

command.

 

If

 

your

 

file

 

supports

 

unique

 

keys

 

only

 

and

 

you

 

change

 

from

 

EXEC

 

CICS

 

READNEXT

 

to

 

EXEC

 

CICS

 

READPREV

 

(or

 

the

 

converse),

 

then

 

the

 

same

 

record

 

is

 

retrieved

 

twice.

 

It

 

is

 

first

 

retrieved

 

by

 

the

 

EXEC

 

CICS

 

READNEXT

 

command,

 

and

 

then

 

on

 

the

 

READPREV

 

command.

 

For

 

browsing

 

(and

 

for

 

direct

 

read),

 

if

 

the

 

file

 

contains

 

fixed-length

 

records,

 

and

 

if

 

the

 

application

 

program

 

provides

 

an

 

area

 

into

 

which

 

the

 

record

 

is

 

to

 

be

 

read,

 

that

 

area

 

must

 

be

 

of

 

the

 

defined

 

length.

 

If

 

the

 

file

 

contains

 

variable-length

 

records,

 

the

 

command

 

must

 

also

 

specify

 

the

 

maximum

 

length

 

of

 

the

 

area

 

provided

 

to

 

hold

 

the

 

records.

 

Browsing

 

through

 

a

 

KSDS:

   

You

 

can

 

use

 

a

 

generic

 

key

 

on

 

the

 

EXEC

 

CICS

 

STARTBR

 

command

 

when

 

browsing

 

through

 

a

 

KSDS.

 

However,

 

the

 

browse

 

can

 

only

 

continue

 

forward

 

through

 

the

 

file.

 

If

 

you

 

process

 

an

 

EXEC

 

CICS

 

READPREV

 

during

 

a

 

generic

 

key

 

browse,

 

you

 

get

 

the

 

INVREQ

 

condition.

 

You

 

can

 

use

 

the

 

options

 

EQUAL

 

and

 

GTEQ

 

on

 

the

 

EXEC

 

CICS

 

STARTBR

 

command.

 

The

 

default

 

is

 

GTEQ

 

option.

 

If

 

no

 

record

 

matches

 

the

 

key

 

specified

 

with

 

the

 

EXEC

 

CICS

 

STARTBR

 

command,

 

you

 

get

 

the

 

NOTFND

 

condition.

   

122

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



An

 

EXEC

 

CICS

 

READNEXT

 

or

 

READPREV

 

command

 

works

 

only

 

after

 

the

 

successful

 

execution

 

of

 

an

 

EXEC

 

CICS

 

STARTBR.

 

You

 

can

 

start

 

a

 

forward

 

browse

 

through

 

a

 

KSDS

 

at

 

the

 

start

 

of

 

the

 

file

 

by

 

specifying

 

a

 

key

 

of

 

hexadecimal

 

zeros,

 

or

 

by

 

specifying

 

options

 

GENERIC,

 

GTEQ,

 

and

 

KEYLENGTH(0)

 

on

 

the

 

EXEC

 

CICS

 

STARTBR

 

or

 

EXEC

 

CICS

 

RESETBR

 

command.

 

(In

 

the

 

latter

 

case,

 

you

 

need

 

the

 

RIDFLD

 

keyword,

 

even

 

though

 

its

 

value

 

is

 

not

 

used.)

 

You

 

can

 

also

 

start

 

from

 

the

 

end

 

of

 

the

 

file

 

by

 

specifying

 

a

 

complete

 

key

 

of

 

X'FF's

 

on

 

the

 

EXEC

 

CICS

 

STARTBR.

 

This

 

points

 

to

 

the

 

last

 

record

 

in

 

the

 

file

 

ready

 

for

 

a

 

backward

 

browse.

 

If

 

you

 

browse

 

with

 

a

 

key

 

whose

 

underlying

 

fields,

 

as

 

defined

 

to

 

SFS,

 

include

 

a

 

numeric

 

type,

 

then

 

the

 

order

 

in

 

which

 

the

 

browse

 

results

 

are

 

returned

 

for

 

that

 

field

 

are

 

numeric.

 

This

 

is

 

different

 

from

 

mainframe

 

CICS

 

which

 

treats

 

the

 

key

 

as

 

a

 

bit

 

pattern.

 

You

 

can

 

use

 

byte

 

arrays

 

to

 

avoid

 

this

 

problem.

 

You

 

should

 

also

 

note

 

that

 

SFS

 

allows

 

descending

 

keys.

 

Browsing

 

through

 

an

 

ESDS:

   

You

 

cannot

 

use

 

the

 

GTEQ

 

option

 

on

 

the

 

EXEC

 

CICS

 

STARTBR

 

command

 

when

 

browsing

 

through

 

a

 

ESDS.

 

If

 

no

 

record

 

matches

 

the

 

RBA

 

specified

 

in

 

the

 

EXEC

 

CICS

 

STARTBR

 

command,

 

CICS

 

raises

 

the

 

ILLOGIC

 

condition.

 

Like

 

KSDS,

 

keys

 

of

 

X'00's

 

and

 

X'FF's

 

on

 

the

 

EXEC

 

CICS

 

STARTBR

 

command

 

enable

 

browses

 

to

 

start

 

at

 

the

 

first

 

or

 

last

 

record

 

respectively.

 

Browsing

 

through

 

an

 

RRDS:

   

You

 

can

 

use

 

the

 

GTEQ

 

option

 

on

 

the

 

EXEC

 

CICS

 

STARTBR

 

command

 

when

 

browsing

 

through

 

an

 

RRDS.

 

On

 

a

 

direct

 

EXEC

 

CICS

 

READ

 

command,

 

this

 

option

 

has

 

no

 

effect.

 

A

 

direct

 

read

 

GTEQ

 

command

 

giving

 

an

 

RRN

 

that

 

does

 

not

 

exist

 

returns

 

NOTFND

 

because

 

only

 

the

 

EQUAL

 

option

 

is

 

taken.

 

However,

 

an

 

EXEC

 

CICS

 

STARTBR

 

GTEQ

 

command

 

using

 

the

 

same

 

RRN

 

completes

 

successfully,

 

and

 

sets

 

a

 

pointer

 

to

 

the

 

relevant

 

position

 

in

 

the

 

file

 

for

 

the

 

start

 

of

 

the

 

browse.

 

The

 

first

 

record

 

in

 

the

 

file

 

is

 

identified

 

using

 

01

 

and

 

the

 

last

 

record

 

by

 

X'FF's.

 

Browsing

 

using

 

a

 

path:

   

Browsing

 

can

 

also

 

use

 

an

 

alternate

 

index

 

path

 

to

 

a

 

KSDS

 

or

 

an

 

ESDS.

 

The

 

browse

 

is

 

just

 

like

 

that

 

for

 

a

 

KSDS,

 

but

 

using

 

the

 

alternate

 

key.

 

The

 

records

 

are

 

retrieved

 

in

 

alternate

 

key

 

order.

 

When

 

non-unique

 

alternate

 

keys

 

are

 

involved,

 

a

 

browse

 

operation

 

retrieves

 

all

 

records

 

with

 

the

 

same

 

alternate

 

key.

 

The

 

EXEC

 

CICS

 

READNEXT

 

command

 

retrieves

 

those

 

records

 

in

 

an

 

underlying

 

file

 

manager-dependent

 

order.

 

The

 

DUPKEY

 

condition

 

is

 

returned

 

for

 

each

 

retrieval

 

operation

 

except

 

the

 

last.

 

For

 

example,

 

if

 

there

 

are

 

three

 

records

 

with

 

the

 

same

 

alternate

 

key,

 

the

 

DUPKEY

 

condition

 

is

 

raised

 

for

 

retrieval

 

of

 

the

 

first

 

two,

 

but

 

not

 

the

 

third.

 

You

 

can

 

design

 

the

 

application

 

program

 

to

 

revert

 

from

 

browsing

 

to

 

direct

 

reading

 

when

 

the

 

DUPKEY

 

condition

 

no

 

longer

 

occurs.

 

Ending

 

the

 

browse:

   

Stop

 

a

 

browse

 

with

 

the

 

EXEC

 

CICS

 

ENDBR

 

command.

 

Trying

 

to

 

browse

 

past

 

the

 

last

 

record

 

in

 

a

 

file

 

raises

 

the

 

ENDFILE

 

condition.

 

Always

 

issue

 

the

 

EXEC

 

CICS

 

ENDBR

 

command

 

before

 

a

 

syncpoint,

 

before

 

task

 

termination,

 

or

 

before

 

performing

 

an

 

I/O

 

operation

 

on

 

the

 

same

 

file

 

(READ,

 

UPDATE,

 

DELETE

 

with

 

RIDFLD,

 

or

 

WRITE).

 

If

 

you

 

do

 

not,

 

you

 

get

 

unpredictable

 

results,

 

possibly

 

including

 

deadlock.

 

Simultaneous

 

browse

 

operations:

   

CICS

 

allows

 

a

 

transaction

 

to

 

perform

 

more

 

than

 

one

 

browse

 

on

 

the

 

same

 

file

 

at

 

the

 

same

 

time.

 

You

 

distinguish

 

between

 

browse

 

operations

 

by

 

including

 

the

 

REQID

 

option

 

on

 

each

 

browse

 

command.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

123



Skip-sequential

 

browsing:

   

For

 

direct

 

access

 

to

 

records

 

quickly,

 

you

 

can

 

browse

 

using

 

skip-sequential

 

processing.

 

This

 

type

 

of

 

browsing

 

reduces

 

index

 

search

 

time.

 

To

 

use

 

skip-sequential

 

processing,

 

you

 

change

 

the

 

key,

 

RBA,

 

or

 

RRN

 

in

 

the

 

RIDFLD

 

option

 

of

 

the

 

EXEC

 

CICS

 

READNEXT

 

or

 

READPREV

 

command

 

to

 

point

 

to

 

the

 

next

 

record

 

you

 

want.

 

You

 

can

 

even

 

do

 

this

 

on

 

the

 

first

 

EXEC

 

CICS

 

READNEXT

 

command

 

or

 

the

 

first

 

EXEC

 

CICS

 

READPREV

 

command

 

after

 

an

 

EXEC

 

CICS

 

STARTBR

 

or

 

EXEC

 

CICS

 

RESETBR

 

command.

 

Note:

  

The

 

RIDFLD

 

option

 

on

 

the

 

EXEC

 

CICS

 

READNEXT

 

or

 

READPREV

 

command

 

must

 

be

 

in

 

the

 

same

 

form

 

(key,

 

RBA

 

or

 

RRN)

 

as

 

that

 

used

 

in

 

the

 

EXEC

 

CICS

 

STARTBR

 

command

 

or

 

last

 

EXEC

 

CICS

 

RESETBR

 

command.

 

If

 

you

 

use

 

generic

 

keys

 

on

 

a

 

forward

 

browse,

 

the

 

new

 

RIDFLD

 

must

 

also

 

be

 

a

 

generic

 

key,

 

although

 

the

 

length

 

can

 

be

 

different.

 

Specifying

 

a

 

different

 

keylength

 

in

 

the

 

KEYLENGTH

 

option

 

of

 

an

 

EXEC

 

CICS

 

READNEXT

 

command

 

has

 

the

 

same

 

effect

 

as

 

an

 

EXEC

 

CICS

 

RESETBR

 

command.

 

To

 

continue

 

browsing

 

from

 

this

 

new

 

point,

 

remove

 

the

 

KEYLENGTH

 

option

 

from

 

subsequent

 

EXEC

 

CICS

 

READNEXT

 

commands.

 

If

 

a

 

key

 

equal

 

to

 

search

 

is

 

specified

 

on

 

an

 

EXEC

 

CICS

 

STARTBR

 

command,

 

or

 

an

 

EXEC

 

CICS

 

RESETBR

 

command,

 

a

 

EXEC

 

CICS

 

READNEXT

 

command

 

using

 

skip-sequential

 

processing

 

can

 

give

 

a

 

NOTFND

 

condition.

 

It

 

is

 

not

 

possible

 

to

 

obtain

 

the

 

last

 

record

 

on

 

the

 

file

 

by

 

specifying

 

a

 

complete

 

key

 

of

 

X'FF's

 

during

 

skip

 

sequential

 

processing.

 

You

 

must

 

use

 

EXEC

 

CICS

 

RESETBR

 

to

 

specify

 

the

 

key

 

in

 

this

 

form.

 

Updating

 

records

 

To

 

update

 

a

 

record,

 

you

 

must

 

first

 

retrieve

 

it

 

using

 

an

 

EXEC

 

CICS

 

READ

 

command

 

with

 

the

 

UPDATE

 

option.

 

The

 

record

 

is

 

identified

 

in

 

exactly

 

the

 

same

 

way

 

as

 

for

 

a

 

direct

 

read.

 

After

 

modification

 

by

 

the

 

application

 

program,

 

the

 

record

 

is

 

written

 

back

 

to

 

the

 

file

 

using

 

the

 

EXEC

 

CICS

 

REWRITE

 

command.

 

In

 

a

 

KSDS

 

or

 

ESDS,

 

the

 

record

 

can

 

(as

 

with

 

a

 

direct

 

read)

 

be

 

accessed

 

through

 

either

 

the

 

primary

 

key

 

or

 

any

 

alternate

 

key.

 

The

 

EXEC

 

CICS

 

REWRITE

 

command

 

cannot

 

identify

 

the

 

record

 

being

 

rewritten.

 

In

 

any

 

one

 

transaction,

 

CICS

 

allows

 

only

 

a

 

single

 

update

 

to

 

a

 

given

 

file

 

to

 

be

 

in

 

progress

 

at

 

any

 

time.

 

Therefore,

 

the

 

record

 

being

 

rewritten

 

is

 

identified

 

by

 

the

 

previous

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command.

 

A

 

record

 

retrieved

 

as

 

part

 

of

 

a

 

browse

 

operation

 

can

 

not

 

be

 

updated

 

during

 

the

 

browse.

 

The

 

application

 

program

 

must

 

end

 

the

 

browse;

 

read

 

the

 

desired

 

record

 

with

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE,

 

and

 

perform

 

the

 

update.

 

Failure

 

to

 

do

 

this

 

can

 

cause

 

a

 

deadlock.

 

The

 

record

 

to

 

be

 

updated

 

can

 

(as

 

in

 

the

 

case

 

of

 

a

 

direct

 

read)

 

be

 

read

 

into

 

an

 

area

 

of

 

storage

 

supplied

 

by

 

the

 

application

 

program

 

or

 

into

 

CICS-provided

 

SET

 

storage.

 

If

 

the

 

record

 

is

 

read

 

into

 

CICS

 

SET

 

storage,

 

it

 

should

 

normally

 

be

 

copied

 

into

 

application

 

program

 

storage

 

and

 

rewritten

 

from

 

that

 

storage.

 

For

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command,

 

CICS

 

SET

 

storage

 

remains

 

valid

 

until

 

the

 

next

 

EXEC

 

CICS

 

REWRITE,

 

EXEC

 

CICS

 

UNLOCK,

 

EXEC

 

CICS

 

DELETE

 

(without

 

RIDFLD)

 

or

 

EXEC

 

CICS

 

SYNCPOINT,

 

whichever

 

is

 

encountered

 

first.

 

For

 

a

 

KSDS,

 

the

 

primary

 

key

 

in

 

the

 

record

 

must

 

not

 

be

 

altered

 

when

 

the

 

record

 

is

 

modified.

 

Similarly,

 

if

 

the

 

update

 

is

 

being

 

made

 

by

 

way

 

of

 

an

 

alternate

 

index,

 

the

   

124

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



alternate

 

key

 

used

 

to

 

identify

 

the

 

record

 

must

 

not

 

be

 

altered

 

either,

 

although

 

other

 

alternate

 

keys

 

can

 

be

 

altered.

 

If

 

the

 

file

 

allows

 

variable-length

 

records,

 

the

 

length

 

of

 

the

 

record

 

can

 

be

 

changed.

 

Specifying

 

record

 

length:

   

When

 

rewriting

 

a

 

fixed-length

 

record,

 

do

 

not

 

include

 

the

 

length

 

with

 

the

 

command.

 

If

 

the

 

length

 

is

 

specified,

 

and

 

does

 

not

 

agree

 

with

 

that

 

defined

 

to

 

SFS

 

or

 

DB2,

 

then

 

the

 

record

 

is

 

not

 

written.

 

For

 

variable-length

 

records,

 

you

 

must

 

specify

 

the

 

length

 

with

 

both

 

the

 

EXEC

 

CICS

 

READ

 

and

 

the

 

EXEC

 

CICS

 

REWRITE

 

commands.

 

The

 

length

 

specified

 

must

 

be

 

less

 

than,

 

or

 

equal

 

to,

 

the

 

keyspan

 

of

 

the

 

underlying

 

SFS

 

file

 

(including

 

alternate

 

indexes).

 

If

 

the

 

length

 

specified

 

is

 

greater

 

than

 

the

 

maximum

 

defined

 

to

 

SFS

 

or

 

DB2,

 

then

 

a

 

record

 

is

 

truncated.

 

Note

 

that

 

the

 

length

 

of

 

records

 

read

 

from

 

an

 

ESDS

 

cannot

 

be

 

changed.

 

Deleting

 

records

 

CICS

 

does

 

not

 

allow

 

records

 

to

 

be

 

deleted

 

from

 

an

 

ESDS.

 

You

 

can

 

delete

 

a

 

record

 

in

 

a

 

KSDS

 

or

 

RRDS

 

by

 

first

 

retrieving

 

it

 

for

 

update,

 

and

 

then

 

issuing

 

an

 

EXEC

 

CICS

 

DELETE

 

command.

 

You

 

can

 

also

 

delete

 

a

 

record

 

in

 

a

 

single

 

operation,

 

again

 

using

 

the

 

EXEC

 

CICS

 

DELETE

 

command.

 

In

 

this

 

case,

 

you

 

must

 

identify

 

the

 

record

 

to

 

be

 

deleted

 

as

 

part

 

of

 

the

 

command

 

by

 

specifying

 

the

 

RIDFLD

 

option.

 

For

 

a

 

KSDS

 

or

 

RRDS,

 

instead

 

of

 

rewriting

 

the

 

record,

 

the

 

application

 

program

 

can

 

issue

 

an

 

EXEC

 

CICS

 

DELETE

 

command

 

to

 

erase

 

it

 

from

 

the

 

file.

 

As

 

in

 

the

 

case

 

of

 

the

 

EXEC

 

CICS

 

REWRITE

 

command,

 

the

 

record

 

to

 

be

 

deleted

 

must

 

not

 

be

 

identified

 

within

 

the

 

EXEC

 

CICS

 

DELETE

 

command,

 

but

 

is,

 

by

 

default,

 

the

 

record

 

most

 

recently

 

read

 

for

 

update.

 

When

 

an

 

EXEC

 

CICS

 

DELETE

 

command

 

follows

 

a

 

EXEC

 

CICS

 

READ

 

UPDATE,

 

it

 

must

 

not

 

include

 

the

 

RIDFLD

 

option.

 

If

 

RIDFLD

 

is

 

included,

 

an

 

INVREQ

 

condition

 

is

 

returned

 

to

 

the

 

application

 

program.

 

If

 

a

 

full

 

key

 

is

 

provided

 

with

 

the

 

EXEC

 

CICS

 

DELETE

 

command,

 

a

 

single

 

record

 

with

 

that

 

key

 

is

 

deleted.

 

So,

 

if

 

the

 

file

 

is

 

being

 

accessed

 

by

 

way

 

of

 

an

 

alternate

 

index

 

path

 

that

 

allows

 

non-unique

 

alternate

 

keys,

 

only

 

the

 

first

 

record

 

with

 

that

 

key

 

is

 

deleted.

 

After

 

the

 

deletion,

 

you

 

know

 

if

 

further

 

records

 

exist

 

with

 

the

 

same

 

alternate

 

key,

 

because

 

you

 

get

 

the

 

DUPKEY

 

condition

 

if

 

they

 

do.

 

Unlocking:

   

Use

 

the

 

EXEC

 

CICS

 

UNLOCK

 

command

 

to

 

release

 

a

 

lock

 

held

 

by

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command

 

without

 

rewriting

 

or

 

deleting

 

the

 

record.

 

EXEC

 

CICS

 

UNLOCK

 

releases

 

any

 

CICS

 

storage

 

acquired

 

for

 

the

 

EXEC

 

CICS

 

READ

 

and

 

releases

 

SFS

 

resources

 

held

 

by

 

the

 

EXEC

 

CICS

 

READ.

 

Deleting

 

groups

 

of

 

records

 

(generic

 

delete):

   

You

 

can

 

use

 

a

 

generic

 

key

 

with

 

the

 

EXEC

 

CICS

 

DELETE

 

command.

 

Then,

 

instead

 

of

 

deleting

 

a

 

single

 

record,

 

all

 

the

 

records

 

in

 

the

 

file

 

whose

 

keys

 

match

 

the

 

generic

 

key

 

are

 

deleted

 

with

 

the

 

single

 

command.

 

The

 

number

 

of

 

records

 

deleted

 

is

 

returned

 

to

 

the

 

application

 

program

 

if

 

the

 

NUMREC

 

option

 

is

 

included

 

with

 

the

 

command.

 

If

 

access

 

is

 

by

 

way

 

of

 

an

 

alternate

 

index

 

path,

 

the

 

records

 

deleted

 

are

 

those

 

whose

 

alternate

 

keys

 

match

 

the

 

generic

 

key.

 

Adding

 

records

 

You

 

can

 

add

 

new

 

records

 

to

 

a

 

file

 

with

 

the

 

EXEC

 

CICS

 

WRITE

 

command.

 

They

 

must

 

always

 

be

 

written

 

from

 

an

 

area

 

provided

 

by

 

the

 

application

 

program.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

125



Adding

 

to

 

a

 

KSDS:

   

When

 

a

 

record

 

is

 

being

 

added

 

to

 

a

 

KSDS,

 

the

 

primary

 

key

 

of

 

the

 

record

 

identifies

 

the

 

position

 

in

 

the

 

file

 

where

 

the

 

record

 

is

 

to

 

be

 

inserted.

 

The

 

application

 

program

 

must

 

specify

 

the

 

key

 

using

 

the

 

RIDFLD

 

option

 

on

 

the

 

EXEC

 

CICS

 

WRITE

 

command,

 

even

 

though

 

the

 

key

 

is

 

part

 

of

 

the

 

record.

 

A

 

record

 

added

 

to

 

a

 

KSDS

 

by

 

way

 

of

 

an

 

alternate

 

index

 

is

 

also

 

inserted

 

into

 

the

 

file

 

in

 

the

 

position

 

determined

 

by

 

the

 

primary

 

key.

 

However,

 

in

 

this

 

case

 

the

 

RIDFLD

 

option

 

must

 

be

 

used

 

to

 

specify

 

the

 

alternate

 

key.

 

Adding

 

to

 

an

 

ESDS:

   

A

 

record

 

added

 

to

 

an

 

ESDS

 

is

 

always

 

added

 

to

 

the

 

end

 

of

 

the

 

file.

 

You

 

cannot

 

insert

 

a

 

record

 

in

 

an

 

ESDS

 

between

 

existing

 

records.

 

After

 

the

 

operation

 

is

 

completed,

 

the

 

relative

 

byte

 

address

 

(RBA)

 

identifying

 

the

 

record

 

is

 

returned

 

to

 

the

 

application

 

program.

 

When

 

adding

 

a

 

record

 

to

 

an

 

ESDS

 

by

 

way

 

of

 

an

 

alternate

 

index

 

path,

 

the

 

record

 

is

 

also

 

placed

 

at

 

the

 

end

 

of

 

the

 

file.

 

The

 

command

 

must

 

include

 

the

 

alternate

 

index

 

key

 

in

 

the

 

same

 

way

 

as

 

for

 

a

 

KSDS

 

path.

 

The

 

commands

 

are

 

the

 

same

 

whether

 

you

 

are

 

using

 

an

 

ESDS

 

or

 

a

 

KSDS

 

so

 

the

 

application

 

program

 

is

 

not

 

affected

 

by

 

which

 

type

 

of

 

file

 

is

 

in

 

use.

 

Adding

 

to

 

an

 

RRDS:

   

To

 

add

 

a

 

record

 

to

 

an

 

RRDS,

 

include

 

the

 

relative

 

record

 

number

 

(RRN)

 

as

 

a

 

record

 

identifier

 

on

 

the

 

EXEC

 

CICS

 

WRITE

 

command.

 

The

 

record

 

is

 

then

 

stored

 

in

 

the

 

file

 

in

 

the

 

position

 

corresponding

 

to

 

the

 

RRN.

 

Specifying

 

record

 

length:

   

When

 

writing

 

to

 

a

 

fixed-length

 

file,

 

do

 

not

 

include

 

the

 

length

 

with

 

the

 

command.

 

If

 

the

 

length

 

is

 

specified,

 

and

 

does

 

not

 

agree

 

with

 

that

 

defined

 

to

 

SFS

 

or

 

DB2,

 

then

 

the

 

record

 

is

 

not

 

written.

 

If

 

the

 

file

 

is

 

defined

 

as

 

containing

 

variable-length

 

records,

 

the

 

command

 

must

 

always

 

include

 

the

 

length

 

of

 

the

 

record.

 

The

 

length

 

specified

 

must

 

be

 

less

 

than,

 

or

 

equal

 

to,

 

the

 

keyspan

 

of

 

the

 

underlying

 

SFS

 

or

 

DB2

 

file

 

(including

 

alternate

 

indexes).

 

If

 

the

 

length

 

specified

 

is

 

greater

 

than

 

the

 

maximum

 

defined

 

to

 

SFS

 

or

 

DB2,

 

then

 

a

 

truncated

 

record

 

is

 

written.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

and

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Using

 

options

 

with

 

file

 

services

 

commands

 

This

 

section

 

discusses

 

the

 

following

 

command

 

options

 

that

 

are

 

used

 

in

 

combination

 

with

 

file

 

services

 

commands:

 

v

   

The

 

RIDFLD

 

option

 

v

   

The

 

INTO

 

and

 

SET

 

options

 

v

   

The

 

FROM

 

option

Using

 

the

 

RIDFLD

 

option:

   

Any

 

function

 

you

 

perform

 

on

 

a

 

record

 

(read,

 

add,

 

delete,

 

or

 

start

 

a

 

browse)

 

requires

 

that

 

you

 

identify

 

the

 

record

 

by

 

the

 

RIDFLD

 

option.

 

The

 

only

 

exception

 

to

 

this

 

requirement

 

is

 

when

 

you

 

have

 

initially

 

read

 

the

 

record

 

for

 

update

 

first.

 

Additionally,

 

you

 

must

 

include

 

the

 

RIDFLD

 

option

 

when

 

performing

 

a

 

browse

 

operation

 

using

 

the

 

EXEC

 

CICS

 

READNEXT

 

or

 

EXEC

 

CICS

 

READPREV

 

commands.

 

The

 

RIDFLD

 

option

 

gives

 

CICS

 

a

 

way

 

to

 

return

 

the

 

identifier

 

of

 

each

 

record

 

retrieved.

 

With

 

EXEC

 

CICS

 

READNEXT

 

or

 

EXEC

 

CICS

 

READPREV

 

commands,

 

the

 

application

 

program

 

would

 

not

 

usually

 

set

 

the

 

RIDFLD

 

field.

 

Therefore,

 

after

 

each

 

occurrence

 

of

 

these

 

commands,

 

CICS

 

updates

 

the

 

RIDFLD

 

field

 

with

 

the

 

actual

   

126

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



identifier

 

of

 

the

 

record

 

retrieved.

 

(You

 

can

 

alter

 

the

 

RIDFLD

 

value

 

to

 

set

 

a

 

new

 

position

 

from

 

which

 

to

 

continue

 

the

 

browse.)

 

The

 

RIDFLD

 

option

 

identifies

 

a

 

field

 

containing

 

the

 

record

 

identification

 

appropriate

 

to

 

the

 

access

 

method

 

and

 

the

 

type

 

of

 

file

 

being

 

accessed.

 

By

 

itself,

 

the

 

RIDFLD

 

option

 

usually

 

is

 

not

 

enough

 

to

 

identify

 

a

 

specific

 

record

 

in

 

the

 

file.

 

In

 

addition,

 

one

 

or

 

both

 

of

 

the

 

options

 

GTEQ

 

and

 

GENERIC

 

can

 

be

 

used

 

with

 

your

 

command.

 

You

 

use

 

the

 

GTEQ

 

option

 

to

 

search

 

for

 

the

 

first

 

key

 

that

 

is

 

greater

 

than

 

or

 

equal

 

to

 

the

 

key

 

specified

 

in

 

RIDFLD.

 

The

 

GENERIC

 

option

 

is

 

available

 

if

 

you

 

are

 

specifying

 

an

 

imprecise

 

or

 

partial

 

key.

 

These

 

rules

 

apply

 

in

 

the

 

following

 

circumstances:

 

v

   

When

 

any

 

record

 

retrieval

 

is

 

done

 

from

 

a

 

KSDS

 

v

   

When

 

an

 

alternate

 

index

 

path

 

is

 

used

 

from

 

a

 

KSDS

 

or

 

ESDS

 

v

   

When

 

setting

 

a

 

starting

 

position

 

for

 

a

 

browse

 

in

 

a

 

KSDS

 

or

 

ESDS

Indexing

 

and

 

the

 

RIDFLD

 

option:

   

An

 

index

 

can

 

contain

 

multiple

 

fields.

 

When

 

you

 

create

 

a

 

schema

 

(see

 

the

 

CICS

 

Administration

 

Reference),

 

the

 

index

 

is

 

made

 

up

 

of

 

the

 

fields

 

listed

 

in

 

the

 

“Field

 

Names

 

for

 

Primary

 

Index”

 

or

 

“Secondary

 

Index

 

-

 

Field

 

Names”

 

fields.

 

This

 

list

 

is

 

separated

 

by

 

spaces,

 

as

 

shown

 

in

 

these

 

example

 

fields

 

for

 

an

 

address

 

record:

 

number

 

street

 

state

 

zip.

 

However,

 

the

 

fields

 

are

 

not

 

separated

 

by

 

spaces

 

when

 

you

 

pass

 

the

 

field

 

names

 

with

 

the

 

RIDFLD

 

option,

 

for

 

example:

 

numberstreetstatezip).

 

When

 

passed

 

by

 

the

 

RIDFLD

 

option,

 

these

 

fields

 

are

 

concatenated

 

together

 

in

 

the

 

same

 

order

 

in

 

which

 

the

 

fields

 

are

 

defined

 

in

 

the

 

schema

 

file

 

definitions.

 

This

 

is

 

not

 

necessarily

 

the

 

same

 

as

 

the

 

order

 

in

 

which

 

the

 

fields

 

appear

 

in

 

each

 

file

 

record.

 

Using

 

our

 

address

 

record

 

field

 

example,

 

you

 

can

 

assume

 

that

 

the

 

file

 

definition

 

consists

 

of

 

4

 

fields,

 

all

 

of

 

which

 

are

 

byteArrays

 

of

 

1

 

byte

 

each.

 

If

 

an

 

index

 

file

 

were

 

made

 

up

 

of

 

field

 

2

 

and

 

field

 

4,

 

then

 

the

 

RIDFLD

 

for

 

record

 

“numberstreetstatezip”

 

would

 

be

 

“streetzip”.

 

The

 

command

 

would

 

be

 

specified

 

as:

 

EXEC

 

CICS

 

WRITE

 

FILE()

 

FROM("numberstreetstatezip")

 

RIDFLD("streetzip")

 

If,

 

however,

 

a

 

alternate

 

index

 

consisted

 

of

 

field

 

4

 

following

 

by

 

field

 

2,

 

the

 

command

 

would

 

be:

 

EXEC

 

CICS

 

WRITE

 

FILE()

 

FROM("numberstreetstatezip")

 

RIDFLD("streetzip")

 

This

 

means

 

that

 

any

 

field

 

in

 

an

 

index

 

can

 

be

 

sorted

 

in

 

any

 

order.

 

If

 

we

 

use

 

the

 

address

 

record

 

example,

 

the

 

file

 

contains

 

house

 

numbers,

 

street

 

name,

 

states

 

and

 

zip

 

codes.

 

This

 

file

 

can

 

be

 

sorted

 

on

 

states,

 

and

 

a

 

alternate

 

index

 

can

 

sort

 

on

 

zip

 

codes.

 

An

 

index

 

on

 

the

 

street

 

name

 

field

 

allows

 

a

 

search

 

for

 

all

 

entries

 

matching

 

the

 

street

 

name

 

“Maple”.

 

Alternate

 

indexes

 

allow

 

search

 

criteria

 

to

 

be

 

combined

 

to

 

yield

 

a

 

more

 

narrow

 

match,

 

for

 

example,

 

a

 

search

 

for

 

all

 

entries

 

matching

 

the

 

street

 

name

 

“Maple”

 

and

 

matching

 

the

 

state

 

“Maine”.

 

Any

 

field

 

in

 

an

 

index

 

can

 

be

 

sorted

 

in

 

ascending

 

or

 

descending

 

order.

 

And

 

any

 

field

 

can

 

be

 

unique

 

or

 

non-unique.

 

This

 

explanation

 

applies

 

only

 

to

 

KSDS

 

files,

 

or

 

a

 

KSDS

 

path

 

over

 

an

 

ESDS

 

file.

 

Combining

 

the

 

KEYLENGTH

 

and

 

RIDFLD

 

options:

   

In

 

general,

 

file

 

services

 

commands

 

need

 

the

 

RIDFLD

 

and

 

KEYLENGTH

 

options.

 

The

 

KEYLENGTH

 

option

 

can

 

be

 

specified

 

explicitly

 

in

 

the

 

command,

 

or

 

determined

 

implicitly

 

from

 

the

 

SFS

 

file

 

definition.

 

For

 

remote

 

files

 

(that

 

is,

 

those

 

for

 

which

 

the

 

SYSID

 

option

 

has

 

been

 

specified),

 

the

 

KEYLENGTH

 

option

 

must

 

be

 

specified

 

if

 

RIDFLD

 

holds

 

a

 

key.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

127



When

 

accessing

 

remote

 

files,

 

refer

 

to

 

the

 

documentation

 

for

 

the

 

underlying

 

file

 

manager

 

for

 

any

 

restrictions

 

in

 

specifying

 

CICS

 

file

 

services

 

commands.

 

See

 

the

 

CICS

 

Intercommunication

 

Guide

 

and

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Using

 

the

 

INTO

 

and

 

SET

 

options:

   

With

 

the

 

EXEC

 

CICS

 

READ,

 

EXEC

 

CICS

 

READNEXT,

 

or

 

EXEC

 

CICS

 

READPREV

 

commands,

 

the

 

record

 

is

 

retrieved

 

and

 

put

 

in

 

main

 

storage

 

according

 

to

 

the

 

INTO

 

and

 

SET

 

options.

 

v

   

The

 

INTO

 

option

 

specifies

 

the

 

main

 

storage

 

area

 

into

 

which

 

the

 

record

 

is

 

to

 

be

 

put.

 

For

 

fixed-length

 

records,

 

do

 

not

 

include

 

the

 

LENGTH

 

option.

 

If

 

you

 

do,

 

the

 

length

 

specified

 

must

 

exactly

 

match

 

the

 

defined

 

length,

 

or

 

you

 

get

 

the

 

LENGERR

 

condition.

 

For

 

variable-length

 

records,

 

always

 

specify

 

(in

 

the

 

LENGTH

 

option)

 

the

 

longest

 

record

 

your

 

application

 

program

 

accepts.

 

(This

 

value

 

is

 

likely

 

to

 

correspond

 

with

 

the

 

value

 

defined

 

to

 

SFS

 

as

 

the

 

maximum

 

record

 

size

 

when

 

the

 

file

 

was

 

created.)

 

If

 

you

 

do

 

not

 

specify

 

the

 

LENGHTH

 

option,

 

you

 

get

 

the

 

LENGERR

 

condition.

 

The

 

LENGERR

 

condition

 

occurs

 

if

 

the

 

record

 

exceeds

 

this

 

maximum

 

length,

 

and

 

the

 

record

 

is

 

then

 

truncated

 

to

 

that

 

length.

 

After

 

the

 

record

 

retrieval,

 

if

 

you

 

include

 

the

 

LENGTH

 

option,

 

the

 

data

 

area

 

specified

 

in

 

it

 

is

 

set

 

to

 

the

 

actual

 

record

 

length

 

(before

 

any

 

truncation

 

occurs).

 

v

   

The

 

SET

 

option

 

specifies

 

a

 

pointer

 

to

 

the

 

address

 

that

 

holds

 

the

 

record.

 

This

 

address,

 

which

 

is

 

acquired

 

by

 

CICS,

 

points

 

to

 

the

 

buffer

 

in

 

main

 

storage

 

that

 

holds

 

the

 

record.

 

When

 

using

 

the

 

SET

 

option,

 

do

 

not

 

include

 

the

 

LENGTH

 

option.

 

If

 

you

 

do

 

include

 

it,

 

the

 

data

 

area

 

specified

 

is

 

set

 

to

 

the

 

actual

 

record

 

length

 

after

 

the

 

record

 

has

 

been

 

retrieved.

Using

 

the

 

FROM

 

option:

   

When

 

you

 

add

 

records

 

(using

 

the

 

EXEC

 

CICS

 

WRITE

 

command),

 

or

 

update

 

records

 

(using

 

the

 

EXEC

 

CICS

 

REWRITE

 

command),

 

the

 

record

 

that

 

is

 

to

 

be

 

written

 

is

 

specified

 

with

 

the

 

FROM

 

option.

 

The

 

FROM

 

option

 

specifies

 

the

 

main

 

storage

 

area

 

that

 

contains

 

the

 

record

 

to

 

be

 

written.

 

In

 

general,

 

this

 

area

 

is

 

part

 

of

 

the

 

storage

 

owned

 

by

 

your

 

application

 

program.

 

With

 

the

 

EXEC

 

CICS

 

REWRITE

 

command,

 

the

 

storage

 

area

 

indicated

 

by

 

the

 

FROM

 

option

 

is

 

usually

 

(but

 

not

 

necessarily)

 

the

 

same

 

area

 

as

 

the

 

corresponding

 

area

 

indicated

 

by

 

the

 

INTO

 

option

 

on

 

the

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command.

 

The

 

length

 

of

 

the

 

record

 

can

 

be

 

changed

 

when

 

rewriting

 

to

 

a

 

variable-length

 

KSDS.

 

Always

 

include

 

the

 

LENGTH

 

option

 

when

 

writing

 

to

 

a

 

variable-length

 

file.

 

If

 

the

 

value

 

specified

 

exceeds

 

the

 

maximum

 

allowed

 

in

 

the

 

SFS

 

definition,

 

The

 

LENGERR

 

condition

 

is

 

raised

 

when

 

the

 

command

 

is

 

executed,

 

and

 

a

 

truncated

 

record

 

is

 

written.

 

The

 

LENGERR

 

condition

 

is

 

also

 

raised

 

if

 

the

 

length

 

option

 

is

 

omitted

 

when

 

accessing

 

a

 

variable-length

 

file.

 

When

 

writing

 

to

 

a

 

fixed-length

 

file,

 

CICS

 

uses

 

the

 

length

 

specified

 

in

 

the

 

SFS

 

file

 

definition

 

as

 

the

 

length

 

of

 

the

 

record

 

to

 

be

 

written.

 

So,

 

the

 

LENGTH

 

option

 

is

 

not

 

needed.

 

If

 

you

 

do

 

use

 

the

 

LENGTH

 

option,

 

its

 

value

 

is

 

checked

 

against

 

the

 

defined

 

value,

 

and

 

you

 

get

 

the

 

LENGERR

 

condition

 

if

 

the

 

values

 

do

 

not

 

match.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

and

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

   

128

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Avoiding

 

transaction

 

deadlocks

 

A

 

deadlock

 

occurs

 

when

 

a

 

transaction

 

(say,

 

transaction

 

A)

 

requires

 

exclusive

 

use

 

of

 

a

 

resource,

 

such

 

as

 

a

 

record

 

in

 

a

 

file,

 

and

 

another

 

transaction

 

(say,

 

transaction

 

B)

 

currently

 

holds

 

that

 

resource.

 

Transaction

 

A

 

waits

 

for

 

the

 

resource

 

to

 

become

 

available.

 

However,

 

suppose

 

transaction

 

B

 

is

 

not

 

in

 

a

 

position

 

to

 

release

 

the

 

resource

 

because

 

it,

 

in

 

turn,

 

is

 

waiting

 

on

 

some

 

resource

 

held

 

by

 

transaction

 

A.

 

Then,

 

both

 

are

 

deadlocked.

 

The

 

only

 

way

 

of

 

breaking

 

the

 

deadlock

 

is

 

to

 

cancel

 

one

 

of

 

the

 

transactions,

 

thus

 

releasing

 

its

 

resources.

 

An

 

example

 

of

 

a

 

deadlock:

   

Two

 

transactions

 

running

 

concurrently

 

are

 

modifying

 

records

 

within

 

a

 

single

 

recoverable

 

file,

 

through

 

the

 

same

 

file

 

definition

 

entry,

 

as

 

follows:

 

1

   

Transaction

 

A

  

--->

 

EXEC

 

CICS

 

READ

 

UPDATE

   

--->

 

record

 

1

   

2

   

Transaction

 

B

  

--->

 

EXEC

 

CICS

 

DELETE

        

--->

 

record

 

2

   

3

   

Transaction

 

A

  

--->

 

EXEC

 

CICS

 

WRITE

         

--->

 

record

 

2

   

4

   

Transaction

 

B

  

--->

 

EXEC

 

CICS

 

READ

 

UPDATE

   

--->

 

record

 

1

   

5

   

Transaction

 

B

  

--->

 

EXEC

 

CICS

 

REWRITE

       

--->

 

record

 

1

 

Transaction

 

A

 

has

 

acquired

 

the

 

record

 

lock

 

for

 

record

 

1.

 

Transaction

 

B

 

has

 

similarly

 

acquired

 

the

 

record

 

lock

 

for

 

record

 

2.

 

The

 

transactions

 

are

 

then

 

deadlocked

 

because

 

each

 

wants

 

to

 

acquire

 

the

 

lock

 

held

 

by

 

the

 

other.

  

A

 

transaction

 

can

 

have

 

to

 

wait

 

for

 

a

 

resource

 

while

 

executing

 

file

 

control

 

commands

 

for

 

several

 

reasons:

 

v

   

For

 

SFS

 

files,

 

any

 

record

 

that

 

is

 

being

 

modified

 

is

 

held

 

in

 

exclusive

 

control

 

for

 

the

 

duration

 

of

 

the

 

request.

 

v

   

If

 

a

 

transaction

 

has

 

modified

 

a

 

record

 

in

 

a

 

recoverable

 

file,

 

SFS

 

locks

 

out

 

access

 

to

 

that

 

record

 

by

 

all

 

transactions

 

except

 

the

 

transaction

 

that

 

made

 

the

 

modification.

 

This

 

lock

 

continues

 

even

 

after

 

the

 

request

 

that

 

performed

 

the

 

change

 

has

 

completed.

 

This

 

allows

 

that

 

transaction

 

to

 

continue

 

to

 

access

 

and

 

modify

 

the

 

same

 

record.

 

Other

 

transactions

 

must

 

wait

 

until

 

the

 

initial

 

transaction

 

releases

 

the

 

lock.

 

The

 

release

 

occurs

 

in

 

either

 

of

 

two

 

ways:

 

by

 

terminating

 

the

 

transaction

 

or

 

by

 

issuing

 

a

 

syncpoint

 

request.

 

Whether

 

a

 

deadlock

 

actually

 

occurs

 

depends

 

on

 

the

 

relative

 

timing

 

of

 

the

 

acquisition

 

and

 

release

 

of

 

the

 

resources

 

by

 

different

 

concurrent

 

transactions.

 

Application

 

programs

 

can

 

continue

 

to

 

be

 

used

 

for

 

some

 

time

 

before

 

meeting

 

circumstances

 

that

 

cause

 

a

 

deadlock;

 

so

 

it

 

is

 

important

 

to

 

recognize

 

and

 

allow

 

for

 

the

 

possibility

 

of

 

deadlock

 

early

 

in

 

the

 

application

 

program

 

design

 

stages.

 

Using

 

the

 

INVREQ

 

condition

 

to

 

avoid

 

deadlocks:

   

CICS

 

recognizes

 

specific

 

situations

 

that

 

can

 

lead

 

to

 

a

 

deadlock

 

and

 

stops

 

them

 

by

 

returning

 

the

 

INVREQ

 

condition

 

to

 

your

 

application.

 

For

 

example,

 

CICS

 

does

 

not

 

allow

 

a

 

transaction

 

to

 

issue

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE,

 

EXEC

 

CICS

 

WRITE,

 

or

 

EXEC

 

CICS

 

DELETE

 

with

 

RIDFLD

 

request

 

to

 

a

 

particular

 

file

 

if

 

the

 

transaction

 

issued

 

a

 

previous

 

EXEC

 

CICS

 

READ

 

UPDATE

 

to

 

the

 

same

 

file,

 

and

 

the

 

request

 

has

 

not

 

yet

 

been

 

completed

 

by

 

an

 

EXEC

 

CICS

 

REWRITE,

 

EXEC

 

CICS

 

DELETE,

 

or

 

EXEC

 

CICS

 

UNLOCK

 

command.

 

Tips

 

to

 

avoid

 

deadlocks:

   

CICS

 

does

 

not

 

detect

 

every

 

situation

 

that

 

might

 

cause

 

a

 

deadlock.

 

You

 

can

 

avoid

 

deadlocks

 

by

 

following

 

these

 

rules:

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

129



v

   

All

 

applications

 

that

 

update

 

(modify)

 

multiple

 

resources

 

should

 

do

 

so

 

in

 

the

 

same

 

order.

 

For

 

instance,

 

if

 

a

 

transaction

 

is

 

updating

 

more

 

than

 

one

 

record

 

in

 

a

 

file,

 

it

 

can

 

do

 

so

 

in

 

ascending

 

key

 

order.

 

A

 

transaction

 

that

 

is

 

accessing

 

more

 

than

 

one

 

file

 

should

 

always

 

do

 

so

 

in

 

the

 

same

 

predefined

 

sequence

 

of

 

files.

 

v

   

An

 

application

 

that

 

issues

 

an

 

EXEC

 

CICS

 

READ

 

UPDATE

 

command

 

should

 

follow

 

it

 

with

 

an

 

EXEC

 

CICS

 

REWRITE,

 

EXEC

 

CICS

 

DELETE

 

without

 

RIDFLD,

 

or

 

EXEC

 

CICS

 

UNLOCK

 

to

 

release

 

the

 

position

 

before

 

doing

 

anything

 

else

 

to

 

the

 

file.

 

See

 

the

 

CICS

 

Administration

 

Referenceand

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Queue

 

services

 

Queues

 

are

 

sequential

 

storage

 

facilities

 

that

 

are

 

global

 

resources

 

within

 

either

 

a

 

single

 

CICS

 

region

 

or

 

a

 

system

 

of

 

interconnected

 

CICS

 

regions.

 

That

 

is,

 

queues,

 

like

 

files

 

and

 

databases,

 

are

 

not

 

associated

 

with

 

a

 

particular

 

task.

 

Any

 

task

 

can

 

read,

 

write

 

or

 

delete

 

queues,

 

and

 

the

 

pointers

 

associated

 

with

 

a

 

queue

 

are

 

shared

 

across

 

all

 

tasks.

 

Two

 

types

 

of

 

queues

 

are

 

provided

 

by

 

CICS:

 

transient

 

data

 

queues

 

and

 

temporary

 

storage

 

queues.

 

Although

 

these

 

names

 

imply

 

impermanence,

 

CICS

 

queues

 

are

 

permanent

 

storage.

 

Except

 

for

 

temporary

 

storage

 

queues

 

kept

 

in

 

main

 

storage,

 

CICS

 

queues

 

persist

 

across

 

executions

 

of

 

CICS,

 

unless

 

explicitly

 

discarded

 

in

 

a

 

cold

 

start.

 

Both

 

of

 

these

 

queue

 

types

 

are

 

discussed

 

and

 

compared

 

in

 

the

 

following

 

sections.

 

Transient

 

data

 

queue

 

services

 

CICS

 

transient

 

data

 

queue

 

services

 

provide

 

a

 

generalized

 

queueing

 

facility.

 

Data

 

can

 

be

 

queued

 

(stored)

 

for

 

subsequent

 

internal

 

or

 

external

 

processing.

 

You

 

can

 

apply

 

the

 

following

 

functions

 

to

 

selected

 

data,

 

specified

 

in

 

an

 

application:

 

v

   

Write

 

data

 

to

 

a

 

transient

 

data

 

queue

 

(EXEC

 

CICS

 

WRITEQ

 

TD)

 

v

   

Read

 

data

 

from

 

a

 

transient

 

data

 

queue

 

(EXEC

 

CICS

 

READQ

 

TD)

 

v

   

Delete

 

an

 

intrapartition

 

transient

 

data

 

queue

 

(EXEC

 

CICS

 

DELETEQ

 

TD)

 

To

 

use

 

a

 

transient

 

data

 

queue,

 

you

 

must

 

specify

 

the

 

TD

 

option.

 

If

 

the

 

TD

 

option

 

is

 

omitted,

 

the

 

command

 

is

 

assumed

 

to

 

be

 

for

 

a

 

temporary

 

storage

 

queue.

 

(See

 

“Temporary

 

storage

 

queue

 

services”

 

on

 

page

 

133

 

for

 

details.)

 

Intrapartition

 

destinations

 

Intrapartition

 

destinations

 

are

 

data

 

queues

 

that

 

are

 

located

 

on

 

direct-access

 

storage

 

devices.

 

These

 

destinations

 

are

 

available

 

for

 

use

 

with

 

one

 

or

 

more

 

programs

 

running

 

as

 

separate

 

tasks

 

within

 

the

 

CICS

 

region.

 

Data

 

directed

 

to

 

or

 

from

 

these

 

internal

 

destinations

 

is

 

called

 

intrapartition

 

data.

 

Intrapartition

 

transient

 

data

 

queues

 

are

 

efficient,

 

but

 

they

 

must

 

be

 

created

 

and

 

processed

 

entirely

 

within

 

CICS.

 

Typical

 

uses

 

of

 

intrapartition

 

data

 

include:

 

v

   

Message

 

switching

 

v

   

Broadcasting

 

v

   

Database

 

access

 

v

   

Routing

 

of

 

output

 

to

 

several

 

terminals

 

(for

 

example,

 

for

 

order

 

distribution)

 

v

   

Queuing

 

of

 

data

 

(for

 

example,

 

for

 

assignment

 

of

 

order

 

numbers

 

or

 

priority

 

by

 

arrival)

 

v

   

Data

 

collection

  

130

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Extrapartition

 

destinations

 

Extrapartition

 

destinations

 

are

 

queues

 

(files)

 

residing

 

on

 

any

 

file

 

system

 

resource

 

(disk,

 

tape,

 

printer,

 

and

 

so

 

on)

 

that

 

are

 

accessible

 

by

 

programs

 

outside

 

(or

 

inside)

 

the

 

region.

 

In

 

general,

 

sequential

 

extrapartition

 

destinations

 

are

 

used

 

for

 

storing

 

and

 

retrieving

 

data

 

outside

 

the

 

region.

 

For

 

example,

 

one

 

task

 

can

 

read

 

data

 

from

 

a

 

remote

 

terminal,

 

edit

 

the

 

data,

 

and

 

write

 

the

 

results

 

to

 

a

 

file

 

for

 

subsequent

 

processing

 

in

 

another

 

region.

 

Logging

 

data,

 

statistics,

 

and

 

transaction

 

error

 

messages

 

are

 

examples

 

of

 

data

 

that

 

can

 

be

 

written

 

to

 

extrapartition

 

destinations.

 

In

 

general,

 

extrapartition

 

data

 

created

 

by

 

CICS

 

is

 

intended

 

for

 

subsequent

 

input

 

to

 

non-CICS

 

programs.

 

Data

 

can

 

also

 

be

 

routed

 

to

 

an

 

output

 

device

 

such

 

as

 

a

 

line

 

printer.

 

CICS

 

uses

 

extrapartition

 

transient

 

data

 

queues

 

to

 

handle

 

standard

 

system

 

files.

 

Any

 

system

 

file

 

can

 

be

 

processed

 

sequentially

 

with

 

CICS

 

extrapartition

 

transient

 

data.

 

Extrapartition

 

transient

 

data

 

files

 

are

 

not

 

recoverable.

 

Data

 

directed

 

to

 

or

 

from

 

an

 

external

 

destination

 

is

 

called

 

extrapartition

 

data

 

and

 

consists

 

of

 

sequential

 

records

 

that

 

are

 

fixed-length

 

or

 

variable-length.

 

The

 

record

 

format

 

for

 

an

 

extrapartition

 

destination

 

must

 

be

 

defined

 

in

 

the

 

TDD.

 

(Refer

 

to

 

the

 

CICS

 

Administration

 

Reference

 

for

 

details.)

 

You

 

cannot

 

delete

 

an

 

extrapartition

 

queue.

 

CICS

 

provides

 

three

 

different

 

logical

 

organizations

 

for

 

the

 

byte-stream

 

data

 

stored

 

in

 

extrapartition

 

queue

 

data

 

files:

 

v

   

Fixed-length

 

records

 

v

   

Variable

 

records

 

v

   

Terminated

 

records,

 

which

 

subdivide

 

into:

 

–

   

Line-oriented

 

records

 

–

   

Null-terminated

 

records

 

–

   

Byte-terminated

 

records

Fixed-length

 

record

 

files:

   

Fixed-length

 

record

 

files

 

partition

 

the

 

byte

 

stream

 

into

 

adjacent,

 

nonoverlapping

 

blocks

 

of

 

bytes,

 

all

 

of

 

the

 

same

 

length.

 

The

 

size

 

of

 

the

 

block

 

for

 

a

 

given

 

queue

 

can

 

take

 

any

 

value

 

between

 

1

 

and

 

the

 

maximum

 

permitted

 

record

 

size

 

(32767),

 

but

 

must

 

remain

 

fixed

 

for

 

all

 

records

 

in

 

the

 

file.

 

Users

 

must

 

supply

 

records

 

of

 

the

 

chosen

 

length

 

in

 

an

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

call

 

and

 

expect

 

to

 

receive

 

a

 

record

 

of

 

that

 

length

 

when

 

performing

 

an

 

EXEC

 

CICS

 

READQ

 

TD

 

call.

 

Files

 

whose

 

length

 

is

 

not

 

a

 

multiple

 

of

 

the

 

chosen

 

record

 

size

 

are

 

regarded

 

as

 

incorrectly

 

formatted

 

and

 

can

 

lead

 

to

 

IOERR

 

conditions

 

being

 

raised

 

if

 

a

 

task

 

attempts

 

to

 

operate

 

on

 

the

 

corresponding

 

queue.

 

Variable-length

 

record

 

files:

   

Variable-length

 

record

 

files

 

partition

 

the

 

file

 

byte

 

stream

 

into

 

adjacent,

 

nonoverlapping

 

blocks

 

of

 

bytes

 

of

 

varying

 

length,

 

each

 

of

 

which

 

is

 

preceded

 

by

 

a

 

two-byte

 

length

 

count

 

used

 

to

 

determine

 

the

 

length

 

of

 

the

 

following

 

record.

 

The

 

record

 

can

 

be

 

of

 

any

 

length

 

between

 

1

 

and

 

the

 

maximum

 

permitted

 

record

 

size.

 

Users

 

should

 

not

 

supply

 

the

 

length

 

bytes

 

in

 

the

 

record

 

passed

 

to

 

an

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

call

 

as

 

it

 

is

 

written

 

to

 

the

 

file

 

by

 

CICS.

 

The

 

record

 

returned

 

on

 

an

 

EXEC

 

CICS

 

READQ

 

TD

 

call

 

does

 

not

 

contain

 

the

 

length

 

bytes.

 

Refer

 

to

 

the

 

TDD

 

RecordLen

 

attribute

 

description

 

in

 

the

 

CICS

 

Administration

 

Reference

 

for

 

information

 

on

 

how

 

the

 

permitted

 

record

 

size

 

is

 

established.

 

The

 

length

 

count

 

is

 

stored

 

in

 

the

 

file

 

high

 

byte

 

first.

 

Applications

 

reading

 

a

 

file

 

written

 

by

 

CICS

 

determine

 

the

 

record

 

length

 

by

 

reading

 

the

 

first

 

byte,

 

multiplying

 

it

 

by

 

256

 

and

 

then

 

adding

 

the

 

second

 

byte.

 

This

 

should

 

generate

 

a

 

value

 

between

 

1

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

131



and

 

the

 

maximum

 

permitted

 

record

 

size,

 

giving

 

the

 

size

 

of

 

the

 

following

 

record

 

in

 

bytes.

 

The

 

next

 

record

 

can

 

be

 

obtained

 

by

 

reading

 

this

 

number

 

of

 

bytes

 

from

 

the

 

file.

 

If

 

another

 

record

 

is

 

stored

 

in

 

the

 

file

 

(end

 

of

 

file

 

is

 

not

 

reached),

 

the

 

same

 

procedure

 

can

 

be

 

repeated

 

to

 

obtain

 

subsequent

 

records.

 

Files

 

with

 

negative

 

or

 

zero

 

record

 

lengths

 

and

 

files

 

whose

 

last

 

record

 

falls

 

short

 

of

 

the

 

last

 

record

 

length

 

are

 

regarded

 

as

 

incorrectly

 

formatted

 

and

 

can

 

lead

 

to

 

IOERR

 

conditions

 

being

 

raised

 

if

 

a

 

task

 

attempts

 

to

 

operate

 

on

 

the

 

corresponding

 

queue.

 

Terminated

 

record

 

files:

   

Terminated

 

record

 

files

 

partition

 

the

 

file

 

byte

 

stream

 

into

 

adjacent,

 

nonoverlapping

 

blocks

 

of

 

bytes

 

of

 

varying

 

length,

 

each

 

of

 

which

 

ends

 

with

 

a

 

common

 

terminating

 

byte.

 

The

 

three

 

subcategories

 

correspond

 

to

 

different

 

choices

 

for

 

this

 

terminating

 

byte:

 

v

   

Line-oriented

 

record

 

files

 

employ

 

X'10',

 

the

 

ASCII

 

newline

 

character,

 

as

 

a

 

terminator.

 

(This

 

is

 

particularly

 

useful

 

as

 

a

 

format

 

for

 

queues

 

containing

 

readable

 

text

 

because

 

it

 

allows

 

the

 

file

 

to

 

be

 

viewed/written

 

using

 

conventional

 

text

 

editors).

 

v

   

Null-terminated

 

record

 

files

 

employ

 

X'00',

 

the

 

ASCII

 

null

 

character,

 

as

 

a

 

terminator.

 

v

   

Byte-terminated

 

record

 

files

 

employ

 

a

 

user-defined

 

byte

 

in

 

the

 

range

 

0

 

to

 

255

 

as

 

a

 

terminator.

 

(This

 

actually

 

subsumes

 

the

 

preceding

 

categories;

 

they

 

are

 

merely

 

provided

 

as

 

convenience

 

interfaces

 

to

 

support

 

commonly

 

employed

 

formats).

 

Users

 

should

 

not

 

append

 

the

 

terminator

 

byte

 

to

 

the

 

record

 

passed

 

to

 

an

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

call

 

as

 

it

 

is

 

written

 

to

 

the

 

file

 

by

 

CICS.

 

The

 

record

 

returned

 

on

 

an

 

EXEC

 

CICS

 

READQ

 

TD

 

call

 

does

 

not

 

contain

 

the

 

terminator

 

byte.

 

Normally,

 

the

 

terminator

 

byte

 

should

 

not

 

appear

 

embedded

 

anywhere

 

in

 

the

 

record

 

supplied

 

in

 

an

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

call.

 

Any

 

program

 

which

 

subsequently

 

reads

 

the

 

file

 

is

 

not

 

able

 

to

 

distinguish

 

such

 

embedded

 

terminator

 

bytes

 

from

 

the

 

byte

 

appended

 

by

 

the

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

call.

 

(This

 

applies

 

in

 

particular

 

when

 

the

 

file

 

is

 

to

 

be

 

reused

 

as

 

the

 

source

 

for

 

an

 

input

 

TD

 

queue.)

 

The

 

result

 

of

 

embedding

 

terminator

 

bytes

 

in

 

the

 

record

 

data

 

is

 

an

 

apparent

 

fragmentation

 

of

 

the

 

record

 

into

 

separate

 

sub-records.

 

In

 

the

 

case

 

where

 

a

 

line-oriented

 

queue

 

is

 

employed

 

to

 

write

 

readable

 

text,

 

this

 

can

 

not

 

be

 

a

 

restriction.

 

Indirect

 

destinations

 

Intrapartition

 

and

 

extrapartition

 

destinations

 

can

 

be

 

used

 

as

 

indirect

 

destinations.

 

Indirect

 

destinations

 

provide

 

some

 

flexibility

 

in

 

program

 

maintenance

 

by

 

allowing

 

data

 

to

 

be

 

routed

 

to

 

one

 

of

 

several

 

destinations

 

with

 

changes

 

being

 

required

 

only

 

in

 

the

 

TDD,

 

not

 

in

 

the

 

program.

 

When

 

the

 

TDD

 

has

 

been

 

changed,

 

application

 

programs

 

continue

 

to

 

route

 

data

 

to

 

the

 

destination

 

using

 

the

 

original

 

symbolic

 

name;

 

however,

 

this

 

name

 

is

 

now

 

an

 

indirect

 

destination

 

that

 

refers

 

to

 

the

 

new

 

symbolic

 

name.

 

Because

 

indirect

 

destinations

 

are

 

established

 

by

 

means

 

of

 

TDD

 

entries,

 

you

 

do

 

not

 

need

 

to

 

be

 

concerned

 

with

 

how

 

this

 

is

 

done.

 

Triggered

 

transaction

 

initiation

 

CICS

 

applications

 

can

 

initiate

 

transaction

 

processing

 

in

 

accordance

 

with

 

predefined

 

parameters

 

by

 

using

 

automatic

 

transaction

 

initiation

 

(ATI),

 

a

 

queue

 

management

 

facility

 

within

 

CICS.

 

CICS

 

provides

 

the

 

ATI

 

facility

 

for

 

intrapartition

 

destinations.

 

The

 

system

 

administrator

 

establishes

 

a

 

basis

 

for

 

the

 

ATI

 

facility

 

by

 

specifying

 

a

 

nonzero

 

trigger

   

132

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



level

 

and

 

a

 

triggered

 

transaction

 

identifier

 

for

 

a

 

particular

 

intrapartition

 

destination

 

in

 

the

 

TDD.

 

When

 

the

 

number

 

of

 

entries

 

(created

 

by

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

commands

 

issued

 

by

 

one

 

or

 

more

 

programs)

 

in

 

the

 

queue

 

(destination)

 

reaches

 

the

 

specified

 

trigger

 

level,

 

the

 

transaction

 

specified

 

in

 

the

 

definition

 

of

 

the

 

destination

 

is

 

automatically

 

initiated.

 

The

 

transaction

 

must

 

issue

 

repetitive

 

EXEC

 

CICS

 

READQ

 

TD

 

commands

 

to

 

deplete

 

the

 

queue.

 

Once

 

the

 

queue

 

has

 

been

 

emptied,

 

a

 

new

 

ATI

 

cycle

 

begins.

 

That

 

is,

 

a

 

new

 

task

 

is

 

scheduled

 

for

 

initiation

 

when

 

the

 

specified

 

trigger

 

level

 

is

 

again

 

reached,

 

whether

 

or

 

not

 

execution

 

of

 

the

 

earlier

 

task

 

has

 

ended.

 

If

 

an

 

automatically

 

initiated

 

task

 

does

 

not

 

empty

 

the

 

queue,

 

access

 

to

 

the

 

queue

 

is

 

not

 

inhibited.

 

The

 

task

 

can

 

be

 

normally

 

or

 

abnormally

 

ended

 

before

 

the

 

queue

 

is

 

emptied

 

(that

 

is,

 

before

 

a

 

QZERO

 

condition

 

occurs

 

in

 

response

 

to

 

an

 

EXEC

 

CICS

 

READQ

 

TD

 

command).

 

Regardless

 

of

 

the

 

facility

 

type,

 

the

 

task

 

is

 

not

 

started

 

until

 

the

 

specified

 

trigger

 

level

 

is

 

reached.

 

If

 

the

 

triggered

 

transaction

 

does

 

not

 

read

 

from

 

the

 

TD

 

queue,

 

it

 

is

 

not

 

re-initiated.

 

If

 

the

 

trigger

 

level

 

of

 

a

 

queue

 

is

 

zero,

 

no

 

task

 

is

 

automatically

 

initiated.

 

If

 

the

 

trigger

 

level

 

is

 

already

 

exceeded

 

because

 

the

 

last

 

triggered

 

transaction

 

abended

 

before

 

clearing

 

the

 

queue,

 

a

 

task

 

is

 

scheduled

 

the

 

next

 

time

 

a

 

record

 

is

 

written

 

to

 

the

 

queue.

 

To

 

ensure

 

that

 

completion

 

of

 

an

 

automatically

 

initiated

 

task

 

occurs

 

when

 

the

 

queue

 

is

 

empty,

 

the

 

application

 

program

 

should

 

test

 

for

 

a

 

QZERO

 

condition

 

rather

 

than

 

for

 

some

 

application-dependent

 

factor

 

such

 

as

 

an

 

anticipated

 

number

 

of

 

records.

 

Only

 

the

 

QZERO

 

condition

 

indicates

 

an

 

emptied

 

queue.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Temporary

 

storage

 

queue

 

services

 

CICS

 

temporary

 

storage

 

queue

 

services

 

provide

 

the

 

application

 

programmer

 

with

 

the

 

ability

 

to

 

store

 

data

 

in

 

temporary

 

storage

 

queues.

 

These

 

queues

 

can

 

be

 

located

 

either

 

in

 

main

 

storage,

 

or

 

in

 

auxiliary

 

storage

 

on

 

a

 

direct-access

 

storage

 

device.

 

Data

 

stored

 

in

 

a

 

temporary

 

storage

 

queue

 

is

 

known

 

as

 

temporary

 

data.

 

Temporary

 

storage

 

queues

 

are

 

efficient,

 

but

 

they

 

must

 

be

 

created

 

and

 

processed

 

entirely

 

within

 

CICS.

 

You

 

can:

 

v

   

Write

 

data

 

to

 

a

 

temporary

 

storage

 

queue

 

(EXEC

 

CICS

 

WRITEQ

 

TS).

 

v

   

Update

 

data

 

in

 

a

 

temporary

 

storage

 

queue

 

(EXEC

 

CICS

 

WRITEQ

 

TS

 

with

 

the

 

REWRITE

 

and

 

ITEM

 

options).

 

v

   

Read

 

data

 

from

 

a

 

temporary

 

storage

 

queue

 

(EXEC

 

CICS

 

READQ

 

TS).

 

v

   

Delete

 

a

 

temporary

 

storage

 

queue

 

(EXEC

 

CICS

 

DELETEQ

 

TS).

 

If

 

the

 

TS

 

option

 

is

 

omitted,

 

the

 

command

 

is

 

assumed

 

to

 

refer

 

to

 

temporary

 

storage.

 

See

 

“Error-handling

 

services”

 

on

 

page

 

233

 

for

 

a

 

description

 

of

 

how

 

temporary

 

storage

 

control

 

commands

 

respond

 

to

 

conditions

 

that

 

occur

 

during

 

execution.

 

Typical

 

uses

 

of

 

temporary

 

storage

 

control

 

A

 

temporary

 

storage

 

queue

 

having

 

only

 

one

 

record

 

can

 

be

 

treated

 

as

 

a

 

single

 

unit

 

of

 

data

 

that

 

can

 

be

 

accessed

 

using

 

its

 

symbolic

 

name.

 

Using

 

temporary

 

storage

 

control

 

in

 

this

 

way

 

provides

 

a

 

typical

 

scratch

 

pad

 

capability.

 

Use

 

the

 

EXEC

 

CICS

 

READQ

 

TS

 

command

 

with

 

the

 

ITEM(data

 

area)

 

option

 

for

 

access

 

to

 

this

 

type

 

of

 

storage;

 

failure

 

to

 

use

 

this

 

access

 

method

 

can

 

cause

 

the

 

ITEMERR

 

condition

 

to

 

be

 

raised.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

133



In

 

general,

 

use

 

temporary

 

storage

 

queues

 

of

 

more

 

than

 

one

 

record

 

only

 

when

 

direct

 

access

 

or

 

repeated

 

access

 

to

 

records

 

is

 

necessary.

 

For

 

sequential

 

files,

 

use

 

transient

 

data

 

queues.

 

Some

 

uses

 

of

 

temporary

 

storage

 

queues

 

follow:

 

v

   

A

 

suspend

 

file.

 

Assume

 

a

 

data

 

collection

 

task

 

is

 

in

 

progress

 

at

 

a

 

terminal.

 

The

 

task

 

reads

 

one

 

or

 

more

 

units

 

of

 

input

 

and

 

then

 

allows

 

the

 

terminal

 

operator

 

to

 

interrupt

 

the

 

process

 

by

 

some

 

kind

 

of

 

coded

 

input.

 

If

 

not

 

interrupted,

 

the

 

task

 

repeats

 

the

 

data

 

collection

 

process.

 

If

 

interrupted,

 

the

 

task

 

writes

 

its

 

incomplete

 

data

 

to

 

temporary

 

storage

 

and

 

terminates.

 

The

 

terminal

 

is

 

now

 

free

 

to

 

process

 

a

 

different

 

transaction

 

(perhaps

 

a

 

high-priority

 

inquiry).

 

When

 

the

 

terminal

 

is

 

available

 

to

 

continue

 

data

 

collection,

 

the

 

operator

 

initiates

 

the

 

task

 

in

 

a

 

resume

 

mode,

 

causing

 

the

 

task

 

to

 

recall

 

its

 

suspended

 

data

 

from

 

temporary

 

storage

 

and

 

continue

 

as

 

though

 

it

 

had

 

not

 

been

 

interrupted.

 

v

   

Preprinted

 

forms.

 

An

 

application

 

program

 

can

 

accept

 

data

 

to

 

be

 

written

 

as

 

output

 

on

 

a

 

preprinted

 

form.

 

This

 

data

 

can

 

be

 

stored

 

in

 

temporary

 

storage

 

as

 

it

 

arrives.

 

When

 

all

 

the

 

data

 

has

 

been

 

stored,

 

it

 

can

 

first

 

be

 

validated

 

and

 

then

 

transmitted

 

in

 

the

 

order

 

required

 

by

 

the

 

format

 

of

 

the

 

preprinted

 

form.

 

v

   

Data

 

sharing.

 

Temporary

 

storage

 

is

 

most

 

suited

 

to

 

the

 

task

 

of

 

data

 

sharing

 

because

 

there

 

is

 

no

 

need

 

to

 

predefine

 

the

 

facility

 

(as

 

is

 

necessary

 

for

 

file

 

usage).

 

This

 

is

 

particularly

 

true

 

for

 

scratchpad

 

data.

 

v

   

Paging

 

through

 

large

 

quantities

 

of

 

data.

 

You

 

can

 

read

 

from

 

a

 

file

 

in

 

sections

 

(for

 

example,

 

10K),

 

and

 

put

 

the

 

sections

 

into

 

a

 

temporary

 

storage

 

queue.

 

This

 

approach

 

allows

 

the

 

display

 

of

 

only

 

as

 

much

 

data

 

as

 

the

 

screen

 

can

 

hold,

 

and

 

permits

 

paging

 

up

 

and

 

down.

 

This

 

approach

 

is

 

quicker

 

than

 

successive

 

file

 

access,

 

especially

 

if

 

the

 

data

 

is

 

being

 

accessed

 

remotely.

 

This

 

approach

 

is

 

not

 

recommended

 

if

 

an

 

update

 

to

 

the

 

file

 

is

 

required.

Naming

 

temporary

 

storage

 

queues

 

Temporary

 

storage

 

queues

 

are

 

not

 

defined

 

in

 

the

 

region

 

database;

 

instead,

 

they

 

are

 

created

 

the

 

first

 

time

 

you

 

write

 

to

 

that

 

queue.

 

When

 

you

 

write

 

to

 

a

 

queue

 

that

 

does

 

not

 

already

 

exist

 

(and

 

you

 

have

 

not

 

specified

 

the

 

SYSID

 

option),

 

CICS

 

creates

 

a

 

new,

 

local

 

queue

 

that

 

is

 

based

 

on

 

a

 

Temporary

 

Storage

 

Definitions

 

(TSD)

 

entry.

 

Temporary

 

storage

 

queue

 

templates

 

are

 

defined

 

in

 

the

 

region

 

database

 

and

 

in

 

the

 

TSD.

 

The

 

purpose

 

of

 

the

 

TSD

 

is

 

to

 

determine

 

the

 

attributes

 

given

 

to

 

temporary

 

storage

 

queues

 

for

 

that

 

region.

 

The

 

TSD

 

entry

 

names

 

(the

 

TSD

 

key)

 

can

 

be

 

from

 

one

 

to

 

eight

 

characters

 

long.

 

Temporary

 

storage

 

queues

 

are

 

identified

 

by

 

symbolic

 

names

 

that

 

are

 

assigned

 

by

 

the

 

originating

 

task.

 

These

 

names

 

must

 

be

 

exactly

 

eight

 

characters

 

long.

 

When

 

CICS

 

creates

 

a

 

new

 

queue,

 

it

 

tries

 

to

 

match

 

this

 

eight

 

character

 

name

 

with

 

a

 

TSD

 

entry

 

name,

 

and

 

uses

 

the

 

template

 

name

 

that

 

matches

 

the

 

most

 

characters

 

at

 

the

 

start

 

of

 

the

 

queue

 

name.

 

If

 

no

 

match

 

is

 

found,

 

the

 

queue

 

automatically

 

becomes

 

a

 

nonrecoverable,

 

local

 

queue

 

with

 

private

 

access.

 

For

 

example,

 

a

 

queue

 

called

 

FIRSTTSQ

 

is

 

to

 

be

 

created

 

by

 

an

 

application.

 

If

 

there

 

is

 

a

 

TSD

 

entry

 

with

 

a

 

key

 

of

 

FIRSTTSQ

 

for

 

the

 

region,

 

CICS

 

uses

 

this

 

template

 

when

 

creating

 

FIRSTTSQ.

 

If

 

there

 

is

 

no

 

match,

 

CICS

 

searches

 

for

 

FIRSTTS,

 

then

 

FIRSTT,

 

then

 

FIRST,

 

and

 

so

 

on.

 

Note:

  

The

 

TSD

 

entry

 

names

 

that

 

are

 

exactly

 

eight

 

characters

 

long

 

are

 

a

 

special

 

case.

 

When

 

an

 

EXEC

 

CICS

 

WRITEQ

 

TS

 

command

 

is

 

received

 

by

 

a

 

queue

   

134

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



having

 

a

 

name

 

that

 

exactly

 

matches

 

an

 

eight

 

character

 

TSD

 

name,

 

the

 

TSD

 

entry

 

becomes

 

a

 

temporary

 

storage

 

queue.

 

Temporary

 

storage

 

queue

 

names

 

are

 

byte

 

strings,

 

not

 

character

 

strings.

 

They

 

can

 

be

 

made

 

up

 

from

 

any

 

bytes

 

including

 

binary

 

zeros,

 

and

 

are

 

not

 

null

 

terminated.

 

The

 

CECI

 

transaction

 

pads

 

names

 

that

 

are

 

shorter

 

than

 

eight

 

bytes

 

with

 

spaces

 

when

 

reading

 

from

 

or

 

writing

 

to

 

a

 

temporary

 

storage

 

queue.

 

The

 

name

 

is

 

not

 

null

 

terminated

 

(unlike

 

other

 

names

 

in

 

CICS).

 

The

 

name

 

has

 

pattern

 

matching

 

rules

 

associated

 

with

 

it

 

that

 

vary

 

depending

 

on

 

whether

 

the

 

queue

 

is

 

local

 

or

 

remote.

 

This

 

is

 

explained

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

If

 

you

 

write

 

to

 

a

 

temporary

 

storage

 

queue

 

from

 

a

 

transaction

 

using

 

a

 

queue

 

name

 

that

 

is

 

less

 

than

 

eight

 

characters,

 

CICS

 

reads

 

eight

 

bytes

 

from

 

the

 

start

 

of

 

the

 

queue

 

name.

 

This

 

results

 

in

 

unexpected

 

characters

 

at

 

the

 

end

 

of

 

the

 

queue

 

name.

 

Therefore,

 

it

 

is

 

recommended

 

that

 

you

 

always

 

allocate

 

eight

 

bytes

 

for

 

the

 

temporary

 

storage

 

queue

 

name.

 

Temporary

 

data

 

can

 

be

 

retrieved

 

by

 

the

 

originating

 

task

 

or

 

by

 

any

 

other

 

task

 

using

 

the

 

symbolic

 

name

 

assigned

 

to

 

it.

 

Specific

 

items

 

(logical

 

records)

 

within

 

a

 

queue

 

are

 

referred

 

to

 

by

 

relative

 

position

 

numbers.

 

To

 

avoid

 

conflicts

 

caused

 

by

 

duplicate

 

names,

 

establish

 

a

 

naming

 

convention.

 

For

 

example,

 

the

 

user

 

identifier,

 

terminal

 

identifier,

 

or

 

transaction

 

identifier

 

could

 

be

 

used

 

as

 

a

 

prefix

 

or

 

suffix

 

to

 

each

 

programmer-supplied

 

symbolic

 

name.

 

The

 

TSD

 

entries

 

can

 

resolve

 

to

 

remote

 

temporary

 

storage

 

queue

 

templates,

 

by

 

entering

 

values

 

for

 

the

 

RemoteSysId

 

and

 

the

 

RemoteName

 

attributes

 

in

 

the

 

TSD.

 

Enter

 

the

 

sysid

 

(up

 

to

 

four

 

ASCII

 

characters)

 

of

 

the

 

remote

 

region

 

on

 

which

 

the

 

queue

 

is

 

to

 

reside

 

in

 

the

 

RemoteSysId

 

and

 

the

 

Communications

 

Definitions

 

(CD),

 

and

 

the

 

name

 

of

 

the

 

temporary

 

storage

 

template

 

on

 

that

 

remote

 

region

 

in

 

the

 

RemoteName.

 

The

 

local

 

temporary

 

storage

 

queue

 

template

 

name

 

and

 

the

 

remote

 

TSD

 

entry

 

name

 

must

 

be

 

the

 

same

 

length.

 

If

 

you

 

write

 

to

 

a

 

queue

 

that

 

matches

 

the

 

local

 

template,

 

CICS

 

replaces

 

the

 

template

 

name

 

at

 

the

 

start

 

of

 

the

 

queue

 

with

 

the

 

remote

 

template

 

name.

 

For

 

example,

 

you

 

could

 

have

 

a

 

local

 

TSD

 

entry

 

with

 

the

 

name

 

LOCALQ,

 

defined

 

with

 

RemoteName=REMOTQ

 

and

 

with

 

a

 

RemoteSysid

 

specified.

 

If

 

you

 

write

 

to

 

a

 

queue

 

called

 

LOCALQXX

 

locally,

 

the

 

queue

 

that

 

is

 

written

 

to

 

on

 

the

 

remote

 

region

 

is

 

called

 

REMOTQXX.

 

Deleting

 

temporary

 

storage

 

queues

 

Temporary

 

storage

 

queues

 

remain

 

intact

 

until

 

they

 

are

 

deleted

 

by

 

the

 

originating

 

task

 

or

 

by

 

any

 

other

 

task.

 

Before

 

deletion,

 

they

 

can

 

be

 

accessed

 

any

 

number

 

of

 

times.

 

Even

 

after

 

the

 

originating

 

task

 

is

 

terminated,

 

temporary

 

data

 

can

 

be

 

accessed

 

by

 

other

 

tasks

 

through

 

references

 

to

 

the

 

symbolic

 

name

 

under

 

which

 

it

 

is

 

stored.

 

You

 

can

 

use

 

the

 

EXEC

 

CICS

 

API

 

commands

 

on

 

temporary

 

storage

 

queues,

 

but

 

not

 

on

 

TSD

 

entries.

 

Note:

  

The

 

CICS

 

Administration

 

Reference

 

provides

 

complete

 

descriptions

 

of

 

how

 

to

 

make

 

changes

 

to

 

the

 

resource

 

definitions.

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

135



In

 

the

 

special

 

case

 

where

 

a

 

template

 

name

 

is

 

exactly

 

eight

 

characters

 

long,

 

and

 

the

 

TSD

 

entry

 

becomes

 

a

 

temporary

 

storage

 

queue,

 

you

 

must

 

use

 

EXEC

 

CICS

 

DELETEQ

 

TS

 

to

 

delete

 

all

 

items

 

from

 

the

 

queue

 

before

 

you

 

delete

 

this

 

TSD

 

entry

 

using

 

cicsdelete.

 

Location

 

of

 

temporary

 

data

 

Temporary

 

data

 

can

 

be

 

stored

 

either

 

in

 

main

 

storage

 

(memory)

 

or

 

in

 

auxiliary

 

storage

 

(a

 

database

 

file).

 

Generally,

 

use

 

main

 

storage

 

if

 

the

 

data

 

is

 

needed

 

for

 

short

 

periods

 

of

 

time;

 

use

 

auxiliary

 

storage

 

if

 

the

 

data

 

is

 

to

 

be

 

kept

 

for

 

long

 

periods

 

of

 

time.

 

Data

 

stored

 

in

 

auxiliary

 

recoverable

 

temporary

 

storage

 

queues

 

is

 

retained

 

after

 

CICS

 

termination

 

and

 

can

 

be

 

recovered

 

in

 

a

 

subsequent

 

restart.

 

Data

 

stored

 

in

 

auxiliary

 

nonrecoverable

 

temporary

 

storage

 

queues

 

is

 

retained

 

only

 

across

 

a

 

normal

 

shutdown,

 

but

 

not

 

across

 

an

 

immediate

 

shutdown

 

or

 

system

 

failure

 

unless

 

a

 

database

 

is

 

being

 

used

 

as

 

the

 

file

 

manager.

 

Data

 

stored

 

in

 

main

 

storage

 

is

 

not

 

retained

 

across

 

any

 

type

 

of

 

shutdown

 

and

 

so

 

cannot

 

be

 

recovered.

 

Queue

 

aging

 

Temporary

 

storage

 

has

 

a

 

queue

 

aging

 

facility

 

that

 

automatically

 

deletes

 

queues

 

that

 

have

 

not

 

been

 

accessed

 

for

 

a

 

specified

 

number

 

of

 

days.

 

The

 

number

 

of

 

days

 

are

 

defined

 

with

 

the

 

Region

 

Definitions

 

(RD)

 

TSQAgeLimit

 

attribute.

 

The

 

storage

 

occupied

 

by

 

these

 

queues

 

is

 

freed

 

and

 

becomes

 

available

 

to

 

temporary

 

storage

 

once

 

again.

 

This

 

feature

 

is

 

useful

 

for

 

temporary

 

storage

 

where

 

queues

 

are

 

created

 

dynamically

 

when

 

required.

 

It

 

is

 

not

 

needed

 

for

 

files

 

or

 

transient

 

data

 

queues

 

that

 

must

 

be

 

predefined

 

before

 

use.

 

Queue

 

attributes

 

Temporary

 

storage

 

queues

 

are

 

created

 

when

 

the

 

first

 

write

 

command

 

is

 

issued

 

to

 

them.

 

Attributes

 

(such

 

as

 

RemoteSysId,

 

RemoteName,

 

and

 

RecoverFlag)

 

are

 

inherited

 

from

 

the

 

longest

 

matching

 

queue

 

template

 

found

 

in

 

the

 

TSD.

 

To

 

use

 

main

 

storage

 

for

 

a

 

queue,

 

use

 

the

 

MAIN

 

option

 

on

 

the

 

EXEC

 

CICS

 

WRITEQ

 

TS

 

command

 

that

 

writes

 

the

 

first

 

item

 

to

 

the

 

queue.

 

Temporary

 

storage

 

queues

 

use

 

auxiliary

 

storage

 

by

 

default.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Referenceand

 

the

 

CICS

 

Administration

 

Reference

 

for

 

related

 

information.

 

Differences

 

between

 

transient

 

data

 

queues

 

and

 

temporary

 

storage

 

queues

 

There

 

are

 

two

 

important

 

differences

 

between

 

transient

 

data

 

queues

 

and

 

temporary

 

storage

 

queues:

 

v

   

Transient

 

data

 

queue

 

names

 

must

 

be

 

defined

 

in

 

the

 

Transient

 

Data

 

Definitions

 

(TDD)

 

before

 

they

 

are

 

used

 

by

 

an

 

application.

 

You

 

cannot

 

define

 

them

 

arbitrarily

 

at

 

the

 

time

 

the

 

data

 

is

 

created.

 

Thus,

 

transient

 

data

 

queues

 

do

 

not

 

have

 

the

 

same

 

dynamic

 

characteristics

 

as

 

temporary

 

storage

 

queues.

 

v

   

Transient

 

data

 

queues

 

must

 

be

 

read

 

sequentially,

 

and

 

each

 

item

 

can

 

be

 

read

 

only

 

once.

 

That

 

is,

 

after

 

a

 

transaction

 

reads

 

an

 

item,

 

that

 

item

 

is

 

removed

 

from

 

the

 

queue

 

and

 

is

 

not

 

available

 

to

 

any

 

other

 

transaction.

 

In

 

contrast,

 

items

 

in

 

temporary

 

storage

 

queues

 

can

 

be

 

read

 

either

 

sequentially

 

or

 

directly

 

(by

 

item

   

136

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



number).

 

They

 

can

 

be

 

read

 

any

 

number

 

of

 

times

 

and

 

are

 

never

 

removed

 

from

 

the

 

queue

 

until

 

the

 

entire

 

queue

 

is

 

purged.

 

These

 

differences

 

make

 

transient

 

data

 

queues

 

inappropriate

 

for

 

scratchpad

 

data,

 

but

 

suitable

 

for

 

queued

 

data,

 

such

 

as

 

audit

 

trails

 

and

 

output

 

to

 

be

 

printed.

 

In

 

fact,

 

for

 

data

 

that

 

is

 

read

 

sequentially

 

once,

 

transient

 

data

 

queues

 

are

 

preferable

 

to

 

temporary

 

storage

 

for

 

the

 

following

 

reasons:

 

v

   

Items

 

in

 

a

 

temporary

 

storage

 

queue

 

can

 

be

 

changed;

 

items

 

in

 

transient

 

data

 

queues

 

cannot.

 

v

   

Transient

 

data

 

queues

 

are

 

always

 

written

 

to

 

a

 

file.

 

(There

 

is

 

no

 

form

 

of

 

transient

 

data

 

queue

 

that

 

corresponds

 

to

 

main

 

temporary

 

storage.)

 

v

   

You

 

can

 

define

 

transient

 

data

 

queues

 

so

 

that

 

writing

 

items

 

to

 

the

 

queue

 

causes

 

a

 

specific

 

transaction

 

to

 

be

 

initiated

 

(for

 

example,

 

to

 

process

 

the

 

queue).

 

Temporary

 

storage

 

queues

 

have

 

nothing

 

that

 

corresponds

 

to

 

this

 

trigger

 

mechanism,

 

although

 

you

 

are

 

able

 

to

 

use

 

a

 

START

 

command

 

to

 

perform

 

a

 

similar

 

function.

 

v

   

Transient

 

data

 

queues

 

have

 

more

 

varied

 

recovery

 

options

 

than

 

temporary

 

storage

 

queues.

 

They

 

can

 

be

 

physically

 

or

 

logically

 

recoverable.

 

v

   

Because

 

the

 

commands

 

for

 

intrapartition

 

and

 

extrapartition

 

transient

 

data

 

are

 

identical,

 

you

 

can

 

switch

 

easily

 

between

 

the

 

internal

 

CICS

 

facility

 

(intrapartition)

 

and

 

an

 

external

 

data

 

set.

 

To

 

do

 

this,

 

you

 

need

 

only

 

change

 

the

 

TDD,

 

not

 

your

 

application

 

programs.

 

Temporary

 

storage

 

queues

 

have

 

no

 

corresponding

 

function

 

of

 

this

 

kind.

Differences

 

in

 

queue

 

behavior

 

between

 

SFS

 

and

 

DB2

 

Although

 

all

 

CICS

 

queues

 

behave

 

as

 

fully

 

recoverable

 

when

 

DB2

 

is

 

used

 

as

 

the

 

file

 

manager,

 

the

 

recovery

 

attributes,

 

as

 

defined

 

in

 

the

 

Temporary

 

Storage

 

Definitions

 

(TSD)

 

and

 

Transient

 

Data

 

Definitions

 

(TDD)

 

entries

 

for

 

the

 

queues,

 

are

 

not

 

changed.

 

This

 

determines

 

which

 

file

 

is

 

used

 

to

 

store

 

data

 

for

 

each

 

queue.

 

This

 

is

 

important

 

when

 

migrating

 

between

 

an

 

SFS

 

and

 

DB2

 

as

 

it

 

means

 

that

 

queues

 

defined

 

as

 

nonrecoverable

 

become

 

nonrecoverable

 

when

 

moving

 

from

 

DB2

 

to

 

SFS.

 

Journal

 

services

 

CICS

 

provides

 

facilities

 

for

 

creating

 

and

 

managing

 

journals

 

during

 

CICS

 

processing.

 

A

 

journal

 

is

 

a

 

set

 

of

 

special-purpose

 

sequential

 

files.

 

Journals

 

can

 

contain

 

any

 

and

 

all

 

data

 

the

 

user

 

needs

 

to

 

facilitate

 

subsequent

 

reconstruction

 

of

 

events

 

or

 

data

 

changes.

 

For

 

example,

 

a

 

journal

 

might

 

act

 

as

 

an

 

audit

 

trail,

 

a

 

change-file

 

of

 

database

 

updates

 

and

 

additions,

 

or

 

a

 

record

 

of

 

transactions

 

passing

 

through

 

the

 

system

 

(often

 

called

 

a

 

log).

 

Each

 

journal

 

can

 

be

 

written

 

from

 

any

 

task.

 

CICS

 

journals

 

provide

 

an

 

alternative

 

to

 

extrapartition

 

transient

 

data

 

queues,

 

although

 

only

 

for

 

output

 

files.

 

Each

 

journal

 

command

 

specifies

 

operation

 

characteristics

 

(for

 

example,

 

synchronous

 

or

 

asynchronous),

 

whereas

 

extrapartition

 

operations

 

are

 

governed

 

entirely

 

by

 

the

 

Transient

 

Data

 

Definitions

 

(TDD).

 

CICS

 

journals

 

have

 

slightly

 

higher

 

overhead

 

than

 

extrapartition

 

transient

 

data

 

queues.

 

Journal

 

services

 

commands

 

are

 

provided

 

to

 

allow

 

the

 

application

 

programmer

 

to:

 

v

   

Create

 

a

 

journal

 

record

 

(JOURNAL)

 

v

   

Synchronize

 

with

 

(wait

 

for

 

completion

 

of)

 

journal

 

output

 

(WAIT

 

JOURNAL).

 

The

 

responses

 

of

 

a

 

journal

 

control

 

command

 

to

 

conditions

 

that

 

occur

 

during

 

execution

 

are

 

discussed

 

in

 

“Error-handling

 

services”

 

on

 

page

 

233.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

137



CICS

 

journaling

 

Journals

 

are

 

fundamental

 

to

 

the

 

recoverability

 

of

 

transactions.

 

In

 

particular,

 

CICS

 

uses

 

the

 

system

 

journal

 

to

 

log

 

transaction

 

commit

 

processing

 

and

 

syncpoint

 

data

 

so

 

that

 

CICS

 

can

 

recover

 

all

 

necessary

 

recoverable

 

resources

 

in

 

the

 

event

 

of

 

a

 

CICS

 

or

 

a

 

transaction

 

failure.

 

Before

 

considering

 

journaling

 

in

 

detail,

 

we

 

need

 

to

 

review

 

the

 

different

 

facets

 

of

 

CICS

 

logging

 

and

 

recovery

 

in

 

order

 

to

 

clarify

 

the

 

reasons

 

for

 

logging.

 

Dynamic

 

transaction

 

backout

 

If

 

CICS

 

abnormally

 

terminates

 

a

 

transaction,

 

then

 

all

 

changes

 

made

 

by

 

the

 

transaction

 

to

 

a

 

recoverable

 

resource,

 

such

 

as

 

a

 

recoverable

 

temporary

 

storage

 

queue,

 

must

 

be

 

backed

 

out

 

to

 

the

 

state

 

existing

 

before

 

the

 

transaction

 

started.

 

This

 

is

 

known

 

as

 

dynamic

 

transaction

 

backout

 

(DTB).

 

Recovery

 

after

 

a

 

system

 

abnormally

 

terminates

 

Recovery

 

after

 

a

 

system

 

abnormally

 

terminates

 

ensures

 

that

 

all

 

recoverable

 

resources

 

and

 

all

 

prepared

 

transactions

 

are

 

restored

 

to

 

their

 

pre-failure

 

state,

 

before

 

the

 

system

 

resumes

 

normal

 

operation.

 

For

 

CICS

 

this

 

is

 

a

 

special

 

case

 

of

 

the

 

more

 

general

 

problem

 

of

 

recovering

 

the

 

state

 

of

 

partially

 

finished

 

transactions.

 

In

 

principle,

 

CICS

 

records

 

any

 

change

 

made

 

to

 

a

 

recoverable

 

resource

 

in

 

the

 

system

 

journal

 

as

 

part

 

of

 

two-phase

 

commit

 

processing

 

so

 

that

 

the

 

change

 

can

 

be

 

committed

 

from

 

that

 

point

 

onwards.

 

It

 

therefore

 

follows

 

that,

 

during

 

normal

 

operation,

 

CICS

 

only

 

writes

 

to

 

the

 

system

 

journal

 

enabling

 

CICS

 

transactions

 

to

 

uphold

 

their

 

guarantees.

 

CICS

 

neither

 

reads

 

nor

 

performs

 

processing

 

on

 

the

 

system

 

journal

 

during

 

normal

 

operation.

 

During

 

recovery

 

processing

 

(at

 

start-up

 

after

 

your

 

CICS

 

system

 

abnormally

 

terminates),

 

CICS

 

processes

 

the

 

system

 

journal

 

to

 

re-prepare

 

all

 

transactions

 

that

 

were

 

in-flight

 

at

 

the

 

time

 

of

 

the

 

crash.

 

CICS

 

recovery

 

processing

 

reads

 

the

 

system

 

journal

 

to

 

obtain

 

a

 

list

 

of

 

active

 

transactions,

 

and

 

subsequent

 

processing

 

plays

 

back

 

the

 

appropriate

 

records.

 

To

 

help

 

speed

 

up

 

recovery,

 

CICS

 

writes

 

checkpoint

 

records

 

to

 

the

 

system

 

journal

 

with

 

CICS

 

transaction

 

and

 

region

 

status

 

information

 

at

 

appropriate

 

intervals.

 

Without

 

this

 

information,

 

CICS

 

recovery

 

processing

 

would

 

need

 

to

 

search

 

through

 

the

 

whole

 

system

 

journal

 

to

 

locate

 

the

 

necessary

 

records.

 

CICS

 

journaling

 

CICS

 

provides

 

the

 

following

 

journaling

 

facilities:

 

v

   

A

 

system

 

journal

 

v

   

User

 

journals

 

numbered

 

1

 

through

 

99

 

At

 

startup

 

CICS

 

initializes

 

the

 

CICS

 

system

 

journal

 

followed

 

by

 

any

 

user

 

journals.

 

CICS

 

abnormally

 

terminates

 

if

 

any

 

of

 

the

 

following

 

conditions

 

occur:

 

v

   

It

 

cannot

 

open

 

the

 

system

 

journal

 

v

   

It

 

cannot

 

write

 

to

 

the

 

system

 

journal

 

v

   

It

 

cannot

 

open

 

a

 

crucial

 

user

 

journal

 

During

 

a

 

system

 

shutdown,

 

the

 

output

 

from

 

all

 

journals

 

is

 

synchronized,

 

and

 

they

 

are

 

then

 

closed.

 

You

 

use

 

the

 

EXEC

 

CICS

 

JOURNAL

 

and

 

EXEC

 

CICS

 

WAIT

 

JOURNAL

 

commands

 

in

 

your

 

application

 

to

 

write

 

to

 

a

 

journal

 

and

 

to

 

synchronize

 

the

 

journals

 

you

 

are

 

using.

   

138

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



See

 

the

 

CICS

 

Administration

 

Guide,

 

the

 

CICS

 

Administration

 

Reference,

 

and

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Journal

 

records

 

Data

 

can

 

be

 

written

 

to

 

any

 

journal

 

specified

 

in

 

the

 

Journal

 

Definitions

 

(JD),

 

which

 

define

 

the

 

journals

 

available

 

during

 

a

 

particular

 

CICS

 

execution.

 

Each

 

journal

 

is

 

identified

 

by

 

a

 

number

 

known

 

as

 

the

 

journal

 

identifier.

 

This

 

number

 

can

 

range

 

from

 

1

 

through

 

99.

 

Journal

 

1

 

is

 

used

 

as

 

the

 

system

 

log

 

on

 

other

 

CICS

 

products.

 

Therefore,

 

consider

 

starting

 

from

 

journal

 

2

 

for

 

applications

 

that

 

are

 

possibly

 

used

 

on

 

other

 

CICS

 

products.

 

When

 

a

 

journal

 

record

 

is

 

built,

 

the

 

data

 

is

 

moved

 

to

 

the

 

journal

 

buffer

 

area.

 

All

 

buffer

 

space

 

and

 

other

 

work

 

areas

 

needed

 

for

 

journal

 

operations

 

are

 

acquired

 

and

 

managed

 

by

 

CICS.

 

The

 

user

 

task

 

supplies

 

only

 

the

 

data

 

to

 

be

 

written

 

to

 

the

 

journal.

 

Journal

 

records

 

are

 

written

 

in

 

a

 

special

 

format.

 

Each

 

record

 

has

 

a

 

system

 

prefix,

 

an

 

optional

 

user-built

 

prefix,

 

and

 

a

 

variable

 

record

 

length.

 

Journals

 

are

 

normally

 

opened

 

for

 

output;

 

in

 

this

 

mode,

 

many

 

users

 

can

 

share

 

the

 

journal.

 

CICS

 

serializes

 

the

 

writes

 

and

 

helps

 

ensure

 

data

 

integrity.

 

CICS

 

does

 

not

 

provide

 

online

 

facilities

 

for

 

reading

 

journals.

 

Each

 

journal

 

record

 

begins

 

with

 

a

 

standard

 

length

 

field,

 

a

 

user-specified

 

identifier,

 

and

 

a

 

system-supplied

 

prefix.

 

This

 

data

 

is

 

followed

 

in

 

the

 

journal

 

record

 

by

 

any

 

user-supplied

 

prefix

 

data

 

(optional),

 

and

 

finally

 

by

 

the

 

user-specified

 

data.

 

Journal

 

control

 

services

 

are

 

designed

 

so

 

that

 

the

 

application

 

programmer

 

requesting

 

output

 

services

 

need

 

not

 

be

 

concerned

 

further

 

with

 

the

 

detailed

 

layout

 

and

 

precise

 

contents

 

of

 

journal

 

records.

 

The

 

programmer

 

needs

 

to

 

know

 

only

 

which

 

journal

 

to

 

use,

 

what

 

user

 

data

 

to

 

specify,

 

and

 

what

 

user-identifier

 

to

 

supply.

 

Journal

 

records

 

are

 

written

 

to

 

extrapartition

 

TD

 

queues

 

in

 

variable-length

 

record

 

format.

 

The

 

format

 

of

 

the

 

journal

 

records

 

is

 

specified

 

below

 

in

 

order

 

to

 

allow

 

you

 

to

 

read

 

and

 

process

 

them

 

in

 

user

 

recovery

 

routines.

  

Table

 

30.

 

Journal

 

record

 

format

 

Byte

 

Offset

 

Length

 

Format

 

Description

 

0

 

2

 

integer

 

Length

 

of

 

record

 

-

 

not

 

including

 

this

 

field

 

2

 

2

 

integer

 

Journal

 

ID

 

4

 

2

 

integer

 

Year

 

that

 

record

 

was

 

created

 

6

 

2

 

integer

 

Month

 

that

 

record

 

was

 

created

 

8

 

2

 

integer

 

Day

 

of

 

month

 

that

 

record

 

was

 

created

 

10

 

2

 

integer

 

Hour

 

that

 

record

 

was

 

created

 

12

 

2

 

integer

 

Minute

 

that

 

record

 

was

 

created

 

14

 

2

 

integer

 

Second

 

that

 

record

 

was

 

created

 

16

 

2

 

string

 

Journal

 

type

 

(JTYPEID

 

on

 

JOURNAL

 

command)

 

18

 

2

 

integer

 

User

 

prefix

 

length

 

(PFXLENG

 

on

 

JOURNAL

 

command)

 

20

 

2

 

integer

 

User

 

data

 

length

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

139



Table

 

30.

 

Journal

 

record

 

format

 

(continued)

 

Byte

 

Offset

 

Length

 

Format

 

Description

 

22

 

n

 

bytes

 

Prefix

 

data

 

(PREFIX

 

on

 

JOURNAL

 

command)

 

22+n

 

m

 

bytes

 

User

 

data

   

The

 

definition

 

of

 

the

 

format

 

type

 

displayed

 

in

 

this

 

table

 

is

 

as

 

follows:

 

integer

 

is

 

the

 

internal

 

representation

 

of

 

an

 

integer

 

number.

 

For

 

example,

 

the

 

number

 

2

 

is

 

stored

 

as

 

the

 

bit

 

pattern

 

0000

 

0000

 

0000

 

0010.

 

string

 

is

 

a

 

character

 

string

 

consisting

 

of

 

alphanumerics.

 

bytes

 

is

 

a

 

string

 

of

 

bytes

 

as

 

provided

 

by

 

the

 

user

 

on

 

the

 

JOURNAL

 

command.

Note:

  

The

 

implementation

 

of

 

journal

 

records

 

in

 

IBM

 

CICS

 

for

 

Windows

 

and

 

CICS

 

on

 

Open

 

Systems

 

as

 

extrapartition

 

TD

 

queues

 

is

 

not

 

the

 

same

 

as

 

in

 

other

 

CICS

 

platforms.

 

This

 

does

 

not

 

affect

 

the

 

API.

 

However,

 

you

 

can

 

see

 

transient

 

data

 

messages,

 

abend

 

codes,

 

and

 

symrecs

 

when

 

using

 

journal

 

records.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference,

 

the

 

CICS

 

Administration

 

Reference,

 

and

 

the

 

CICS

 

Administration

 

Guide

 

for

 

related

 

information.

 

Journal

 

output

 

synchronization

 

When

 

a

 

journal

 

record

 

is

 

created

 

by

 

issuing

 

the

 

JOURNAL

 

command

 

with

 

the

 

WAIT

 

option,

 

the

 

requesting

 

task

 

can

 

wait

 

until

 

the

 

output

 

has

 

been

 

completed.

 

By

 

specifying

 

that

 

this

 

should

 

happen,

 

the

 

application

 

programmer

 

ensures

 

that

 

the

 

journal

 

record

 

is

 

written

 

on

 

the

 

external

 

storage

 

device

 

associated

 

with

 

the

 

journal

 

before

 

processing

 

continues;

 

the

 

task

 

is

 

said

 

to

 

be

 

synchronized

 

with

 

the

 

output

 

operation.

 

The

 

application

 

programmer

 

can

 

also

 

request

 

asynchronous

 

journal

 

output.

 

This

 

causes

 

a

 

journal

 

record

 

to

 

be

 

created

 

in

 

an

 

operating

 

system

 

file

 

system

 

buffer

 

and,

 

optionally,

 

initiates

 

the

 

data

 

output

 

operation

 

from

 

the

 

buffer

 

to

 

the

 

external

 

device,

 

but

 

allows

 

the

 

requesting

 

task

 

to

 

retain

 

control

 

and

 

thus

 

to

 

continue

 

with

 

other

 

processing.

 

The

 

task

 

can

 

check

 

and

 

wait

 

for

 

output

 

completion

 

(that

 

is,

 

synchronize)

 

at

 

some

 

later

 

time

 

by

 

issuing

 

the

 

WAIT

 

JOURNAL

 

command.

 

If

 

possible,

 

journal

 

transactions

 

should

 

write

 

asynchronously

 

to

 

minimize

 

task

 

waits.

 

However,

 

if

 

journal

 

records

 

must

 

be

 

physically

 

written

 

before

 

end

 

of

 

task

 

to

 

maintain

 

integrity,

 

you

 

must

 

use

 

a

 

synchronous

 

write.

 

If

 

there

 

are

 

several

 

journal

 

writes,

 

the

 

transaction

 

should

 

use

 

asynchronous

 

writes

 

for

 

all

 

but

 

the

 

last

 

logical

 

record,

 

so

 

that

 

the

 

logical

 

records

 

for

 

the

 

task

 

are

 

written

 

with

 

a

 

minimum

 

number

 

of

 

physical

 

I/O

 

operations

 

and

 

only

 

one

 

wait.

 

Use

 

journals

 

for

 

audit

 

purposes

 

where

 

the

 

CrucialFlag

 

attribute

 

in

 

the

 

Journal

 

Definitions

 

(JD)

 

ensures

 

that

 

all

 

writes

 

succeed,

 

or

 

in

 

situations

 

where

 

a

 

significant

 

proportion

 

of

 

writes

 

can

 

be

 

asynchronous

 

(buffered).

 

The

 

basic

 

process

 

of

 

building

 

journal

 

records

 

in

 

file

 

system

 

buffers

 

continues

 

until

 

one

 

of

 

the

 

following

 

events

 

occurs:

 

v

   

A

 

request

 

specifying

 

the

 

WAIT

 

option

 

is

 

made

 

(from

 

any

 

task)

 

for

 

output

 

of

 

a

 

journal

 

record.

 

v

   

Task

 

completion.

   

140

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

File

 

system

 

buffers

 

are

 

flushed

 

(this

 

takes

 

place

 

periodically

 

and

 

when

 

file

 

system

 

buffer

 

shortages

 

occur).

 

When

 

any

 

one

 

of

 

these

 

occurs,

 

all

 

journal

 

records

 

present

 

in

 

the

 

buffer,

 

including

 

any

 

deferred

 

output

 

resulting

 

from

 

asynchronous

 

requests,

 

are

 

written

 

to

 

auxiliary

 

storage

 

as

 

one

 

block.

 

The

 

advantages

 

that

 

can

 

be

 

gained

 

by

 

deferring

 

journal

 

output

 

are:

 

v

   

Transactions

 

can

 

get

 

better

 

response

 

times

 

by

 

waiting

 

less

 

v

   

The

 

load

 

of

 

physical

 

I/O

 

requests

 

on

 

the

 

host

 

system

 

can

 

be

 

reduced

However,

 

these

 

advantages

 

are

 

achievable

 

only

 

at

 

the

 

cost

 

of

 

more

 

buffer

 

space

 

and

 

greater

 

programming

 

complexity.

 

It

 

is

 

necessary

 

to

 

plan

 

and

 

program

 

to

 

control

 

synchronizing

 

with

 

journal

 

output.

 

Additional

 

decisions

 

that

 

depend

 

on

 

the

 

data

 

content

 

of

 

the

 

journal

 

record

 

and

 

how

 

it

 

is

 

to

 

be

 

used

 

must

 

be

 

made

 

in

 

the

 

application

 

program.

 

In

 

any

 

case,

 

the

 

full

 

benefit

 

of

 

deferring

 

journal

 

output

 

is

 

obtained

 

only

 

when

 

the

 

load

 

on

 

the

 

journal

 

is

 

high.

 

The

 

STARTIO

 

option

 

is

 

used

 

in

 

EXEC

 

CICS

 

JOURNAL

 

commands

 

to

 

request

 

that

 

the

 

journal

 

output

 

operation

 

be

 

initiated

 

immediately.

 

This

 

is

 

the

 

default

 

behavior

 

for

 

CICS,

 

as

 

a

 

write

 

operation

 

to

 

filesystem

 

buffers

 

is

 

always

 

performed

 

immediately,

 

regardless

 

of

 

the

 

presence

 

or

 

absence

 

of

 

the

 

STARTIO

 

option.

 

Control

 

is

 

returned

 

to

 

the

 

requesting

 

program

 

immediately

 

after

 

the

 

record

 

is

 

buffered,

 

unless

 

the

 

WAIT

 

option

 

is

 

used,

 

in

 

which

 

case

 

the

 

return

 

is

 

delayed

 

until

 

after

 

the

 

journal

 

record

 

has

 

become

 

permanent.

 

The

 

WAIT

 

option

 

should

 

not

 

be

 

used

 

unnecessarily

 

because,

 

if

 

every

 

journal

 

request

 

uses

 

WAIT,

 

no

 

improvement

 

over

 

synchronous

 

output

 

requests

 

(in

 

terms

 

of

 

reducing

 

the

 

number

 

of

 

physical

 

I/O

 

operations)

 

is

 

possible.

 

If

 

there

 

is

 

insufficient

 

file

 

system

 

space

 

available

 

to

 

write

 

the

 

journal

 

record

 

at

 

the

 

time

 

of

 

the

 

request,

 

the

 

NOJBUFSP

 

condition

 

occurs.

 

If

 

no

 

HANDLE

 

CONDITION

 

request

 

is

 

active

 

for

 

this

 

condition,

 

the

 

requesting

 

task

 

loses

 

control

 

and

 

is

 

suspended

 

until

 

space

 

becomes

 

available

 

again

 

and

 

the

 

journal

 

record

 

has

 

been

 

written

 

to

 

the

 

journal.

 

If

 

the

 

requesting

 

task

 

is

 

not

 

willing

 

to

 

lose

 

control

 

(for

 

example,

 

if

 

some

 

housekeeping

 

must

 

be

 

performed

 

before

 

other

 

tasks

 

get

 

control),

 

a

 

HANDLE

 

CONDITION

 

command

 

should

 

be

 

issued.

 

If

 

the

 

NOJBUFSP

 

condition

 

occurs,

 

no

 

journal

 

record

 

is

 

built

 

for

 

the

 

request,

 

and

 

control

 

is

 

returned

 

directly

 

to

 

the

 

requesting

 

program

 

at

 

the

 

location

 

provided

 

in

 

the

 

HANDLE

 

CONDITION

 

request.

 

The

 

requesting

 

program

 

can

 

perform

 

any

 

housekeeping

 

needed

 

before

 

reissuing

 

the

 

journal

 

output

 

request.

 

When

 

using

 

journal

 

1,

 

which

 

is

 

the

 

system

 

journal

 

on

 

other

 

CICS

 

systems,

 

it

 

is

 

advisable

 

to

 

specify

 

a

 

journal

 

type

 

identifier

 

(JTYPEID)

 

to

 

distinguish

 

between

 

user

 

journal

 

record

 

types

 

and

 

system

 

journal

 

record

 

types.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

and

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Relational

 

database

 

services

 

CICS

 

allows

 

access

 

to

 

relational

 

databases

 

that

 

provide

 

a

 

programmable

 

interface

 

through

 

embedded

 

SQL

 

commands

 

in

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

programs.

 

For

 

details

 

of

 

how

 

to

 

use

 

EXEC

 

SQL

 

commands,

 

refer

 

to

 

the

 

SQL

 

documentation

 

supplied

 

with

 

your

 

relational

 

database.

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

141



Note:

  

TXSeries

 

CICS

 

on

 

Windows

 

allows

 

access

 

to

 

Microsoft

 

SQL

 

server

 

that

 

provides

 

a

 

programmable

 

interface

 

through

 

ODBC

 

API

 

in

 

C,

 

IBM

 

VisualAge

 

COBOL

 

programs.

 

If

 

the

 

relational

 

database

 

management

 

system

 

(RDBMS)

 

you

 

are

 

using

 

is

 

not

 

compliant

 

with

 

the

 

X/Open

 

XA

 

standard,

 

or

 

you

 

are

 

not

 

accessing

 

that

 

RDBMS

 

with

 

the

 

XA

 

interface,

 

you

 

cannot

 

use

 

two-phase

 

commit

 

between

 

the

 

resources

 

that

 

are

 

coordinated

 

by

 

CICS.

 

Note:

  

Some

 

databases

 

mentioned

 

in

 

this

 

section

 

are

 

possibly

 

not

 

supported

 

by

 

your

 

CICS

 

product.

 

Refer

 

to

 

the

 

information

 

about

 

supported

 

products

 

in

 

the

 

Release

 

Notes.

 

SQL

 

restrictions

 

and

 

relational

 

database

 

services

 

Restrictions

 

apply

 

when

 

using

 

SQL

 

to

 

access

 

relational

 

databases

 

with

 

the

 

IBM

 

CICS

 

for

 

Windows

 

or

 

CICS

 

on

 

Open

 

Systems

 

API.

 

These

 

restrictions

 

apply

 

to

 

XA

 

enabled

 

and

 

non-XA

 

enabled

 

databases.

 

SQL

 

restrictions

 

for

 

XA-enabled

 

relational

 

databases

 

If

 

your

 

relational

 

database

 

is

 

compliant

 

with

 

the

 

X/Open

 

XA

 

interface

 

and

 

your

 

CICS

 

region

 

is

 

configured

 

to

 

use

 

it,

 

you

 

must

 

use

 

CICS

 

facilities

 

for

 

transaction

 

control

 

rather

 

than

 

the

 

relational

 

database’s

 

facilities.

 

This

 

precludes

 

the

 

use

 

of

 

database

 

COMMIT

 

and

 

ROLLBACK

 

statements.

 

Instead,

 

code

 

with

 

the

 

EXEC

 

CICS

 

SYNCPOINT

 

or

 

EXEC

 

CICS

 

SYNCPOINT

 

ROLLBACK

 

commands.

 

The

 

EXEC

 

CICS

 

SYNCPOINT

 

command

 

(or

 

the

 

implicit

 

end

 

of

 

transaction

 

syncpoint)

 

ensures

 

that

 

the

 

relational

 

database

 

system

 

and

 

the

 

region

 

are

 

updated

 

using

 

the

 

two-phase

 

commit

 

protocol.

 

For

 

DB2,

 

the

 

default

 

value

 

of

 

the

 

collection

 

identifier

 

(schema

 

name)

 

of

 

the

 

SQL

 

package

 

is

 

inherited

 

from

 

the

 

BIND/PREP

 

operation

 

that

 

was

 

used

 

to

 

create

 

the

 

package.

 

For

 

CICS

 

applications,

 

this

 

schema

 

name

 

is

 

CICS.

 

If

 

you

 

are

 

using

 

SQL

 

to

 

access

 

objects

 

in

 

the

 

DB2

 

database

 

that

 

do

 

not

 

belong

 

to

 

the

 

CICS

 

schema,

 

you

 

need

 

to

 

explicitly

 

qualify

 

the

 

object

 

name

 

with

 

the

 

schema

 

name.

 

For

 

example:

 

EXEC

 

SQL

 

SELECT

 

COL1

 

from

 

NOTCICS.MYTABLE

 

In

 

this

 

example,

 

MYTABLE

 

is

 

the

 

object

 

that

 

is

 

being

 

accessed

 

by

 

CICS.

 

This

 

object

 

resides

 

outside

 

of

 

the

 

CICS

 

schema

 

in

 

a

 

schema

 

named

 

NOTCICS.

 

Do

 

not

 

use

 

the

 

EXEC

 

SQL

 

SET

 

CURRENT

 

PACKAGESET

 

NOTCICS

 

command

 

to

 

enable

 

access

 

to

 

this

 

object

 

without

 

the

 

schema

 

name

 

identifier.

 

Using

 

this

 

approach

 

causes

 

all

 

access

 

to

 

the

 

database

 

to

 

default

 

to

 

the

 

new

 

schema

 

name,

 

even

 

access

 

to

 

the

 

TS

 

or

 

TD

 

queues

 

if

 

DB2

 

was

 

being

 

used

 

as

 

the

 

file

 

control

 

for

 

the

 

CICS

 

region.

 

The

 

PACKAGESET

 

identifier

 

MUST

 

then

 

be

 

reset

 

back

 

to

 

CICS

 

before

 

you

 

access

 

any

 

TS

 

or

 

TD

 

queues.

 

Therefore,

 

it

 

is

 

recommended

 

that

 

you

 

avoid

 

the

 

use

 

of

 

the

 

SQL

 

SET

 

CURRENT

 

PACKAGESET

 

call.

 

Instead,

 

qualify

 

the

 

object

 

to

 

be

 

accessed

 

with

 

the

 

schema

 

name

 

when

 

the

 

object

 

resides

 

outside

 

the

 

CICS

 

schema.

 

DB2

 

allows

 

a

 

CICS

 

transaction

 

to

 

CONNECT

 

to

 

any

 

database

 

that

 

has

 

been

 

defined

 

as

 

an

 

XA

 

resource

 

in

 

the

 

Product

 

Definitions

 

(XAD).

 

If

 

you

 

have

 

only

 

one

 

database

 

defined,

 

then

 

CICS

 

establishes

 

implicit

 

connections

 

to

 

the

 

database

 

with

 

the

 

XA

 

interface.

 

For

 

further

 

information

 

on

 

using

 

CONNECT

 

in

 

an

 

XA

 

environment

 

with

 

DB2,

 

see

 

the

 

appropriate

 

documentation

 

for

 

your

 

version

 

of

 

DB2.

   

142

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|



Do

 

not

 

use

 

DB2’s

 

CONNECT

 

RESET

 

command

 

in

 

an

 

XA

 

environment.

 

Use

 

of

 

this

 

command

 

in

 

a

 

CICS

 

XA

 

application

 

can

 

cause

 

the

 

loss

 

of

 

the

 

XA

 

connection.

 

The

 

CONNECT

 

RESET

 

command

 

will

 

work

 

in

 

non-XA

 

CICS

 

applications.

 

The

 

behavior

 

of

 

the

 

command

 

differs

 

based

 

on

 

the

 

type

 

of

 

SQL

 

CONNECT

 

command

 

that

 

is

 

used

 

in

 

the

 

application.

 

Consult

 

DB2

 

or

 

UDB

 

documentation

 

for

 

details

 

on

 

the

 

behavior

 

of

 

CONNECT

 

type

 

1

 

and

 

CONNECT

 

type

 

2

 

commands.

 

DB2

 

programs

 

need

 

to

 

be

 

compiled

 

with

 

the

 

NOSQLINIT

 

option.

 

The

 

following

 

sample

 

application

 

makefile,

 

located

 

in

 

the

 

CICS

 

examples

 

directory,

 

shows

 

how

 

this

 

can

 

be

 

done:

    

xa/uxa1_db2cob.mk

 

With

 

the

 

exception

 

of

 

DB2,

 

do

 

not

 

use

 

any

 

relational

 

database

 

commands

 

to

 

connect

 

to

 

or

 

to

 

disconnect

 

from

 

the

 

database.

 

CICS

 

establishes

 

implicit

 

connections

 

to

 

the

 

database

 

via

 

the

 

XA

 

interface.

 

Do

 

not

 

use

 

the

 

Microsoft

 

SQL

 

Server

 

CONNECT

 

statement

 

in

 

an

 

XA

 

enabled

 

CICS

 

environment.

 

The

 

set

 

of

 

all

 

possible

 

Microsoft

 

SQL

 

Server

 

SQL

 

connections

 

to

 

be

 

used

 

from

 

CICS

 

applications

 

in

 

a

 

specific

 

region

 

should

 

be

 

defined

 

in

 

the

 

Product

 

Definitions

 

(XAD)

 

stanza

 

for

 

that

 

region.

 

CICS

 

establishes

 

long

 

running

 

connections

 

to

 

the

 

Microsoft

 

SQL

 

Server

 

during

 

application

 

initialization.

 

Each

 

connection

 

should

 

be

 

identified

 

by

 

a

 

unique

 

connection

 

name

 

defined

 

in

 

the

 

XAD

 

XAOpen

 

string.

 

You

 

can

 

switch

 

between

 

connections

 

in

 

your

 

application

 

by

 

using

 

the

 

following

 

call:

 

EXEC

 

SQL

 

SET

 

CONNECTION

 

name

 

All

 

connections

 

are

 

automatically

 

enlisted

 

in

 

all

 

CICS

 

transactions.

 

Other

 

than

 

these

 

statements,

 

almost

 

any

 

SQL

 

statement

 

is

 

legal

 

in

 

an

 

XA-enabled

 

CICS

 

environment.

 

A

 

few

 

statements

 

can

 

behave

 

differently

 

or

 

even

 

return

 

errors

 

within

 

a

 

CICS

 

transaction.

 

For

 

more

 

information

 

on

 

such

 

statements,

 

it

 

is

 

strongly

 

recommended

 

that

 

you

 

review

 

the

 

appropriate

 

relational

 

database

 

literature.

 

SQL

 

restrictions

 

for

 

non-XA

 

enabled

 

relational

 

databases

 

In

 

this

 

environment,

 

you

 

must

 

specifically

 

code

 

the

 

SQL

 

COMMIT

 

WORK

 

command

 

to

 

commit

 

SQL

 

resources

 

that

 

you

 

have

 

updated

 

and

 

explicitly

 

code

 

EXEC

 

CICS

 

SYNCPOINT

 

commands

 

to

 

commit

 

updates

 

to

 

CICS

 

resources

 

(or

 

let

 

this

 

happen

 

implicitly

 

at

 

the

 

end

 

of

 

the

 

transaction).

 

If

 

one

 

of

 

these

 

succeeds

 

while

 

the

 

other

 

does

 

not,

 

you

 

must

 

use

 

manual

 

means

 

to

 

make

 

the

 

two

 

systems

 

consistent.

 

In

 

addition,

 

your

 

transaction

 

needs

 

to

 

connect

 

explicitly

 

to

 

the

 

RDBMS

 

prior

 

to

 

making

 

any

 

SQL

 

calls

 

and

 

must

 

explicitly

 

close

 

the

 

connection

 

to

 

the

 

RDBMS

 

after

 

all

 

SQL

 

calls

 

have

 

been

 

made.

 

This

 

last

 

activity

 

should

 

be

 

conducted

 

with

 

care

 

as

 

the

 

disconnection

 

process

 

can

 

involve

 

multiple

 

steps

 

on

 

some

 

RDBMS.

 

For

 

example:

 

Disconnecting

 

from

 

an

 

Informix

 

V5

 

database

 

after

 

running

 

a

 

non-XA

 

enabled

 

C

 

transaction

 

involves

 

the

 

use

 

of

 

all

 

3

 

of

 

the

 

following

 

calls

 

(shown

 

in

 

C):

 

EXEC

 

SQL

 

COMMIT

 

WORK;

 

EXEC

 

SQL

 

CLOSE

 

DATABASE;

 

sqlexit();

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

143



Disconnecting

 

from

 

an

 

Informix

 

V7

 

database

 

after

 

running

 

a

 

non-XA

 

enabled

 

COBOL

 

transaction

 

involves

 

the

 

use

 

of

 

all

 

3

 

of

 

the

 

following

 

calls

 

(shown

 

in

 

COBOL):

 

EXEC

 

SQL

 

ROLLBACK

 

WORK

 

END-EXEC.

 

EXEC

 

SQL

 

CLOSE

 

DATABASE

 

END-EXEC.

 

CALL

 

ECO-SQE

 

USING

 

<eco-sqe-status>.

 

where

 

the

 

variable

 

<eco-sqe-status>

 

is

 

defined

 

as:

 

<eco-sqe-status>

 

PIC

 

S(9).

 

See

 

Informix

 

manuals

 

for

 

further

 

information.

 

The

 

COMMIT

 

WORK

 

statement

 

commits

 

all

 

modifications

 

made

 

to

 

the

 

database

 

since

 

the

 

beginning

 

of

 

a

 

transaction.

 

The

 

CLOSE

 

DATABASE

 

statement

 

closes

 

the

 

database

 

but

 

does

 

not

 

terminate

 

the

 

associated

 

database

 

server

 

process,

 

the

 

latter

 

is

 

achieved

 

through

 

the

 

sqlexit

 

call.

 

Restrictions

 

for

 

linking

 

non-XA

 

enabled

 

relational

 

databases:

   

CICS

 

transactions

 

that

 

include

 

EXEC

 

SQL

 

statements

 

to

 

non-XA

 

enabled

 

databases

 

and

 

use

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

calls

 

must

 

be

 

coded

 

carefully.

 

Database

 

connections

 

cannot

 

be

 

conveyed

 

across

 

the

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL.

 

You

 

must

 

disconnect

 

from

 

the

 

database

 

before

 

these

 

calls

 

and

 

reconnect

 

in

 

the

 

called

 

program.

 

This

 

restriction

 

also

 

extends

 

to

 

EXEC

 

CICS

 

ABEND

 

handling

 

when

 

working

 

with

 

non-XA

 

enabled

 

relational

 

databases.

 

You

 

cannot

 

use

 

an

 

abnormal

 

termination

 

exit

 

program

 

in

 

this

 

environment,

 

because

 

a

 

database

 

connection

 

could

 

not

 

be

 

conveyed

 

to

 

that

 

exit

 

program.

 

If

 

a

 

C

 

application

 

is

 

abnormally

 

terminated,

 

it

 

is

 

possible

 

that

 

the

 

database

 

connection

 

and

 

associated

 

locks

 

are

 

not

 

released.

 

In

 

this

 

situation,

 

it

 

is

 

necessary

 

to

 

shutdown

 

and

 

warm

 

start

 

the

 

CICS

 

region

 

for

 

database

 

resources

 

to

 

be

 

freed.

 

COBOL

 

applications

 

can

 

make

 

use

 

of

 

the

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

command

 

with

 

the

 

LABEL

 

option

 

to

 

free

 

database

 

resources

 

and

 

servers

 

when

 

abending

 

a

 

non-XA

 

transaction.

  

CICS

 

for

 

Windows:

   

The

 

exit

 

routine

 

for

 

a

 

COBOL

 

non-XA

 

enabled

 

transaction

 

running

 

against

 

DB2

 

would

 

include:

 

EXEC

 

SQL

 

ROLLBACK

 

WORK

 

EXEC

 

SQL

 

CONNECT

 

RESET

 

EXEC

 

SQL

 

ROLLBACK

 

EXEC

 

SQL

 

DISCONNECT

 

If

 

you

 

are

 

coding

 

in

 

C,

 

ensure

 

that

 

all

 

EXEC

 

CICS

 

ABEND

 

calls

 

are

 

preceded

 

by

 

RDBMS

 

calls

 

to

 

free

 

the

 

database.

 

For

 

example,

 

the

 

following

 

would

 

be

 

included

 

before

 

each

 

EXEC

 

CICS

 

ABEND

 

call

 

for

 

DB2

 

non-XA

 

programs:

 

EXEC

 

SQL

 

ROLLBACK

 

WORK

 

EXEC

 

SQL

 

CONNECT

 

RESET

  

CICS

 

on

 

Open

 

Systems:

   

The

 

exit

 

routine

 

for

 

a

 

COBOL

 

non-XA

 

enabled

 

transaction

 

running

 

against

 

the

 

following

 

databases

 

would

 

include:

 

For

 

Informix:

   

144

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



EXEC

 

SQL

 

ROLLBACK

 

WORK

 

END-EXEC

 

EXEC

 

SQL

 

CLOSE

 

DATABASE

 

END-EXEC

 

CALL

 

ECO-SQE

 

For

 

Oracle:

 

EXEC

 

SQL

 

ROLLBACK

 

EXEC

 

CICS

 

RELEASE

 

For

 

DB2:

 

EXEC

 

SQL

 

ROLLBACK

 

WORK

 

EXEC

 

SQL

 

CONNECT

 

RESET

 

EXEC

 

SQL

 

ROLLBACK

 

EXEC

 

SQL

 

DISCONNECT

 

If

 

you

 

are

 

coding

 

in

 

C,

 

ensure

 

that

 

all

 

EXEC

 

CICS

 

ABEND

 

calls

 

are

 

preceded

 

by

 

RDBMS

 

calls

 

to

 

free

 

the

 

database.

 

For

 

example,

 

the

 

following

 

would

 

be

 

included

 

before

 

each

 

EXEC

 

CICS

 

ABEND

 

call:

 

For

 

Informix

 

non-XA

 

C

 

programs:

 

EXEC

 

SQL

 

ROLLBACK

 

WORK;

 

EXEC

 

SQL

 

CLOSE

 

DATABASE;

 

sqlexit();

 

For

 

Oracle

 

non-XA

 

programs:

 

EXEC

 

SQL

 

ROLLBACK

 

EXEC

 

CICS

 

RELEASE

 

For

 

DB2

 

non-XA

 

programs:

 

EXEC

 

SQL

 

ROLLBACK

 

WORK

 

EXEC

 

SQL

 

CONNECT

 

RESET

 

An

 

example

 

transaction

 

for

 

XA-enabled

 

relational

 

databases

 

This

 

simple

 

example

 

illustrates

 

some

 

of

 

the

 

principles

 

involved

 

in

 

writing

 

a

 

CICS

 

transaction

 

that

 

accesses

 

an

 

XA-enabled

 

relational

 

database

 

(CICS

 

on

 

Open

 

Systems)

 

and

 

a

 

Microsoft

 

SQL

 

Server

 

database

 

(CICS

 

for

 

Windows).

 

The

 

example’s

 

source,

 

map,

 

makefile,

 

sql,

 

and

 

README

 

file

 

are

 

shipped

 

in

 

the

 

following

 

directory

 

of

 

your

 

CICS

 

development

 

environment:

 

prodDir/src/examples/xa

 

Note:

  

Refer

 

to

 

xii

 

for

 

a

 

description

 

of

 

how

 

prodDir

 

is

 

used

 

to

 

represent

 

the

 

product

 

pathname.

 

See

 

the

 

following

 

for

 

more

 

details

 

on

 

how

 

to

 

configure,

 

build,

 

and

 

install

 

the

 

transaction:

 

prodDir/src/examples/xa/uxa1.README

 

Example

 

for

 

CICS

 

on

 

Open

 

Systems

 

The

 

transaction

 

is

 

written

 

in

 

C

 

and

 

runs

 

against

 

a

 

database

 

of

 

cheeses,

 

whose

 

entries

 

are

 

as

 

follows:

  

Table

 

31.

 

Example

 

transaction

 

column

 

definitions

 

Name

 

Supplier

 

Supplier

 

Address

 

Order

 

Quantity

 

stilton

 

Northern

 

Dairies

 

Richmond

 

(Yorks)

 

23

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

145



Table

 

31.

 

Example

 

transaction

 

column

 

definitions

 

(continued)

 

Name

 

Supplier

 

Supplier

 

Address

 

Order

 

Quantity

 

wensleydale

 

Northern

 

Dairies

 

Richmond

 

(Yorks)

 

14

 

cheddar

 

Gorge

 

Supplies

 

Wells

 

(Somerset)

 

10

 

brie

 

La

 

Rochelle

 

Importers

 

Dover

 

(Kent)

 

45

 

camembert

 

La

 

Rochelle

 

Importers

 

Dover

 

(Kent)

 

33

 

edam

 

East

 

Anglian

 

Distribution

 

Felixstowe

 

(Suffolk)

 

43

 

cheshire

 

Manchester

 

Dairies

 

Manchester

 

18

 

gouda

 

East

 

Anglian

 

Distribution

 

Felixstowe

 

(Suffolk)

 

44

 

red

 

leicester

 

Midlands

 

Dairies

 

Leicester

 

(Leics)

 

34

 

boursin

 

La

 

Rochelle

 

Importers

 

Dover

 

(Kent)

 

53

   

This

 

sample

 

transaction

 

comprises

 

4

 

panels.

 

These

 

four

 

panels

 

are

 

used

 

to:

 

v

   

View

 

a

 

cheese

 

order

 

(see

 

panels

 

1

 

and

 

2)

 

v

   

Update

 

a

 

cheese

 

order

 

(see

 

panel

 

3)

 

v

   

Review

 

cheese

 

order

 

messages

 

(see

 

panel

 

4)

 

These

 

panels

 

are

 

described

 

in

 

the

 

BMS

 

map

 

source

 

in:

 

$CICS/src/examples/xa/uxa1.bms

 

The

 

following

 

transaction,

 

UXA1,

 

allows

 

the

 

user

 

to

 

query

 

the

 

number

 

of

 

cheeses

 

of

 

a

 

particular

 

type

 

that

 

have

 

been

 

ordered,

 

and

 

to

 

update

 

this

 

number

 

if

 

required.

 

Messages

 

are

 

displayed

 

on

 

the

 

fourth

 

panel.

 

Refer

 

to

 

the

 

table

 

that

 

follows

 

the

 

example

 

for

 

a

 

description

 

of

 

the

 

code.

 

The

 

following

 

example

 

code

 

has

 

been

 

written

 

to

 

support

 

Oracle.

 

It

 

is

 

necessary

 

to

 

define

 

the

 

particular

 

database

 

against

 

which

 

the

 

transaction

 

runs

 

(see

 

line

 

16).

 

Other

 

than

 

line

 

16,

 

the

 

source

 

is

 

identical.

 

Refer

 

to

 

the

 

uxa1.README

 

file

 

for

 

the

 

actual

 

name

 

of

 

this

 

example.

 

Refer

 

to

 

Table

 

32

 

on

 

page

 

149

 

for

 

a

 

description

 

of

 

this

 

program:

 

1

 

/*

 

2

 

*

 

Transaction:

 

UXA1

 

3

 

*

 

Program:

     

UXA1PROG

 

4

 

*

 

Mapset:

      

UXA1

 

5

 

*/

 

6

 

7

 

#include

 

<stdio.h>

 

8

 

#include

 

<cics_packon.h>

 

9

 

#include

 

"uxa1.h"

 

10

 

#include

 

<cics_packoff.h>

 

11

 

12

 

#define

 

NOCHEESE

 

"There

 

is

 

no

 

such

 

cheese

 

in

 

the

 

table"

 

13

 

#define

 

UPDATECHEESE

 

"The

 

cheese

 

table

 

was

 

successfully

 

updated"

 

14

 

15

 

/*

 

define

 

either

 

ORA7

 

or

 

INF5

 

here

 

*/

 

16

 

#define

 

ORA7

 

17

 

18

 

#ifdef

 

ORA7

 

19

 

#define

 

SQLNOTFOUND

 

1403

 

20

 

#endif

 

21

  

146

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



22

 

EXEC

 

SQL

 

INCLUDE

 

sqlca;

 

23

 

24

 

int

 

rcode;

 

25

 

26

 

EXEC

 

SQL

 

BEGIN

 

DECLARE

 

SECTION;

 

27

 

28

 

varchar

 

name[15];

 

29

 

char

 

supplier[30];

 

30

 

char

 

supplier_address[30];

 

31

 

int

 

order_quantity;

 

32

 

33

 

EXEC

 

SQL

 

END

 

DECLARE

 

SECTION;

 

34

 

35

 

main()

 

36

 

{

 

37

      

char

 

errmsg[400];

 

38

      

char

 

qmsg[400];

 

39

      

short

 

mlen;

 

40

 

41

      

EXEC

 

SQL

 

WHENEVER

 

SQLERROR

 

GOTO

 

:errexit;

 

42

 

43

 

/*

   

Get

 

addressability

 

for

 

EIB

 

*/

 

44

 

45

      

EXEC

 

CICS

 

ADDRESS

 

EIB(dfheiptr);

 

46

 

47

 

/*

   

Write

 

record

 

to

 

CICS

 

temporary

 

storage

 

queue

  

*/

 

48

 

49

      

sprintf(qmsg,

 

"%s",

 

"Running

 

Transaction

 

UXA1");

 

50

      

mlen

 

=

 

strlen(qmsg);

 

51

      

EXEC

 

CICS

 

WRITEQ

 

TS

 

QUEUE("TEMPXAQ1")

 

FROM(qmsg)

 

LENGTH(mlen)\

                                              

RESP(rcode);

 

52

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

53

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X000");

 

54

 

55

      

/*

 

Send

 

the

 

first

 

map

 

*/

 

56

 

57

      

EXEC

 

CICS

 

SEND

 

MAP("PANEL1")

 

MAPSET("UXA1")

 

FREEKB

 

ERASE

 

RESP(rcode);

 

58

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

59

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X001");

 

60

 

61

      

/*

 

Receive

 

the

 

response

 

*/

 

62

 

63

      

EXEC

 

CICS

 

RECEIVE

 

MAP("PANEL1")

 

MAPSET("UXA1")

 

RESP(rcode);

 

64

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

65

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X002");

 

66

 

67

 

/*

 

Select

 

a

 

record

 

from

 

the

 

table

 

based

 

on

 

user

 

input

 

*/

 

68

 

69

 

#ifdef

 

ORA7

 

70

      

sprintf(name.arr,

 

"%s",

 

panel1.panel1i.newnamei);

 

71

      

name.len

 

=

 

strlen(name.arr);

 

72

 

#endif

 

73

 

#ifdef

 

INF5

 

74

      

sprintf(name,

 

"%s",

 

panel1.panel1i.newnamei);

 

75

 

#endif

 

76

 

77

 

78

      

EXEC

 

SQL

 

SELECT

 

name,

 

supplier,

 

supplier_address,

 

order_quantity

 

79

      

into

 

80

         

:name,

 

:supplier,

 

:supplier_address,

 

:order_quantity

 

81

      

FROM

 

CHEESE

 

82

      

WHERE

 

NAME

 

=

 

:name;

 

83

 

84

      

/*

 

Handle

 

"no

 

rows

 

returned"

 

from

 

SELECT

 

*/

 

85

 

86

      

if

 

(sqlca.sqlcode

 

==

 

SQLNOTFOUND)

 

87

      

{

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

147



88

          

sprintf(panel4.panel4o.messageo,

 

"%s",

 

NOCHEESE);

 

89

          

EXEC

 

CICS

 

SEND

 

MAP("PANEL4")

 

MAPSET("UXA1")

 

FREEKB

 

ERASE

 

\

                                                       

RESP(rcode);

 

90

          

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

91

              

EXEC

 

CICS

 

ABEND

 

ABCODE("X009");

 

92

 

93

          

EXEC

 

CICS

 

SEND

 

CONTROL

 

FREEKB;

 

94

          

EXEC

 

CICS

 

RETURN;

 

95

      

}

 

96

 

97

 

/*

 

Fill

 

in

 

and

 

send

 

the

 

second

 

map

 

*/

 

98

 

99

 

#ifdef

 

ORA7

 

100

      

sprintf(panel2.panel2o.nameo,

 

"%s",

 

name.arr);

 

101

 

#endif

 

102

 

#ifdef

 

INF5

 

103

      

sprintf(panel2.panel2o.nameo,

 

"%s",

 

name);

 

104

 

#endif

 

105

      

sprintf(panel2.panel2o.supplo,

 

"%s",supplier);

 

106

      

sprintf(panel2.panel2o.addresso,

 

"%s",

 

supplier_address);

 

107

      

sprintf(panel2.panel2o.ordero,

 

"%d",

 

order_quantity);

 

108

 

109

      

EXEC

 

CICS

 

SEND

 

MAP("PANEL2")

 

MAPSET("UXA1")

 

FREEKB

 

ERASE

 

RESP(rcode);

 

110

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

111

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X003");

 

112

 

113

      

/*

 

Receive

 

the

 

response

 

*/

 

114

 

115

      

EXEC

 

CICS

 

RECEIVE

 

MAP("PANEL2")

 

MAPSET("UXA1")

 

RESP(rcode);

 

116

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

117

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X004");

 

118

 

119

      

if

 

(panel2.panel2i.questi

 

==

 

’y’)

 

120

      

{

 

121

 

122

         

/*

 

Send

 

the

 

third

 

map

   

*/

 

123

 

124

        

EXEC

 

CICS

 

SEND

 

MAP("PANEL3")

 

MAPSET("UXA1")

 

FREEKB

 

ERASE

 

\

                                                        

RESP(rcode);

 

125

        

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

126

            

EXEC

 

CICS

 

ABEND

 

ABCODE("X005");

 

127

 

128

        

/*

 

Receive

 

the

 

response

 

*/

 

129

 

130

        

EXEC

 

CICS

 

RECEIVE

 

MAP("PANEL3")

 

MAPSET("UXA1")

 

RESP(rcode);

 

131

        

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

132

            

EXEC

 

CICS

 

ABEND

 

ABCODE("X006");

 

133

 

134

          

/*

 

Update

 

the

 

Database

 

*/

 

135

 

136

          

order_quantity

 

=

 

atoi(panel3.panel3i.newordi);

 

137

 

138

          

EXEC

 

SQL

 

UPDATE

 

cheese

 

139

          

set

 

order_quantity

 

=

 

:order_quantity

 

140

          

where

 

name

 

=

 

:name;

 

141

 

142

          

/*

 

Write

 

a

 

record

 

to

 

the

 

temporary

 

queue

 

*/

 

143

 

144

          

sprintf(qmsg,

 

"%s",

 

"The

 

cheese

 

table

 

was

 

updated");

 

145

          

mlen

 

=

 

strlen(qmsg);

 

146

          

EXEC

 

CICS

 

WRITEQ

 

TS

 

QUEUE("TEMPXAQ1")

 

FROM(qmsg)

 

LENGTH(mlen)

 

\

                                                    

RESP(rcode);

 

147

          

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

148

             

EXEC

 

CICS

 

ABEND

 

ABCODE("X010");

 

149

 

150

      

}

 

151

      

else

  

148

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



152

      

{

 

153

 

154

      

/*

 

The

 

user

 

does

 

not

 

wish

 

to

 

update

 

so

 

free

 

the

 

keyb’d

 

&

 

return

  

*/

 

155

 

156

         

EXEC

 

CICS

 

SEND

 

CONTROL

 

ERASE

 

FREEKB;

 

157

         

EXEC

 

CICS

 

RETURN;

 

158

 

159

      

}

 

160

 

161

      

/*

 

Commit

 

the

 

update

 

*/

 

162

 

163

      

EXEC

 

CICS

 

SYNCPOINT

 

RESP(rcode);

 

164

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

165

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X011");

 

166

 

167

      

/*

 

Send

 

the

 

fourth

 

map

 

confirming

 

successful

 

update

  

*/

 

168

 

169

      

sprintf(panel4.panel4o.messageo,

 

UPDATECHEESE);

 

170

      

EXEC

 

CICS

 

SEND

 

MAP("PANEL4")

 

MAPSET("UXA1")

 

FREEKB

 

ERASE

 

RESP(rcode);

 

171

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

172

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X007");

 

173

 

174

      

/*

 

free

 

the

 

keyb’d

 

&

 

return

  

*/

 

175

 

176

      

EXEC

 

CICS

 

SEND

 

CONTROL

 

FREEKB;

 

177

      

EXEC

 

CICS

 

RETURN;

 

178

 

179

 

errexit:

 

180

 

181

      

/*

 

Handle

 

general

 

errors

 

*/

 

182

 

183

      

EXEC

 

SQL

 

WHENEVER

 

SQLERROR

 

CONTINUE;

 

184

 

185

 

#ifdef

 

ORA7

 

186

      

sprintf(errmsg,

 

"%.60s\n",

 

sqlca.sqlerrm.sqlerrmc);

 

187

 

#endif

 

188

 

#ifdef

 

INF5

 

189

      

rgetmsg(sqlca.sqlcode,

 

errmsg,

 

sizeof(errmsg));

 

190

 

#endif

 

191

      

strncpy(panel4.panel4o.messageo,

 

errmsg,

 

60);

 

192

      

sprintf(panel4.panel4o.codeo,

 

"%d",

 

sqlca.sqlcode);

 

193

 

194

      

/*

 

Send

 

the

 

fourth

 

map

 

with

 

appropriate

 

message

 

*/

 

195

 

196

      

EXEC

 

CICS

 

SEND

 

MAP("PANEL4")

 

MAPSET("UXA1")

 

FREEKB

 

ERASE

 

\

                                                      

RESP(rcode);

 

197

      

if

 

(rcode

 

!=

 

DFHRESP(NORMAL))

 

198

         

EXEC

 

CICS

 

ABEND

 

ABCODE("X008");

 

199

 

200

      

/*

 

Rollback

 

the

 

transaction

 

*/

 

201

 

202

      

EXEC

 

CICS

 

SYNCPOINT

 

ROLLBACK;

 

203

      

EXEC

 

CICS

 

SEND

 

CONTROL

 

FREEKB;

 

204

      

EXEC

 

CICS

 

RETURN;

 

205

 

}

  

Table

 

32.

 

Sample

 

transaction

 

for

 

an

 

XA-enabled

 

database

 

Lines

 

Description

 

1

 

to

 

34

 

As

 

well

 

as

 

including

 

the

 

SQL

 

Communications

 

area

 

(for

 

database

 

error

 

handling)

 

and

 

database

 

host

 

variable

 

declarations,

 

this

 

section

 

includes

 

a

 

file

 

named

 

uxa1.h,

 

which

 

is

 

the

 

symbolic

 

map

 

file

 

generated

 

by

 

running

 

the

 

cicsmap

 

command

 

against

 

the

 

BMS

 

source.

 

35

 

to

 

46

 

The

 

WHENEVER

 

statement

 

is

 

used

 

to

 

pass

 

control

 

to

 

a

 

generic

 

error

 

handler

 

at

 

line

 

179.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

149



Table

 

32.

 

Sample

 

transaction

 

for

 

an

 

XA-enabled

 

database

 

(continued)

 

Lines

 

Description

 

47

 

to

 

66

 

A

 

record

 

is

 

written

 

to

 

a

 

recoverable

 

CICS

 

Temporary

 

Storage

 

queue.

 

The

 

first

 

panel

 

is

 

sent

 

to

 

the

 

user

 

and

 

the

 

name

 

of

 

the

 

cheese

 

that

 

is

 

input

 

is

 

returned

 

in

 

the

 

variable

 

“panel1.panel1i.newnamei”.

 

67

 

to

 

83

 

A

 

SELECT

 

is

 

done

 

against

 

the

 

database

 

using

 

the

 

name

 

of

 

the

 

cheese

 

input

 

by

 

the

 

user

 

in

 

the

 

WHERE

 

clause.

 

84

 

to

 

96

 

This

 

section

 

manages

 

the

 

situation

 

where

 

the

 

SELECT

 

fails

 

to

 

find

 

any

 

rows

 

that

 

match

 

the

 

name

 

of

 

the

 

cheese

 

input

 

by

 

the

 

user.

 

97

 

to

 

121

 

The

 

second

 

panel

 

is

 

filled

 

using

 

data

 

returned

 

by

 

the

 

SELECT

 

and

 

is

 

sent

 

to

 

the

 

user.

 

The

 

user

 

responds

 

by

 

keying

 

“y”

 

if

 

he

 

wishes

 

to

 

update

 

the

 

record

 

displayed.

 

122

 

to

 

133

 

The

 

third

 

panel

 

is

 

sent

 

to

 

the

 

user

 

querying

 

the

 

new

 

order

 

quantity

 

needed

 

for

 

the

 

particular

 

cheese.

 

134

 

to

 

150

 

The

 

database

 

is

 

updated

 

with

 

the

 

new

 

quantity

 

of

 

cheeses

 

to

 

be

 

ordered

 

and,

 

if

 

the

 

update

 

is

 

successful,

 

a

 

record

 

is

 

written

 

to

 

the

 

CICS

 

temporary

 

storage

 

queue.

 

151

 

to

 

160

 

This

 

section

 

handles

 

the

 

case

 

where

 

the

 

user

 

has

 

chosen

 

not

 

to

 

update

 

the

 

database.

 

161

 

to

 

166

 

A

 

CICS

 

SYNCPOINT

 

is

 

executed

 

to

 

commit

 

the

 

update.

 

167

 

to

 

173

 

The

 

fourth

 

panel

 

is

 

sent

 

to

 

the

 

user

 

to

 

confirm

 

that

 

the

 

database

 

has

 

been

 

successfully

 

updated.

 

174

 

to

 

178

 

Return

 

from

 

the

 

application.

 

179

 

to

 

205

 

If

 

an

 

error

 

is

 

detected,

 

then

 

the

 

sqlca

 

sqlcode

 

and

 

corresponding

 

message

 

are

 

passed

 

to

 

the

 

user

 

with

 

the

 

fourth

 

panel.

   

Example

 

for

 

CICS

 

for

 

Windows

 

/*

 

*

 

Transaction:

 

UXA1

 

*

 

Program:

     

UXA1PROG

 

*

 

Mapset:

      

UXA1

 

*/

 

#define

 

DLLIMPORT

 

__declspec(dllimport)

 

#define

 

DLLEXPORT

 

__declspec(dllexport)

 

#define

 

CDECL

 

__cdecl

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

"uxa1.h"

 

#define

 

NOCHEESE

 

"There

 

is

 

no

 

such

 

cheese

 

in

 

the

 

table"

 

#define

 

UPDATECHEESE

 

"The

 

cheese

 

table

 

was

 

successfully

 

updated"

 

#define

 

SQLNOTFOUND

 

100

 

EXEC

 

SQL

 

INCLUDE

 

sqlca;

 

int

 

rcode;

 

EXEC

 

SQL

 

BEGIN

 

DECLARE

 

SECTION;

 

char

    

co[30];

 

char

 

name[15];

 

char

 

supplier[30];

 

char

 

supplier_address[30];

 

int

 

order_quantity;

 

EXEC

 

SQL

 

END

 

DECLARE

 

SECTION;

 

DLLEXPORT

 

CDECL

 

main()

 

{

 

char

 

errmsg[400];

 

char

 

qmsg[400];

 

short

 

mlen;

 

/*

 

Initialise

 

the

 

maps

 

*/

 

memset

 

(&panel1,

 

0x00,

 

sizeof(panel1));

  

150

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



memset

 

(&panel2,

 

0x00,

 

sizeof(panel2));

 

memset

 

(&panel3,

 

0x00,

 

sizeof(panel3));

 

memset

 

(&panel4,

 

0x00,

 

sizeof(panel4));

 

/*-----------

  

*

 

Change

 

the

 

name

 

server1

 

to

 

a

 

connection

 

name

 

you

 

defined

  

*

 

in

 

your

 

CICS

 

MS

 

SQL

 

Server

 

XAD

 

stanza

 

XA_OPEN

 

string.

  

*-----------*/

 

sprintf(co,

 

"server1");

 

EXEC

 

SQL

 

SET

 

CONNECTION

 

Writing

 

a

 

CICS

 

application

 

program

 

by

 

using

 

an

 

ODBC

 

API

 

that

 

accesses

 

a

 

Microsoft

 

SQL

 

Server

 

database

 

(CICS

 

for

 

Windows

 

only)

 

This

 

section

 

shows

 

some

 

of

 

the

 

principles

 

that

 

you

 

use

 

when

 

you

 

write

 

a

 

CICS

 

transaction

 

under

 

an

 

XA-enabled

 

environment,

 

and

 

the

 

environment

 

accesses

 

an

 

Microsoft

 

SQL

 

Server

 

database

 

through

 

the

 

ODBC

 

API/ODBC

 

Driver

 

Library.

 

You

 

can

 

write

 

CICS

 

application

 

programs

 

by

 

using

 

ODBC

 

API/ODBC

 

Library

 

in

 

C

 

,

 

IBM

 

VisualAge

 

COBOL,

 

or

 

Micro

 

Focus

 

NetExpress

 

COBOL.

 

The

 

following

 

sections

 

explain

 

how

 

to

 

use

 

these

 

methods

 

to

 

write

 

programs.

 

Each

 

section

 

gives

 

an

 

example.

 

v

   

“Writing

 

Programs

 

using

 

ODBC

 

API/ODBC

 

Driver

 

Library

 

in

 

C”

 

v

   

“Writing

 

Programs

 

using

 

ODBC

 

API/ODBC

 

Driver

 

Library

 

in

 

IBM

 

VisualAge

 

COBOL”

 

on

 

page

 

153

 

v

   

“Writing

 

Programs

 

using

 

E-SQL

 

API/ODBC

 

Driver

 

Library

 

in

 

Micro

 

Focus

 

NetExpress

 

COBOL”

 

on

 

page

 

156

Writing

 

Programs

 

using

 

ODBC

 

API/ODBC

 

Driver

 

Library

 

in

 

C

 

This

 

procedure

 

describes

 

how

 

to

 

use

 

the

 

ODBC

 

API

 

under

 

an

 

XA

 

environment

 

to

 

write

 

CICS

 

application

 

programs

 

that

 

can

 

access

 

data

 

that

 

resides

 

in

 

a

 

Microsoft

 

SQL

 

Server

 

database.

 

Prerequisite

 

tasks

 

and

 

conditions:

   

If

 

you

 

want

 

to

 

use

 

Microsoft

 

SQL

 

Server,

 

CICS

 

for

 

Windows

 

requires

 

MS

 

SQL

 

Workstation

 

or

 

Server

 

to

 

be

 

installed

 

and

 

configured

 

according

 

to

 

your

 

Microsoft

 

SQL

 

documentation.

 

When

 

installing

 

MS

 

SQL,

 

ensure

 

that

 

Distributed

 

Transaction

 

Coordinator

 

(DTC)

 

support

 

is

 

included.

 

To

 

build

 

CICS/ODBC

 

applications,

 

which

 

integrate

 

CICS

 

and

 

Microsoft

 

SQL

 

Server,

 

you

 

must

 

have

 

the

 

MSDTC

 

and

 

ODBC

 

components

 

of

 

the

 

Microsoft

 

SQL

 

Server

 

installed

 

on

 

your

 

development

 

systems.

 

Also,

 

you

 

must

 

have

 

Microsoft

 

SQL

 

Server

 

ODBC

 

API

 

Library

 

for

 

C

 

and

 

Microsoft

 

Visual

 

C++

 

to

 

enable

 

you

 

to

 

build

 

ODBC

 

applications

 

for

 

C.

 

For

 

more

 

information

 

refer

 

to

 

the

 

CICS

 

Administration

 

Guide

 

for

 

Windows

 

Systems.

 

Obtaining

 

ODBC

 

connection

 

handles:

   

In

 

an

 

XA

 

environment,

 

connections

 

that

 

are

 

made

 

to

 

the

 

Microsoft

 

SQL

 

Server

 

database

 

by

 

using

 

ODBC

 

are

 

made

 

through

 

the

 

SwitchLoad

 

file.

 

The

 

SwitchLoad

 

file

 

makes

 

the

 

necessary

 

connections

 

to

 

the

 

database

 

through

 

the

 

SQLConnect

 

ODBC

 

API.

 

The

 

SQLConnect

 

ODBC

 

API

 

returns

 

an

 

ODBC

 

connection

 

handle

 

that

 

is

 

maintained

 

in

 

a

 

CICS

 

internal

 

structure.

 

The

 

connection

 

handle

 

is

 

unique

 

for

 

every

 

XA

 

Definition

 

that

 

is

 

in

 

the

 

XAD.stanza.

 

CICS

 

applications

 

can

 

access

 

the

 

list

 

of

 

ODBC

 

connection

 

handles

 

through

 

a

 

CICS-supplied

 

API.

 

The

 

syntax

 

of

 

that

 

API

 

is:

  

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST(data-area)

 

ODBCLISTLEN(data-area)

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

151

|

|

|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|



Refer

 

to

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

more

 

information

 

about

 

this

 

API.

 

Using

 

a

 

sample

 

CICS

 

C

 

application:

   

The

 

source,

 

map,

 

makefile,

 

and

 

README

 

file

 

for

 

the

 

example

 

are

 

shipped

 

in

 

this

 

directory

 

of

 

your

 

CICS

 

development

 

environment:

 

ProdDir/src/examples/xa

 

In

 

the

 

following

 

example,

 

ODBC

 

APIs

 

have

 

been

 

used

 

to

 

write

 

the

 

source

 

files

 

in

 

C.

 

Application

 

programmers

 

can

 

refer

 

to

 

these

 

files

 

to

 

determine

 

how

 

to

 

use

 

ODBC

 

APIs

 

to

 

write

 

application

 

programs

 

and

 

also

 

to

 

determine

 

how

 

to

 

use

 

the

 

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST

 

API

 

to

 

obtain

 

ODBC

 

connection

 

handles.

 

v

   

cheese_mssql.ccs(source

 

file)

 

v

   

cheese_mssql.mk

 

(Makefile

 

to

 

compile

 

the

 

source)

 

v

   

uxa1.bms

 

(map

 

file)

This

 

portion

 

of

 

the

 

cheese

 

sample

 

source

 

file

 

that

 

is

 

written

 

in

 

C

 

shows

 

how

 

to

 

use

 

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST

 

API

 

to

 

obtain

 

a

 

list

 

of

 

ODBC

 

connection

 

handles.

 

int

 

GetDataFromDB(SQLHSTMT,char

 

*,struct

 

CheeseTbl

 

**);

 

int

 

UpdateCheeseDB(SQLHSTMT,int,char

 

*);

 

SQLHDBC

 

GetODBCHandleFromList(struct

 

ODBC_ConArray

 

[],int);

 

struct

 

ODBC_ConArray

 

Buffer[MAX_ENTRIES];

   

main()

 

{

       

SQLHSTMT

    

hstmt;

     

SQLHDBC

     

ODBCHandle;

     

int

         

CId,ret,retcode;

     

char

        

errmsg[400];

     

short

       

mlen,Length;

     

char

        

name[15];

     

struct

      

CheeseTbl

 

*CheeseData=NULL;

     

int

        

order_quantity;

     

char

       

*UPDATECHEESE,*NOCHEESE,*ODBCCON=NULL;

           

/*

 

Initialise

 

the

 

maps

 

*/

     

memset

 

(&panel1,

 

0x00,

 

sizeof(panel1));

     

memset

 

(&panel2,

 

0x00,

 

sizeof(panel2));

     

memset

 

(&panel3,

 

0x00,

 

sizeof(panel3));

     

memset

 

(&panel4,

 

0x00,

 

sizeof(panel4));

       

CId=1;

     

memset(Buffer,NULL,MAX_ENTRIES*sizeof(struct

 

ODBC_ConArray));

     

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST(Buffer)

 

ODBCLISTLEN(Length);

     

ODBCHandle

 

=

 

GetODBCHandleFromList(Buffer,CId);

     

if(ODBCHandle

 

==

 

0)

     

{

         

ODBCCON="Fetching

 

Connection

 

Handle

 

Failed";

         

EXEC

 

CICS

 

SEND

 

TEXT

 

FROM(ODBCCON)

 

LENGTH(37);

         

EXEC

 

CICS

 

RETURN;

     

}

     

SQLHDBC

 

GetODBCHandleFromList(struct

 

ODBC_ConArray

 

Buffer[],int

 

ConId)

  

{

      

int

 

i=0;

      

if(Buffer[i].ConId

 

!=

 

0)

     

{

           

for(i=0;Buffer[i].ConId

 

!=

 

0;i++)

          

{

  

152

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|

|
|
|

|

|
|
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



if(Buffer[i].ConId

 

==

 

ConId)

                

{

                            

return

 

(SQLHDBC)Buffer[i].DBHandle;

                

}

           

}

     

}

    

return

 

0;

 

}

 

In

 

this

 

portion

 

of

 

the

 

example

 

code,

 

the

 

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST

 

API

 

fills

 

the

 

buffer

 

that

 

is

 

passed

 

by

 

the

 

program.

 

It

 

fills

 

the

 

buffer

 

with

 

an

 

array

 

of

 

structures

 

that

 

contains

 

the

 

List

 

of

 

ODBCHandles,

 

Type

 

of

 

the

 

each

 

ODBCHandle,

 

and

 

the

 

ConnectID.

 

The

 

ConnectID

 

member

 

identifies

 

the

 

database

 

to

 

which

 

the

 

connection

 

handle

 

refers.

 

The

 

user

 

sets

 

this

 

ConnectID

 

in

 

the

 

XAOpen

 

string

 

of

 

XAD.stanza

 

for

 

the

 

XAD

 

product

 

definition.

 

Users

 

use

 

this

 

ConnectID

 

in

 

the

 

application,

 

to

 

obtain

 

the

 

ODBC

 

connection

 

handle

 

for

 

each

 

database

 

that

 

they

 

want

 

to

 

access.

 

For

 

more

 

information

 

about

 

the

 

ODBC_ConnArray

 

structure,

 

refer

 

to

 

the

 

header

 

file

 

cics_odbc.h,

 

which

 

you

 

can

 

see

 

in

 

the

 

directory

 

Drive:\opt\cics\include.

 

Writing

 

Programs

 

using

 

ODBC

 

API/ODBC

 

Driver

 

Library

 

in

 

IBM

 

VisualAge

 

COBOL

 

This

 

procedure

 

describes

 

how

 

use

 

ODBC

 

API(IBM

 

VisualAge

 

COBOL)

 

under

 

an

 

XA

 

environment

 

to

 

write

 

CICS

 

application

 

programs

 

that

 

can

 

access

 

data

 

that

 

resides

 

in

 

a

 

Microsoft

 

SQL

 

Server

 

database.

 

Prerequisite

 

tasks

 

and

 

conditions:

   

If

 

you

 

want

 

to

 

use

 

Microsoft

 

SQL

 

Server,

 

CICS

 

for

 

Windows

 

requires

 

MS

 

SQL

 

Workstation

 

or

 

Server

 

to

 

be

 

installed

 

and

 

configured

 

according

 

to

 

your

 

Microsoft

 

SQL

 

documentation.

 

When

 

installing

 

MS

 

SQL,

 

ensure

 

that

 

Distributed

 

Transaction

 

Coordinator

 

(DTC)

 

support

 

is

 

included.

 

To

 

build

 

CICS/ODBC

 

applications,

 

which

 

integrate

 

CICS

 

and

 

Microsoft

 

SQL

 

Server,

 

you

 

must

 

have

 

the

 

MSDTC

 

and

 

ODBC

 

components

 

of

 

the

 

Microsoft

 

SQL

 

Server

 

installed

 

on

 

your

 

development

 

systems.

 

Also,

 

you

 

must

 

have

 

Microsoft

 

SQL

 

Server

 

ODBC

 

Library

 

and

 

IBM

 

VisualAge

 

COBOL

 

to

 

enable

 

you

 

to

 

build

 

ODBC

 

applications

 

for

 

VisualAge

 

COBOL.

 

For

 

more

 

information

 

refer

 

to

 

the

 

CICS

 

Administration

 

Guide

 

for

 

Windows

 

Systems.

 

Obtaining

 

ODBC

 

connection

 

handles:

   

In

 

an

 

XA

 

environment,

 

connections

 

that

 

are

 

made

 

to

 

the

 

Microsoft

 

SQL

 

Server

 

database

 

by

 

using

 

ODBC

 

are

 

made

 

through

 

the

 

SwitchLoad

 

file.

 

The

 

SwitchLoad

 

file

 

makes

 

the

 

necessary

 

connections

 

to

 

the

 

database

 

through

 

the

 

SQLConnect()

 

ODBC

 

function.

 

The

 

SQLConnect

 

ODBC

 

API

 

returns

 

an

 

ODBC

 

connection

 

handle

 

that

 

is

 

maintained

 

in

 

a

 

CICS

 

internal

 

structure.

 

The

 

connection

 

handle

 

is

 

unique

 

for

 

every

 

XA

 

Definition

 

that

 

is

 

in

 

the

 

XAD.stanza.

 

CICS

 

applications

 

can

 

access

 

the

 

list

 

of

 

ODBC

 

connection

 

handles

 

through

 

a

 

CICS-supplied

 

API.

 

The

 

syntax

 

of

 

that

 

API

 

is:

 

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST(data-area)

 

ODBCLISTLEN(data-area)

 

Refer

 

to

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

more

 

information

 

about

 

this

 

API.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

153

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|



Using

 

a

 

sample

 

CICS

 

IBM

 

VisualAge

 

COBOL

 

application:

   

The

 

source,

 

map,

 

makefile,

 

and

 

README

 

file

 

for

 

the

 

example

 

are

 

shipped

 

in

 

this

 

directory

 

of

 

your

 

CICS

 

development

 

environment:

 

ProdDir/src/examples/xa

 

In

 

the

 

following

 

example,

 

ODBC

 

APIs

 

have

 

been

 

used

 

to

 

write

 

the

 

source

 

files

 

in

 

IBM

 

VisualAge

 

COBOL.

 

Application

 

programmers

 

can

 

refer

 

to

 

these

 

files

 

to

 

determine

 

how

 

to

 

use

 

ODBC

 

APIs

 

to

 

write

 

application

 

programs

 

and

 

also

 

to

 

determine

 

how

 

to

 

use

 

the

 

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST

 

API

 

to

 

obtain

 

ODBC

 

connection

 

handles.

 

v

   

chzvacob_mssql.ccp(source

 

file)

 

v

   

chzvacob_mssql.cpy

 

(copy

 

file)

 

v

   

chzvacob_mssql.mk

 

(make

 

file

 

to

 

compile

 

the

 

source)

 

v

   

uxa1_mscob.bms

 

(map

 

file)

This

 

portion

 

of

 

the

 

cheese

 

sample

 

source

 

file

 

that

 

is

 

written

 

in

 

IBM

 

VisualAge

 

COBOL

 

shows

 

how

 

to

 

use

 

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST

 

API

 

to

 

obtain

 

a

 

list

 

of

 

ODBC

 

connection

 

handles.

 

******************************************************************

       

*

 

CHZVACOB_MSSQL.CBL

                                             

*

       

******************************************************************

        

IDENTIFICATION

 

DIVISION.

        

PROGRAM-ID.

 

"CHZVACOB_MSSQL".

        

DATA

 

DIVISION.

          

WORKING-STORAGE

 

SECTION.

       

*

  

copy

 

ODBC

 

API

 

constant

 

definitions

            

COPY

 

"odbc3.cpy"

 

SUPPRESS.

            

COPY

 

"uxa1.cpy"

 

SUPPRESS.

         

*

 

ODBC

 

Handles

        

01

  

Henv

                       

POINTER

            

VALUE

 

NULL.

        

01

  

Hdbc

                       

POINTER

            

VALUE

 

NULL.

        

01

  

Hstmt

                      

POINTER

            

VALUE

 

NULL.

         

*

 

Arguments

 

used

 

for

 

GetDiagRec

 

calls

        

01

  

DiagHandleType

             

COMP-5

  

PIC

 

9(4).

        

01

  

DiagHandle

                 

POINTER.

        

01

  

DiagRecNumber

              

COMP-5

  

PIC

 

9(4).

        

01

  

DiagRecNumber-Index

        

COMP-5

  

PIC

 

9(4).

                          

-

                          

-

                          

-

                          

-

                          

-

         

*

 

To

 

GET

 

ODBC

 

HANDLES.

          

01

  

BUFLENGTH

                       

COMP-5

 

PIC

 

S9(9).

        

01

  

CONNID

                          

COMP-5

 

PIC

 

S9(4).

        

01

  

INDEX1

                          

COMP-5

 

PIC

 

S9(9)

 

VALUE

 

1.

        

01

  

ODBCLEN

                         

COMP-5

 

PIC

 

s9(9).

          

01

  

ODBCCONLIST.

         

02

 

ODBCLIST

 

OCCURS

 

20

 

TIMES.

          

03

 

ConId

                          

COMP-5

 

PIC

 

S9(4)

 

VALUE

 

0.

          

03

 

HNDLTYPE

                       

COMP-5

 

PIC

 

S9(4)

 

VALUE

 

0.

          

03

 

DBHANDLE

                       

POINTER

 

VALUE

 

NULL.

          

LINKAGE

 

SECTION.

         

PROCEDURE

 

DIVISION.

  

154

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|

|

|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



MOVE

 

LOW-VALUES

 

TO

 

PANEL1O.

            

MOVE

 

LOW-VALUES

 

TO

 

PANEL2O.

            

MOVE

 

LOW-VALUES

 

TO

 

PANEL3O.

            

MOVE

 

LOW-VALUES

 

TO

 

PANEL4O.

              

EXEC

 

CICS

 

SEND

              

MAP

    

(’PANEL1’)

              

MAPSET

 

(’UXA1’)

              

FREEKB

              

ERASE

            

END-EXEC.

              

IF

 

EIBRESP

 

IN

 

DFHEIBLK

 

NOT

 

=

 

DFHRESP(NORMAL)

              

EXEC

 

CICS

 

ABEND

 

ABCODE

 

(’X001’)

 

END-EXEC

            

END-IF.

              

IF

 

EIBRESP

 

IN

 

DFHEIBLK

 

NOT

 

=

 

DFHRESP(NORMAL)

              

EXEC

 

CICS

 

ABEND

 

ABCODE

 

(’X000’)

 

END-EXEC

            

END-IF.

         

*

       

*

 

Receive

 

the

 

response

       

*

             

EXEC

 

CICS

 

RECEIVE

               

MAP

    

(’PANEL1’)

               

MAPSET

 

(’UXA1’)

             

END-EXEC.

               

IF

 

EIBRESP

 

IN

 

DFHEIBLK

 

NOT

 

=

 

DFHRESP(NORMAL)

               

EXEC

 

CICS

 

ABEND

 

ABCODE

 

(’X002’)

 

END-EXEC

             

END-IF.

               

MOVE

 

SPACES

 

TO

 

CNAME.

             

MOVE

 

NEWNAMEI

 

OF

 

PANEL1I

 

TO

 

CNAME.

         

*

       

*

    

SET

 

ODBCHANLDE

 

FROM

 

THE

 

LIST

 

FOR

 

CONNECTIONID

 

1

               

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST(ODBCCONLIST)

                       

ODBCLISTLEN(ODBCLEN)

 

END-EXEC.

             

MOVE

 

1

 

TO

 

CONNID.

             

PERFORM

 

SETDBHANDLEFROMLIST.

                                    

-

                                    

-

                                    

-

             

COPY

  

chzvacob_mssql.cpy.

       

The

 

below

 

portion

 

of

 

the

 

code

 

can

 

be

 

seen

 

in

 

the

 

file

 

chzvacob_mssql.cpy

 

.

       

**

 

SETDBHANDLEFROMLIST

 

SECTION

 

************************************

          

SETDBHANDLEFROMLIST

 

SECTION.

            

PERFORM

 

VARYING

 

INDEX1

 

FROM

 

1

 

BY

 

1

                

UNTIL

 

ConId

 

OF

 

ODBCLIST(INDEX1)

 

=

 

0

                

IF

 

ConId

 

OF

 

ODBCLIST(INDEX1)

 

=

 

CONNID

                

SET

 

Hdbc

 

TO

 

DBHANDLE

 

OF

 

ODBCLIST(INDEX1)

                

END-IF

            

END-PERFORM.

 

In

 

this

 

portion

 

of

 

the

 

example

 

code,

 

the

 

EXEC

 

CICS

 

ASSIGN

 

ODBCHNDLLIST

 

API

 

fills

 

the

 

buffer

 

that

 

is

 

passed

 

by

 

the

 

program.

 

It

 

fills

 

the

 

buffer

 

with

 

an

 

array

 

of

 

structures

 

that

 

contains

 

the

 

List

 

of

 

ODBCHandles,

 

Type

 

of

 

the

 

each

 

ODBCHandle,

 

and

 

the

 

ConnectID.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

155

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|



The

 

ConnectID

 

member

 

identifies

 

the

 

database

 

to

 

which

 

the

 

connection

 

handle

 

refers.

 

The

 

user

 

sets

 

this

 

ConnectID

 

in

 

the

 

XAOpen

 

string

 

of

 

XAD.stanza

 

for

 

the

 

XAD

 

product

 

definition.

 

Users

 

use

 

this

 

ConnectID

 

in

 

the

 

application,

 

to

 

obtain

 

the

 

ODBC

 

connection

 

handle

 

for

 

each

 

database

 

that

 

they

 

want

 

to

 

access.

 

For

 

more

 

information

 

about

 

the

 

ODBC_ConnArray

 

structure,

 

refer

 

to

 

the

 

header

 

file

 

cics_odbc.h,

 

which

 

you

 

can

 

see

 

in

 

the

 

directory

 

Drive:\opt\cics\include.

 

Writing

 

Programs

 

using

 

E-SQL

 

API/ODBC

 

Driver

 

Library

 

in

 

Micro

 

Focus

 

NetExpress

 

COBOL

 

This

 

procedure

 

describes

 

how

 

use

 

E-SQL

 

API/ODBC

 

Library

 

(Micro

 

Focus

 

NetExpress

 

COBOL)

 

under

 

an

 

XA

 

environment

 

to

 

write

 

CICS

 

application

 

programs

 

that

 

can

 

access

 

data

 

that

 

resides

 

in

 

a

 

Microsoft

 

SQL

 

Server

 

database.

 

Prerequisite

 

tasks

 

and

 

conditions:

   

If

 

you

 

want

 

to

 

use

 

Microsoft

 

SQL

 

Server,

 

CICS

 

for

 

Windows

 

requires

 

MS

 

SQL

 

Workstation

 

or

 

Server

 

to

 

be

 

installed

 

and

 

configured

 

according

 

to

 

your

 

Microsoft

 

SQL

 

documentation.

 

When

 

installing

 

MS

 

SQL,

 

ensure

 

that

 

Distributed

 

Transaction

 

Coordinator

 

(DTC)

 

support

 

is

 

included.

 

To

 

build

 

CICS/ODBC

 

applications,

 

which

 

integrate

 

CICS

 

and

 

Microsoft

 

SQL

 

Server,

 

you

 

must

 

have

 

the

 

MSDTC

 

and

 

ODBC

 

components

 

of

 

the

 

Microsoft

 

SQL

 

Server

 

installed

 

on

 

your

 

development

 

systems.

 

Also,

 

you

 

must

 

have

 

Microsoft

 

SQL

 

Server

 

ODBC

 

Library

 

and

 

Micro

 

Focus

 

NetExpress

 

COBOL

 

to

 

enable

 

you

 

to

 

build

 

ODBC

 

applications

 

for

 

NetExpress

 

COBOL.

 

For

 

more

 

information

 

refer

 

to

 

the

 

CICS

 

Administration

 

Guide

 

for

 

Windows

 

Systems.

 

Note:

  

To

 

write

 

CICS

 

ODBC

 

applications

 

in

 

Micro

 

Focus

 

NetExpress

 

COBOL,

 

you

 

must

 

use

 

an

 

Embedded

 

SQL

 

API.

 

Micro

 

FocusNetExpress

 

provides

 

an

 

ODBC

 

converter

 

that

 

converts

 

Embedded

 

SQL

 

APIs

 

to

 

ODBC

 

during

 

compilation.

 

Applications

 

can,

 

therefore,

 

access

 

the

 

database

 

through

 

the

 

ODBC

 

driver.

Obtaining

 

ODBC

 

connection

 

handles:

   

Because

 

CICS

 

applications

 

are

 

written

 

with

 

embedded

 

SQL

 

API

 

in

 

Micro

 

Focus

 

NetExpress

 

COBOL,

 

you

 

must

 

use

 

the

 

EXEC

 

SQL

 

SET

 

CONNECTION

 

API

 

to

 

set

 

the

 

connection

 

handles

 

for

 

the

 

application.

 

Using

 

a

 

sample

 

CICS

 

Micro

 

Focus

 

NetEXpress

 

COBOL

 

application:

   

The

 

source,

 

map,

 

makefile,

 

and

 

README

 

file

 

for

 

the

 

example

 

are

 

shipped

 

in

 

this

 

directory

 

of

 

your

 

CICS

 

development

 

environment:

 

ProdDir/src/examples/xa

 

In

 

the

 

following

 

example,

 

ODBC

 

APIs

 

have

 

been

 

used

 

to

 

write

 

the

 

source

 

files

 

in

 

Micro

 

Focus

 

NetExpress

 

COBOL.

 

Application

 

programmers

 

can

 

refer

 

to

 

these

 

files

 

to

 

determine

 

how

 

to

 

use

 

ODBC

 

APIs

 

to

 

write

 

application

 

programs.

 

v

   

chzmfcob_mssql.cpp

 

(source

 

file)

 

v

   

uxa1_mscob.bms

 

(map

 

file)

 

v

   

chzmfcob_mssql.mk

 

(makefile)

This

 

portion

 

of

 

the

 

cheese

 

sample

 

source

 

file

 

that

 

is

 

written

 

in

 

Micro

 

Focus

 

NetExpress

 

COBOL

 

shows

 

how

 

to

 

use

 

an

 

Embedded

 

SQL

 

API

 

to

 

set

 

the

 

connection.

 

IDENTIFICATION

 

DIVISION.

        

PROGRAM-ID.

            

UXA1.

        

AUTHOR.

                

A

 

SAMPLE.

  

156

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|

|

|

|
|
|

|
|
|



DATE-WRITTEN.

          

18/10/96.

        

DATE-COMPILED.

       

***************************************************************

        

ENVIRONMENT

 

DIVISION.

       

***************************************************************

        

DATA

 

DIVISION.

        

WORKING-STORAGE

 

SECTION.

        

COPY

 

UXA1.

                       

-

                       

-

                       

-

        

PROCEDURE

 

DIVISION.

        

RESIDENT

 

SECTION

 

1.

       

***************************************************************

        

MAIN.

       

***************************************************************

       

*

       

*

   

Initialise

 

the

 

maps

       

*

               

MOVE

 

LOW-VALUES

 

TO

 

PANEL1O.

             

MOVE

 

LOW-VALUES

 

TO

 

PANEL2O.

             

MOVE

 

LOW-VALUES

 

TO

 

PANEL3O.

             

MOVE

 

LOW-VALUES

 

TO

 

PANEL4O.

         

*

   

Set

 

error

 

handling

               

EXEC

 

SQL

 

WHENEVER

 

SQLERROR

 

GOTO

 

:ERR-EXIT

 

END-EXEC.

         

*----------

       

*

 

Change

 

the

 

name

 

server1

 

to

 

a

 

connection

 

name

 

you

 

defined

       

*

 

in

 

your

 

CICS

 

MS

 

SQL

 

Server

 

XAD

 

stanza

 

XA_OPEN

 

string.

       

*----------

             

EXEC

 

SQL

 

SET

 

CONNECTION

 

server1

 

END-EXEC.

 

File

 

processing

 

using

 

EXTFH

 

with

 

non-CICS

 

applications

 

To

 

update

 

user

 

files

 

(files

 

defined

 

in

 

the

 

File

 

Definitions

 

(FD)

 

of

 

a

 

CICS

 

application)

 

from

 

non-CICS

 

application,

 

you

 

possibly

 

need

 

to

 

compile

 

or

 

link

 

your

 

programs

 

with

 

either

 

extra

 

flags

 

or

 

with

 

an

 

extra

 

module.

 

In

 

addition,

 

you

 

possibly

 

need

 

to

 

change

 

identifiers

 

to

 

library

 

links

 

within

 

COBOL

 

system

 

files.

 

The

 

changes

 

that

 

are

 

required

 

differ

 

depending

 

on

 

the

 

language

 

and

 

the

 

file

 

system

 

manager.

 

Table

 

33

 

details

 

the

 

changes

 

required

 

to

 

process

 

files

 

from

 

non-CICS

 

applications.

  

Table

 

33.

 

Support

 

required

 

for

 

updating

 

files

 

from

 

non-CICS

 

applications

 

Compiler

 

Files

 

on

 

SFS

 

Files

 

on

 

DB2

 

Files

 

on

 

Oracle

 

C

 

and

 

C++

 

No

 

additional

 

support

 

is

 

required.

 

Refer

 

to

 

the

 

SFS

 

application

 

programming

 

information.

 

No

 

additional

 

support

 

is

 

required.

 

Refer

 

to

 

the

 

DB2

 

application

 

programming

 

information.

 

No

 

additional

 

support

 

is

 

required.

 

IBM

 

PL/I

 

Build

 

your

 

application

 

with

 

the

 

appropriate

 

definitions.

 

Support

 

not

 

available.

 

Support

 

not

 

available.

 

IBM

 

COBOL

 

Use

 

the

 

SFS

 

naming

 

convention

 

as

 

defined

 

in

 

SMARTdata

 

UTILITIES

 

for

 

AIX

 

and

 

set

 

the

 

appropriate

 

environment

 

variables.

 

Support

 

not

 

available.

 

Support

 

not

 

available.

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

157

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||

||||

||
|
|
|

|
|
|
|

|
|

||
|
||

||
|
|
|
|

||



Table

 

33.

 

Support

 

required

 

for

 

updating

 

files

 

from

 

non-CICS

 

applications

 

(continued)

 

Compiler

 

Files

 

on

 

SFS

 

Files

 

on

 

DB2

 

Files

 

on

 

Oracle

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

 

Indicators

 

to

 

two

 

COBOL

 

libraries

 

must

 

be

 

modified

 

in

 

two

 

COBOL

 

system

 

files.

 

The

 

application

 

or

 

the

 

COBOL

 

runtime

 

unit

 

(rts)

 

must

 

be

 

linked

 

with

 

the

 

Encina

 

EXTFH.

 

The

 

application

 

must

 

be

 

linked

 

with

 

the

 

DB2

 

EXTFH

 

library

 

that

 

is

 

provided

 

with

 

CICS.

 

The

 

application

 

must

 

be

 

linked

 

with

 

the

 

Oracle

 

EXTFH

 

library

 

that

 

is

 

provided

 

with

 

CICS.

 

Micro

 

Focus

 

Net

 

Express

 

on

 

Windows

 

Indicators

 

to

 

two

 

COBOL

 

libraries

 

must

 

be

 

modified

 

in

 

two

 

COBOL

 

system

 

files.

 

The

 

application

 

or

 

the

 

COBOL

 

runtime

 

unit

 

(rts)

 

must

 

be

 

linked

 

with

 

the

 

Encina

 

EXTFH.

 

The

 

application

 

must

 

be

 

linked

 

with

 

the

 

DB2

 

EXTFH

 

library

 

that

 

is

 

provided

 

with

 

CICS.

 

The

 

application

 

must

 

be

 

linked

 

with

 

the

 

Oracle

 

EXTFH

 

library

 

that

 

is

 

provided

 

with

 

CICS.

   

Table

 

33

 

on

 

page

 

157

 

shows

 

the

 

support

 

requirements

 

that

 

are

 

needed

 

by

 

CICS

 

to

 

enable

 

processing

 

of

 

SFS,

 

DB2,

 

or

 

Oracle

 

files

 

when

 

each

 

of

 

the

 

different

 

language

 

compilers

 

is

 

used.

 

When

 

SFS,

 

DB2,

 

or

 

Oracle

 

files

 

are

 

processed

 

with

 

either

 

the

 

C

 

or

 

the

 

C++

 

compiler,

 

no

 

extra

 

capability

 

is

 

required.

 

These

 

languages

 

already

 

contain

 

what

 

is

 

needed

 

to

 

access

 

SFS,

 

DB2,

 

or

 

Oracle

 

files.

 

With

 

PL/I

 

compilers,

 

no

 

extra

 

capability

 

is

 

required

 

for

 

SFS

 

access,

 

but

 

DB2

 

and

 

Oracle

 

file

 

access

 

is

 

not

 

supported.

 

With

 

IBM

 

COBOL

 

compilers,

 

DB2

 

and

 

Oracle

 

file

 

access

 

is

 

not

 

supported.

 

However,

 

SFS

 

file

 

access

 

is

 

possible

 

when

 

specific

 

naming

 

conventions

 

are

 

employed,

 

and

 

the

 

following

 

environment

 

variables

 

are

 

set:

 

v

   

ENCINA_EXTFH_VOL

 

—

 

specifies

 

the

 

name

 

of

 

the

 

SFS

 

logical

 

volume

 

that

 

was

 

specified

 

when

 

the

 

server

 

was

 

started,

 

<shortname>.

 

v

   

ENCINA_CDS_ROOT

 

—

 

set

 

to

 

/.:/cics

Note,

 

however,

 

that

 

when

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

compiler

 

(on

 

Open

 

Systems)

 

or

 

Micro

 

Focus

 

Net

 

Express

 

compiler

 

(on

 

Windows

 

systems)

 

is

 

used,

 

extra

 

capability

 

is

 

needed

 

for

 

access

 

to

 

SFS,

 

DB2,

 

or

 

Oracle

 

files.

 

This

 

extra

 

capability

 

that

 

is

 

needed

 

by

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Net

 

Express

 

is

 

provided

 

through

 

the

 

External

 

File

 

Handler

 

(EXTFH)

 

function.

 

The

 

EXTFH

 

is

 

a

 

package

 

that

 

allows

 

COBOL

 

applications

 

transparently

 

to

 

use

 

SFS,

 

DB2,

 

or

 

Oracle

 

files

 

for

 

record

 

storage.

 

When

 

the

 

UNIX

 

and

 

the

 

Windows

 

environment

 

has

 

been

 

prepared

 

to

 

use

 

the

 

EXTFH

 

function,

 

the

 

routines

 

to

 

access

 

data

 

are

 

the

 

same.

 

The

 

COBOL

 

programmer

 

sees

 

no

 

apparent

 

difference

 

between

 

a

 

standard

 

COBOL

 

I/O

 

and

 

an

 

I/O

 

to

 

an

 

SFS

 

file,

 

DB2

 

file,

 

or

 

Oracle

 

file

 

that

 

is

 

using

 

EXTFH.

 

The

 

EXTFH

 

is

 

supported

 

in

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

 

software

 

and

 

also

 

by

 

EXTFH

 

code

 

on

 

the

 

DB2,

 

SFS,

 

and

 

Oracle

 

file

 

system

 

managers.

 

The

 

program

 

is

 

built

 

into

 

an

 

executable

 

by

 

using

 

cob,

 

and

 

is

 

run

 

independently.

 

The

 

EXTFH

 

interface

 

automatically

 

creates

 

output

 

files

 

if

 

they

 

do

 

not

 

exist.

 

If

 

you

 

open

 

an

 

existing

 

file

 

for

 

output,

 

its

 

contents

 

are

 

erased

 

unless

 

you

 

open

 

it

 

in

 

extended

 

mode.

 

In

 

order

 

to

 

use

 

EXTFH,

 

you

 

must

 

use

 

COBOL

 

and

 

the

 

X/Open

 

TX

 

routines.

 

You

 

cannot

 

use

 

EXTFH

 

and

 

Transactional-C

 

together.

 

The

 

following

 

sections

 

cover

 

these

 

topics:

   

158

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|

||||

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|



v

   

Using

 

DB2

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

 

v

   

Using

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

Using

 

DB2

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

and

 

Net

 

Express

 

This

 

section

 

discusses

 

the

 

following

 

EXTFH

 

topics:

 

v

   

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

using

 

DB2

 

EXTFH

 

on

 

UNIX

 

platforms

 

v

   

Building

 

a

 

standalone

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program

 

using

 

DB2

 

EXTFH

 

on

 

UNIX

 

v

   

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

runtime

 

using

 

DB2

 

EXTFH

 

on

 

Windows

 

v

   

Customization

 

of

 

the

 

DB2

 

EXTFH

 

on

 

UNIX

 

and

 

on

 

Windows

 

v

   

File

 

and

 

record

 

locking

 

behavior

 

when

 

DB2

 

EXTFH

 

is

 

used

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

 

and

 

Net

 

Express

 

on

 

Windows

Using

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

with

 

DB2

 

EXTFH

 

on

 

UNIX

 

The

 

steps

 

required

 

to

 

enable

 

DB2

 

EXTFH

 

functionality

 

with

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

on

 

the

 

UNIX

 

platform

 

are:

 

1.

   

Verify

 

that

 

the

 

environment

 

is

 

set

 

up

 

as

 

is

 

shown

 

in

 

the

 

following

 

AIX

 

example:

 

v

   

PATH

 

is

 

set

 

to

 

the

 

following:

 

$PATH:/usr/lpp/cics/bin:/usr/lpp/encina/bin:/opt/dcelocal/bin:$DB2DIR/bin

 

v

   

LIBPATH

 

is

 

set

 

to

 

/usr/lpp/cics/lib:/usr/lpp/encina/lib:/opt/dcelocal/lib:$DB2DIR/lib

 

v

   

NLSPATH

 

is

 

set

 

to

 

NLSPATH:/usr/lpp/cics/msg/%L/%N/:/usr/lpp/cics/msg/C/%N

 

v

   

DB2DBDFT

 

is

 

set

 

to

 

the

 

name

 

of

 

any

 

DB2

 

database

 

v

   

DB2DIR=<DB2productDirectory>

 

v

   

DB2INSTANCE=<instanceName>
2.

   

Export

 

DCELIBS=″-ldce

 

—lc_r

 

—ldcepthreads

 

—lpthreads″

Building

 

a

 

standalone

 

MF

 

COBOL

 

program

 

using

 

DB2

 

EXTFH

 

on

 

UNIX

 

To

 

build

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application,

 

follow

 

the

 

instructions

 

for

 

using

 

DB2

 

EXTFH

 

with

 

an

 

MF

 

COBOL

 

runtime.

 

In

 

addition,

 

you

 

must

 

specify

 

extra

 

parameters

 

on

 

the

 

command-line

 

to

 

the

 

cob

 

command,

 

as

 

shown

 

in

 

the

 

following

 

example

 

for

 

clustered

 

files:

 

cob

 

-mixfile=cics_xfh

 

-L/usr/lpp/cics/lib

  

-lxfhdb2sa

  

-x

 

ExtFHClust.cbl

 

-lcicssa

 

rm

 

*.o

 

*.int

 

This

 

will

 

build

 

a

 

program

 

named

 

ExtFHClust.

 

Using

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

runtime

 

with

 

DB2

 

EXTFH

 

on

 

Windows

 

The

 

steps

 

required

 

to

 

enable

 

DB2

 

EXTFH

 

functionality

 

on

 

the

 

Windows

 

platform

 

are:

 

1.

   

Ensure

 

COBOL

 

environment

 

file

 

settings.

 

a.

   

Ensure

 

prodDir\bin

 

is

 

in

 

the

 

%PATH%

 

environment

 

setting.

 

b.

   

Ensure

 

prodDir\lib

 

is

 

in

 

the

 

%LIB%

 

environment

 

setting.

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

159

|
|
|
|

|
|
|

|



2.

   

Compile

 

the

 

COBOL

 

application

 

with

 

correct

 

compile-time

 

flag.

 

The

 

COBOL

 

application

 

must

 

be

 

compiled

 

with

 

the

 

COBOL

 

compile-time

 

flag

 

CALLFH″cics_xfh″.

 

For

 

example,

 

build

 

your

 

program

 

using:

    

cobol

 

Testprog1.cbl

 

CALLFH"cics_xfh";

    

cbllink

 

-rE

 

Testprog1.obj

 

This

 

redirects

 

all

 

COBOL

 

file

 

operations

 

to

 

the

 

DB2

 

EXTFH.

 

3.

   

Execute

 

the

 

runtime

 

unit.

 

When

 

the

 

COBOL

 

application

 

is

 

run,

 

the

 

application

 

must

 

be

 

able

 

to

 

find

 

and

 

load

 

the

 

library

 

cics_xfh.dll

 

which

 

is

 

found

 

in

 

the

 

directory

 

prodDir\bin.

Customization

 

of

 

the

 

DB2

 

EXTFH

 

on

 

UNIX

 

and

 

on

 

Windows

 

The

 

DB2

 

EXTFH

 

is

 

customized

 

with

 

the

 

following

 

environment

 

variables:

  

Table

 

34.

 

Environment

 

variables

 

used

 

with

 

the

 

DB2

 

EXTFH

 

on

 

Windows

 

Environment

 

variable

 

Description

 

$CICS_XFH_LOGFILE

 

or

 

%CICS_XFH_LOGFILE%

 

Defines

 

the

 

path

 

name

 

to

 

an

 

alternative

 

log

 

for

 

the

 

external

 

file

 

handler.

 

Normally

 

this

 

environment

 

variable

 

is

 

not

 

set

 

and

 

the

 

external

 

file

 

handler

 

appends

 

to

 

a

 

file

 

called

 

xfh.LogFile

 

in

 

a

 

temporary

 

directory.

 

If

 

this

 

file

 

does

 

not

 

exist,

 

it

 

is

 

created.

 

Multiple

 

concurrent

 

external

 

file

 

handler

 

applications

 

can

 

use

 

the

 

same

 

file.

 

If

 

you

 

do

 

not

 

want

 

to

 

keep

 

a

 

log

 

file,

 

set

 

this

 

environment

 

variable

 

to

 

NONE.

 

When

 

this

 

is

 

done,

 

errors

 

are

 

reported

 

to

 

stderr.

 

$CICS_XFH_DBNAME

 

or

 

%CICS_XFH_DBNAME%

 

Defines

 

the

 

name

 

of

 

the

 

DB2

 

database

 

that

 

is

 

used

 

by

 

the

 

external

 

file

 

handler.

 

If

 

the

 

variable

 

is

 

not

 

set,

 

the

 

default

 

DB2

 

database

 

is

 

used.

 

$CICS_XFH_USERNAME,

 

$CICS_XFH_USERPASS

 

or

 

%CICS_XFH_USERNAME%,

 

%

 

CICS_XFH_USERPASS%

 

Tools

 

that

 

are

 

supplied

 

with

 

the

 

database

 

are

 

usually

 

used

 

to

 

regulate

 

who

 

can

 

access

 

the

 

data.

 

However,

 

the

 

external

 

file

 

handler

 

accesses

 

the

 

database

 

as

 

the

 

user

 

who

 

is

 

running

 

the

 

COBOL

 

application.

 

In

 

addition,

 

the

 

access

 

ID

 

can

 

be

 

changed

 

by

 

using

 

these

 

two

 

environment

 

variables

 

to

 

define

 

the

 

user

 

name

 

and

 

password

 

that

 

are

 

to

 

be

 

used

 

to

 

connect

 

to

 

the

 

database.

 

$CICS_XFH_TRANMODE

 

or

 

%CICS_XFH_TRANMODE%

 

Defines

 

transactional

 

‘T’

 

or

 

nontransactional

 

‘N’

 

access

 

to

 

the

 

database.

 

The

 

default

 

operation

 

is

 

nontransactional

 

access.

   

File

 

and

 

record

 

locking

 

behavior

 

when

 

DB2

 

EXTFH

 

is

 

used

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

 

and

 

Net

 

Express

 

on

 

Windows

 

Micro

 

Focus

 

Server

 

Express

 

COBOL,

 

Net

 

Express,

 

and

 

the

 

DB2

 

EXTFH

 

support

 

file

 

and

 

record

 

locking

 

in

 

the

 

following

 

ways:

 

v

   

Files

 

opened

 

for

 

output

 

or

 

append

 

can

 

take

 

a

 

file

 

lock.

 

v

   

To

 

take

 

a

 

file

 

lock

 

on

 

files

 

opened

 

for

 

read

 

only,

 

either

 

of

 

the

 

following

 

settings

 

must

 

be

 

specified:

 

–

   

the

 

‘WITH

 

LOCK’

 

phrase

 

must

 

be

 

specified

 

on

 

the

 

OPEN

 

statement,

 

or

 

–

   

the

 

‘LOCK

 

MODE

 

IS

 

EXCLUSIVE’

 

phrase

 

must

 

be

 

specified

 

on

 

the

 

SELECT

 

statement.

  

160

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|

||

||

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|



Without

 

these

 

specified

 

settings,

 

files

 

opened

 

for

 

read

 

only

 

can

 

take

 

no

 

locks,

 

and

 

the

 

‘WITH

 

LOCK’

 

clause

 

has

 

no

 

effect

 

on

 

a

 

read

 

statement

 

(standard

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Net

 

Express

 

operation).

 

v

   

The

 

DB2

 

EXTFH

 

only

 

supports

 

automatic

 

record

 

locking.

 

Files

 

opened

 

with

 

manual

 

record

 

locking

 

will

 

default

 

to

 

automatic

 

record

 

locking

 

and

 

the

 

locking

 

schematics

 

used

 

will

 

be

 

that

 

of

 

‘LOCK

 

MODE

 

IS

 

AUTOMATIC

 

WITH

 

LOCK

 

ON

 

MULTIPLE

 

RECORD’.

Non-transactional

 

access

 

mode

 

With

 

non-transactional

 

access,

 

changes

 

are

 

immediately

 

committed

 

to

 

the

 

database.

 

The

 

DB2

 

EXTFH

 

performs

 

a

 

COMMIT

 

immediately

 

after

 

any

 

database

 

update

 

operation.

  

With

 

files

 

opened

 

for

 

input

 

and

 

output

 

in

 

non-transactional

 

access

 

mode,

 

a

 

lock

 

is

 

taken

 

on

 

any

 

record

 

read

 

and

 

then

 

released

 

on

 

the

 

next

 

file

 

operation

 

on

 

that

 

file

 

or

 

when

 

the

 

application

 

ends.

 

If

 

the

 

‘WITH

 

LOCK’

 

phrase

 

is

 

specified

 

on

 

the

 

open

 

statement

 

or

 

‘LOCK

 

MODE

 

IS

 

EXCLUSIVE’

 

is

 

specified

 

on

 

the

 

SELECT

 

statement,

 

then

 

a

 

file

 

lock

 

is

 

taken.

  

When

 

a

 

ROLLBACK

 

is

 

performed,

 

the

 

file

 

lock

 

is

 

temporarily

 

released

 

before

 

being

 

retaken.

 

In

 

this

 

situation,

 

the

 

application

 

receives

 

an

 

error

 

from

 

the

 

ROLLBACK

 

command

 

and

 

a

 

message

 

is

 

logged.

 

Transactional

 

access

 

mode

 

When

 

using

 

transactional

 

access,

 

it

 

is

 

up

 

to

 

the

 

application

 

to:

 

v

   

Make

 

the

 

changes

 

permanent

 

(COMMIT)

 

v

   

Disregard

 

the

 

changes

 

(ROLLBACK)

 

Because

 

some

 

COBOL

 

file

 

operations

 

do

 

not

 

map

 

to

 

single

 

SQL

 

commands,

 

an

 

automatic

 

rollback

 

does

 

not

 

necessarily

 

occur

 

if

 

errors

 

are

 

encountered.

 

For

 

example,

 

during

 

a

 

file

 

create,

 

if

 

the

 

database

 

table

 

is

 

created

 

successfully

 

but

 

the

 

indices

 

are

 

not,

 

the

 

DB2

 

EXTFH

 

does

 

not

 

perform

 

a

 

rollback

 

of

 

the

 

table

 

creation.

 

This

 

results

 

in

 

a

 

error

 

when

 

the

 

application

 

attempts

 

to

 

open

 

the

 

file.

 

Therefore,

 

you

 

should

 

program

 

the

 

application

 

to

 

handle

 

the

 

error

 

and

 

explicitly

 

perform

 

the

 

rollback.

  

With

 

files

 

opened

 

for

 

input

 

and

 

output

 

in

 

transactional

 

access

 

mode,

 

a

 

lock

 

is

 

taken

 

on

 

any

 

record

 

read

 

and

 

then

 

released

 

on

 

the

 

next

 

file

 

operation

 

on

 

that

 

file

 

except

 

when

 

that

 

record

 

is

 

updated.

 

When

 

a

 

file

 

is

 

updated,

 

the

 

lock

 

is

 

retained

 

until

 

a

 

COMMIT

 

or

 

ROLLBACK

 

is

 

performed

 

or

 

the

 

application

 

ends.

 

Therefore,

 

you

 

should

 

program

 

the

 

application

 

to

 

handle

 

the

 

error

 

and

 

explicitly

 

perform

 

the

 

rollback.

Using

 

Oracle

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

This

 

section

 

discusses

 

the

 

following

 

EXTFH

 

topics:

 

v

   

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

using

 

Oracle

 

EXTFH

 

on

 

UNIX

 

platforms

 

v

   

Building

 

a

 

standalone

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program

 

using

 

Oracle

 

EXTFH

 

on

 

UNIX

 

v

   

Customization

 

of

 

the

 

Oracle

 

EXTFH

 

on

 

UNIX

 

and

 

on

 

Windows

 

v

   

File

 

and

 

record

 

locking

 

behavior

 

when

 

Oracle

 

EXTFH

 

is

 

used

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

161

|

|

|
|

|
|

|

|
|



Using

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

with

 

Oracle

 

EXTFH

 

on

 

UNIX

 

To

 

enable

 

Oracle

 

EXTFH

 

functions

 

with

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

on

 

the

 

UNIX

 

platform:

 

1.

   

Verify

 

that

 

the

 

environment

 

is

 

set

 

up

 

as

 

is

 

shown

 

in

 

the

 

following

 

AIX

 

example:

 

v

   

PATH

 

is

 

set

 

to

 

the

 

following:

 

$PATH:/usr/lpp/cics/bin:/usr/lpp/encina/bin:/opt/dcelocal/bin

   

:$ORACLE_HOME/bin

 

v

   

LIBPATH

 

is

 

set

 

to:

  

/usr/lpp/cics/lib:/usr/lpp/encina/lib:/opt/dcelocal/lib:$ORACLE_HOME/lib32

 

(assuming

 

a

 

64-bit

 

installation

 

for

 

Oracle)

 

v

   

NLSPATH

 

is

 

set

 

to:

 

NLSPATH:/usr/lpp/cics/msg/%L/%N/:/usr/lpp/cics/msg/C/%N

 

v

   

ORACLE_SID

 

is

 

set

 

v

   

CICS_XFH_USERPASS

 

is

 

set

 

v

   

CICS_XFH_USERNAME

 

is

 

set
2.

   

Export

 

DCELIBS=″-ldce

 

—lc_r

 

—ldcepthreads

 

—lpthreads″

Building

 

a

 

standalone

 

MF

 

COBOL

 

program

 

using

 

Oracle

 

EXTFH

 

on

 

UNIX

 

To

 

build

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application,

 

follow

 

the

 

instructions

 

for

 

using

 

Oracle

 

EXTFH

 

with

 

an

 

MF

 

COBOL

 

runtime.

 

In

 

addition,

 

you

 

must

 

specify

 

extra

 

parameters

 

on

 

the

 

command-line

 

to

 

the

 

cob

 

command,

 

as

 

shown

 

in

 

the

 

following

 

example

 

for

 

clustered

 

files:

 

cob

 

-x

 

ExtFHClust.cbl

 

-mixfile=cics_xfh

 

${ORA_PRECOMP}/cobsqlintf.o

 

\

             

-L/usr/lpp/cics/lib

 

-L

 

${ORA_LIBP}

  

\

             

-L

 

${COBDIR}/lib

 

-L

 

${LIBDIR}

 

\

             

-l${EXTFH_LIBNAME}

 

-lcicssa

 

-lclntsh

   

rm

 

*.o

 

*.int

 

This

 

l

 

builds

 

a

 

program

 

that

 

is

 

called

 

ExtFHClust.

Notes:

  

1.

   

The

 

variable

 

$COBDIR

 

resolves

 

to

 

the

 

COBOL

 

installation

 

directory.

 

For

 

Solaris

 

and

 

HP-UX,

 

$COBDIR

 

resolves

 

to

 

/opt/cobol/.

 

For

 

AIX,

 

$COBDIR

 

resolves

 

to

 

/usr/lib/cobol/.

 

2.

   

ORA_PRECOMP

 

resolves

 

to

 

${ORACLE_HOME}/precomp/lib

 

for

 

Oracle

 

8.1.7

 

or

 

Oracle

 

9i

 

32-bit

 

installation,

 

or

 

to

 

${ORACLE_HOME}/precomp/lib32

 

for

 

Oracle

 

9i

 

64-bit

 

installation.

 

3.

   

ORA_LIBP

 

=

 

${ORACLE_HOME}/lib

 

for

 

Oracle

 

8.1.7

 

or

 

Oracle

 

9i

 

32-bit

 

installation,

 

or

 

to

 

${ORACLE_HOME}/lib32

 

for

 

Oracle

 

9i

 

64-bit

 

installation.

 

4.

   

EXTFH_LIBNAME=xfhorasa

 

(provided

 

by

 

CICS).

 

5.

   

CICS

 

provides

 

a

 

script

 

$CICSPATH/bin/cicsmkextfh

 

to

 

aid

 

users

 

to

 

build

 

the

 

standalone

 

MF

 

COBOL

 

executable

 

that

 

is

 

to

 

be

 

used

 

with

 

Oracle

 

Extfh.

Using

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

runtime

 

with

 

Oracle

 

EXTFH

 

on

 

Windows

 

To

 

enable

 

Oracle

 

EXTFH

 

functionality

 

on

 

the

 

Windows

 

platform:

 

1.

   

Ensure

 

that

 

the

 

COBOL

 

environment

 

file

 

settings

 

are

 

correct.

 

a.

   

Ensure

 

that

 

prodDir\bin

 

is

 

in

 

the

 

%PATH%

 

environment

 

setting.

 

b.

   

Ensure

 

that

 

prodDir\lib

 

is

 

in

 

the

 

%LIB%

 

environment

 

setting.

  

162

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|
|

|
|

|

|
|

|
|
|

|

|

|



2.

   

Compile

 

the

 

COBOL

 

application

 

with

 

the

 

correct

 

compile-time

 

flag.

 

The

 

COBOL

 

application

 

must

 

be

 

compiled

 

with

 

the

 

COBOL

 

compile-time

 

flag

 

CALLFH″cics_xfh″.

 

For

 

example,

 

build

 

your

 

program

 

by

 

using:

    

cobol

 

Testprog1.cbl

 

CALLFH"cics_xfh";

    

cbllink

 

-rE

 

Testprog1.obj

 

All

 

COBOL

 

file

 

operations

 

are

 

then

 

redirected

 

to

 

the

 

Oracle

 

EXTFH.

 

3.

   

Execute

 

the

 

runtime

 

unit.

 

When

 

the

 

COBOL

 

application

 

is

 

run,

 

the

 

application

 

must

 

be

 

able

 

to

 

find

 

and

 

load

 

the

 

library

 

cics_xfh.dll,

 

which

 

is

 

in

 

the

 

directory

 

prodDir\bin.

Customization

 

of

 

the

 

Oracle

 

EXTFH

 

on

 

UNIX

 

and

 

on

 

Windows

 

The

 

Oracle

 

EXTFH

 

is

 

customized

 

with

 

the

 

following

 

environment

 

variables:

  

Table

 

35.

 

Environment

 

variables

 

used

 

with

 

the

 

Oracle

 

EXTFH

 

on

 

Windows

 

Environment

 

variable

 

Description

 

$CICS_XFH_LOGFILE

 

or

 

%CICS_XFH_LOGFILE%

 

Defines

 

the

 

path

 

name

 

to

 

an

 

alternative

 

log

 

for

 

the

 

external

 

file

 

handler.

 

Normally

 

this

 

environment

 

variable

 

is

 

not

 

set

 

and

 

the

 

external

 

file

 

handler

 

appends

 

to

 

a

 

file

 

called

 

xfh.LogFile

 

in

 

a

 

temporary

 

directory.

 

If

 

this

 

file

 

does

 

not

 

exist,

 

it

 

is

 

created.

 

Multiple

 

concurrent

 

external

 

file

 

handler

 

applications

 

can

 

use

 

the

 

same

 

file.

 

If

 

you

 

do

 

not

 

want

 

to

 

keep

 

a

 

log

 

file,

 

set

 

this

 

environment

 

variable

 

to

 

NONE.

 

When

 

this

 

is

 

done,

 

errors

 

are

 

reported

 

to

 

stderr.

 

$CICS_XFH_DBNAME

 

or

 

%CICS_XFH_DBNAME%

 

Defines

 

the

 

name

 

of

 

the

 

Oracle

 

database

 

that

 

is

 

used

 

by

 

the

 

external

 

file

 

handler.

 

If

 

the

 

variable

 

is

 

not

 

set,

 

the

 

default

 

Oracle

 

database

 

is

 

used.

 

$CICS_XFH_USERNAME,

 

$CICS_XFH_USERPASS

 

or

 

%CICS_XFH_USERNAME%,

 

%

 

CICS_XFH_USERPASS%

 

Tools

 

that

 

are

 

supplied

 

with

 

the

 

database

 

are

 

usually

 

used

 

to

 

regulate

 

who

 

can

 

access

 

the

 

data.

 

However,

 

the

 

external

 

file

 

handler

 

accesses

 

the

 

database

 

as

 

the

 

user

 

who

 

is

 

running

 

the

 

COBOL

 

application.

 

In

 

addition,

 

the

 

access

 

ID

 

can

 

be

 

changed

 

by

 

using

 

these

 

two

 

environment

 

variables

 

to

 

define

 

the

 

user

 

name

 

and

 

password

 

that

 

is

 

to

 

be

 

used

 

to

 

connect

 

to

 

the

 

database.

 

$CICS_XFH_TRANMODE

 

or

 

%CICS_XFH_TRANMODE%

 

Defines

 

transactional

 

‘T’

 

or

 

nontransactional

 

‘N’

 

access

 

to

 

the

 

database.

 

The

 

default

 

operation

 

is

 

nontransactional

 

access.

   

File

 

and

 

record

 

locking

 

behavior

 

when

 

Oracle

 

EXTFH

 

is

 

used

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

 

and

 

Net

 

Express

 

on

 

Windows

 

Micro

 

Focus

 

Server

 

Express

 

COBOL,

 

Net

 

Express,

 

and

 

the

 

Oracle

 

EXTFH

 

support

 

file

 

and

 

record

 

locking

 

in

 

the

 

following

 

ways:

 

v

   

Files

 

that

 

are

 

opened

 

for

 

output

 

or

 

append

 

can

 

take

 

a

 

file

 

lock.

 

v

   

To

 

take

 

a

 

file

 

lock

 

on

 

files

 

that

 

are

 

opened

 

for

 

read

 

only,

 

you

 

must

 

specify

 

either

 

of

 

the

 

following

 

settings:

 

–

   

Specify

 

the

 

‘WITH

 

LOCK’

 

phrase

 

on

 

the

 

OPEN

 

statement,

 

or

 

–

   

Specify

 

the

 

‘LOCK

 

MODE

 

IS

 

EXCLUSIVE’

 

phrase

 

on

 

the

 

SELECT

 

statement.

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

163

|

|
|

|

|
|

|

|

|
|

|

|

||

||

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

|

|



Without

 

these

 

specified

 

settings,

 

files

 

that

 

are

 

opened

 

for

 

read

 

only

 

can

 

take

 

no

 

locks,

 

and

 

the

 

‘WITH

 

LOCK’

 

clause

 

has

 

no

 

effect

 

on

 

a

 

read

 

statement

 

(standard

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Net

 

Express

 

operation).

 

v

   

The

 

Oracle

 

EXTFH

 

supports

 

only

 

automatic

 

record

 

locking.

 

Files

 

that

 

are

 

opened

 

with

 

manual

 

record

 

locking

 

default

 

to

 

automatic

 

record

 

locking.

 

The

 

locking

 

schematics

 

that

 

are

 

used

 

are

 

‘LOCK

 

MODE

 

IS

 

AUTOMATIC

 

WITH

 

LOCK

 

ON

 

MULTIPLE

 

RECORD’.

Non-transactional

 

access

 

mode

 

With

 

non-transactional

 

access,

 

changes

 

are

 

immediately

 

committed

 

to

 

the

 

database.

 

The

 

Oracle

 

EXTFH

 

performs

 

a

 

COMMIT

 

immediately

 

after

 

any

 

database

 

update

 

operation.

  

With

 

files

 

are

 

opened

 

for

 

input

 

and

 

output

 

in

 

nontransactional

 

access

 

mode,

 

a

 

lock

 

is

 

taken

 

on

 

any

 

record

 

read,

 

then

 

released

 

on

 

the

 

next

 

file

 

operation

 

on

 

that

 

file

 

or

 

when

 

the

 

application

 

ends.

 

If

 

the

 

‘WITH

 

LOCK’

 

phrase

 

is

 

specified

 

on

 

the

 

open

 

statement,

 

or

 

‘LOCK

 

MODE

 

IS

 

EXCLUSIVE’

 

is

 

specified

 

on

 

the

 

SELECT

 

statement,

 

a

 

file

 

lock

 

is

 

taken.

  

When

 

a

 

ROLLBACK

 

is

 

performed,

 

the

 

file

 

lock

 

is

 

temporarily

 

released

 

before

 

being

 

retaken.

 

In

 

this

 

condition,

 

the

 

application

 

receives

 

an

 

error

 

from

 

the

 

ROLLBACK

 

command

 

and

 

a

 

message

 

is

 

logged.

 

Transactional

 

access

 

mode

 

When

 

using

 

transactional

 

access,

 

the

 

application

 

decides

 

whether:

 

v

   

To

 

make

 

the

 

changes

 

permanent

 

(COMMIT)

 

v

   

To

 

disregard

 

the

 

changes

 

(ROLLBACK)

 

Because

 

some

 

COBOL

 

file

 

operations

 

do

 

not

 

map

 

to

 

single

 

SQL

 

commands,

 

an

 

automatic

 

rollback

 

does

 

not

 

necessarily

 

occur

 

if

 

errors

 

are

 

found.

 

For

 

example,

 

during

 

a

 

file

 

create,

 

if

 

the

 

database

 

table

 

is

 

created

 

successfully

 

but

 

the

 

indices

 

are

 

not,

 

the

 

Oracle

 

EXTFH

 

does

 

not

 

perform

 

a

 

rollback

 

of

 

the

 

table

 

creation.

 

This

 

results

 

in

 

an

 

error

 

when

 

the

 

application

 

attempts

 

to

 

open

 

the

 

file.

 

Therefore,

 

you

 

should

 

program

 

the

 

application

 

to

 

handle

 

the

 

error

 

and

 

explicitly

 

perform

 

the

 

rollback.

  

With

 

files

 

are

 

opened

 

for

 

input

 

and

 

output

 

in

 

transactional

 

access

 

mode,

 

a

 

lock

 

is

 

taken

 

on

 

any

 

record

 

read,

 

then

 

released

 

on

 

the

 

next

 

file

 

operation

 

on

 

that

 

file,

 

except

 

when

 

that

 

record

 

is

 

updated.

 

When

 

a

 

file

 

is

 

updated,

 

the

 

lock

 

is

 

retained

 

until

 

a

 

COMMIT

 

or

 

ROLLBACK

 

is

 

performed

 

or

 

the

 

application

 

ends.

 

Therefore,

 

program

 

the

 

application

 

to

 

handle

 

the

 

error

 

and

 

explicitly

 

perform

 

the

 

rollback.

Using

 

SFS

 

EXTFH

 

with

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

or

 

Net

 

Express

 

runtime

 

This

 

section

 

discusses

 

the

 

use

 

of

 

the

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

 

and

 

Micro

 

Focus

 

Net

 

Express

 

on

 

Windows

 

systems.

 

The

 

topics

 

discussed

 

are:

 

v

   

Using

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

on

 

UNIX

 

v

   

Using

 

a

 

standalone

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

 

v

   

Using

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

runtime

 

on

 

Windows

 

systems

 

v

   

Customizing

 

the

 

SFS

 

EXTFH

  

164

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|



Using

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime

 

on

 

UNIX

 

To

 

use

 

your

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

to

 

access

 

SFS

 

files:

 

1.

   

Verify

 

that

 

the

 

environment

 

is

 

set

 

up

 

as

 

is

 

shown

 

in

 

the

 

following

 

AIX

 

example:

 

v

   

PATH

 

is

 

set

 

to

 

$PATH:/usr/lpp/cics/bin:/usr/lpp/encina/bin:/opt/dcelocal/bin

 

v

   

LIBPATH

 

is

 

set

 

to

 

/usr/lpp/cics/lib:/usr/lpp/encina/lib:/opt/dcelocal/lib

 

v

   

NLSPATH

 

is

 

set

 

to

 

NLSPATH:/usr/lpp/encina/C/%N/:/opt/dcelocal/nls/msg/%L/%N
2.

   

Prepare

 

the

 

environment

 

for

 

EXTFH

 

use

 

Do

 

this

 

by

 

defining

 

files,

 

setting

 

environment

 

variables,

 

and

 

assigning

 

the

 

appropriate

 

permissions.

 

EXTFH

 

uses

 

environment

 

variables

 

to

 

determine

 

which

 

SFS

 

server

 

and

 

volume

 

to

 

use:

 

v

   

ENCINA_SFS_SERVER

 

—

 

specifies

 

which

 

server

 

to

 

use.

 

This

 

must

 

be

 

set

 

to

 

the

 

fully

 

qualified

 

name

 

of

 

the

 

SFS,

 

for

 

example:

 

/.:/cics/sfs/serverName

 

v

   

ENCINA_EXTFH_SFS

 

—

 

specifies

 

which

 

server

 

to

 

use.

 

This

 

must

 

be

 

set

 

to

 

the

 

fully

 

qualified

 

name

 

of

 

the

 

SFS,

 

for

 

example:

 

/.:/cics/sfs/$ENCINA_SFS_SERVER/serverName.

 

v

   

ENCINA_EXTFH_VOL

 

—

 

specifies

 

the

 

name

 

of

 

the

 

SFS

 

logical

 

volume

 

specified

 

when

 

the

 

server

 

was

 

started,

 

<shortname>.

 

v

   

ENCINA_CDS_ROOT

 

—

 

set

 

to

 

/.:/cics

 

The

 

server

 

is

 

used

 

for

 

all

 

SFS

 

file

 

operations.

 

The

 

volume

 

is

 

used

 

when

 

a

 

new

 

file

 

has

 

to

 

be

 

created.

 

The

 

environment

 

variables

 

are

 

checked

 

when

 

the

 

file

 

is

 

opened.

 

These

 

variables

 

can

 

be

 

set

 

or

 

changed

 

using

 

the

 

following

 

calls:

 

v

   

TR_SET_SFS_SERVER

 

serverName

 

nameSize.

 

The

 

call

 

takes

 

two

 

options:

 

a

 

string

 

variable

 

containing

 

the

 

fully

 

qualified

 

server

 

name

 

and

 

a

 

numeric

 

variable

 

giving

 

the

 

length

 

of

 

the

 

string

 

in

 

the

 

serverName

 

option.

 

v

   

TR_SET_SFS_VOLUME

 

volumeName

 

nameSize.

 

The

 

call

 

takes

 

two

 

options:

 

a

 

string

 

variable

 

containing

 

the

 

name

 

of

 

the

 

volume

 

and

 

a

 

numeric

 

variable

 

giving

 

the

 

length

 

of

 

the

 

string

 

in

 

the

 

volume_name

 

option.
3.

   

Export

 

the

 

SFS

 

EXTFH

 

librarys

 

using

 

the

 

following

 

command:

 

export

 

ENCLIBS="-lEncSfsExtfhWrap

 

-lEncSfsExtfh

 

-lEncSfs

 

-lEncina"

 

Refer

 

to

 

the

 

Encina

 

README

 

for

 

more

 

information.

 

4.

   

Verify

 

that

 

the

 

following

 

DCE

 

libraries

 

are

 

correct

 

for

 

your

 

operating

 

system.

 

(These

 

libraries

 

are

 

also

 

used

 

for

 

implementing

 

standalone

 

SFS

 

EXTFH

 

with

 

MF

 

COBOL.)

 

export

 

DCELIBS="-ldce

 

-lc_r

 

-ldcepthreads

 

-lpthreads"

 

Note:

  

The

 

Encina

 

build_rts32

 

script

 

used

 

to

 

create

 

the

 

MF

 

COBOL

 

runtime

 

links

 

the

 

required

 

libraries.

 

5.

   

If

 

DCE

 

authentication

 

is

 

used

 

for

 

the

 

SFS,

 

log

 

in

 

to

 

DCE.

 

6.

   

Prepare

 

an

 

EXTFH

 

COBOL

 

runtime

 

Follow

 

the

 

instructions

 

for

 

your

 

version

 

of

 

Encina:

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

165



On

 

AIX

 

a.

   

Ensure

 

that

 

the

 

COBDIR

 

environment

 

variable

 

is

 

set

 

to

 

the

 

COBOL

 

directory

 

(for

 

example

 

/usr/lib/cobol).

 

b.

   

Use

 

the

 

following

 

command:

 

/usr/lpp/encina/etc/build_rts32

 

-o

 

rtssfs

 

-d

 

.

 

The

 

script

 

build_rts32

 

is

 

provided

 

with

 

Encina.

 

The

 

-o

 

option

 

is

 

used

 

for

 

the

 

name

 

of

 

the

 

runtime

 

being

 

produced

 

and

 

-d

 

indicates

 

the

 

directory

 

that

 

you

 

wish

 

to

 

place

 

the

 

runtime

 

module

 

in.

 

If

 

you

 

want

 

to

 

indicate

 

the

 

current

 

directory,

 

use

 

the

 

character

 

“.”,

 

or

 

you

 

may

 

fully

 

qualify

 

the

 

directory.

  

On

 

HP-UX

 

a.

   

Ensure

 

that

 

the

 

COBDIR

 

environment

 

variable

 

is

 

set

 

to

 

the

 

COBOL

 

directory

 

(for

 

example,

 

/opt/cobol/cobdir).

 

b.

   

Ensure

 

that

 

the

 

LPATH

 

environment

 

variable

 

includes

 

the

 

/opt/encina/lib

 

directory.

 

For

 

example,

 

export

 

LPATH=/opt/encina/lib

 

c.

   

Use

 

the

 

following

 

command:

 

/opt/encina/etc/build_rts32

 

-o

 

rtssfs

 

-d

 

.

 

The

 

script

 

build_rts32

 

is

 

provided

 

with

 

Encina.

 

The

 

-o

 

option

 

is

 

used

 

for

 

the

 

name

 

of

 

the

 

runtime

 

being

 

produced

 

and

 

-d

 

indicates

 

the

 

directory

 

that

 

you

 

wish

 

to

 

place

 

the

 

runtime

 

module

 

in.

 

If

 

you

 

want

 

to

 

indicate

 

the

 

current

 

directory,

 

use

 

the

 

character

 

“.”,

 

or

 

you

 

may

 

fully

 

qualify

 

the

 

directory.

  

On

 

Solaris

 

a.

   

Ensure

 

that

 

the

 

COBDIR

 

environment

 

variable

 

is

 

set

 

to

 

the

 

COBOL

 

directory

 

(for

 

example

 

/opt/lib/cobol).

 

b.

   

Use

 

the

 

following

 

command:

 

/opt/encina/etc/build_rts32

 

-o

 

rtssfs

 

-d

 

.cob

 

-u

 

ExtFHClust.cbl

 

The

 

script

 

build_rts32

 

is

 

provided

 

with

 

Encina.

 

The

 

-o

 

option

 

is

 

used

 

for

 

the

 

name

 

of

 

the

 

runtime

 

being

 

produced

 

and

 

-d

 

indicates

 

the

 

directory

 

that

 

you

 

wish

 

to

 

place

 

the

 

runtime

 

module

 

in.

 

If

 

you

 

want

 

to

 

indicate

 

the

 

current

 

directory,

 

use

 

the

 

character

 

“.”,

 

or

 

you

 

may

 

fully

 

qualify

 

the

 

directory.

At

 

this

 

point

 

you

 

have

 

a

 

COBOL

 

runtime

 

(named

 

’rtssfs’

 

located

 

in

 

the

 

directory

 

you

 

specified

 

with

 

the

 

-d

 

option)

 

that

 

includes

 

the

 

Encina-provided

 

routines

 

to

 

access

 

SFS.

 

7.

   

Compile

 

your

 

program

 

You

 

may

 

use

 

the

 

following

 

command

 

to

 

compile

 

your

 

COBOL

 

programs.

 

Depending

 

on

 

your

 

program,

 

you

 

may

 

need

 

to

 

indicate

 

compiler

 

directives;

 

refer

 

to

 

the

 

COBOL

 

documentation

 

for

 

details.

   

166

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



$

 

cob

 

-uv

 

testsfs.cbl

 

cob

 

-u

 

ExtFHClust.cbl

 

cob

 

-u

 

ExtFHRel.cbl

 

cob

 

-u

 

ExtfhSeq.cbl

 

rm

 

*.int

 

*.o

 

where

 

testsfs.cbl

 

is

 

the

 

name

 

of

 

the

 

COBOL

 

source

 

file,

 

v

 

specifies

 

that

 

messages

 

be

 

sent

 

to

 

the

 

screen

 

as

 

this

 

file

 

is

 

processed,

 

and

 

u

 

requests

 

an

 

unlinked

 

version

 

of

 

the

 

output

 

(.gnt)

 

for

 

use

 

with

 

the

 

runtime.

 

The

 

filenames

 

ExtFHClust.cbl,

 

ExtFHRel.cbl,

 

and

 

ExtFHSeq.cbl

 

refer

 

to

 

clustered,

 

relative

 

or

 

sequential

 

files

 

compiled

 

for

 

the

 

application.

 

8.

   

Execute

 

your

 

program

 

Use

 

the

 

following

 

command

 

to

 

execute

 

your

 

COBOL

 

programs.

 

dce_login

 

principal

 

password

 

export

 

ENCINA_SFS_SERVER=/.:/cics/sfs/serverName

 

export

 

ENCINA_CDS_ROOT=/.:/cics

 

export

 

ENCINA_EXTFH_VOL=<SFSlogVol

 

shortname>

 

export

 

ENCINA_EXTFH_SFS=serverName

 

./rtssfs

 

testsfs

 

where:

 

v

   

principal

 

is

 

the

 

DCE

 

principal.

 

v

   

password

 

is

 

the

 

password

 

for

 

the

 

DCE

 

principal.

 

v

   

SFSlogVol

 

shortName

 

is

 

the

 

name

 

of

 

the

 

SFS

 

logical

 

volume.

 

v

   

serverName

 

is

 

the

 

name

 

of

 

the

 

SFS,

 

for

 

example

 

/.:/cics/sfs/HostA.

 

A

 

DCE

 

login

 

is

 

required

 

to

 

access

 

an

 

SFS

 

file

 

(this

 

is

 

discussed

 

in

 

detail

 

later

 

in

 

this

 

document).

 

testsfs

 

is

 

the

 

COBOL

 

executable

 

module

 

that

 

was

 

prepared

 

using

 

this

 

procedure.

 

./rtssfs

 

testsfs

 

causes

 

the

 

runtime

 

to

 

execute

 

the

 

program.

Using

 

a

 

standalone

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

UNIX

 

To

 

use

 

a

 

standalone

 

SFS

 

EXTFH

 

with

 

your

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

to

 

access

 

SFS

 

files:

 

1.

   

Prepare

 

the

 

environment

 

for

 

EXTFH

 

use

 

Do

 

this

 

by

 

defining

 

files,

 

setting

 

environment

 

variables,

 

and

 

assigning

 

the

 

appropriate

 

permissions.

 

Set

 

the

 

environment

 

variables

 

as

 

is

 

shown

 

in

 

the

 

instructions

 

for

 

using

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

runtime.

 

2.

   

Compile

 

your

 

program

 

You

 

may

 

use

 

the

 

following

 

command

 

to

 

compile

 

your

 

COBOL

 

programs.

 

Depending

 

on

 

your

 

program,

 

you

 

may

 

need

 

to

 

indicate

 

compiler

 

directives;

 

refer

 

to

 

the

 

COBOL

 

documentation

 

for

 

details.

 

For

 

clustered

 

files,

 

use

 

the

 

following

 

example:

 

cob

 

-x

 

ExtFHClust.cbl

 

-L

 

$PRODDIR/encina/lib

 

-L

 

/usr/lib/$ENCLIBS/$DCELIBS

 

-m

 

ixfile=cobol_Extfh

 

-m

 

ixfilev=cobol_Extfh

 

-m

 

rlfile=cobol_Extfh

 

-m

 

rlfilev=cobol_Extfh

 

-m

 

sqfile=cobol_Extfh

 

-m

 

sqfilev=cobol_Extfh

 

rm

 

*.int

 

*.o

 

For

 

relative

 

files,

 

use

 

the

 

following

 

example:

 

cob

 

-x

 

ExtFHRel.cbl

 

-L

 

$PRODDIR/encina/lib

 

-L

 

/usr/lib/$ENCLIBS/$DCELIBS

  

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

167



-m

 

ixfile=cobol_Extfh

 

-m

 

ixfilev=cobol_Extfh

 

-m

 

rlfile=cobol_Extfh

 

-m

 

rlfilev=cobol_Extfh

 

-m

 

sqfile=cobol_Extfh

 

-m

 

sqfilev=cobol_Extfh

 

rm

 

*.int

 

*.o

 

For

 

sequential

 

files,

 

use

 

the

 

following

 

example:

 

cob

 

-x

 

ExtFHSeq.cbl

 

-L

 

$PRODDIR/encina/lib

 

-L

 

/usr/lib/$ENCLIBS/$DCELIBS

 

-m

 

ixfile=cobol_Extfh

 

-m

 

ixfilev=cobol_Extfh

 

-m

 

rlfile=cobol_Extfh

 

-m

 

rlfilev=cobol_Extfh

 

-m

 

sqfile=cobol_Extfh

 

-m

 

sqfilev=cobol_Extfh

 

rm

 

*.int

 

*.o

 

3.

   

Execute

 

your

 

program

 

Use

 

the

 

following

 

command

 

to

 

execute

 

your

 

COBOL

 

programs.

 

dce_login

 

principal

 

password

 

export

 

ENCINA_EXTFH_VOL=SFSlogVol

 

export

 

ENCINA_EXTFH_SFS=serverName

 

./rtssfs

 

testsfs

 

where:

 

v

   

principal

 

is

 

the

 

DCE

 

principal.

 

v

   

password

 

is

 

the

 

password

 

for

 

the

 

DCE

 

principal.

 

v

   

SFSlogVol

 

is

 

the

 

name

 

of

 

the

 

SFS

 

logical

 

volume.

 

v

   

serverName

 

is

 

the

 

name

 

of

 

the

 

SFS,

 

for

 

example

 

/.:/cics/sfs/HostA.

 

A

 

DCE

 

login

 

is

 

required

 

to

 

access

 

an

 

SFS

 

file

 

(this

 

is

 

discussed

 

in

 

detail

 

later

 

in

 

this

 

document).

 

testsfs

 

is

 

the

 

COBOL

 

executable

 

module

 

that

 

was

 

prepared

 

using

 

this

 

procedure.

 

./rtssfs

 

testsfs

 

causes

 

the

 

runtime

 

to

 

execute

 

the

 

program.

Using

 

SFS

 

EXTFH

 

with

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

runtime

 

on

 

Windows

 

To

 

use

 

your

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

programs

 

to

 

access

 

SFS

 

files:

 

1.

   

Verify

 

that

 

the

 

environment

 

is

 

set

 

up

 

to

 

enable

 

command

 

access,

 

library

 

access,

 

and

 

locale

 

access

 

to

 

CICS,

 

Encina,

 

and

 

DCE

 

commands

 

by

 

taking

 

the

 

following

 

steps:

 

v

   

Ensure

 

that

 

all

 

applications

 

that

 

use

 

EXTFH

 

are

 

linked

 

to

 

the

 

libEncExtfh.lib

 

library

 

by

 

using

 

the

 

/CALLFH

 

compiler

 

option.

 

v

   

Ensure

 

that

 

the

 

LIB

 

environment

 

variable

 

includes

 

the

 

name

 

of

 

the

 

directory

 

that

 

contains

 

the

 

libEncExtfh.lib

 

library

 

(by

 

default,

 

C:\opt\encina\lib).

 

v

   

Ensure

 

that

 

the

 

PATH

 

environment

 

variable

 

includes

 

the

 

Encina

 

binary

 

directory

 

(by

 

default,

 

C:\opt\encina\bin).
2.

   

Prepare

 

the

 

environment

 

for

 

EXTFH

 

use

 

Do

 

this

 

by

 

defining

 

files,

 

setting

 

environment

 

variables,

 

and

 

assigning

 

the

 

appropriate

 

permissions.

 

EXTFH

 

uses

 

environment

 

variables

 

to

 

determine

 

which

 

SFS

 

server

 

and

 

volume

 

to

 

use:

 

v

   

ENCINA_SFS_SERVER

 

—

 

specifies

 

which

 

server

 

to

 

use.

 

This

 

must

 

be

 

set

 

to

 

the

 

fully

 

qualified

 

name

 

of

 

the

 

SFS

 

(for

 

example,

 

/.:/cics/sfs/sfs1.

 

v

   

ENCINA_EXTFH_SFS

 

—

 

specifies

 

which

 

server

 

to

 

use.

 

This

 

must

 

be

 

set

 

to

 

the

 

fully

 

qualified

 

name

 

of

 

the

 

SFS

 

(for

 

example,

 

/.:/cics/sfs/sfs1.

 

v

   

ENCINA_EXTFH_VOL

 

—

 

specifies

 

the

 

name

 

of

 

the

 

SFS

 

logical

 

volume

 

specified

 

when

 

the

 

server

 

was

 

started,

 

<shortname>

 

(for

 

example,

 

sfs_Ssfs1).

 

v

   

ENCINA_CDS_ROOT

 

—

 

set

 

to

 

the

 

fully

 

qualified

 

name

 

for

 

the

 

DCE

 

cell

 

(for

 

example,

 

/.:/cics/sfs/sfs1.

  

168

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



The

 

server

 

is

 

used

 

for

 

all

 

SFS

 

file

 

operations.

 

The

 

volume

 

is

 

used

 

when

 

a

 

new

 

file

 

has

 

to

 

be

 

created.

 

The

 

environment

 

variables

 

are

 

checked

 

when

 

the

 

file

 

is

 

opened.

 

These

 

variables

 

can

 

be

 

set

 

or

 

changed

 

using

 

the

 

following

 

calls:

 

v

   

TR_SET_SFS_SERVER

 

serverName

 

nameSize.

 

The

 

call

 

takes

 

two

 

options:

 

a

 

string

 

variable

 

containing

 

the

 

fully

 

qualified

 

server

 

name

 

and

 

a

 

numeric

 

variable

 

giving

 

the

 

length

 

of

 

the

 

string

 

in

 

the

 

serverName

 

option.

 

v

   

TR_SET_SFS_VOLUME

 

volumeName

 

nameSize.

 

The

 

call

 

takes

 

two

 

options:

 

a

 

string

 

variable

 

containing

 

the

 

name

 

of

 

the

 

volume

 

and

 

a

 

numeric

 

variable

 

giving

 

the

 

length

 

of

 

the

 

string

 

in

 

the

 

volume_name

 

option.
3.

   

Export

 

the

 

SFS

 

EXTFH

 

librarys

 

using

 

the

 

following

 

command:

 

Set

 

ENCLIBS="-lEncSfsExtfhWrap

 

-lEncSfsExtfh

 

-lEncSfs

 

-lEncina"

 

Refer

 

to

 

the

 

Encina

 

README

 

for

 

more

 

information.

 

4.

   

Verify

 

that

 

the

 

following

 

DCE

 

libraries

 

are

 

correct

 

for

 

your

 

operating

 

system.

 

(These

 

libraries

 

are

 

also

 

used

 

for

 

implementing

 

standalone

 

SFS

 

EXTFH

 

with

 

Net

 

Express

 

COBOL.)

 

Set

  

DCELIBS="-ldce

 

-lc_r

 

-ldcepthreads

 

-lpthreads"

 

Note:

  

The

 

Encina

 

build_rts32

 

script

 

used

 

to

 

create

 

the

 

COBOL

 

runtime

 

links

 

the

 

required

 

libraries.

 

5.

   

If

 

DCE

 

authentication

 

is

 

used

 

for

 

the

 

SFS,

 

log

 

in

 

to

 

DCE.

 

6.

   

Prepare

 

an

 

EXTFH

 

COBOL

 

runtime

 

Follow

 

the

 

instructions

 

for

 

your

 

version

 

of

 

Encina.

   

Net

 

Express

 

On

 

Windows

 

a.

   

Ensure

 

that

 

the

 

COBDIR

 

environment

 

variable

 

is

 

set

 

to

 

the

 

COBOL

 

directory

 

(for

 

example

 

C:\NetExpress\Base\BIN).

 

b.

   

Ensure

 

the

 

%PATH%

 

environment

 

setting

 

includes

 

the

 

\opt\encina\bin

 

directory

 

in

 

it.

 

c.

   

Ensure

 

the

 

%LIB%

 

environment

 

setting

 

includes

 

the

 

\opt\encina\lib

 

directory

 

in

 

it.

 

d.

   

Ensure

 

the

 

Encina

 

EXTFH

 

environment

 

variables

 

(ENCINA_EXTFH_SFS

 

and

 

ENCINA_EXTFH_VOL)

 

are

 

set.

 

e.

   

Use

 

the

 

following

 

command:

 

cobol

 

Testprog1.cbl

 

/CALLFH"libEncExtfh";

 

cbllink

 

-rE

 

Testprog1.obj

 

At

 

this

 

point

 

you

 

have

 

a

 

COBOL

 

runtime

 

(named

 

’rtssfs’

 

located

 

in

 

the

 

directory

 

you

 

specified

 

with

 

the

 

-d

 

option)

 

that

 

includes

 

the

 

Encina-provided

 

routines

 

to

 

access

 

SFS.

 

7.

   

Compile

 

your

 

program

 

You

 

may

 

use

 

the

 

following

 

command

 

to

 

compile

 

your

 

COBOL

 

programs.

 

Depending

 

on

 

your

 

program,

 

you

 

may

 

need

 

to

 

indicate

 

compiler

 

directives;

 

refer

 

to

 

the

 

COBOL

 

documentation

 

for

 

details.

 

C:

 

>

 

cob

 

-uv

 

testsfs.cbl

 

cob

 

-u

 

ExtFHClust.cbl

 

cob

 

-u

 

ExtFHRel.cbl

 

cob

 

-u

 

ExtfhSeq.cbl

 

rm

 

*.int

 

*.o

 

where

 

testsfs.cbl

 

is

 

the

 

name

 

of

 

the

 

COBOL

 

source

 

file

 

on

 

the

 

Windows

 

platform,

 

v

 

specifies

 

that

 

messages

 

be

 

sent

 

to

 

the

 

screen

 

as

 

this

 

file

 

is

 

processed,

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

169

|
|



and

 

u

 

requests

 

an

 

unlinked

 

version

 

of

 

the

 

output

 

(.gnt)

 

for

 

use

 

with

 

the

 

runtime.

 

The

 

filenames

 

ExtFHClust.cbl,

 

ExtFHRel.cbl,

 

and

 

ExtFHSeq.cbl

 

refer

 

to

 

clustered,

 

relative

 

or

 

sequential

 

files

 

compiled

 

for

 

the

 

application.

 

8.

   

Execute

 

your

 

program

 

Use

 

the

 

following

 

command

 

to

 

execute

 

your

 

COBOL

 

programs.

 

dce_login

 

principal

 

password

 

SET

 

ENCINA_SFS_SERVER=/.:/cics/sfs/serverName

 

Set

 

ENCINA_CDS_ROOT=/.:/cics

 

Set

 

ENCINA_EXTFH_VOL=<SFSlogVol

 

shortname>

 

Set

 

ENCINA_EXTFH_SFS=serverName

 

./rtssfs

 

testsfs

 

where:

 

v

   

principal

 

is

 

the

 

DCE

 

principal.

 

v

   

password

 

is

 

the

 

password

 

for

 

the

 

DCE

 

principal.

 

v

   

SFSlogVol

 

shortName

 

is

 

the

 

name

 

of

 

the

 

SFS

 

logical

 

volume.

 

v

   

serverName

 

is

 

the

 

name

 

of

 

the

 

SFS,

 

for

 

example

 

/.:/cics/sfs/HostA.

 

A

 

DCE

 

login

 

is

 

required

 

to

 

access

 

an

 

SFS

 

file

 

(this

 

is

 

discussed

 

in

 

detail

 

later

 

in

 

this

 

document).

 

testsfs

 

is

 

the

 

COBOL

 

executable

 

module

 

that

 

was

 

prepared

 

using

 

this

 

procedure.

 

./rtssfs

 

testsfs

 

causes

 

the

 

runtime

 

to

 

execute

 

the

 

program.

Customizing

 

the

 

SFS

 

EXTFH

 

The

 

advantage

 

of

 

using

 

SFS

 

is

 

that

 

you

 

gain

 

transactional

 

guarantees;

 

if

 

you

 

use

 

the

 

transaction

 

(TX)

 

calls

 

with

 

rollback

 

enabled,

 

changes

 

to

 

records

 

are

 

automatically

 

undone

 

if

 

the

 

transaction

 

aborts.

 

COBOL

 

supports

 

four

 

file

 

types:

 

line-sequential,

 

record-sequential,

 

indexed,

 

and

 

relative.

 

When

 

EXTFH

 

is

 

in

 

use,

 

three

 

of

 

these

 

are

 

mapped

 

to

 

SFS

 

file

 

types,

 

as

 

shown

 

in

 

Table

 

36.

 

SFS

 

does

 

not

 

support

 

tape-oriented

 

routines,

 

such

 

as

 

those

 

designed

 

to

 

handle

 

multiple

 

reels

 

of

 

a

 

tape

 

containing

 

an

 

output

 

file.

  

Table

 

36.

 

EXTFH

 

File

 

Type

 

Mappings

 

COBOL

 

File

 

Type

 

SFS

 

File

 

Type

 

Line-sequential

 

Not

 

supported

 

in

 

SFS

 

Record-sequential

 

Entry-sequenced

 

Indexed

 

Clustered

 

Relative

 

Relative

   

Accessing

 

other

 

SFS

 

features:

  

The

 

environment

 

variables

 

listed

 

in

 

Table

 

37

 

on

 

page

 

171

 

allow

 

you

 

to

 

access

 

other

 

SFS

 

features.

 

They

 

are

 

checked

 

when

 

the

 

file

 

is

 

opened.

 

These

 

variables

 

can

 

be

 

set

 

or

 

changed

 

using

 

the

 

COBOL

 

calls

 

described

 

in

 

this

 

same

 

table.

 

The

 

defaults

 

listed

 

apply

 

both

 

when

 

the

 

variable

 

has

 

not

 

been

 

set

 

and

 

when

 

it

 

is

 

set

 

to

 

an

 

invalid

 

value.

 

These

 

function

 

calls

 

return

 

a

 

value

 

of

 

0

 

if

 

they

 

are

 

successful

 

and

 

1

 

if

 

they

 

fail.

 

These

 

functions

 

only

 

affect

 

subsequent

 

file

 

opens.

 

They

 

do

 

not

 

change

 

the

 

behavior

 

of

 

files

 

that

 

are

 

already

 

open.

 

The

 

possible

 

values

 

for

 

the

 

options

 

to

 

the

 

calls

 

are

 

the

 

same

 

as

 

those

 

for

 

the

 

environment

 

variables.

   

170

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

37.

 

Environment

 

Variables

 

for

 

Accessing

 

SFS

 

Features

 

from

 

EXTFH

 

Applications

 

Environment

 

Variable

 

Description

 

Possible

 

Values

 

Call

 

ENCINA_EXTFH_

 

AUTO_FLUSH

 

Controls

 

the

 

setting

 

of

 

the

 

operational

 

force

 

flag

 

SFS

 

uses

 

when

 

opening

 

the

 

file.

 

0

 

=

 

do

 

not

 

use

 

operational

 

force.

 

Any

 

other

 

value

 

means

 

use

 

operational

 

force.

 

DEFAULT

 

=

 

0.

 

TR_EXTFH_SET_

 

AUTO_FLUSH

 

ENCINA_EXTFH_

 

SLOT_CHOICE

 

Controls

 

where

 

inserts

 

occur

 

in

 

relative

 

files.

 

The

 

string

 

FIRST

 

=

 

insertions

 

occur

 

in

 

the

 

first

 

open

 

slot.

 

LAST

 

indicates

 

that

 

insertions

 

occur

 

after

 

the

 

last

 

record.

 

DEFAULT=LAST.

 

TR_EXTFH_SET_

 

SLOT_CHOICE

 

ENCINA_EXTFH_

 

DUP_DETECTION

 

Controls

 

whether

 

duplicate

 

detection

 

is

 

enabled

 

for

 

a

 

file.

 

The

 

string

 

NONE

 

disables

 

duplicate

 

detection.

 

ALL

 

enables

 

duplicate

 

detection.

 

DEFAULT

 

=

 

ALL.

 

TR_EXTFH_SET_

 

DUP_DETECT

 

ENCINA_EXTFH_

 

OP_TIMEOUT

 

Defines

 

the

 

SFS

 

operation

 

timeout

 

value.

 

The

 

number

 

of

 

seconds

 

to

 

wait

 

for

 

an

 

SFS

 

operation

 

to

 

complete.

 

DEFAULT

 

=

 

60

 

seconds.

 

TR_EXTFH_SET_

 

OP_TIMEOUT

 

ENCINA_EXTFH_

 

OPEN_TIMEOUT

 

Defines

 

the

 

timeout

 

value

 

for

 

SFS

 

open

 

file

 

calls.

 

The

 

number

 

of

 

seconds

 

to

 

wait

 

for

 

an

 

open

 

file

 

call

 

to

 

complete.

 

DEFAULT

 

=

 

60

 

seconds.

 

TR_EXTFH_

 

SETOPEN

 

_TIMEOUT

 

ENCINA_EXTFH_

 

CACHE

 

Defines

 

the

 

size

 

of

 

the

 

read

 

and

 

insert

 

caches.

 

The

 

number

 

of

 

pages

 

to

 

be

 

used

 

for

 

the

 

cache.

 

DEFAULT

 

=

 

0

 

(caching

 

is

 

not

 

enabled).

 

TR_EXTFH_SET_

 

CACHE_SIZE

   

Chapter

 

5.

 

Coding

 

for

 

data

 

services

 

171



172

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

This

 

chapter

 

describes

 

how

 

to

 

write

 

application

 

programs

 

that

 

use

 

the

 

CICS

 

business

 

logic

 

services.

 

Introduction

 

to

 

business

 

logic

 

Transaction

 

processing

 

systems

 

tend

 

to

 

involve

 

a

 

number

 

of

 

application

 

programs

 

that

 

perform

 

separate

 

logical

 

units

 

of

 

work

 

(LUW)

 

or

 

tasks.

 

Dividing

 

transaction

 

processing

 

up

 

in

 

this

 

way

 

has

 

a

 

number

 

of

 

advantages:

 

v

   

Programs

 

are

 

smaller

 

and

 

easier

 

to

 

maintain.

 

v

   

You

 

can

 

write

 

pseudoconversational

 

transactions

 

in

 

which

 

each

 

program

 

performs

 

a

 

single

 

task

 

and

 

then

 

returns

 

control

 

to

 

the

 

operating

 

system.

 

v

   

You

 

can

 

distribute

 

your

 

applications

 

so

 

that

 

you

 

keep

 

the

 

presentation

 

services,

 

data

 

services,

 

and

 

the

 

business

 

logic

 

separate.

 

For

 

an

 

overview

 

of

 

the

 

terminology

 

used

 

in

 

this

 

chapter,

 

see

 

“Transaction

 

processing

 

terms

 

and

 

concepts”

 

on

 

page

 

4.

 

Task

 

initiation

 

Tasks

 

can

 

be

 

initiated

 

in

 

two

 

ways:

 

Terminal

 

task

 

initiation

 

(TTI)

 

This

 

is

 

the

 

most

 

common

 

method

 

of

 

task

 

initiation.

 

When

 

an

 

operator

 

enters

 

a

 

transaction

 

identifier

 

and

 

presses

 

ENTER,

 

the

 

transaction

 

is

 

started.

 

TTI

 

also

 

covers

 

transactions

 

that

 

are

 

initiated

 

by

 

EXEC

 

CICS

 

RETURN

 

when

 

the

 

TRANSID

 

option

 

as

 

the

 

transaction

 

identifier

 

is

 

used.

 

Pseudoconversational

 

transactions

 

that

 

leave

 

a

 

transaction

 

identifier

 

on

 

the

 

screen

 

are

 

TTI

 

by

 

definition

 

because

 

it

 

is

 

the

 

terminal

 

action.

 

If

 

the

 

IMMEDIATE

 

option

 

is

 

specified

 

along

 

with

 

TRANSID,

 

the

 

transaction

 

starts

 

regardless

 

of

 

any

 

other

 

transactions

 

that

 

are

 

enqueued

 

by

 

ATI

 

for

 

this

 

terminal.

  

See

 

the

 

CICS

 

Administration

 

Guide

 

for

 

related

 

information.

 

Automatic

 

transaction

 

initiation

 

(ATI)

 

This

 

covers

 

two

 

areas

 

of

 

task

 

initiation:

 

v

   

Triggered

 

transaction

 

initiation:

 

If

 

the

 

systems

 

administrator

 

specifies

 

a

 

nonzero

 

trigger

 

level

 

for

 

a

 

particular

 

transient

 

data

 

intrapartition

 

destination

 

in

 

the

 

Transient

 

Data

 

Definitions

 

(TDD),

 

a

 

task

 

is

 

automatically

 

initiated

 

when

 

the

 

number

 

of

 

entries

 

in

 

the

 

queue

 

reaches

 

the

 

specified

 

level.

 

Control

 

is

 

passed

 

to

 

an

 

application

 

program

 

that

 

then

 

processes

 

the

 

data

 

in

 

the

 

queue.

 

v

   

Interval

 

control

 

transaction

 

initiation:

 

The

 

Interval

 

Control

 

command

 

EXEC

 

CICS

 

START

 

TRANSID

 

specifies

 

the

 

transaction

 

identifier

 

that

 

will

 

be

 

used

 

for

 

a

 

new

 

task,

 

the

 

time

 

the

 

task

 

will

 

be

 

initiated,

 

and,

 

optionally,

 

a

 

terminal

 

identification

 

if

 

the

 

task

 

is

 

associated

 

with

 

a

 

terminal.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

173

|
|
|
|



Program

 

execution

 

services

 

Transaction

 

processing

 

systems

 

tend

 

to

 

involve

 

a

 

number

 

of

 

application

 

programs

 

that

 

perform

 

separate

 

logical

 

units

 

of

 

work,

 

or

 

tasks.

 

CICS

 

program

 

execution

 

services

 

govern

 

the

 

flow

 

of

 

control

 

between

 

application

 

programs

 

in

 

a

 

CICS

 

system.

 

You

 

can

 

use

 

program

 

execution

 

services

 

commands

 

to:

 

v

   

Link

 

one

 

of

 

your

 

application

 

programs

 

to

 

another,

 

either

 

locally

 

or

 

remotely,

 

anticipating

 

subsequent

 

return

 

to

 

the

 

requesting

 

program

 

(EXEC

 

CICS

 

LINK).

 

The

 

COMMAREA

 

and

 

the

 

INPUTMSG

 

options

 

of

 

this

 

command

 

allow

 

data

 

to

 

be

 

passed

 

to

 

the

 

requested

 

application

 

program.

 

(You

 

cannot

 

use

 

the

 

INPUTMSG

 

and

 

INPUTMSGLEN

 

options

 

of

 

a

 

LINK

 

command

 

when

 

you

 

are

 

using

 

DPL).

 

v

   

Return

 

control

 

from

 

one

 

of

 

your

 

application

 

programs

 

to

 

another,

 

or

 

to

 

CICS

 

(EXEC

 

CICS

 

RETURN).

 

The

 

COMMAREA

 

and

 

INPUTMSG

 

options

 

of

 

this

 

command

 

allow

 

data

 

to

 

be

 

passed

 

to

 

a

 

newly-initiated

 

transaction.

 

(You

 

cannot

 

use

 

the

 

INPUTMSG

 

and

 

INPUTMSGLEN

 

options

 

of

 

a

 

RETURN

 

command

 

when

 

you

 

are

 

using

 

DPL).

 

v

   

Transfer

 

control

 

from

 

one

 

of

 

your

 

application

 

programs

 

to

 

another,

 

with

 

no

 

return

 

to

 

the

 

requesting

 

program

 

(EXEC

 

CICS

 

XCTL).

 

The

 

COMMAREA

 

and

 

the

 

INPUTMSG

 

options

 

of

 

this

 

command

 

allow

 

data

 

to

 

be

 

passed

 

to

 

the

 

requested

 

application

 

program.

 

(You

 

cannot

 

use

 

the

 

INPUTMSG

 

and

 

INPUTMSGLEN

 

options

 

of

 

an

 

XCTL

 

command

 

when

 

you

 

are

 

using

 

DPL).

Note:

  

The

 

name

 

of

 

the

 

application

 

referred

 

to

 

in

 

a

 

program

 

services

 

command

 

must

 

have

 

been

 

defined

 

as

 

a

 

program

 

to

 

CICS.

 

Application

 

program

 

logical

 

levels

 

Application

 

programs

 

running

 

under

 

CICS

 

are

 

executed

 

at

 

various

 

logical

 

levels.

 

The

 

first

 

program

 

to

 

receive

 

control

 

within

 

a

 

task

 

is

 

at

 

the

 

highest

 

logical

 

level.

 

When

 

an

 

application

 

program

 

is

 

linked

 

to

 

another,

 

expecting

 

an

 

eventual

 

return

 

of

 

control,

 

the

 

linked-to

 

program

 

is

 

considered

 

to

 

reside

 

at

 

the

 

next

 

lower

 

logical

 

level.

 

When

 

control

 

is

 

simply

 

transferred

 

from

 

one

 

application

 

program

 

to

 

another,

 

without

 

expecting

 

return

 

of

 

control,

 

the

 

two

 

programs

 

are

 

considered

 

to

 

reside

 

at

 

the

 

same

 

logical

 

level,

 

as

 

shown

 

in

 

Figure

 

7

 

on

 

page

 

175:

    

174

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|
|

|
|
|
|

|
|
|



Link

 

to

 

another

 

program

 

anticipating

 

return

 

Use

 

the

 

EXEC

 

CICS

 

LINK

 

command

 

to

 

pass

 

control

 

from

 

an

 

application

 

program

 

at

 

one

 

logical

 

level

 

to

 

an

 

application

 

program

 

at

 

the

 

next

 

lower

 

logical

 

level.

 

If

 

the

 

linked-to

 

program

 

is

 

not

 

already

 

in

 

main

 

storage,

 

it

 

is

 

loaded.

 

When

 

the

 

EXEC

 

CICS

 

RETURN

 

command

 

is

 

processed

 

in

 

the

 

linked-to

 

program,

 

control

 

is

 

returned

 

to

 

the

 

higher

 

logical

 

level

 

program

 

initiating

 

the

 

linkage

 

at

 

the

 

next

 

sequential

 

process

 

instruction.

 

The

 

linked-to

 

program

 

operates

 

independently

 

of

 

the

 

program

 

that

 

issues

 

the

 

EXEC

 

CICS

 

LINK

 

command

 

with

 

regard

 

to

 

handling

 

exceptional

 

conditions,

 

attention

 

identifiers,

 

and

 

abends.

 

For

 

example,

 

the

 

effects

 

of

 

HANDLE

 

commands

 

in

 

the

 

linking

 

program

 

are

 

not

 

inherited

 

by

 

the

 

linked-to

 

program,

 

but

 

the

 

original

 

HANDLE

 

commands

 

are

 

restored

 

on

 

return

 

to

 

the

 

linking

 

program.

 

You

 

can

 

use

 

the

 

HANDLE

 

commands

 

to

 

deal

 

with

 

exceptional

 

conditions,

 

attention

 

identifiers,

 

and

 

abends

 

at

 

the

 

new

 

logical

 

level.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

more

 

information

 

about

 

these

 

commands.

 

The

 

linked-to

 

program

 

can

 

reside

 

either

 

locally

 

or

 

remotely.

 

For

 

details

 

of

 

how

 

to

 

access

 

remote

 

programs,

 

see

 

the

 

CICS

 

Intercommunication

 

Guide

 

.

 

Transfer

 

control

 

from

 

one

 

program

 

to

 

another

 

Use

 

the

 

EXEC

 

CICS

 

XCTL

 

command

 

to

 

transfer

 

control

 

from

 

one

 

program

 

to

 

another

 

at

 

the

 

same

 

logical

 

level.

 

You

 

cannot

 

return

 

to

 

the

 

calling

 

program.

 

Refer

 

to

 

“Application

 

program

 

logical

 

levels”

 

on

 

page

 

174.

 

Passing

 

data

 

to

 

other

 

programs

 

You

 

can

 

pass

 

data

 

to

 

another

 

program

 

when

 

control

 

is

 

passed

 

to

 

that

 

other

 

program

 

using

 

a

 

program

 

execution

 

services

 

command.

   

Figure

 

7.

 

Application

 

programming

 

logical

 

levels

  

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

175



Using

 

the

 

COMMAREA

 

option

 

The

 

COMMAREA

 

option

 

of

 

the

 

EXEC

 

CICS

 

LINK

 

and

 

EXEC

 

CICS

 

XCTL

 

commands

 

specifies

 

the

 

name

 

of

 

a

 

data

 

area

 

(known

 

as

 

a

 

communication

 

area)

 

in

 

which

 

data

 

is

 

passed

 

to

 

the

 

program

 

being

 

invoked.

 

In

 

a

 

similar

 

manner,

 

the

 

COMMAREA

 

option

 

of

 

the

 

EXEC

 

CICS

 

RETURN

 

command

 

specifies

 

the

 

name

 

of

 

a

 

communication

 

area

 

in

 

which

 

data

 

is

 

passed

 

to

 

the

 

transaction

 

identified

 

in

 

the

 

TRANSID

 

option.

 

(The

 

TRANSID

 

option

 

specifies

 

a

 

transaction

 

that

 

is

 

initiated

 

either

 

when

 

the

 

next

 

input

 

is

 

received

 

from

 

the

 

terminal

 

that

 

is

 

associated

 

with

 

the

 

task,

 

or

 

when

 

the

 

IMMEDIATE

 

option

 

is

 

specified.)

 

For

 

more

 

information

 

about

 

the

 

length

 

of

 

the

 

communication

 

area,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

The

 

invoked

 

program

 

receives

 

the

 

data

 

as

 

a

 

parameter.

 

In

 

COBOL,

 

the

 

program

 

must

 

contain

 

a

 

definition

 

of

 

a

 

data

 

area

 

to

 

allow

 

access

 

to

 

the

 

passed

 

data.

 

In

 

a

 

receiving

 

COBOL

 

program,

 

you

 

must

 

give

 

the

 

data

 

area

 

the

 

name

 

DFHCOMMAREA.

 

A

 

program

 

passes

 

a

 

COMMAREA

 

as

 

part

 

of

 

an

 

EXEC

 

CICS

 

LINK,

 

EXEC

 

CICS

 

XCTL,

 

or

 

EXEC

 

CICS

 

RETURN

 

command;

 

either

 

the

 

working

 

storage

 

or

 

the

 

linkage

 

section

 

can

 

contain

 

the

 

data

 

area.

 

A

 

program

 

receiving

 

a

 

COMMAREA

 

should

 

specify

 

the

 

data

 

in

 

the

 

linkage

 

section.

 

This

 

applies

 

when

 

the

 

program

 

is

 

one

 

of

 

the

 

following:

 

v

   

The

 

receiving

 

program

 

during

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

command

 

where

 

a

 

COMMAREA

 

is

 

passed

 

v

   

The

 

initial

 

program

 

where

 

the

 

EXEC

 

CICS

 

RETURN

 

command

 

of

 

a

 

previously

 

called

 

task

 

specified

 

a

 

COMMAREA

 

and

 

TRANSID

 

A

 

C

 

or

 

C++

 

program

 

issues

 

an

 

EXEC

 

CICS

 

ADDRESS

 

COMMAREA

 

command

 

to

 

obtain

 

the

 

address

 

of

 

the

 

communication

 

area.

 

The

 

program

 

must

 

pass

 

the

 

address

 

of

 

a

 

pointer

 

as

 

a

 

parameter

 

to

 

the

 

EXEC

 

CICS

 

ADDRESS

 

COMMAREA

 

command.

 

This

 

pointer

 

will

 

then

 

be

 

set

 

to

 

point

 

to

 

the

 

passed

 

data.

 

The

 

receiving

 

data

 

area

 

need

 

not

 

be

 

of

 

the

 

same

 

length

 

as

 

the

 

original

 

communication

 

area;

 

if

 

access

 

is

 

required

 

only

 

to

 

the

 

first

 

part

 

of

 

the

 

data,

 

the

 

new

 

data

 

area

 

can

 

be

 

shorter.

 

However,

 

it

 

must

 

not

 

be

 

longer

 

than

 

the

 

length

 

of

 

the

 

communication

 

area

 

being

 

passed,

 

because

 

if

 

it

 

is,

 

your

 

transaction

 

may

 

inadvertently

 

read

 

data

 

outside

 

the

 

area

 

that

 

has

 

been

 

passed.

 

This

 

data

 

is

 

outside

 

the

 

area

 

you

 

can

 

safely

 

access,

 

and

 

may

 

cause

 

your

 

transaction

 

to

 

have

 

unpredictable

 

results.

 

It

 

may

 

also

 

overwrite

 

data

 

outside

 

the

 

area,

 

which

 

could

 

cause

 

CICS

 

to

 

abend

 

your

 

transaction.

 

To

 

avoid

 

this

 

happening,

 

your

 

program

 

can

 

access

 

the

 

EIBCALEN

 

field

 

in

 

the

 

EIB

 

of

 

the

 

task

 

to

 

check

 

that

 

the

 

length

 

of

 

the

 

communication

 

area

 

passed

 

to

 

it

 

is

 

as

 

expected.

 

If

 

no

 

communication

 

area

 

has

 

been

 

passed,

 

the

 

value

 

of

 

EIBCALEN

 

is

 

zero;

 

otherwise,

 

EIBCALEN

 

always

 

contains

 

the

 

value

 

specified

 

in

 

the

 

LENGTH

 

option

 

of

 

the

 

EXEC

 

CICS

 

LINK,

 

EXEC

 

CICS

 

XCTL,

 

or

 

EXEC

 

CICS

 

RETURN

 

command,

 

regardless

 

of

 

the

 

size

 

of

 

the

 

data

 

area

 

in

 

the

 

invoked

 

program.

 

You

 

should

 

check

 

that

 

the

 

value

 

in

 

EIBCALEN

 

matches

 

the

 

value

 

expected

 

by

 

your

 

program,

 

and

 

make

 

sure

 

that

 

your

 

transaction

 

is

 

accessing

 

data

 

within

 

that

 

area.

 

You

 

might

 

also

 

want

 

to

 

consider

 

adding

 

an

 

identifier

 

to

 

COMMAREA

 

as

 

an

 

additional

 

check

 

on

 

the

 

data

 

that

 

is

 

being

 

passed.

 

This

 

identifier

 

is

 

sent

 

with

 

the

 

sending

 

transaction

 

and

 

checked

 

for

 

by

 

the

 

receiving

 

transaction.

   

176

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|



When

 

a

 

communication

 

area

 

is

 

passed

 

using

 

an

 

EXEC

 

CICS

 

LINK

 

command,

 

the

 

invoked

 

program

 

is

 

passed

 

a

 

pointer

 

to

 

the

 

communication

 

area

 

itself.

 

Any

 

changes

 

made

 

to

 

the

 

contents

 

of

 

the

 

data

 

area

 

in

 

the

 

invoked

 

program

 

are

 

available

 

to

 

the

 

invoking

 

program,

 

when

 

control

 

returns

 

to

 

it;

 

to

 

access

 

any

 

such

 

changes,

 

the

 

program

 

names

 

the

 

data

 

area

 

specified

 

in

 

the

 

original

 

COMMAREA

 

option.

 

When

 

a

 

communication

 

area

 

is

 

passed

 

using

 

an

 

EXEC

 

CICS

 

XCTL

 

command,

 

a

 

copy

 

of

 

that

 

area

 

is

 

made

 

unless

 

the

 

area

 

to

 

be

 

passed

 

has

 

the

 

same

 

address

 

and

 

length

 

as

 

the

 

area

 

that

 

was

 

passed

 

to

 

the

 

program

 

issuing

 

the

 

command.

 

For

 

example,

 

if

 

program

 

PROGA

 

issues

 

an

 

EXEC

 

CICS

 

LINK

 

command

 

to

 

program

 

PROGB

 

that,

 

in

 

turn,

 

issues

 

an

 

EXEC

 

CICS

 

XCTL

 

command

 

to

 

program

 

PROGC,

 

and

 

if

 

PROGB

 

passes

 

to

 

PROGC

 

the

 

same

 

communication

 

area

 

that

 

PROGA

 

passed

 

to

 

PROGB,

 

program

 

PROGC

 

will

 

be

 

passed

 

addressability

 

to

 

the

 

communication

 

area

 

that

 

belongs

 

to

 

A

 

(not

 

a

 

copy

 

of

 

it)

 

and

 

any

 

changes

 

made

 

by

 

PROGC

 

will

 

be

 

available

 

to

 

PROGA

 

when

 

control

 

returns

 

to

 

it.

 

When

 

a

 

lower-level

 

program,

 

which

 

is

 

a

 

linked-to

 

program,

 

issues

 

the

 

EXEC

 

CICS

 

RETURN

 

command,

 

control

 

passes

 

back

 

to

 

the

 

level

 

one

 

logical

 

level

 

higher

 

than

 

the

 

program

 

returning

 

control.

 

If

 

the

 

task

 

is

 

associated

 

with

 

a

 

terminal,

 

the

 

TRANSID

 

option

 

can

 

be

 

used

 

at

 

the

 

lower

 

level

 

to

 

specify

 

the

 

transaction

 

identifier

 

for

 

the

 

next

 

transaction

 

that

 

is

 

to

 

be

 

associated

 

with

 

that

 

terminal.

 

The

 

transaction

 

identifier

 

comes

 

into

 

use

 

only

 

after

 

the

 

highest

 

logical

 

level

 

has

 

relinquished

 

control

 

to

 

CICS

 

by

 

using

 

the

 

EXEC

 

CICS

 

RETURN

 

command,

 

and

 

input

 

is

 

received

 

from

 

the

 

terminal.

 

Any

 

input

 

that

 

is

 

entered

 

from

 

the

 

terminal

 

is

 

interpreted

 

wholly

 

as

 

data.

 

If

 

the

 

IMMEDIATE

 

option

 

is

 

specified,

 

the

 

input

 

from

 

the

 

terminal

 

is

 

not

 

required

 

to

 

start

 

the

 

transaction.

 

You

 

can

 

use

 

TRANSID

 

without

 

COMMAREA

 

when

 

returning

 

from

 

any

 

link

 

level,

 

but

 

be

 

aware

 

that

 

it

 

might

 

be

 

overridden

 

on

 

a

 

later

 

EXEC

 

CICS

 

RETURN

 

command.

 

Also,

 

you

 

can

 

only

 

specify

 

the

 

COMMAREA

 

option

 

at

 

the

 

highest

 

level,

 

otherwise

 

you

 

will

 

get

 

an

 

INVREQ.

 

In

 

addition,

 

the

 

COMMAREA

 

option

 

can

 

be

 

used

 

to

 

pass

 

data

 

to

 

the

 

new

 

task

 

that

 

is

 

to

 

be

 

started.

 

The

 

invoked

 

program

 

can

 

access

 

field

 

EIBFN

 

in

 

the

 

EIB

 

to

 

determine

 

which

 

type

 

of

 

command

 

invoked

 

the

 

program.

 

The

 

field

 

must

 

be

 

tested

 

before

 

CICS

 

commands

 

are

 

issued.

 

If

 

an

 

EXEC

 

CICS

 

LINK

 

or

 

EXEC

 

CICS

 

XCTL

 

invoked

 

the

 

program,

 

the

 

appropriate

 

code

 

is

 

found

 

in

 

the

 

field;

 

if

 

EXEC

 

CICS

 

RETURN

 

is

 

used

 

and

 

no

 

CICS

 

commands

 

are

 

issued

 

in

 

the

 

task,

 

the

 

field

 

will

 

contain

 

zeros.

 

Using

 

the

 

INPUTMSG

 

option

 

The

 

INPUTMSG

 

option

 

of

 

the

 

LINK,

 

XCTL,

 

and

 

RETURN

 

commands

 

provides

 

another

 

way

 

of

 

specifying

 

the

 

name

 

of

 

a

 

data

 

area

 

that

 

is

 

to

 

be

 

passed

 

to

 

the

 

program

 

that

 

is

 

being

 

invoked.

 

In

 

this

 

case,

 

the

 

invoked

 

program

 

gets

 

the

 

data

 

by

 

processing

 

a

 

RECEIVE

 

command.

 

This

 

option

 

enables

 

you

 

to

 

invoke

 

(″front-end″)

 

application

 

programs

 

to

 

obtain

 

initial

 

terminal

 

input.

 

These

 

application

 

programs

 

are

 

written

 

to

 

be

 

invoked

 

directly

 

from

 

a

 

terminal,

 

and

 

contain

 

RECEIVE

 

commands.

 

If

 

an

 

application

 

program

 

is

 

accessed

 

by

 

a

 

LINK

 

command

 

and

 

the

 

application

 

program

 

issues

 

a

 

RECEIVE

 

command

 

to

 

obtain

 

initial

 

input

 

from

 

a

 

terminal,

 

no

 

data

 

exists

 

for

 

that

 

application

 

program

 

to

 

receive

 

if

 

the

 

initial

 

RECEIVE

 

request

 

has

 

already

 

been

 

issued

 

by

 

a

 

higher-level

 

program.

 

In

 

this

 

condition,

 

the

 

application

 

program

 

waits

 

for

 

input

 

from

 

the

 

terminal.

 

You

 

can

 

ensure

 

that

 

the

 

original

 

terminal

 

input

 

continues

 

to

 

be

 

available

 

to

 

a

 

linked

 

program

 

by

 

invoking

 

it

 

with

 

the

 

INPUTMSG

 

option.

   

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

177

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|



When

 

an

 

application

 

program

 

invokes

 

another

 

program,

 

and

 

specifies

 

INPUTMSG

 

on

 

the

 

LINK,

 

XCTL,

 

or

 

RETURN

 

command,

 

the

 

data

 

that

 

is

 

specified

 

on

 

the

 

INPUTMSG

 

continues

 

to

 

be

 

available,

 

even

 

if

 

the

 

linked

 

program

 

itself

 

does

 

not

 

issue

 

an

 

RECEIVE

 

command,

 

but

 

instead

 

invokes

 

yet

 

another

 

application

 

program.

 

Figure

 

8

 

shows

 

how

 

INPUTMSG

 

is

 

used

 

in

 

a

 

linked

 

chain.

   

In

 

Figure

 

8,

 

the

 

″real″

 

first

 

RECEIVE

 

command

 

is

 

issued

 

by

 

program

 

A.

 

Because

 

program

 

A

 

is

 

linked

 

to

 

program

 

B

 

with

 

the

 

INPUTMSG

 

option,

 

the

 

next

 

program

 

that

 

issues

 

a

 

RECEIVE

 

request

 

can

 

also

 

receive

 

the

 

terminal

 

input.

 

That

 

program

 

can

 

be

 

either

 

program

 

B

 

or

 

program

 

C.

 

If

 

program

 

A

 

wants

 

only

 

to

 

pass

 

on

 

the

 

unmodified

 

terminal

 

input

 

that

 

it

 

received,

 

it

 

can

 

use

 

the

 

same

 

named

 

data

 

area

 

for

 

the

 

INPUTMSG

 

option

 

that

 

it

 

used

 

for

 

the

 

RECEIVE

 

command.

 

For

 

example:

 

EXEC

 

CICS

 

RECEIVE

 

INTO(TERMINAL-INPUT)

 

...

 

EXEC

 

CICS

 

LINK

 

PROGRAM(PROGRAMB)

 

INPUTMSG(TERMINAL-INPUT)

 

...

 

When

 

one

 

program

 

in

 

a

 

LINK

 

chain

 

issues

 

a

 

RECEIVE

 

command,

 

the

 

INPUTMSG

 

data

 

becomes

 

no

 

longer

 

available

 

to

 

any

 

later

 

RECEIVE

 

command.

 

For

 

example,

 

in

 

Figure

 

8,

 

if

 

program

 

B

 

issues

 

a

 

RECEIVE

 

request

 

before

 

linking

 

to

 

program

 

C,

 

the

 

INPUTMSG

 

data

 

area

 

is

 

not

 

available

 

for

 

program

 

C.

 

Transaction
input from
terminal

CICS
invokes

application

Program
A

RECEIVE input from terminal

LINK to B with INPUTMSG

LINK to C
LINK to D

Program
B

Program
D

Program
C

  

Figure

 

8.

 

Use

 

of

 

INPUTMSG

 

in

 

a

 

linked

 

chain

  

178

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|



This

 

method

 

of

 

sending

 

data

 

from

 

one

 

program

 

to

 

another

 

can

 

be

 

used

 

for

 

any

 

kind

 

of

 

data.

 

The

 

data

 

does

 

not

 

have

 

to

 

originate

 

from

 

a

 

user

 

terminal.

 

In

 

Figure

 

8

 

on

 

page

 

178,

 

program

 

A

 

could

 

move

 

any

 

data

 

into

 

the

 

named

 

data

 

area,

 

and

 

invoke

 

program

 

B

 

with

 

INPUTMSG

 

referencing

 

the

 

data.

 

The

 

terminal-data

 

that

 

is

 

passed

 

on

 

INPUTMSG

 

also

 

becomes

 

no

 

longer

 

available

 

when

 

control

 

is

 

eventually

 

returned

 

to

 

the

 

program

 

that

 

issued

 

the

 

link

 

with

 

INPUTMSG.

 

In

 

Figure

 

8

 

on

 

page

 

178,

 

if

 

program

 

C

 

returns

 

to

 

program

 

B,

 

and

 

program

 

B

 

returns

 

to

 

program

 

A,

 

and

 

neither

 

program

 

B

 

nor

 

program

 

C

 

issues

 

a

 

RECEIVE

 

command,

 

program

 

A

 

assumes

 

that

 

the

 

data

 

has

 

been

 

received.

 

If

 

program

 

A

 

then

 

invokes

 

another

 

program

 

(for

 

example,

 

program

 

D),

 

the

 

original

 

INPUTMSG

 

data

 

is

 

no

 

longer

 

available

 

to

 

program

 

D,

 

unless

 

the

 

INPUTMSG

 

option

 

is

 

specified.

 

The

 

INPUTMSG

 

data

 

becomes

 

no

 

longer

 

available

 

when

 

a

 

SEND

 

or

 

CONVERSE

 

command

 

is

 

issued.

 

Using

 

the

 

INPUTMSG

 

option

 

on

 

the

 

RETURN

 

command

 

To

 

pass

 

data

 

to

 

the

 

next

 

transaction

 

specified,

 

you

 

can

 

specify

 

INPUTMSG

 

on

 

a

 

RETURN

 

command

 

with

 

the

 

TRANSID

 

option.

 

To

 

do

 

this,

 

you

 

must

 

issue

 

RETURN

 

at

 

the

 

highest

 

logical

 

level

 

to

 

return

 

control

 

to

 

CICS,

 

and

 

you

 

must

 

also

 

specify

 

the

 

IMMEDIATE

 

option.

 

If

 

you

 

specify

 

INPUTMSG

 

with

 

TRANSID,

 

and

 

do

 

not

 

also

 

specify

 

IMMEDIATE,

 

the

 

next

 

real

 

input

 

from

 

the

 

terminal

 

overrides

 

the

 

INPUTMSG

 

data,

 

which

 

is

 

therefore

 

lost.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

manual

 

for

 

programming

 

information

 

about

 

the

 

RETURN

 

command.

 

If

 

you

 

specify

 

INPUTMSG

 

with

 

TRANSID

 

some

 

time

 

after

 

a

 

SEND

 

command,

 

the

 

SEND

 

message

 

is

 

immediately

 

flushed

 

out

 

to

 

the

 

terminal.

 

INPUTMSG

 

on

 

a

 

RETURN

 

command

 

without

 

the

 

TRANSID

 

option

 

is

 

intended

 

for

 

use

 

with

 

a

 

dynamic

 

transaction

 

routing

 

program.

 

Other

 

ways

 

of

 

passing

 

data

 

Data

 

can

 

also

 

be

 

passed

 

between

 

application

 

programs

 

and

 

transactions

 

in

 

other

 

ways.

 

For

 

example,

 

the

 

data

 

can

 

be

 

stored

 

in

 

a

 

CICS

 

storage

 

area

 

outside

 

the

 

local

 

environment

 

of

 

the

 

application

 

program,

 

such

 

as

 

the

 

transaction

 

work

 

area

 

(TWA).

 

Another

 

way

 

is

 

to

 

store

 

the

 

data

 

in

 

temporary

 

storage;

 

see

 

the

 

CICS

 

Administration

 

Guide

 

for

 

details.

 

Passing

 

integer

 

data

 

between

 

programs

 

If

 

you

 

want

 

to

 

pass

 

integer

 

data

 

between

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

programs

 

in

 

a

 

COMMAREA,

 

the

 

data

 

items

 

must

 

be

 

declared

 

in

 

COBOL

 

as

 

COMP-5;

 

otherwise,

 

the

 

byte

 

ordering

 

of

 

the

 

data

 

is

 

incorrect

 

and

 

the

 

values

 

are

 

corrupted.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

and

 

the

 

CICS

 

Intercommunication

 

Guide

 

for

 

related

 

information.

 

Timer

 

services

 

CICS

 

timer

 

services,

 

in

 

conjunction

 

with

 

the

 

time-of-day

 

clock

 

maintained

 

by

 

the

 

operating

 

system,

 

provide

 

commands

 

that

 

can

 

be

 

performed

 

at

 

a

 

specific

 

time.

 

Using

 

these

 

commands

 

you

 

can:

 

v

   

Ask

 

for

 

the

 

time

 

(EXEC

 

CICS

 

ASKTIME)

 

v

   

Delay

 

the

 

processing

 

of

 

a

 

task

 

(EXEC

 

CICS

 

DELAY)

 

v

   

Start

 

a

 

task

 

and

 

store

 

data

 

for

 

the

 

task

 

(EXEC

 

CICS

 

START)

   

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

179

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|



v

   

Retrieve

 

data

 

stored

 

(by

 

an

 

EXEC

 

CICS

 

START

 

command)

 

for

 

a

 

task

 

(EXEC

 

CICS

 

RETRIEVE)

 

v

   

Cancel

 

the

 

effect

 

of

 

a

 

previous

 

EXEC

 

CICS

 

DELAY

 

or

 

EXEC

 

CICS

 

START

 

command

 

(EXEC

 

CICS

 

CANCEL)

 

v

   

Suspend

 

the

 

task

 

(EXEC

 

CICS

 

SUSPEND)

Expiration

 

times

 

The

 

time

 

at

 

which

 

a

 

timer

 

service

 

is

 

to

 

be

 

started

 

is

 

called

 

the

 

expiration

 

time.

 

You

 

can

 

specify

 

expiration

 

times

 

absolutely,

 

as

 

a

 

time

 

of

 

day

 

(using

 

the

 

TIME

 

option),

 

or

 

as

 

an

 

interval

 

that

 

is

 

to

 

elapse

 

before

 

the

 

function

 

is

 

to

 

be

 

performed

 

(using

 

the

 

INTERVAL

 

option).

 

Expiration

 

times

 

cannot

 

be

 

defined

 

using

 

TIME

 

or

 

INTERVAL

 

options

 

in

 

C.

 

When

 

using

 

the

 

EXEC

 

CICS

 

DELAY

 

command,

 

you

 

can

 

use

 

the

 

FOR

 

and

 

UNTIL

 

options,

 

and

 

for

 

the

 

EXEC

 

CICS

 

START

 

command,

 

you

 

can

 

use

 

the

 

AFTER

 

and

 

AT

 

options.

 

Use

 

INTERVAL

 

to

 

start

 

a

 

transaction

 

after

 

a

 

specified

 

number

 

of

 

hours,

 

minutes,

 

and

 

seconds

 

(expressed

 

as

 

hhmmss)

 

have

 

elapsed

 

from

 

the

 

current

 

time.

 

INTERVAL

 

always

 

specifies

 

a

 

time

 

in

 

the

 

future:

 

the

 

current

 

time

 

plus

 

the

 

interval

 

you

 

specify,

 

assuming

 

you

 

specify

 

a

 

nonzero

 

interval.

 

Use

 

TIME

 

to

 

start

 

a

 

transaction

 

at

 

a

 

specific

 

time;

 

again

 

using

 

hours,

 

minutes,

 

and

 

seconds

 

(expressed

 

as

 

hhmmss).

 

An

 

absolute

 

time

 

is

 

measured

 

relative

 

to

 

midnight

 

before

 

the

 

current

 

time

 

and

 

may

 

therefore

 

be

 

earlier

 

than

 

the

 

current

 

time.

 

TIME

 

may

 

be

 

either

 

in

 

the

 

future

 

or

 

the

 

past

 

relative

 

to

 

the

 

time

 

at

 

which

 

the

 

command

 

is

 

executed.

 

For

 

example,

 

to

 

start

 

a

 

transaction

 

at

 

1530

 

hours,

 

you

 

would

 

use

 

EXEC

 

CICS

 

START

 

TIME(153000).

 

The

 

following

 

rules

 

apply:

 

v

   

If

 

you

 

specify

 

a

 

task

 

to

 

start

 

at

 

any

 

time

 

within

 

the

 

previous

 

six

 

hours,

 

it

 

will

 

start

 

immediately,

 

unless

 

the

 

start

 

time

 

is

 

before

 

midnight

 

(past)

 

of

 

the

 

day

 

on

 

which

 

you

 

specify

 

it.

 

For

 

example,

 

the

 

following

 

command

 

issued

 

at

 

0500

 

or

 

0700

 

hours

 

on

 

Monday

 

expires

 

at

 

1230

 

hours

 

on

 

the

 

same

 

day.:

 

EXEC

 

CICS

 

START

 

TIME(123000)

 

The

 

following

 

command

 

issued

 

at

 

0500

 

or

 

0700

 

hours

 

on

 

Monday

 

expires

 

immediately,

 

because

 

the

 

specified

 

time

 

is

 

within

 

the

 

preceding

 

six

 

hours.

 

EXEC

 

CICS

 

START

 

TIME(020000)

 

The

 

following

 

command

 

issued

 

at

 

0500

 

hours

 

on

 

Monday

 

expires

 

immediately,

 

because

 

the

 

specified

 

time

 

is

 

within

 

the

 

preceding

 

six

 

hours.

 

However,

 

if

 

it

 

is

 

issued

 

at

 

0700

 

hours

 

on

 

Monday,

 

it

 

expires

 

at

 

0030

 

hours

 

on

 

Tuesday,

 

because

 

the

 

specified

 

time

 

is

 

not

 

within

 

the

 

preceding

 

six

 

hours.

 

EXEC

 

CICS

 

START

 

TIME(003000)

 

Note

 

that

 

the

 

TIME

 

given

 

is

 

never

 

taken

 

to

 

be

 

before

 

midnight

 

of

 

the

 

current

 

day.

 

v

   

If

 

you

 

specify

 

a

 

time

 

with

 

an

 

hours

 

component

 

that

 

is

 

greater

 

than

 

23,

 

you

 

are

 

specifying

 

a

 

time

 

on

 

a

 

day

 

following

 

the

 

current

 

one.

 

For

 

example,

 

a

 

time

 

of

 

250000

 

means

 

0100

 

hours

 

on

 

the

 

day

 

following

 

the

 

current

 

one,

 

and

 

490000

 

means

 

0100

 

hours

 

on

 

the

 

day

 

after

 

that.

 

If

 

you

 

do

 

not

 

specify

 

either

 

INTERVAL,

 

TIME,

 

FOR

 

or

 

UNTIL

 

on

 

the

 

EXEC

 

CICS

 

DELAY

 

command,

 

or

 

INTERVAL,

 

TIME,

 

AFTER

 

or

 

AT

 

on

 

the

 

EXEC

 

CICS

 

START

 

command,

 

INTERVAL(0)

 

is

 

assumed,

 

which

 

means

 

immediately.

 

The

 

started

 

interval

 

control

 

element

 

(ICE)

 

will

 

be

 

recovered

 

only

 

if

 

it

 

has

 

been

 

started

 

with

 

the

 

PROTECT

 

option

 

specified.

 

For

 

example,

 

if

 

an

 

EXEC

 

CICS

 

START

 

command

 

for

 

a

 

transaction

 

to

 

be

 

started

 

at

 

0700

 

hours

 

is

 

issued

 

at

 

0600

 

hours

 

with

   

180

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



the

 

PROTECT

 

option,

 

and

 

CICS

 

fails

 

at

 

0630

 

hours

 

and

 

is

 

warm

 

started

 

at

 

0800

 

hours,

 

the

 

started

 

transaction

 

will

 

immediately

 

run.

 

Because

 

each

 

end

 

of

 

an

 

intersystem

 

link

 

may

 

be

 

in

 

a

 

different

 

time

 

zone,

 

you

 

should

 

use

 

an

 

interval

 

if

 

the

 

transaction

 

to

 

be

 

started

 

is

 

in

 

a

 

remote

 

system.

 

An

 

absolute

 

time

 

is

 

always

 

relative

 

to

 

the

 

local

 

system

 

and

 

converted

 

into

 

an

 

interval

 

before

 

shipping.

 

The

 

interval

 

to

 

delay

 

the

 

EXEC

 

CICS

 

START

 

request

 

applies

 

from

 

the

 

time

 

of

 

delivery

 

to

 

the

 

remote

 

system.

 

Therefore,

 

if

 

the

 

request

 

is

 

locally

 

queued

 

because

 

the

 

remote

 

system

 

was

 

unavailable,

 

the

 

EXEC

 

CICS

 

START

 

request

 

may

 

be

 

delayed

 

longer

 

than

 

expected.

 

If

 

the

 

system

 

fails,

 

the

 

EXEC

 

CICS

 

START

 

requests

 

you

 

have

 

made

 

that

 

have

 

not

 

expired

 

are

 

recovered.

 

Request

 

identifiers

 

As

 

a

 

means

 

of

 

identifying

 

the

 

request

 

and

 

any

 

data

 

associated

 

with

 

it,

 

a

 

unique

 

request

 

identifier

 

is

 

assigned

 

by

 

CICS

 

to

 

each

 

EXEC

 

CICS

 

DELAY

 

or

 

EXEC

 

CICS

 

START

 

command.

 

You

 

can

 

specify

 

your

 

own

 

request

 

identifier

 

by

 

means

 

of

 

the

 

REQID

 

option;

 

if

 

you

 

do

 

not,

 

CICS

 

assigns

 

(EXEC

 

CICS

 

START

 

only)

 

a

 

unique

 

request

 

identifier

 

and

 

places

 

it

 

in

 

field

 

EIBREQID

 

in

 

the

 

EXEC

 

interface

 

block

 

(EIB).

 

Specify

 

a

 

request

 

identifier

 

if

 

you

 

want

 

the

 

request

 

to

 

be

 

canceled

 

at

 

some

 

later

 

time

 

by

 

an

 

EXEC

 

CICS

 

CANCEL

 

command.

 

START

 

TRANSID

 

commands

 

In

 

a

 

transaction

 

that

 

uses

 

the

 

EXEC

 

CICS

 

START

 

TRANSID

 

command

 

to

 

start

 

other

 

transactions,

 

observe

 

the

 

following

 

points

 

to

 

maintain

 

logical

 

data

 

integrity:

 

v

   

Always

 

use

 

the

 

PROTECT

 

option

 

of

 

the

 

EXEC

 

CICS

 

START

 

TRANSID

 

command.

 

This

 

ensures

 

that,

 

if

 

the

 

start-issuing

 

task

 

is

 

backed

 

out,

 

the

 

new

 

task

 

will

 

not

 

be

 

started.

 

v

   

Designate

 

the

 

temporary

 

storage

 

queue

 

used

 

for

 

passing

 

data

 

to

 

the

 

started

 

transaction

 

as

 

recoverable.

 

This

 

ensures

 

that

 

data

 

being

 

passed

 

to

 

another

 

task

 

does

 

not

 

inadvertently

 

stay

 

on

 

the

 

temporary

 

storage

 

queue

 

in

 

the

 

event

 

of

 

the

 

start-issuing

 

task

 

being

 

backed

 

out.

 

v

   

If

 

REQID

 

is

 

used,

 

that

 

REQID

 

is

 

the

 

name

 

of

 

a

 

queue

 

designated

 

as

 

recoverable

 

in

 

the

 

Temporary

 

Storage

 

Definitions

 

(TSD).

 

You

 

can

 

use

 

the

 

PROTECT

 

option

 

to

 

ensure

 

that

 

if

 

a

 

system

 

failure

 

occurs

 

after

 

the

 

EXEC

 

CICS

 

START

 

that

 

issued

 

the

 

logical

 

unit

 

of

 

work

 

(LUW)

 

has

 

completed

 

its

 

syncpoint,

 

the

 

transaction

 

to

 

be

 

started

 

will

 

do

 

so

 

(as

 

soon

 

as

 

CICS

 

has

 

been

 

initialized

 

and

 

the

 

terminal

 

associated

 

with

 

the

 

task

 

is

 

available).

 

If

 

you

 

are

 

using

 

CICS

 

Clients,

 

you

 

should

 

refer

 

to

 

the

 

procedure

 

in

 

the

 

CICS

 

Administration

 

Guide

 

for

 

further

 

guidance.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Synchronization

 

services

 

The

 

CICS

 

synchronization

 

services

 

allow

 

you

 

to

 

serialize

 

access

 

to

 

critical

 

resources.

 

You

 

do

 

this

 

using

 

the

 

EXEC

 

CICS

 

ENQ

 

and

 

EXEC

 

CICS

 

DEQ

 

commands.

 

Each

 

task

 

that

 

is

 

to

 

use

 

the

 

resource

 

issues

 

an

 

EXEC

 

CICS

 

ENQ

 

command.

 

The

 

first

 

task

 

to

 

do

 

so

 

has

 

use

 

of

 

the

 

resource

 

immediately,

 

but

   

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

181



subsequent

 

EXEC

 

CICS

 

ENQ

 

commands

 

for

 

the

 

resource,

 

issued

 

by

 

other

 

tasks,

 

result

 

in

 

those

 

tasks

 

being

 

suspended

 

until

 

the

 

resource

 

is

 

available.

 

You

 

can

 

override

 

the

 

suspension

 

of

 

a

 

resource

 

by

 

issuing

 

a

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ENQBUSY.

 

Each

 

task

 

using

 

a

 

resource

 

should

 

issue

 

a

 

EXEC

 

CICS

 

DEQ

 

command

 

when

 

it

 

has

 

finished

 

with

 

the

 

resource.

 

A

 

task

 

must

 

issue

 

the

 

same

 

number

 

of

 

EXEC

 

CICS

 

DEQ

 

commands

 

as

 

the

 

number

 

of

 

successful

 

EXEC

 

CICS

 

ENQ

 

commands,

 

in

 

order

 

to

 

free

 

the

 

resource

 

for

 

other

 

tasks.

 

The

 

name

 

passed

 

to

 

the

 

EXEC

 

CICS

 

ENQ

 

is

 

purely

 

symbolic:

 

no

 

physical

 

entity

 

is

 

locked.

 

It

 

is

 

up

 

to

 

application

 

designers

 

to

 

agree

 

standards

 

to

 

be

 

followed

 

in

 

using

 

EXEC

 

CICS

 

ENQ

 

commands,

 

and

 

to

 

ensure

 

that

 

all

 

programs

 

follow

 

the

 

chosen

 

rules.

 

For

 

example,

 

suppose

 

that

 

Program

 

1

 

issues

 

the

 

following

 

command,

 

where

 

phonenum

 

is

 

a

 

data

 

area

 

containing

 

a

 

character

 

string

 

containing

 

a

 

phone

 

number:

 

EXEC

 

CICS

 

ENQ

 

RESOURCE(phonenum)

 

LENGTH(12)

 

Program

 

2

 

then

 

issues

 

the

 

same

 

command.

 

Because

 

each

 

EXEC

 

CICS

 

ENQ

 

command

 

specifies

 

the

 

same

 

character

 

string

 

contents,

 

synchronization

 

occurs

 

and

 

Program

 

2

 

waits

 

until

 

Program

 

1

 

issues

 

the

 

command:

 

EXEC

 

CICS

 

DEQ

 

RESOURCE(phonenum)

 

LENGTH(12)

 

It

 

is

 

the

 

matching

 

character

 

strings

 

that

 

cause

 

the

 

synchronization.

 

The

 

same

 

effect

 

would

 

be

 

achieved

 

by

 

different

 

RESOURCE

 

option

 

values,

 

provided

 

that

 

the

 

contents

 

of

 

the

 

string

 

at

 

each

 

location

 

match.

 

For

 

example:

 

EXEC

 

CICS

 

ENQ

 

RESOURCE(areaone)

 

LENGTH(12)

 

EXEC

 

CICS

 

ENQ

 

RESOURCE(areatwo)

 

LENGTH(12)

 

Similarly,

 

you

 

can

 

enqueue

 

on

 

the

 

address

 

of

 

a

 

data

 

area.

 

For

 

example,

 

if

 

two

 

programs

 

both

 

issue

 

the

 

following

 

command:

 

EXEC

 

CICS

 

ENQ

 

RESOURCE(resname)

 

The

 

two

 

programs

 

enqueue

 

on

 

the

 

same

 

location

 

and

 

synchronize,

 

even

 

though

 

the

 

contents

 

are

 

not

 

locked

 

in

 

any

 

way.

 

However,

 

if

 

two

 

tasks

 

are

 

waiting

 

for

 

the

 

same

 

resource,

 

which

 

one

 

gets

 

the

 

enqueue,

 

when

 

available,

 

is

 

dependent

 

on

 

the

 

priorities

 

on

 

the

 

two

 

tasks;

 

the

 

enqueue

 

goes

 

to

 

the

 

task

 

scheduled

 

first.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Storage

 

services

 

CICS

 

storage

 

services

 

provide

 

several

 

commands

 

and

 

storage

 

areas

 

for

 

your

 

applications

 

to

 

use.

 

Broadly,

 

there

 

are

 

two

 

types

 

of

 

storage

 

available

 

to

 

application

 

programs:

 

v

   

Task-private

 

storage,

 

obtained

 

for

 

the

 

sole

 

use

 

of

 

the

 

currently

 

running

 

transaction.

 

v

   

Task-shared

 

storage,

 

to

 

be

 

shared

 

in

 

an

 

application-dependent

 

manner

 

between

 

transactions.

 

In

 

addition,

 

CICS

 

has

 

its

 

own

 

private

 

shared

 

storage.

   

182

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Task-private

 

storage

 

Task-private

 

storage

 

is

 

private

 

to

 

the

 

task

 

and

 

cannot

 

be

 

addressed

 

by

 

any

 

other

 

CICS

 

task

 

in

 

the

 

system.

 

If

 

you

 

need

 

working

 

storage

 

in

 

addition

 

to

 

that

 

provided

 

automatically

 

by

 

the

 

COBOL,

 

C,

 

C++,

 

and

 

PL/I

 

languages,

 

you

 

can

 

use

 

the

 

following

 

commands.

 

You

 

can

 

initialize

 

each

 

byte

 

of

 

the

 

acquired

 

storage

 

to

 

any

 

bit

 

configuration,

 

for

 

example

 

to

 

zeros

 

or

 

blanks.

 

You

 

can

 

get

 

and

 

initialize

 

main

 

storage

 

by

 

using

 

the

 

EXEC

 

CICS

 

GETMAIN

 

comand.

 

You

 

can

 

release

 

main

 

storage

 

when

 

you

 

are

 

done

 

using

 

it

 

by

 

using

 

the

 

EXEC

 

CICS

 

FREEMAIN

 

command.

 

CICS

 

releases

 

all

 

task-private

 

storage

 

associated

 

with

 

a

 

task

 

when

 

the

 

task

 

is

 

ended

 

normally

 

or

 

abnormally.

 

This

 

includes

 

any

 

EXEC

 

CICS

 

GETMAIN

 

storage

 

acquired,

 

and

 

not

 

subsequently

 

freed,

 

by

 

your

 

program.

 

CICS

 

also

 

provides

 

your

 

program

 

with

 

these

 

named

 

task-private

 

storage

 

areas:

 

v

   

The

 

EXEC

 

Interface

 

Block

 

(EIB)

 

holds

 

information

 

about

 

the

 

last

 

command

 

that

 

CICS

 

executed

 

for

 

your

 

program.

 

For

 

further

 

information,

 

see

 

“EXEC

 

interface

 

block

 

(EIB)”

 

on

 

page

 

187.

 

v

   

The

 

COMMAREA

 

is

 

a

 

communication

 

area

 

that

 

you

 

can

 

use

 

to

 

pass

 

information

 

between

 

one

 

program

 

and

 

the

 

next

 

in

 

the

 

same

 

task.

 

For

 

further

 

details,

 

see

 

“Passing

 

data

 

to

 

other

 

programs”

 

on

 

page

 

175.

 

v

   

The

 

Transaction

 

Work

 

Area

 

(TWA)

 

is

 

an

 

area

 

that

 

you

 

can

 

use

 

within

 

the

 

transaction.

 

For

 

further

 

information,

 

see

 

“Transaction

 

work

 

area

 

(TWA)”

 

on

 

page

 

26.

Task-shared

 

storage

 

Task-shared

 

storage,

 

also

 

known

 

as

 

the

 

task-shared

 

pool,

 

is

 

shared

 

between

 

all

 

CICS

 

tasks.

 

As

 

such,

 

all

 

synchronization

 

to

 

these

 

areas

 

is

 

the

 

responsibility

 

of

 

the

 

applications

 

that

 

wish

 

to

 

use

 

them.

 

You

 

can:

 

v

   

Allocate

 

an

 

area

 

of

 

shared

 

storage

 

(EXEC

 

CICS

 

GETMAIN

 

SHARED)

 

v

   

Release

 

the

 

allocated

 

shared

 

area

 

(EXEC

 

CICS

 

FREEMAIN)

 

v

   

Load

 

a

 

map

 

set

 

or

 

data

 

table

 

(EXEC

 

CICS

 

LOAD)

 

v

   

Release

 

a

 

map

 

set

 

or

 

data

 

table

 

(EXEC

 

CICS

 

RELEASE)

Note:

  

Data

 

tables

 

can

 

be

 

used

 

to

 

load

 

an

 

operating

 

system

 

file

 

into

 

CICS

 

storage

 

for

 

manipulation

 

by

 

an

 

application.

 

The

 

files

 

are

 

loaded

 

(by

 

the

 

EXEC

 

CICS

 

LOAD

 

command)

 

and

 

the

 

address

 

of

 

the

 

storage

 

is

 

passed

 

to

 

the

 

application.

 

This

 

is

 

useful

 

as

 

transactions

 

can

 

be

 

written

 

to

 

take

 

data

 

and

 

place

 

it

 

into

 

either

 

SFS

 

or

 

a

 

database,

 

or

 

can

 

use

 

it

 

directly

 

in

 

a

 

transaction.

 

The

 

ProgType

 

attribute

 

(described

 

in

 

the

 

CICS

 

Administration

 

Reference)

 

specifies

 

whether

 

the

 

item

 

is

 

a

 

program,

 

a

 

map

 

set,

 

or

 

a

 

data

 

table.

 

The

 

SHARED

 

option

 

of

 

the

 

EXEC

 

CICS

 

GETMAIN

 

command

 

can

 

be

 

used

 

to

 

acquire

 

storage

 

that

 

is

 

shareable

 

between

 

transactions.

 

When

 

you

 

issue

 

an

 

EXEC

 

CICS

 

GETMAIN

 

SHARED

 

command,

 

you

 

can

 

pass

 

the

 

address

 

of

 

that

 

area

 

of

 

storage

 

to

 

another

 

transaction

 

in

 

three

 

ways:

 

v

   

Using

 

the

 

common

 

work

 

area

 

(CWA)

 

v

   

Using

 

a

 

shared

 

CICS

 

area

 

v

   

Using

 

a

 

shared

 

operating

 

system

 

area

 

It

 

is

 

also

 

possible

 

to

 

pass

 

the

 

address

 

from

 

one

 

task

 

to

 

the

 

next

 

at

 

the

 

same

 

terminal

 

using

 

the

 

COMMAREA.

 

It

 

is

 

the

 

responsibility

 

of

 

application

 

programmers

 

to

 

keep

 

track

 

of

 

storage

 

area

 

addresses

 

allocated

 

by

 

EXEC

 

CICS

 

GETMAIN

 

SHARED.

 

Unlike

 

ordinary

 

EXEC

 

CICS

 

GETMAIN

 

storage

 

there

 

is

 

no

 

implicit

 

means

 

of

 

freeing

 

it.

 

Such

 

storage

 

areas

   

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

183



should

 

be

 

released

 

by

 

a

 

call

 

to

 

EXEC

 

CICS

 

FREEMAIN

 

by

 

some

 

application

 

program

 

(in

 

a

 

set

 

of

 

cooperating

 

tasks).

 

Otherwise

 

the

 

shared

 

storage

 

will

 

not

 

be

 

freed

 

until

 

region

 

termination.

 

The

 

EXEC

 

CICS

 

LOAD

 

command

 

allows

 

you

 

to

 

load

 

a

 

named

 

map

 

set

 

or

 

data

 

table

 

into

 

shared

 

storage,

 

and

 

by

 

using

 

the

 

HOLD

 

option

 

keep

 

it

 

there.

 

This

 

is

 

useful

 

to

 

prevent

 

the

 

same

 

map

 

set

 

or

 

table

 

being

 

repetitively

 

loaded,

 

although

 

CICS

 

itself

 

tries

 

to

 

keep

 

the

 

entity

 

loaded

 

if

 

it

 

can

 

anyway.

 

On

 

a

 

multi-locale

 

system,

 

there

 

could

 

be

 

several

 

map

 

sets

 

with

 

the

 

given

 

name

 

(one

 

per

 

locale)

 

and

 

CICS

 

actually

 

loads

 

all

 

such

 

map

 

sets

 

that

 

it

 

finds.

 

You

 

use

 

the

 

EXEC

 

CICS

 

RELEASE

 

command

 

to

 

release

 

a

 

named

 

map

 

set

 

or

 

data

 

table

 

that

 

you

 

have

 

loaded.

 

This

 

will

 

not

 

necessarily

 

result

 

in

 

the

 

map

 

set

 

being

 

physically

 

released

 

from

 

shared

 

storage,

 

as

 

CICS

 

will

 

delay

 

this

 

until

 

it

 

is

 

necessary

 

to

 

do

 

so.

 

You

 

can

 

also

 

use

 

MAIN

 

temporary

 

storage

 

as

 

a

 

scratchpad

 

area

 

to

 

be

 

shared

 

between

 

transactions.

 

For

 

further

 

details,

 

see

 

“Temporary

 

storage

 

queue

 

services”

 

on

 

page

 

133.

 

CICS

 

also

 

provides

 

your

 

program

 

with

 

these

 

named

 

task-shared

 

storage

 

areas:

 

v

   

The

 

common

 

work

 

area

 

(CWA)

 

is

 

a

 

storage

 

area

 

allocated

 

at

 

region

 

startup

 

and

 

exists

 

for

 

the

 

duration

 

of

 

the

 

CICS

 

region.

 

For

 

further

 

details,

 

see

 

“Common

 

work

 

area

 

(CWA)”

 

on

 

page

 

28.

 

v

   

The

 

terminal

 

user

 

area

 

(TCTUA)

 

is

 

a

 

storage

 

area

 

allocated

 

either

 

when

 

you

 

log

 

on

 

(for

 

an

 

autoinstalled

 

terminal)

 

or

 

at

 

system

 

startup

 

(for

 

nonautoinstalled

 

terminals).

 

For

 

further

 

information,

 

see

 

“Terminal

 

user

 

area

 

(TCTUA)”

 

on

 

page

 

29.

 

v

   

The

 

COMMAREA

 

is

 

a

 

communication

 

area

 

that

 

you

 

can

 

use

 

to

 

pass

 

information

 

between

 

one

 

transaction

 

and

 

the

 

next

 

in

 

a

 

pseudoconversational

 

sequence.

 

For

 

further

 

details,

 

see

 

“Passing

 

data

 

to

 

other

 

programs”

 

on

 

page

 

175.

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

CICS

 

private

 

shared

 

storage

 

CICS

 

private

 

shared

 

storage,

 

also

 

known

 

as

 

the

 

region

 

pool,

 

is

 

private

 

to

 

CICS,

 

but

 

two

 

commands

 

enable

 

you

 

to

 

obtain

 

information

 

from

 

it

 

and

 

from

 

task-shared

 

and

 

task-private

 

storage.

 

You

 

can:

 

v

   

Get

 

access

 

to

 

these

 

storage

 

areas

 

using

 

the

 

EXEC

 

CICS

 

ADDRESS

 

command

 

v

   

Get

 

values

 

from

 

these

 

storage

 

areas

 

using

 

the

 

EXEC

 

CICS

 

ASSIGN

 

command.

 

The

 

values

 

returned

 

to

 

the

 

application

 

by

 

the

 

EXEC

 

CICS

 

ASSIGN

 

command

 

are

 

copied

 

from

 

the

 

region

 

pool.

 

The

 

application

 

program

 

has

 

no

 

access

 

to

 

the

 

region

 

pool

 

other

 

than

 

through

 

CICS

 

commands.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Logical

 

unit

 

of

 

work

 

(LUW)

 

services

 

If

 

an

 

individual

 

task

 

fails,

 

backout

 

is

 

performed

 

automatically

 

by

 

CICS.

 

If

 

the

 

CICS

 

system

 

fails,

 

backout

 

is

 

performed

 

as

 

part

 

of

 

the

 

auto

 

start

 

process.

 

However,

 

for

 

long-running

 

programs,

 

it

 

may

 

be

 

undesirable

 

to

 

have

 

a

 

large

 

number

 

of

 

changes,

 

accumulated

 

over

 

a

 

period

 

of

 

time,

 

exposed

 

to

 

the

 

possibility

 

of

 

backout

 

in

 

the

 

event

 

of

 

task

 

or

 

system

 

failure.

 

This

 

possibility

 

can

 

be

 

avoided

 

by

   

184

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



using

 

the

 

EXEC

 

CICS

 

SYNCPOINT

 

command

 

to

 

split

 

the

 

program

 

into

 

logically

 

separate

 

sections

 

termed

 

logical

 

units

 

of

 

work

 

(LUWs);

 

the

 

end

 

of

 

an

 

LUW

 

is

 

called

 

a

 

synchronization

 

point

 

(syncpoint).

 

If

 

failure

 

occurs

 

after

 

a

 

syncpoint

 

but

 

before

 

the

 

task

 

has

 

been

 

completed,

 

only

 

changes

 

made

 

after

 

the

 

syncpoint

 

are

 

backed

 

out.

 

LUWs

 

should

 

be

 

entirely

 

logically

 

independent,

 

not

 

merely

 

with

 

regard

 

to

 

protected

 

resources,

 

but

 

also

 

with

 

regard

 

to

 

execution

 

flow.

 

Typically,

 

an

 

LUW

 

comprises

 

a

 

complete

 

conversational

 

operation

 

bounded

 

by

 

EXEC

 

CICS

 

SEND

 

and

 

EXEC

 

CICS

 

RECEIVE

 

commands.

 

A

 

BROWSE

 

is

 

another

 

example

 

of

 

an

 

LUW.

 

An

 

EXEC

 

CICS

 

ENDBR

 

command

 

must

 

therefore

 

precede

 

the

 

syncpoint.

 

Possibility

 

of

 

transaction

 

deadlock

 

and

 

its

 

avoidance

 

The

 

enqueuing

 

mechanisms

 

that

 

protect

 

resources

 

against

 

double

 

updating

 

can

 

cause

 

a

 

situation

 

known

 

as

 

transaction

 

deadlock.

 

Transaction

 

deadlock

 

is

 

sometimes

 

known

 

as

 

enqueue

 

deadlock

 

or

 

enqueue

 

interlock.

 

As

 

shown

 

in

 

Figure

 

9,

 

transaction

 

deadlock

 

means

 

that

 

two

 

(or

 

more)

 

tasks

 

cannot

 

proceed

 

because

 

each

 

task

 

is

 

waiting

 

for

 

the

 

release

 

of

 

a

 

resource

 

that

 

is

 

locked

 

by

 

the

 

other

 

task.

 

(Remember

 

that

 

the

 

locking

 

action

 

protects

 

resources

 

until

 

the

 

next

 

syncpoint

 

is

 

reached.)

  

If

 

transaction

 

deadlock

 

occurs,

 

one

 

task

 

may

 

be

 

abnormally

 

terminated

 

and

 

the

 

other

 

is

 

allowed

 

to

 

proceed.

 

If

 

both

 

resources

 

are

 

CICS

 

resources,

 

the

 

task

 

whose

 

deadlock

 

timeout

 

period

 

elapses

 

first

 

is

 

abnormally

 

terminated

 

and

 

its

 

CICS

 

resources

 

are

 

released.

 

(It

 

is

 

possible

 

for

 

both

 

tasks

 

to

 

time

 

out

 

simultaneously.)

 

If

 

neither

 

task

 

has

 

a

 

DeadLockTimeout

 

attribute

 

value

 

in

 

the

 

Transaction

 

Definitions

 

(TD),

 

they

 

will

 

both

 

remain

 

suspended

 

indefinitely,

 

unless

 

one

 

of

 

them

 

is

 

abnormally

 

terminated.

 

CICS

 

then

 

backs

 

out

 

the

 

abnormally

 

terminated

 

task.

 

Techniques

 

for

 

avoiding

 

transaction

 

deadlock

 

To

 

avoid

 

transaction

 

deadlock,

 

consider

 

the

 

following

 

techniques:

 

v

   

Arrange

 

for

 

all

 

transactions

 

to

 

access

 

resources

 

in

 

a

 

predefined

 

sequence.

 

This

 

might

 

be

 

considered

 

a

 

suitable

 

subject

 

for

 

installation

 

standards.

 

Extra

 

care

 

is

 

required

 

if

 

you

 

allow

 

updates

 

through

 

multiple

 

paths.

 

v

   

Explicit

 

enqueueing

 

conventions

 

should

 

also

 

be

 

the

 

subject

 

of

 

your

 

site

 

development

 

standards

 

so

 

that

 

all

 

applications:

 

TASK A TASK B

DEADLOCK

.

.

.
Lock resource 2

.

.
Request resource 1

WAIT

.
Lock resource 1

.

.

.

.
Request resource 2

WAIT

  

Figure

 

9.

 

Transaction

 

deadlock

 

(generalized)

  

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

185



–

   

Enqueue

 

using

 

the

 

same

 

character

 

string

 

–

   

Use

 

those

 

strings

 

in

 

the

 

same

 

sequence
v

   

Always

 

access

 

records

 

within

 

a

 

file

 

in

 

the

 

same

 

sequence.

 

For

 

example,

 

where

 

multiple

 

file

 

or

 

database

 

records

 

have

 

to

 

be

 

updated,

 

ensure

 

that

 

they

 

are

 

accessed

 

in

 

ascending

 

sequence.

 

Ways

 

of

 

doing

 

this

 

include:

 

–

   

The

 

terminal

 

operator

 

should

 

always

 

enter

 

data

 

in

 

the

 

same

 

sequence

 

as

 

it

 

exists

 

on

 

the

 

data

 

set.

 

This

 

method

 

requires

 

special

 

terminal

 

operator

 

action,

 

which

 

may

 

not

 

be

 

practical

 

within

 

the

 

constraints

 

of

 

the

 

application.

 

(For

 

example,

 

orders

 

may

 

be

 

taken

 

by

 

telephone

 

in

 

random

 

product

 

number

 

sequence).

 

–

   

The

 

application

 

program

 

first

 

sorts

 

the

 

input

 

transaction

 

contents

 

so

 

that

 

the

 

sequence

 

of

 

data

 

items

 

matches

 

the

 

sequence

 

on

 

the

 

data

 

set.

 

This

 

method

 

requires

 

additional

 

application

 

programming,

 

but

 

imposes

 

no

 

external

 

constraints

 

on

 

the

 

terminal

 

operator

 

or

 

the

 

application.

 

–

   

The

 

application

 

program

 

issues

 

a

 

user

 

EXEC

 

CICS

 

SYNCPOINT

 

command

 

after

 

processing

 

each

 

data

 

item

 

entered

 

in

 

the

 

transaction.

 

This

 

method

 

requires

 

less

 

additional

 

programming

 

than

 

the

 

second

 

method.

 

However,

 

issuing

 

a

 

user

 

syncpoint

 

implies

 

that

 

previously

 

processed

 

data

 

items

 

in

 

the

 

transaction

 

will

 

not

 

be

 

backed

 

out

 

if

 

a

 

system

 

or

 

transaction

 

failure

 

occurs

 

before

 

the

 

processing

 

of

 

the

 

entire

 

transaction

 

is

 

completed.

 

This

 

may

 

not

 

be

 

valid

 

for

 

the

 

application,

 

and

 

raises

 

the

 

question

 

as

 

to

 

which

 

data

 

items

 

in

 

the

 

transaction

 

were

 

processed

 

and

 

which

 

were

 

backed

 

out

 

by

 

CICS.

 

If

 

the

 

entire

 

transaction

 

must

 

be

 

backed

 

out,

 

user

 

synchronization

 

points

 

should

 

not

 

be

 

issued,

 

or

 

only

 

one

 

data

 

item

 

should

 

be

 

entered

 

per

 

transaction.

 

Of

 

the

 

three

 

methods,

 

the

 

second

 

method

 

(sorting

 

data

 

items

 

into

 

an

 

ascending

 

sequence

 

by

 

programming)

 

is

 

most

 

widely

 

accepted.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

Configuration

 

services

 

CICS

 

provides

 

a

 

number

 

of

 

facilities

 

that

 

enable

 

applications

 

to

 

find

 

out

 

information

 

about

 

the

 

environment

 

in

 

which

 

they

 

are

 

running:

 

v

   

The

 

EXEC

 

CICS

 

ADDRESS

 

and

 

EXEC

 

CICS

 

ASSIGN

 

commands

 

provide

 

information

 

about

 

fields

 

in

 

CICS

 

control

 

blocks.

 

v

   

The

 

INQUIRE

 

and

 

SET

 

commands

 

provide

 

information

 

about

 

and

 

control

 

of

 

resources.

 

v

   

The

 

EXEC

 

Interface

 

Block

 

(EIB)

 

provides

 

information

 

about

 

task-related

 

control

 

blocks.

EXEC

 

CICS

 

ADDRESS

 

and

 

EXEC

 

CICS

 

ASSIGN

 

commands

 

You

 

can

 

write

 

many

 

application

 

programs

 

using

 

the

 

CICS

 

API

 

commands

 

without

 

any

 

knowledge

 

of

 

or

 

reference

 

to

 

the

 

fields

 

in

 

the

 

CICS

 

control

 

blocks

 

and

 

storage

 

areas.

 

However,

 

you

 

might

 

sometimes

 

need

 

to

 

get

 

CICS

 

information

 

that

 

is

 

valid

 

outside

 

the

 

local

 

environment

 

of

 

your

 

application

 

program.

 

Use

 

the

 

EXEC

 

CICS

 

ADDRESS

 

and

 

EXEC

 

CICS

 

ASSIGN

 

commands

 

to

 

access

 

such

 

information.

 

Do

 

not

 

access

 

CICS

 

control

 

block

 

fields

 

with

 

the

 

EXEC

 

CICS

 

ADDRESS

 

and

 

EXEC

 

CICS

 

ASSIGN

 

commands

 

explicitly

 

specified

 

as

 

arguments

 

on

 

any

 

EXEC

 

CICS

 

command,

 

because

 

specifying

 

these

 

commands

 

ass

 

arguments

 

leads

 

to

 

a

 

change

 

of

 

CICS

 

fields

 

by

 

the

 

EXEC

 

interface

 

modules.

   

186

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



INQUIRE

 

and

 

SET

 

commands

 

The

 

INQUIRE

 

and

 

SET

 

commands

 

allow

 

application

 

programs

 

to

 

access

 

information

 

about

 

CICS

 

resources.

 

The

 

application

 

program

 

can

 

retrieve

 

and

 

modify

 

information

 

for

 

CICS

 

resources;

 

such

 

as

 

files,

 

terminals,

 

system

 

entries,

 

mode

 

names,

 

system

 

attributes,

 

programs,

 

and

 

transactions.

 

EXEC

 

interface

 

block

 

(EIB)

 

In

 

addition

 

to

 

the

 

usual

 

CICS

 

control

 

blocks,

 

each

 

task

 

has

 

a

 

control

 

block

 

called

 

the

 

EXEC

 

interface

 

block

 

(EIB)

 

associated

 

with

 

it.

 

An

 

application

 

program

 

can

 

access

 

all

 

of

 

the

 

fields

 

in

 

the

 

EIB

 

by

 

name.

 

The

 

EIB

 

contains

 

information

 

that

 

is

 

useful

 

during

 

the

 

execution

 

of

 

an

 

application

 

program,

 

such

 

as

 

the

 

transaction

 

identifier,

 

the

 

time

 

and

 

date

 

(initially

 

when

 

the

 

task

 

is

 

started,

 

and

 

subsequently,

 

if

 

updated

 

by

 

the

 

application

 

program),

 

and

 

the

 

cursor

 

position

 

on

 

a

 

display

 

device.

 

The

 

EIB

 

also

 

contains

 

information

 

that

 

is

 

helpful

 

when

 

a

 

dump

 

is

 

being

 

used

 

to

 

debug

 

a

 

program.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

   

Chapter

 

6.

 

Coding

 

for

 

business

 

logic

 

187



188

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Part

 

2.

 

Migrating

 

Applications

  

Table

 

38.

 

Road

 

map

 

for

 

Migrating

 

applications

 

If

 

you

 

want

 

to...

 

Refer

 

to...

 

Consider

 

the

 

migration

 

process,

 

programming

 

compatibility,

 

and

 

API

 

migration

 

when

 

migrating

 

applications

 

to

 

and

 

from

 

CICS

 

for

 

Open

 

Systems

 

and

 

CICS

 

for

 

Windows.

 

Chapter

 

7,

 

“Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS,”

 

on

 

page

 

191

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

189



190

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

This

 

chapter

 

describes

 

how

 

to

 

migrate

 

application

 

programs

 

to

 

and

 

from

 

TXSeries

 

CICS

 

(TXSeries

 

CICS).

 

Note:

  

In

 

the

 

migration

 

chapter,

 

the

 

term

 

existing

 

CICS

 

system

 

refers

 

to

 

the

 

system

 

you

 

are

 

migrating

 

from.

 

Preparing

 

to

 

migrate

 

your

 

applications

 

To

 

migrate

 

CICS

 

applications

 

from

 

a

 

non-TXSeries

 

CICS

 

system,

 

such

 

as

 

CICS/MVS

 

or

 

CICS

 

OS/2,

 

you

 

must

 

consider

 

the

 

differences

 

between

 

the

 

two

 

systems.

 

These

 

differences

 

can

 

include,

 

for

 

example,

 

the

 

CICS

 

API

 

commands

 

supported,

 

or

 

the

 

source

 

languages

 

supported.

 

If

 

you

 

are

 

planning

 

to

 

migrate

 

from

 

a

 

CICS

 

for

 

Windows

 

system,

 

consult

 

your

 

IBM

 

representative

 

for

 

support.

 

What

 

is

 

migration?

 

Migrating

 

your

 

existing

 

CICS

 

system

 

to

 

TXSeries

 

CICS

 

means

 

moving

 

your

 

existing

 

applications

 

in

 

such

 

a

 

way

 

as

 

to

 

achieve

 

the

 

same

 

level

 

of

 

functionality

 

that

 

you

 

were

 

using

 

on

 

your

 

existing

 

CICS

 

system.

 

Migration

 

does

 

not

 

involve

 

adding

 

new

 

functionality

 

through

 

new

 

system

 

features.

 

The

 

information

 

describing

 

the

 

migration

 

process

 

outlines

 

the

 

functionality

 

of

 

TXSeries

 

CICS,

 

so

 

that

 

you

 

can

 

compare

 

it

 

to

 

your

 

existing

 

system,

 

and

 

identify

 

any

 

inconsistencies.

 

Other

 

CICS

 

systems

 

are

 

described

 

in

 

general

 

terms,

 

without

 

discussing

 

the

 

particular

 

features

 

of

 

any

 

one

 

family

 

member.

 

The

 

amount

 

of

 

work

 

required

 

to

 

migrate

 

your

 

CICS

 

system

 

depends

 

on

 

what

 

you

 

have

 

done

 

to

 

your

 

system

 

in

 

the

 

past.

 

If

 

you

 

use

 

TXSeries

 

CICS

 

without

 

much

 

customization,

 

and

 

if

 

your

 

programs

 

are

 

written

 

to

 

conform

 

to

 

the

 

supported

 

external

 

interfaces,

 

much

 

of

 

the

 

work

 

of

 

migrating

 

is

 

quite

 

straightforward.

 

You

 

need

 

to

 

check

 

your

 

use

 

of

 

CICS

 

functions

 

against

 

the

 

changes,

 

and

 

then

 

make

 

any

 

necessary

 

adjustments

 

to

 

your

 

programs

 

and

 

operating

 

procedures.

 

If

 

you

 

have

 

customized

 

TXSeries

 

CICS,

 

or

 

written

 

system

 

programs

 

using

 

unsupported

 

interfaces,

 

internal

 

control

 

blocks,

 

and

 

so

 

on,

 

you

 

will

 

need

 

to

 

reassess

 

the

 

way

 

you

 

use

 

CICS

 

and

 

redesign

 

your

 

code

 

to

 

conform

 

to

 

supported

 

interfaces.

 

When

 

you

 

consider

 

migrating

 

from

 

an

 

existing

 

CICS

 

system

 

to

 

TXSeries

 

CICS,

 

you

 

should

 

remember

 

that

 

it

 

may

 

not

 

be

 

necessary,

 

or

 

possible,

 

to

 

migrate

 

all

 

of

 

your

 

existing

 

applications.

 

Under

 

these

 

circumstances,

 

you

 

may

 

consider

 

continuing

 

to

 

run

 

your

 

existing

 

CICS

 

system

 

as

 

well

 

as

 

TXSeries

 

CICS,

 

and

 

allowing

 

communication

 

between

 

the

 

two.

 

This

 

is

 

known

 

as

 

coexistence.

 

Controlling

 

the

 

migration

 

process

 

The

 

complexity

 

and

 

variety

 

of

 

possible

 

CICS

 

configurations

 

means

 

that

 

there

 

is

 

no

 

simple

 

list

 

of

 

instructions

 

for

 

migration

 

planning

 

and

 

implementation.

 

However,

 

by

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

191



combining

 

the

 

general

 

guidance

 

provided

 

as

 

part

 

of

 

migration

 

planning

 

and

 

control

 

with

 

the

 

descriptions

 

of

 

changes

 

elsewhere

 

in

 

the

 

migration

 

topic,

 

you

 

should

 

be

 

able

 

to

 

produce

 

a

 

sound

 

framework

 

on

 

which

 

to

 

build

 

your

 

migration

 

strategy.

 

Migrating

 

to

 

TXSeries

 

CICS

 

requires

 

careful

 

planning

 

and

 

change

 

management.

 

To

 

achieve

 

this,

 

you

 

will

 

need

 

to:

 

v

   

Understand

 

the

 

practical

 

issues

 

and

 

the

 

detailed

 

product

 

changes

 

involved

 

in

 

TXSeries

 

CICS

 

migration

 

v

   

Plan

 

a

 

satisfactory

 

conversion

 

strategy

 

v

   

Plan

 

in

 

detail

 

the

 

required

 

actions

 

to

 

achieve

 

the

 

strategy

 

v

   

Estimate

 

with

 

reasonable

 

accuracy

 

the

 

resources

 

and

 

time

 

involved.

 

You

 

can

 

maintain

 

service

 

levels

 

to

 

users

 

during

 

the

 

migration

 

process

 

by

 

using

 

sound

 

change-management

 

practices.

 

To

 

achieve

 

this,

 

you

 

will

 

need

 

to:

 

v

   

Minimize

 

the

 

number

 

of

 

changes

 

that

 

take

 

place

 

simultaneously

 

v

   

Test

 

changes

 

before

 

putting

 

them

 

into

 

production

 

v

   

Have

 

a

 

backout

 

or

 

fallback

 

strategy

 

for

 

each

 

change

 

in

 

case

 

of

 

failure

 

in

 

production

 

v

   

Be

 

able

 

to

 

assess

 

the

 

impact

 

of

 

a

 

change

 

before

 

introducing

 

it

 

into

 

the

 

production

 

system

 

v

   

If

 

necessary,

 

be

 

able

 

to

 

limit

 

the

 

extent

 

or

 

localize

 

the

 

impact

 

of

 

any

 

change

 

to

 

an

 

acceptable

 

level

 

v

   

Be

 

able

 

to

 

schedule

 

the

 

change

 

or

 

cutover

 

to

 

minimize

 

the

 

impact

 

on

 

end

 

users

 

or

 

the

 

business.

 

Your

 

ability

 

to

 

meet

 

these

 

change-management

 

needs

 

depends

 

partly

 

on

 

what

 

you

 

have

 

done

 

with

 

your

 

existing

 

CICS

 

systems,

 

and

 

partly

 

on

 

the

 

migration

 

strategy

 

you

 

adopt.

 

Applying

 

these

 

general

 

rules

 

to

 

TXSeries

 

CICS

 

migration,

 

it

 

is

 

clear

 

that

 

a

 

phased

 

conversion

 

and

 

cutover

 

is

 

necessary.

 

One

 

possible

 

migration

 

strategy

 

consists

 

of

 

the

 

following

 

phases:

 

v

   

Planning

 

your

 

migration

 

v

   

Installing,

 

testing,

 

and

 

parallel

 

running

 

v

   

Phased

 

cutover.

The

 

migration

 

planning

 

phase

 

The

 

objective

 

of

 

the

 

planning

 

phase

 

is

 

to

 

develop

 

a

 

migration

 

strategy

 

with

 

detailed

 

plans

 

for

 

each

 

step.

 

It

 

should

 

include

 

the

 

following

 

topics:

 

v

   

Considering

 

corequisite

 

and

 

prerequisite

 

products,

 

such

 

as

 

the

 

specific

 

release

 

of

 

the

 

operating

 

system,

 

DCE,

 

relational

 

databases,

 

and

 

compilers.

 

v

   

Planning

 

to

 

migrate

 

to

 

the

 

appropriate

 

levels

 

of

 

corequisite

 

and

 

prerequisite

 

products

 

where

 

necessary.

 

You

 

need

 

to

 

consider

 

ordering

 

and

 

delivery

 

lead

 

times

 

when

 

calculating

 

your

 

schedules.

 

v

   

Planning

 

your

 

education

 

and

 

training

 

requirements.

 

v

   

Planning

 

to

 

update

 

your

 

operational

 

procedures

 

and

 

the

 

supporting

 

documentation.

 

v

   

Planning

 

the

 

installation

 

of

 

any

 

features

 

or

 

parameters

 

required

 

in

 

the

 

operating

 

system

 

for

 

TXSeries

 

CICS.

   

192

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

Estimating

 

and

 

planning

 

the

 

machine

 

resources

 

required

 

for

 

the

 

migration,

 

for

 

example

 

disk

 

space,

 

terminals

 

and

 

machine

 

time

 

for

 

installation,

 

development

 

and

 

testing.

 

v

   

Determining

 

which

 

resources

 

(tables,

 

programs,

 

and

 

so

 

on)

 

need

 

to

 

be

 

frozen

 

during

 

the

 

migration

 

process.

 

v

   

Determining

 

where

 

you

 

may

 

require

 

programming

 

changes

 

and

 

planning

 

the

 

necessary

 

coding

 

and

 

testing.

 

v

   

Planning

 

to

 

update

 

your

 

programming

 

standards

 

and

 

the

 

supporting

 

documentation.

 

v

   

Planning

 

the

 

installation

 

of

 

TXSeries

 

CICS.

 

v

   

Considering

 

the

 

actions

 

required

 

by

 

any

 

associated

 

products

 

that

 

have

 

been

 

added

 

to

 

TXSeries

 

CICS.

 

v

   

Planning

 

conversion

 

steps,

 

such

 

as

 

changes

 

to

 

tables

 

that

 

are

 

not

 

to

 

be

 

frozen

 

during

 

the

 

migration

 

process,

 

and

 

installation

 

of

 

resources.

 

v

   

Determining

 

your

 

testing

 

criteria.

 

v

   

Planning

 

the

 

cutover

 

phases.

 

v

   

Determining

 

the

 

best

 

methods

 

of

 

keeping

 

users

 

informed

 

of

 

any

 

changes

 

to

 

functions

 

or

 

services

 

that

 

might

 

affect

 

them.

 

v

   

Planning

 

to

 

update

 

your

 

problem

 

determination

 

procedures

 

and

 

the

 

supporting

 

documentation.

 

v

   

Considering

 

any

 

issues

 

raised

 

by

 

your

 

existing

 

CICS

 

system

 

and

 

TXSeries

 

CICS

 

in

 

parallel.

 

The

 

end

 

product

 

of

 

the

 

planning

 

phase

 

should

 

be

 

a

 

formally

 

documented

 

plan

 

that

 

you

 

can

 

use

 

for

 

project

 

management

 

and

 

control.

 

The

 

migration

 

installation

 

phase

 

This

 

phase

 

has

 

two

 

objectives:

 

v

   

To

 

install

 

and

 

customize

 

the

 

basic

 

TXSeries

 

CICS

 

system

 

and

 

to

 

make

 

it

 

ready

 

for

 

testing

 

and

 

parallel

 

running.

 

v

   

To

 

install

 

the

 

programs

 

and

 

procedures

 

needed

 

to

 

support

 

TXSeries

 

CICS

 

processing;

 

such

 

as

 

monitoring

 

and

 

accounting

 

packages,

 

statistics

 

printing,

 

dump

 

printing,

 

journal

 

handling,

 

and

 

so

 

on.

 

When

 

these

 

two

 

objectives

 

are

 

met,

 

you

 

are

 

ready

 

to

 

migrate

 

your

 

application

 

programs

 

and

 

resource

 

definitions.

 

Migration

 

phased

 

cutover

 

The

 

objective

 

of

 

this

 

phase

 

is

 

to

 

migrate

 

the

 

working

 

CICS

 

systems

 

to

 

TXSeries

 

CICS.

 

Note

 

that

 

TXSeries

 

CICS

 

does

 

not

 

support

 

the

 

CICS

 

facility

 

of

 

multiple

 

region

 

operation

 

(MRO).

 

If

 

you

 

want

 

to

 

migrate

 

a

 

CICS

 

system

 

that

 

uses

 

MRO,

 

then

 

some

 

distributed

 

transaction

 

processing

 

(DTP)

 

commands

 

in

 

your

 

application

 

programs

 

may

 

need

 

to

 

be

 

changed.

 

Regardless

 

of

 

the

 

environment

 

you

 

choose

 

to

 

operate

 

in,

 

you

 

may

 

need

 

to:

 

v

   

Migrate

 

your

 

application

 

v

   

Migrate

 

your

 

data

 

v

   

Reenter

 

all

 

the

 

associated

 

definitions

 

that

 

defined

 

your

 

CICS

 

application

 

and

 

users.

 

The

 

following

 

discussion

 

assumes

 

that

 

you

 

have

 

already

 

installed

 

the

 

required

 

version

 

of

 

operating

 

system

 

and

 

any

 

necessary

 

supporting

 

software.

 

The

 

discussion

   

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

193



also

 

assumes

 

that

 

you

 

have

 

recoded

 

your

 

programs

 

to

 

comply

 

with

 

the

 

TXSeries

 

CICS

 

API

 

and

 

removed

 

dependency

 

on

 

MRO.

 

Remember

 

that

 

the

 

objective

 

of

 

the

 

migration

 

exercise

 

is

 

to

 

migrate

 

CICS

 

applications

 

and

 

their

 

supporting

 

environment

 

to

 

TXSeries

 

CICS,

 

it

 

should

 

not

 

be

 

an

 

objective

 

of

 

the

 

migration

 

exercise

 

to

 

increase

 

the

 

functionality

 

of

 

the

 

migrated

 

applications.

 

Attempting

 

to

 

combine

 

the

 

two

 

objectives

 

is

 

liable

 

to

 

result

 

in

 

an

 

overly

 

complex

 

project

 

that

 

may

 

be

 

difficult

 

to

 

control

 

and

 

support.

 

Wherever

 

possible,

 

it

 

is

 

advisable

 

to

 

operate

 

both

 

your

 

existing

 

TXSeries

 

CICS

 

and

 

other

 

CICS

 

systems

 

in

 

parallel

 

until

 

you

 

can

 

prove

 

that

 

your

 

applications

 

are

 

operating

 

correctly;

 

as

 

a

 

minimum

 

you

 

should

 

ensure

 

that

 

you

 

have

 

an

 

adequate

 

fallback

 

position

 

if

 

the

 

migration

 

is

 

not

 

successful.

 

Single-region

 

systems:

   

A

 

single-region

 

system

 

contains

 

all

 

the

 

programs,

 

definitions

 

and

 

data

 

that

 

you

 

require

 

to

 

operate

 

your

 

application

 

and

 

can

 

be

 

the

 

most

 

difficult

 

systems

 

to

 

migrate

 

because

 

of

 

the

 

possibility

 

of

 

having

 

to

 

make

 

large

 

numbers

 

of

 

changes

 

to

 

your

 

applications

 

and

 

user

 

environment.

 

Multi-region

 

systems:

   

A

 

multiregion

 

system

 

is,

 

for

 

example,

 

a

 

system

 

that

 

separates

 

the

 

region

 

that

 

contains

 

your

 

application

 

from

 

the

 

region

 

that

 

contains

 

the

 

data

 

with

 

the

 

two

 

regions

 

using

 

communications

 

to

 

provide

 

a

 

seamless

 

interface

 

to

 

the

 

end

 

user.

 

TXSeries

 

CICS

 

has

 

all

 

the

 

same

 

communication

 

facilities

 

as

 

other

 

CICS

 

systems

 

(except

 

MRO)

 

so

 

that

 

you

 

may

 

choose

 

to

 

migrate

 

one

 

or

 

both

 

halves

 

of

 

the

 

application.

 

The

 

ability

 

to

 

migrate

 

the

 

constituent

 

parts

 

of

 

your

 

application

 

only

 

when

 

you

 

deem

 

it

 

necessary

 

or

 

practical

 

may

 

reduce

 

the

 

amount

 

of

 

conversion

 

effort

 

that

 

you

 

have

 

to

 

expend,

 

and

 

consequently

 

the

 

amount

 

of

 

direct

 

support

 

to

 

your

 

users.

 

Non-migrated

 

regions

 

or

 

applications:

   

You

 

may

 

choose

 

not

 

to

 

migrate

 

some

 

applications

 

that

 

TXSeries

 

CICS

 

does

 

not

 

support,

 

for

 

instance

 

macro-level

 

applications,

 

but

 

to

 

leave

 

them

 

on

 

your

 

existing

 

CICS

 

system.

 

v

   

If

 

you

 

consider

 

that

 

an

 

application

 

is

 

going

 

to

 

become

 

obsolete

 

in

 

the

 

foreseeable

 

future,

 

it

 

may

 

not

 

be

 

cost

 

effective

 

converting

 

it.

 

v

   

If

 

the

 

cost

 

to

 

convert

 

an

 

application

 

or

 

its

 

data

 

is

 

high,

 

it

 

may

 

not

 

be

 

cost

 

effective

 

converting

 

them.

 

In

 

these

 

cases

 

you

 

can

 

leave

 

the

 

application

 

and

 

its

 

associated

 

data

 

on

 

the

 

existing

 

CICS

 

system

 

and

 

access

 

them

 

through

 

CICS

 

Intercommunication

 

facilities.

 

In

 

brief,

 

plan

 

to

 

convert

 

only

 

those

 

of

 

your

 

applications

 

not

 

supported

 

by

 

TXSeries

 

CICS

 

where

 

it

 

is

 

economic

 

to

 

do

 

so.

 

Coexistence

 

strategies

 

It

 

can

 

be

 

impossible

 

to

 

migrate

 

all

 

of

 

your

 

existing

 

CICS

 

production

 

regions

 

to

 

TXSeries

 

CICS

 

without

 

substantial

 

effort.

 

For

 

example,

 

you

 

may

 

have

 

some

 

macro-level

 

applications

 

that

 

are

 

not

 

supported

 

in

 

TXSeries

 

CICS.

 

In

 

these

 

instances,

 

you

 

must

 

devise

 

a

 

strategy

 

for

 

migrating

 

some

 

applications

 

to

 

TXSeries

 

CICS,

 

leaving

 

behind

 

those

 

applications

 

that

 

you

 

cannot

 

cost

 

effectively

 

migrate

 

or

 

convert.

 

This

 

information

 

outlines

 

how

 

your

 

existing

 

CICS

 

system

 

can

 

coexist

 

with

 

a

 

TXSeries

 

CICS

 

system

 

using

 

intersystem

 

communication

 

(ISC).

 

ISC

 

is

 

used

 

in

 

all

 

CICS

 

products

 

to

 

provide

 

communication

 

between

 

CICS

 

systems

 

on

 

separate

 

processors

 

across

 

a

 

network.

 

If

 

you

 

are

 

running

 

a

 

CICS

 

system

 

that

 

has

 

elements

 

that

 

you

 

cannot

 

migrate

 

to

 

TXSeries

 

CICS,

 

you

 

may

 

need

 

to

 

consider

 

adopting

 

an

 

ISC

 

solution

 

that

 

enables

   

194

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



you

 

to

 

transaction

 

route

 

between

 

your

 

existing

 

CICS

 

system

 

and

 

TXSeries

 

CICS.

 

For

 

example,

 

your

 

system

 

may

 

comprise

 

some

 

or

 

all

 

of

 

the

 

following

 

components:

 

VTAM

 

and

 

BTAM

 

terminals

 

These

 

are

 

not

 

supported

 

in

 

TXSeries

 

CICS

 

(except

 

as

 

remote

 

terminals

 

for

 

ISC

 

purposes),

 

and

 

you

 

cannot

 

install

 

them

 

on

 

TXSeries

 

CICS

 

systems.

 

To

 

support

 

transaction

 

routing

 

from

 

the

 

CICS

 

system

 

that

 

owns

 

the

 

terminals,

 

you

 

should

 

either

 

ensure

 

that

 

the

 

terminal

 

definitions

 

on

 

the

 

existing

 

CICS

 

system

 

are

 

marked

 

shippable,

 

or

 

on

 

TXSeries

 

CICS,

 

generate

 

Terminal

 

Definitions

 

(WD)

 

entries

 

that

 

specify

 

the

 

terminals

 

as

 

remote

 

terminals.

  

Note

 

that

 

if

 

the

 

system

 

to

 

which

 

your

 

VTAM

 

or

 

BTAM

 

terminal

 

is

 

connected

 

has

 

a

 

telnet

 

client,

 

then

 

you

 

may

 

be

 

able

 

to

 

use

 

this

 

to

 

gain

 

access

 

to

 

a

 

region

 

using

 

the

 

cicsteld

 

client.

Note:

  

VTAM

 

refers

 

to

 

Virtual

 

Telecommunications

 

Access

 

Method,

 

a

 

set

 

of

 

programs

 

that

 

maintain

 

control

 

of

 

the

 

communication

 

between

 

terminals

 

and

 

application

 

programs.

 

BTAM

 

refers

 

to

 

basic

 

telecommunications

 

access

 

method,

 

an

 

access

 

method

 

that

 

permits

 

read

 

and

 

write

 

communication

 

with

 

remote

 

devices.

Command-level

 

applications

 

You

 

can

 

migrate

 

command-level

 

applications

 

provided

 

they

 

conform

 

to

 

the

 

TXSeries

 

CICS

 

program

 

compatibility

 

rules.

 

Files

 

If

 

the

 

migrated

 

applications

 

access

 

files

 

that

 

remain

 

on

 

your

 

existing

 

CICS

 

system,

 

you

 

need

 

to

 

define

 

the

 

files

 

as

 

remote

 

resources

 

in

 

TXSeries

 

CICS.

 

You

 

can

 

access

 

the

 

files

 

by

 

function

 

shipping

 

the

 

file

 

requests.

 

If

 

you

 

decide

 

to

 

use

 

ISC,

 

you

 

will

 

have

 

to

 

specify

 

resource

 

definitions

 

that

 

define

 

connections

 

between

 

CICS

 

systems.

 

When

 

you

 

have

 

migrated

 

the

 

appropriate

 

elements

 

of

 

your

 

old

 

system,

 

there

 

are

 

several

 

points

 

to

 

consider.

 

v

   

To

 

access

 

migrated

 

applications

 

from

 

your

 

original

 

terminals

 

you

 

must

 

define

 

the

 

transactions

 

as

 

remote

 

transactions

 

on

 

your

 

existing

 

CICS

 

system

 

and

 

define

 

the

 

terminal

 

as

 

remote

 

in

 

the

 

Terminal

 

Definitions

 

(WD)

 

on

 

TXSeries

 

CICS.

 

v

   

To

 

access

 

applications

 

that

 

you

 

have

 

not

 

migrated

 

to

 

TXSeries

 

CICS,

 

from

 

an

 

existing

 

CICS

 

terminal,

 

define

 

the

 

transactions

 

as

 

remote

 

in

 

the

 

Transaction

 

Definitions

 

(TD)

 

on

 

TXSeries

 

CICS.

 

You

 

need

 

to

 

define

 

the

 

terminal

 

as

 

remote

 

to

 

TXSeries

 

CICS.

Note:

  

There

 

is

 

an

 

alternative

 

to

 

the

 

creation

 

of

 

a

 

remote

 

definition

 

of

 

a

 

terminal

 

in

 

any

 

remote

 

system

 

to

 

which

 

it

 

wants

 

to

 

direct

 

a

 

transaction

 

routing

 

request.

 

This

 

is

 

to

 

make

 

the

 

terminal’s

 

local

 

definition

 

in

 

the

 

terminal

 

owning

 

region

 

shippable

 

with

 

the

 

Terminal

 

Definitions

 

(WD)

 

IsShippable

 

attribute.

 

If

 

a

 

terminal

 

definition

 

is

 

shippable,

 

sufficient

 

data

 

is

 

passed

 

with

 

a

 

transaction

 

routing

 

request

 

to

 

enable

 

the

 

remote

 

system

 

to

 

dynamically

 

install

 

the

 

necessary

 

remote

 

terminal

 

definition.

 

For

 

further

 

information

 

about

 

shippable

 

terminals,

 

refer

 

to

 

the

 

CICS

 

Administration

 

Reference

 

.

 

Tests

 

and

 

parallel

 

running

 

The

 

following

 

sections

 

describe

 

tests

 

and

 

parallel

 

running.

   

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

195



Installation

 

verification

 

procedures

 

To

 

check

 

that

 

you

 

have

 

installed

 

CICS

 

correctly,

 

TXSeries

 

CICS

 

provides

 

optional

 

Installation

 

Verification

 

Procedures

 

(IVPs)

 

for

 

you

 

to

 

perform.

 

The

 

IVPs

 

comprise

 

a

 

set

 

of

 

programs,

 

transactions,

 

and

 

maps,

 

plus

 

a

 

set

 

of

 

instructions

 

for

 

their

 

use.

 

Note:

  

The

 

IVPs

 

provided

 

with

 

your

 

existing

 

CICS

 

system

 

cannot

 

be

 

used

 

to

 

test

 

the

 

installation

 

of

 

TXSeries

 

CICS

 

systems.

 

Testing

 

the

 

running

 

TXSeries

 

CICS

 

When

 

you

 

have

 

completed

 

installing

 

TXSeries

 

CICS

 

and

 

running

 

the

 

IVPs

 

to

 

ensure

 

that

 

installation

 

has

 

been

 

successful,

 

you

 

can

 

begin

 

to

 

test

 

and

 

tailor

 

the

 

system

 

to

 

meet

 

your

 

specific

 

requirements.

 

The

 

tests

 

you

 

may

 

need

 

to

 

run

 

include:

 

v

   

Testing

 

all

 

resource

 

definitions

 

v

   

Testing

 

system

 

initialization

 

options,

 

particularly

 

where

 

you

 

use

 

system

 

default

 

values,

 

which

 

are

 

different

 

from

 

your

 

existing

 

CICS

 

system

 

v

   

Testing

 

the

 

TXSeries

 

CICS

 

start-up

 

procedure

 

v

   

Testing

 

off-line

 

utilities

 

v

   

Testing

 

any

 

associated

 

software

 

products

 

and

 

packages

 

v

   

Testing

 

any

 

programs

 

that

 

you

 

have

 

rewritten

 

because

 

they

 

originally

 

contained

 

features

 

TXSeries

 

CICS

 

does

 

not

 

support

 

v

   

Testing

 

any

 

of

 

your

 

programs

 

that

 

use

 

internal

 

or

 

external

 

security

 

checking

 

v

   

Testing

 

your

 

applications

Running

 

TXSeries

 

CICS

 

in

 

parallel

 

with

 

your

 

existing

 

CICS

 

system

 

There

 

are

 

some

 

planning

 

and

 

implementation

 

considerations

 

that

 

concern

 

running

 

TXSeries

 

CICS

 

and

 

another

 

CICS

 

product

 

in

 

parallel.

 

You

 

must

 

consider

 

the

 

effects

 

on

 

your

 

operational

 

procedures.

 

Some

 

operational

 

areas

 

are

 

affected

 

by

 

the

 

differences

 

between

 

TXSeries

 

CICS

 

and

 

other

 

CICS

 

systems.

 

These

 

areas

 

include:

 

v

   

Differences

 

in

 

initialization

 

-

 

messages

 

and

 

system

 

initialization

 

parameters

 

v

   

Differences

 

in

 

the

 

messages

 

and

 

codes

 

issued,

 

and

 

the

 

operator

 

actions

 

they

 

require

 

v

   

Differences

 

in

 

monitoring

 

output

 

v

   

Differences

 

in

 

dump

 

output

 

v

   

Differences

 

in

 

trace

 

output

 

v

   

Differences

 

in

 

statistics

 

output

 

v

   

Differences

 

in

 

problem

 

determination,

 

restart,

 

and

 

recovery

 

requirements

 

v

   

Differences

 

in

 

security

 

administration

 

(with

 

CICS

 

on

 

Open

 

Systems

 

or

 

CICS

 

for

 

Windows

 

security

 

or

 

with

 

an

 

external

 

security

 

manager)

 

v

   

Differences

 

in

 

running

 

databases

Migrating

 

data

 

TXSeries

 

CICS

 

provides

 

the

 

CALF

 

transaction

 

(Convert

 

and

 

Load

 

File)

 

to

 

enable

 

you

 

to

 

migrate

 

data

 

to

 

your

 

region.

 

This

 

transaction

 

allows

 

you

 

to

 

transfer

 

any

 

file

 

for

 

which

 

you

 

can

 

create

 

a

 

File

 

Definitions

 

(FD)

 

entry.

 

In

 

this

 

way,

 

data

 

on

 

remote

 

VSAM

 

files

 

can

 

be

 

migrated.

 

CALF

 

works

 

with

 

function

 

shipping.

 

CALF

 

accepts

 

the

 

following

 

three

 

filetypes:

 

v

   

Key

 

sequenced

 

data

 

set

 

(KSDS)

 

v

   

Entry

 

sequenced

 

data

 

set

 

(ESDS)

   

196

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

Relative

 

record

 

data

 

set

 

(RRDS)

 

The

 

transaction

 

copies

 

records

 

from

 

a

 

source

 

file

 

to

 

a

 

destination

 

file.

 

You

 

enter

 

control

 

data

 

in

 

the

 

data

 

entry

 

fields

 

to

 

control

 

the

 

transaction,

 

and

 

use

 

the

 

PF

 

keys

 

to

 

run

 

the

 

transaction.

 

You

 

start

 

the

 

CALF

 

transaction

 

directly

 

by

 

entering

 

the

 

transaction

 

identifier

 

CALF.

 

You

 

end

 

the

 

transaction

 

by

 

pressing

 

PF3.

 

Migration

 

and

 

the

 

CICS-supplied

 

transactions

 

TXSeries

 

CICS

 

provides

 

a

 

subset

 

of

 

the

 

CICS

 

supplied

 

transactions.

 

In

 

some

 

instances,

 

the

 

functionality

 

of

 

these

 

transactions

 

within

 

TXSeries

 

CICS

 

may

 

differ

 

from

 

other

 

CICS

 

systems.

 

TXSeries

 

CICS

 

provides

 

the

 

following

 

supplied

 

transactions:

 

v

   

Data

 

Conversion

 

(CALF)

 

v

   

Temporary

 

Storage

 

Browse

 

(CEBR)

 

v

   

Command

 

Level

 

Interpreter

 

(CECI)

 

v

   

Syntax

 

Checker

 

(CECS)

 

v

   

Execution

 

Diagnostic

 

Facility

 

(CEDF)

 

v

   

Runtime

 

Resource

 

Management

 

(CEMT)

 

v

   

Signon

 

(CESN)

 

v

   

Signoff

 

(CESF)

 

v

   

Routing

 

Transaction

 

(CRTE)

 

v

   

Application

 

Diagnosis

 

Configuration

 

(CDCN)

 

(CICS

 

on

 

Open

 

Systems

 

only)

 

A

 

full

 

description

 

of

 

the

 

functionality

 

of

 

each

 

of

 

these

 

transactions

 

is

 

provided

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

Some

 

points

 

to

 

note

 

regarding

 

differences

 

in

 

supplied

 

transactions

 

between

 

TXSeries

 

CICS

 

and

 

other

 

CICS

 

systems

 

are:

 

v

   

TXSeries

 

CICS

 

does

 

not

 

support

 

the

 

supplied

 

transaction

 

CEDA.

 

You

 

must

 

perform

 

all

 

resource

 

definition

 

using

 

the

 

resource

 

definition

 

online

 

(RDO)

 

facility.

 

v

   

TXSeries

 

CICS

 

monitoring

 

facilities

 

are

 

controlled

 

by

 

the

 

CEMT

 

transaction,

 

not

 

from

 

the

 

CEDA

 

transaction

 

as

 

in

 

other

 

CICS

 

systems.

 

v

   

TXSeries

 

CICS

 

does

 

not

 

invoke

 

shutdown

 

from

 

the

 

CEMT

 

transaction

 

as

 

in

 

other

 

CICS

 

systems.

 

Refer

 

to

 

the

 

CICS

 

Administration

 

Guide

 

for

 

information

 

about

 

shutdown.

 

v

   

You

 

cannot

 

run

 

the

 

CEBR

 

transaction

 

under

 

CEDF.

 

v

   

The

 

CEDF

 

transaction

 

does

 

not

 

support

 

the

 

single-screen

 

mode

 

of

 

operation.

 

You

 

must

 

use

 

two

 

terminals

 

(or

 

two

 

windows),

 

one

 

to

 

run

 

CEDF

 

and

 

one

 

to

 

run

 

the

 

transaction

 

being

 

debugged.

 

v

   

Because

 

TXSeries

 

CICS

 

uses

 

DCE

 

security

 

for

 

normal

 

user

 

authentication,

 

you

 

can

 

only

 

use

 

the

 

CESN

 

transaction

 

to

 

connect

 

to

 

a

 

region

 

after

 

using

 

the

 

CRTE

 

transaction

 

(transaction

 

routing)

 

or

 

to

 

temporarily

 

change

 

your

 

user

 

identity

 

after

 

connecting

 

to

 

a

 

region.

 

v

   

TXSeries

 

CICS

 

does

 

not

 

support

 

a

 

replaceable

 

logon

 

shell.

 

The

 

supplied

 

CESN

 

transaction

 

cannot

 

be

 

replaced

 

with

 

a

 

user-supplied

 

module

 

as

 

with

 

other

 

CICS

 

products.

  

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

197



Migration

 

and

 

CICS

 

resource

 

definitions

 

TXSeries

 

CICS

 

holds

 

the

 

resource

 

definitions

 

for

 

a

 

region

 

in

 

a

 

set

 

of

 

files.

 

These

 

files

 

fulfill

 

the

 

same

 

role

 

as

 

the

 

traditional

 

tables

 

used

 

by

 

other

 

CICS

 

family

 

members,

 

but

 

to

 

emphasize

 

the

 

differences

 

in

 

attribute

 

requirements,

 

the

 

TXSeries

 

CICS

 

table

 

names

 

are

 

called

 

definitions.

 

For

 

example,

 

the

 

Transaction

 

Definitions

 

(TD)

 

file

 

replaces

 

the

 

Program

 

Control

 

Table

 

(PCT).

 

The

 

correspondence

 

between

 

TXSeries

 

CICS

 

and

 

other

 

CICS

 

family

 

definitions

 

is

 

shown

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

Suffix

 

support

 

is

 

available

 

in

 

TXSeries

 

CICS,

 

but

 

not

 

in

 

the

 

same

 

way

 

as

 

in

 

other

 

CICS

 

family

 

members.

 

TXSeries

 

CICS

 

does

 

not

 

provide

 

macro-level

 

resource

 

definition

 

facilities.

 

The

 

facilities

 

to

 

perform

 

the

 

resource

 

definitions

 

are

 

described

 

in

 

the

 

CICS

 

Administration

 

Reference.

 

Resource

 

definitions

 

cannot

 

be

 

exported.

 

TXSeries

 

CICS

 

provides

 

the

 

resource

 

group

 

facility

 

as

 

in

 

other

 

CICS

 

family

 

members.

 

A

 

resource

 

may

 

belong

 

to

 

at

 

most

 

one

 

group.

 

TXSeries

 

CICS

 

does

 

not

 

provide

 

support

 

for

 

the

 

resource

 

list

 

facility

 

that

 

other

 

CICS

 

family

 

members

 

provide.

 

Migration

 

and

 

programming

 

compatibility

 

During

 

migration

 

to

 

TXSeries

 

CICS,

 

you

 

should

 

review

 

your

 

CICS

 

application

 

and

 

system

 

programs,

 

and

 

any

 

CICS-related

 

programs

 

that

 

process

 

CICS

 

output,

 

to

 

ensure

 

that

 

they

 

are

 

compatible

 

with

 

TXSeries

 

CICS.

 

You

 

need

 

to

 

consider:

 

v

   

The

 

source

 

languages

 

and

 

compilers

 

that

 

TXSeries

 

CICS

 

supports

 

(described

 

in

 

“Source

 

language

 

and

 

compiler

 

considerations

 

for

 

migration”).

 

v

   

The

 

application

 

program

 

interface

 

(API)

 

subset

 

that

 

TXSeries

 

CICS

 

supports.

 

For

 

information

 

about

 

the

 

differences

 

in

 

the

 

API

 

across

 

CICS

 

products,

 

refer

 

to

 

CICS

 

Family:

 

API

 

Structure.

 

v

   

Your

 

Basic

 

Mapping

 

Support

 

(BMS)

 

requirements.

 

TXSeries

 

CICS

 

provide

 

a

 

subset

 

of

 

BMS

 

support

 

(see

 

“BMS

 

functions

 

supported

 

in

 

CICS”

 

on

 

page

 

72).

 

Remember

 

that

 

besides

 

your

 

original

 

map

 

requirements,

 

application

 

programs

 

may

 

also

 

embed

 

BMS

 

commands.

 

v

   

Other

 

programming

 

considerations

 

such

 

as

 

embedded

 

database

 

commands

 

and

 

macro-level

 

programs.

 

In

 

keeping

 

with

 

the

 

rest

 

of

 

the

 

migration

 

documentation,

 

the

 

discussion

 

of

 

the

 

topic

 

of

 

program

 

compatibility

 

focuses

 

on

 

the

 

support

 

that

 

TXSeries

 

CICS

 

provides,

 

rather

 

than

 

on

 

the

 

differences

 

between

 

a

 

specific

 

CICS

 

family

 

member

 

and

 

TXSeries

 

CICS.

 

You

 

must

 

fully

 

test

 

all

 

programs,

 

whether

 

you

 

change

 

them

 

or

 

not,

 

before

 

you

 

introduce

 

them

 

into

 

your

 

production

 

system.

 

Where

 

possible,

 

such

 

testing

 

should

 

be

 

done

 

on

 

your

 

existing

 

CICS

 

system

 

before

 

migrating

 

your

 

programs

 

to

 

TXSeries

 

CICS,

 

as

 

this

 

narrows

 

the

 

scope

 

for

 

errors,

 

and

 

makes

 

resolution

 

easier.

 

Source

 

language

 

and

 

compiler

 

considerations

 

for

 

migration

 

TXSeries

 

CICS

 

supports

 

application

 

programs

 

written

 

in

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

(refer

 

to

 

the

 

installation

 

documentation

 

for

 

information

 

about

 

versions

 

of

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

compilers

 

that

 

can

 

be

 

used

 

with

 

your

 

version

 

of

 

CICS

 

and

 

Table

 

44

 

on

 

page

 

219

 

for

 

a

 

summary

 

of

 

the

 

support

 

on

 

each

 

platform).

   

198

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



TXSeries

 

CICS

 

does

 

not

 

support

 

application

 

programs

 

written

 

in

 

source

 

languages

 

other

 

than

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I.

 

This

 

means

 

that

 

if

 

you

 

do

 

not

 

discard

 

existing

 

application

 

programs

 

written

 

in

 

other

 

languages

 

you

 

must

 

recode

 

them,

 

or

 

you

 

must

 

maintain

 

your

 

existing

 

CICS

 

system

 

and

 

run

 

it

 

in

 

coexistence

 

with

 

the

 

TXSeries

 

CICS

 

region.

 

Before

 

you

 

recompile

 

any

 

application

 

programs

 

in

 

COBOL,

 

C

 

or

 

C++

 

that

 

you

 

intend

 

to

 

migrate

 

to

 

TXSeries

 

CICS,

 

you

 

must

 

process

 

the

 

application

 

program

 

with

 

the

 

CICS

 

translator.

 

(Described

 

in

 

Chapter

 

8,

 

“Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs,”

 

on

 

page

 

213.)

 

The

 

compilation

 

process

 

highlights,

 

as

 

errors,

 

any

 

language

 

syntax

 

that

 

is

 

not

 

supported.

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

upgrades

 

On

 

CICS

 

on

 

Open

 

Systems

 

only

 

COBOL

 

programs

 

should

 

be

 

recompiled

 

when

 

you

 

upgrade

 

to

 

a

 

new

 

level

 

of

 

COBOL

 

compiler.

 

Note:

  

In

 

addition

 

to

 

recompiling

 

COBOL

 

programs

 

when

 

you

 

upgrade

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

compiler,

 

the

 

cicsmkcobol

 

command

 

must

 

be

 

run.

 

This

 

command

 

combines

 

the

 

object

 

files

 

containing

 

the

 

CICS

 

COBOL

 

support

 

routines

 

with

 

the

 

COBOL

 

runtime

 

system

 

to

 

create

 

a

 

single

 

loadable

 

and

 

executable

 

file

 

named

 

cicsprCOBOL.

 

Refer

 

to

 

the

 

CICS

 

Administration

 

Reference

 

for

 

more

 

information.

 

COBOL

 

base

 

locater

 

linkage

 

(BLL)

 

cells

 

If

 

your

 

existing

 

application

 

programs

 

use

 

BLL

 

cells,

 

you

 

will

 

need

 

to

 

recode

 

them

 

before

 

porting

 

them

 

to

 

TXSeries

 

CICS

 

as

 

the

 

supported

 

COBOL

 

compilers

 

do

 

not

 

support

 

them.

 

Service

 

reload

 

statements

 

If

 

your

 

existing

 

application

 

programs

 

use

 

SERVICE

 

RELOAD

 

statements,

 

you

 

will

 

need

 

to

 

recode

 

them

 

before

 

porting

 

them

 

to

 

TXSeries

 

CICS

 

as

 

the

 

supported

 

COBOL

 

compilers

 

do

 

not

 

support

 

them.

 

See

 

the

 

CICS

 

Family:

 

Interproduct

 

Communication,

 

the

 

CICS

 

Intercommunication

 

Guide,

 

and

 

.

 

The

 

CICS

 

Administration

 

Reference.

 

Other

 

programming

 

considerations

 

for

 

migration

 

As

 

well

 

as

 

API,

 

source

 

and

 

compiler,

 

and

 

Basic

 

Mapping

 

Support

 

(BMS)

 

considerations,

 

you

 

must

 

also

 

consider

 

other

 

factors

 

when

 

you

 

are

 

migrating

 

application

 

programs

 

to

 

a

 

TXSeries

 

CICS

 

region.

 

These

 

considerations

 

are

 

described

 

in

 

the

 

following

 

sections.

 

Macro-level

 

applications

 

TXSeries

 

CICS

 

does

 

not

 

support

 

macro-level

 

application

 

programs.

 

If

 

your

 

existing

 

CICS

 

system

 

contains

 

macro-level

 

applications

 

which

 

you

 

may

 

not

 

discard,

 

then

 

you

 

must

 

do

 

one

 

of

 

the

 

following:

 

v

   

Rewrite

 

the

 

applications

 

to

 

use

 

the

 

API

 

commands

 

that

 

TXSeries

 

CICS

 

supports.

 

v

   

Allow

 

the

 

applications

 

to

 

coexist

 

with

 

TXSeries

 

CICS

 

by

 

continuing

 

to

 

run

 

them

 

in

 

your

 

existing

 

CICS

 

system.

  

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

199



Database

 

systems

 

TXSeries

 

CICS

 

supports

 

the

 

inclusion

 

of

 

Structured

 

Query

 

Language

 

(SQL)

 

statements

 

within

 

application

 

programs

 

but

 

you

 

must

 

separately

 

process

 

the

 

SQL

 

statements

 

through

 

your

 

database

 

manager.

 

It

 

does

 

not

 

support

 

the

 

data

 

language

 

1

 

(DL/I)

 

database

 

access

 

language.

 

If

 

your

 

existing

 

CICS

 

system

 

contains

 

applications

 

which

 

use

 

DL/I

 

which

 

you

 

may

 

not

 

discard,

 

then

 

you

 

must

 

do

 

one

 

of

 

the

 

following:

 

v

   

Rewrite

 

the

 

applications

 

to

 

use

 

the

 

databases

 

that

 

TXSeries

 

CICS

 

supports.

 

v

   

Allow

 

the

 

applications

 

to

 

coexist

 

with

 

TXSeries

 

CICS

 

by

 

continuing

 

to

 

run

 

them

 

in

 

your

 

existing

 

CICS

 

system.

Monitoring,

 

dump,

 

statistics,

 

and

 

trace

 

post-processors

 

TXSeries

 

CICS

 

provides

 

the

 

offline

 

utilities

 

that

 

format

 

monitoring,

 

dump,

 

statistics,

 

and

 

trace

 

output.

 

Those

 

utilities

 

are:

 

v

   

cicsmfmt

 

v

   

cicsdfmt

 

v

   

cicssfmt

 

v

   

cicstfmt

 

As

 

these

 

records

 

are

 

in

 

a

 

format

 

unique

 

to

 

TXSeries

 

CICS,

 

any

 

existing

 

formatting

 

programs

 

will

 

not

 

work

 

unless

 

you

 

modify

 

them.

 

Journal

 

post-processors

 

TXSeries

 

CICS

 

does

 

not

 

provide

 

off-line

 

utilities

 

that

 

format

 

user

 

and

 

system

 

journals.

 

As

 

the

 

journal

 

records

 

are

 

in

 

a

 

format

 

unique

 

to

 

TXSeries

 

CICS,

 

any

 

existing

 

formatting

 

programs

 

will

 

not

 

work

 

unless

 

you

 

modify

 

them.

 

CEMT

 

programmable

 

interface

 

TXSeries

 

CICS

 

does

 

not

 

support

 

a

 

programmable

 

interface

 

to

 

the

 

supplied

 

transaction

 

CEMT.

 

Short-on-storage

 

conditions

 

The

 

underlying

 

main

 

storage

 

architecture

 

for

 

TXSeries

 

CICS

 

differs

 

from

 

that

 

provided

 

by

 

other

 

CICS

 

family

 

members

 

in

 

the

 

handling

 

of

 

short-on-storage

 

conditions.

 

Instead

 

of

 

always

 

suspending

 

a

 

running

 

task

 

(unless

 

you

 

define

 

the

 

task

 

with

 

NOSUSPEND),

 

TXSeries

 

CICS

 

responds

 

in

 

a

 

number

 

of

 

ways

 

depending

 

upon

 

the

 

type

 

of

 

storage

 

request

 

made,

 

and

 

whether

 

storage

 

is

 

requested

 

by

 

an

 

application

 

program

 

or

 

internally

 

by

 

CICS.

 

CICS

 

may:

 

v

   

Return

 

a

 

CICS

 

condition

 

code

 

to

 

application

 

program.

 

v

   

Raise

 

a

 

CICS

 

abnormal

 

termination

 

code

 

on

 

the

 

application

 

program,

 

or

 

the

 

CICS

 

runtime

 

system.

 

v

   

Suspend

 

the

 

running

 

task

 

pending

 

the

 

acquisition

 

of

 

task

 

shared

 

storage

 

for

 

loading

 

Basic

 

Mapping

 

Support

 

(BMS)

 

maps

 

and

 

data

 

tables.

 

TXSeries

 

CICS

 

may

 

subsequently

 

abnormally

 

terminate

 

the

 

application

 

program

 

if

 

storage

 

remains

 

unavailable

 

for

 

some

 

time.

 

While

 

application

 

programs

 

that

 

you

 

migrate

 

may

 

translate,

 

compile

 

and

 

link

 

correctly,

 

TXSeries

 

CICS

 

may

 

raise

 

a

 

number

 

of

 

additional

 

abnormal

 

termination

 

codes,

 

due

 

to

 

short-on-storage

 

conditions.

 

You

 

may

 

need

 

to

 

change

 

your

 

application

 

programs

 

to

 

handle

 

such

 

conditions.

 

Hexadecimal

 

character

 

representation

 

TXSeries

 

CICS

 

represents

 

characters

 

in

 

ASCII

 

format

 

and

 

IBM

 

mainframe-based

 

CICS

 

represents

 

characters

 

in

 

EBCDIC

 

format.

 

If

 

programs

 

move

 

specific

 

hexadecimal

 

values

 

to

 

represent

 

EBCDIC

 

characters

 

(or

 

define

 

variables

 

to

 

have

   

200

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



specific

 

hexadecimal

 

values),

 

you

 

need

 

to

 

change

 

these

 

values

 

to

 

the

 

equivalent

 

ASCII

 

representations.

 

Alternatively,

 

if

 

you

 

are

 

using

 

Micro

 

Focus

 

Net

 

Express

 

version

 

3.0

 

or

 

later

 

on

 

a

 

Windows

 

platform,

 

you

 

can

 

compile

 

EBCDIC-enabled

 

COBOL

 

programs

 

that

 

run

 

on

 

a

 

Windows

 

workstation.

 

See

 

“Compiling

 

EBCDIC-enabled

 

COBOL

 

programs”

 

on

 

page

 

57

 

and

 

“Using

 

Micro

 

Focus

 

Net

 

Express

 

to

 

compile

 

EBCDIC-enabled

 

COBOL

 

programs”

 

on

 

page

 

227

 

for

 

more

 

information.

 

Static

 

and

 

global

 

data

 

A

 

TXSeries

 

CICS

 

application

 

program

 

that

 

is

 

loaded

 

into

 

at

 

least

 

two

 

logical

 

levels

 

of

 

the

 

same

 

task

 

should

 

not

 

use

 

static

 

or

 

global

 

data

 

because

 

the

 

operating

 

system

 

shares

 

the

 

programs

 

data

 

segment

 

for

 

this

 

type

 

of

 

data.

 

For

 

example,

 

program

 

A

 

has

 

a

 

static

 

integer

 

called

 

x

 

that

 

has

 

an

 

initial

 

value

 

of

 

zero.

 

In

 

the

 

course

 

of

 

processing,

 

program

 

A

 

sets

 

x

 

to

 

1

 

and

 

then

 

performs

 

an

 

EXEC

 

CICS

 

LINK

 

PROGRAM(A)

 

command.

 

The

 

second

 

invocation

 

of

 

program

 

A

 

sees

 

x

 

set

 

to

 

1

 

and

 

not

 

zero.

 

See

 

“Application

 

program

 

logical

 

levels”

 

on

 

page

 

174.

 

Migration

 

and

 

the

 

API

 

When

 

considering

 

moving

 

an

 

application

 

to

 

TXSeries

 

CICS,

 

you

 

should

 

compare

 

the

 

CICS

 

application

 

programming

 

interface

 

(API)

 

commands

 

that

 

the

 

application

 

uses

 

with

 

those

 

supported

 

by

 

TXSeries

 

CICS,

 

which

 

supports

 

a

 

subset

 

of

 

the

 

full

 

list

 

of

 

CICS

 

API

 

commands.

 

Note

 

that

 

some

 

API

 

commands

 

have

 

different

 

sets

 

of

 

options

 

on

 

TXSeries

 

CICS

 

from

 

the

 

options

 

on

 

other

 

CICS

 

products.

 

This

 

section

 

describes

 

those

 

aspects

 

of

 

application

 

programming

 

that

 

help

 

you

 

to

 

write

 

portable

 

applications

 

and

 

to

 

migrate

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS.

 

Overview

 

of

 

migration

 

and

 

the

 

API

 

If

 

you

 

need

 

to

 

migrate

 

an

 

application

 

program

 

from

 

your

 

existing

 

CICS

 

system

 

that

 

uses

 

API

 

commands

 

or

 

options

 

that

 

TXSeries

 

CICS

 

does

 

not

 

support,

 

you

 

must

 

either:

 

v

   

Modify

 

the

 

application

 

to

 

use

 

API

 

commands

 

TXSeries

 

CICS

 

does

 

support,

 

or

 

v

   

Allow

 

the

 

application

 

to

 

coexist

 

with

 

TXSeries

 

CICS

 

by

 

continuing

 

to

 

run

 

the

 

application

 

in

 

your

 

existing

 

CICS

 

system.

 

The

 

full

 

list

 

of

 

API

 

commands

 

and

 

options

 

supported

 

by

 

CICS

 

are

 

described

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Differences

 

between

 

the

 

TXSeries

 

CICS-supported

 

API

 

and

 

that

 

supported

 

by

 

other

 

CICS

 

family

 

members

 

are

 

given

 

in

 

CICS

 

Family:

 

API

 

Structure.

 

If

 

you

 

do

 

not

 

remove

 

the

 

API

 

commands

 

or

 

options

 

that

 

TXSeries

 

CICS

 

does

 

not

 

support

 

from

 

an

 

application

 

program,

 

you

 

can

 

use

 

the

 

CICS

 

command

 

language

 

translator

 

to

 

highlight

 

the

 

unsupported

 

commands

 

or

 

options

 

as

 

errors.

 

This

 

is

 

a

 

quick

 

way

 

of

 

finding

 

out

 

if

 

an

 

existing

 

program

 

will

 

run

 

under

 

TXSeries

 

CICS

 

without

 

conversion

 

or,

 

conversely,

 

this

 

method

 

enables

 

you

 

to

 

more

 

accurately

 

estimate

 

the

 

amount

 

of

 

effort

 

you

 

will

 

require

 

to

 

migrate

 

an

 

application

 

program

 

to

 

the

 

TXSeries

 

CICS

 

API.

 

In

 

all

 

CICS

 

products,

 

you

 

can

 

place

 

command

 

options

 

in

 

any

 

sequence

 

in

 

a

 

command,

 

as

 

long

 

as

 

you

 

place

 

the

 

command

 

identifier

 

first.

 

CICS

 

family

 

products

 

interpret

 

the

 

scope

 

of

 

a

 

command

 

identifier

 

differently;

 

some

 

consider

 

just

 

the

 

first

   

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

201



word

 

to

 

be

 

significant

 

(such

 

as

 

HANDLE)

 

while

 

others,

 

of

 

which

 

TXSeries

 

CICS

 

is

 

one,

 

consider

 

one

 

or

 

more

 

words

 

to

 

be

 

significant

 

(such

 

as

 

EXEC

 

CICS

 

HANDLE

 

CONDITION).

 

Thus,

 

HANDLE

 

RESP

 

CONDITION

 

and

 

EXEC

 

CICS

 

SET

 

FILE

 

NOHANDLE

 

OPEN

 

are

 

invalid

 

in

 

TXSeries

 

CICS.

 

You

 

can

 

tell

 

how

 

many

 

words

 

are

 

considered

 

to

 

be

 

significant

 

in

 

a

 

command

 

identifier

 

by

 

looking

 

at

 

its

 

title

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Presentation

 

services

 

API

 

migration

 

There

 

are

 

two

 

topics

 

that

 

deal

 

with

 

migration

 

of

 

application

 

programs

 

that

 

use

 

the

 

presentation

 

services

 

API:

 

v

   

Migration

 

and

 

Basic

 

Mapping

 

Support

 

(BMS)

 

services

 

v

   

Migration

 

and

 

3270

 

Information

 

Display

 

System

 

datastreams

Migration

 

and

 

Basic

 

Mapping

 

Support

 

(BMS)

 

services

 

TXSeries

 

CICS

 

provides

 

support

 

for

 

minimum

 

function

 

BMS

 

support

 

and

 

some

 

standard

 

function

 

BMS

 

support

 

(see

 

“BMS

 

functions

 

supported

 

in

 

CICS”

 

on

 

page

 

72).

 

This

 

means

 

that

 

you

 

can

 

migrate

 

BMS

 

macro

 

source

 

code

 

at

 

this

 

level

 

to

 

TXSeries

 

CICS.

 

The

 

BMS

 

processor

 

will

 

highlight

 

any

 

BMS

 

function

 

that

 

TXSeries

 

CICS

 

does

 

not

 

support.

 

If

 

a

 

map

 

in

 

your

 

existing

 

CICS

 

system

 

(the

 

system

 

you

 

are

 

porting

 

from)

 

uses

 

other

 

than

 

minimum

 

function

 

BMS

 

and

 

you

 

cannot

 

discard

 

the

 

map,

 

then

 

you

 

must

 

either:

 

v

   

Modify

 

the

 

map

 

to

 

use

 

only

 

minimum

 

function

 

BMS,

 

or

 

v

   

Allow

 

the

 

applications

 

using

 

the

 

map

 

to

 

coexist

 

with

 

TXSeries

 

CICS

 

by

 

continuing

 

to

 

run

 

them

 

in

 

your

 

existing

 

CICS

 

system.

 

You

 

can

 

specify

 

the

 

PS

 

parameter

 

in

 

BMS

 

maps

 

(see

 

the

 

CICS

 

Application

 

Programming

 

Reference)

 

as

 

one

 

of

 

the

 

following:

 

v

   

PS=8

 

v

   

PS=X'F8'

 

(EBCDIC)

 

v

   

PS=X'38'

 

(ASCII)

 

When

 

an

 

application

 

routes

 

a

 

transaction

 

from

 

an

 

EBCDIC

 

system,

 

TXSeries

 

CICS

 

converts

 

the

 

sent

 

X'F8'

 

value

 

to

 

X'38'.

 

When

 

a

 

TXSeries

 

CICS

 

application

 

routes

 

a

 

transaction,

 

the

 

EBCDIC

 

system

 

converts

 

the

 

sent

 

X'38'

 

value

 

to

 

X'F8'.

 

Application

 

programs

 

that

 

you

 

migrate

 

to

 

TXSeries

 

CICS

 

and

 

that

 

explicitly

 

set

 

PS=X'F8'

 

will

 

continue

 

to

 

work.

 

Applications

 

that

 

you

 

develop

 

for

 

TXSeries

 

CICS

 

that

 

set

 

PS=X'38'

 

work

 

on

 

TXSeries

 

CICS

 

but

 

do

 

not

 

work

 

if

 

you

 

migrate

 

them

 

to

 

an

 

EBCDIC

 

system.

 

It

 

is

 

advisable

 

that

 

you

 

always

 

code

 

PS=8.

 

Using

 

the

 

DFHMDF

 

OCCURS

 

option:

   

When

 

the

 

OCCURS

 

option

 

is

 

specified

 

in

 

a

 

BMS

 

map,

 

an

 

array

 

is

 

generated

 

in

 

the

 

symbolic

 

map.

 

For

 

example,

 

on

 

CICS

 

OS/2

 

this

 

array

 

is

 

present

 

in

 

the

 

output

 

map

 

only

 

while

 

a

 

filler

 

is

 

put

 

in

 

the

 

input

 

map.

 

TXSeries

 

CICS

 

generates

 

the

 

array

 

in

 

both

 

maps.

 

Refer

 

to

 

the

 

following

 

map:

   

202

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



DFHTEST

  

DFHMSD

 

TIOAPFX=YES,STORAGE=AUTO,MODE=INOUT,LANG=C,

                 

*

                

CTRL=(EXEC

 

CICS

 

FREEKB,FRSET)

 

MAPNAME

  

DFHMDI

 

SIZE=(24,80)

 

*

 

OCCURS

   

DFHMDF

 

POS=(01,02),LENGTH=15,OCCURS=12,INITIAL=’TEST’

          

DFHMSD

 

TYPE=FINAL

 

This

 

map

 

generates

 

the

 

header

 

file:

 

/*

  

*

 

cicsmap

 

freda.bms

 

--

 

Tue

 

Oct

 

27

 

10:10:06

 

CUT

 

1992

  

*

 

DFHTEST

 

DFHMSD

 

MODE=INOUT,STORAGE=AUTO

  

*/

 

struct

 

mapnameis

 

{

     

char

      

tioapfx[12];

     

struct

     

{

          

short

     

occursl;

          

char

      

occursf;

          

char

      

occursi[15];

     

}

         

occursd[12];

 

};

 

struct

 

mapnameos

 

{

     

char

      

tioapfx[12];

     

struct

     

{

          

short

     

filler01;

          

char

      

occursa;

          

char

      

occurso[15];

     

}

         

occursd[12];

 

};

 

union

 

mapnameu

 

{

     

struct

 

mapnameis

 

mapnamei;

     

struct

 

mapnameos

 

mapnameo;

 

};

 

union

 

mapnameu

 

mapname;

 

Notice

 

that

 

the

 

occursd

 

structure

 

is

 

named

 

in

 

both

 

the

 

input

 

map

 

mapnameis

 

and

 

the

 

output

 

map

 

mapnameos.

 

This

 

enables

 

the

 

structure

 

to

 

be

 

used

 

for

 

both

 

input

 

and

 

output

 

operations.

 

Migrating

 

maps

 

from

 

CICS

 

OS/2:

   

When

 

generating

 

BMS

 

maps

 

in

 

C

 

or

 

C++,

 

CICS

 

OS/2

 

always

 

assumes

 

the

 

When

 

generating

 

BMS

 

maps

 

in

 

C,

 

CICS

 

OS/2

 

always

 

assumes

 

the

 

parameter

 

STORAGE=AUTO

 

while

 

TXSeries

 

CICS

 

does

 

not.

 

To

 

migrate

 

between

 

the

 

two

 

implementations

 

you

 

must

 

either

 

specify

 

STORAGE=AUTO

 

in

 

the

 

CICS

 

OS/2

 

map

 

definition

 

or

 

amend

 

the

 

source

 

program

 

code

 

to

 

refer

 

to

 

the

 

generated

 

pointer

 

rather

 

than

 

the

 

structure.

 

This

 

also

 

applies

 

if

 

you

 

are

 

migrating

 

maps

 

from

 

CICS

 

for

 

Windows.

 

Migrating

 

maps

 

from

 

your

 

CICS

 

system

 

to

 

other

 

family

 

members:

   

TXSeries

 

CICS

 

allows

 

you

 

to

 

include

 

fields

 

with

 

the

 

same

 

name

 

on

 

different

 

maps

 

within

 

a

 

map

 

set.

 

This

 

is

 

not

 

the

 

case

 

in

 

other

 

CICS

 

products.

 

If

 

you

 

wish

 

to

 

port

 

your

 

map

 

set

 

from

 

TXSeries

 

CICS

 

to

 

IBM

 

mainframe-based

 

CICS,

 

you

 

should

 

ensure

 

that

 

all

 

BMS

 

map

 

and

 

field

 

names

 

are

 

unique

 

within

 

a

 

map

 

set.

 

The

 

cicsmap

 

command

 

checks

 

that

 

the

 

TYPE=

 

operand

 

specifies

 

either

 

MAP,

 

DSECT,

 

or

 

&SYSPARM.

 

However,

 

the

 

value

 

is

 

ignored

 

by

 

TXSeries

 

CICS.

 

Map

 

generation

 

is

 

controlled

 

with

 

the

 

-p

 

(physical)

 

and

 

-s

 

(symbolic)

 

cicsmap

 

flags.

 

If

 

neither

 

flag

 

is

 

specified,

 

both

 

physical

 

and

 

symbolic

 

maps

 

are

 

generated.

   

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

203



The

 

cicsmap

 

command

 

accepts

 

the

 

TYPE=&SYSPARM

 

operand

 

to

 

aid

 

portability

 

to

 

CICS/MVS.

 

Migration

 

and

 

3270

 

Information

 

Display

 

System

 

datastreams

 

When

 

migrating

 

from

 

an

 

EBCDIC

 

environment

 

to

 

TXSeries

 

CICS,

 

you

 

need

 

to

 

change

 

application

 

programs

 

that

 

explicitly

 

define

 

3270

 

datastreams

 

in

 

hexadecimal

 

format.

 

If

 

the

 

character

 

representation

 

is

 

used,

 

it

 

will

 

be

 

converted

 

to

 

the

 

correct

 

ASCII

 

hexadecimal

 

code.

 

There

 

are

 

also

 

some

 

exceptions.

 

For

 

example,

 

the

 

start

 

field

 

extended

 

special

 

character

 

in

 

ASCII

 

is

 

X'10'

 

but

 

in

 

EBCDIC

 

is

 

X'29'.

 

The

 

start

 

field

 

extended

 

special

 

character

 

is

 

not

 

generally

 

supported

 

in

 

ASCII,

 

but

 

has

 

been

 

supported

 

here

 

as

 

a

 

special

 

case.

 

Migration

 

requirements:

   

These

 

requirements

 

apply

 

equally

 

to

 

application

 

programs,

 

COBOL

 

copybooks,

 

C

 

and

 

C++

 

include

 

files,

 

and

 

PL/I

 

include

 

files.

 

Where

 

programs

 

assign

 

COBOL

 

copybook,

 

C

 

or

 

C++

 

or

 

PL/I

 

include

 

field

 

values

 

to

 

3270

 

datastreams,

 

you

 

only

 

have

 

to

 

make

 

changes

 

to

 

the

 

copybook,

 

or

 

include,

 

and

 

recompile

 

the

 

program.

 

You

 

need

 

to

 

change:

 

v

   

Any

 

hexadecimal

 

values

 

or

 

bit

 

masks

 

assigned

 

to

 

translated

 

3270

 

datastreams

 

v

   

Any

 

character

 

values

 

assigned

 

to

 

untranslated

 

3270

 

datastreams

 

You

 

do

 

not

 

need

 

to

 

change:

 

v

   

Any

 

hexadecimal

 

values

 

or

 

bit

 

masks

 

assigned

 

to

 

untranslated

 

3270

 

datastreams

 

v

   

Any

 

character

 

values

 

assigned

 

to

 

translated

 

3270

 

datastreams

Setting

 

3270

 

datastreams:

   

Application

 

programs

 

can

 

set

 

3270

 

datastream

 

values

 

by:

 

v

   

Copying

 

a

 

COBOL

 

copybook,

 

or

 

C

 

or

 

C++

 

or

 

PL/I

 

include

 

field

 

value

 

v

   

Copying

 

a

 

program

 

field

 

value

 

v

   

Assigning

 

a

 

character

 

value

 

v

   

Assigning

 

a

 

hexadecimal

 

value

 

v

   

Building

 

up

 

a

 

bit

 

mask

Untranslated

 

3270

 

datastreams:

   

TXSeries

 

CICS

 

does

 

not

 

translate

 

the

 

following

 

3270

 

datastream

 

components:

 

v

   

Write

 

control

 

characters

 

(WCC)

 

v

   

AttributeTypes

 

v

   

NumberOfPairs

 

v

   

Data

Conversion

 

of

 

datastreams:

   

TXSeries

 

CICS

 

communicates

 

with

 

its

 

terminals

 

using

 

ASCII

 

3270

 

datastreams.

 

These

 

consist

 

of

 

control

 

sequences

 

and

 

data

 

and

 

may

 

be

 

constructed

 

from

 

a

 

number

 

of

 

different

 

elements:

 

v

   

INITIAL

 

or

 

GINIT

 

data

 

from

 

a

 

BMS

 

map

 

v

   

XINIT

 

data

 

from

 

a

 

BMS

 

map

 

v

   

Data

 

in

 

a

 

symbolic

 

map

 

v

   

Attribute

 

values

 

in

 

a

 

symbolic

 

map

 

v

   

Data

 

for

 

terminal

 

control

 

output

 

v

   

Control

 

sequences

 

for

 

terminal

 

control

 

output

 

v

   

Write

 

Control

 

Character

 

given

 

by

 

the

 

CTLCHAR

 

option

 

of

 

EXEC

 

CICS

 

SEND

  

204

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



The

 

XINIT

 

data

 

in

 

a

 

BMS

 

map

 

can

 

be

 

transformed

 

from

 

EBCDIC

 

using

 

the

 

-e

 

option

 

of

 

cicsmap

 

that

 

interprets

 

the

 

data

 

as

 

EBCDIC

 

and

 

automatically

 

converts

 

it

 

to

 

ASCII.

 

Unless

 

you

 

are

 

using

 

extended

 

attributes,

 

all

 

the

 

other

 

sequences

 

may

 

be

 

portably

 

coded

 

using

 

character

 

values

 

or

 

values

 

from

 

the

 

standard

 

copybook

 

DFHBMSCA.

 

Hexadecimal

 

values

 

or

 

bit

 

masks

 

are

 

non-portable

 

and

 

will

 

need

 

to

 

be

 

modified

 

when

 

moving

 

an

 

application

 

from

 

a

 

non-ASCII

 

system.

 

Special

 

conversions:

   

TXSeries

 

CICS

 

performs

 

special

 

translations

 

on

 

the

 

following

 

control

 

sequences

 

because

 

they

 

have

 

no

 

standard

 

representation

 

in

 

ASCII

 

datastreams:

 

v

   

StartFieldExtended

 

v

   

SetAttribute

 

v

   

ModifyField

 

StartFieldExtended

 

and

 

ModifyField

 

are

 

represented

 

as

 

follows:

    

Code:

 

NumberOfPairs

 

:

 

AttributeType

 

:

 

AttributeValue

 

:

 

..

 

and

 

SetAttribute

 

is

 

represented

 

as

 

follows:

    

Code:

 

AttributeType

 

:

 

AttributeValue

 

where

 

Code

 

is

 

X'10'

 

for

 

StartFieldExtended,

 

X'1A'

 

for

 

ModifyField,

 

and

 

X'1F'

 

for

 

SetAttribute.

 

NumberOfPairs

 

is

 

a

 

hexadecimal

 

value,

 

as

 

is

 

the

 

AttributeType.

 

These

 

will

 

have

 

the

 

same

 

value

 

on

 

both

 

ASCII

 

and

 

EBCDIC

 

systems.

 

For

 

all

 

extended

 

attributes,

 

except

 

for

 

Field

 

Validation

 

and

 

Field

 

Outlining,

 

which

 

TXSeries

 

CICS

 

does

 

not

 

support,

 

the

 

AttributeValue

 

is

 

a

 

graphic

 

character

 

and

 

can

 

be

 

coded

 

portably

 

as

 

a

 

character

 

value

 

or

 

as

 

a

 

defined

 

value

 

in

 

the

 

DFHBMSCA

 

copybook.

 

Data

 

services

 

API

 

migration

 

There

 

are

 

two

 

topics

 

that

 

deal

 

with

 

migration

 

of

 

application

 

programs

 

that

 

use

 

the

 

data

 

services

 

API:

 

v

   

File

 

services

 

v

   

Queue

 

services

File

 

services

 

If

 

you

 

are

 

migrating

 

application

 

programs

 

that

 

use

 

the

 

API

 

file

 

services,

 

be

 

aware

 

of

 

the

 

following

 

migration

 

concerns:

 

v

   

EXEC

 

CICS

 

READNEXT

 

and

 

EXEC

 

CICS

 

READPREV

 

with

 

an

 

alternate

 

index

 

v

   

VSAM

 

emulation

 

v

   

Exclusive

 

or

 

shared

 

file

 

access

 

permissions

 

v

   

SFS

 

considerations

 

v

   

DB2

 

considerations

EXEC

 

CICS

 

READNEXT

 

and

 

EXEC

 

CICS

 

READPREV

 

with

 

an

 

alternate

 

index:

   

The

 

behavior

 

of

 

the

 

file

 

control

 

commands

 

EXEC

 

CICS

 

READNEXT

 

and

 

EXEC

 

CICS

 

READPREV

 

differs

 

between

 

TXSeries

 

CICS

 

and

 

other

 

CICS

 

family

 

members

 

when

 

dealing

 

with

 

duplicate

 

records

 

in

 

an

 

alternate

 

index.

 

Consider

 

records

 

with

 

the

 

following

 

keys:

 

1.

   

AAA

 

2.

   

BBB

   

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

205



3.

   

BBB

 

4.

   

BBB

 

If

 

a

 

sequence

 

of

 

EXEC

 

CICS

 

READNEXT

 

commands

 

obtains

 

records

 

1

 

to

 

4,

 

and

 

an

 

application

 

issues

 

an

 

EXEC

 

CICS

 

READPREV

 

command,

 

TXSeries

 

CICS

 

returns

 

record

 

4,

 

while

 

some

 

other

 

CICS

 

family

 

members

 

return

 

record

 

2

 

(this

 

record

 

being

 

the

 

first

 

of

 

the

 

set

 

of

 

duplicates

 

with

 

the

 

specified

 

key.)

 

If

 

you

 

call

 

EXEC

 

CICS

 

READNEXT

 

and

 

then

 

EXEC

 

CICS

 

READPREV,

 

TXSeries

 

CICS

 

attempts

 

to

 

return

 

the

 

same

 

record,

 

but

 

must

 

read

 

an

 

additional

 

record

 

when

 

it

 

reverses

 

the

 

browse.

 

The

 

extra

 

read

 

call

 

ensures

 

that

 

the

 

DUPKEY

 

condition

 

is

 

correctly

 

raised

 

in

 

indexes

 

that

 

allow

 

records

 

with

 

duplicate

 

keys.

 

In

 

the

 

following

 

example,

 

there

 

are

 

five

 

records

 

and

 

the

 

browse

 

is

 

positioned

 

at

 

record

 

2:

 

1.

   

AAA

 

2.

   

BBB

 

3.

   

BBB

 

4.

   

CCC

 

5.

   

DDD

 

An

 

EXEC

 

CICS

 

READNEXT,

 

EXEC

 

CICS

 

READPREV

 

sequence

 

is

 

carried

 

out.

 

TXSeries

 

CICS

 

returns

 

record

 

3

 

for

 

the

 

EXEC

 

CICS

 

READNEXT.

 

Record

 

4

 

is

 

not

 

a

 

duplicate,

 

so

 

it

 

does

 

not

 

set

 

DUPKEY.

 

To

 

carry

 

out

 

the

 

EXEC

 

CICS

 

READPREV

 

call,

 

TXSeries

 

CICS

 

reads

 

record

 

4

 

(the

 

NEXT

 

record)

 

and

 

then

 

sets

 

the

 

browse

 

in

 

the

 

new

 

direction.

 

TXSeries

 

CICS

 

reads

 

record

 

3

 

(the

 

PREV

 

record)

 

and

 

sets

 

the

 

DUPKEY

 

because

 

record

 

2

 

is

 

a

 

duplicate.

 

Because

 

EXEC

 

CICS

 

READPREV

 

uses

 

two

 

read

 

calls

 

when

 

it

 

reverses

 

the

 

browse,

 

it

 

is

 

possible

 

for

 

another

 

process

 

to

 

simultaneously

 

insert

 

records

 

and

 

cause

 

an

 

unexpected

 

result.

 

For

 

example,

 

a

 

process

 

might

 

insert

 

a

 

record

 

with

 

key

 

BBZ

 

between

 

the

 

two

 

read

 

calls

 

needed

 

for

 

EXEC

 

CICS

 

READPREV.

 

At

 

the

 

end

 

of

 

the

 

EXEC

 

CICS

 

READPREV,

 

the

 

browse

 

would

 

be

 

positioned

 

at

 

the

 

new

 

record,

 

not

 

record

 

3.

 

VSAM

 

emulation:

   

TXSeries

 

CICS

 

provides

 

emulation

 

of

 

virtual

 

sequential

 

access

 

method

 

(VSAM).

 

VSAM

 

is

 

an

 

access

 

method

 

for

 

direct

 

or

 

sequential

 

processing

 

of

 

fixed-

 

and

 

variable-length

 

records

 

on

 

direct

 

access

 

devices.

 

The

 

records

 

in

 

a

 

VSAM

 

data

 

set

 

or

 

file

 

can

 

be

 

organized

 

in

 

logical

 

sequence

 

by

 

a

 

key

 

field

 

(key

 

sequence),

 

in

 

the

 

physical

 

sequence

 

in

 

which

 

they

 

are

 

written

 

on

 

the

 

data

 

set

 

or

 

file

 

(entry-sequence).

 

or

 

by

 

relative-record

 

number.

 

The

 

VSAM

 

emulation

 

that

 

TXSeries

 

CICS

 

provides

 

is

 

through

 

the

 

use

 

of

 

the

 

SFS,

 

but

 

differs

 

in

 

some

 

areas

 

of

 

detailed

 

implementation:

 

File

 

access

 

If

 

IBM

 

mainframe-based

 

CICS

 

opens

 

a

 

VSAM

 

file,

 

setting

 

the

 

attribute

 

for

 

exclusive

 

access,

 

any

 

CICS

 

transaction

 

can

 

access

 

the

 

file

 

but

 

the

 

file

 

is

 

unavailable

 

outside

 

the

 

CICS

 

region.

 

This

 

limitation

 

is

 

because

 

CICS

 

is

 

responsible

 

for

 

any

 

recovery

 

processing

 

of

 

the

 

file.

 

TXSeries

 

CICS

 

does

 

not

 

need

 

to

 

open

 

SFS

 

files

 

for

 

exclusive

 

access

 

as

 

any

 

recovery

 

processing

 

is

 

performed

 

by

 

SFS.

 

Record

 

locking

 

An

 

application

 

requesting

 

a

 

record

 

for

 

update

 

causes

 

VSAM

 

to

 

lock

 

the

 

complete

 

control

 

interval.

 

The

 

same

 

request

 

using

 

SFS

 

causes

 

only

 

the

 

requested

 

record

 

to

 

be

 

locked.

 

Updating

 

alternate

 

keys

 

Unlike

 

VSAM,

 

SFS

 

allows

 

you

 

to

 

update

 

alternate

 

key

 

values

 

when

   

206

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



rewriting

 

a

 

record

 

accessed

 

by

 

an

 

alternate

 

index.

 

You

 

may

 

still

 

only

 

update

 

the

 

primary

 

key

 

value

 

by

 

deleting

 

the

 

original

 

record

 

and

 

reinserting

 

it.

 

Unique

 

primary

 

keys

 

The

 

primary

 

key

 

for

 

SFS

 

key-sequenced

 

files

 

need

 

not

 

be

 

unique.

 

Deleting

 

file

 

contents

 

SFS

 

allows

 

you

 

to

 

specify

 

OpenEmpty

 

for

 

a

 

file,

 

even

 

if

 

you

 

define

 

alternate

 

indices

 

for

 

the

 

file.

 

Relative

 

byte

 

addressing

 

In

 

SFS,

 

the

 

term

 

relative

 

byte

 

addressing

 

(RBA)

 

does

 

not

 

indicate

 

the

 

byte

 

offset

 

from

 

the

 

beginning

 

of

 

the

 

file

 

as

 

in

 

VSAM.

 

SFS

 

uses

 

RBA

 

as

 

a

 

value

 

which

 

can

 

be

 

used

 

as

 

a

 

record

 

identifier

 

for

 

any

 

of

 

the

 

three

 

file

 

organizations.

 

Browse

 

operations

 

If

 

you

 

perform

 

an

 

EXEC

 

CICS

 

STARTBR

 

command

 

with

 

the

 

key

 

set

 

to

 

its

 

maximum

 

value,

 

then

 

perform

 

an

 

EXEC

 

CICS

 

READPREV

 

command

 

and

 

lastly

 

an

 

EXEC

 

CICS

 

READNEXT

 

command,

 

SFS

 

raises

 

an

 

ENDFILE

 

condition.

 

In

 

CICS/MVS,

 

performing

 

the

 

same

 

commands

 

using

 

VSAM

 

raises

 

an

 

ILLOGIC

 

condition

 

and

 

terminates

 

the

 

application.

SFS

 

considerations:

   

If

 

CICS

 

opens

 

a

 

file,

 

but

 

does

 

not

 

use

 

the

 

file

 

for

 

a

 

configurable

 

period

 

of

 

time,

 

SFS

 

may

 

eventually

 

treat

 

the

 

file

 

as

 

closed,

 

and

 

permit

 

administrative

 

activities

 

to

 

take

 

place

 

on

 

the

 

file.

 

When

 

SFS

 

treats

 

a

 

file

 

as

 

closed

 

and

 

a

 

transaction

 

currently

 

using

 

the

 

file

 

makes

 

a

 

request

 

to

 

SFS,

 

the

 

request

 

fails

 

and

 

CICS

 

abnormally

 

terminates

 

the

 

transaction.

 

The

 

next

 

request

 

may

 

be

 

a

 

request

 

for

 

the

 

same

 

file,

 

a

 

request

 

for

 

a

 

different

 

file,

 

or

 

a

 

syncpoint

 

request.

 

If

 

a

 

new

 

transaction

 

attempts

 

to

 

access

 

the

 

file

 

that

 

SFS

 

is

 

treating

 

as

 

closed,

 

CICS

 

reopens

 

the

 

file.

 

However,

 

if

 

the

 

structure

 

of

 

the

 

file

 

has

 

changed

 

since

 

CICS

 

last

 

opened

 

the

 

file,

 

CICS

 

generates

 

an

 

error

 

condition.

 

You

 

may

 

need

 

to

 

amend

 

your

 

application

 

programs,

 

to

 

handle

 

this

 

condition.

 

For

 

information

 

about

 

SFS

 

or

 

ENCINA

 

for

 

CICS,

 

refer

 

to

 

the

 

appropriate

 

Encina

 

documentation.

 

1.

   

Sharing

 

SFS

 

files

 

between

 

regions

 

It

 

is

 

possible

 

to

 

have

 

an

 

SFS

 

file

 

shared

 

between

 

multiple

 

regions

 

in

 

TXSeries

 

CICS.

 

SFS

 

handles

 

all

 

locking

 

contention

 

between

 

the

 

regions

 

in

 

a

 

manner

 

which

 

is

 

largely

 

transparent

 

to

 

your

 

CICS

 

programs,

 

but

 

you

 

should

 

be

 

aware

 

of

 

some

 

restrictions:

 

v

   

Do

 

not

 

function

 

ship

 

a

 

request

 

to

 

a

 

remote

 

region

 

for

 

a

 

resource

 

which

 

it

 

is

 

sharing

 

with

 

your

 

local

 

region

 

in

 

the

 

same

 

logical

 

unit

 

of

 

work

 

(LUW).

 

CICS

 

allows

 

a

 

function-shipped

 

request

 

to

 

read

 

a

 

file

 

for

 

update

 

that

 

has

 

already

 

been

 

read

 

for

 

update

 

locally

 

in

 

the

 

same

 

LUW,

 

whereas,

 

if

 

the

 

accessing

 

is

 

entirely

 

local,

 

CICS

 

raises

 

INVREQ

 

on

 

the

 

second

 

request.

 

v

   

Distributed

 

transactions

 

developed

 

on

 

TXSeries

 

CICS

 

that

 

assume

 

the

 

OLTP

 

transaction

 

processing

 

model,

 

which

 

establish

 

two

 

or

 

more

 

conversations

 

to

 

the

 

same

 

remote

 

region

 

and

 

also

 

access

 

the

 

same

 

resources,

 

can

 

deadlock

 

when

 

ported

 

to

 

a

 

CICS/MVS

 

system.

 

Such

 

transactions

 

do

 

not

 

usually

 

deadlock

 

in

 

TXSeries

 

CICS,

 

because

 

they

 

are

 

part

 

of

 

one

 

global

 

transaction.

 

Porting

 

applications

 

the

 

other

 

way,

 

from

 

CICS/MVS

 

to

 

TXSeries

 

CICS,

 

is

 

not

 

affected.
2.

   

Effect

 

of

 

ROLLBACK

 

on

 

SFS

   

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

207



In

 

CICS/MVS,

 

the

 

CICS

 

region

 

manages

 

the

 

LUWs

 

for

 

VSAM

 

operations,

 

and

 

CICS

 

only

 

distributes

 

work

 

when

 

the

 

region

 

either

 

performs

 

some

 

ISC

 

operation

 

with

 

another

 

CICS

 

region,

 

or

 

when

 

a

 

recoverable

 

resource

 

manager,

 

such

 

as

 

a

 

relational

 

database,

 

is

 

used.

 

TXSeries

 

CICS

 

has

 

a

 

client/server

 

relationship

 

with

 

SFS,

 

with

 

each

 

SFS

 

being

 

a

 

recoverable

 

resource.

 

In

 

consequence

 

all

 

CICS

 

operations

 

that

 

utilize

 

SFS

 

(those

 

concerned

 

with

 

file

 

control,

 

temporary

 

storage

 

queues,

 

transient

 

data

 

queues,

 

and

 

the

 

local

 

queueing

 

of

 

function

 

shipping

 

requests)

 

cooperate

 

with

 

SFS

 

in

 

the

 

management

 

of

 

each

 

LUW.

 

Hence,

 

transactions

 

that

 

are

 

entirely

 

local

 

under

 

CICS/MVS,

 

are

 

effectively

 

distributed

 

under

 

TXSeries

 

CICS.

 

This

 

difference

 

between

 

the

 

way

 

that

 

CICS/MVS

 

and

 

TXSeries

 

CICS

 

distribute

 

responsibility

 

for

 

an

 

LUW,

 

and

 

its

 

resolution,

 

underlies

 

some

 

differences

 

in

 

behavior

 

between

 

CICS

 

family

 

members.

 

Consider

 

the

 

following

 

sequence,

 

and

 

the

 

effect

 

of

 

a

 

request

 

by

 

some

 

other

 

transaction

 

to

 

EXEC

 

CICS

 

READ

 

RECORD

 

A,

 

which

 

might

 

occur

 

at

 

any

 

of

 

the

 

5

 

indicated

 

points

 

in

 

the

 

sequence.

 

As

 

CICS

 

typically

 

allows

 

locked

 

records

 

to

 

be

 

read,

 

the

 

results

 

at

 

the

 

5

 

points

 

are

 

as

 

shown.

 

1

  

READ

 

RECORD

 

A

 

=>

 

NOTFND

   

WRITE

 

RECORD

 

A

 

2

  

READ

 

RECORD

 

A

 

=>

 

SUCCESS

  

SYNCPOINT

 

3

  

READ

 

RECORD

 

A

 

=>

 

SUCCESS

  

DELETE

 

RECORD

 

A

 

4

  

READ

 

RECORD

 

A

 

=>

 

NOTFND

   

ROLLBACK

 

5

  

READ

 

RECORD

 

A

 

=>

 

???????

 

The

 

events

 

at

 

points

 

1

 

to

 

4

 

are

 

readily

 

understood

 

and

 

consistent

 

between

 

CICS/MVS

 

and

 

TXSeries

 

CICS.

 

At

 

point

 

5,

 

the

 

distributed

 

nature

 

of

 

the

 

transaction,

 

and

 

the

 

shared

 

responsibility

 

for

 

the

 

LUW

 

result

 

in

 

a

 

difference

 

in

 

behavior.

 

CICS

 

treats

 

the

 

ROLLBACK

 

command

 

as

 

complete

 

once

 

SFS

 

has

 

been

 

notified

 

of

 

the

 

abnormal

 

termination

 

of

 

the

 

LUW,

 

and

 

has

 

acknowledged

 

the

 

notification.

 

SFS

 

cannot

 

guarantee

 

when

 

it

 

will

 

complete

 

the

 

work

 

associated

 

with

 

rolling

 

back,

 

and

 

further

 

provides

 

no

 

interface

 

to

 

allow

 

the

 

state

 

of

 

the

 

rollback

 

operation

 

to

 

be

 

determined.

 

There

 

is

 

therefore

 

a

 

small

 

interval,

 

of

 

indeterminate

 

length,

 

following

 

the

 

completion

 

of

 

the

 

ROLLBACK

 

request

 

in

 

which

 

an

 

EXEC

 

CICS

 

READ

 

request

 

may

 

return

 

NOTFND.

 

Eventually,

 

when

 

SFS

 

completes

 

the

 

abnormal

 

termination,

 

EXEC

 

CICS

 

READ

 

returns

 

SUCCESS.

 

The

 

true

 

state

 

of

 

affairs

 

is

 

then:

 

1

  

READ

 

RECORD

 

A

 

=>

 

NOTFND

   

WRITE

 

RECORD

 

A

 

2

  

READ

 

RECORD

 

A

 

=>

 

SUCCESS

  

SYNCPOINT

 

3

  

READ

 

RECORD

 

A

 

=>

 

SUCCESS

  

DELETE

 

RECORD

 

A

 

4

  

READ

 

RECORD

 

A

 

=>

 

NOTFND

   

ROLLBACK

 

5

  

READ

 

RECORD

 

A

 

=>

 

NOTFND

   

(SFS

 

starts

 

ROLLBACK)

 

6

  

READ

 

RECORD

 

A

 

=>

 

NOTFND

   

(SFS

 

completes

 

ROLLBACK)

 

7

  

READ

 

RECORD

 

A

 

=>

 

SUCCESS

 

If

 

the

 

read

 

being

 

attempted

 

involves

 

taking

 

a

 

lock,

 

then

 

the

 

reads

 

at

 

points

 

2,

 

4,

 

5

 

and

 

6

 

wait

 

for

 

the

 

transaction

 

resolution,

 

or

 

timeout

 

with

 

an

 

AKCS

 

abnormal

 

termination.

 

Do

 

not

 

view

 

these

 

scenarios

 

as

 

two

 

separate

 

transactions,

 

but

 

a

 

single

 

transaction

 

that

 

performs

 

the

 

following

 

sequence:

 

WRITE

 

RECORD

 

A

 

SYNCPOINT

 

DELETE

 

RECORD

 

A

 

ROLLBACK

 

READ

 

RECORD

 

A

 

Queue

 

services

 

If

 

you

 

are

 

migrating

 

application

 

programs

 

that

 

use

 

the

 

API

 

queue

 

services,

 

you

 

need

 

to

 

be

 

aware

 

of

 

the

 

following

 

migration

 

concerns:

   

208

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Transient

 

data

 

queue

 

trigger

 

levels:

   

When

 

a

 

transient

 

data

 

queue

 

reaches

 

its

 

trigger

 

level

 

for

 

automatic

 

transaction

 

initiation

 

(ATI),

 

and

 

all

 

servers

 

are

 

utilized,

 

TXSeries

 

CICS

 

postpones

 

the

 

ATI

 

until

 

a

 

further

 

transient

 

data

 

queue

 

record

 

is

 

written.

 

Thus,

 

TXSeries

 

CICS

 

does

 

not

 

necessarily

 

initiate

 

a

 

task

 

when

 

the

 

trigger

 

level

 

is

 

reached,

 

but

 

when

 

the

 

trigger

 

level

 

is

 

exceeded.

 

In

 

TXSeries

 

CICS,

 

the

 

ATI

 

takes

 

place

 

as

 

soon

 

as

 

a

 

server

 

becomes

 

available.

 

Extrapartition

 

transient

 

data

 

queue

 

considerations:

   

Unlike

 

some

 

CICS

 

systems,

 

TXSeries

 

CICS

 

opens

 

extrapartition

 

transient

 

data

 

queues

 

whenever

 

CICS

 

runs

 

a

 

transaction

 

that

 

requires

 

access

 

to

 

an

 

extrapartition

 

transient

 

data

 

queue.

 

Conversely

 

the

 

application

 

server

 

closes

 

the

 

extrapartition

 

transient

 

data

 

queue

 

when

 

CICS

 

finishes

 

running

 

the

 

transaction.

   

Chapter

 

7.

 

Migrating

 

CICS

 

applications

 

to

 

and

 

from

 

TXSeries

 

CICS

 

209



210

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Part

 

3.

 

Compiling

 

Applications

  

Table

 

39.

 

Road

 

map

 

for

 

Compiling

 

applications

 

If

 

you

 

want

 

to...

 

Refer

 

to...

 

Know

 

about

 

source

 

directories,

 

and

 

link

 

libraries

 

when

 

translating,

 

compiling,

 

and

 

link-editing

 

in

 

one

 

or

 

separate

 

steps,

 

and

 

the

 

special

 

requirements

 

of

 

compiling

 

a

 

CICS

 

applications

 

program

 

Chapter

 

8,

 

“Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs,”

 

on

 

page

 

213

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

211



212

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

After

 

you

 

have

 

written

 

a

 

CICS

 

application,

 

you

 

must

 

first

 

compile

 

and

 

link-edit

 

the

 

application.

 

If

 

the

 

program

 

is

 

written

 

in

 

COBOL,

 

C,

 

or

 

C++,

 

you

 

must

 

first

 

convert

 

the

 

EXEC

 

CICS

 

statements

 

that

 

are

 

included

 

in

 

the

 

programs

 

to

 

COBOL,

 

C

 

or

 

C++

 

statements.

 

(PL/I

 

programs

 

do

 

not

 

need

 

to

 

be

 

translated

 

prior

 

to

 

compilation.)

 

The

 

two

 

commands

 

you

 

use

 

to

 

do

 

this

 

are:

 

cicstran

 

This

 

is

 

the

 

control

 

language

 

translator

 

that

 

converts

 

source

 

code

 

to

 

an

 

equivalent

 

source

 

program

 

in

 

which

 

each

 

EXEC

 

CICS

 

command

 

has

 

been

 

converted

 

into

 

COBOL,

 

C

 

or

 

C++

 

cicstcl

 

This

 

command

 

performs

 

the

 

translation,

 

compiles

 

the

 

translated

 

program,

 

and

 

links

 

the

 

resulting

 

object.

 

The

 

remainder

 

of

 

this

 

chapter

 

discusses

 

translating

 

and

 

compiling

 

application

 

systems

 

to

 

run

 

in

 

your

 

CICS

 

region.

 

If

 

you

 

are

 

compiling

 

them

 

to

 

run

 

under

 

the

 

control

 

of

 

a

 

debugging

 

tool,

 

you

 

have

 

to

 

specify

 

additional

 

compiler

 

arguments.

 

See

 

“Using

 

CDCN

 

and

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

(xldb)

 

with

 

CICS

 

for

 

AIX

 

only”

 

on

 

page

 

258

 

and

 

“Using

 

a

 

compiler’s

 

integrated

 

debugging

 

tool

 

to

 

debug

 

CICS

 

applications”

 

on

 

page

 

263

 

for

 

more

 

information.

 

Note:

  

Whenever

 

you

 

upgrade

 

to

 

a

 

new

 

level

 

of

 

Micro

 

Focus

 

Server

 

Express

 

(on

 

Open

 

Systems)

 

or

 

Micro

 

Focus

 

Net

 

Express

 

(on

 

Windows),

 

always

 

recompile

 

your

 

COBOL

 

programs.

Note:

  

If

 

you

 

are

 

building

 

executable

 

files

 

that

 

use

 

both

 

.so

 

libraries

 

and

 

DCE

 

libraries,

 

and

 

if

 

you

 

are

 

using

 

the

 

-brtl

 

flag,

 

you

 

must

 

include

 

the

 

-bnortllib

 

flag.

 

For

 

example,

 

xlc_r4

 

-o

 

executable_name

 

object_

 

files

 

-l

 

dce_library_files

  

-brtl

 

-bnortllib

 

The

 

combination

 

of

 

the

 

-brtl

 

flag

 

and

 

the

 

-bnortllib

 

flag

 

is

 

used

 

only

 

to

 

build

 

executable

 

files;

 

it

 

is

 

not

 

used

 

to

 

build

 

libraries.

 

The

 

PL/I

 

compiler

 

The

 

IBM

 

PL/I

 

compiler

 

has

 

an

 

integrated

 

preprocessor

 

that

 

should

 

be

 

used

 

instead

 

of

 

cicstran.

 

cicstcl

 

invokes

 

the

 

PL/I

 

compiler.

 

Examples

 

(CICS

 

for

 

Windows)

 

Examples

 

of

 

these

 

procedures

 

are

 

provided

 

by

 

the

 

Installation

 

Verification

 

Programs

 

(IVP)

 

which

 

can

 

be

 

found

 

in

 

opt\cics\samples\IVP.

 

The

 

IVP

 

programs

 

are

 

documented

 

in

 

Planning

 

and

 

Installation

 

Guide.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

213



Source

 

directories

 

and

 

link

 

libraries

 

CICS

 

uses

 

two

 

directory

 

structures,

 

one

 

for

 

regions

 

and

 

one

 

for

 

your

 

installed

 

CICS.

 

As

 

an

 

application

 

programmer,

 

you

 

are

 

interested

 

in

 

the

 

installed

 

CICS

 

system

 

directory

 

structure.

 

More

 

specifically:

  

Table

 

40.

 

Source

 

directories

 

and

 

link

 

libraries

 

$CICS/bin

 

(see

 

note)

 

prodDir\bin

 

Contains

 

those

 

executables

 

that

 

are

 

used

 

by

 

application

 

development

 

programmers.

 

These

 

include,

 

for

 

example,

 

the

 

cicstran

 

and

 

cicstcl

 

programs.

 

Include

 

this

 

directory

 

in

 

your

 

path

 

list,

 

as

 

well

 

as

 

the

 

path

 

list

 

for

 

all

 

CICS

 

users.

 

$CICS/lib

 

prodDir\lib

 

Contains

 

those

 

shared

 

libraries

 

that

 

CICS

 

needs

 

to

 

prepare

 

applications

 

written

 

in

 

C,

 

C++,

 

IBM

 

COBOL,

 

and

 

IBM

 

PL/I.

 

This

 

path

 

is

 

included

 

in

 

the

 

compile

 

command

 

that

 

cicstcl

 

uses

 

to

 

compile

 

your

 

application

 

programs.

 

$CICS/include

 

prodDir\include

 

Contains

 

the

 

CICS

 

header

 

files

 

used

 

to

 

prepare

 

applications.

 

These

 

are

 

the

 

COBOL

 

copybooks,

 

C

 

and

 

C++

 

header

 

files,

 

and

 

PL/I

 

include

 

files.

 

This

 

path

 

is

 

included

 

in

 

the

 

compile

 

command

 

that

 

cicstcl

 

uses

 

to

 

compile

 

your

 

application

 

programs.

   

Translating,

 

compiling,

 

and

 

link-editing

 

in

 

one

 

step

 

Using

 

cicstcl

 

to

 

translate,

 

compile

 

and

 

link-edit

 

CICS

 

programs

 

is

 

the

 

recommended

 

way

 

of

 

generating

 

your

 

executable

 

CICS

 

programs.

 

Consider

 

performing

 

these

 

steps

 

manually

 

only

 

if

 

you

 

have

 

good

 

reason

 

(for

 

example

 

if

 

your

 

CICS

 

program

 

also

 

has

 

to

 

be

 

linked

 

to

 

the

 

runtime

 

of

 

a

 

relational

 

database).

 

See

 

“Translating,

 

compiling

 

and

 

link-editing

 

in

 

separate

 

steps”

 

on

 

page

 

216

 

for

 

details

 

on

 

performing

 

these

 

steps

 

separately.

 

The

 

following

 

sections

 

provide

 

the

 

preferred

 

procedure

 

that

 

tells

 

you

 

how

 

to

 

translate,

 

compile,

 

and

 

link-edit

 

your

 

application

 

program

 

using

 

cicstcl.

 

The

 

prerequisite

 

tasks

 

must

 

be

 

done

 

before

 

you

 

begin.

 

Prerequisite

 

Tasks

 

v

   

Invoke

 

the

 

cicsmap

 

command

 

for

 

any

 

map

 

sets

 

that

 

your

 

application

 

program

 

uses.

 

(See

 

“cicsmap

 

-

 

generate

 

BMS

 

map

 

files”

 

on

 

page

 

276.)

 

v

   

If

 

you

 

have

 

COBOL

 

copybooks

 

that

 

contain

 

EXEC

 

CICS

 

statements,

 

use

 

cicstran

 

to

 

translate

 

them

 

(see

 

“Pre-translating

 

COBOL

 

copybooks”

 

on

 

page

 

218).

 

If

 

necessary,

 

set

 

compile

 

and

 

link

 

options.

 

These

 

are

 

not

 

normally

 

required,

 

since

 

cicstcl

 

attempts

 

to

 

supply

 

sensible

 

defaults

 

but,

 

if

 

needed,

 

they

 

are

 

supplied

 

as

 

shown

 

in

 

Table

 

41

 

and

 

Table

 

42

 

on

 

page

 

215.

 

The

 

values

 

listed

 

are

 

the

 

environment

 

variables

 

from

 

which

 

the

 

cicstcl

 

command

 

obtains

 

the

 

flags

 

and

 

directories

 

it

 

uses

 

when

 

compiling

 

and

 

linking

 

programs.

 

For

 

more

 

information

 

on

 

these

 

flags,

 

see

 

the

 

sections

 

in

 

this

 

chapter

 

on

 

the

 

language

 

you

 

are

 

using.

  

Table

 

41.

 

Setting

 

compile

 

and

 

link

 

options

 

for

 

cicstcl

 

(CICS

 

on

 

Open

 

Systems).

  

Compiler

 

Compile

 

flags

 

Linker

 

flags

 

Libraries

 

to

 

link

 

Include

 

directories

 

C/C++

 

CCFLAGS

 

LDFLAGS

 

USERLIB

 

IBM

 

COBOL

 

CICS_IBMCOB_

 

FLAGS

 

LDFLAGS

 

USERLIB

 

SYSLIB

   

214

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

41.

 

Setting

 

compile

 

and

 

link

 

options

 

for

 

cicstcl

 

(CICS

 

on

 

Open

 

Systems)

 

(continued).

  

Compiler

 

Compile

 

flags

 

Linker

 

flags

 

Libraries

 

to

 

link

 

Include

 

directories

 

MF

 

COBOL

 

COBOPTS

 

COBCPY

 

IBM

 

PL/I

 

CICS_IBMPLI_

 

FLAGS

 

LDFLAGS

 

USERLIB

    

Table

 

42.

 

Setting

 

compile

 

and

 

link

 

options

 

for

 

cicstcl

 

(CICS

 

for

 

Windows).

  

Compiler

 

Compile

 

flags

 

Linker

 

flags

 

Libraries

 

to

 

link

 

Include

 

directories

 

IBM

 

C/C++

 

CICS_IBMC_

 

FLAGS

 

ILINK

 

USERLIB

 

IBM

 

COBOL

 

CICS_IBMCOB_

 

FLAGS

 

USERLIB

 

USERLIB

 

Micro

 

Focus

 

Net

 

Express

 

COBOPTS

 

COBCPY

 

Microsoft®

 

C/C++

 

CICS_MSC_FLAGS

 

LINK

 

USERLIB

 

IBM

 

PL/I

 

CICS_IBMPLI_

 

FLAGS

   

Note:

  

If

 

you

 

have

 

both

 

IBM

 

VisualAge

 

C++

 

and

 

IBM

 

VisualAge®

 

COBOL

 

installed,

 

the

 

COBOL

 

directories

 

must

 

be

 

in

 

the

 

PATH

 

system

 

environment

 

variable

 

before

 

the

 

C++

 

directories.

 

Procedure

 

Invoke

 

the

 

cicstcl

 

command

 

to

 

translate,

 

compile,

 

and

 

link

 

edit

 

your

 

application

 

program.

 

If

 

the

 

translation

 

is

 

successful,

 

cicstcl

 

compiles

 

the

 

program,

 

and

 

if

 

the

 

compilation

 

is

 

successful,

 

link-edits

 

it.

 

(See

 

“cicstcl

 

-

 

translate,

 

compile,

 

and

 

link”

 

on

 

page

 

281.)

 

CICS

 

writes

 

errors,

 

warnings

 

and

 

informational

 

messages

 

to

 

the

 

operating

 

system

 

file

 

stream,

 

stderr.

 

Note:

  

When

 

compiling

 

with

 

cicstcl,

 

you

 

can

 

use

 

the

 

-a

 

option

 

to

 

retain

 

the

 

intermediate

 

file.

 

On

 

CICS

 

for

 

Windows,

 

this

 

is

 

required

 

if

 

you

 

are

 

using

 

the

 

program

 

debugging

 

tools.

 

Caching

 

transaction

 

programs

 

and

 

NEWCOPY

 

(CICS

 

for

 

Windows)

 

Caching

 

a

 

program

 

improves

 

performance

 

because

 

reloading

 

costs

 

are

 

saved

 

when

 

the

 

program

 

is

 

used.

 

The

 

following

 

options

 

affect

 

program

 

caching:

 

v

   

The

 

Region

 

Definitions

 

(RD)

 

ProgramCacheSize

 

attribute.

 

Programs

 

in

 

C,

 

C++,

 

IBM

 

COBOL,

 

or

 

PL/I

 

are

 

cached

 

only

 

if

 

at

 

the

 

time

 

a

 

program

 

is

 

loaded,

 

the

 

Program

 

Definitions

 

(PD)

 

Resident

 

attribute

 

is

 

set

 

to

 

yes

 

and

 

the

 

number

 

of

 

cached

 

programs

 

in

 

use

 

has

 

not

 

reached

 

the

 

maximum

 

number.

 

Because

 

individual

 

programs

 

in

 

use

 

are

 

not

 

removed

 

from

 

the

 

cache,

 

it

 

is

 

recommended

 

that

 

the

 

cache

 

size

 

allow

 

programs

 

at

 

every

 

logical

 

level

 

to

 

be

 

cached

 

when

 

EXEC

 

CICS

 

LINK

 

is

 

used.

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

215



v

   

The

 

environment

 

variable

 

COBSW

 

is

 

set

 

to

 

lnn

 

where

 

nn

 

is

 

the

 

cache

 

size

 

in

 

bytes.

 

This

 

is

 

a

 

Micro

 

Focus

 

Server

 

Express

 

and

 

Net

 

Express

 

environment

 

variable

 

that

 

sets

 

the

 

length

 

of

 

the

 

Server

 

Express

 

and

 

Net

 

Express

 

program

 

cache.

 

This

 

variable

 

is

 

defined

 

in

 

the

 

region’s

 

environment

 

file.

 

Java™

 

programs

 

can

 

be

 

cached

 

by

 

the

 

Java

 

runtime

 

controlled

 

through

 

the

 

Java

 

Virtual

 

Machine

 

(JVM).

 

Programs

 

are

 

loaded

 

into

 

the

 

cache

 

in

 

the

 

order

 

they

 

are

 

accessed.

 

Note:

  

v

   

Programs

 

are

 

cached

 

for

 

each

 

application

 

server,

 

so

 

a

 

new

 

copy

 

of

 

the

 

program

 

has

 

no

 

effect

 

on

 

an

 

application

 

server

 

if

 

the

 

application

 

server

 

has

 

not

 

yet

 

run

 

the

 

program.

 

v

   

The

 

SET

 

PROGRAM

 

NEWCOPY

 

or

 

SET

 

PROGRAM

 

COPY(NEWCOPY)

 

commands

 

for

 

a

 

Micro

 

Focus

 

Server

 

Express

 

or

 

Net

 

Express

 

program

 

remove

 

every

 

program

 

previously

 

loaded

 

by

 

the

 

application

 

server,

 

so

 

a

 

fresh

 

copy

 

of

 

every

 

such

 

program

 

is

 

used

 

after

 

one

 

of

 

these

 

commands

 

is

 

run,

 

not

 

just

 

the

 

program

 

for

 

which

 

the

 

SET

 

PROGRAM

 

NEWCOPY

 

or

 

SET

 

PROGRAM

 

COPY(NEWCOPY)

 

command

 

is

 

issued.

 

These

 

commands

 

have

 

no

 

effect

 

on

 

Java

 

programs.

 

v

   

The

 

SET

 

PROGRAM

 

NEWCOPY

 

and

 

SET

 

PROGRAM

 

COPY(NEWCOPY)

 

commands

 

complete

 

successfully

 

but

 

have

 

no

 

effect

 

on

 

C,

 

C++,

 

IBM

 

COBOL,

 

or

 

PL/I

 

cached

 

programs

 

because,

 

on

 

Windows

 

systems,

 

a

 

file

 

on

 

disk

 

cannot

 

be

 

removed

 

or

 

overwritten

 

while

 

a

 

copy

 

of

 

it

 

exists

 

in

 

the

 

cache.

 

Therefore,

 

new

 

copies

 

of

 

these

 

programs

 

can

 

be

 

used

 

only

 

if

 

they

 

are

 

not

 

cached.

Translating,

 

compiling

 

and

 

link-editing

 

in

 

separate

 

steps

 

Using

 

cicstcl

 

to

 

translate,

 

compile

 

and

 

link-edit

 

CICS

 

programs

 

is

 

the

 

recommended

 

way

 

of

 

generating

 

your

 

executable

 

CICS

 

programs.

 

Consider

 

performing

 

these

 

steps

 

manually

 

only

 

if

 

you

 

have

 

good

 

reason

 

(for

 

example

 

if

 

your

 

CICS

 

program

 

also

 

has

 

to

 

be

 

linked

 

to

 

the

 

runtime

 

of

 

a

 

relational

 

database).

 

See

 

“Translating,

 

compiling,

 

and

 

link-editing

 

in

 

one

 

step”

 

on

 

page

 

214

 

for

 

details

 

on

 

using

 

cicstcl.

 

The

 

CICS

 

translator,

 

cicstran,

 

is

 

used

 

to

 

translate

 

EXEC

 

CICS

 

commands

 

into

 

COBOL,

 

C

 

or

 

C++

 

statements

 

(there

 

is

 

no

 

translate

 

step

 

for

 

PL/I

 

programs).

 

Table

 

43

 

shows

 

the

 

file

 

names

 

required

 

by

 

the

 

cicstran

 

command

 

and

 

the

 

names

 

of

 

the

 

output

 

files

 

produced

 

by

 

that

 

command.

  

Table

 

43.

 

File

 

names

 

used

 

by

 

the

 

cicstran

 

command

 

Language

 

Input

 

File

 

Name

 

Output

 

File

 

Name

 

COBOL

 

file.ccp

 

file.cbl

 

C

 

file.ccs

 

file.c

 

C++

 

file.ccs

 

file.C

   

If

 

your

 

program

 

includes

 

map

 

sets,

 

then

 

you

 

will

 

also

 

use

 

the

 

cicsmap

 

command.

 

This

 

command

 

takes

 

source

 

files

 

containing

 

Basic

 

Mapping

 

Support

 

(BMS)

 

macros

 

and

 

generates

 

symbolic

 

and

 

physical

 

maps.

 

They

 

must

 

be

 

generated

 

before

 

translation.

   

216

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



How

 

translation

 

works

 

For

 

a

 

COBOL

 

application

 

program,

 

each

 

command

 

is

 

replaced

 

by

 

one

 

or

 

more

 

MOVE

 

and

 

SET

 

statements,

 

followed

 

by

 

a

 

COBOL

 

CALL

 

statement,

 

followed

 

by

 

an

 

IF

 

statement.

 

The

 

purpose

 

of

 

the

 

MOVE

 

and

 

SET

 

statements

 

is

 

to

 

encode

 

the

 

information

 

in

 

the

 

command

 

into

 

the

 

CICS

 

internal

 

format.

 

For

 

example,

 

an

 

IBM

 

COBOL

 

command

 

such

 

as:

  

EXEC

 

CICS

 

RECEIVE

 

MAP(’A’)

 

END-EXEC.

 

can

 

be

 

translated

 

to:

  

MOVE

 

’A’

 

TO

 

CICS-STRING-VALUE(6)

  

SET

 

CICS-DATA-AREA(9)

 

TO

 

ADDRESS

 

OF

 

AI

  

MOVE

 

H’00000120’

 

TO

 

CICS-ARG-MASK

  

MOVE

 

0

 

TO

 

CICS-ARG-COUNT

  

MOVE

 

68

 

TO

 

CICS-FN-CODE

  

MOVE

 

-1

 

TO

 

CICS-DEBUG-LINE

  

CALL

 

"CICSAPI"

 

USING

 

CICS-ARGS

  

IF

 

EIBLABEL

 

NOT=0

  

GO

 

TO

 

CICS-API-ERROR

  

END-IF

 

A

 

similar

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

command

 

gives

 

the

 

same

 

translation:

  

EXEC

 

CICS

 

RECEIVE

 

MAP(’A’)

 

END-EXEC.

 

can

 

be

 

translated

 

to:

  

MOVE

 

’A’

 

TO

 

CICS-STRING-VALUE(6)

  

SET

 

CICS-DATA-AREA(9)

 

TO

 

ADDRESS

 

OF

 

AI

  

MOVE

 

H’00000120’

 

TO

 

CICS-ARG-MASK

  

MOVE

 

0

 

TO

 

CICS-ARG-COUNT

  

MOVE

 

68

 

TO

 

CICS-FN-CODE

  

MOVE

 

-1

 

TO

 

CICS-DEBUG-LINE

  

CALL

 

"CICSAPI"

 

USING

 

CICS-ARGS

  

IF

 

EIBLABEL

 

NOT=0

  

GO

 

TO

 

CICS-API-ERROR

  

END-IF

 

Note:

  

CALL

 

"cics_api_exec_cobol"

 

USING

 

CICS-ARGS

 

is

 

kept

 

for

 

compatibility.

 

The

 

translator

 

modifies

 

the

 

linkage

 

section

 

by

 

inserting

 

the

 

EXEC

 

interface

 

block

 

(EIB)

 

structure

 

as

 

the

 

first

 

parameter,

 

and

 

inserts

 

declarations

 

of

 

the

 

temporary

 

variables

 

that

 

it

 

requires

 

into

 

the

 

working-storage

 

section.

 

It

 

also

 

inserts

 

a

 

DFHCOMMAREA

 

if

 

there

 

is

 

not

 

one

 

in

 

the

 

linkage

 

section.

 

For

 

a

 

C

 

application

 

program,

 

each

 

command

 

is

 

replaced

 

by

 

one

 

or

 

more

 

assignment

 

statements

 

and

 

function

 

calls.

 

For

 

example,

 

a

 

command

 

such

 

as:

  

EXEC

 

CICS

 

RECEIVE

 

MAP("A");

 

can

 

be

 

translated

 

to:

 

{

  

cics_api_strncpy(CicsArgs.ArgData[5].StringValue,

 

"A",

 

(short)7);

  

CicsArgs.ArgData[8]DataArea

 

=

 

&a.ai;

  

CicsArgs.ArgMask

 

=

 

0x20000120;

  

CicsArgs.FnCode

 

=

 

68;

  

CicsArgs.DebugLine

 

=

 

-1;

  

cics_api_exec_c(&CicsArgs);

 

}

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

217



Pre-translating

 

COBOL

 

copybooks

 

If

 

your

 

source

 

contains

 

COBOL

 

copybooks

 

with

 

EXEC

 

CICS

 

statements

 

in

 

them,

 

then,

 

before

 

you

 

translate

 

the

 

main

 

program,

 

you

 

must

 

translate:

 

v

   

All

 

copybooks

 

that

 

contain

 

EXEC

 

CICS

 

statements

 

v

   

All

 

copybooks

 

that

 

include

 

copybooks

 

with

 

EXEC

 

CICS

 

statements

 

in

 

them

 

You

 

can

 

translate

 

the

 

copybooks

 

in

 

any

 

order

 

as

 

long

 

as

 

the

 

main

 

program

 

is

 

translated

 

after

 

all

 

of

 

the

 

copybooks

 

have

 

been

 

translated.

 

Note:

  

When

 

cicstcl

 

is

 

used,

 

all

 

associated

 

.cbl

 

files

 

are

 

erased.

 

However,

 

copybooks

 

obtained

 

as

 

a

 

result

 

of

 

using

 

cicstran

 

are

 

not

 

erased.

 

This

 

allows

 

you

 

to

 

save

 

pre-translated

 

copybooks

 

for

 

future

 

compiles.

 

It

 

is

 

advisable

 

to

 

use

 

the

 

.cbl

 

extension

 

with

 

the

 

COPYBOOK

 

file

 

name.

 

This

 

allows

 

additional

 

messages

 

associated

 

with

 

translation.

 

For

 

example,

 

to

 

include

 

a

 

copybook

 

called

 

REPORT:

     

COPY

 

’REPORT.cbl’.

 

The

 

CICS

 

translator

 

only

 

recognizes

 

copybooks

 

included

 

in

 

the

 

main

 

program

 

by

 

the

 

COBOL

 

copy

 

statement.

 

Note:

  

Micro

 

Focus

 

Server

 

Express

 

and

 

Net

 

Express

 

default

 

to

 

uppercase

 

so

 

the

 

single

 

quotes

 

are

 

essential.

 

The

 

translation

 

procedure

 

This

 

procedure

 

tells

 

you

 

how

 

to

 

translate

 

your

 

application

 

program

 

using

 

cicstran.

 

The

 

prerequisite

 

task

 

must

 

be

 

done

 

before

 

you

 

begin.

 

Note:

  

For

 

an

 

alternate

 

translation

 

procedure,

 

see

 

“Translating,

 

compiling,

 

and

 

link-editing

 

in

 

one

 

step”

 

on

 

page

 

214.

 

Prerequisite

 

task

 

Invoke

 

the

 

cicsmap

 

command

 

for

 

any

 

map

 

sets

 

that

 

your

 

application

 

program

 

uses.

 

(See

 

“cicsmap

 

-

 

generate

 

BMS

 

map

 

files”

 

on

 

page

 

276.)

 

Procedure

 

1.

   

If

 

you

 

have

 

COBOL

 

copybooks

 

that

 

contain

 

EXEC

 

CICS

 

statements,

 

use

 

cicstran

 

to

 

translate

 

them

 

(see

 

“Pre-translating

 

COBOL

 

copybooks”).

 

2.

   

Use

 

cicstran

 

to

 

translate

 

your

 

COBOL,

 

C,

 

or

 

C++

 

program.

 

Your

 

program

 

is

 

now

 

ready

 

to

 

be

 

compiled

 

and

 

link

 

edited.

 

Refer

 

to

 

“Requirements

 

for

 

compiling

 

CICS

 

application

 

programs.”

 

CICS

 

writes

 

errors,

 

warnings

 

and

 

informational

 

messages

 

to

 

stderr.

 

Note:

  

The

 

advantage

 

of

 

using

 

cicstcl

 

to

 

translate

 

your

 

program

 

is

 

that

 

it

 

uses

 

the

 

proper

 

compile

 

parameters

 

required

 

by

 

CICS.

 

Requirements

 

for

 

compiling

 

CICS

 

application

 

programs

 

This

 

section

 

describes

 

the

 

minimum

 

requirements

 

for

 

compiling

 

CICS

 

application

 

programs.

 

The

 

following

 

table

 

indicates

 

the

 

languages

 

and

 

compilers

 

supported

 

by

 

TXSeries

 

CICS:

   

218

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Table

 

44.

 

Programming

 

Language

 

support

 

On

 

CICS

 

for:

 

Native

 

C

 

Native

 

C++

 

Micro

 

Focus

 

IBM

 

COBOL

 

IBM

 

PL/I

 

AIX

 

Yes

 

Yes

 

Yes

 

Server

 

Express

 

Yes

 

Yes

 

HP-UX

 

Yes

 

No

 

Server

 

Express

 

No

 

No

 

Solaris

 

Yes

 

Yes

 

Yes

 

Server

 

Express

 

No

 

No

 

Windows

 

Yes

 

Yes

 

Yes

 

Net

 

Express

 

Yes

 

Yes

   

Compiling

 

and

 

linking

 

a

 

C

 

application

 

program

 

(CICS

 

on

 

Open

 

Systems)

 

Following

 

are

 

the

 

minimum

 

requirements

 

for

 

compiling

 

a

 

C

 

application

 

program.

 

Your

 

program

 

might

 

require

 

other

 

include

 

files,

 

in

 

other

 

include

 

directories,

 

and

 

other

 

libraries

 

in

 

other

 

library

 

directories.

 

These

 

other

 

files

 

and

 

libraries

 

might

 

not

 

be

 

CICS.

 

For

 

example,

 

to

 

compile

 

and

 

link

 

fred.c,

 

enter:

   

On

 

CICS

 

for

 

AIX

 

xlc_r4

 

-I

 

$CICS/include

 

-bI:$CICS/lib/cicsprC.exp

 

-e

 

main

        

-o

 

fred

 

fred.c

   

On

 

CICS

 

for

 

HP-UX

 

cc

 

-Aa

 

+z

 

-c

 

-I

 

$CICS/include

 

fred.c

 

ld

 

-b

 

+e

 

main

 

-L

 

$CICS/lib

 

-o

 

fred

 

fred.o

 

The

 

+z

 

option

 

is

 

required

 

to

 

generate

 

position-independent

 

code.

 

The

 

-Aa

 

option

 

is

 

required

 

to

 

put

 

the

 

compiler

 

in

 

ANSI

 

mode.

   

On

 

CICS

 

for

 

Solaris

 

cc

 

-misalign

 

-I

 

$CICS/include

 

-KPIC

 

-Xa

 

-c

 

fred.c

 

cc

 

-misalign

 

-L

 

$CICS/lib

 

-G

 

-e

 

main

 

-o

 

fred

 

fred.o

 

Compiling

 

and

 

linking

 

a

 

C

 

application

 

program

 

(CICS

 

for

 

Windows)

 

Following

 

are

 

the

 

minimum

 

requirements

 

for

 

compiling

 

a

 

C

 

application

 

program.

 

Your

 

program

 

might

 

require

 

other

 

include

 

files,

 

in

 

other

 

include

 

directories,

 

and

 

other

 

libraries

 

in

 

other

 

library

 

directories.

 

These

 

other

 

files

 

and

 

libraries

 

might

 

not

 

be

 

CICS.

  

Requirement

 

IBM

 

C

 

MICROSOFT

 

C

 

Compiler

 

icc

 

cl

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

219



Requirement

 

IBM

 

C

 

MICROSOFT

 

C

 

Link

 

with

 

CICS

 

library

 

prodDir\lib\cicsprC.lib

 

prodDir\lib\cicsprC.lib

 

Include

 

path

 

prodDir\include

 

prodDir\include

   

For

 

example,

 

to

 

translate,

 

compile

 

and

 

link

 

myprog,

 

enter:

   

With

 

IBM

 

VisualAge

 

C

 

cicstran

 

-lIBMC

 

myprog.ccs

  

------->

 

myprog.c

 

icc

 

-Mt

 

-IprodDir\include

 

-Ge-

 

-Gd+

 

-Gm+

 

myprog.c

 

ibmc.def

          

prodDir\lib\cicsprC.lib

 

--->

 

myprog.dll

 

Note:

  

It

 

is

 

necessary

 

to

 

export

 

_main

 

for

 

CICS

 

transaction

 

programs

 

built

 

with

 

the

 

IBM

 

compiler.

 

This

 

can

 

be

 

achieved

 

with

 

a

 

definition

 

file

 

with

 

the

 

following

 

two

 

lines:

 

EXPORTS

 

_main

   

With

 

Microsoft

 

Visual

 

C

  

cicstran

 

-lC

 

myprog.ccs

 

------->

 

myprog.c

  

cl

 

-IprodDir\include

 

-Gz

 

-LD

 

myprog.c

 

mfc.def

 

prodDir\lib\cicsprC.lib

                          

------->

 

myprog.dll

 

Note:

  

The

 

entry

 

point

 

main

 

must

 

be

 

exported

 

and

 

this

 

can

 

be

 

done

 

by

 

declaring

 

it

 

as:

 

_declspec(dllexport)

 

void

 

main

 

....

 

or

 

linking

 

with

 

a

 

definition

 

file

 

with

 

the

 

following

 

two

 

lines

 

EXPORTS

   

main

 

Compiling

 

and

 

linking

 

a

 

C++

 

program

 

(CICS

 

on

 

Open

 

Systems)

 

A

 

CICS

 

C++

 

application

 

program

 

must

 

have

 

an

 

extension

 

of

 

.ccs,

 

and

 

can

 

be

 

processed

 

using

 

cicstcl

 

or

 

cicstran,

 

just

 

as

 

a

 

C

 

program

 

but

 

there

 

the

 

similarity

 

ends.

 

The

 

intermediate

 

source

 

file

 

of

 

a

 

C++

 

program

 

has

 

an

 

extension

 

of

 

.C

 

and

 

the

 

executable

 

extension

 

of

 

.ibmcpp

 

(on

 

AIX)

 

or

 

.cpp

 

(on

 

Solaris

 

and

 

HP-UX).

 

Using

 

cicstcl

 

for

 

a

 

C++

 

program

 

On

 

AIX,

 

specify

 

the

 

C++

 

language

 

by

 

using

 

the

 

language

 

parameter

 

IBMCPP:

   

On

 

CICS

 

for

 

AIX

 

cicstcl

 

-l

 

IBMCPP

 

fred.ccs

  

This

 

command

 

produces

 

the

 

executable

 

fred.ibmcpp.

 

On

 

Solaris

 

and

 

HP-UX,

 

specify

 

the

 

C++

 

language

 

by

 

using

 

the

 

language

 

parameter

 

CPP:

   

220

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



On

 

CICS

 

for

 

Solaris

 

and

 

HP-UX

 

cicstcl

 

-l

 

CPP

 

fred.ccs

  

This

 

command

 

produces

 

the

 

executable

 

fred.cpp.

 

The

 

cicstcl

 

options

 

that

 

are

 

valid

 

for

 

C

 

applications

 

are

 

also

 

valid

 

for

 

C++

 

applications.

 

Using

 

cicstran

 

for

 

a

 

C++

 

program

 

Just

 

as

 

for

 

cicstcl,

 

specify

 

the

 

C++

 

language

 

parameter

 

IBMCPP

 

(on

 

AIX)

 

or

 

CPP

 

(on

 

Solaris

 

and

 

HP-UX),

 

and

 

then

 

invoke

 

the

 

compiler:

   

On

 

CICS

 

for

 

AIX

 

cicstran

 

-l

 

IBMCPP

 

fred.ccs

  

(to

 

produce

 

fred.C)

 

xlC_r4

 

-I

 

$CICS/include

 

-c

 

-o

 

fred.o

 

fred.C

 

makeC++SharedLib

 

-o

 

fred.ibmcpp

 

-p0

 

-nmain

   

-bI:$CICS/lib/cicsprCpp.exp

 

-lC_r

 

fred.o

   

On

 

CICS

 

for

 

Solaris

 

cicstran

 

-l

 

CPP

 

fred.ccs

  

(to

 

produce

 

fred.C)

 

CC

 

-G

 

-misalign

 

-KPIC

 

-I$CICS/include

 

fred.C

 

-o

 

fred.cpp

 

-L

 

$CICS/lib

   

On

 

CICS

 

for

 

HP-UX

 

cicstran

 

-l

 

CPP

  

fred.ccs

  

(to

 

produce

 

fred.C)

 

aCC

 

-c

 

+DAportable

 

-b

 

+z

 

-z

 

-I$CICS/include

 

fred.C

 

-o

 

fred.cpp

  

Use

 

makeC++SharedLib

 

on

 

AIX

 

to

 

link

 

your

 

applications

 

to

 

ensure

 

the

 

correct

 

initialization

 

of

 

objects,

 

and

 

link

 

with

 

the

 

CICS

 

library

 

$(CICS)/lib/cicsprCpp.exp.

 

Note:

  

When

 

using

 

the

 

makeC++SharedLib

 

command

 

ensure

 

that

 

/usr/lpp/xlC/bin

 

is

 

included

 

in

 

the

 

PATH.

 

Building

 

a

 

class

 

library

 

To

 

build

 

a

 

library

 

libfred.a

 

from

 

fred1.ccs

 

and

 

fred2.ccs

 

the

 

process

 

is:

  

On

 

CICS

 

for

 

AIX:

  

1.

   

Translate

 

fred1

 

and

 

fred2

      

cicstran

 

-l

 

IBMCPP

 

fred1

      

cicstran

 

-l

 

IBMCPP

 

fred2

 

2.

   

Compile

 

the

 

files

 

produced

      

xlC_r4

 

-c

 

-I

 

$CICS/include

 

-o

 

fred1

 

fred1.C

      

xlC_r4

 

-c

 

-I

 

$CICS/include

 

-o

 

fred2

 

fred2.C

 

3.

   

Link

 

and

 

archive

 

makeC++SharedLib

 

-o

 

fredshr.o

 

-p

 

0

      

-bI:$CICS/lib/cicsprCpp.exp

 

fred1.0

 

fred2.0

      

ar

 

rv

 

libfred.a

 

fredshr.o

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

221



On

 

CICS

 

for

 

Solaris:

  

1.

   

Translate

 

fred1

 

and

 

fred2

      

cicstran

 

-l

 

CPP

 

fred1

      

cicstran

 

-l

 

CPP

 

fred2

 

2.

   

Compile

 

the

 

files

 

produced

      

CC

 

-c

 

-misalign

 

-KPIC

 

-I$CICS/include

 

fred1.C

 

-oi

 

fred1.o

      

CC

 

-c

 

-misalign

 

-KPIC

 

-I$CICS/include

 

fred2.C

 

-oi

 

fred2.o

 

3.

   

Link

 

the

 

object

 

files

 

into

 

the

 

shared

 

library

 

CC

 

-G

 

-o

 

libfred.so

 

fred1.o

 

fred2.o

 

To

 

use

 

the

 

library,

 

set

 

the

 

LDFLAGS

 

environment

 

variable

 

to

 

point

 

to

 

the

 

library.

 

For

 

example:

 

LDFLAGS=-L/libpath

 

-l

 

fred

 

On

 

Solaris,

 

you

 

must

 

also

 

set

 

the

 

LD_LIBRARY_PATH

 

environment

 

variable

 

to

 

include

 

this

 

library.

 

Then

 

translate,

 

compile,

 

and

 

link

 

your

 

program

 

as

 

normal.

 

On

 

Solaris,

 

when

 

using

 

templates,

 

ensure

 

the

 

compiler

 

-ptr

 

option

 

is

 

set

 

to

 

point

 

to

 

the

 

template

 

database.

 

For

 

example,

 

if

 

you

 

are

 

compiling

 

a

 

file

 

that

 

contains

 

a

 

template

 

in

 

a

 

directory

 

called

 

/path/apps,

 

the

 

compiler

 

automatically

 

creates

 

a

 

directory

 

called

 

Templates.DB

 

in

 

the

 

/path/app

 

directory.

 

If

 

you

 

are

 

using

 

the

 

cicstcl

 

command

 

to

 

prepare

 

applications

 

that

 

use

 

those

 

templates,

 

set

 

the

 

compiler

 

option

 

using

 

the

 

CCFLAGS

 

environment

 

variable.

  

On

 

CICS

 

for

 

HP-UX:

  

1.

   

Translate

 

fred1

 

and

 

fred2

      

cicstran

 

-l

 

CPP

 

fred1

      

cicstran

 

-l

 

CPP

 

fred2

 

2.

   

Compile

 

the

 

files

 

produced

 

aCC

 

-c

 

+DAportable

 

+z

 

-I$CICS/include

 

fred1.C

 

-o

 

fred1.o

 

aCC

 

-c

 

+DAportable

 

+z

 

-I$CICS/include

 

fred2.C

 

-o

 

fred2.o

 

3.

   

Link

 

the

 

object

 

files

 

into

 

the

 

shared

 

library

 

aCC

 

-b

 

-Wl,

 

+s

 

+DAportable

 

+z

 

-z

 

-o

 

libfred.sl

 

fred1.o

 

fred2.o

 

On

 

HP-UX,

 

you

 

must

 

set

 

the

 

LDFLAGS

 

environment

 

variable

 

to

 

include

 

this

 

library.

 

For

 

example,

 

using

 

libpath

 

to

 

represent

 

the

 

path

 

to

 

the

 

library,

 

set

 

the

 

LDFLAGS

 

environment

 

variables

 

as

 

follows:

   

LDFLAGS="-Llibpath

 

-lfred"

 

On

 

HP-UX,

 

you

 

must

 

also

 

set

 

the

 

SHLIB_PATH

 

environment

 

variable

 

to

 

include

 

this

 

library.

 

Then

 

translate,

 

compile,

 

and

 

link

 

your

 

program

 

as

 

normal.

 

Compiling

 

and

 

linking

 

a

 

C++

 

program

 

(CICS

 

for

 

Windows)

 

Using

 

cicstran

 

for

 

a

 

C++

 

program

 

Following

 

are

 

the

 

minimum

 

requirements

 

for

 

compiling

 

a

 

C++

 

application

 

program.

 

Your

 

program

 

might

 

require

 

other

 

include

 

files,

 

in

 

other

 

include

 

directories,

 

and

 

other

 

libraries

 

in

 

other

 

library

 

directories.

 

These

 

other

 

files

 

and

 

libraries

 

might

 

not

 

be

 

CICS.

   

222

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Requirement

 

IBM

 

C++

 

MICROSOFT

 

C++

 

Compiler

 

icc

 

cl

 

Link

 

with

 

CICS

 

library

 

prodDir\lib\cicsprCpp.lib

 

prodDir\lib\cicsprCpp.lib

 

Include

 

path

 

prodDir\include

 

prodDir\include

   

For

 

example,

 

to

 

translate

 

,compile,

 

and

 

link

 

myprog,

 

enter:

   

With

 

IBM

 

VisualAge

 

C++

 

cicstran

 

-lIBMCPP

 

myprog.ccs

 

---->

 

myprog.C

 

icc

 

-Mt

 

-IprodDir\include

 

-Ge-

 

-Fe

 

myprog.ibmcpp

 

-Gd+

 

-Gm+

 

-Tp

 

myprog.C

              

prodDir\cicsprCpp.lib

 

ibmc.def

 

---->

 

myprog.ibmcpp

 

Note:

  

It

 

is

 

necessary

 

to

 

export

 

_main

 

for

 

CICS

 

transaction

 

programs

 

built

 

with

 

the

 

IBM

 

compiler.

 

This

 

can

 

be

 

achieved

 

with

 

a

 

definition

 

file

 

with

 

the

 

following

 

two

 

lines:

 

EXPORTS

 

_main

   

With

 

Microsoft

 

Visual

 

C++

  

cicstran

 

-lCPP

 

myprog.ccs

 

------->

 

myprog.C

  

cl

 

-IprodDir\include

 

-Gz

 

-LD

 

-GX

 

-Femyprog.cpp

 

-Tp

 

myprog.C

 

mfc.def

      

prodDir\lib\cicsprCpp.lib

 

---->

 

myprog.cpp

 

Note:

  

The

 

entry

 

point

 

main

 

must

 

be

 

exported

 

and

 

this

 

can

 

be

 

done

 

by

 

declaring

 

it

 

as:

 

_declspec(dllexport)

 

void

 

main

 

....

 

or

 

linking

 

with

 

a

 

definition

 

file

 

with

 

the

 

following

 

two

 

lines

 

EXPORTS

   

main

 

Building

 

a

 

class

 

library

 

This

 

example

 

comprises

 

2

 

classes

 

ts

 

and

 

td

 

queue

 

in

 

separate

 

source

 

files

 

and

 

the

 

class

 

is

 

called

 

queue.dll.

 

The

 

process

 

is:

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

223



For

 

IBM

 

VisualAge

 

C++

 

1.

   

translate

 

cicstran

 

-lIBMCPP

 

tsqueue.ccs

 

---------->

 

tsqueue.C

 

cicstran

 

-lIBMCPP

 

tdqueue.ccs

 

---------->

 

tdqueue.C

 

2.

   

compile

 

the

 

files

 

produced

 

icc

 

-c

 

-Mt

 

-IprodDir\include

 

-Ge-

 

-Gd+

 

-Gm+

 

-Tp

 

tsqueue.C

              

--->

 

tsqueue.obj

 

icc

 

-c

 

-Mt

 

-IprodDir\include

 

-Ge-

 

-Gd+

 

-Gm+

 

-Tp

 

tdqueue.C

              

--->

 

tdqueue.obj

 

3.

   

link

 

and

 

archive

 

ilib

 

/gi:queue

 

tsqueue.obj

 

tdqueue.obj

              

--->

 

queue.lib,

 

queue.exp

 

ilink

 

/DLL

 

/O:queue.dll

 

prodDir\lib\cicsprCpp.lib

              

tsqueue.obj

 

tdqueue.obj

 

queue.exp

  

---->

 

queue.dll

  

It

 

is

 

necessary

 

to

 

export

 

_main

 

for

 

CICS

 

transaction

 

programs

 

built

 

with

 

the

 

IBM

 

compiler,

 

which

 

can

 

be

 

done

 

in

 

a

 

definition

 

file

 

containing

 

the

 

following

 

two

 

lines:

 

EXPORTS

 

_main

 

Do

 

not

 

use

 

the

 

LIBRARY

 

keyword

 

in

 

the

 

definition,

 

because

 

this

 

causes

 

problems

 

when

 

the

 

program

 

is

 

linked.

 

If

 

it

 

does

 

not

 

already

 

exist,

 

the

 

definition

 

file

 

is

 

created

 

automatically

 

by

 

cicstcl.

 

These

 

compiler

 

options

 

are

 

described

 

briefly

 

below.

 

Refer

 

to

 

the

 

compiler

 

documentation

 

for

 

further

 

information.

 

Some

 

options,

 

for

 

example,

 

-Tp,

 

are

 

positionally

 

dependent

 

and

 

must

 

come

 

immediately

 

before

 

the

 

source

 

file.

 

-Mt

 

Set

 

default

 

linkage

 

to

 

__stdcall.

 

-Ge-

 

Use

 

runtime

 

that

 

assumes

 

a

 

DLL

 

is

 

being

 

built.

 

-Gd+

 

Use

 

DLL

 

runtime.

 

-Gm+

 

Use

 

multithread

 

runtime.

 

-Fe

  

Specify

 

program

 

name.

 

-Tp

  

Compile

 

source

 

as

 

C++

 

file.

 

gi

 

ilib

 

option

 

to

 

create

 

import

 

library/export

 

object

 

pair.

 

It

 

can

 

also

 

be

 

necessary

 

to

 

use

 

the

 

-Ft-

 

option

 

if

 

you

 

are

 

using

 

class

 

templates.

 

Note:

  

If

 

you

 

wish

 

to

 

change

 

the

 

default

 

linkage

 

to

 

_cdecl,

 

use

 

the

 

-Mc

 

option

 

instead

 

of

 

-Mt.

  

224

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



For

 

Microsoft

 

Visual

 

C++

 

1.

   

translate

 

cicstran

 

-lCPP

 

tsqueue.ccs

 

---------->

 

tsqueue.C

 

cicstran

 

-lCPP

 

tdqueue.ccs

 

---------->

 

tdqueue.C

 

2.

   

compile

 

the

 

files

 

produced

 

cl

 

-c

 

-IprodDir\include

 

-GX

 

-Gz

 

-Tp

 

tsqueue.C

  

----->

 

tsqueue.obj

 

cl

 

-c

 

-IprodDir\include

 

-GX

 

-Gz

 

-Tp

 

tdqueue.C

  

----->

 

tdqueue.obj

 

3.

   

link

 

and

 

archive

 

link

 

/dll

 

/out:queue.dll

 

$prodDir\lib\cicsprCpp.lib

 

tsqueue.obj

            

tdqueue.obj

 

----->

 

queue.dll

  

The

 

compiler

 

options

 

used

 

were:

 

-Gz

 

Set

 

default

 

linkage

 

to

 

__stdcall.

 

-LD

 

Build

 

DLL.

 

-GX

 

Enable

 

C++

 

exception

 

handling.

 

-Tp

  

Compile

 

source

 

as

 

C++

 

file.

Note:

  

If

 

you

 

wish

 

to

 

change

 

the

 

default

 

linkage

 

to

 

_cdecl,

 

use

 

the

 

-Gd

 

option

 

instead

 

of

 

-Gz.

 

Compiling

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application

 

program

 

(CICS

 

on

 

Open

 

Systems)

 

Following

 

are

 

the

 

minimum

 

requirements

 

for

 

compiling

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application

 

program.

 

Your

 

program

 

possibly

 

requires

 

other

 

copybooks

 

and

 

copybook

 

directories,

 

which

 

are

 

possibly

 

not

 

CICS.

   

On

 

CICS

 

for

 

AIX

 

Use

 

the

 

/bin/cob

 

compiler.

 

The

 

PATH

 

environment

 

variable

 

must

 

include

 

/bin.

 

Then

 

invoke

 

the

 

COBOL

 

compiler

 

with

 

the

 

cob

 

command.

   

On

 

CICS

 

for

 

HP-UX

 

Use

 

the

 

/opt/cobol/bin/cob

 

compiler.

 

The

 

PATH

 

environment

 

variable

 

must

 

include

 

/opt/cobol/bin.

 

Then

 

invoke

 

the

 

COBOL

 

compiler

 

with

 

the

 

cob

 

command.

   

On

 

CICS

 

for

 

Solaris

 

Use

 

the

 

/usr/bin/cob

 

compiler.

 

The

 

PATH

 

environment

 

variable

 

must

 

include

 

/usr/bin.

 

Then

 

invoke

 

the

 

COBOL

 

compiler

 

with

 

the

 

cob

 

command.

  

For

 

Micro

 

Focus

 

Server

 

Express

 

COBOL,

 

use

 

the

 

compiler

 

COBCPY

 

environment

 

variable

 

for

 

the

 

copybook

 

path.

 

The

 

copybook

 

path

 

is:

 

$CICS/include

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

225



Copybook

 

files

 

are

 

CICS-API

 

and

 

CICS-EIB

 

Compile

 

with

 

the

 

-C

 

ANIM

 

and

 

-C

 

INITCALL=CBL_DEBUGBREAK

 

options

 

to

 

use

 

Animator,

 

or

 

the

 

-u

 

option

 

to

 

compile

 

without

 

Animator.

 

If

 

you

 

use

 

Animator,

 

the

 

command

 

produces

 

the

 

following

 

two

 

files:

 

filename.int

 

filename.idy

 

If

 

you

 

compile

 

without

 

Animator,

 

the

 

command

 

produces

 

the

 

following

 

file:

 

filename.gnt

 

For

 

example,

 

to

 

compile

 

and

 

link

 

gred.cbl

 

using

 

Animator,

 

enter:

 

COBCPY="$CICS/include"

 

cob

 

-C

 

ANIM

 

-C

 

INITCALL=CBL_DEBUGBREAK

 

fred.cbl

 

To

 

compile

 

mprog.cbl

 

without

 

Animator,

 

enter:

 

COBCPY="$CICS/include"

 

cob

 

-u

 

fred.cbl

 

Note:

  

Do

 

not

 

use

 

the

 

file

 

name

 

extensions

 

for

 

the

 

PathName.

 

For

 

example,

 

if

 

the

 

program

 

fred.int

 

is

 

installed

 

at:

 

/usr/mydirectory/fred.int

 

The

 

PD

 

PathName

 

is:

 

/usr/mydirectory/fred

 

If

 

you

 

have

 

compiled

 

the

 

file

 

with

 

Animator,

 

you

 

must

 

install

 

the

 

.idy

 

file

 

and

 

the

 

.int

 

file

 

as

 

described

 

in

 

“Using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

CICS

 

on

 

Open

 

Systems

 

(Animator)”

 

on

 

page

 

269.

 

Install

 

the

 

.gnt

 

file

 

according

 

to

 

the

 

PathName

 

attribute

 

in

 

the

 

Program

 

Definitions

 

(PD)

 

for

 

the

 

required

 

transaction.

 

Note:

  

To

 

avoid

 

losing

 

leading

 

digits,

 

use

 

NOTRUNC

 

if

 

values

 

greater

 

than

 

9999

 

are

 

assigned

 

to

 

COMP

 

items.

 

Compiling

 

a

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

application

 

program

 

(CICS

 

for

 

Windows)

 

CICS

 

for

 

Windows

 

supports

 

Micro

 

Focus

 

Net

 

Express

 

COBOL.

 

For

 

Micro

 

Focus

 

Net

 

Express,

 

CICS

 

supports

 

files

 

with

 

the

 

extensions

 

.cbmfnt,

 

.gnt,

 

and

 

.int.

 

Files

 

with

 

the

 

extension

 

.int

 

are

 

interpreted

 

files

 

and

 

do

 

not

 

need

 

to

 

be

 

link

 

edited.

 

Note:

  

It

 

is

 

necessary

 

to

 

install

 

Microsoft

 

Visual

 

C++

 

for

 

use

 

with

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

because

 

Net

 

Express

 

requires

 

access

 

to

 

the

 

link.exe

 

file

 

that

 

accompanies

 

Microsoft

 

Visual

 

C++.

 

You

 

must

 

copy

 

the

 

link.exe

 

file

 

from

 

Microsoft

 

Visual

 

C++

 

and

 

place

 

it

 

in

 

the

 

\NetExpress\Base\BIN

 

directory.

 

Warning

 

messages

 

issued

 

on

 

the

 

CODE

 

and

 

DATA

 

sections

 

when

 

using

 

the

 

Microsoft

 

Visual

 

C

 

++

 

version

 

6.0

 

can

 

be

 

safely

 

ignored.

 

If

 

Run-Time

 

System

 

Websync

 

Update

 

version

 

1.0.006

 

(Micro

 

Focus

 

patch

 

FixPack)

 

or

 

later

 

is

 

installed,

 

these

 

warning

 

messages

 

no

 

longer

 

occur.

 

To

 

translate,

 

compile,

 

and

 

link

 

a

 

COBOL

 

program,

 

you

 

can

 

either

 

use

 

the

 

cicstcl

 

command

 

or

 

perform

 

the

 

processes

 

as

 

three

 

separate

 

steps.

   

226

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

The

 

following

 

example

 

shows

 

how

 

to

 

use

 

the

 

cicstcl

 

command

 

to

 

compile

 

the

 

file

 

myprog.ccp.

 

(This

 

command

 

can

 

be

 

used

 

to

 

produce

 

only

 

.cbmfnt

 

files.)

 

cicstcl

 

myprog.ccp

 

This

 

example

 

produces

 

the

 

file

 

myprog.cbmfnt.

 

v

   

The

 

following

 

example

 

shows

 

how

 

to

 

translate,

 

compile,

 

and

 

link

 

the

 

myprog.ccp

 

file

 

in

 

three

 

separate

 

steps:

 

cicstran

 

myprog.ccp

 

cobol

 

myprog.cbl;

 

cbllink

 

-D

 

-Mmyprog

 

-Omyprog.cbmfnt

 

myprog.obj

                

C:\opt\cics\lib\cicsprCBMFNT.lib

 

In

 

this

 

example,

 

the

 

cicstran

 

command

 

uses

 

the

 

.ccp

 

file

 

to

 

produce

 

the

 

.cbl

 

file,

 

which

 

is

 

used

 

by

 

the

 

cobol

 

command.

 

The

 

cobol

 

command

 

produces

 

an

 

.obj

 

file,

 

which

 

is

 

used

 

by

 

the

 

cbllink

 

command.

 

The

 

cbllink

 

command

 

produces

 

the

 

.cbmfnt

 

file.

 

The

 

command

 

set

 

is

 

best

 

run

 

from

 

within

 

a

 

Micro

 

Focus

 

Net

 

Express

 

command

 

window

 

because

 

the

 

environment

 

is

 

already

 

set

 

up.

 

The

 

semicolon

 

(;)

 

in

 

the

 

compile

 

step

 

is

 

significant

 

because

 

it

 

makes

 

execution

 

faster

 

by

 

stopping

 

the

 

compiler

 

from

 

prompting

 

you.

 

If

 

you

 

are

 

using

 

Micro

 

Focus

 

Net

 

Express

 

and

 

want

 

to

 

produce

 

an

 

.int

 

file,

 

you

 

do

 

not

 

need

 

to

 

run

 

the

 

cbllink

 

command.

 

However,

 

you

 

must

 

specify

 

the

 

/NOGNT

 

option

 

to

 

the

 

cobol

 

command.

 

You

 

must

 

either

 

specify

 

myprog

 

in

 

the

 

PROGRAM

 

ID

 

paragraph

 

or

 

use

 

the

 

-M

 

option

 

to

 

ensure

 

that

 

the

 

program

 

has

 

an

 

entry

 

point

 

matching

 

the

 

source

 

name.

 

The

 

CICS

 

COPYBOOK

 

files

 

are

 

CICS-API

 

and

 

CICS-EIB.

Using

 

Micro

 

Focus

 

Net

 

Express

 

to

 

compile

 

EBCDIC-enabled

 

COBOL

 

programs

 

EBCDIC-to-ASCII

 

data

 

conversion

 

can

 

be

 

necessary

 

for

 

communications

 

between

 

a

 

CICS

 

for

 

Windows

 

system

 

and

 

a

 

remote

 

mainframe

 

or

 

CICS/400®

 

system.

 

For

 

example,

 

if

 

you

 

use

 

function

 

shipping

 

to

 

access

 

file

 

records

 

from

 

a

 

mainframe,

 

the

 

data

 

must

 

be

 

converted

 

from

 

EBCDIC

 

to

 

ASCII

 

in

 

order

 

to

 

be

 

usable

 

by

 

the

 

ASCII

 

program

 

on

 

the

 

CICS

 

for

 

Windows

 

workstation.

 

Often,

 

resource

 

definition

 

templates

 

must

 

be

 

defined

 

to

 

identify

 

the

 

type

 

of

 

conversion

 

to

 

be

 

applied

 

to

 

the

 

data.

 

To

 

avoid

 

the

 

need

 

to

 

set

 

up

 

these

 

conversion

 

tables

 

or

 

to

 

ensure

 

the

 

collating

 

sequence

 

compatibility

 

of

 

mainframe

 

applications,

 

you

 

can

 

use

 

the

 

cicscobinsert

 

utility

 

to

 

compile

 

EBCDIC-enabled

 

programs

 

to

 

run

 

on

 

a

 

CICS

 

for

 

Windows

 

workstation.

 

Such

 

EBCDIC-enabled

 

programs

 

are

 

supported

 

by

 

Micro

 

Focus

 

Net

 

Express

 

version

 

3.0

 

or

 

later.

 

Note:

  

Use

 

in

 

EBCDIC-enabled

 

programs

 

of

 

the

 

Front-End

 

Programming

 

Interface

 

(FEPI),

 

Basic

 

Mapping

 

Support

 

(BMS)

 

macros,

 

and

 

pretranslated

 

copybooks

 

is

 

not

 

supported.

 

Support

 

of

 

EXEC

 

SQL

 

calls

 

is

 

provided

 

through

 

Micro

 

Focus

 

Net

 

Express.

 

To

 

create

 

an

 

EBCDIC-enabled

 

program,

 

first

 

write

 

the

 

source

 

code

 

on

 

the

 

workstation

 

in

 

ASCII

 

or

 

download

 

the

 

source

 

code

 

from

 

the

 

mainframe,

 

using

 

EBCDIC

 

to

 

ASCII

 

conversion

 

in

 

the

 

usual

 

way.

 

Then

 

set

 

the

 

Micro

 

Focus

 

Net

 

Express

 

option

 

CHARSET

 

to

 

EBCDIC,

 

as

 

shown

 

in

 

the

 

following

 

example:

 

set

 

COBOPTS=/CHARSET(EBCDIC)

 

Then

 

translate

 

the

 

program

 

on

 

the

 

workstation.

 

You

 

can

 

specify

 

the

 

cicscobinsert

 

utility

 

as

 

a

 

value

 

for

 

the

 

-X

 

parameter

 

of

 

the

 

cicstcl

 

command

 

or

 

use

 

it

 

as

 

a

 

separate

 

command

 

step

 

after

 

running

 

the

 

cicstran

 

command,

 

but

 

before

 

performing

 

the

 

actual

 

compilation.

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

227



v

   

The

 

following

 

example

 

uses

 

the

 

cicstcl

 

command

 

to

 

compile

 

a

 

program

 

called

 

myprog.ccp

 

as

 

EBCDIC-enabled:

 

cicstcl

 

-X

 

cicscobinsert

 

myprog.ccp

 

v

   

The

 

following

 

example

 

uses

 

a

 

separate

 

command

 

step

 

after

 

the

 

cicstran

 

command

 

to

 

compile

 

a

 

program

 

called

 

myprog.ccp

 

as

 

EBCDIC-enabled:

 

cicstran

 

-qAPOST

 

myprog.ccp

 

cicscobinsert

 

myprog.cbl

 

cobol

 

/DATA-CONTEXT

 

/CALL-RECOVERY

 

/CHARSET(EBCDIC)

 

myprog.cbl;

 

cbllink

 

-D

 

-Mmyprog

 

-Omyprog.cbmfnt

 

myprog.obj

                

C:\opt\cics\lib\cicsprCBMFNT.lib

 

In

 

this

 

example,

 

the

 

cicstran

 

command

 

uses

 

the

 

.ccp

 

file

 

to

 

produce

 

the

 

.cbl

 

file,

 

which

 

is

 

used

 

by

 

the

 

cicscobinsert

 

and

 

cobol

 

commands.

 

The

 

cobol

 

command

 

produces

 

the

 

.obj

 

file,

 

which

 

is

 

used

 

by

 

the

 

cbllink

 

command.

 

The

 

cbllink

 

command

 

produces

 

the

 

.cbmfnt

 

file.

 

The

 

command

 

set

 

is

 

best

 

run

 

from

 

within

 

a

 

Micro

 

Focus

 

Net

 

Express

 

command

 

window

 

because

 

the

 

environment

 

is

 

already

 

set

 

up.

 

The

 

semicolon

 

(;)

 

in

 

the

 

compile

 

step

 

is

 

significant

 

because

 

it

 

makes

 

execution

 

faster

 

by

 

stopping

 

the

 

compiler

 

from

 

prompting

 

you.

 

You

 

must

 

either

 

specify

 

myprog

 

in

 

the

 

PROGRAM

 

ID

 

paragraph

 

or

 

use

 

the

 

-M

 

option

 

to

 

ensure

 

that

 

the

 

program

 

has

 

an

 

entry

 

point

 

matching

 

the

 

source

 

name.

 

See

 

“Compiling

 

EBCDIC-enabled

 

COBOL

 

programs”

 

on

 

page

 

57

 

and

 

“cicstcl

 

-

 

translate,

 

compile,

 

and

 

link”

 

on

 

page

 

281

 

for

 

related

 

information.

 

Compiling

 

an

 

IBM

 

COBOL

 

application

 

program

 

(CICS

 

for

 

Windows)

 

To

 

translate,

 

compile,

 

and

 

link

 

myprog,

 

enter:

   

For

 

IBM

 

COBOL

 

1.

   

translate

 

cicstran

 

-lIBMCOB

 

myprog.ccp

 

---------->

 

myprog.cbl

 

2.

   

compile

 

the

 

files

 

produced

 

cob2

 

-c

 

-qlib

 

-qthread

 

-I$prodDir\include

 

myprog.cbl

           

------->

 

myprog.obj

 

3.

   

link

 

and

 

archive

 

ilib

 

/nol

 

/gendef

 

/gi:myprog

 

myprog.obj

 

%COBOLMAIN%\lib

           

\iwzrwin4.obj

           

------->

 

myprog.def,

 

myprog.exp,

 

myprog.lib

        

edit

 

the

 

myprog.def

 

file

 

to

 

insert

 

at

 

the

 

top

 

of

 

the

 

file:

           

LIBRARY

 

myprog.ibmcob

        

place

 

@1

 

after

 

the

 

exported

 

symbol

 

_MYPROG@8

           

------>

 

MYPROG@8

 

@1

   

ilib

 

/nol

 

/def:myprog.def

 

/genimplib

           

------->

 

myprog.ibmcob.exp,

 

myprog.ibmcob.lib

   

ilink

 

/free

 

/nol

 

/dll

 

/o:myprog.ibmcob

 

myprog.ibmcob.exp

       

myprog.obj

 

iwzrwin3.obj

 

iwzrwin4.obj

       

prodDir\lib\cicsprIBMCOB.lib

 

------->

 

myprog.ibmcob

 

Note:

  

%COBOLMAIN%

 

is

 

an

 

environment

 

variable

 

that

 

is

 

set

 

by

 

the

 

IBM

 

COBOL

 

compiler

 

during

 

installation.

  

228

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



If

 

you

 

are

 

compiling

 

a

 

program

 

that

 

calls

 

a

 

subprogram,

 

you

 

must

 

compiler

 

the

 

subprogram,

 

then

 

compile

 

the

 

main

 

program.

 

The

 

following

 

example

 

shows

 

the

 

compilation

 

of

 

mysubprog:

 

cob2

 

mysubprog

 

-dll:mysubprog

 

If

 

the

 

main

 

program

 

is

 

going

 

to

 

dynamically

 

link

 

to

 

the

 

subprogram,

 

you

 

can

 

also

 

specify

 

the

 

-qthread

 

option.

 

This

 

specifies

 

that

 

the

 

subprogram

 

gets

 

a

 

separate,

 

initialized

 

working

 

storage

 

area

 

for

 

each

 

program

 

that

 

invokes

 

it.

 

The

 

working

 

storage

 

exists

 

for

 

the

 

duration

 

of

 

the

 

main

 

program.

 

If

 

the

 

subprogram

 

is

 

to

 

be

 

statically

 

linked

 

to

 

the

 

main

 

program,

 

the

 

main

 

program

 

should

 

be

 

translated,

 

compiled,

 

and

 

linked

 

in

 

three

 

separate

 

steps.

 

The

 

steps

 

are

 

similar

 

to

 

those

 

shown

 

above,

 

but

 

the

 

names

 

of

 

both

 

the

 

main

 

program

 

and

 

the

 

subprogram

 

should

 

be

 

used

 

in

 

the

 

ilib

 

and

 

ilink

 

statements.

 

If

 

the

 

subprogram

 

is

 

to

 

be

 

dynamically

 

linked

 

to

 

the

 

main

 

program,

 

you

 

can

 

use

 

the

 

cicstcl

 

program.

 

Alternatively,

 

you

 

can

 

translate,

 

compile,

 

and

 

link

 

in

 

separate

 

steps,

 

but

 

specify

 

that

 

the

 

linking

 

is

 

dynamic

 

using

 

the

 

-qDYNAM

 

option

 

to

 

the

 

compiler.

 

For

 

more

 

information

 

on

 

statically

 

and

 

dynamically

 

linking

 

subprograms,

 

see

 

the

 

IBM

 

Visual

 

Age

 

COBOL

 

programming

 

guide.

 

Compiling

 

an

 

IBM

 

COBOL

 

application

 

program

 

(CICS

 

on

 

Open

 

Systems)

 

Following

 

are

 

the

 

minimum

 

requirements

 

for

 

compiling

 

an

 

IBM

 

COBOL

 

application

 

program.

 

Your

 

program

 

possibly

 

requires

 

other

 

copybooks

 

and

 

copybook

 

directories,

 

which

 

possibly

 

are

 

not

 

CICS.

   

On

 

CICS

 

for

 

AIX

 

cob2_r

 

-qLIB

 

-bI:/usr/lpp/cics/lib/cicsprIBMCOB.exp

 

\

        

-e

 

_iwz_cobol_main

 

-L/usr/lib/dce

            

\

        

-ldcelibc_r

 

-ldcepthreads

 

-qAPOST

            

\

        

-I/usr/lpp/cics/include

 

-ofred.ibmcob

 

fred.cbl

   

The

 

cob2_r

 

command

 

generates

 

a

 

file

 

fred.ibmcob

  

Use

 

the

 

compiler

 

SYSLIB

 

environment

 

variable

 

or

 

the

 

-l

 

flag

 

for

 

the

 

copybook

 

path.

 

The

 

copybook

 

path

 

is:

 

$CICS/include

 

Copybook

 

files

 

are

 

CICS-API

 

and

 

CICS-EIB

 

Compiling

 

a

 

PL/I

 

application

 

program

 

Following

 

are

 

the

 

minimum

 

requirements

 

for

 

compiling

 

a

 

PL/I

 

application

 

program.

 

Your

 

program

 

possibly

 

requires

 

other

 

copybooks

 

and

 

copybook

 

directories,

 

which

 

possibly

 

are

 

not

 

CICS.

   

Chapter

 

8.

 

Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs

 

229



On

 

CICS

 

for

 

AIX

 

Compile

 

by

 

pli

 

-c

 

-I/usr/lpp/cics/include

 

-ofred.ibmpli

 

fred.pli

 

and

 

link

 

by

 

ld

 

-bI:/usr/lpp/cics/lib/cicsprIBMPLI.exp

   

-e

 

plicics

    

-l

 

plishr_r

    

-l

 

c_r

    

-ofred.ibmpli

     

fred.o

  

INCLUDE

 

files

 

are

 

cics_api.inc

 

and

 

cics_eib.inc.

 

Note:

  

The

 

entry

 

point

 

for

 

the

 

program

 

is

 

placed

 

as

 

shown

 

above.

 

However,

 

if

 

fred

 

is

 

a

 

dynamically

 

called

 

subprogram

 

resulting

 

from

 

PL/I

 

fetch,

 

the

 

entry

 

point

 

is

 

the

 

same

 

name

 

as

 

the

 

subprogram,

 

that

 

is

 

fred

 

in

 

the

 

example.

  

230

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Part

 

4.

 

Debugging

 

Applications

  

Table

 

45.

 

Road

 

map

 

for

 

Debugging

 

applications

 

If

 

you

 

want

 

to...

 

Refer

 

to...

 

Code

 

for

 

error

 

handling,

 

debugging,

 

and

 

performance

 

monitoring

 

services.

 

Chapter

 

9,

 

“Coding

 

for

 

problem

 

determination,”

 

on

 

page

 

233

 

Look

 

up

 

how

 

to

 

test

 

your

 

application

 

and

 

how

 

to

 

use

 

Animator.

 

Chapter

 

10,

 

“Testing

 

and

 

debugging

 

your

 

application,”

 

on

 

page

 

253

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

231



232

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

This

 

chapter

 

describes

 

how

 

to

 

write

 

application

 

programs

 

that

 

use

 

the

 

CICS

 

problem

 

determination

 

services.

 

Error-handling

 

services

 

Every

 

time

 

you

 

process

 

a

 

CICS

 

command

 

in

 

one

 

of

 

your

 

applications,

 

CICS

 

automatically

 

raises

 

a

 

condition

 

to

 

tell

 

you

 

how

 

the

 

command

 

worked.

 

This

 

condition

 

(which

 

is

 

usually

 

NORMAL)

 

is

 

passed

 

back

 

by

 

CICS

 

to

 

your

 

application.

 

If

 

something

 

out

 

of

 

the

 

ordinary

 

happens,

 

you

 

will

 

get

 

an

 

exception

 

condition,

 

which

 

simply

 

means

 

a

 

condition

 

other

 

than

 

NORMAL.

 

By

 

testing

 

this

 

condition,

 

you

 

can

 

tell

 

what

 

has

 

happened,

 

and

 

possibly

 

why.

 

Not

 

all

 

conditions

 

mean

 

that

 

there

 

is

 

an

 

error,

 

even

 

if

 

they

 

are

 

not

 

NORMAL.

 

(For

 

example,

 

if

 

you

 

get

 

an

 

ENDFILE

 

condition

 

on

 

an

 

EXEC

 

CICS

 

READNEXT

 

during

 

a

 

file

 

browse,

 

it

 

might

 

be

 

exactly

 

what

 

you

 

expect.)

 

For

 

further

 

information

 

about

 

all

 

possible

 

conditions

 

and

 

the

 

commands

 

for

 

which

 

they

 

can

 

occur,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

 

Handling

 

error

 

conditions

 

When

 

a

 

condition

 

is

 

raised

 

you

 

have

 

three

 

different

 

ways

 

of

 

doing

 

something

 

about

 

it,

 

and

 

a

 

fourth

 

way

 

that

 

simply

 

mixes

 

these

 

to

 

give

 

you

 

more

 

flexibility.

 

You

 

can:

 

Method

 

one

 

Let

 

the

 

program

 

continue,

 

with

 

control

 

coming

 

straight

 

back

 

from

 

CICS

 

to

 

your

 

program.

 

You

 

can

 

then

 

find

 

out

 

what

 

happened

 

by

 

testing

 

(for

 

example)

 

the

 

RESP

 

value

 

that

 

CICS

 

returns

 

after

 

executing

 

a

 

command.

 

The

 

result

 

of

 

this

 

test

 

enables

 

you

 

to

 

decide

 

what

 

to

 

do

 

next.

 

For

 

details,

 

see

 

“Letting

 

the

 

program

 

continue”

 

on

 

page

 

234.

 

Method

 

two

 

Pass

 

control

 

to

 

a

 

specified

 

label

 

if

 

a

 

named

 

condition

 

arises.

 

You

 

do

 

this

 

by

 

using

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

to

 

name

 

both

 

the

 

condition

 

and

 

the

 

label

 

of

 

a

 

routine

 

in

 

your

 

code

 

to

 

deal

 

with

 

it.

 

For

 

details,

 

see

 

“Passing

 

control

 

to

 

a

 

specified

 

label”

 

on

 

page

 

237.

 

You

 

can

 

only

 

do

 

this

 

in

 

COBOL

 

programs.

 

Method

 

three

 

Do

 

nothing

 

and

 

rely

 

on

 

the

 

CICS

 

system

 

default

 

action.

 

This

 

is

 

a

 

perfectly

 

sensible

 

option

 

in

 

some

 

cases,

 

and

 

means

 

you

 

do

 

nothing

 

by

 

way

 

of

 

testing

 

or

 

handling

 

conditions.

 

The

 

CICS

 

default

 

action

 

is

 

normally

 

(but

 

not

 

always)

 

to

 

abend

 

the

 

task.

 

Note:

  

For

 

the

 

conditions

 

ENQBUSY,

 

NOJBUFSP,

 

NOSPACE,

 

NOSTG,

 

QBUSY,

 

and

 

SYSBUSY,

 

the

 

default

 

is

 

for

 

CICS

 

to

 

force

 

the

 

task

 

to

 

wait

 

until

 

the

 

required

 

resource

 

(for

 

example,

 

storage)

 

becomes

 

available,

 

and

 

then

 

resume

 

processing

 

the

 

command.

 

(There

 

is

 

an

 

exception

 

to

 

this;

 

see

 

the

 

descriptions

 

of

 

the

 

EXEC

 

CICS

 

WRITEQ

 

TS

 

and

 

EXEC

 

CICS

 

WRITEQ

 

TD

 

commands

 

in

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

the

 

different

 

default

 

actions

 

for

 

NOSPACE.)

 

For

 

the

 

conditions

 

SIGNAL

 

and

 

EXPIRED,

 

the

 

default

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

233



action

 

is

 

to

 

ignore

 

the

 

condition

 

and

 

carry

 

on

 

processing.

 

For

 

details,

 

see

 

“Relying

 

on

 

the

 

system

 

default

 

action”

 

on

 

page

 

239.

 

Method

 

four

 

Mix

 

the

 

methods

 

in

 

any

 

way

 

you

 

choose.

 

For

 

details,

 

see

 

“Mixing

 

methods”

 

on

 

page

 

242.

 

There

 

are

 

just

 

over

 

80

 

conditions,

 

each

 

with

 

a

 

name

 

(such

 

as

 

LENGERR,

 

for

 

length

 

error)

 

and

 

a

 

matching

 

number.

 

Apart

 

from

 

these

 

80

 

or

 

so

 

conditions,

 

there’s

 

a

 

general

 

condition

 

named

 

ERROR

 

that

 

you

 

can

 

use

 

as

 

a

 

catchall

 

for

 

any

 

condition.

 

The

 

default

 

action

 

is

 

to

 

terminate

 

the

 

task

 

abnormally.

 

There

 

is

 

also

 

the

 

NOTAUTH

 

condition,

 

which

 

is

 

a

 

general

 

condition

 

that

 

is

 

raised

 

when

 

a

 

resource

 

security

 

check

 

on

 

a

 

command

 

has

 

failed.

 

In

 

short,

 

you

 

have

 

a

 

potentially

 

large

 

number

 

of

 

CICS

 

conditions

 

to

 

contend

 

with,

 

and

 

three

 

distinct

 

ways

 

of

 

dealing

 

with

 

them.

 

Unless

 

your

 

installation

 

has

 

very

 

definite

 

standards

 

to

 

the

 

contrary,

 

it

 

is

 

recommended

 

to

 

use

 

the

 

first

 

method

 

to

 

handle

 

any

 

errors.

 

C

 

and

 

C++

 

restrictions

 

for

 

error

 

handling

 

If

 

you

 

are

 

using

 

C

 

or

 

C++

 

you

 

cannot

 

use:

 

v

   

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

v

   

EXEC

 

CICS

 

HANDLE

 

AID

 

v

   

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

v

   

EXEC

 

CICS

 

PUSH

 

HANDLE

 

v

   

EXEC

 

CICS

 

POP

 

HANDLE

 

You

 

can

 

use

 

the

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

PROGRAM

 

command.

 

In

 

a

 

C++

 

or

 

C

 

application,

 

every

 

EXEC

 

CICS

 

command

 

is

 

treated

 

as

 

if

 

it

 

had

 

the

 

NOHANDLE

 

option

 

specified.

 

This

 

means

 

that

 

the

 

default

 

system-action

 

transaction

 

abends

 

that

 

result

 

from

 

a

 

condition

 

occurring,

 

but

 

not

 

being

 

handled,

 

is

 

not

 

possible

 

in

 

a

 

C++

 

or

 

C

 

application.

 

Control

 

always

 

flows

 

to

 

the

 

next

 

instruction,

 

and

 

it

 

is

 

the

 

responsibility

 

of

 

the

 

application

 

to

 

test

 

for

 

a

 

normal

 

response.

 

Letting

 

the

 

program

 

continue

 

Letting

 

the

 

program

 

continue

 

means

 

allowing

 

control

 

to

 

return

 

from

 

CICS

 

to

 

the

 

next

 

instruction

 

in

 

your

 

program

 

following

 

the

 

EXEC

 

CICS

 

command

 

that

 

has

 

just

 

executed.

 

You

 

have

 

three

 

ways

 

of

 

doing

 

this.

 

You

 

can:

 

v

   

Put

 

the

 

RESP

 

option

 

on

 

the

 

command

 

v

   

Put

 

the

 

NOHANDLE

 

option

 

on

 

the

 

command

 

v

   

Use

 

an

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

command

Just

 

letting

 

the

 

program

 

continue

 

is

 

of

 

little

 

use.

 

However,

 

at

 

the

 

same

 

time,

 

CICS

 

sets

 

return

 

codes

 

in

 

the

 

EXEC

 

interface

 

block

 

(EIB).

 

You

 

can

 

test

 

for

 

particular

 

conditions

 

right

 

after

 

each

 

CICS

 

command,

 

executing

 

the

 

command

 

and

 

then

 

immediately

 

checking

 

whether

 

it

 

did

 

what

 

you

 

wanted

 

by

 

testing

 

the

 

RESP

 

value.

 

CICS

 

makes

 

it

 

very

 

easy

 

to

 

test

 

the

 

RESP

 

value

 

by

 

using

 

a

 

built-in

 

function

 

called

 

DFHRESP.

 

With

 

this,

 

your

 

code

 

can

 

examine

 

RESP

 

values

 

symbolically.

 

This

 

is

 

a

 

lot

 

easier

 

than

 

looking

 

at

 

hexadecimal

 

values

 

that

 

are

 

both

 

less

 

meaningful

 

to

 

someone

 

reading

 

the

 

code,

 

and

 

awkward

 

to

 

manage

 

in

 

COBOL,

 

C,

 

C++

 

and

 

PL/I.

 

How

 

to

 

use

 

the

 

RESP

 

option

 

Simply

 

code

 

the

 

RESP

 

option

 

on

 

your

 

CICS

 

command

 

and

 

follow

 

it

 

up

 

immediately

 

with

 

tests

 

on

 

the

 

returned

 

RESP

 

value.

 

To

 

execute

 

and

 

test

 

an

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command,

 

you

 

code:

   

234

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



EXEC

 

CICS

 

RECEIVE

 

MAP

 

(your_mapname)

    

..MAPSET(your_mapset_name)

    

..RESP

 

(your_response_variable_name)

 

For

 

example,

 

consider

 

the

 

following

 

section

 

of

 

COBOL:

 

*

    

GET

 

INPUT

 

AND

 

CHECK

 

REQUEST

 

TYPE

 

FURTHER.

      

EXEC

 

CICS

 

RECEIVE

 

MAP(’ACCTMNU’)

             

MAPSET(’ACCTSET’)

 

RESP(RESPONSE)

 

END-EXEC.

      

IF

 

RESPONSE

 

=

 

DFHRESP(MAPFAIL)

 

GO

 

TO

 

NO-MAP.

      

IF

 

RESPONSE

 

NOT

 

=

 

DFHRESP(NORMAL)

 

GO

 

TO

 

OTHER-ERRORS.

      

IF

 

REQML

 

>

 

0

 

MOVE

 

REQMI

 

TO

 

REQC.

      

.

      

.

      

.

 

In

 

this

 

example,

 

the

 

first

 

thing

 

to

 

do

 

after

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

is

 

to

 

test

 

the

 

value

 

CICS

 

puts

 

into

 

RESPONSE

 

to

 

check

 

whether

 

it

 

worked.

 

You

 

start

 

by

 

looking

 

explicitly

 

for

 

condition

 

MAPFAIL

 

because

 

it

 

can

 

occur

 

without

 

there

 

being

 

any

 

serious

 

error

 

(if,

 

for

 

example,

 

the

 

user

 

presses

 

CLEAR

 

at

 

this

 

point

 

in

 

the

 

application)

 

and

 

you

 

have

 

to

 

be

 

able

 

to

 

recover:

 

IF

 

RESPONSE

 

=

 

DFHRESP(MAPFAIL)

 

GO

 

TO

 

NO-MAP

 

You

 

now

 

branch

 

to

 

the

 

paragraph

 

at

 

label

 

NO-MAP.

 

MAPFAIL

 

is

 

by

 

no

 

means

 

the

 

only

 

condition

 

that

 

can

 

arise

 

on

 

an

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command.

 

As

 

with

 

all

 

commands,

 

you

 

have

 

a

 

choice.

 

You

 

can

 

either

 

test

 

explicitly

 

for

 

all

 

possible

 

conditions

 

after

 

each

 

command,

 

or

 

test

 

for

 

some

 

subset

 

of

 

those

 

conditions

 

and

 

somehow

 

deal

 

with

 

all

 

other

 

possibilities

 

elsewhere

 

in

 

your

 

program.

 

(Usually,

 

this

 

means

 

taking

 

the

 

system

 

default

 

action

 

if

 

all

 

else

 

fails.

 

However,

 

in

 

this

 

case,

 

because

 

you

 

are

 

using

 

the

 

RESP

 

option,

 

you

 

must

 

make

 

sure

 

that

 

you

 

allow

 

for

 

all

 

possible

 

conditions

 

somewhere

 

in

 

your

 

code.

 

This

 

is

 

because

 

there

 

is

 

not

 

a

 

system

 

default

 

available

 

in

 

this

 

case,

 

because

 

CICS

 

returns

 

straight

 

to

 

the

 

application

 

program.

 

See

 

“How

 

CICS

 

keeps

 

track

 

of

 

what

 

to

 

do”

 

on

 

page

 

242.)

 

Here,

 

the

 

decision

 

is

 

that

 

any

 

value

 

other

 

than

 

normal

 

is

 

to

 

be

 

dealt

 

with

 

in

 

the

 

paragraph

 

at

 

label

 

OTHER-ERRORS:

 

IF

 

RESPONSE

 

NOT

 

=

 

DFHRESP(NORMAL)

 

GO

 

TO

 

OTHER-ERRORS.

 

The

 

code

 

at

 

paragraph

 

OTHER-ERRORS

 

is

 

to

 

catch

 

all

 

other

 

conditions,

 

in

 

one

 

way

 

or

 

another,

 

as

 

shown

 

in

 

the

 

following

 

example:

 

*

    

PROCESSING

 

FOR

 

UNEXPECTED

 

ERRORS.

      

OTHER-ERRORS.

           

MOVE

 

EIBFN

 

TO

 

ERR-FN,

 

MOVE

 

EIBRCODE

 

TO

 

ERR-RCODE.

           

MOVE

 

EIBFN

 

TO

 

ERR-COMMAND,

 

MOVE

 

EIBRESP

 

TO

 

ERR-RESP.

           

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ERROR

 

END-EXEC.

           

EXEC

 

CICS

 

LINK

 

PROGRAM(’ACCT04’)

               

COMMAREA(COMMAREA-FOR-ACCT04)

 

LENGTH(14)

 

END-EXEC.

           

GOBACK.

 

ACCT01

 

picks

 

up

 

what

 

information

 

it

 

can

 

about

 

what

 

has

 

happened,

 

and

 

then

 

links

 

to

 

the

 

error-handling

 

program

 

ACCT04,

 

which

 

issues

 

a

 

user

 

abend

 

and

 

displays

 

a

 

final

 

error

 

message

 

to

 

the

 

user.

 

Finally,

 

with

 

all

 

condition

 

testing

 

out

 

of

 

the

 

way,

 

you

 

can

 

resume

 

normal

 

processing:

 

IF

 

REQML

 

>

 

0

 

MOVE

 

REQMI

 

TO

 

REQC.

   

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

235



RESP

 

and

 

RESP2

 

options:

   

You

 

can

 

use

 

the

 

RESP

 

option

 

with

 

any

 

command,

 

and

 

RESP2

 

with

 

INQUIRE

 

and

 

SET,

 

to

 

test

 

whether

 

an

 

exception

 

condition

 

was

 

raised

 

during

 

its

 

processing.

 

RESP(xxx)

 

where

 

xxx

 

is

 

a

 

user-defined

 

32-bit

 

binary

 

data

 

area.

 

On

 

return

 

from

 

the

 

command,

 

it

 

contains

 

a

 

value

 

corresponding

 

to

 

the

 

condition

 

that

 

may

 

have

 

been

 

raised,

 

or

 

to

 

a

 

normal

 

return,

 

that

 

is,

 

xxx=DFHRESP(NORMAL).

 

You

 

can

 

test

 

this

 

value

 

using

 

DFHRESP,

 

as

 

follows:

 

EXEC

 

CICS

 

WRITEQ

 

TS

 

FROM(abc)

                     

QUEUE(qname)

                     

RESP(xxx)

 

END-EXEC.

    

.

    

.

 

IF

 

xxx=DFHRESP(NOSPACE)

 

THEN

 

The

 

above

 

form

 

of

 

DFHRESP

 

applies

 

to

 

COBOL.

  

For

 

C

 

or

 

C++

 

the

 

test

 

is:

 

EXEC

 

CICS

 

WRITEQ

 

TS

 

FROM(abc)

                     

QUEUE(qname)

                     

RESP(xxx);

    

.

    

.

 

if

 

(xxx

 

==

 

DFHRESP(NOSPACE))

 

For

 

PL/I,

 

the

 

test

 

is:

 

EXEC

 

CICS

 

WRITEQ

 

TS

 

FROM(abc)

                     

QUEUE(qname)

                     

RESP(xxx);

    

.

    

.

 

if

 

xxx

 

=

 

DFHRESP(NOSPACE)

 

RESP2(yyy)

 

where

 

yyy

 

is

 

a

 

32-bit

 

binary

 

value

 

that

 

further

 

qualifies

 

the

 

response

 

to

 

INQUIRE

 

and

 

SET

 

commands.

 

RESP2

 

codes

 

are

 

noted

 

in

 

the

 

command

 

descriptions.

 

For

 

further

 

information,

 

see

 

the

 

CICS

 

Application

 

Programming

 

Reference.

How

 

to

 

use

 

NOHANDLE

 

You

 

can

 

code

 

a

 

NOHANDLE

 

option

 

on

 

any

 

command

 

to

 

ensure

 

that

 

no

 

action

 

is

 

taken

 

for

 

any

 

condition

 

resulting

 

from

 

the

 

execution

 

of

 

that

 

command.

 

NOHANDLE

 

suspends

 

the

 

error

 

handling

 

that

 

was

 

specified

 

in

 

previous

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

commands

 

(or

 

with

 

the

 

CICS

 

defaults)

 

but

 

only

 

for

 

the

 

command

 

on

 

which

 

you

 

put

 

the

 

NOHANDLE.

 

It

 

has

 

no

 

effect

 

on

 

later

 

commands,

 

or

 

on

 

the

 

error

 

handling

 

set

 

by

 

other

 

HANDLE

 

commands.

 

To

 

use

 

NOHANDLE

 

on

 

the

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command,

 

all

 

you

 

write

 

in

 

COBOL

 

is:

 

EXEC

 

CICS

 

RECEIVE

 

MAP(’ACCTMNU’)

          

MAPSET(’ACCTSET’)

 

NOHANDLE

 

END-EXEC.

 

Note:

  

Using

 

the

 

C

 

or

 

C++

 

language

 

or

 

the

 

RESP

 

option

 

implies

 

NOHANDLE,

 

so

 

be

 

careful

 

when

 

using

 

C

 

or

 

the

 

RESP

 

option

 

with

 

the

 

EXEC

 

CICS

 

RECEIVE

 

command,

 

because

 

NOHANDLE

 

overrides

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

   

236

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



command

 

in

 

addition

 

to

 

the

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command.

 

(This

 

means

 

that

 

PF

 

key

 

responses

 

are

 

ignored,

 

and

 

is

 

the

 

reason

 

for

 

testing

 

them

 

earlier

 

in

 

the

 

ACCT

 

code.)

 

How

 

to

 

use

 

IGNORE

 

condition

 

(COBOL

 

and

 

PL/I

 

only)

 

Just

 

as

 

you

 

can

 

arrange

 

for

 

control

 

to

 

pass

 

to

 

a

 

particular

 

label

 

for

 

a

 

specific

 

condition

 

with

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command,

 

so

 

you

 

can

 

have

 

the

 

program

 

continue

 

when

 

a

 

specific

 

condition

 

occurs.

 

You

 

do

 

this

 

by

 

setting

 

up

 

an

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

command

 

to

 

ignore

 

one

 

or

 

more

 

of

 

the

 

conditions

 

that

 

can

 

potentially

 

arise

 

on

 

a

 

command.

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

means

 

that

 

no

 

action

 

is

 

to

 

be

 

taken

 

if

 

a

 

condition

 

occurs,

 

so

 

control

 

returns

 

to

 

the

 

instruction

 

following

 

the

 

command

 

and

 

return

 

codes

 

are

 

set

 

in

 

the

 

EIB.

 

The

 

following

 

example

 

ignores

 

the

 

MAPFAIL

 

condition:

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

MAPFAIL

 

END-EXEC.

 

While

 

a

 

single

 

EXEC

 

CICS

 

command

 

is

 

being

 

processed,

 

it

 

can

 

raise

 

one

 

of

 

several

 

conditions.

 

Note:

  

For

 

example,

 

you

 

may

 

have

 

a

 

file

 

control

 

command

 

that

 

is

 

not

 

only

 

invalid

 

but

 

that

 

also

 

applies

 

to

 

a

 

file

 

that

 

is

 

not

 

defined

 

in

 

the

 

file

 

definitions.

 

CICS

 

checks

 

for

 

these

 

conditions

 

and

 

passes

 

back

 

to

 

your

 

application

 

program

 

the

 

first

 

one

 

(and

 

only

 

the

 

first

 

one)

 

encountered.

 

An

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

command

 

for

 

a

 

given

 

condition

 

applies

 

only

 

to

 

the

 

program

 

you

 

put

 

it

 

in,

 

and

 

it

 

remains

 

active

 

while

 

the

 

program

 

is

 

running,

 

or

 

until

 

a

 

later

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

naming

 

the

 

same

 

condition

 

is

 

met,

 

in

 

which

 

case

 

the

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

command

 

is

 

overridden.

 

Also,

 

an

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

command

 

will

 

disable

 

an

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

until

 

an

 

EXEC

 

CICS

 

POP

 

HANDLE

 

command

 

is

 

executed.

 

You

 

can

 

choose

 

an

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

command

 

if

 

you

 

have

 

a

 

program

 

reading

 

records

 

that

 

are

 

sometimes

 

longer

 

than

 

the

 

space

 

you

 

provided,

 

but

 

you

 

do

 

not

 

consider

 

this

 

an

 

error

 

and

 

do

 

not

 

want

 

anything

 

done

 

about

 

it.

 

You

 

might,

 

therefore,

 

code

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

LENGERR

 

before

 

issuing

 

your

 

EXEC

 

CICS

 

READ

 

commands.

 

You

 

can

 

also

 

use

 

an

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

ERROR

 

command

 

to

 

catch

 

any

 

condition

 

considered

 

as

 

an

 

error

 

that

 

has

 

never

 

been

 

handled

 

or

 

ignored.

 

You

 

cannot

 

code

 

more

 

than

 

16

 

conditions

 

in

 

the

 

same

 

command;

 

the

 

conditions

 

must

 

be

 

separated

 

by

 

at

 

least

 

one

 

space.

 

You

 

must

 

specify

 

additional

 

conditions

 

in

 

further

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

commands.

 

Passing

 

control

 

to

 

a

 

specified

 

label

 

This

 

applies

 

to

 

COBOL

 

and

 

PL/I

 

programs

 

only.

 

You

 

have

 

two

 

ways

 

of

 

passing

 

control

 

to

 

a

 

specified

 

label:

 

v

   

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ERROR

 

(label)

 

command

 

v

   

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

condition

 

(label)

 

command,

 

where

 

condition

 

is

 

the

 

name

 

of

 

an

 

exceptional

 

condition

  

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

237



How

 

to

 

use

 

the

 

HANDLE

 

CONDITION

 

command

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

causes

 

CICS

 

to

 

save

 

information

 

about

 

the

 

conditions

 

and

 

labels,

 

and

 

use

 

this

 

information

 

to

 

pass

 

control

 

to

 

appropriate

 

sections

 

of

 

your

 

application

 

if

 

those

 

conditions

 

arise.

 

With

 

an

 

active

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command,

 

control

 

goes

 

to

 

whichever

 

label

 

you

 

specified

 

for

 

that

 

particular

 

condition.

 

The

 

same

 

condition

 

might

 

arise

 

with

 

many

 

different

 

commands,

 

and

 

for

 

a

 

variety

 

of

 

reasons.

 

For

 

example,

 

you

 

can

 

get

 

IOERR

 

during

 

file

 

control

 

operations

 

and

 

interval

 

control

 

operations.

 

First,

 

determine

 

which

 

command

 

has

 

raised

 

a

 

particular

 

condition

 

and

 

then

 

investigate

 

why

 

it

 

has

 

happened.

 

This

 

is

 

a

 

reason

 

to

 

use

 

the

 

RESP

 

option

 

in

 

a

 

new

 

CICS

 

application.

 

Although

 

you

 

only

 

need

 

one

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

to

 

set

 

your

 

error-handling

 

for

 

several

 

conditions,

 

it

 

might

 

be

 

awkward

 

to

 

pinpoint

 

which

 

of

 

several

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

commands

 

is

 

currently

 

active

 

when

 

a

 

CICS

 

command

 

fails

 

somewhere

 

in

 

your

 

code.

 

If

 

a

 

condition

 

arises

 

that

 

you

 

have

 

not

 

named,

 

you

 

get

 

the

 

default

 

action

 

for

 

the

 

condition,

 

unless

 

the

 

default

 

action

 

is

 

to

 

abend

 

the

 

task.

 

If

 

the

 

default

 

action

 

is

 

to

 

abend

 

the

 

task,

 

you

 

get

 

the

 

action,

 

if

 

any,

 

specified

 

for

 

the

 

ERROR

 

condition.

 

If

 

you

 

name

 

the

 

condition

 

but

 

leave

 

out

 

its

 

label,

 

any

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

for

 

that

 

condition

 

is

 

deactivated,

 

and

 

you

 

revert

 

to

 

the

 

default

 

action

 

for

 

the

 

condition,

 

if

 

and

 

when

 

it

 

occurs.

 

Using

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

can

 

be

 

a

 

common

 

source

 

of

 

errors,

 

because

 

you

 

need

 

to

 

deal

 

with

 

all

 

possible

 

conditions.

 

If

 

you

 

use

 

an

 

unfamiliar

 

command,

 

read

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

to

 

find

 

out

 

what

 

exceptional

 

conditions

 

are

 

possible.

 

Issue

 

HANDLE

 

commands

 

for

 

all

 

of

 

these,

 

and

 

ensure

 

that

 

you

 

finish

 

all

 

the

 

error-handling

 

code

 

adequately.

 

Otherwise,

 

the

 

outcome

 

might

 

be

 

an

 

error

 

handling

 

routine

 

that,

 

by

 

issuing

 

an

 

EXEC

 

CICS

 

RETURN,

 

allows

 

incomplete

 

or

 

incorrect

 

data

 

changes

 

to

 

be

 

committed.

 

It

 

is

 

recommended

 

that

 

you

 

use

 

EXEC

 

CICS

 

HANDLE

 

CONDITION,

 

but

 

let

 

the

 

system

 

default

 

action

 

take

 

over

 

if

 

you

 

cannot

 

see

 

an

 

obvious

 

way

 

around

 

a

 

particular

 

problem.

 

If

 

you

 

use

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

commands,

 

or

 

are

 

maintaining

 

an

 

application

 

that

 

uses

 

them,

 

take

 

care

 

not

 

to

 

cause

 

a

 

loop.

 

A

 

loop

 

happens

 

if

 

you

 

include

 

any

 

commands

 

in

 

your

 

error

 

routine

 

that

 

can

 

cause

 

the

 

same

 

condition

 

that

 

gave

 

you

 

the

 

original

 

branch

 

to

 

the

 

routine.

 

Notice,

 

also,

 

that

 

one

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

can

 

name

 

up

 

to

 

sixteen

 

conditions,

 

and

 

that

 

one

 

of

 

these

 

could

 

be

 

the

 

ERROR

 

condition

 

to

 

deal

 

with

 

all

 

remaining

 

conditions.

 

Take

 

special

 

care

 

not

 

to

 

cause

 

a

 

loop

 

on

 

the

 

ERROR

 

condition

 

itself.

 

(You

 

can

 

avoid

 

a

 

loop

 

by

 

restoring

 

the

 

system

 

default

 

for

 

any

 

ERROR

 

condition

 

temporarily.

 

Do

 

this

 

by

 

coding

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ERROR

 

with

 

no

 

label

 

specified.)

 

After

 

your

 

error

 

processing,

 

you

 

can

 

reinstate

 

the

 

original

 

error

 

action

 

at

 

the

 

end

 

of

 

your

 

error

 

routine

 

by

 

including

 

a

 

second

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ERROR

 

command.

 

If

 

you

 

know

 

the

 

previous

 

HANDLE

 

CONDITION

 

state,

 

you

 

can

 

do

 

this

 

explicitly.

 

In

 

a

 

general

 

subroutine,

 

that

 

might

 

be

 

called

 

from

 

several

 

different

 

points

 

in

 

your

 

code,

 

the

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

and

 

EXEC

 

CICS

 

POP

 

HANDLE

 

commands

 

may

 

be

 

useful.

 

See

 

“Relying

 

on

 

the

 

system

 

default

 

action”

 

on

 

page

 

239.

   

238

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



How

 

to

 

use

 

HANDLE

 

CONDITION

 

ERROR

 

The

 

following

 

example

 

shows

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

used

 

in

 

the

 

COBOL

 

example

 

program:

  

PROCEDURE

 

DIVISION.

 

*

 

*

    

INITIALIZE.

 

*

    

TRAP

 

ANY

 

UNEXPECTED

 

ERRORS.

      

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ERROR(OTHER-ERRORS)

 

END-EXEC.

 

*

 

In

 

this

 

example,

 

control

 

is

 

passed

 

to

 

the

 

paragraph

 

at

 

label

 

OTHER-ERRORS

 

if

 

any

 

condition

 

arises

 

that

 

is

 

not

 

explicitly

 

handled

 

before

 

any

 

other

 

CICS

 

command.

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ERROR

 

is

 

the

 

first

 

command

 

executed

 

in

 

the

 

PROCEDURE

 

DIVISION

 

in

 

this

 

example.

 

This

 

is

 

because

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

must

 

be

 

processed

 

before

 

any

 

CICS

 

command

 

is

 

processed

 

that

 

can

 

raise

 

the

 

condition

 

being

 

handled.

 

Otherwise,

 

the

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

does

 

not

 

take

 

effect.

 

Note,

 

however,

 

that

 

your

 

program

 

does

 

not

 

see

 

the

 

effects

 

when

 

it

 

processes

 

the

 

HANDLE.

 

The

 

program

 

only

 

sees

 

the

 

effects

 

later,

 

if

 

and

 

when

 

it

 

issues

 

a

 

CICS

 

command

 

that

 

actually

 

raises

 

one

 

of

 

the

 

named

 

conditions.

 

These

 

examples

 

generally

 

use

 

the

 

RESP

 

option.

 

All

 

the

 

commands

 

with

 

RESP

 

on

 

them

 

have

 

been

 

written

 

with

 

a

 

catchall

 

test

 

(IF

 

RESPONSE

 

NOT

 

=

 

DFHRESP(NORMAL)

 

GO

 

TO

 

OTHER-ERRORS)

 

after

 

any

 

explicit

 

tests

 

for

 

specific

 

conditions.

 

So

 

any

 

exceptions,

 

other

 

than

 

those

 

you

 

expect,

 

take

 

control

 

to

 

the

 

paragraph

 

at

 

OTHER-ERRORS

 

in

 

each

 

program.

 

Those

 

relatively

 

few

 

commands

 

that

 

do

 

not

 

have

 

RESP

 

on

 

them

 

take

 

control

 

to

 

exactly

 

the

 

same

 

place

 

if

 

they

 

result

 

in

 

any

 

condition

 

other

 

than

 

NORMAL

 

because

 

of

 

this

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

ERROR.

 

Relying

 

on

 

the

 

system

 

default

 

action

 

You

 

can:

 

v

   

Use

 

the

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

command

 

(COBOL

 

and

 

PL/I

 

only)

 

v

   

Use

 

the

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

without

 

a

 

label

 

(COBOL

 

and

 

PL/I

 

only)

 

v

   

Do

 

nothing

 

about

 

the

 

condition

You

 

can

 

choose

 

to

 

ignore

 

the

 

condition

 

because

 

you

 

want

 

the

 

default

 

action

 

to

 

happen.

 

However,

 

this

 

can

 

be

 

a

 

potential

 

source

 

of

 

program

 

maintenance

 

problems,

 

especially

 

if

 

the

 

CICS

 

system

 

defaults

 

change.

 

If

 

you

 

ignore

 

the

 

condition

 

by

 

mistake,

 

for

 

example,

 

by

 

forgetting

 

to

 

handle

 

an

 

obscure

 

condition

 

on

 

an

 

unfamiliar

 

command,

 

and

 

you

 

do

 

not

 

have

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

to

 

cope

 

with

 

that

 

condition,

 

you

 

get

 

the

 

standard

 

system

 

(default)

 

action

 

for

 

the

 

condition,

 

which

 

in

 

most

 

cases

 

abends

 

the

 

task.

 

The

 

PUSH

 

HANDLE

 

and

 

POP

 

HANDLE

 

commands

 

(COBOL

 

and

 

PL/I

 

only)

 

The

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

command

 

allows

 

you

 

to

 

nest

 

your

 

condition-handling

 

code.

 

For

 

example,

 

when

 

calling

 

a

 

subroutine

 

you

 

may

 

want

 

a

 

completely

 

different

 

set

 

of

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

commands

 

while

 

in

 

the

 

subroutine.

 

(EXEC

 

CICS

 

PUSH

 

HANDLE

 

enables

 

you

 

to

 

suspend

 

all

 

current

 

EXEC

 

CICS

 

HANDLE

 

CONDITION,

 

IGNORE

 

CONDITION,

 

EXEC

 

CICS

 

HANDLE

 

AID,

 

and

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

commands.

 

This

 

can

 

be

 

useful,

 

for

 

example,

 

during

 

a

 

branch

 

to

 

a

 

subroutine

 

embedded

 

in

 

a

 

main

 

program.)

   

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

239



Normally,

 

when

 

a

 

CICS

 

program

 

calls

 

a

 

subroutine,

 

the

 

program

 

that

 

receives

 

control

 

inherits

 

the

 

current

 

HANDLE

 

commands.

 

These

 

commands

 

may

 

not

 

be

 

appropriate

 

within

 

the

 

called

 

program.

 

The

 

called

 

program

 

can

 

use

 

PUSH

 

HANDLE

 

to

 

suspend

 

existing

 

HANDLE

 

commands.

 

Use

 

PUSH

 

HANDLE

 

therefore,

 

to

 

save

 

your

 

present

 

set

 

of

 

HANDLE

 

commands

 

unaltered

 

while

 

you

 

use

 

a

 

new

 

set

 

in

 

the

 

routine.

 

On

 

exit,

 

you

 

can

 

reinstate

 

the

 

original

 

set

 

of

 

HANDLE

 

commands

 

by

 

using

 

a

 

corresponding

 

POP

 

HANDLE.

 

You

 

can

 

nest

 

PUSH

 

HANDLE

 

and

 

POP

 

HANDLE

 

command

 

sequences

 

within

 

a

 

task.

 

Each

 

PUSH

 

HANDLE

 

command

 

stacks

 

a

 

set

 

of

 

specifications;

 

the

 

POP

 

HANDLE

 

that

 

follows

 

it

 

restores

 

them.

 

The

 

following

 

example

 

illustrates

 

PUSH

 

HANDLE

 

and

 

POP

 

HANDLE

 

in

 

action:

 

*

    

PROCESSING

 

FOR

 

UNEXPECTED

 

ERRORS.

  

OTHER-ERRORS.

 

*

       

FIRST,

 

STACK

 

THE

 

CURRENT

 

CONDITION

 

HANDLING

      

EXEC

 

CICS

 

PUSH

 

HANDLE

 

END-EXEC.

      

MOVE

 

EIBFN

 

TO

 

ERR-FN,

 

MOVE

 

EIBRCODE

 

TO

 

ERR-RCODE.

      

MOVE

 

EIBFN

 

TO

 

ERR-COMMAND,

 

MOVE

 

EIBRESP

 

TO

 

ERR-RESP.

      

MOVE

 

LOW-VALUES

 

TO

 

ACCTERRO.

      

MOVE

 

EIBTRNID

 

TO

 

TRANEO.

      

MOVE

 

ERR-PGRMID

 

TO

 

PGMEO.

      

PERFORM

 

REASON-LOOKUP

 

THROUGH

 

REASON-END

          

VARYING

 

I

 

FROM

 

1

 

BY

 

1

 

UNTIL

 

I

 

NOT

 

<<

 

IXR.

      

MOVE

 

ERR-MSG

 

(IXR)

 

TO

 

RSNEO.

      

IF

 

IXR

 

<<

 

12

 

MOVE

 

EIBDS

 

TO

 

DSN,

          

MOVE

 

DSN-MSG

 

TO

 

FILEEO.

      

PERFORM

 

COMMAND-LOOKUP

 

THROUGH

 

COMMAND-END

          

VARYING

 

I

 

FROM

 

1

 

BY

 

1

 

UNTIL

 

I

 

NOT

 

<<

 

IXC.

      

MOVE

 

COMMAND-NAME

 

(IXC)

 

TO

 

CMDEO.

      

IF

 

ERR-RESP

 

<<

 

94

 

MOVE

 

RESPVAL

 

(ERR-RESP)

 

TO

 

RESPEO

          

ELSE

 

MOVE

 

RESPVAL

 

(94)

 

TO

 

RESPEO.

      

EXEC

 

CICS

 

SEND

 

MAP(’ACCTERR’)

 

MAPSET(’ACCTSET’)

 

ERASE

 

EXEC

 

CICS

 

FREEKB

          

END-EXEC.

      

EXEC

 

CICS

 

WRITEQ

 

TS

 

QUEUE(’ACERLOG’)

 

FROM(ACCTERRO)

          

LENGTH(ERR-LNG)

 

END-EXEC.

 

*

       

IF

 

CONDITION

 

NOSPACE

 

OCCURS,

 

WAIT

 

FOR

 

TS

 

TO

 

BECOME

 

AVAILABLE

 

*

       

NOW

 

RESET

 

THE

 

PREVIOUS

 

CONDITION

 

HANDLING

      

EXEC

 

CICS

 

POP

 

HANDLE

 

END-EXEC.

 

If

 

you

 

choose

 

to

 

include

 

the

 

error

 

lookup

 

and

 

error

 

message

 

display

 

in

 

one

 

of

 

the

 

other

 

programs,

 

you

 

can

 

link

 

to

 

a

 

separate

 

program

 

and

 

arrive

 

at

 

this

 

code

 

from

 

all

 

different

 

points

 

in

 

the

 

code.

 

There

 

are

 

several

 

points

 

to

 

note:

 

v

   

EXEC

 

CICS

 

PUSH

 

HANDLE

 

commands

 

can

 

be

 

nested.

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

suspends

 

the

 

current

 

set

 

of

 

HANDLEs

 

(saving

 

them

 

for

 

later

 

use),

 

and

 

EXEC

 

CICS

 

POP

 

HANDLE

 

restores

 

the

 

most

 

recent

 

set

 

suspended.

 

v

   

When

 

you

 

link

 

to

 

another

 

program,

 

an

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

is

 

implied.

 

That

 

is,

 

an

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

occurs

 

between

 

the

 

EXEC

 

CICS

 

LINK

 

command

 

and

 

the

 

first

 

instruction

 

of

 

the

 

linked-to

 

program

 

that

 

begins

 

with

 

the

 

system

 

defaults.

 

It

 

can

 

possibly

 

do

 

some

 

of

 

its

 

own

 

HANDLE,

 

EXEC

 

CICS

 

PUSH

 

HANDLE,

 

or

 

EXEC

 

CICS

 

POP

 

HANDLE

 

commands,

 

but

 

afterwards,

 

the

 

stack

 

is

 

popped

 

back

 

to

 

the

 

point

 

where

 

the

 

EXEC

 

CICS

 

LINK

 

occurred

 

to

 

restore

 

the

 

HANDLE

 

status

 

of

 

the

 

linking

 

program

 

when

 

control

 

is

 

returned

 

there.

 

That

 

is,

 

CICS

 

pushes

 

at

 

each

 

EXEC

 

CICS

 

LINK

 

and

 

pops

 

at

 

each

 

EXEC

 

CICS

 

RETURN.

Note:

  

You

 

cannot

 

use

 

EXEC

 

CICS

 

POP

 

HANDLE

 

on

 

the

 

first

 

command

 

of

 

a

 

linked-to

 

program

 

to

 

re-instate

 

the

 

linked-from

 

program’s

 

EXEC

 

CICS

 

HANDLE

 

CONDITIONs.

  

240

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

When

 

you

 

EXEC

 

CICS

 

XCTL

 

to

 

another

 

program,

 

the

 

current

 

table

 

of

 

conditions,

 

EXEC

 

CICS

 

HANDLE

 

AID

 

commands,

 

and

 

EXEC

 

CICS

 

ABEND

 

commands

 

(except

 

for

 

abend

 

handling

 

programs)

 

are

 

cleared,

 

even

 

though

 

there

 

is

 

no

 

implicit

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

and

 

you

 

are

 

staying

 

at

 

the

 

same

 

logical

 

program

 

level.

 

(See

 

“How

 

CICS

 

keeps

 

track

 

of

 

what

 

to

 

do”

 

on

 

page

 

242.)

 

One

 

flaw

 

in

 

this

 

example,

 

of

 

course,

 

is

 

that

 

you

 

do

 

not

 

know

 

where

 

to

 

go

 

at

 

the

 

end

 

of

 

the

 

code

 

and

 

you

 

do

 

not

 

need

 

such

 

sophistication

 

if

 

you

 

are

 

not

 

going

 

back.

 

(You

 

could

 

have

 

all

 

your

 

HANDLEs

 

sent

 

to

 

different

 

labels,

 

each

 

of

 

which

 

would

 

consist

 

of

 

PERFORM

 

OTHER-ERRORS,

 

GO

 

TO

 

back,

 

which

 

would

 

be

 

wherever

 

this

 

particular

 

error

 

occurred.

 

This

 

shows

 

some

 

of

 

the

 

limitations

 

of

 

HANDLEs,

 

even

 

with

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

and

 

EXEC

 

CICS

 

POP

 

HANDLE.)

How

 

to

 

use

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

The

 

easiest

 

way

 

to

 

restore

 

the

 

system

 

default

 

action

 

for

 

a

 

given

 

condition

 

is

 

to

 

code

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

without

 

a

 

label

 

on

 

a

 

named

 

condition.

 

You

 

cannot

 

do

 

this

 

with

 

C.

 

You

 

might

 

do

 

this

 

when,

 

having

 

tried

 

the

 

more

 

likely

 

conditions,

 

you

 

decide

 

that

 

anything

 

else

 

is

 

either

 

so

 

unlikely,

 

or

 

so

 

disastrous,

 

that

 

the

 

only

 

feasible

 

option

 

is

 

the

 

abend

 

that

 

the

 

system

 

default

 

action

 

generally

 

gives

 

you.

 

How

 

CICS

 

decides

 

whether

 

to

 

take

 

the

 

system

 

default

 

action

 

CICS

 

decides

 

whether

 

to

 

take

 

the

 

system

 

default

 

action

 

for

 

a

 

given

 

condition

 

according

 

to

 

the

 

sequence

 

of

 

tests

 

in

 

the

 

flowchart

 

shown

 

in

 

the

 

following

 

figure:

    

Is default action for condition
to abend?

Has an EXEC CICS HANDLE/IGNORE
CONDITION been executed for the

ERROR condition?

Has an EXEC CICS HANDLE/IGNORE
CONDITION been executed for any

condition?

Do specific action for
ERROR condition?

No

No

No

Yes

Yes

Yes

Yes

No

Take system default
action, one of abend
task, suspend, ignore

Do specific action
for the condition

Take specific default
action that is suspend
or ignore

Take specific default
action that is abend task

Has an EXEC CICS HANDLE/IGNORE
CONDITION been executed for this

condition only?

  

Figure

 

10.

 

Deciding

 

whether

 

to

 

take

 

the

 

system

 

default

  

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

241



Mixing

 

methods

 

You

 

can

 

temporarily

 

deactivate

 

the

 

effect

 

of

 

any

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

by

 

using

 

the

 

RESP,

 

RESP2,

 

or

 

NOHANDLE

 

option

 

on

 

a

 

command.

 

If

 

you

 

do

 

this,

 

you

 

loose

 

the

 

ability

 

to

 

use

 

any

 

system

 

default

 

action

 

for

 

that

 

command.

 

In

 

other

 

words,

 

you

 

have

 

to

 

do

 

your

 

own

 

catchall

 

error

 

processing.

 

You

 

can

 

also

 

switch

 

from

 

ignoring

 

a

 

condition

 

to

 

handling

 

it,

 

or

 

to

 

using

 

the

 

system

 

default

 

action.

 

For

 

example,

 

you

 

can

 

code:

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

LENGERR

 

END-EXEC.

    

.

    

.

    

.

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

DUPREC(DUPRTN)

      

LENGERR

      

ERROR(ERRHANDL)

      

END-EXEC.

 

This

 

code

 

initially

 

ignores

 

condition

 

LENGERR.

 

So

 

if

 

the

 

program

 

raises

 

a

 

LENGERR

 

condition,

 

nothing

 

happens.

 

The

 

application

 

simply

 

continues

 

its

 

processing.

 

(Of

 

course,

 

if

 

the

 

fact

 

that

 

LENGERR

 

has

 

arisen

 

means

 

the

 

application

 

cannot

 

sensibly

 

continue,

 

you

 

have

 

a

 

problem.)

 

Later

 

in

 

the

 

code,

 

you

 

can

 

explicitly

 

set

 

condition

 

LENGERR

 

to

 

the

 

system

 

default

 

action

 

by

 

naming

 

it

 

in

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

without

 

a

 

label.

 

Once

 

this

 

command

 

has

 

been

 

executed,

 

the

 

program

 

no

 

longer

 

ignores

 

condition

 

LENGERR,

 

and

 

if

 

it

 

subsequently

 

occurs,

 

it

 

now

 

causes

 

the

 

system

 

default

 

action.

 

The

 

point

 

about

 

mixing

 

methods

 

is

 

that

 

each

 

condition

 

is

 

treated

 

separately.

 

How

 

CICS

 

keeps

 

track

 

of

 

what

 

to

 

do

 

CICS

 

has

 

a

 

table

 

of

 

the

 

conditions

 

referred

 

to

 

by

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

and

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

commands

 

in

 

your

 

application.

 

Each

 

execution

 

of

 

one

 

of

 

these

 

commands

 

updates

 

an

 

entry

 

in

 

this

 

table.

 

This

 

table

 

is

 

created

 

the

 

first

 

time

 

any

 

condition

 

is

 

mentioned

 

in

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

or

 

EXEC

 

CICS

 

IGNORE

 

CONDITION

 

command,

 

for

 

the

 

current

 

level

 

of

 

condition

 

handling.

 

Each

 

entry

 

tells

 

CICS

 

what

 

to

 

do

 

by

 

indicating

 

one

 

of

 

the

 

four

 

exception-handling

 

states

 

your

 

application

 

can

 

be

 

in,

 

namely:

 

v

   

Take

 

no

 

action,

 

where

 

control

 

returns

 

to

 

the

 

next

 

instruction

 

following

 

the

 

command

 

that

 

has

 

failed.

 

v

   

Go

 

to

 

a

 

label,

 

where

 

control

 

goes

 

to

 

a

 

label

 

that

 

has

 

been

 

specified

 

for

 

this

 

condition.

 

v

   

Abend

 

the

 

task,

 

if

 

this

 

condition

 

is

 

raised.

 

v

   

Condition

 

has

 

never

 

been

 

handled

 

or

 

ignored.

 

CICS

 

keeps

 

a

 

table

 

of

 

these

 

conditions

 

for

 

each

 

EXEC

 

CICS

 

LINK

 

level

 

and

 

each

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

command

 

that

 

has

 

not

 

been

 

popped.

 

Essentially,

 

therefore,

 

each

 

program

 

level

 

has

 

its

 

own

 

HANDLE

 

state

 

table

 

governing

 

its

 

own

 

condition

 

handling.

 

When

 

each

 

condition

 

occurs,

 

CICS

 

performs

 

the

 

following

 

sequence

 

of

 

tests:

 

1.

   

If

 

the

 

command

 

has

 

NOHANDLE

 

or

 

RESP:

 

a.

   

If

 

the

 

default

 

action

 

for

 

this

 

condition

 

is

 

to

 

abend,

 

control

 

returns

 

to

 

the

 

next

 

instruction

 

in

 

your

 

application

 

program.

   

242

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



b.

   

If

 

the

 

default

 

action

 

for

 

this

 

condition

 

is

 

to

 

wait,

 

further

 

action

 

is

 

governed

 

by

 

item

 

number

 

3

 

in

 

this

 

list.

 

Otherwise

 

CICS

 

scans

 

the

 

condition

 

table

 

to

 

see

 

what

 

to

 

do.

 

2.

   

If

 

the

 

condition

 

has

 

been

 

handled

 

or

 

ignored,

 

this

 

determines

 

the

 

action.

 

3.

   

If

 

the

 

condition

 

has

 

never

 

been

 

handled

 

or

 

ignored,

 

and

 

the

 

default

 

action

 

for

 

this

 

condition

 

is

 

to

 

suspend

 

execution:

 

a.

   

If

 

the

 

command

 

has

 

the

 

NOSUSPEND

 

or

 

NOQUEUE

 

option,

 

control

 

returns

 

to

 

the

 

next

 

instruction.

 

b.

   

Otherwise,

 

the

 

task

 

is

 

suspended.
4.

   

If

 

the

 

condition

 

has

 

never

 

been

 

handled

 

or

 

ignored,

 

and

 

the

 

default

 

action

 

for

 

this

 

condition

 

is

 

to

 

abend,

 

a

 

second

 

search

 

is

 

made,

 

this

 

time

 

for

 

the

 

ERROR

 

condition,

 

then:

 

a.

   

If

 

the

 

ERROR

 

condition

 

has

 

been

 

handled

 

or

 

ignored,

 

then

 

this

 

determines

 

the

 

action.

 

b.

   

Otherwise,

 

the

 

task

 

is

 

abended.

 

You

 

can,

 

if

 

you

 

want,

 

handle

 

abends.

 

The

 

commands

 

EXEC

 

CICS

 

ALLOCATE,

 

EXEC

 

CICS

 

ENQ,

 

EXEC

 

CICS

 

READQ

 

TD,

 

and

 

EXEC

 

CICS

 

WRITEQ

 

TS

 

can

 

all

 

raise

 

conditions

 

for

 

which

 

the

 

default

 

action

 

is

 

to

 

suspend

 

your

 

application

 

program

 

until

 

the

 

specified

 

resource

 

becomes

 

available.

 

So,

 

on

 

these

 

commands,

 

you

 

have

 

the

 

NOSUSPEND

 

option

 

to

 

inhibit

 

this

 

waiting

 

and

 

return

 

immediately

 

to

 

the

 

next

 

instruction

 

in

 

your

 

application

 

program.

 

Some

 

conditions

 

can

 

occur

 

during

 

the

 

execution

 

of

 

a

 

number

 

of

 

unrelated

 

commands.

 

If

 

you

 

want

 

the

 

same

 

action

 

for

 

all

 

occurrences,

 

code

 

a

 

single

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command

 

at

 

the

 

start

 

of

 

your

 

program.

 

Handling

 

attention

 

identifiers

 

(EXEC

 

CICS

 

HANDLE

 

AID)

 

The

 

RESP,

 

RESP2,

 

and

 

NOHANDLE

 

options

 

on

 

EXEC

 

CICS

 

commands

 

suspend

 

the

 

use

 

of

 

EXEC

 

CICS

 

HANDLE

 

AID.

 

In

 

the

 

absence

 

of

 

an

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command,

 

control

 

returns

 

to

 

the

 

application

 

program

 

at

 

the

 

point

 

immediately

 

following

 

the

 

input

 

command.

 

You

 

can

 

suspend

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

using

 

the

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

command

 

and

 

restore

 

them

 

using

 

the

 

EXEC

 

CICS

 

POP

 

HANDLE

 

command.

 

An

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

takes

 

precedence

 

over

 

an

 

EXEC

 

CICS

 

HANDLE

 

CONDITION

 

command.

 

If

 

an

 

attention

 

identifier

 

(AID)

 

is

 

received

 

during

 

an

 

input

 

operation

 

for

 

which

 

an

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

is

 

active,

 

control

 

passes

 

to

 

the

 

label

 

specified

 

in

 

that

 

command

 

regardless

 

of

 

any

 

conditions

 

that

 

may

 

have

 

occurred

 

(but

 

which

 

did

 

not

 

stop

 

receipt

 

of

 

the

 

AID).

 

The

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

for

 

a

 

given

 

AID

 

applies

 

only

 

to

 

the

 

program

 

in

 

which

 

it

 

is

 

specified,

 

remaining

 

active

 

until

 

the

 

program

 

is

 

ended,

 

or

 

until

 

another

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

for

 

the

 

same

 

AID

 

is

 

met,

 

in

 

which

 

case

 

the

 

new

 

command

 

overrides

 

the

 

previous

 

one.

 

When

 

control

 

returns

 

to

 

a

 

program

 

from

 

a

 

program

 

at

 

a

 

lower

 

logical

 

level,

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

commands

 

that

 

were

 

active

 

in

 

the

 

higher-level

 

program

 

before

 

control

 

was

 

transferred

 

from

 

it

 

are

 

reactivated,

 

and

 

those

 

in

 

the

 

lower-level

 

program

 

are

 

deactivated.

 

If

 

no

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

is

 

active

 

for

 

any

 

PA

 

key,

 

PF

 

key,

 

or

 

the

 

CLEAR

 

key,

 

but

 

one

 

is

 

active

 

for

 

ANYKEY,

 

control

 

is

 

passed

 

to

 

the

 

label

 

specified

   

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

243



for

 

ANYKEY.

 

An

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

for

 

an

 

AID

 

overrides

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

ANYKEY

 

command

 

for

 

that

 

AID.

 

If

 

a

 

task

 

is

 

initiated

 

from

 

a

 

terminal

 

by

 

use

 

of

 

an

 

AID,

 

the

 

first

 

EXEC

 

CICS

 

RECEIVE

 

command

 

in

 

the

 

task

 

does

 

not

 

read

 

from

 

the

 

terminal

 

but

 

only

 

copies

 

the

 

input

 

buffer

 

(even

 

if

 

the

 

length

 

of

 

the

 

data

 

is

 

zero)

 

so

 

that

 

control

 

may

 

be

 

passed

 

by

 

means

 

of

 

an

 

EXEC

 

CICS

 

HANDLE

 

AID

 

command

 

for

 

that

 

AID.

 

An

 

EXEC

 

CICS

 

RECEIVE

 

MAP

 

command

 

with

 

the

 

FROM

 

option

 

does

 

not

 

cause

 

a

 

HANDLE

 

AID

 

command

 

to

 

be

 

invoked

 

because

 

no

 

terminal

 

input

 

is

 

involved.

 

Note:

  

If

 

you

 

use

 

NOHANDLE

 

(or

 

the

 

RESP

 

option,

 

which

 

invokes

 

NOHANDLE),

 

it

 

suspends

 

the

 

EXEC

 

CICS

 

HANDLE

 

AID

 

function.

 

If

 

you

 

want

 

to

 

change

 

the

 

program

 

processing,

 

depending

 

on

 

the

 

attention

 

key

 

pressed,

 

compare

 

the

 

contents

 

of

 

EIBAID

 

with

 

the

 

fields

 

in

 

the

 

standard

 

attention

 

identifier

 

list

 

(DFHAID),

 

and

 

then

 

transfer

 

control

 

to

 

the

 

routine

 

needed

 

to

 

perform

 

the

 

function

 

you

 

want.

 

Abend

 

handling

 

A

 

program-level

 

abend

 

exit

 

facility

 

is

 

provided

 

in

 

CICS

 

so

 

that

 

you

 

can

 

write

 

exits

 

of

 

your

 

own

 

that

 

can

 

be

 

given

 

control

 

during

 

abnormal

 

termination

 

of

 

a

 

task.

 

An

 

example

 

of

 

a

 

function

 

performed

 

by

 

such

 

an

 

abend

 

exit

 

is

 

the

 

cleanup

 

of

 

a

 

program

 

that

 

has

 

started

 

but

 

not

 

completed

 

normally.

 

Abnormal

 

termination

 

can

 

occur

 

because

 

of:

 

v

   

A

 

user

 

request

 

by,

 

for

 

example:

 

EXEC

 

CICS

 

ABEND

 

ABCODE(...)

 

v

   

A

 

CICS

 

request

 

as

 

a

 

result

 

of

 

an

 

invalid

 

user

 

request,

 

for

 

example,

 

an

 

invalid

 

EXEC

 

CICS

 

FREEMAIN

 

request,

 

which

 

gives

 

transaction

 

abend

 

code

 

A47B.

 

v

   

An

 

exception

 

raised

 

while

 

running

 

user

 

code.

 

The

 

task

 

is

 

abended

 

with

 

code

 

ASRA.

 

v

   

An

 

exception

 

raised

 

while

 

executing

 

a

 

system

 

call

 

in

 

user

 

code;

 

the

 

task

 

is

 

abended

 

with

 

code

 

ASRB.

 

v

   

A

 

looping

 

task,

 

in

 

which

 

case

 

the

 

task

 

is

 

abended

 

with

 

code

 

AICA.Refer

 

to

 

the

 

CICS

 

Problem

 

Determination

 

Guide

 

for

 

related

 

information.

 

For

 

information

 

on

 

the

 

transaction

 

abend

 

codes

 

for

 

abnormal

 

terminations

 

that

 

are

 

initiated

 

by

 

CICS,

 

their

 

meanings,

 

and

 

your

 

responses,

 

see

 

CICS

 

Messages

 

and

 

Codes.

 

The

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

command

 

activates

 

or

 

reactivates

 

a

 

program-level

 

abend

 

exit

 

within

 

your

 

application

 

program;

 

you

 

can

 

also

 

use

 

this

 

command

 

to

 

cancel

 

a

 

previously

 

activated

 

exit.

 

When

 

activating

 

an

 

exit,

 

you

 

must

 

use

 

either

 

the

 

PROGRAM

 

option

 

to

 

specify

 

the

 

name

 

of

 

a

 

program

 

to

 

receive

 

control,

 

or

 

(for

 

COBOL

 

programs

 

only)

 

the

 

LABEL

 

option

 

to

 

specify

 

a

 

routine

 

label

 

to

 

which

 

control

 

will

 

branch,

 

when

 

an

 

abnormal

 

termination

 

condition

 

occurs.

 

The

 

code

 

called

 

in

 

the

 

PROGRAM

 

option

 

is

 

referred

 

to

 

as

 

the

 

abend

 

exit

 

program;

 

that

 

called

 

in

 

the

 

LABEL

 

option

 

is

 

referred

 

to

 

as

 

the

 

abend

 

exit

 

routine.

 

An

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

command

 

overrides

 

any

 

preceding

 

such

 

command

 

in

 

any

 

application

 

program

 

at

 

the

 

same

 

logical

 

level.

 

(See

 

“Application

   

244

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



program

 

logical

 

levels”

 

on

 

page

 

174.)

 

Each

 

application

 

program

 

of

 

a

 

transaction

 

can

 

have

 

its

 

own

 

abend

 

exit,

 

but

 

only

 

one

 

abend

 

exit

 

at

 

each

 

logical

 

level

 

can

 

be

 

active.

 

Note

 

that

 

the

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

LABEL

 

command

 

is

 

not

 

able

 

to

 

handle

 

an

 

abend

 

user

 

code,

 

such

 

as

 

an

 

ASRA

 

caused

 

by

 

a

 

segmentation

 

violation.

 

When

 

a

 

task

 

is

 

abnormally

 

terminated,

 

CICS

 

searches

 

for

 

an

 

active

 

abend

 

exit,

 

starting

 

at

 

the

 

logical

 

level

 

of

 

the

 

application

 

program

 

in

 

which

 

the

 

abend

 

occurred,

 

and

 

proceeding,

 

if

 

necessary,

 

to

 

successively

 

higher

 

levels.

 

The

 

first

 

active

 

abend

 

exit

 

found,

 

if

 

any,

 

is

 

given

 

control.

 

This

 

procedure

 

is

 

shown

 

in

 

“Creating

 

a

 

program-level

 

abend

 

exit,”

 

which

 

also

 

shows

 

how

 

subsequent

 

abend

 

processing

 

is

 

determined

 

by

 

the

 

user-written

 

abend

 

exit.

 

If

 

no

 

abend

 

exit

 

is

 

found,

 

CICS

 

abnormally

 

terminates

 

the

 

task.

 

To

 

prevent

 

recursive

 

abends

 

in

 

an

 

abend

 

exit,

 

CICS

 

deactivates

 

the

 

exit

 

upon

 

entry

 

to

 

the

 

exit

 

routine

 

or

 

program.

 

If

 

a

 

retry

 

of

 

the

 

operation

 

is

 

desired,

 

the

 

application

 

programmer

 

can

 

branch

 

to

 

a

 

point

 

in

 

his

 

program

 

that

 

was

 

in

 

control

 

at

 

the

 

time

 

of

 

the

 

abend

 

and

 

issue

 

an

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

RESET

 

command

 

to

 

reactivate

 

the

 

abend

 

exit.

 

This

 

command

 

can

 

also

 

be

 

used

 

to

 

reactivate

 

an

 

abend

 

exit

 

(at

 

the

 

logical

 

level

 

of

 

the

 

issuing

 

program)

 

that

 

was

 

canceled

 

previously

 

by

 

an

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

CANCEL

 

command.

 

For

 

COBOL

 

programs

 

only,

 

you

 

can

 

suspend

 

the

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

command

 

by

 

means

 

of

 

the

 

EXEC

 

CICS

 

PUSH

 

HANDLE

 

and

 

EXEC

 

CICS

 

POP

 

HANDLE

 

commands

 

as

 

described

 

in

 

“The

 

PUSH

 

HANDLE

 

and

 

POP

 

HANDLE

 

commands”

 

on

 

page

 

239.

 

Note

 

that

 

when

 

an

 

abend

 

is

 

handled,

 

dynamic

 

backout

 

will

 

not

 

occur

 

unless

 

the

 

abend

 

handler

 

issues

 

an

 

explicit

 

EXEC

 

CICS

 

SYNCPOINT

 

ROLLBACK

 

or

 

abends

 

from

 

the

 

top

 

logical

 

level.

 

Some

 

abends

 

cannot

 

be

 

handled

 

with

 

EXEC

 

CICS

 

HANDLE

 

ABEND,

 

for

 

example

 

A141

 

and

 

A142.

 

Note:

  

Abend

 

codes

 

can

 

be

 

1

 

to

 

4

 

characters

 

with

 

no

 

imbedded

 

blanks.

 

Additionally,

 

they

 

should

 

not

 

begin

 

with

 

the

 

capital

 

letter

 

“A”

 

as

 

this

 

is

 

reserved

 

for

 

CICS

 

usage.

 

Creating

 

a

 

program-level

 

abend

 

exit

 

Abend

 

exit

 

programs

 

can

 

be

 

coded

 

in

 

any

 

supported

 

language,

 

but

 

abend

 

exit

 

routines

 

must

 

be

 

coded

 

in

 

the

 

same

 

language

 

as

 

their

 

program.

 

Upon

 

entry

 

to

 

a

 

CICS

 

application

 

abend

 

exit

 

program,

 

no

 

addressability

 

can

 

be

 

assumed

 

other

 

than

 

that

 

normally

 

assumed

 

for

 

any

 

application

 

program

 

coded

 

in

 

that

 

language.

 

Upon

 

entry

 

to

 

a

 

COBOL

 

abend

 

exit

 

routine,

 

the

 

working

 

storage

 

is

 

in

 

the

 

same

 

state

 

as

 

it

 

was

 

before

 

the

 

abend

 

occurred.

 

There

 

are

 

three

 

methods

 

for

 

terminating

 

processing

 

in

 

an

 

abend

 

exit

 

routine

 

or

 

program,

 

as

 

listed

 

below.

 

Note

 

however

 

that

 

any

 

abend

 

processing

 

should

 

always

 

terminate

 

with

 

an

 

abend,

 

except

 

for

 

abends

 

generated

 

as

 

a

 

result

 

of

 

application

 

program

 

logic.

 

v

   

The

 

EXEC

 

CICS

 

RETURN

 

command

 

indicates

 

that

 

the

 

task

 

is

 

to

 

continue

 

running

 

with

 

control

 

passed

 

to

 

the

 

program

 

on

 

the

 

next

 

higher

 

logical

 

level.

 

If

 

no

 

such

 

program

 

exists,

 

the

 

task

 

is

 

terminated

 

normally.

   

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

245



v

   

The

 

EXEC

 

CICS

 

ABEND

 

command

 

indicates

 

that

 

the

 

task

 

is

 

to

 

be

 

abnormally

 

terminated

 

with

 

control

 

passed

 

to

 

an

 

abend

 

exit

 

specified

 

for

 

a

 

program

 

on

 

a

 

higher

 

logical

 

level.

 

EXEC

 

CICS

 

ABEND

 

at

 

the

 

top

 

level

 

terminates

 

the

 

task

 

abnormally.

 

v

   

A

 

branch

 

to

 

retry

 

an

 

operation.

 

When

 

you

 

are

 

using

 

this

 

method

 

of

 

retrying

 

an

 

operation,

 

and

 

you

 

want

 

to

 

reenter

 

the

 

original

 

abend

 

exit

 

routine

 

or

 

program

 

if

 

a

 

second

 

failure

 

occurs,

 

the

 

abend

 

exit

 

routine

 

or

 

program

 

should

 

issue

 

the

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

RESET

 

command

 

before

 

branching.

 

This

 

is

 

because

 

CICS

 

disables

 

the

 

exit

 

routine

 

or

 

program

 

to

 

prevent

 

it

 

reentering

 

the

 

abend

 

exit.

Restrictions

 

on

 

retrying

 

operations

 

If

 

an

 

abend

 

occurs

 

during

 

the

 

invocation

 

of

 

a

 

CICS

 

service,

 

you

 

should

 

be

 

aware

 

that

 

issuing

 

a

 

further

 

request

 

for

 

the

 

same

 

service

 

may

 

cause

 

unpredictable

 

results

 

because

 

the

 

reinitialization

 

of

 

pointers

 

and

 

work

 

areas,

 

and

 

the

 

freeing

 

of

 

storage

 

areas

 

in

 

the

 

exit

 

routine

 

may

 

not

 

have

 

been

 

completed.

 

You

 

should

 

not

 

try

 

to

 

recover

 

from

 

ATNI

 

abends

 

by

 

attempting

 

further

 

I/O

 

operations.

 

This

 

abend

 

will

 

result

 

in

 

a

 

TERMERR

 

condition,

 

requiring

 

the

 

session

 

to

 

be

 

terminated

 

in

 

all

 

cases.

 

If

 

intersystem

 

communication

 

is

 

being

 

used,

 

an

 

abend

 

in

 

the

 

remote

 

system

 

may

 

cause

 

a

 

branch

 

to

 

the

 

specified

 

program

 

or

 

label,

 

but

 

subsequent

 

requests

 

to

 

use

 

resources

 

in

 

the

 

remote

 

system

 

may

 

fail.

 

Coding

 

considerations

 

for

 

recovery

 

This

 

information

 

offers

 

guidance

 

on

 

aspects

 

of

 

coding

 

that

 

facilitate

 

recovery

 

and

 

restart

 

in

 

application

 

programs.

 

Some

 

points

 

for

 

consideration

 

about

 

the

 

EXEC

 

CICS

 

HANDLE

 

ABEND

 

termination

 

command

 

and

 

program

 

level

 

abnormal

 

termination

 

exits

 

are:

 

v

   

If

 

an

 

abnormal

 

termination

 

occurs

 

during

 

the

 

invocation

 

of

 

a

 

CICS

 

service,

 

you

 

should

 

be

 

aware

 

that

 

issuing

 

a

 

further

 

request

 

for

 

the

 

same

 

service

 

may

 

cause

 

unpredictable

 

results,

 

because

 

the

 

re-initialization

 

of

 

pointers

 

and

 

work

 

areas,

 

and

 

the

 

freeing

 

of

 

storage

 

areas

 

in

 

the

 

exit

 

routine,

 

may

 

not

 

have

 

been

 

completed.

 

v

   

A

 

command

 

level

 

program

 

can

 

obtain

 

the

 

current

 

CICS

 

abnormal

 

termination

 

code

 

by

 

using

 

the

 

EXEC

 

CICS

 

ASSIGN

 

ABCODE

 

command.

 

v

   

In

 

program-level

 

abnormal

 

termination

 

exit

 

code,

 

you

 

may

 

wish

 

to

 

perform

 

actions

 

such

 

as

 

those

 

listed

 

below.

 

(However,

 

it

 

is

 

recommended

 

that

 

you

 

keep

 

abnormal

 

termination

 

exit

 

code

 

to

 

a

 

minimum.)

 

–

   

Record

 

application-dependent

 

information

 

relating

 

to

 

that

 

task

 

in

 

case

 

it

 

terminates

 

abnormally.

 

–

   

If

 

you

 

require

 

a

 

dump

 

to

 

be

 

initiated,

 

you

 

should

 

do

 

this

 

in

 

the

 

exit

 

code

 

at

 

the

 

same

 

program

 

level

 

as

 

the

 

abnormal

 

termination.

 

If

 

the

 

dump

 

is

 

initiated

 

at

 

a

 

program

 

level

 

higher

 

than

 

where

 

the

 

abnormal

 

termination

 

occurred,

 

valuable

 

diagnostic

 

information

 

may

 

be

 

lost.

 

–

   

Attempt

 

any

 

local

 

recovery

 

that

 

may

 

be

 

desired.

 

–

   

Send

 

a

 

message

 

to

 

the

 

terminal

 

operator

 

if,

 

for

 

example,

 

you

 

can

 

deduce

 

that

 

the

 

abnormal

 

termination

 

is

 

due

 

to

 

unusable

 

input

 

data.

 

If

 

you

 

can’t

 

send

 

to

 

a

 

terminal

 

operator,

 

write

 

to

 

a

 

TDQ

 

(for

 

error

 

messages).

 

This

 

can,

 

in

 

turn,

 

be

 

redirected

 

to

 

CSMT.

   

246

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



–

   

For

 

transactions

 

that

 

CICS

 

is

 

to

 

dynamically

 

back

 

out

 

if

 

an

 

abnormal

 

termination

 

occurs,

 

you

 

should

 

beware

 

of

 

writing

 

an

 

abend

 

handler

 

that

 

ends

 

with

 

an

 

EXEC

 

CICS

 

RETURN

 

command.

 

This

 

would

 

indicate

 

to

 

CICS

 

that

 

the

 

transaction

 

had

 

ended

 

normally

 

and

 

would

 

therefore

 

prevent

 

dynamic

 

transaction

 

backout.

 

You

 

must

 

code

 

abend

 

handlers

 

in

 

the

 

same

 

language

 

as

 

the

 

program

 

of

 

which

 

they

 

are

 

a

 

part.

 

For

 

information

 

on

 

the

 

transaction

 

abnormal

 

termination

 

codes

 

initiated

 

by

 

CICS,

 

their

 

meanings,

 

and

 

the

 

audience

 

actions,

 

see

 

CICS

 

Messages

 

and

 

Codes.

 

You

 

must

 

terminate

 

a

 

transaction

 

for

 

which

 

an

 

IOERR

 

condition

 

has

 

been

 

raised,

 

by

 

issuing

 

an

 

EXEC

 

CICS

 

ABEND

 

command.

 

Any

 

program

 

that

 

attempts

 

to

 

process

 

an

 

IOERR

 

condition

 

for

 

a

 

recoverable

 

resource

 

must

 

not

 

issue

 

an

 

EXEC

 

CICS

 

RETURN

 

or

 

EXEC

 

CICS

 

SYNCPOINT

 

command.

 

An

 

EXEC

 

CICS

 

RETURN

 

or

 

EXEC

 

CICS

 

SYNCPOINT

 

command

 

would

 

cause

 

the

 

changes

 

to

 

recoverable

 

resources

 

to

 

be

 

committed.

 

Debugging

 

services

 

The

 

CICS

 

API

 

provides

 

services

 

that:

 

v

   

Allow

 

you

 

to

 

trace

 

the

 

flow

 

of

 

control

 

in

 

your

 

application

 

program

 

and

 

in

 

the

 

region

 

v

   

Allow

 

you

 

to

 

dump

 

storage

 

areas

 

These

 

facilities

 

are

 

described

 

in

 

the

 

following

 

pages.

 

Using

 

the

 

API

 

for

 

trace

 

services

 

The

 

CICS

 

trace

 

facility

 

provides

 

functions

 

that

 

allow

 

you

 

to

 

determine

 

the

 

flow

 

of

 

control

 

through

 

an

 

application

 

program

 

or

 

through

 

CICS

 

itself.

 

These

 

trace

 

functions

 

allow

 

you

 

to

 

control

 

the

 

type

 

of

 

trace

 

that

 

is

 

produced

 

and

 

its

 

destination

 

(where

 

this

 

trace

 

is

 

written

 

to).

 

CICS

 

also

 

provides

 

a

 

formatter

 

(cicstfmt)

 

to

 

convert

 

the

 

data

 

written

 

by

 

the

 

trace

 

facility

 

into

 

a

 

readable

 

form.

 

This

 

information

 

describes

 

the

 

types

 

of

 

trace

 

and

 

their

 

related

 

trace

 

destinations.

 

There

 

are

 

two

 

distinct

 

types

 

of

 

tracing

 

available

 

within

 

CICS:

 

v

   

User

 

trace

 

v

   

System

 

trace

Note:

  

Sensitive

 

information

 

(such

 

as

 

passwords)

 

may

 

be

 

contained

 

in

 

a

 

trace

 

output.

 

For

 

information

 

on

 

how

 

to

 

secure

 

the

 

use

 

of

 

trace

 

facilities,

 

see

 

the

 

CICS

 

Administration

 

Guide.

 

User

 

trace

 

User

 

trace

 

allows

 

you

 

to

 

trace

 

the

 

actions

 

of

 

a

 

single

 

task.

 

The

 

output

 

is

 

written

 

to

 

an

 

operating

 

system

 

file.

 

When

 

this

 

file

 

is

 

formatted

 

by

 

the

 

CICS

 

trace

 

formatter

 

cicstfmt,

 

you

 

can

 

see

 

the

 

EXEC

 

CICS

 

calls

 

made

 

by

 

the

 

task

 

and

 

any

 

trace

 

entries

 

that

 

the

 

application

 

makes

 

using

 

EXEC

 

CICS

 

ENTER.

 

The

 

directory

 

used

 

to

 

write

 

the

 

user

 

trace

 

file

 

is

 

specified

 

by

 

the

 

UserTraceDirectory

 

attribute

 

in

 

the

 

Region

 

Definitions

 

(RD).

 

The

 

file

 

name

 

used

 

is

 

specified

 

by

 

the

 

TraceFile

 

attribute

 

in

 

the

 

User

 

Definitions

 

(UD)

 

for

 

the

 

user

 

running

 

the

 

traced

 

task.

 

If

 

there

 

is

 

no

 

UD

 

for

 

this

 

user,

 

the

 

file

 

name

 

comes

 

from

   

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

247



the

 

PublicUserTraceFile

 

attribute

 

in

 

the

 

RD.

 

So

 

that

 

CICS

 

does

 

not

 

destroy

 

a

 

trace

 

file

 

that

 

already

 

exists,

 

a

 

sequence

 

number

 

is

 

always

 

added

 

to

 

the

 

file

 

name.

 

CICS

 

uses

 

the

 

first

 

sequence

 

number

 

available.

 

For

 

example,

 

if

 

the

 

TraceFile

 

attribute

 

value

 

is

 

mytracefile

 

and

 

this

 

is

 

the

 

first

 

trace

 

file

 

produced,

 

CICS

 

will

 

write

 

user

 

trace

 

to

 

mytracefile.001.

 

However,

 

even

 

with

 

this

 

protection,

 

you

 

should

 

choose

 

the

 

file

 

names

 

used

 

for

 

this

 

type

 

of

 

tracing

 

carefully,

 

so

 

that

 

users

 

can

 

easily

 

identify

 

their

 

trace

 

files.

 

User

 

trace

 

is

 

enabled

 

by

 

the

 

EXEC

 

CICS

 

TRACE

 

command

 

issued

 

by

 

the

 

traced

 

application,

 

provided

 

that

 

the

 

master

 

trace

 

flag

 

and

 

the

 

user

 

trace

 

flag

 

have

 

been

 

correctly

 

set.

 

System

 

trace

 

System

 

trace

 

allows

 

you

 

to

 

trace

 

the

 

activities

 

of

 

a

 

region,

 

CICS

 

off-line

 

utilities,

 

and

 

CICS

 

terminal

 

clients.

 

This

 

includes

 

entry

 

and

 

exit

 

tracing

 

of

 

function

 

calls,

 

exception

 

and

 

non-exception

 

events,

 

and

 

EXEC

 

CICS

 

interface

 

calls.

 

Because

 

the

 

volume

 

of

 

trace

 

produced

 

by

 

a

 

region

 

can

 

be

 

very

 

large,

 

you

 

can

 

limit

 

the

 

type

 

of

 

trace

 

produced

 

and

 

the

 

functional

 

area

 

that

 

is

 

traced.

 

However,

 

you

 

cannot

 

suppress

 

the

 

generation

 

of

 

the

 

exception

 

event

 

trace

 

that

 

is

 

produced

 

whenever

 

a

 

symrec

 

is

 

raised.

 

System

 

trace

 

can

 

be

 

written

 

to

 

up

 

to

 

three

 

destinations

 

depending

 

on

 

whether

 

the

 

trace

 

is

 

from

 

a

 

region,

 

a

 

CICS

 

terminal

 

client,

 

or

 

a

 

CICS

 

off-line

 

utility:

 

v

   

Main

 

storage

 

buffer

 

v

   

Auxiliary

 

trace

 

v

   

External

 

trace

 

(on

 

CICS

 

for

 

AIX

 

only)

Main

 

storage

 

buffer

 

(region

 

only):

   

The

 

processes

 

that

 

make

 

up

 

a

 

region

 

always

 

write

 

any

 

system

 

trace

 

they

 

produce

 

to

 

the

 

same

 

cyclical

 

main

 

memory

 

buffer,

 

which

 

is

 

also

 

called

 

the

 

main

 

storage

 

trace.

 

This

 

buffer

 

appears

 

in

 

a

 

system

 

dump.

 

Auxiliary

 

trace:

   

A

 

system

 

trace

 

can

 

be

 

written

 

to

 

operating

 

system

 

files.

 

For

 

CICS

 

on

 

Open

 

Systems

 

clients

 

and

 

off-line

 

utilities,

 

each

 

operating

 

system

 

process

 

that

 

executes

 

will

 

write

 

to

 

its

 

own

 

file.

 

The

 

path

 

and

 

name

 

of

 

these

 

files

 

is

 

based

 

on

 

the

 

setting

 

of

 

the

 

environment

 

variable

 

CICSTRACE.

 

For

 

example,

 

if

 

CICSTRACE

 

is

 

set

 

to

 

mytracefile,

 

then

 

the

 

trace

 

file

 

names

 

used

 

would

 

be

 

mytracefile.001,

 

mytracefile.002,

 

and

 

so

 

on.

 

For

 

a

 

region,

 

two

 

files

 

can

 

be

 

specified

 

by

 

the

 

values

 

of

 

the

 

TraceFileA

 

and

 

the

 

TraceFileB

 

attributes

 

in

 

the

 

RD.

 

These

 

two

 

files

 

are

 

used

 

alternately.

 

You

 

can

 

switch

 

between

 

them

 

using

 

the

 

command

 

CEMT

 

SET

 

AUXTRACE

 

SWITCH.

 

When

 

you

 

cold

 

start

 

a

 

region,

 

auxiliary

 

trace

 

is

 

initially

 

set

 

to

 

use

 

the

 

file

 

name

 

in

 

TraceFileA.

 

When

 

a

 

region

 

is

 

restarted,

 

auxiliary

 

trace

 

is

 

set

 

to

 

use

 

the

 

file

 

that

 

was

 

not

 

in

 

use

 

at

 

the

 

time

 

of

 

the

 

previous

 

shutdown.

   

CICS

 

for

 

Windows

 

The

 

auxiliary

 

trace

 

files

 

are

 

written

 

in

 

the

 

directory

 

returned

 

by

 

the

 

command:

 

cicsname

 

-r

 

regionname

 

datadir

   

248

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



CICS

 

on

 

Open

 

Systems

 

The

 

auxiliary

 

trace

 

files

 

are

 

written

 

in

 

the

 

following

 

directory:

 

/var/cics_regions/region/data

 

External

 

trace

 

(On

 

CICS

 

for

 

AIX

 

only):

   

If

 

you

 

have

 

an

 

event

 

performance

 

trace

 

facility

 

(EPTF)

 

on

 

your

 

operating

 

system,

 

you

 

can

 

set

 

the

 

ExternalTrace

 

attribute

 

in

 

the

 

RD

 

to

 

yes

 

to

 

cause

 

any

 

system

 

trace

 

that

 

a

 

region

 

produces

 

to

 

be

 

written

 

to

 

the

 

EPTF.

 

CICS

 

on

 

Open

 

Systems

 

clients

 

and

 

off-line

 

utilities

 

write

 

to

 

the

 

EPTF

 

if

 

the

 

environment

 

variable

 

CICSEXTERNALTRACE

 

is

 

set

 

to

 

a

 

value

 

other

 

than

 

null.

 

Trace

 

entry

 

points

 

This

 

information

 

describes

 

the

 

points

 

at

 

which

 

CICS

 

produces

 

trace

 

entries

 

during

 

its

 

execution

 

for

 

both

 

system

 

trace

 

and

 

user

 

trace.

 

System

 

trace

 

entry

 

points:

   

System

 

trace

 

can

 

contain

 

the

 

following

 

types

 

of

 

trace

 

entries:

 

v

   

CICS

 

function

 

entry/exit

 

trace

 

This

 

is

 

a

 

record

 

of

 

entry

 

and

 

exit

 

of

 

each

 

CICS

 

function.

 

CICS

 

functions

 

are

 

classified

 

as

 

either

 

internal

 

or

 

external.

 

External

 

functions

 

are

 

those

 

functions

 

that

 

are

 

used

 

as

 

the

 

interface

 

between

 

the

 

various

 

CICS

 

modules.

 

Internal

 

functions

 

are

 

those

 

functions

 

that

 

are

 

internal

 

to

 

a

 

module

 

and

 

are

 

therefore

 

not

 

called

 

from

 

another

 

module.

 

v

   

Non-exception

 

event

 

trace

 

This

 

is

 

a

 

record

 

of

 

significant

 

events

 

within

 

the

 

CICS

 

system.

 

An

 

example

 

of

 

a

 

significant

 

event

 

is

 

the

 

allocation

 

of

 

an

 

area

 

of

 

main

 

memory.

 

v

   

Exception

 

event

 

trace

 

(CICS

 

on

 

Open

 

Systems)

 

This

 

records

 

unexpected

 

errors.

 

It

 

is

 

generated

 

whenever

 

a

 

symrec

 

is

 

written

 

to

 

the

 

symrec

 

file:

 

/var/cics_regions/region/symrecs

 

where

 

region

 

is

 

the

 

region

 

name.

 

v

   

Exception

 

event

 

trace

 

(CICS

 

for

 

Windows)

 

This

 

records

 

unexpected

 

errors.

 

It

 

is

 

generated

 

whenever

 

a

 

symrec

 

is

 

written

 

to

 

the

 

symrec

 

file

 

called

 

symrecs.

 

The

 

following

 

command

 

gives

 

the

 

path

 

where

 

the

 

symrec

 

file

 

can

 

be

 

found.

 

cicsname

 

-r

 

regionname

 

regiondata

 

where

 

regionname

 

is

 

the

 

region

 

name.

 

v

   

System

 

message

 

trace

 

This

 

records

 

the

 

message

 

number

 

of

 

system

 

messages

 

as

 

they

 

are

 

written,

 

so

 

that

 

you

 

can

 

determine

 

what

 

other

 

system

 

activity

 

the

 

message

 

is

 

associated

 

with.

 

v

   

EXEC

 

Interface

 

Trace

 

This

 

records

 

the

 

entry

 

and

 

return

 

of

 

EXEC

 

CICS

 

commands.

 

It

 

is

 

also

 

found

 

in

 

User

 

trace.

User

 

trace

 

entry

 

points:

   

User

 

trace

 

can

 

contain

 

the

 

following

 

types

 

of

 

trace

 

entries:

 

v

   

Application

 

trace

 

This

 

records

 

the

 

TRACEID,

 

FROM

 

and

 

RESOURCE

 

values

 

specified

 

on

 

an

 

EXEC

 

CICS

 

ENTER

 

command.

 

v

   

Exec

 

Interface

 

Trace

   

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

249



This

 

records

 

the

 

entry

 

and

 

return

 

of

 

EXEC

 

CICS

 

commands.

 

It

 

is

 

also

 

found

 

in

 

System

 

trace.

Dump

 

You

 

can

 

use

 

DUMP

 

to

 

write

 

specified

 

areas

 

of

 

memory

 

to

 

a

 

file,

 

to

 

assist

 

in

 

debugging

 

an

 

application

 

program

 

or

 

to

 

identify

 

why

 

an

 

abnormal

 

termination

 

or

 

storage

 

violation

 

occurred.

 

You

 

or

 

the

 

CICS

 

system

 

can

 

initiate

 

and

 

own

 

the

 

transaction

 

dump.

 

A

 

transaction

 

dump

 

can

 

be

 

generated

 

by:

 

v

   

EXEC

 

CICS

 

DUMP

 

calls

 

v

   

EXEC

 

CICS

 

ABEND

 

calls

 

v

   

Transaction

 

abnormal

 

terminations

 

(including

 

abnormal

 

terminations

 

generating

 

ASRA

 

and

 

ASRB

 

abnormal

 

termination

 

codes

 

when

 

an

 

exception

 

occurs

 

within

 

an

 

application

 

program

 

belonging

 

to

 

that

 

transaction).

 

CICS

 

system

 

dumps

 

can

 

be

 

generated

 

by:

 

v

   

CICS

 

system

 

abnormal

 

terminations

 

v

   

CICS

 

system

 

shutdowns

 

v

   

CEMT

 

PERFORM

 

SNAP

 

commands

 

v

   

The

 

transaction

 

abnormal

 

termination

 

code

 

ASRA

 

when

 

an

 

exception

 

occurs

 

in

 

an

 

application

 

program

 

v

   

The

 

transaction

 

abnormal

 

termination

 

code

 

ASRB

 

when

 

a

 

system

 

call

 

is

 

made

 

incorrectly

 

in

 

an

 

application

 

program.

 

v

   

EXEC

 

CICS

 

PERFORM

 

SNAP

 

Application

 

Programming

 

Interface.

 

The

 

dump

 

facility

 

uses

 

the

 

dump

 

sequence

 

number

 

to

 

give

 

each

 

dump

 

file

 

a

 

unique

 

name.

 

CICS

 

increments

 

the

 

dump

 

sequence

 

number

 

each

 

time

 

a

 

valid

 

request

 

to

 

dump

 

occurs.

 

CICS

 

records

 

the

 

number

 

of

 

dumps

 

taken

 

and

 

the

 

number

 

of

 

dump

 

write

 

errors

 

as

 

they

 

occur.

 

You

 

can

 

request

 

and

 

output

 

dump

 

statistics

 

whenever

 

you

 

require.

 

You

 

can

 

disable

 

some

 

types

 

of

 

dump.

 

For

 

example,

 

you

 

can

 

disable

 

all

 

dumps

 

except

 

for

 

those

 

produced

 

as

 

a

 

result

 

of

 

an

 

EXEC

 

CICS

 

DUMP

 

command.

 

Also,

 

the

 

dump

 

facility

 

uses

 

a

 

number

 

of

 

directories

 

to

 

write

 

the

 

dump

 

data.

 

These

 

directories

 

are

 

sub-directories

 

of

 

the

 

dump

 

directory.

 

The

 

dump

 

sub-directories

 

can

 

be

 

symbolically

 

linked

 

to

 

directories

 

on

 

different

 

physical

 

devices,

 

which

 

gives

 

you

 

more

 

space

 

to

 

save

 

dumps

 

in.

 

You

 

can

 

ask

 

the

 

CICS

 

operator

 

to

 

request

 

a

 

dump

 

when

 

the

 

region

 

is

 

shut

 

down.

 

Once

 

complete,

 

CICS

 

saves

 

the

 

dump

 

sequence

 

number

 

for

 

the

 

next

 

auto

 

start

 

of

 

the

 

region.

 

The

 

CICS

 

Runtime

 

Resource

 

Management

 

(CEMT)

 

transaction

 

allows

 

you

 

to

 

use

 

CEMT

 

INQUIRE/SET

 

DUMP

 

and

 

CEMT

 

INQUIRE/SET

 

DUMP

 

OPTIONS

 

to

 

control

 

the

 

dump

 

facility

 

interactively

 

during

 

runtime.

 

Maximizing

 

Dump

 

Information

 

There

 

are

 

several

 

things

 

you

 

can

 

do

 

while

 

coding

 

and

 

preparing

 

your

 

applications

 

in

 

order

 

to

 

maximize

 

the

 

information

 

you

 

can

 

use

 

to

 

debug

 

the

 

application

 

from

 

a

 

transaction

 

dump.

 

This

 

is

 

expecially

 

useful

 

when

 

the

 

application

 

is

 

running

 

on

 

a

 

production

 

region,

 

when

 

on-line

 

trace

 

and

 

debuggers

 

are

 

not

 

available.

 

v

   

Use

 

the

 

cicstran

 

or

 

cicstcl

 

″-d″

 

option.

 

This

 

will

 

place

 

the

 

line

 

number

 

of

 

the

 

currently

 

executing

 

EXEC

 

CICS

 

statement

 

in

 

the

 

dump

 

so

 

it

 

can

 

be

 

easily

   

250

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|



identified

 

if

 

that

 

EXEC

 

CICS

 

statement

 

generates

 

an

 

abend.

 

The

 

line

 

number

 

relates

 

to

 

the

 

CICS

 

source

 

file

 

(filename.ccs

 

or

 

filename.ccp).

 

(On

 

CICS

 

for

 

AIX

 

only)

 

v

   

Use

 

the

 

cicstcl

 

option

 

″-s″

 

for

 

C,

 

C++,

 

or

 

IBM

 

Cobol

 

to

 

obtain

 

assembly

 

listings

 

and

 

intermediate

 

(compiler

 

source)

 

files.

 

These

 

can

 

be

 

used

 

to

 

identify

 

the

 

failing

 

line

 

of

 

source

 

code

 

if

 

the

 

application

 

generates

 

an

 

exception,

 

(which

 

results

 

in

 

a

 

CICS

 

ASRA

 

or

 

ARSB

 

abend)

 

as

 

the

 

offset

 

of

 

the

 

failing

 

instruction

 

may

 

be

 

shown

 

in

 

the

 

dump.

 

If

 

the

 

application

 

is

 

compiled

 

with

 

a

 

separate

 

compiler

 

command

 

instead

 

of

 

cicstcl,

 

or

 

if

 

it

 

is

 

a

 

non-CICS

 

program

 

called

 

from

 

a

 

CICS

 

program,

 

use

 

the

 

compiler

 

option

 

″-qlist″

 

to

 

generate

 

these

 

listings.

 

If

 

an

 

exception

 

occurs

 

in

 

an

 

application

 

program

 

(including

 

a

 

non-CICS

 

subroutine),

 

the

 

contents

 

of

 

the

 

general

 

purpose

 

registers

 

are

 

also

 

included

 

in

 

the

 

transaction

 

dump;

 

this

 

information

 

can

 

be

 

used

 

in

 

conjunction

 

with

 

the

 

assembly

 

listings

 

for

 

debugging

 

the

 

application.

 

v

   

Use

 

the

 

cicstcl

 

option

 

″-s″

 

for

 

IBM

 

Cobol

 

applications

 

also

 

to

 

generate

 

a

 

data

 

map

 

listing.

 

This

 

listing

 

gives

 

the

 

size

 

of

 

all

 

data

 

items

 

and

 

the

 

offsets

 

of

 

data

 

items

 

within

 

data

 

structures

 

in

 

the

 

working

 

storage

 

area.

 

The

 

working

 

storage

 

area

 

is

 

included

 

in

 

the

 

transaction

 

dump;

 

to

 

aid

 

location

 

of

 

data

 

structures

 

in

 

this

 

dumped

 

area

 

it

 

is

 

useful

 

to

 

include

 

unique

 

eyecatchers

 

at

 

the

 

start

 

of

 

such

 

structures.

 

All

 

data

 

items

 

in

 

these

 

structures

 

can

 

then

 

be

 

located

 

in

 

the

 

dumped

 

storage

 

(for

 

this

 

reason,

 

it

 

can

 

also

 

be

 

useful

 

to

 

include

 

all

 

data

 

items

 

in

 

structures

 

where

 

possible).

Performance

 

monitoring

 

services

 

The

 

CICS

 

API

 

provides

 

services

 

that

 

allow

 

you

 

to

 

obtain

 

statistical

 

information

 

at

 

a

 

task

 

level

 

(monitoring)

 

and

 

at

 

a

 

resource

 

level

 

(statistics).

 

Those

 

services

 

are

 

described

 

below.

 

The

 

monitoring

 

service

 

The

 

monitoring

 

service

 

provides

 

information,

 

at

 

the

 

task

 

level,

 

about

 

the

 

performance

 

of

 

your

 

region

 

and

 

your

 

application

 

programs.

 

To

 

use

 

the

 

monitoring

 

service:

 

1.

   

Set

 

the

 

MonitorStatus

 

attribute

 

of

 

the

 

Monitoring

 

Definitions

 

(MD)

 

to

 

on.

 

You

 

can

 

set

 

this

 

attribute

 

to

 

yes

 

or

 

no

 

to

 

indicate

 

whether

 

or

 

not

 

CICS

 

is

 

to

 

perform

 

monitoring.

 

If

 

you

 

initially

 

set

 

this

 

to

 

no,

 

you

 

can

 

still

 

use

 

CEMT

 

to

 

set

 

it

 

to

 

yes

 

at

 

a

 

later

 

stage.

 

The

 

default

 

value

 

is

 

no.

 

Note:

  

You

 

cannot

 

set

 

monitoring

 

attributes

 

through

 

your

 

application

 

programs.

 

2.

   

Use

 

the

 

user-definable

 

performance

 

monitoring

 

program

 

that

 

produces

 

performance

 

monitoring

 

data

 

at

 

a

 

user

 

Event

 

Monitoring

 

Point

 

(EMP)

 

which

 

takes

 

the

 

form

 

of

 

an

 

EXEC

 

CICS

 

ENTER

 

MONITOR

 

or

 

an

 

EXEC

 

CICS

 

ENTER

 

PERFORM

 

command.

 

The

 

options

 

you

 

provide

 

with

 

this

 

command

 

are

 

passed

 

to

 

the

 

user

 

exit

 

along

 

with

 

a

 

current

 

copy

 

of

 

the

 

task’s

 

monitoring

 

record.

 

Your

 

user

 

exit

 

can

 

start

 

and

 

stop

 

clocks

 

and

 

counters,

 

and

 

can

 

cause

 

the

 

monitoring

 

record

 

to

 

be

 

written

 

to

 

a

 

file.

 

See

 

the

 

CICS

 

Application

 

Programming

 

Reference

 

for

 

related

 

information.

 

CICS

 

provides

 

a

 

sample

 

user

 

exit

 

program.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

for

 

related

 

information.

 

CICS

 

also

 

provides

 

a

 

utility

 

(see

 

the

 

CICS

 

Administration

 

Reference)

 

to

 

help

 

you

 

format

 

and

 

display

 

the

 

monitoring

 

information.

   

Chapter

 

9.

 

Coding

 

for

 

problem

 

determination

 

251



Statistics

 

services

 

You

 

can

 

use

 

the

 

CICS

 

statistics

 

commands

 

(EXEC

 

CICS

 

COLLECT

 

STATISTICS,

 

EXEC

 

CICS

 

INQUIRE

 

STATISTICS,

 

EXEC

 

CICS

 

PERFORM

 

STATISTICS,

 

and

 

EXEC

 

CICS

 

SET

 

STATISTICS)

 

to

 

produce

 

region-wide

 

information

 

on

 

resource

 

utilization

 

and

 

activity.

 

This

 

information

 

may

 

be

 

used

 

in

 

several

 

ways,

 

for

 

example:

 

Region

 

configuration

 

You

 

can

 

find

 

out

 

whether

 

or

 

not

 

your

 

attribute

 

values

 

in

 

the

 

Region

 

Definitions

 

(RD)

 

are

 

correct

 

for

 

your

 

system’s

 

usage

 

pattern,

 

by

 

examining

 

items

 

such

 

as

 

storage

 

usage.

 

Intersystem

 

activity

 

You

 

can

 

see

 

how

 

much

 

interaction

 

there

 

is

 

with

 

other

 

systems.

 

This

 

could

 

be

 

used

 

to

 

show

 

that

 

some

 

functions

 

may

 

be

 

better

 

processed

 

locally

 

rather

 

than

 

remotely,

 

for

 

example.

 

Problem

 

determination

 

You

 

can

 

use

 

the

 

statistics

 

to

 

help

 

track

 

down

 

problems

 

as

 

well

 

as

 

to

 

provide

 

input

 

to

 

performance

 

tuning.

 

CICS

 

provides

 

a

 

utility

 

(see

 

the

 

CICS

 

Administration

 

Reference)

 

to

 

help

 

you

 

format

 

and

 

display

 

the

 

statistics

 

information.

   

252

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

This

 

chapter

 

discusses

 

methods

 

used

 

to

 

test

 

and

 

debug

 

CICS

 

application

 

programs.

 

The

 

chapter

 

is

 

organized

 

in

 

the

 

following

 

manner:

 

v

   

“Preparing

 

your

 

application

 

for

 

testing”

 

discusses

 

helpful

 

tools

 

for

 

identifying

 

problems

 

and

 

tips

 

for

 

preparing

 

a

 

testing

 

environment.

 

v

   

“Using

 

standard

 

CICS

 

facilities

 

to

 

test

 

your

 

application”

 

on

 

page

 

254

 

covers

 

using

 

trace,

 

dump,

 

and

 

journaling

 

to

 

aid

 

in

 

testing

 

and

 

debugging.

 

v

   

“Using

 

CICS-supplied

 

transactions

 

to

 

test

 

your

 

application”

 

on

 

page

 

255

 

details

 

using

 

Temporary

 

Storage

 

Browse

 

(CEBR),

 

Command

 

Level

 

Interpreter

 

(CECI)

 

,

 

Syntax

 

Checker

 

(CECS),

 

and

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)

 

for

 

debugging

 

tasks.

 

In

 

addition,

 

details

 

about

 

how

 

to

 

configure

 

CICS

 

to

 

debug

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

applications

 

with

 

Animator

 

(CADB),

 

Application

 

Diagnosis

 

Configuration

 

(CDCN),

 

and

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

(xldb)

 

are

 

included.

 

v

   

“Using

 

a

 

compiler’s

 

integrated

 

debugging

 

tool

 

to

 

debug

 

CICS

 

applications”

 

on

 

page

 

263

 

contains

 

information

 

for

 

debugging

 

with

 

the

 

tools

 

that

 

are

 

integrated

 

with

 

compilers.

 

For

 

CICS

 

for

 

Windows,

 

the

 

debugging

 

tools

 

for

 

the

 

following

 

compilers

 

are

 

discussed:

 

IBM

 

VisualAge

 

for

 

C,

 

C++,

 

and

 

COBOL,

 

Microsoft

 

Visual

 

C++,

 

and

 

Micro

 

Focus

 

Net

 

Express

 

COBOL.

 

For

 

CICS

 

for

 

Open

 

Systems,

 

the

 

debugging

 

tool

 

with

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

compiler

 

is

 

discussed.

Preparing

 

your

 

application

 

for

 

testing

 

This

 

section

 

discusses

 

tools

 

that

 

are

 

helpful

 

in

 

identifying

 

problems

 

in

 

your

 

applications

 

and

 

tips

 

for

 

preparing

 

your

 

test

 

environment.

 

Useful

 

tools

 

for

 

identifying

 

problems

 

CICS

 

and

 

the

 

operating

 

system

 

provide

 

many

 

tools,

 

attributes,

 

and

 

commands

 

to

 

help

 

you

 

detect

 

errors.

 

Tips

 

for

 

your

 

use

 

include

 

the

 

following

 

suggestions:

 

v

   

Make

 

use

 

of

 

CICS-supplied

 

transactions

 

and

 

the

 

compiler

 

debugging

 

tools

 

that

 

can

 

help

 

you

 

isolate

 

problems.

 

These

 

aids

 

are

 

discussed

 

in

 

“Using

 

CICS-supplied

 

transactions

 

to

 

test

 

your

 

application”

 

on

 

page

 

255

 

and

 

“Using

 

a

 

compiler’s

 

integrated

 

debugging

 

tool

 

to

 

debug

 

CICS

 

applications”

 

on

 

page

 

263.

 

v

   

Set

 

the

 

IntrospectInterval

 

attribute

 

in

 

the

 

Region

 

Definitions

 

(RD)

 

to

 

enable

 

CICS

 

to

 

check

 

the

 

internal

 

consistency

 

of

 

its

 

data

 

structures

 

automatically.

 

This

 

is

 

particularly

 

useful

 

for

 

identifying

 

when

 

a

 

user

 

transaction

 

has

 

written

 

over

 

a

 

CICS

 

data

 

area.

 

v

   

Set

 

the

 

SafetyLevel

 

attribute

 

in

 

the

 

RD

 

to

 

normal.

 

This

 

prevents

 

user

 

transactions

 

from

 

writing

 

into

 

CICS

 

private

 

storage.

 

An

 

ASRS

 

abend

 

occurs

 

if

 

an

 

attempt

 

to

 

write

 

to

 

private

 

storage

 

is

 

made.

 

Again,

 

this

 

is

 

useful

 

for

 

identifying

 

when

 

a

 

user

 

transaction

 

has

 

written

 

over

 

a

 

CICS

 

data

 

area.

 

v

   

Code

 

EXEC

 

CICS

 

ENTER

 

commands

 

in

 

your

 

program

 

to

 

help

 

you

 

to

 

debug

 

it.

 

This

 

is

 

discussed

 

in

 

“Trace

 

and

 

dump”

 

on

 

page

 

254.

 

v

   

Use

 

CICS

 

journaling

 

facilities

 

to

 

log

 

application

 

performance.

 

This

 

is

 

discussed

 

in

 

“Journals

 

and

 

error

 

handling”

 

on

 

page

 

255.

 

v

   

Use

 

the

 

EXEC

 

CICS

 

DUMP

 

and

 

CEMT

 

PERFORM

 

SNAP

 

DUMP

 

facilities

 

to

 

dump

 

areas

 

of

 

storage

 

in

 

searching

 

for

 

a

 

problem.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

253

|
|
|
|
|
|
|



v

   

Use

 

EXEC

 

CICS

 

PERFORM

 

SNAP

 

API

 

to

 

dump

 

the

 

system

 

memory

 

from

 

the

 

CICS

 

application

 

code

 

for

 

debugging.

 

v

   

Use

 

the

 

replaceable

 

cicsterm

 

(CICS

 

on

 

Open

 

Systems)process

 

as

 

a

 

vehicle

 

to

 

help

 

automate

 

tests

 

that

 

involve

 

user

 

input

 

and

 

output.

 

For

 

further

 

information

 

about

 

finding

 

a

 

problem,

 

see

 

the

 

CICS

 

Problem

 

Determination

 

Guide.

 

Preparing

 

your

 

testing

 

environment

 

Before

 

you

 

begin

 

testing,

 

complete

 

the

 

following

 

tasks:

 

v

   

Define

 

your

 

resource

 

settings.

 

To

 

test

 

your

 

application,

 

or

 

to

 

test

 

a

 

component

 

part

 

of

 

it,

 

definitions

 

must

 

be

 

set

 

in

 

the

 

region’s

 

resource

 

definition

 

database.

 

This

 

is

 

described

 

in

 

the

 

“Configuring

 

CDCN”

 

on

 

page

 

259.

 

Further

 

information

 

is

 

included

 

in

 

CICS

 

Administration

 

Reference

 

.

 

v

   

Set

 

up

 

test

 

data.

 

Your

 

application

 

usually

 

needs

 

test

 

data.

 

For

 

extrapartition

 

transient

 

data

 

queues,

 

use

 

operating

 

system

 

facilities

 

to

 

set

 

up

 

the

 

data.

 

For

 

temporary

 

storage

 

queues

 

and

 

intrapartition

 

transient

 

data

 

queues,

 

use

 

Temporary

 

Storage

 

Browse

 

(CEBR)

 

to

 

set

 

up

 

the

 

data.

 

For

 

more

 

information,

 

see

 

the

 

CICS

 

Administration

 

Reference.

Using

 

standard

 

CICS

 

facilities

 

to

 

test

 

your

 

application

 

CICS

 

provides

 

several

 

facilities

 

that

 

help

 

you

 

to

 

debug

 

the

 

program.

 

See

 

the

 

CICS

 

Problem

 

Determination

 

Guide.

 

The

 

following

 

CICS

 

facilities

 

can

 

help

 

you

 

to

 

debug

 

your

 

application:

 

v

   

Trace

 

and

 

dump

 

v

   

Journals

 

and

 

error

 

handling

Trace

 

and

 

dump

 

As

 

described

 

in

 

“Debugging

 

services”

 

on

 

page

 

247,

 

the

 

CICS

 

trace

 

control

 

facility

 

provides

 

a

 

debugging

 

and

 

monitoring

 

aid.

 

Use

 

the

 

EXEC

 

CICS

 

ENTER

 

command

 

to

 

specify

 

user

 

trace

 

entry

 

points

 

or

 

user

 

Event

 

Monitoring

 

Points

 

(EMPs).

 

Use

 

the

 

EXEC

 

CICS

 

TRACE

 

command

 

to

 

turn

 

the

 

CICS

 

trace

 

facility

 

on

 

or

 

off.

 

The

 

offline

 

program

 

cicstfmt

 

formats

 

CICS

 

trace

 

data,

 

outputting

 

the

 

results

 

to

 

standard

 

output.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

for

 

related

 

information.

 

The

 

CICS

 

dump

 

control

 

facilities

 

allows

 

the

 

dumping

 

of

 

specified

 

areas

 

of

 

main

 

storage

 

onto

 

a

 

sequential

 

file.

 

Use

 

the

 

offline

 

utility

 

cicsdfmt

 

to

 

format

 

and

 

print

 

the

 

required

 

dump

 

file.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

for

 

related

 

information.

 

Note

 

that

 

when

 

the

 

TRACE,

 

DUMP,

 

and

 

CEMT

 

PERFORM

 

SNAP

 

commands

 

are

 

used,

 

and

 

the

 

application

 

program

 

that

 

is

 

coded

 

with

 

EXEC

 

CICS

 

PERFORM

 

SNAP

 

API

 

is

 

run,

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

(xldb)

 

must

 

be

 

turned

 

off

 

because

 

it

 

prevents

 

the

 

process

 

from

 

completing.

   

254

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|

|
|
|
|



Journals

 

and

 

error

 

handling

 

CICS

 

provides

 

facilities

 

for

 

creating

 

and

 

managing

 

journals

 

during

 

application

 

and

 

transaction

 

execution.

 

A

 

journal

 

is

 

a

 

special

 

purpose

 

byte-oriented

 

file.

 

The

 

content

 

of

 

journal

 

records

 

is

 

specified

 

by

 

the

 

application

 

writing

 

to

 

the

 

journal.

 

The

 

CICS

 

journaling

 

facility

 

provides:

 

v

   

A

 

system

 

journal

 

(log)

 

v

   

User

 

journals

 

1

 

to

 

99

 

v

   

Checking

 

of

 

access

 

permissions

 

v

   

Error

 

handling.

 

It

 

raises

 

appropriate

 

condition

 

or

 

abnormal

 

termination

 

codes,

 

and

 

generates

 

messages

 

to

 

appropriate

 

destinations.

 

See

 

“CICS

 

journaling”

 

on

 

page

 

138

 

and

 

“Error-handling

 

services”

 

on

 

page

 

233.

 

Using

 

CICS-supplied

 

transactions

 

to

 

test

 

your

 

application

 

The

 

following

 

CICS-supplied

 

transactions

 

can

 

be

 

used

 

to

 

help

 

you

 

test

 

and

 

debug

 

your

 

application

 

programs:

 

v

   

Temporary

 

Storage

 

Browse

 

(CEBR),

 

which

 

is

 

used

 

to

 

browse

 

and

 

manipulate

 

temporary

 

storage

 

queues.

 

v

   

Command

 

Level

 

Interpreter

 

(CECI)

 

and

 

Syntax

 

Checker

 

(CECS),

 

which

 

are

 

used

 

to

 

test

 

the

 

syntax

 

of

 

EXEC

 

CICS

 

commands.

 

v

   

Execution

 

Diagnostic

 

Facility

 

(CEDF),

 

which

 

is

 

used

 

to

 

invoke

 

the

 

Execution

 

Diagnostic

 

Facility

 

(EDF).

 

v

   

Application

 

Diagnosis

 

Configuration

 

(CDCN),

 

which

 

is

 

used

 

to

 

turn

 

the

 

IBM

 

Application

 

Debugging

 

tool

 

(xldb)

 

on

 

and

 

off.

 

(This

 

tool

 

is

 

used

 

on

 

CICS

 

for

 

AIX

 

only.)

 

v

   

CADB

 

can

 

be

 

used

 

to

 

configure

 

CICS

 

to

 

run

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

applications

 

through

 

Animator.

 

(Animator

 

is

 

the

 

debugger

 

that

 

is

 

supplied

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL).

 

CADB

 

is

 

supported

 

with

 

CICS

 

on

 

open

 

systems

 

only.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

for

 

more

 

information

 

about

 

CADB.

 

v

   

CJDB,

 

which

 

invokes

 

the

 

Java

 

debugging

 

facilities.

 

See

 

“Accessing

 

Java

 

debugging

 

facilities

 

with

 

the

 

CJDB

 

transaction”

 

on

 

page

 

271

 

for

 

more

 

information.

Using

 

Temporary

 

Storage

 

Browse

 

(CEBR)

 

Temporary

 

Storage

 

Browse

 

(CEBR)

 

is

 

a

 

debugging

 

aid

 

that

 

you

 

can

 

use

 

to

 

browse

 

(read

 

without

 

changing)

 

and

 

manipulate

 

the

 

contents

 

of

 

CICS

 

temporary

 

storage

 

queues.

 

CEBR

 

allows

 

you

 

to

 

answer

 

the

 

following

 

questions:

 

v

   

Did

 

the

 

record

 

go

 

to

 

the

 

correct

 

queue?

 

v

   

Are

 

the

 

correct

 

number

 

of

 

records

 

in

 

the

 

queue?

 

v

   

Exactly

 

what

 

data

 

is

 

held

 

in

 

the

 

temporary

 

storage

 

queue?

 

v

   

What

 

is

 

the

 

current

 

content

 

of

 

the

 

transient

 

data

 

queue

 

to

 

which

 

this

 

application

 

program

 

has

 

just

 

written?

 

v

   

Do

 

the

 

transient

 

data

 

records

 

contain

 

the

 

correct

 

information?

 

You

 

can

 

also

 

use

 

CEBR

 

to

 

copy

 

transient

 

data

 

queues

 

to

 

temporary

 

storage

 

(although

 

you

 

cannot

 

read

 

an

 

output

 

extrapartition

 

transient

 

data

 

queue)

 

and

 

to

 

copy

 

temporary

 

storage

 

to

 

transient

 

data

 

queues

 

(although

 

you

 

cannot

 

write

 

to

 

an

 

input

 

extrapartition

 

transient

 

data

 

queue).

 

To

 

use

 

CEBR,

 

enter:

   

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

255

|
|
|
|
|



CEBR

 

[queuename]

 

where

 

queuename

 

is

 

the

 

name

 

of

 

the

 

temporary

 

storage

 

queue

 

that

 

you

 

wish

 

to

 

browse.

 

If

 

you

 

do

 

not

 

specify

 

a

 

queue

 

name,

 

the

 

CEBR

 

transaction

 

generates

 

one

 

for

 

you.

 

The

 

generated

 

queue

 

name

 

is

 

CEBRname,

 

where

 

name

 

is

 

your

 

terminal

 

identifier.

 

Using

 

CEBR

 

with

 

transient

 

data

 

The

 

GET

 

command

 

reads

 

each

 

record

 

in

 

the

 

specified

 

transient

 

data

 

queue

 

and

 

writes

 

it

 

at

 

the

 

end

 

of

 

the

 

temporary

 

storage

 

queue

 

you

 

are

 

browsing,

 

until

 

the

 

transient

 

data

 

queue

 

is

 

empty.

 

You

 

can

 

then

 

view

 

the

 

records

 

that

 

were

 

in

 

the

 

transient

 

data

 

queue.

 

When

 

you

 

have

 

finished

 

your

 

inspection,

 

you

 

can

 

copy

 

the

 

temporary

 

storage

 

queue

 

back

 

to

 

the

 

transient

 

data

 

queue

 

(using

 

the

 

PUT

 

command)

 

if

 

you

 

wish.

 

This

 

usually

 

leaves

 

the

 

transient

 

data

 

queue

 

as

 

you

 

found

 

it,

 

but

 

not

 

always.

 

Here

 

are

 

some

 

things

 

you

 

need

 

to

 

be

 

aware

 

of

 

when

 

using

 

the

 

GET

 

and

 

PUT

 

commands:

 

v

   

If

 

you

 

want

 

to

 

restore

 

the

 

transient

 

data

 

queue

 

unchanged

 

after

 

you

 

have

 

browsed

 

it,

 

make

 

sure

 

that

 

the

 

temporary

 

storage

 

queue

 

on

 

display

 

is

 

empty

 

when

 

the

 

GET

 

command

 

is

 

issued.

 

Otherwise

 

the

 

existing

 

temporary

 

storage

 

records

 

will

 

be

 

copied

 

to

 

transient

 

data

 

queue

 

on

 

the

 

subsequent

 

issue

 

of

 

the

 

PUT

 

command.

 

v

   

After

 

you

 

GET

 

a

 

transient

 

data

 

queue

 

and

 

before

 

you

 

PUT

 

it

 

back,

 

other

 

tasks

 

may

 

write

 

to

 

that

 

transient

 

data

 

queue.

 

When

 

you

 

issue

 

your

 

PUT

 

command,

 

the

 

records

 

in

 

the

 

temporary

 

storage

 

queue

 

are

 

copied

 

after

 

the

 

new

 

records,

 

so

 

that

 

the

 

records

 

in

 

the

 

queue

 

are

 

no

 

longer

 

in

 

the

 

order

 

in

 

which

 

they

 

were

 

originally

 

created.

 

Some

 

applications

 

depend

 

on

 

sequential

 

processing

 

of

 

the

 

records

 

in

 

a

 

queue.

 

v

   

After

 

you

 

issue

 

the

 

GET

 

command

 

on

 

a

 

recoverable

 

transient

 

data

 

queue,

 

no

 

other

 

task

 

can

 

read

 

that

 

queue

 

until

 

your

 

transaction

 

ends.

 

If

 

you

 

entered

 

CEBR

 

from

 

CEDF,

 

the

 

CEDF

 

transaction

 

must

 

end;

 

although,

 

you

 

can

 

respond

 

yes

 

to

 

the

 

continue

 

question

 

if

 

you

 

are

 

debugging

 

a

 

pseudoconversational

 

sequence

 

of

 

transactions.

 

If

 

you

 

invoked

 

CEBR

 

directly,

 

you

 

must

 

end

 

CEBR.

 

v

   

Similarly,

 

after

 

you

 

issue

 

a

 

PUT

 

command

 

to

 

a

 

recoverable

 

transient

 

data

 

queue,

 

no

 

other

 

task

 

can

 

write

 

to

 

that

 

queue

 

until

 

your

 

transaction

 

ends.

 

The

 

GET

 

and

 

PUT

 

commands

 

do

 

not

 

need

 

to

 

be

 

used

 

as

 

a

 

pair.

 

You

 

can

 

create

 

or

 

add

 

to

 

a

 

transient

 

data

 

queue

 

from

 

a

 

temporary

 

storage

 

queue

 

with

 

the

 

PUT

 

command

 

at

 

any

 

time.

 

If

 

you

 

are

 

debugging

 

code

 

that

 

reads

 

a

 

transient

 

data

 

queue,

 

you

 

can

 

create

 

the

 

queue

 

in

 

temporary

 

storage

 

(with

 

CECI,

 

or

 

CEBR

 

GET,

 

or

 

by

 

program),

 

and

 

then

 

refresh

 

the

 

transient

 

data

 

queue

 

as

 

many

 

times

 

as

 

you

 

like

 

from

 

temporary

 

storage.

 

Similarly,

 

you

 

can

 

delete

 

a

 

transient

 

data

 

queue

 

by

 

issuing

 

a

 

GET

 

command

 

without

 

issuing

 

a

 

corresponding

 

PUT

 

command.

 

For

 

more

 

information,

 

see

 

the

 

CICS

 

Administration

 

Reference.

 

Using

 

Command

 

Level

 

Interpreter

 

(CECI)

 

and

 

Syntax

 

Checker

 

(CECS)

 

CECI

 

allows

 

you

 

to

 

check

 

the

 

syntax

 

of,

 

interpret,

 

and

 

run

 

EXEC

 

CICS

 

commands.

 

Syntax

 

Checker

 

(CECS)

 

allows

 

you

 

to

 

check

 

the

 

syntax

 

of

 

EXEC

 

CICS

 

commands,

 

but

 

does

 

not

 

allow

 

you

 

to

 

invoke

 

them.

 

The

 

CECI

 

and

 

CECS

 

transactions

 

perform

 

a

 

dual

 

role

 

in

 

the

 

operation

 

of

 

a

 

CICS

 

system.

   

256

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



v

   

When

 

writing

 

application

 

programs,

 

you

 

can

 

check

 

the

 

syntax

 

of

 

the

 

whole

 

CICS

 

command

 

level

 

application

 

programming

 

interface.

 

If

 

you

 

are

 

using

 

CECI,

 

you

 

can

 

carry

 

through

 

most

 

of

 

the

 

commands

 

to

 

invocation,

 

and

 

you

 

can

 

request

 

to

 

see

 

the

 

results

 

of

 

the

 

invocation.

 

v

   

Using

 

CECI

 

provides

 

a

 

means

 

of

 

interaction

 

with

 

the

 

system.

 

For

 

example,

 

you

 

can

 

correct

 

a

 

file

 

control

 

record

 

that

 

has

 

been

 

overwritten

 

with

 

invalid

 

data,

 

create

 

or

 

delete

 

a

 

temporary

 

storage

 

queue,

 

and

 

so

 

on.

 

CECI

 

provides

 

a

 

useful

 

extension

 

to

 

the

 

facilities

 

provided

 

by

 

the

 

runtime

 

resource

 

management

 

transaction,

 

CEMT.

To

 

run

 

the

 

command

 

interpreter

 

and

 

syntax

 

checker,

 

you

 

must

 

have

 

a

 

transaction

 

security

 

level

 

(TSL)

 

key

 

that

 

matches

 

the

 

transaction

 

security

 

key

 

defined

 

in

 

the

 

Transaction

 

Definitions

 

(TD).

 

The

 

TD

 

entry

 

for

 

the

 

CECI

 

transaction

 

specifies,

 

by

 

default,

 

that

 

resource

 

level

 

security

 

checking

 

is

 

required

 

for

 

any

 

resources

 

referenced

 

with

 

the

 

interpreter.

 

This

 

checking

 

applies

 

to

 

files,

 

transient

 

data

 

queues,

 

temporary

 

storage

 

queues,

 

programs,

 

transaction

 

identifiers

 

of

 

the

 

EXEC

 

CICS

 

START

 

command,

 

and

 

journal

 

file

 

identifiers.

 

To

 

use

 

CECI

 

or

 

CECS,

 

enter:

 

{CECI

 

|

 

CECS}

 

command

 

where

 

command

 

is

 

the

 

CICS

 

API

 

command

 

whose

 

syntax

 

you

 

wish

 

to

 

check,

 

or

 

that

 

you

 

wish

 

to

 

interpret.

 

Note:

  

If

 

the

 

resource

 

security

 

level

 

(RSL)

 

key

 

specified

 

in

 

the

 

appropriate

 

resource

 

definition

 

is

 

not

 

matched

 

by

 

RSL

 

keys

 

of

 

the

 

user

 

that

 

is

 

signed

 

on,

 

the

 

resource

 

security

 

check

 

fails,

 

and

 

the

 

response

 

to

 

the

 

command

 

is

 

the

 

NOTAUTH

 

condition.

 

For

 

more

 

information,

 

see

 

the

 

CICS

 

Administration

 

Reference.

 

Using

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)

 

is

 

used

 

to

 

start

 

or

 

stop

 

an

 

Execution

 

Diagnostic

 

Facility

 

(EDF)

 

session

 

on

 

a

 

terminal

 

or

 

a

 

region.

 

EDF

 

enables

 

you

 

to

 

test

 

an

 

application

 

program

 

that

 

has

 

been

 

preprocessed

 

using

 

the

 

-e

 

option

 

of

 

the

 

CICS

 

translator

 

(cicstran),

 

without

 

modifying

 

the

 

program.

 

If

 

the

 

-d

 

option

 

of

 

the

 

cicstran

 

command

 

is

 

also

 

used,

 

the

 

translator

 

source

 

listing

 

also

 

has

 

line

 

numbers

 

that

 

EDF

 

can

 

use.

 

CICS

 

passes

 

control

 

to

 

EDF

 

at

 

specific

 

interception

 

points.

 

EDF

 

displays

 

the

 

state

 

of

 

the

 

application

 

program

 

at

 

the

 

interception

 

points,

 

and

 

allows

 

you

 

to

 

interact

 

with

 

EDF

 

screens

 

to

 

both

 

view

 

additional

 

information

 

about

 

the

 

program,

 

and

 

to

 

overtype

 

certain

 

areas

 

of

 

the

 

screen

 

to

 

test

 

the

 

execution

 

of

 

the

 

program,

 

before

 

returning

 

control

 

to

 

the

 

application

 

code.

 

In

 

CICS,

 

you

 

can

 

use

 

EDF

 

only

 

in

 

dual

 

screen

 

mode;

 

that

 

is,

 

you

 

cannot

 

run

 

the

 

CEDF

 

transaction

 

and

 

the

 

application

 

being

 

debugged

 

on

 

the

 

same

 

terminal.

 

However,

 

if

 

you

 

have

 

a

 

terminal

 

that

 

supports

 

a

 

graphical

 

user

 

interface

 

(such

 

as

 

an

 

X-terminal),

 

you

 

can

 

use

 

two

 

windows

 

on

 

the

 

same

 

physical

 

terminal.

 

You

 

can

 

use

 

EDF

 

only

 

from

 

a

 

terminal

 

that

 

has

 

a

 

screen

 

width

 

of

 

80

 

columns

 

or

 

more,

 

and

 

a

 

screen

 

depth

 

of

 

24

 

lines

 

or

 

more.

 

This

 

functionality

 

is

 

available

 

on

 

the

 

AIX,

 

HP-UX,

 

and

 

Solaris

 

platforms.

 

It

 

is

 

not

 

available

 

on

 

the

 

Windows

 

platform.

 

When

 

you

 

run

 

CEDF

 

to

 

debug

 

a

 

transaction,

 

the

 

transaction

 

runs,

 

sets

 

a

 

flag,

 

and

 

exits,

 

all

 

in

 

a

 

very

 

short

 

time.

 

Therefore,

 

CEDF

 

is

 

not

 

running

 

in

 

the

 

system

 

as

 

you

 

run

 

your

 

transaction

 

(in

 

a

 

similar

 

way

 

that

 

a

 

pseudoconversational

 

transaction

 

is

   

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

257



not

 

running

 

and

 

most

 

of

 

the

 

time

 

does

 

not

 

appear

 

on

 

INQ

 

TASK

 

displays).

 

On

 

CICS,

 

both

 

terminals

 

are

 

under

 

control

 

of

 

a

 

single

 

task

 

(the

 

user

 

task),

 

which

 

is

 

effectively

 

debugging

 

itself

 

and

 

sending

 

the

 

output

 

to

 

the

 

terminal

 

running

 

under

 

CEDF.

 

On

 

the

 

Windows

 

platform,

 

you

 

cannot

 

use

 

CEDF

 

to

 

debug

 

a

 

transaction

 

on

 

a

 

remote

 

CICS

 

system.

 

This

 

is

 

only

 

possible

 

if

 

EDF

 

can

 

be

 

used

 

in

 

single

 

screen

 

mode

 

on

 

the

 

remote

 

system.

 

You

 

would

 

need

 

to

 

run

 

the

 

CRTE

 

transaction

 

first,

 

to

 

establish

 

a

 

routing

 

session

 

to

 

the

 

remote

 

system;

 

then,

 

you

 

could

 

transaction

 

route

 

CEDF

 

to

 

that

 

system.

 

Similarly,

 

you

 

cannot

 

use

 

CEDF

 

to

 

debug

 

a

 

transaction

 

on

 

a

 

remote

 

terminal.

 

You

 

can

 

use

 

EDF

 

to

 

test

 

user

 

transactions

 

(application

 

programs)

 

and

 

the

 

function

 

shipping

 

mirror

 

transaction

 

supplied

 

by

 

CICS.

 

You

 

cannot

 

use

 

it

 

for

 

any

 

other

 

transaction

 

provided

 

by

 

CICS.

 

To

 

use

 

CEDF,

 

enter:

 

CEDF

 

{

 

termid

 

|

 

sysid

 

}

 

[,ON

 

|

 

,OFF

 

]

 

where

 

termid

 

is

 

the

 

four-character

 

identifier

 

of

 

the

 

terminal

 

(termid)

 

on

 

which

 

the

 

transaction

 

to

 

be

 

tested

 

is

 

being

 

run

 

and

 

sysid

 

is

 

the

 

four-character

 

identifier

 

of

 

the

 

remote

 

region

 

(sysid)

 

when

 

you

 

want

 

to

 

test

 

inbound

 

transactions

 

from

 

a

 

different

 

region.

 

The

 

transaction

 

must

 

be

 

defined

 

in

 

the

 

Terminal

 

Definitions

 

(WD),

 

unless

 

it

 

is

 

generated

 

from

 

a

 

terminal

 

autoinstall.

 

The

 

remote

 

region

 

must

 

be

 

defined

 

in

 

the

 

Communications

 

Definitions

 

(CD).

 

The

 

ON

 

setting

 

specifies

 

that

 

the

 

EDF

 

session

 

is

 

to

 

be

 

started,

 

and

 

the

 

OFF

 

setting

 

specifies

 

that

 

the

 

EDF

 

session

 

is

 

to

 

be

 

ended.

 

For

 

more

 

information,

 

see

 

the

 

CICS

 

Administration

 

Reference.

 

Using

 

CDCN

 

and

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

(xldb)

 

with

 

CICS

 

for

 

AIX

 

only

 

The

 

IBM

 

Application

 

Debugging

 

Program

 

(xldb)

 

provides

 

the

 

ability

 

to

 

debug

 

IBM

 

COBOL,

 

C,

 

C++,

 

or

 

PL/I

 

programs

 

on

 

the

 

AIX

 

platform.

 

To

 

debug

 

a

 

program

 

you

 

must:

 

1.

   

Change

 

the

 

AllowDebugging

 

flag

 

in

 

the

 

region

 

definition

 

stanza

 

file

 

to

 

yes.

 

2.

   

Set

 

the

 

RSLCheck

 

setting

 

of

 

the

 

CDCN

 

transaction

 

definition

 

to

 

none.

 

3.

   

Compile

 

the

 

program

 

to

 

be

 

debugged

 

with

 

the

 

-a

 

flag,

 

for

 

example:

   

cicstcl

 

-a

 

-lC

 

prog.ccs

 

4.

   

Run

 

CDCN

 

to

 

turn

 

on

 

the

 

debugging

 

tool.

 

(See

 

the

 

CICS

 

Administration

 

Reference

 

for

 

related

 

information.)

 

5.

   

Run

 

the

 

transaction.

Note:

  

Refer

 

to

 

the

 

documentation

 

provided

 

with

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

for

 

information

 

on

 

installing

 

product.

 

Only

 

programs

 

compiled

 

for

 

debug

 

will

 

produce

 

symbolic

 

output

 

from

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

when

 

run

 

under

 

control

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program.

 

If

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

triggered

 

for

 

a

   

258

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



program

 

that

 

has

 

not

 

been

 

compiled

 

for

 

debug,

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

displays

 

the

 

program

 

as

 

assembler

 

statements.

 

Note:

  

While

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

active,

 

do

 

not

 

use

 

the

 

CICS

 

CEMT

 

command

 

PERFORM

 

SNAP

 

DUMP

 

and

 

run

 

applications

 

that

 

are

 

coded

 

with

 

EXEC

 

CICS

 

PERFORM

 

SNAP

 

API

 

.

 

When

 

CICS

 

takes

 

a

 

snap

 

dump,

 

it

 

dumps

 

out

 

to

 

all

 

the

 

application

 

servers.

 

If

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

running,

 

CICS

 

does

 

not

 

have

 

control

 

of

 

the

 

application

 

servers,

 

and

 

the

 

dump

 

cannot

 

complete.

Note:

   

Configuring

 

CDCN

 

To

 

ensure

 

that

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

functions

 

with

 

minimal

 

disruption

 

to

 

CICS,

 

or

 

any

 

other

 

software,

 

two

 

preparation

 

steps

 

are

 

required:

 

v

   

Resource

 

settings

 

must

 

be

 

indicated

 

for

 

the

 

use

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

v

   

Development

 

conventions

 

must

 

be

 

observed

 

in

 

regard

 

to

 

the

 

use

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program.

“Required

 

resource

 

settings

 

for

 

the

 

IBM

 

Application

 

Debugging

 

Program”

 

discusses

 

the

 

settings

 

that

 

must

 

be

 

made.

 

“Development

 

conventions

 

required

 

for

 

effective

 

use

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program”

 

on

 

page

 

261

 

discusses

 

the

 

conventions

 

required

 

to

 

ensure

 

proper

 

functioning

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program.

 

Required

 

resource

 

settings

 

for

 

the

 

IBM

 

Application

 

Debugging

 

Program:

   

Some

 

of

 

the

 

information

 

used

 

to

 

run

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

obtained

 

from

 

the

 

.Xdefaults

 

file.

 

This

 

file

 

determines

 

the

 

defaults

 

for

 

fonts,

 

colors,

 

and

 

the

 

location

 

of

 

the

 

program

 

source.

 

CICS

 

determines

 

the

 

location

 

of

 

the

 

.Xdefaults

 

file

 

from

 

the

 

value

 

of

 

the

 

variable

 

XENVIRONMENT.

 

The

 

following

 

lines

 

must

 

be

 

included

 

in

 

the

 

.Xdefaults

 

file:

 

xldb.sourceSearchPath:

 

/var/cics_regions/regionName/bin

 

.

 

[directoryNames]

 

xldb.automaticBreakpoints:

 

NO

 

xldb.ignoreSignals:

 

USR2

 

xldb.multiprocessDebug:

 

false

 

xldb.specialLayout:

 

true

 

xldb.ThreadsScrollbars:

 

both

 

xldb.ThreadsGeometry:

 

760x300+40+100

 

In

 

this

 

example,

 

regionName

 

is

 

the

 

name

 

of

 

the

 

region,

 

the

 

period

 

represents

 

the

 

current

 

directory,

 

and

 

directoryNames

 

are

 

the

 

names

 

of

 

other

 

directories

 

in

 

which

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

should

 

search

 

for

 

source

 

code.

 

Each

 

of

 

the

 

resource

 

settings

 

included

 

in

 

the

 

.Xdefaults

 

file

 

are

 

discussed

 

in

 

detail

 

in

 

the

 

following

 

sections.

 

The

 

automaticBreakpoints

 

resource

 

setting:

   

The

 

automaticBreakpoints

 

setting

 

prevents

 

breakpointing

 

on

 

system

 

calls.

 

However,

 

it

 

also

 

prevents

 

automatic

 

breakpointing

 

on

 

application

 

calls

 

to

 

other

 

programs.

 

Therefore,

 

you

 

must

 

ensure

 

that

 

breakpoints

 

are

 

explicitly

 

set

 

at

 

the

 

start

 

of

 

all

 

application

 

programs

 

that

 

are

 

to

 

be

 

debugged.

 

Note:

  

The

 

IBM

 

Application

 

Debugging

 

Program

 

sets

 

the

 

default

 

value

 

for

 

the

 

automaticBreakpoints

 

resource

 

to

 

yes.

 

It

 

is

 

important

 

that

 

you

 

explicitly

 

set

 

this

 

value

 

to

 

no.

  

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

259

|
|
|
|
|
|



The

 

ignoreSignals

 

resource

 

setting:

   

The

 

ignoreSignals

 

setting

 

prevents

 

breakpointing

 

on

 

the

 

CICS

 

internal

 

inter-process

 

signal

 

and

 

ensures

 

that

 

the

 

signal

 

is

 

passed

 

on

 

to

 

CICS

 

automatically.

 

All

 

signals

 

(other

 

than

 

CICS

 

inter-process

 

signal)

 

MUST

 

be

 

passed

 

on

 

to

 

CICS

 

manually

 

to

 

avoid

 

the

 

loss

 

of

 

useful

 

information

 

that

 

can

 

be

 

displayed

 

for

 

the

 

user.

 

For

 

example,

 

if

 

application

 

code

 

caused

 

a

 

SIGSEGV

 

signal

 

to

 

occur,

 

you

 

would

 

want

 

to

 

manually

 

pass

 

this

 

signal

 

because

 

it

 

would

 

alert

 

the

 

user

 

to

 

a

 

problem

 

occurring

 

due

 

to

 

an

 

attempt

 

to

 

access

 

an

 

invalid

 

storage

 

location.

 

Ignore

 

the

 

signal

 

by

 

using

 

any

 

of

 

the

 

following

 

commands:

 

continue,

 

next,

 

step,

 

machine

 

step,

 

or

 

return.

 

Pass

 

on

 

non-CICS

 

internal

 

inter-process

 

signals

 

by

 

using

 

the

 

IBM

 

Application

 

Debugging

 

Program’s

 

signal

 

command.

 

The

 

multiprocessDebug

 

resource

 

setting:

   

The

 

multiprocessDebug

 

setting

 

ensures

 

that

 

the

 

parent

 

process

 

is

 

the

 

only

 

process

 

followed

 

when

 

the

 

process

 

uses

 

a

 

UNIX

 

fork

 

function

 

to

 

create

 

a

 

new

 

process.

 

This

 

setting

 

also

 

prevents

 

signals

 

generated

 

by

 

a

 

child

 

from

 

erroneously

 

being

 

passed

 

on

 

to

 

the

 

IBM

 

Application

 

Debugging

 

Program,

 

rather

 

than

 

to

 

the

 

parent

 

process.

 

The

 

specialLayout

 

resource

 

setting:

   

The

 

specialLayout

 

setting

 

allows

 

you

 

to

 

alter

 

scrollbar

 

settings.

 

This

 

setting

 

must

 

be

 

indicated

 

as

 

true,

 

to

 

enable

 

the

 

settings

 

of

 

the

 

ThreadsScrollbars

 

and

 

ThreadsGeometry

 

resources

 

to

 

be

 

to

 

be

 

registered.

 

The

 

ThreadsScrollbars

 

and

 

ThreadsGeometry

 

resource

 

settings:

   

The

 

ThreadsScrollbars

 

and

 

ThreadsGeometry

 

settings

 

are

 

used

 

to

 

make

 

adjustments

 

to

 

the

 

Threads

 

window.

 

These

 

adjustments

 

make

 

it

 

easier

 

to

 

understand

 

what

 

is

 

happening

 

in

 

a

 

multi-threaded

 

CICS

 

Application

 

Server

 

environment

 

by

 

enabling

 

you

 

to

 

label

 

the

 

main

 

thread.

 

A

 

user-written

 

application

 

runs

 

in

 

a

 

single

 

thread

 

of

 

an

 

Application

 

Server.

 

CICS

 

uses

 

the

 

other

 

threads

 

in

 

the

 

Application

 

Server

 

to

 

handle

 

exceptions

 

in

 

the

 

application

 

and

 

to

 

process

 

signals

 

from

 

other

 

CICS

 

processes.

 

Use

 

the

 

following

 

steps

 

to

 

label

 

the

 

main

 

thread:

 

1.

   

Locate

 

the

 

instance

 

of

 

your

 

application

 

in

 

the

 

Callers

 

Stack

 

window

 

and

 

in

 

the

 

Source

 

window.

 

When

 

you

 

are

 

able

 

to

 

identify

 

these

 

instances,

 

open

 

the

 

Threads

 

window,

 

and

 

set

 

a

 

label

 

on

 

the

 

current

 

thread.

 

If

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

then

 

indicates

 

a

 

breakpoint,

 

the

 

Caller

 

Stack

 

is

 

likely

 

to

 

look

 

familiar.

 

If

 

the

 

Caller

 

Stack

 

does

 

not

 

look

 

familiar,

 

it

 

indicates

 

that

 

the

 

breakpoint

 

is

 

occurring

 

for

 

the

 

Caller

 

Stack

 

of

 

a

 

different

 

thread.

 

2.

   

Open

 

the

 

Threads

 

window,

 

and

 

click

 

on

 

the

 

labeled

 

thread.

 

The

 

IBM

 

Application

 

Debugging

 

Program

 

then

 

displays

 

the

 

Caller

 

Stack

 

associated

 

with

 

the

 

user-written

 

application.

Indicating

 

whether

 

IBM

 

Application

 

Debugging

 

Program

 

settings

 

are

 

globally

 

or

 

individually

 

defined:

   

On

 

the

 

AIX

 

platform,

 

CICS

 

determines

 

the

 

location

 

of

 

the

 

.Xdefaults

 

file

 

from

 

the

 

value

 

of

 

the

 

variable

 

XENVIRONMENT.

 

Furthermore,

 

the

 

location

 

of

 

the

 

XENVIRONMENT

 

environment

 

variable

 

tells

 

CICS

 

whether

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

settings

 

specified

 

in

 

the

 

.Xdefaults

 

file

 

are

 

to

 

be

 

shared

 

by

 

all

 

users

 

in

 

a

 

region,

 

or

 

whether

 

individual

 

users

 

in

 

a

 

region

 

have

 

their

 

own

 

IBM

 

Application

 

Debugging

 

Program

 

settings.

 

v

   

To

 

configure

 

an

 

environment

 

where

 

all

 

users

 

in

 

a

 

region

 

on

 

an

 

AIX

 

machine

 

share

 

the

 

same

 

IBM

 

Application

 

Debugging

 

Program

 

settings:

 

1.

   

Add

 

the

 

following

 

line

 

in

 

the

 

file

 

identified

 

by

 

the

 

CICSDEBUGENV

 

environment

 

variable

 

or

 

in

 

the

 

file

 

/var/cics_regions/regionName/environment:

 

XENVIRONMENT=XdefaultsPathname

 

In

 

this

 

example,

 

XdefaultsPathname

 

is

 

the

 

full

 

pathname

 

of

 

the

 

global

 

.Xdefaults

 

file,

 

to

 

the

 

file

 

/var/cics_regions/regionName/environment.

   

260

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



2.

   

Cold

 

start

 

CICS.

 

All

 

users

 

of

 

the

 

region

 

will

 

then

 

share

 

the

 

same

 

IBM

 

Application

 

Debugging

 

Program

 

settings.
v

   

To

 

configure

 

an

 

environment

 

where

 

individual

 

users

 

in

 

a

 

region

 

have

 

individually-defined

 

IBM

 

Application

 

Debugging

 

Program

 

settings:

 

1.

   

Add

 

the

 

following

 

line

 

to

 

a

 

file

 

envFile

 

in

 

your

 

personal

 

storage:

 

XENVIRONMENT=XdefaultsPathname

 

In

 

this

 

example,

 

XdefaultsPathname

 

is

 

the

 

full

 

pathname

 

of

 

the

 

user’s

 

personal

 

.Xdefaults

 

file.

 

2.

   

In

 

the

 

window

 

where

 

you

 

run

 

cicsterm,

 

export

 

the

 

file

 

envFile

 

from

 

your

 

personal

 

storage

 

by

 

entering

 

the

 

following

 

command:

 

export

 

CICSDEBUGENV=envFile

 

3.

   

In

 

addition,

 

you

 

can

 

avoid

 

the

 

need

 

to

 

enter

 

the

 

DISPLAY=

 

parameter

 

when

 

you

 

run

 

the

 

CDCN

 

transaction

 

by

 

including

 

the

 

following

 

line

 

in

 

your

 

envFile:

 

DISPLAY=XserverName:displayNumber

 

In

 

this

 

example,

 

XserverName:displayNumber

 

is

 

the

 

name

 

of

 

your

 

display.

 

This

 

functionality

 

can

 

apply

 

to

 

the

 

Windows

 

platform

 

or

 

to

 

IBM

 

CICS

 

Universal

 

Client

 

implementations

 

if

 

third-party

 

products

 

are

 

employed

 

to

 

enable

 

X-term

 

window

 

capability.

 

Development

 

conventions

 

required

 

for

 

effective

 

use

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

Because

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

can

 

cause

 

processes

 

to

 

stop,

 

or

 

to

 

take

 

unexpectedly

 

long

 

completion

 

times,

 

it

 

can

 

appear

 

to

 

other

 

CICS

 

processes

 

that

 

a

 

process

 

has

 

failed.

 

It

 

is

 

also

 

possible

 

that

 

an

 

actual

 

failed

 

process

 

might

 

not

 

be

 

reported

 

to

 

CICS.

 

The

 

effects

 

on

 

CICS

 

of

 

these

 

falsely

 

reported

 

process

 

failures

 

and

 

unreported

 

actual

 

process

 

failures

 

are

 

manifested

 

in

 

different

 

ways.

 

Depending

 

on

 

the

 

circumstances,

 

any

 

of

 

the

 

following

 

behaviors

 

can

 

occur:

 

resource

 

deadlocks

 

(file

 

and

 

mutex

 

locks),

 

heuristic

 

(non-deterministic)

 

transaction

 

completions,

 

timeouts

 

and

 

communication

 

failures,

 

and

 

exposure

 

to

 

the

 

possibility

 

of

 

corrupted

 

transactions.

 

Additionally,

 

because

 

CICS

 

acts

 

to

 

mitigate

 

what

 

appears

 

to

 

be

 

a

 

major

 

failure,

 

further

 

symptoms

 

can

 

include

 

transaction

 

rollbacks,

 

spurious

 

restarts

 

of

 

the

 

processes

 

that

 

are

 

being

 

debugged,

 

and

 

in

 

some

 

cases,

 

the

 

complete

 

halt

 

of

 

a

 

CICS

 

Region.

 

If

 

any

 

of

 

these

 

symptoms

 

occur

 

while

 

using

 

the

 

IBM

 

Application

 

Debugging

 

Program,

 

and

 

if

 

the

 

scenario

 

is

 

able

 

to

 

be

 

recreated,

 

it

 

is

 

possible

 

that

 

the

 

use

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

interfering

 

with

 

the

 

normal

 

operation

 

of

 

CICS.

 

Suspend

 

the

 

use

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

until

 

you

 

are

 

able

 

to

 

ensure

 

that

 

the

 

problem

 

is

 

not

 

being

 

caused

 

by

 

interaction

 

from

 

the

 

debugging

 

program

 

itself.

 

Because

 

of

 

the

 

possible

 

occurrence

 

of

 

these

 

symptoms,

 

a

 

general

 

knowledge

 

of

 

CICS

 

internals

 

and

 

the

 

architecture

 

of

 

surrounding

 

systems

 

is

 

required

 

to

 

use

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

effectively

 

and

 

safely.

 

To

 

ensure

 

that

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

functions

 

with

 

minimal

 

disruption

 

to

 

CICS,

 

or

 

any

 

other

 

software,

 

the

 

following

 

development

 

conventions

 

must

 

be

 

observed

 

in

 

regard

 

to

 

the

 

use

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program:

   

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

261



v

   

Never

 

use

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

within

 

a

 

production

 

CICS

 

Region.

 

v

   

Always

 

ensure

 

that

 

the

 

values

 

detailed

 

in

 

“Required

 

resource

 

settings

 

for

 

the

 

IBM

 

Application

 

Debugging

 

Program”

 

on

 

page

 

259

 

are

 

set

 

for

 

the

 

IBM

 

Application

 

Debugging

 

Program.

 

v

   

Set

 

a

 

label

 

for

 

the

 

user

 

application

 

thread,

 

as

 

described

 

in

 

“The

 

ThreadsScrollbars

 

and

 

ThreadsGeometry

 

resource

 

settings”

 

on

 

page

 

260.

 

v

   

When

 

running

 

an

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

session,

 

ANY

 

signal

 

that

 

is

 

received

 

during

 

the

 

session

 

MUST

 

be

 

passed

 

on

 

to

 

the

 

application.

 

Select

 

Signal

 

from

 

the

 

Commands

 

window

 

to

 

pass

 

a

 

signal

 

to

 

the

 

application.

 

v

   

Avoid

 

having

 

either

 

CICS

 

trace

 

or

 

CICS

 

dump

 

enabled

 

while

 

running

 

an

 

IBM

 

Application

 

Debugging

 

Program

 

session.

 

The

 

trace

 

and

 

dump

 

facilities

 

lock

 

and

 

wait

 

for

 

common

 

buffers,

 

and

 

this

 

can

 

cause

 

a

 

CICS

 

region

 

to

 

run

 

slowly,

 

or

 

even

 

to

 

halt,

 

in

 

response

 

to

 

other

 

processes

 

queueing

 

to

 

the

 

resources.

 

v

   

Do

 

not

 

use

 

the

 

CICS

 

CEMT

 

command

 

PERFORM

 

SNAP

 

DUMP

 

while

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

active.

 

When

 

CICS

 

takes

 

a

 

snap

 

dump,

 

it

 

dumps

 

out

 

to

 

all

 

of

 

the

 

application

 

servers.

 

If

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

running,

 

CICS

 

does

 

not

 

have

 

control

 

of

 

the

 

application

 

servers,

 

and

 

the

 

dump

 

cannot

 

complete.

Activating

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

The

 

IBM

 

Application

 

Debugging

 

Program

 

does

 

not

 

start

 

immediately

 

when

 

you

 

use

 

CDCN

 

to

 

turn

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

on

 

for

 

a

 

named

 

resource.

 

The

 

resource

 

you

 

name

 

acts

 

as

 

a

 

trigger

 

to

 

turn

 

on

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

for

 

the

 

resource

 

when

 

you

 

meet

 

the

 

following

 

conditions:

 

v

   

You

 

satisfy

 

the

 

security

 

checks

 

v

   

You

 

are

 

able

 

to

 

run

 

the

 

CDCN

 

transaction

 

v

   

You

 

are

 

able

 

to

 

access

 

the

 

region

 

database

 

entries.

The

 

type

 

of

 

resource

 

that

 

is

 

being

 

triggered

 

determines

 

when

 

the

 

actual

 

startup

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

occurs.

 

The

 

following

 

table

 

details

 

the

 

startup

 

contingencies

 

associated

 

with

 

each

 

type

 

of

 

resource

 

involved:

  

Resource

 

Startup

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

triggered

 

by

 

Terminal

 

(termid)

 

The

 

next

 

transaction

 

run

 

on

 

that

 

terminal

 

System

 

(sysid)

 

The

 

next

 

transaction

 

run

 

as

 

a

 

result

 

of

 

a

 

request

 

from

 

that

 

system

 

Transaction

 

(transid)

 

The

 

next

 

invocation

 

of

 

that

 

transaction

 

Program

 

(progid)

 

The

 

next

 

invocation

 

of

 

that

 

program

   

Each

 

trigger

 

resource

 

can

 

have

 

just

 

one

 

session

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

started

 

for

 

it.

 

Control

 

of

 

the

 

debugging

 

session

 

by

 

the

 

trigger

 

resource

 

adheres

 

to

 

the

 

following

 

order

 

of

 

precedence:

 

1.

   

Terminal

 

(termid)

 

2.

   

System

 

(sysid)

 

3.

   

Transaction

 

(tranid)

 

4.

   

Program

 

(progid)

 

To

 

illustrate

 

this

 

order

 

of

 

precedence,

 

consider

 

the

 

following

 

example:

 

You

 

turn

 

on

 

debugging

 

for

 

both

 

a

 

terminal,

 

identified

 

as

 

AR01,

 

and

 

for

 

a

 

transaction,

 

identified

 

as

 

ALAN.

 

You

 

run

 

transaction

 

ALAN

 

on

 

terminal

 

AR01.

 

In

 

this

 

scenario,

 

only

 

one

 

session

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

   

262

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



started—

 

the

 

session

 

associated

 

with

 

terminal

 

AR01.

 

This

 

single

 

debug

 

session

 

occurs

 

because

 

two

 

debug

 

sessions

 

cannot

 

debug

 

the

 

same

 

physical

 

copy

 

of

 

the

 

code,

 

and

 

the

 

terminal

 

trigger

 

takes

 

precedence

 

over

 

the

 

transaction

 

trigger.

 

It

 

is

 

possible

 

to

 

have

 

multiple

 

copies

 

of

 

the

 

same

 

program

 

code

 

being

 

debugged

 

at

 

the

 

same

 

time.

 

A

 

second

 

invocation

 

of

 

ALAN

 

that

 

is

 

run

 

from

 

a

 

different

 

terminal

 

will

 

start

 

a

 

second

 

session

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program.

 

This

 

second

 

debug

 

session

 

is

 

associated

 

with

 

transaction

 

ALAN.

 

For

 

more

 

information,

 

see

 

the

 

CICS

 

Administration

 

Reference.

 

Deactivating

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

When

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

first

 

started,

 

it

 

remains

 

attached

 

to

 

the

 

CICS

 

application

 

server

 

(cicsas)

 

process,

 

debugging

 

one

 

or

 

more

 

programs,

 

until

 

the

 

end

 

of

 

the

 

transaction

 

(even

 

when

 

it

 

has

 

been

 

triggered

 

to

 

debug

 

just

 

a

 

single

 

program),

 

or

 

until

 

you

 

choose

 

to

 

quit

 

from

 

the

 

IBM

 

Application

 

Debugging

 

Program.

 

The

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

attached

 

when

 

it

 

connects

 

to

 

the

 

cicsas

 

process

 

(that

 

is,

 

actually

 

debugging

 

one

 

or

 

more

 

programs);

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

detached

 

when

 

it

 

is

 

no

 

longer

 

attached

 

to

 

the

 

cicsas

 

process

 

(that

 

is,

 

when

 

it

 

has

 

finished

 

debugging

 

a

 

transaction

 

and

 

is

 

waiting

 

to

 

be

 

triggered

 

again).

 

Once

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

has

 

started,

 

it

 

can

 

only

 

be

 

explicitly

 

terminated

 

in

 

one

 

of

 

two

 

ways:

 

v

   

When

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

attached,

 

using

 

the

 

quit

 

facility

 

of

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

itself.

 

v

   

When

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

is

 

detached,

 

using

 

CDCN.

Using

 

a

 

compiler’s

 

integrated

 

debugging

 

tool

 

to

 

debug

 

CICS

 

applications

 

Using

 

debugging

 

tools

 

integrated

 

with

 

compilers

 

running

 

on

 

CICS

 

for

 

Windows

 

The

 

following

 

table

 

indicates

 

the

 

debugging

 

tools

 

supported

 

by

 

compilers

 

used

 

for

 

(CICS

 

for

 

Windows):

  

Language

 

Compiler

 

Debugger

 

C

 

IBM

 

VisualAge

 

C++

 

idebug

 

C++

 

IBM

 

VisualAge

 

C++

 

idebug

 

IBM

 

COBOL

 

IBM

 

VisualAge

 

for

 

COBOL

 

idebug

 

C

 

MicroSoft

 

Visual

 

C++

 

windbg/msdev

 

C++

 

MicroSoft

 

Visual

 

C++

 

windbg/msdev

 

COBOL

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

Animator

   

The

 

debugging

 

options

 

may

 

be

 

switched

 

on

 

in

 

either

 

of

 

two

 

ways:

 

v

   

Use

 

the

 

-a

 

option

 

with

 

cicstcl

 

compile

 

command

 

to

 

enable

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

to

 

be

 

used

 

for

 

debugging

 

purposes.

 

See

 

“Using

 

CDCN

 

and

 

the

 

IBM

 

Application

 

Debugging

 

Program

 

(xldb)

 

with

 

CICS

 

for

 

AIX

 

only”

 

on

 

page

 

258

 

for

 

more

 

information

 

on

 

this

 

method.

   

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

263



v

   

Use

 

the

 

debugging

 

tools

 

integrated

 

with

 

each

 

language

 

compiler.

 

If

 

you

 

are

 

building

 

the

 

application

 

in

 

separate

 

steps,

 

each

 

individual

 

compiler

 

has

 

debugging

 

options

 

which

 

can

 

be

 

switched

 

on.

 

These

 

options

 

are

 

discussed

 

for

 

each

 

compiler

 

in

 

the

 

following

 

sections.

Preparing

 

to

 

use

 

the

 

debugging

 

tool

 

integrated

 

with

 

IBM

 

VisualAge

 

C/C++

 

1.

   

The

 

following

 

compile

 

and

 

link

 

debug

 

parameters

 

must

 

be

 

specified:

  

Option

 

Description

 

-O-

 

Combine

 

with

 

the

 

idebug

 

command

 

to

 

switch

 

code

 

optimization

 

off.

 

-Oi-

 

Combine

 

with

 

the

 

idebug

 

command

 

to

 

switch

 

inlining

 

off.

 

-Ti+

 

Combine

 

with

 

the

 

idebug

 

command

 

to

 

generate

 

line

 

numbers

 

and

 

symbol

 

table.

 

Or,

 

if

 

performing

 

the

 

link

 

step

 

separately:

 

-DE

 

Combine

 

with

 

the

 

idebug

 

command

 

to

 

generate

 

line

 

numbers

 

and

 

symbol

 

table.

   

2.

   

Ensure

 

that

 

the

 

PATH

 

system

 

environment

 

variable

 

includes

 

the

 

directory

 

that

 

contains

 

your

 

dynamic

 

link

 

library

 

(DLL).

 

3.

   

Create

 

a

 

new

 

system

 

environment

 

variable

 

DEBUG_PATH

 

that

 

is

 

set

 

to

 

the

 

directory

 

path

 

containing

 

the

 

source

 

file

 

(progname.c)

 

for

 

your

 

DLL.

 

4.

   

For

 

C++,

 

make

 

a

 

copy

 

of

 

the

 

progname.ibmcpp

 

program

 

and

 

name

 

it

 

progname.dll.

 

Place

 

this

 

file

 

in

 

a

 

directory

 

that

 

is

 

before

 

the

 

progname.ibmcpp

 

copy

 

in

 

the

 

PATH

 

environment

 

variable,

 

but

 

not

 

where

 

CICS

 

will

 

use

 

it

 

in

 

preference

 

to

 

the

 

progname.ibmcpp

 

file.

 

The

 

following

 

example

 

explains

 

this:

  

PATH=d:\prog_dir;e:\var\cics_regions\alex1\bin.

  

PathName=progname

 

is

 

in

 

the

  

PD

 

definition.

  

The

 

file

 

progname.dll

 

is

 

in

 

the

 

d:\prog_dir

 

directory.

  

The

 

file

 

progname.ibmcpp

 

is

 

in

 

the

 

e:\var\cics_regions\alex1\bin

 

dir

 

Note:

  

If

 

you

 

have

 

both

 

IBM

 

VisualAge

 

C++

 

(Windows

 

only)

 

and

 

IBM

 

VisualAge

 

COBOL

 

installed,

 

the

 

COBOL

 

directories

 

must

 

be

 

in

 

the

 

PATH

 

system

 

environment

 

variable

 

before

 

the

 

C++

 

directories.

Procedure

 

for

 

using

 

the

 

debugging

 

tool

 

integrated

 

with

 

IBM

 

VisualAge

 

C/C++:

   

Perform

 

the

 

following

 

steps

 

to

 

set

 

breakpoints,

 

to

 

step

 

through

 

the

 

program,

 

and

 

to

 

look

 

at

 

storage

 

for

 

the

 

purpose

 

of

 

debugging

 

your

 

program.

  

1.

   

Start

 

CICS

 

and

 

install

 

a

 

terminal.

  

2.

   

Use

 

the

 

idebug

 

command

 

from

 

the

 

command-line

 

to

 

start

 

the

 

IBM

 

VisualAge

 

Debugger.

  

3.

   

Select

 

the

 

Process

 

list

 

button

 

from

 

the

 

Debug

 

Session

 

Control

 

window.

  

4.

    

Select

 

the

 

CICS

 

Application

 

Server

 

(cicsas)

 

process

 

that

 

will

 

run

 

your

 

transaction.

 

Click

 

the

 

Attach

 

button,

 

and

 

wait

 

for

 

the

 

debugger

 

to

 

attach

 

to

 

the

 

cicsas.

  

5.

   

Select

 

Breakpoints

 

from

 

the

 

Debug

 

Session

 

Control

 

window.

 

Set

 

load

 

occurrence.

  

6.

   

Enter

 

your

 

DLL

 

name

 

in

 

the

 

box

 

(eg.

 

progname.dll)

 

and

 

press

 

OK.

  

7.

   

Enter

 

your

 

transaction

 

ID

 

at

 

the

 

terminal,

 

and

 

press

 

Enter.

 

The

 

transaction

 

does

 

not

 

start

 

yet

 

because

 

the

 

idebug

 

command

 

has

 

stopped

 

the

 

cicsas

 

process.

   

264

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



8.

   

Select

 

the

 

Run

 

menu

 

from

 

the

 

Debug

 

Session

 

Control

 

window,

 

and

 

click

 

Run.

 

The

 

process

 

will

 

continue

 

until

 

the

 

DLL

 

is

 

loaded.

 

A

 

message

 

window

 

appears

 

to

 

confirm

 

this.

 

Click

 

OK.

  

9.

   

Select

 

Breakpoints

 

from

 

the

 

Debug

 

Session

 

Control

 

window.

 

Enter

 

the

 

following

 

information;

 

then,

 

click

 

OK:

        

Set

 

function

 

breakpoint

        

Executable:progname.dll,

 

Source:progname.c,

                        

Function:

  

main.

 

10.

   

Select

 

the

 

Run

 

menu

 

from

 

the

 

Debug

 

Session

 

Control

 

window,

 

and

 

click

 

Run.

 

The

 

process

 

will

 

continue

 

until

 

the

 

application

 

program

 

is

 

about

 

to

 

start.

Ending

 

the

 

debugging

 

session:

   

To

 

end

 

the

 

debugging

 

session,

 

select

 

the

 

File

 

menu

 

from

 

any

 

of

 

the

 

Debug

 

Session

 

Control

 

windows,

 

and

 

click

 

on

 

Close

 

Debugger.

 

This

 

shuts

 

down

 

the

 

cicsas

 

that

 

the

 

debugger

 

was

 

attached

 

to,

 

but

 

does

 

not

 

otherwise

 

affect

 

the

 

region.

 

The

 

debugger

 

can

 

be

 

restarted

 

and

 

attached

 

to

 

a

 

new

 

cicsas.

 

Note:

  

Use

 

the

 

CEMT

 

INQUIRE

 

TASK

 

command

 

to

 

identify

 

the

 

process

 

number

 

being

 

used

 

by

 

a

 

particular

 

cicsas.

 

Preparing

 

to

 

use

 

the

 

debugging

 

tool

 

integrated

 

with

 

IBM

 

VisualAge

 

for

 

COBOL

 

1.

   

The

 

following

 

compile

 

and

 

link

 

debug

 

parameters

 

must

 

be

 

specified:

  

Option

 

Description

 

-g

 

Combine

 

with

 

the

 

cob2

 

compile

 

command

 

to

 

switch

 

on

 

idebug.

 

/de

 

Combine

 

with

 

the

 

ilink

 

command

 

to

 

generate

 

line

 

numbers

 

and

 

symbol

 

table.

 

or,

 

if

 

performing

 

the

 

link

 

step

 

separately:

 

-de

 

Generate

 

line

 

numbers

 

and

 

symbol

 

table

   

2.

   

Ensure

 

that

 

the

 

PATH

 

system

 

environment

 

variable

 

includes

 

the

 

directory

 

that

 

contains

 

your

 

dynamic

 

link

 

library

 

(DLL),

 

progname.ibmcob.

 

3.

   

Create

 

a

 

new

 

system

 

environment

 

variable

 

CAT_OVERRIDE

 

that

 

is

 

set

 

to

 

the

 

directory

 

path

 

containing

 

the

 

source

 

file

 

(progname.cbl)

 

for

 

your

 

DLL.

 

4.

   

Set

 

MAXSERVER=1

 

in

 

your

 

Region

 

Definitions

 

(RD).

 

To

 

do

 

this,

 

follow

 

these

 

steps:

 

a.

   

Open

 

the

 

IBM

 

TXSeries

 

Administration

 

Tool

 

b.

   

Highlight

 

your

 

region,

 

and

 

right-click

 

on

 

it

 

c.

   

Select

 

Properties

 

from

 

the

 

popup

 

menu

 

d.

   

Select

 

the

 

Tuning

 

tab

 

e.

   

Change

 

the

 

Maximum

 

Application

 

Servers

 

value

 

to

 

1.

Note:

  

If

 

you

 

have

 

both

 

IBM

 

VisualAge

 

C++

 

(Windows

 

only)

 

and

 

IBM

 

VisualAge

 

COBOL

 

installed,

 

the

 

COBOL

 

directories

 

must

 

be

 

in

 

the

 

PATH

 

system

 

environment

 

variable

 

before

 

the

 

C++

 

directories.

Procedure

 

for

 

using

 

the

 

debugging

 

tool

 

integrated

 

with

 

IBM

 

VisualAge

 

for

 

COBOL:

   

Perform™

 

the

 

following

 

steps

 

to

 

set

 

breakpoints,

 

to

 

step

 

through

 

the

 

program,

 

and

 

to

 

look

 

at

 

storage

 

for

 

the

 

purpose

 

of

 

debugging

 

your

 

program:

 

1.

   

Start

 

CICS,

 

and

 

install

 

a

 

terminal.

   

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

265



2.

   

Start

 

the

 

IBM

 

VisualAge

 

Debugger

 

by

 

issuing

 

the

 

idebug

 

command

 

at

 

the

 

command-line.

 

3.

   

Select

 

the

 

Process

 

list

 

button

 

from

 

the

 

Debug

 

Session

 

Control

 

window.

 

4.

   

Select

 

the

 

cicsas

 

process

 

that

 

will

 

run

 

your

 

transaction.

 

(If

 

you

 

set

 

the

 

MAXSERVER=1,

 

you

 

only

 

have

 

one

 

process

 

called

 

cicsas

 

to

 

select.)

 

5.

   

Click

 

the

 

Attach

 

button.

 

Wait

 

for

 

the

 

debugger

 

to

 

attach

 

to

 

cicsas.

 

6.

   

There

 

are

 

two

 

alternative

 

procedures

 

at

 

this

 

step:

 

a.

   

To

 

debug

 

an

 

individual

 

program,

 

select

 

Breakpoints

 

from

 

the

 

Debug

 

Session

 

Control

 

window,

 

then:

 

v

   

Select

 

Entry

 

v

   

Set

 

Executable:progname.ibmcob

 

v

   

Set

 

Source:

 

(leave

 

blank)

 

v

   

Set

 

Entry:

 

PROGNAME

 

(must

 

be

 

in

 

upper

 

case)

 

v

   

Click

 

Defer

 

Breakpoint

 

v

   

Click

 

Set

 

v

   

Click

 

OK

b.

   

To

 

debug

 

all

 

programs

 

compiled

 

for

 

debug

 

in

 

this

 

process,

 

select

 

Options

 

from

 

the

 

Debug

 

Session

 

Control

 

window,

 

then:

 

v

   

Debugger

 

settings

 

v

   

Debugger

 

properties

 

v

   

Check

 

Set

 

breakpoints

 

at

 

entry

 

points

 

v

   

Click

 

OK

7.

   

Enter

 

your

 

transaction

 

ID

 

at

 

the

 

terminal

 

and

 

press

 

Enter.

 

The

 

transaction

 

does

 

not

 

start

 

yet,

 

because

 

the

 

idebug

 

command

 

has

 

stopped

 

the

 

cicsas

 

process.

 

8.

   

Select

 

the

 

Run

 

menu

 

from

 

the

 

Debug

 

Session

 

Control

 

window,

 

and

 

click

 

on

 

Run.

 

The

 

process

 

will

 

continue

 

until

 

the

 

entry

 

point

 

of

 

the

 

application

 

program

 

is

 

reached.

Ending

 

the

 

debugging

 

session:

   

To

 

end

 

the

 

debugging

 

session,

 

select

 

the

 

File

 

menu

 

from

 

any

 

of

 

the

 

Debug

 

Session

 

Control

 

windows,

 

and

 

click

 

Close

 

Debugger.

 

This

 

shuts

 

down

 

the

 

cicsas

 

that

 

the

 

debugger

 

was

 

attached

 

to,

 

but

 

does

 

not

 

otherwise

 

affect

 

the

 

region.

 

The

 

debugger

 

can

 

be

 

restarted

 

and

 

attached

 

to

 

a

 

new

 

cicsas.

 

Note:

  

Use

 

the

 

CEMT

 

INQUIRE

 

TASK

 

command

 

to

 

identify

 

the

 

process

 

number

 

being

 

used

 

by

 

a

 

particular

 

cicsas.

 

Using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Microsoft

 

Visual

 

C/C++

 

(windbg)

 

The

 

windbg

 

command

 

is

 

included

 

with

 

the

 

Microsoft

 

Windows

 

Platform

 

Software

 

Development

 

Kit

 

(MSSDK).

 

The

 

command

 

is

 

located

 

in

 

the

 

\mssdk\bin

 

directory.

 

The

 

following

 

compile

 

and

 

link

 

debug

 

parameters

 

must

 

be

 

specified

 

for

 

use

 

with

 

this

 

tool:

  

Option

 

Description

 

-Zi

 

Combine

 

with

 

the

 

windbg

 

command

 

to

 

generate

 

debugging

 

information.

 

-Od

 

Combine

 

with

 

the

 

windbg

 

command

 

to

 

switch

 

code

 

optimization

 

off.

   

The

 

following

 

options

 

should

 

also

 

be

 

used

 

for

 

the

 

linker:

 

-link

 

-debug:full

 

-debugtype:cv

 

-PDB:none

   

266

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Procedure

 

for

 

using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Microsoft

 

Visual

 

C/C++

 

(windbg):

   

Perform

 

the

 

following

 

steps

 

to

 

set

 

breakpoints,

 

to

 

step

 

through

 

the

 

program,

 

and

 

to

 

look

 

at

 

storage

 

for

 

the

 

purpose

 

of

 

debugging

 

your

 

program:

 

1.

   

Start

 

CICS

 

and

 

identify

 

the

 

cicsas

 

which

 

will

 

run

 

the

 

application.

 

Note:

  

The

 

process

 

number

 

being

 

used

 

by

 

a

 

particular

 

cicsas

 

can

 

be

 

identified

 

by

 

using

 

CEMT

 

INQUIRE

 

TASK.

 

2.

   

Start

 

windbg,

 

attaching

 

it

 

to

 

the

 

cicsas

 

process

 

using

 

the

 

command:

     

windbg

 

-p

 

<cicsas

 

pid>

 

3.

   

In

 

the

 

Windbg

 

main

 

window,

 

select

 

File

 

then

 

Open,

 

and

 

enter

 

the

 

path

 

and

 

program

 

name

 

of

 

your

 

application

 

source

 

.

 

The

 

source

 

is

 

displayed

 

in

 

a

 

new

 

window.

 

4.

   

Place

 

the

 

cursor

 

on

 

the

 

line

 

of

 

source

 

where

 

the

 

first

 

breakpoint

 

is

 

desired

 

and

 

select

 

DEBUG

 

from

 

the

 

toolbar,

 

then

 

Breakpoints.

 

The

 

Location

 

box

 

displays

 

the

 

path

 

and

 

name

 

of

 

your

 

program,

 

and

 

an

 

offset

 

for

 

the

 

breakpoint,

 

for

 

example:

        

{,E:\var\cics_regions\region1\bin\app1.c,}@17

 

Enter

 

the

 

name

 

of

 

your

 

DLL

 

after

 

the

 

source

 

name,

 

for

 

example:

        

{,E:\var\cics_regions\region1\bin\app1.c,app1.dll}@17

 

Click

 

Add,

 

then

 

OK.

 

If

 

the

 

DLL

 

is

 

not

 

yet

 

loaded,

 

a

 

message

 

appears

 

indicating

 

that

 

the

 

breakpoint

 

is

 

not

 

instantiated.

 

5.

   

Enter

 

your

 

transaction

 

ID

 

at

 

the

 

terminal

 

and

 

press

 

Enter.

 

The

 

transaction

 

does

 

not

 

start

 

yet.

 

6.

    

From

 

the

 

windbg

 

control

 

window,

 

select

 

the

 

Run

 

menu,

 

and

 

click

 

Go.

 

The

 

process

 

continues

 

until

 

the

 

breakpoint

 

is

 

reached.

Ending

 

the

 

debugging

 

session:

   

To

 

end

 

debug,

 

select

 

the

 

File

 

menu

 

from

 

any

 

of

 

the

 

debug

 

windows,

 

and

 

click

 

Exit.

 

This

 

shuts

 

down

 

the

 

CICS

 

application

 

server

 

that

 

the

 

debugger

 

was

 

attached

 

to,

 

but

 

does

 

not

 

otherwise

 

affect

 

the

 

region.

 

The

 

debugger

 

can

 

be

 

restarted

 

and

 

attached

 

to

 

a

 

new

 

cicsas.

 

Using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Microsoft

 

Visual

 

C/C++

 

(msdev)

 

Currently

 

applications

 

need

 

to

 

be

 

built

 

within

 

the

 

MSDEV

 

Studio

 

environment

 

to

 

make

 

use

 

of

 

the

 

msdev

 

debugger.

 

Procedure

 

for

 

using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Microsoft

 

Visual

 

C/C++

 

(msdev):

   

1.

   

Translate

 

the

 

application

 

using

 

cicstran

 

-lC

 

progname.

  

2.

    

Double

 

click

 

the

 

MSDEV

 

Studio

 

icon

 

in

 

the

 

MS

 

Visual

 

C++

 

window.

  

3.

   

Create

 

a

 

project

 

workspace

 

following

 

instructions

 

in

 

the

 

Visual

 

C++

 

User’s

 

Guide.

 

Select

 

Dynamic-Link

 

Library

 

as

 

the

 

Type

 

and

 

enter

 

your

 

preferred

 

directory

 

in

 

the

 

Location

 

box.

  

4.

   

Add

 

your

 

translated

 

application

 

program

 

to

 

the

 

project

 

by

 

selecting

 

the

 

Insert

 

menu,

 

then

 

select

 

Insert

 

Files

 

into

 

Project.

 

Select

 

the

 

path

 

and

 

file

 

that

 

you

 

want.

  

5.

   

Edit

 

the

 

file

 

by

 

selecting

 

File,

 

then

 

Open,

 

then

 

specifying

 

your

 

file.

 

Add

 

the

 

line

 

at

 

the

 

top

 

of

 

the

 

code:

       

(void)DebugBreak();

  

6.

   

Save

 

the

 

changed

 

file

 

by

 

selecting

 

File

 

then

 

Save.

   

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

267



7.

   

Set

 

the

 

build

 

options

 

by

 

selecting

 

Build

 

then

 

Settings:

 

v

   

General:

 

Not

 

using

 

MFC

 

v

   

C/C++

 

–

   

General:

 

Warning

 

level

 

=

 

Level

 

3,

 

Debug

 

info

 

=

 

C7

 

Compatible

 

–

   

Code

 

generation:

 

Use

 

run-time

 

lib

 

=

 

Multithreaded

 

DLL,

 

Calling

 

convention

 

=

 

_stdcall

 

–

   

Optimizations:

 

Disable

 

(Debug)

 

–

   

Precompiled

 

headers:

 

Not

 

using.

 

–

   

Preprocessor:

 

Additional

 

include

 

dirs

 

=

 

prodDir\include.
These

 

options

 

should

 

generate:

 

Project

 

Options:

 

/nologo

 

/Gz

 

/MD

 

/W3

 

/GX

 

/Z7

 

/Od

 

i/I″prodDir\include″

 

/Fo″Debug″

 

/c

 

v

    

Link

 

–

   

General:

 

Output

 

file

 

name

 

=

 

prog.dll,

 

Object/lib

 

modules:

 

prodDir\lib\cicsprC.lib

 

mvscrt.lib

 

kernel32.lib,

 

tick

 

Generate

 

debug

 

info

 

ONLY

 

These

 

options

 

should

 

generate:

 

Project

 

Options:

 

prodDir\lib\cicsprc.lib

 

mvscrt.lib

 

kernel32.lib

 

/nologo

 

/dll

 

/pdb:″none″

 

/debug

 

/machine:I386

 

/out:″filename.dll″

 

/implib:″Debug/filename.lib″

 

/EXPORT:main

 

8.

   

Stop

 

the

 

MSDEV

 

studio.

  

9.

   

Start

 

CICS

 

and

 

identify

 

the

 

cicsas

 

process

 

ID

 

which

 

will

 

run

 

the

 

application.

 

10.

   

Start

 

the

 

MSDEV

 

attached

 

to

 

the

 

process

 

by

 

msdev

 

-p

 

cicsas

 

pid.

 

11.

   

Select

 

File

 

then

 

Open

 

and

 

select

 

your

 

source

 

file.

 

12.

   

Enter

 

your

 

transid

 

-

 

the

 

transaction

 

does

 

not

 

run,

 

but

 

is

 

displayed

 

by

 

the

 

debugger.

 

13.

   

Debug

 

the

 

transaction

 

as

 

desired.

 

14.

   

To

 

end

 

the

 

debugger

 

select

 

File

 

then

 

Exit.

 

This

 

terminates

 

the

 

cicsas

 

it

 

was

 

attached

 

to,

 

but

 

the

 

region

 

remains

 

running.

Using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Micro

 

Focus

 

Net

 

Express

 

on

 

CICS

 

for

 

Windows

 

(Animator)

 

Animator

 

enables

 

you

 

to

 

test

 

an

 

application

 

program

 

online

 

without

 

modifying

 

the

 

program.

 

The

 

tool

 

intercepts

 

execution

 

of

 

the

 

application

 

program

 

at

 

various

 

points

 

before

 

displaying

 

information

 

about

 

the

 

program.

 

Any

 

screens

 

sent

 

by

 

the

 

application

 

program

 

are

 

displayed

 

by

 

the

 

tool,

 

so

 

that

 

you

 

can

 

converse

 

with

 

the

 

application

 

program

 

during

 

testing,

 

just

 

as

 

you

 

would

 

on

 

the

 

production

 

system.

 

You

 

cannot

 

use

 

Animator

 

to

 

debug

 

a

 

distributed

 

transaction

 

processing

 

(DTP)

 

back-end

 

transaction.

 

Using

 

Animator

 

with

 

a

 

Micro

 

Focus

 

Net

 

Express

 

Program:

   

There

 

are

 

two

 

ways

 

to

 

advise

 

the

 

COBOL

 

compiler

 

that

 

the

 

program

 

is

 

to

 

be

 

used

 

with

 

Animator:

 

v

   

The

 

-a

 

flag

 

can

 

be

 

used

 

with

 

cicstcl

 

command.

 

v

   

The

 

/ANIM

 

and

 

/INITCALL″CBL_DEBUGBREAK″

 

options

 

can

 

be

 

used

 

directly

 

with

 

the

 

compiler.

 

The

 

following

 

is

 

an

 

example

 

of

 

using

 

the

 

cicstcl

 

command:

 

cicstcl

 

-a

 

myprog.ccp

   

268

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



This

 

produces

 

the

 

files

 

myprog.cbmfnt,

 

myprog.idy,

 

and

 

myprog.gdy.

 

The

 

cicstcl

 

command

 

produces

 

a

 

.cbmfnt

 

file.

 

If

 

you

 

want

 

to

 

use

 

one

 

of

 

the

 

other

 

types

 

of

 

files

 

that

 

can

 

be

 

used

 

by

 

Micro

 

Focus

 

Net

 

Express,

 

you

 

must

 

invoke

 

the

 

cicstran

 

command

 

and

 

the

 

compiler

 

directly.

 

To

 

produce

 

a

 

.cbmfnt

 

file,

 

follow

 

the

 

steps

 

shown

 

in

 

the

 

following

 

example:

 

1.

   

cicstran

 

myprog.ccp

 

—

 

this

 

produces

 

the

 

the

 

file

 

myprog.cbl

 

2.

   

cobol

 

/ANIM

 

/CALL-RECOVERY

 

/DATA-CONTEXT

 

/INITCALL"CBL_DEBUGBREAK"

 

myprob.cbl

 

this

 

produces

 

the

 

files

 

myprog.obj,

 

myprog.idy,

 

and

 

myprog.gdy.

 

3.

   

cbllink

 

-D

 

-Mmyprog

 

-Omyprog.cbmfnt

 

myprog.obj

 

prodDir\lib\cicsprCBMFNT.lib

 

–

 

this

 

produces

 

the

 

file

 

myprog.cbmfnt.

 

To

 

produce

 

a

 

.int

 

file,

 

follow

 

the

 

steps

 

shown

 

in

 

the

 

following

 

example:

 

1.

   

cicstran

 

myprog.ccp

 

—

 

this

 

produces

 

the

 

the

 

file

 

myprog.cbl

 

2.

   

cobol

 

/ANIM

 

/NOGNT

 

/CALL-RECOVERY

 

/DATA-CONTEXT

 

/INITCALL"CBL_DEBUGBREAK"

 

myprob.cbl

 

—

 

this

 

produces

 

the

 

file

 

myprog.int.

Procedure

 

for

 

using

 

Animator

 

with

 

Micro

 

Focus

 

Net

 

Express:

  

1.

   

Place

 

the

 

.cbmfnt

 

file

 

or

 

the

 

.int

 

file

 

in

 

the

 

region

 

bin

 

directory,

 

or

 

wherever

 

the

 

pathname

 

in

 

the

 

PD

 

stanza

 

indicates

 

as

 

normal.

 

2.

   

Set

 

the

 

COBIDY

 

variable

 

in

 

the

 

region’s

 

environment

 

file

 

to

 

point

 

to

 

the

 

location

 

of

 

the

 

.idy

 

files.

 

This

 

must

 

be

 

on

 

a

 

local

 

drive.

 

3.

   

Set

 

the

 

COBCPY

 

variable

 

in

 

the

 

region’s

 

environment

 

file

 

to

 

point

 

to

 

the

 

source,

 

that

 

is,

 

the.cbl

 

files.

 

This

 

must

 

be

 

on

 

a

 

local

 

drive.

 

The

 

regions

 

can

 

now

 

be

 

started,

 

and

 

any

 

COBOL

 

program

 

conforming

 

to

 

the

 

above

 

procedure

 

is

 

able

 

to

 

use

 

Animator

 

automatically.

 

For

 

more

 

information

 

on

 

invoking

 

Animator,

 

see

 

the

 

Micro

 

Focus

 

Net

 

Express

 

documentation.

 

Using

 

debugging

 

tools

 

integrated

 

with

 

compilers

 

running

 

on

 

CICS

 

on

 

Open

 

Systems

 

Using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

CICS

 

on

 

Open

 

Systems

 

(Animator)

 

Animator

 

enables

 

you

 

to

 

test

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application

 

program

 

online

 

without

 

modifying

 

the

 

program.

 

The

 

tool

 

intercepts

 

execution

 

of

 

the

 

application

 

program

 

at

 

various

 

points

 

before

 

displaying

 

information

 

about

 

the

 

program.

 

Any

 

screens

 

that

 

the

 

application

 

program

 

sends

 

are

 

displayed

 

by

 

the

 

tool,

 

so

 

that

 

you

 

can

 

converse

 

with

 

the

 

application

 

program

 

during

 

testing,

 

just

 

as

 

you

 

would

 

on

 

the

 

production

 

system.

 

CICS

 

supports

 

cross-session

 

debugging

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL.

 

Cross-session

 

debugging

 

enables

 

the

 

user

 

to

 

use

 

Animator

 

in

 

a

 

different

 

terminal

 

window

 

from

 

that

 

in

 

which

 

the

 

program

 

to

 

be

 

debugged

 

is

 

running.

 

Animator

 

is

 

first

 

started

 

in

 

one

 

session

 

and

 

remains

 

in

 

waiting

 

state

 

until

 

it

 

attaches

 

to

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program

 

that

 

has

 

been

 

started

 

in

 

another

 

session.

 

Details

 

of

 

setting

 

up

 

the

 

cross-session

 

debugging

 

are

 

explained

 

below

 

in

 

the

 

setup

 

procedure.

   

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

269

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|



Use

 

the

 

following

 

procedure

 

to

 

configure

 

CICS

 

to

 

run

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

with

 

Animator.

 

1.

   

Set

 

the

 

AllowDebugging

 

attribute

 

in

 

the

 

region

 

definition

 

stanza

 

to

 

yes.

 

This

 

setting

 

allows

 

you

 

to

 

run

 

CADB

 

in

 

that

 

CICS

 

region.

 

2.

   

Using

 

the

 

CADB

 

transaction,

 

enable

 

CICS

 

to

 

run

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

with

 

Animator.

 

See

 

the

 

CICS

 

Administration

 

Reference

 

for

 

more

 

information

 

about

 

CADB.

 

You

 

must

 

run

 

CADB

 

before

 

you

 

run

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program;

 

otherwise,

 

the

 

program

 

runs

 

to

 

completion

 

without

 

attaching

 

to

 

the

 

Animator.

 

3.

   

Compile

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program.

 

Use

 

the

 

cicstcl

 

command

 

with

 

the

 

-a

 

flag.

 

For

 

example:

 

cicstcl

 

-a

 

-lCOBOL

 

TEST.ccp

 

This

 

command

 

produces

 

TEST.idy

 

and

 

TEST.int.

 

4.

   

Setup

 

the

 

cross-session

 

debugging

 

with

 

the

 

following

 

steps.

 

a.

   

Open

 

a

 

new

 

terminal

 

window

 

to

 

start

 

the

 

Animator.

 

b.

   

Ensure

 

that

 

the

 

basic

 

environment

 

for

 

CICS

 

and

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

has

 

been

 

set

 

up.

 

(PATH,

 

LIBPATH,

 

NLSPATH,

 

and

 

so

 

on

 

for

 

CICS;

 

COBDIR

 

and

 

so

 

on

 

for

 

Micro

 

Focus

 

Server

 

Express

 

COBOL).

 

The

 

LIBPATH

 

(LD_LIBRARY_PATH

 

on

 

Solaris

 

and

 

SHLIB_PATH

 

on

 

HP-UX)

 

should

 

also

 

include

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

library

 

paths.

 

c.

   

Set

 

the

 

environment

 

variable

 

COBANIMSRV.

 

Use

 

the

 

same

 

string

 

that

 

has

 

been

 

entered

 

for

 

the

 

COBANIMSRV

 

ID

 

field

 

in

 

the

 

CADB

 

screen.

 

d.

   

Use

 

the

 

cicsanimsrv

 

program

 

to

 

start

 

the

 

Animator.

 

The

 

user

 

that

 

starts

 

the

 

Animator

 

process

 

should

 

be

 

part

 

of

 

the

 

cics

 

group.

 

The

 

Animator

 

waits

 

for

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

to

 

attach.

Note:

  

cicsanimsrv

 

is

 

a

 

CICS-supplied

 

program

 

that

 

is

 

a

 

wrapper

 

to

 

the

 

cobanimsrv

 

program

 

that

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

supplies.

 

In

 

a

 

CICS

 

environment,

 

the

 

CICS

 

Application

 

Server

 

Process

 

runs

 

programs

 

under

 

the

 

cics

 

user

 

ID.

 

The

 

cicsanimsrv

 

program

 

internally

 

runs

 

the

 

Animator

 

process

 

also

 

under

 

the

 

cics

 

user

 

ID.

 

This

 

action

 

ensures

 

that

 

a

 

program

 

that

 

the

 

CICS

 

Application

 

Server

 

Process

 

is

 

running,

 

successfully

 

attaches

 

to

 

the

 

Animator.

 

The

 

user

 

and

 

group

 

IDs

 

for

 

the

 

cicsanimsrv

 

program

 

should

 

match

 

those

 

of

 

the

 

user

 

cics.

 

For

 

example,

 

if

 

the

 

cics

 

user

 

has

 

a

 

user

 

and

 

group

 

ID

 

of

 

cics

 

:

 

cics,

 

cicsanimsrv

 

should

 

also

 

be

 

cics:cics

 

(which

 

is

 

the

 

default).

 

Otherwise,

 

cicsanimsrv

 

permissions

 

must

 

be

 

changed

 

as

 

necessary.

When

 

you

 

have

 

done

 

these

 

steps,

 

the

 

Animator

 

process

 

waits

 

for

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

to

 

attach.

 

Run

 

the

 

transaction

 

that

 

executes

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program.

 

By

 

default,

 

when

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

program

 

that

 

is

 

to

 

be

 

debugged

 

is

 

run,

 

it

 

waits

 

indefinitely

 

until

 

an

 

Animator

 

process

 

is

 

started.

 

However,

 

you

 

can

 

use

 

environment

 

variable

 

CICS_ANIMATOR_TIMEOUT

 

to

 

configure

 

the

 

wait

 

time.

 

Timeout

 

values

 

are

 

set

 

in

 

milliseconds.

 

A

 

value

 

of

 

-1

 

means

 

wait

 

indefinitely

 

(which

 

is

 

default

 

in

 

CICS);

 

a

 

value

 

of

 

0

 

(zero)

 

means

 

DO

 

NOT

 

WAIT.

Note:

  

You

 

cannot

 

use

 

Animator

 

to

 

debug

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

programs

 

that

 

are

 

remote

 

to

 

this

 

region.

 

For

 

more

 

information

 

on

 

cross-session

 

debugging

 

and

 

Animator,

 

refer

 

to

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

documentation.

  

270

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide

|
|

|
|

|
|
|
|
|

|
|

|

|

|

|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|



Accessing

 

Java

 

debugging

 

facilities

 

with

 

the

 

CJDB

 

transaction

 

The

 

CJDB

 

transaction

 

can

 

be

 

used

 

to

 

access

 

Java

 

debugging

 

facilities.To

 

use

 

this

 

transaction,

 

do

 

the

 

following:

  

1.

   

Compile

 

the

 

Java

 

program

 

with

 

debugging

 

enabled.

  

2.

   

Stop

 

the

 

region

 

where

 

the

 

program

 

is

 

to

 

run,

 

as

 

described

 

in

 

the

 

CICS

 

Administration

 

Guide

 

for

 

Open

 

Systems.

  

3.

   

Enable

 

debugging

 

in

 

the

 

region

 

by

 

setting

 

the

 

following

 

property

 

in

 

the

 

/var/cics_regions/region_name/database/RD/RD.stanza

 

file:

 

AllowDebugging=yes

  

4.

   

Use

 

the

 

cicsadd

 

command

 

to

 

add

 

transaction

 

and

 

program

 

definitions

 

to

 

the

 

region:

 

cicsadd

 

-c

 

td

 

txn_name

 

ProgName=program_name

 

RSLKey=public

 

cicsadd

 

-c

 

pd

 

program_name

 

PathName=program_path

 

where

 

txn_name

 

is

 

the

 

name

 

of

 

a

 

transaction,

 

program_name

 

is

 

the

 

name

 

of

 

the

 

program,

 

and

 

program_path

 

is

 

the

 

path

 

name

 

of

 

the

 

program.

  

5.

   

Cold

 

start

 

the

 

region,

 

as

 

described

 

in

 

the

 

CICS

 

Administration

 

Guide

 

for

 

Open

 

Systems.

  

6.

   

Set

 

up

 

an

 

X

 

terminal

 

or

 

cicsterm

 

window

 

as

 

the

 

target

 

window

 

for

 

output

 

from

 

the

 

debugger.

 

See

 

“Using

 

the

 

debugging

 

tool

 

integrated

 

with

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

on

 

CICS

 

on

 

Open

 

Systems

 

(Animator)”

 

on

 

page

 

269

 

for

 

instructions

 

on

 

how

 

to

 

specify

 

a

 

window

 

for

 

displaying

 

debugger

 

output.

  

7.

   

Start

 

a

 

cicsterm

 

window.

  

8.

   

Run

 

the

 

CJDB

 

transaction

 

to

 

display

 

the

 

Java

 

debugging

 

window.

  

9.

   

Enter

 

the

 

name

 

of

 

the

 

device

 

where

 

debugger

 

output

 

is

 

to

 

be

 

displayed.

 

10.

   

Enter

 

the

 

transaction

 

ID,

 

program

 

name,

 

or

 

terminal

 

that

 

serves

 

as

 

input

 

to

 

the

 

debugger.

  

Chapter

 

10.

 

Testing

 

and

 

debugging

 

your

 

application

 

271

|



272

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Part

 

5.

 

Appendixes

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

273



274

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Appendix.

 

CICS

 

commands

 

used

 

in

 

application

 

programming

 

This

 

appendix

 

describes

 

the

 

CICS

 

commands

 

used

 

during

 

the

 

preparation

 

of

 

CICS

 

application

 

programs.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

275



cicsmap

 

-

 

generate

 

BMS

 

map

 

files

 

The

 

cicsmap

 

command

 

processes

 

a

 

source

 

file

 

containing

 

Basic

 

Mapping

 

Support

 

(BMS)

 

macros,

 

and

 

generates

 

either

 

a

 

symbolic

 

map

 

or

 

maps,

 

or

 

a

 

physical

 

map

 

or

 

maps,

 

or

 

both

 

as

 

specified

 

by

 

the

 

map

 

input.

 

You

 

use

 

command-line

 

options

 

to

 

control

 

the

 

generation

 

of

 

symbolic

 

or

 

physical

 

maps.

 

Syntax

 

cicsmap

 

[-a

 

-r

 

]

 

[

 

-s

 

|

 

-p]

 

[-e]

 

[-f

 

code_page]

 

{file

 

|

 

file.bms}

 

[-x]

 

Description

 

The

 

output

 

physical

 

map

 

file,

 

in

 

the

 

current

 

working

 

directory,

 

is

 

x.map

 

where

 

x

 

is

 

determined

 

by

 

the

 

SUFFIX

 

and

 

TERM

 

BMS

 

macros.

 

CICS

 

overwrites

 

any

 

previous

 

physical

 

map

 

file

 

for

 

the

 

same

 

map

 

source

 

file

 

with

 

the

 

newly

 

generated

 

map.

 

CICS

 

places

 

the

 

symbolic

 

map

 

file

 

in

 

mapset.e

 

for

 

COBOL,

 

mapset.h

 

for

 

C

 

or

 

C++,

 

mapset.inc

 

for

 

PL/I.

 

CICS

 

produces

 

the

 

symbolic

 

map

 

file

 

in

 

the

 

current

 

working

 

directory.

 

CICS

 

overwrites

 

any

 

previous

 

symbolic

 

map

 

file

 

for

 

the

 

same

 

map

 

set

 

in

 

the

 

current

 

working

 

directory

 

with

 

the

 

newly

 

generated

 

map.

 

CICS

 

does

 

not

 

generate

 

maps

 

if

 

errors

 

are

 

detected

 

in

 

the

 

map

 

source

 

file.

 

The

 

contents

 

of

 

the

 

map

 

source

 

file

 

determine

 

the

 

operation

 

of

 

the

 

cicsmap

 

command.

 

The

 

LANG

 

option

 

associated

 

with

 

the

 

map

 

set

 

macro

 

(DFHMSD)

 

determines

 

the

 

output

 

of

 

cicsmap.

 

cicsmap

 

produces

 

both

 

the

 

symbolic

 

and

 

physical

 

maps

 

by

 

default

 

or

 

you

 

can

 

use

 

the

 

-p

 

or

 

-s

 

flags

 

to

 

restrict

 

cicsmap

 

to

 

producing

 

a

 

single

 

map

 

type.

 

cicsmap

 

ignores

 

TYPE=DSECT,

 

TYPE=MAP,

 

and

 

TYPE=&SYSPARM

 

options.

 

If

 

you

 

include

 

any

 

other

 

value

 

for

 

TYPE,

 

cicsmap

 

produces

 

an

 

error

 

message.

 

See

 

“Migrating

 

maps

 

from

 

your

 

CICS

 

system

 

to

 

other

 

family

 

members”

 

on

 

page

 

203

 

for

 

more

 

information.

 

Errors

 

are

 

written

 

to

 

stderr.

 

Note:

  

For

 

important

 

information

 

about

 

permissions,

 

refer

 

to

 

“Access

 

permissions

 

for

 

maps

 

and

 

transaction

 

programs”

 

on

 

page

 

37.

 

Help

 

information

 

is

 

available

 

when

 

an

 

invalid

 

flag

 

or

 

-?

 

is

 

specified.

 

Options

 

-a

 

cicsmap

 

generates

 

the

 

alternative

 

symbolic

 

map.

 

-e

 

Affects

 

the

 

interpretation

 

of

 

the

 

hexadecimal

 

data

 

presented

 

in

 

the

 

XINIT

 

option.

 

When

 

specified,

 

cicsmap

 

converts

 

the

 

hexadecimal

 

data

 

in

 

the

 

XINIT

 

option

 

from

 

the

 

code

 

set

 

specified

 

by

 

-f

 

to

 

the

 

current

 

code

 

set.

 

-f

 

code_set

 

Code

 

page

 

from

 

which

 

cicsmap

 

is

 

to

 

translate

 

XINIT

 

strings.

 

If

 

you

 

do

 

not

 

specify

 

this,

 

CICS

 

assumes

 

the

 

user’s

 

locale.

 

file

 

Name

 

of

 

the

 

input

 

map

 

source

 

file.

 

You

 

can

 

include

 

an

 

optional

 

pathname

 

with

 

this

 

name.

 

The

 

source

 

file

 

must

 

either

 

have

 

the

 

extension

 

bms,

 

or

 

have

 

no

 

extension,

 

in

 

which

 

case

 

cicsmap

 

appends

 

the

 

suffix

 

bms.

 

-p

 

Generates

 

only

 

a

 

physical

 

map.

 

cicsmap

 

276

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



-r

 

Generates

 

return

 

codes.

 

-s

 

Generates

 

only

 

a

 

symbolic

 

(logical)

 

map.

 

-x

 

Prevents

 

PIC

 

G

 

type

 

COBOL

 

code

 

or

 

GRAPHIC

 

type

 

code

 

from

 

being

 

generated.

  

If

 

PS=8

 

is

 

specified

 

in

 

a

 

named

 

DFHMDF

 

BMS

 

macro

 

of

 

a

 

BMS

 

COBOL

 

or

 

PL/I

 

map,

 

the

 

cicsmap

 

command

 

generates

 

the

 

PIC

 

G

 

type

 

COBOL

 

code

 

or

 

GRAPHIC

 

type

 

PL/I

 

code.

 

For

 

example,

 

if

 

LENGTH=12

 

is

 

specified

 

in

 

the

 

field

 

BMS

 

macro,

 

PIC

 

G(6)

 

is

 

generated

 

instead

 

of

 

PIC

 

X(12)

 

in

 

a

 

COBOL

 

map,

 

and

 

GRAPHIC(6)

 

is

 

generated

 

instead

 

of

 

CHARACTER(12)

 

in

 

a

 

PL/I

 

map.

 

However,

 

the

 

PIC

 

G

 

type

 

is

 

possibly

 

unsupported

 

on

 

your

 

version

 

of

 

COBOL

 

compiler,

 

or

 

you

 

may

 

wish

 

not

 

to

 

have

 

PIC

 

G

 

or

 

GRAPHIC

 

types

 

generated.

 

If

 

this

 

is

 

the

 

case,

 

use

 

the

 

-x

 

flag

 

to

 

prevent

 

the

 

PIC

 

G

 

or

 

GRAPHIC

 

type

 

code

 

from

 

being

 

generated.

 

(Refer

 

to

 

the

 

documentation

 

for

 

your

 

COBOL

 

compiler

 

to

 

determine

 

if

 

the

 

PIC

 

G

 

type

 

is

 

supported.)

Restrictions

 

Standard

 

operating

 

system

 

access

 

permissions

 

for

 

files

 

and

 

directories

 

apply.

 

Returned

 

Values

 

cicsmap

 

has

 

the

 

following

 

exit

 

values:

 

0

 

cicsmap

 

successfully

 

processed

 

the

 

source

 

map

 

set.

 

1

 

cicsmap

 

(default)

 

encountered

 

at

 

least

 

one

 

error

 

which

 

it

 

has

 

written

 

to

 

stderr.

 

4

 

cicsmap

 

(-r

 

set)

 

encountered

 

at

 

least

 

one

 

error

 

of

 

moderate

 

severity

 

which

 

it

 

has

 

written

 

to

 

stderr.

 

8

 

cicsmap

 

(-r

 

set)

 

encountered

 

at

 

least

 

one

 

error

 

of

 

high

 

severity

 

which

 

it

 

has

 

written

 

to

 

stderr.

Examples

 

1.

   

To

 

run

 

the

 

command

 

from

 

the

 

current

 

directory

 

to

 

obtain

 

a

 

symbolic

 

map:

 

cicsmap

 

-s

 

temp.bms

 

2.

   

The

 

-e

 

option

 

is

 

required

 

where

 

you

 

have

 

converted

 

maps

 

from

 

EBCDIC,

 

for

 

example

 

from

 

a

 

CICS/MVS

 

system,

 

and

 

the

 

maps

 

contain

 

the

 

XINIT

 

option.

 

So

 

that

 

cicsmap

 

produces

 

the

 

correct

 

physical

 

map,

 

you

 

need

 

to

 

specify

 

the

 

-e

 

flag.

 

cicsmap

 

-p

 

-e

 

temp2.bms

 

cicsmap

 

Appendix.

 

CICS

 

commands

 

used

 

in

 

application

 

programming

 

277



cicstran

 

-

 

translates

 

source

 

code

 

The

 

command

 

language

 

translator

 

converts

 

source

 

code

 

written

 

in

 

a

 

supported

 

language

 

to

 

an

 

equivalent

 

source

 

program

 

in

 

which

 

each

 

CICS

 

command

 

has

 

been

 

converted

 

into

 

a

 

statement

 

for

 

the

 

supporting

 

language.

 

Syntax

  

Syntax

 

on

 

CICS

 

on

 

Open

 

Systems:

   

cicstran

 

[-l

 

{COBOL

 

|

 

IBMCOB

 

|

 

C

  

|

 

IBMCPP}

 

|

 

CPP}]

 

[-q]

 

[-s]

 

[-e]

 

[-c

 

number]

 

[-v]

 

[-d]

 

[-g

 

locale]

 

file

   

Syntax

 

on

 

CICS

 

for

 

Windows

 

cicstran

 

[-l

 

{COBOL

 

|

 

IBMCOB

 

|

 

C

 

|

 

IBMC

 

|

 

CPP

  

|

 

IBMCPP}

 

[-q]

 

[-s]

 

[-e][-c

 

number]

 

[-v]

 

[-d]

 

[-g

 

locale]

 

file

Description

 

To

 

translate

 

EXEC

 

CICS

 

commands,

 

DFHRESP

 

macros,

 

and

 

DFHVALUE

 

macros

 

within

 

an

 

application

 

program

 

into

 

source

 

language

 

statements

 

that

 

interface

 

with

 

the

 

CICS

 

runtime

 

environment,

 

invoke

 

the

 

CICS

 

command

 

language

 

translator

 

cicstran

 

from

 

an

 

operating

 

system

 

shell.

 

A

 

C

 

application

 

source

 

file

 

of

 

the

 

name

 

file.ccs

 

produces

 

a

 

C

 

source

 

file

 

in

 

the

 

current

 

working

 

directory

 

with

 

the

 

name

 

file.c.

 

A

 

C++

 

application

 

source

 

file

 

of

 

the

 

name

 

file.ccs

 

produces

 

a

 

C++

 

source

 

file

 

in

 

the

 

current

 

working

 

directory

 

with

 

the

 

name

 

File.C.

 

A

 

COBOL

 

source

 

file

 

is

 

produced

 

in

 

the

 

current

 

working

 

directory,

 

with

 

the

 

name

 

file.cbl

 

from

 

an

 

application

 

source

 

file

 

of

 

the

 

name

 

file.ccp.

 

Errors,

 

warnings,

 

and

 

information

 

messages

 

are

 

written

 

to

 

the

 

operating

 

system

 

file

 

stream

 

stderr.

 

You

 

must

 

invoke

 

the

 

translator

 

process

 

prior

 

to

 

the

 

compilation

 

and

 

link-edit

 

steps

 

when

 

generating

 

program

 

executable

 

code.

 

You

 

specify

 

options

 

for

 

the

 

command

 

language

 

translation

 

process

 

on

 

the

 

command-line.

 

For

 

important

 

information

 

about

 

permissions,

 

refer

 

to

 

“Access

 

permissions

 

for

 

maps

 

and

 

transaction

 

programs”

 

on

 

page

 

37.

 

Help

 

information

 

is

 

available

 

when

 

an

 

invalid

 

flag

 

or

 

-?

 

is

 

specified.

 

Options

 

-c

 

number

 

Specifies

 

the

 

number

 

of

 

lines

 

to

 

be

 

included

 

in

 

each

 

page

 

of

 

the

 

translator

 

listing,

 

including

 

heading

 

and

 

blank

 

lines,

 

of

 

the

 

output

 

file

 

created

 

with

 

the

 

-v

 

and

 

-s

 

flags.

 

number

 

must

 

be

 

an

 

integer

 

in

 

the

 

range

 

7

 

through

 

255.

 

If

 

7

 

or

 

less,

 

the

 

heading

 

and

 

one

 

line

 

of

 

listing

 

is

 

included

 

on

 

each

 

page.

 

The

 

default

 

is

 

60.

 

Note:

  

This

 

option

 

is

 

null

 

when

 

it

 

is

 

not

 

used

 

with

 

the

 

-v

 

or

 

-s

 

flags.

-e

 

Indicates

 

that

 

CEDF

 

is

 

to

 

be

 

used

 

to

 

debug

 

the

 

program.

 

cicstran

 

278

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Note:

  

If

 

you

 

use

 

this

 

option,

 

the

 

program’s

 

performance

 

may

 

be

 

degraded

 

because

 

of

 

the

 

extra

 

activity

 

required

 

to

 

determine

 

the

 

EDF

 

status

 

of

 

the

 

terminal

 

on

 

every

 

EXEC

 

CICS

 

call.

-d

 

Produces

 

code

 

that

 

passes

 

line

 

numbers

 

through

 

CICS

 

to

 

be

 

used

 

by

 

the

 

Execution

 

Diagnostic

 

Facility

 

(CEDF)

 

and

 

to

 

be

 

included

 

in

 

Transaction

 

Dump

 

information.

 

-g

 

locale

 

Sets

 

the

 

locale

 

the

 

translator

 

is

 

to

 

work

 

in,

 

where

 

locale

 

is

 

a

 

string

 

that

 

provides

 

information

 

to

 

certain

 

set

 

conventions

 

in

 

the

 

locale

 

category.

 

file

 

Name

 

of

 

application

 

source

 

file.

 

-l

 

Identifies

 

the

 

source

 

language

 

of

 

the

 

program

 

input

 

to

 

the

 

translator:

   

CICS

 

on

 

Open

 

Systems

 

'C'

 

for

 

C,

 

‘IBMCPP’

 

or

 

‘CPP’

 

for

 

C++,

 

COBOL

 

for

 

Micro

 

Focus

 

Server

 

Express

 

COBOL,

 

IBMCOB

 

for

 

IBM

 

COBOL

 

(the

 

default

 

is

 

COBOL).

  

CICS

 

for

 

Windows

 

‘C’

 

for

 

Microsoft

 

C,

 

‘IBMC’

 

for

 

IBM

 

C,

 

‘CPP’

 

for

 

Microsoft

 

C++,

 

‘IBMCPP’

 

for

 

IBM

 

C++,

 

‘COBOL’

 

for

 

Micro

 

Focus

 

Net

 

Express

 

COBOL,

 

and

 

‘IBMCOB’

 

for

 

IBM

 

COBOL

-q

 

identifies

 

COBOL

 

string

 

literal

 

delimiter;

 

APOST

 

(default)

 

or

 

QUOTE.

 

-s

 

Produces

 

a

 

listing

 

file

 

file.lis.

 

-v

 

Produces

 

a

 

cross-reference

 

listing

 

of

 

all

 

EXEC

 

CICS

 

commands

 

in

 

file.xrf.

Restrictions

 

Standard

 

operating

 

system

 

access

 

permissions

 

for

 

files

 

and

 

directories

 

apply.

 

Examples

 

1.

   

To

 

translate

 

a

 

C

 

program

 

to

 

utilize

 

CEDF,

 

and

 

produce

 

a

 

cross-reference

 

listing:

 

cicstran

 

-v

 

-l

 

C

 

-e

 

-c

 

60

 

Applic2.ccs

 

The

 

interaction

 

between

 

the

 

command

 

level

 

translator

 

and

 

the

 

application

 

programmer

 

is

 

through

 

a

 

set

 

of

 

error

 

codes

 

and

 

conditions

 

output

 

by

 

the

 

translator.

 

These

 

codes

 

are

 

dependent

 

on

 

whether

 

you

 

invoke

 

the

 

translator

 

for

 

COBOL

 

or

 

C.

 

The

 

translator

 

highlights,

 

on

 

an

 

error

 

report,

 

all

 

EXEC

 

CICS

 

commands

 

found

 

to

 

be

 

in

 

error.

 

Note:

  

The

 

error

 

report

 

includes

 

line

 

numbers

 

up

 

to

 

65535.

 

If

 

the

 

line

 

number

 

is

 

greater

 

than

 

65535,

 

it

 

is

 

erroneously

 

reported

 

as

 

line

 

number

 

65535.

 

The

 

EIBLABEL

 

field,

 

used

 

only

 

for

 

COBOL

 

programs,

 

is

 

used

 

to

 

contain

 

values

 

relating

 

to

 

handled

 

conditions

 

or

 

abends.

 

The

 

values

 

are:

 

-1

 

RETURN

 

or

 

XCTL

 

0

 

normal

 

sequential

 

command

 

processing

 

1

 

abend

 

cicstran

 

Appendix.

 

CICS

 

commands

 

used

 

in

 

application

 

programming

 

279



2

 

to

 

nn

 

a

 

value

 

identifying

 

a

 

label

 

for

 

a

 

handled

 

condition

 

or

 

abend

Returned

 

Values

 

cicstran

 

has

 

the

 

following

 

exit

 

values:

 

0

 

cicstran

 

has

 

successfully

 

translated

 

the

 

application

 

program

 

and

 

has

 

generated

 

a

 

.c

 

or

 

.cbl

 

file.

 

1

 

cicstran

 

has

 

detected

 

errors

 

or

 

warnings

 

during

 

translation

 

of

 

the

 

application

 

program,

 

and

 

has

 

written

 

messages

 

to

 

the

 

operating

 

system

 

file

 

stream

 

stderr.

 

cicstran

 

has

 

generated

 

a

 

.c

 

or

 

.cbl

 

file.

 

2

 

cicstran

 

has

 

detected

 

translator

 

errors

 

and

 

has

 

written

 

messages

 

to

 

the

 

operating

 

system

 

file

 

stream

 

stderr.

 

Refer

 

to

 

Chapter

 

8,

 

“Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs,”

 

on

 

page

 

213.

 

cicstran

 

280

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



cicstcl

 

-

 

translate,

 

compile,

 

and

 

link

 

The

 

cicstcl

 

command

 

performs

 

the

 

translation,

 

compiles

 

the

 

translated

 

program,

 

and

 

links

 

the

 

resulting

 

object

 

by

 

using

 

the

 

appropriate

 

commands.

 

Syntax

  

Syntax

 

on

 

CICS

 

on

 

Open

 

Systems:

   

cicstcl

 

[-l

 

{COBOL

 

|

 

IBMCOB

 

|

 

C

 

|

 

IBMPLI

 

|

 

IBMCPP

 

|

 

CPP}]

 

[-q]

 

[-s]

 

[-a]

 

[-e]

 

[-c

 

number]

 

[-v]

 

[-d]

 

[-t

 

(HP-UX

 

only)]

 

[-g

 

locale

 

]

 

[-x

 

“ext

 

cmd”]

 

[-X

 

“ext

 

cmd”]

 

file

  

Syntax

 

on

 

CICS

 

for

 

Windows:

   

cicstcl

 

[-l

 

{COBOL

 

|

 

IBMCOB

 

|

 

C

 

|

 

IBMPLI

 

|

 

IBMC

 

|

 

CPP

 

|

 

IBMCPP}]

 

[-q]

 

[-s]

 

[-a]

 

[-e]

 

[-c

 

number]

 

[-v]

 

[-d]

 

[-x

 

“ext

 

cmd”]

 

[-X

 

{“ext

 

cmd”

 

|

 

cicscobinsert}]

 

file

Note:

  

The

 

-X

 

cicscobinsert

 

option

 

works

 

only

 

on

 

COBOL

 

.cpp

 

files

 

to

 

be

 

compiled

 

by

 

using

 

Micro

 

Focus

 

Net

 

Express

 

version

 

3.0

 

or

 

higher.

 

Description

 

This

 

program

 

accepts

 

all

 

the

 

flags

 

taken

 

by

 

the

 

cicstran

 

program,

 

as

 

well

 

as

 

four

 

additional

 

flags,

 

-a,

 

-x,

 

-X,

 

and,

 

on

 

HP-UX

 

systems

 

only,

 

-t.

 

You

 

specify

 

compile

 

and

 

link

 

options

 

by

 

using

 

the

 

environment

 

variables

 

as

 

shown

 

in

 

Table

 

41

 

on

 

page

 

214.On

 

C,

 

C++,

 

and

 

COBOL

 

files,

 

the

 

cicstcl

 

command

 

runs

 

the

 

cicstran

 

program

 

automatically

 

to

 

provide

 

the

 

compile

 

and

 

link

 

directives

 

required

 

by

 

CICS.

 

On

 

IBM

 

PL/I

 

files,

 

the

 

cicstcl

 

command

 

calls

 

the

 

PL/I

 

compiler

 

that

 

handles

 

the

 

preprocessing,

 

compiling,

 

and

 

linking

 

of

 

PL/I

 

files.

 

On

 

CICS

 

on

 

Open

 

Systems,

 

an

 

application

 

program

 

must

 

be

 

contained

 

in

 

a

 

file

 

with

 

a

 

suffix

 

based

 

on

 

file

 

type.

 

The

 

cicstran

 

program

 

(run

 

automatically

 

on

 

COBOL,

 

C,

 

and

 

C++

 

files

 

as

 

part

 

of

 

the

 

cicstcl

 

command)

 

translates

 

file.ccp

 

into

 

file.cbl

 

or

 

file.ccs

 

into

 

file.c

 

or

 

file.C.

 

The

 

cicstcl

 

command

 

then

 

compiles

 

and

 

links

 

these

 

.cbl,

 

.c,

 

or

 

.C

 

files.

 

(PL/I

 

programs

 

are

 

not

 

translated

 

prior

 

to

 

compilation.

 

On

 

these

 

files,

 

the

 

cicstcl

 

command

 

invokes

 

the

 

PL/I

 

compiler,

 

which

 

handles

 

all

 

of

 

the

 

processes.)

 

Table

 

46

 

and

 

Table

 

47

 

on

 

page

 

282

 

summarize

 

the

 

extensions

 

of

 

incoming

 

files

 

and

 

their

 

resulting

 

intermediate

 

files

 

and

 

translation

 

programs.

  

Table

 

46.

 

Extensions

 

of

 

incoming

 

files

 

and

 

resulting

 

intermediate

 

files

 

and

 

transaction

 

programs

 

on

 

CICS

 

on

 

Open

 

Systems

 

File

 

type

 

Extension

 

of

 

incoming

 

file

 

Extension

 

of

 

intermediate

 

file

 

(after

 

translation)

 

Extension

 

of

 

resulting

 

transaction

 

program

 

in

 

working

 

directory

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

.ccp

 

.cbl

 

.gnt

 

or

 

.int

 

IBM

 

COBOL

 

.ccp

 

.cbl

 

.ibmcob

 

C

 

.ccs

 

.c

 

None

 

PL/I

 

.pli

 

None

 

.ibmpli

 

IBM

 

C++

 

.ccs

 

.C

 

.ibmcpp

 

cicstcl

 

Appendix.

 

CICS

 

commands

 

used

 

in

 

application

 

programming

 

281



Table

 

46.

 

Extensions

 

of

 

incoming

 

files

 

and

 

resulting

 

intermediate

 

files

 

and

 

transaction

 

programs

 

on

 

CICS

 

on

 

Open

 

Systems

 

(continued)

 

C++

 

.ccs

 

.C

 

.cpp

    

Table

 

47.

 

Extensions

 

of

 

incoming

 

files

 

and

 

resulting

 

intermediate

 

files

 

and

 

transaction

 

programs

 

on

 

CICS

 

for

 

Windows

 

File

 

type

 

Extension

 

of

 

incoming

 

file

 

Extension

 

of

 

intermediate

 

file

 

(after

 

translation)

 

Extension

 

of

 

resulting

 

transaction

 

program

 

in

 

working

 

directory

 

Micro

 

Focus

 

Net

 

Express

 

COBOL

 

.ccp

 

.cbl

 

.cbmfnt

 

IBM

 

COBOL

 

.ccp

 

.cbl

 

.ibmcob

 

Microsoft

 

C

 

.ccs

 

.c

 

.dll

 

PL/I

 

.pli

 

None

 

.ibmpli

 

IBM

 

C

 

.ccs

 

.c

 

.ibmc

 

Microsoft

 

C++

 

.ccs

 

.C

 

.cpp

 

IBM

 

C++

 

.ccs

 

.C

 

.ibmcpp

   

Specifying

 

the

 

-x

 

flag

 

causes

 

the

 

cicstcl

 

command

 

to

 

run

 

an

 

external

 

command

 

(for

 

example,

 

an

 

SQL

 

translation

 

step)

 

before

 

the

 

cicstran

 

translation.

 

Specifying

 

the

 

-X

 

flag

 

causes

 

the

 

cicstcl

 

command

 

to

 

run

 

an

 

external

 

command

 

or,

 

on

 

the

 

Windows

 

platform,

 

the

 

cicscobinsert

 

utility

 

(which

 

compiles

 

EBCDIC-enabled

 

COBOL

 

programs

 

that

 

run

 

on

 

a

 

Windows

 

workstation—see

 

“Compiling

 

EBCDIC-enabled

 

COBOL

 

programs”

 

on

 

page

 

57

 

and

 

“Using

 

Micro

 

Focus

 

Net

 

Express

 

to

 

compile

 

EBCDIC-enabled

 

COBOL

 

programs”

 

on

 

page

 

227

 

for

 

more

 

information).

 

The

 

pretranslation

 

step

 

specified

 

by

 

the

 

-x

 

flag

 

must

 

produce

 

a

 

file

 

with

 

the

 

appropriate

 

.ccp

 

or

 

.ccs

 

suffix.

 

The

 

posttranslation

 

step

 

specified

 

by

 

the

 

-X

 

flag

 

must

 

be

 

able

 

to

 

handle

 

the

 

.cbl,

 

.c,

 

or

 

.C

 

file

 

produced

 

by

 

the

 

translator.

 

Help

 

information

 

on

 

the

 

cicstcl

 

command

 

is

 

written

 

to

 

stderr

 

when

 

you

 

run

 

cicstcl

 

with

 

an

 

invalid

 

flag

 

or

 

-?.

 

If

 

you

 

specify

 

a

 

valid

 

flag

 

that

 

is

 

not

 

supported

 

for

 

the

 

language

 

type,

 

CICS

 

writes

 

a

 

warning

 

to

 

the

 

standard

 

error

 

stream

 

and

 

the

 

option

 

is

 

ignored.

 

Note:

  

For

 

important

 

information

 

about

 

permissions,

 

refer

 

to

 

“Access

 

permissions

 

for

 

maps

 

and

 

transaction

 

programs”

 

on

 

page

 

37.

 

The

 

cicstcl

 

command

 

accepts

 

multiple

 

source

 

files

 

for

 

IBM

 

VisualAge

 

COBOL

 

for

 

NT.

 

Options

 

-a

 

Required

 

for

 

generating

 

debugging

 

information

 

to

 

support

 

compiler

 

debugging

 

products.

 

-c

 

number

 

(Not

 

PL/I)

 

specifies

 

the

 

number

 

of

 

lines

 

to

 

be

 

included

 

in

 

each

 

page

 

of

 

the

 

translator

 

listing,

 

including

 

heading

 

and

 

blank

 

lines,

 

of

 

the

 

output

 

files

 

created

 

with

 

the

 

-v

 

or

 

-s

 

flags.

 

The

 

number

 

value

 

must

 

be

 

an

 

integer

 

in

 

the

 

range

 

7

 

through

 

255.

 

If

 

the

 

number

 

value

 

is

 

7

 

or

 

less,

 

the

 

heading

 

and

 

one

 

line

 

of

 

listing

 

is

 

included

 

on

 

each

 

page.

 

The

 

default

 

is

 

60.

 

cicstcl

 

282

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Note:

  

This

 

option

 

must

 

be

 

used

 

with

 

the

 

-v

 

or

 

-s

 

flags.

-d

 

Produces

 

code

 

that

 

passes

 

line

 

numbers

 

through

 

CICS

 

to

 

be

 

used

 

by

 

the

 

Execution

 

Diagnostic

 

Facility

 

(EDF)

 

and

 

to

 

be

 

included

 

in

 

the

 

Transaction

 

Dump

 

information.

 

-e

 

Indicates

 

that

 

CEDF

 

is

 

to

 

be

 

used

 

to

 

debug

 

the

 

program.

 

file

 

Name

 

of

 

application

 

source

 

file.

 

-g

 

locale

 

(CICS

 

on

 

Open

 

Systems

 

only)

 

(Not

 

PL/I)

 

codes

 

page

 

locale

 

in

 

which

 

the

 

translator

 

is

 

to

 

work.

 

If

 

you

 

do

 

not

 

specify

 

-g,

 

cicstcl

 

uses

 

your

 

locale.

 

-l

 

Identifies

 

the

 

source

 

language

 

of

 

the

 

program:

   

CICS

 

on

 

Open

 

Systems

 

‘COBOL’

 

for

 

Micro

 

Focus

 

Server

 

Express

 

COBOL,

 

‘IBMCOB’

 

for

 

IBM

 

COBOL,

 

‘C’

 

for

 

C,

 

‘IBMPLI’

 

for

 

PL/I,

 

‘IBMCPP’

 

for

 

IBM

 

C++,

 

and

 

‘CPP’

 

for

 

C++

 

(the

 

default

 

is

 

‘COBOL’).

  

CICS

 

for

 

Windows

 

‘COBOL’

 

for

 

Micro

 

Focus

 

Net

 

Express

 

COBOL,

 

‘IBMCOB’

 

for

 

IBM

 

COBOL,

 

‘C’

 

for

 

Microsoft

 

C,

 

‘IBMPLI’

 

for

 

PL/I,

 

‘IBMC’

 

for

 

IBM

 

C,

 

‘CPP’

 

for

 

Microsoft

 

C++,

 

and

 

‘IBMCPP’

 

for

 

IBM

 

C++

 

(the

 

default

 

is

 

‘COBOL’).

-q

 

Identifies

 

“COBOL

 

string

 

literal

 

delimiter”;

 

APOST

 

(default)

 

or

 

QUOTE.

 

-s

 

(Not

 

PL/I)

 

produces

 

listing

 

files

 

to

 

facilitate

 

debugging.

 

Produces

 

a

 

CICS

 

source

 

listing

 

file,

 

filename.lis,

 

for

 

all

 

languages.

 

For

 

CICS

 

on

 

AIX

 

C

 

and

 

C++

 

applications,

 

also

 

produces

 

an

 

assembly

 

listing

 

file,

 

filename.lst,

 

and

 

retains

 

the

 

intermediate

 

file,

 

filename.c.

 

For

 

IBM

 

COBOL,

 

also

 

produces

 

an

 

assembly

 

listing

 

file,

 

filename.wlist,

 

and

 

a

 

COBOL

 

source

 

listing

 

and

 

data

 

map

 

list,

 

filename.lst,

 

as

 

well

 

as

 

retaining

 

the

 

intermediate

 

file,

 

filename.cbl.

 

-t

 

(CICS

 

on

 

HP-UX

 

only)

  

Generates

 

an

 

.snt

 

(shared

 

.gnt)

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

executable

 

file.

 

Files

 

with

 

the

 

.snt

 

extension

 

are

 

larger

 

than

 

their

 

equivalent

 

.gnt

 

files

 

but

 

have

 

different

 

characteristics:

 

v

   

Unlike

 

.gnt

 

files,

 

.snt

 

files

 

are

 

libraries

 

shared

 

across

 

the

 

system.

 

v

   

There

 

is

 

a

 

lower

 

memory

 

cost

 

because

 

more

 

processes,

 

such

 

as

 

cicsas

 

processes,

 

use

 

the

 

single

 

.snt

 

image.

 

v

   

After

 

the

 

initial

 

load

 

of

 

an

 

.snt

 

file,

 

successive

 

loads

 

are

 

faster

 

than

 

when

 

using

 

.gnt

 

files.

 

See

 

the

 

HP

 

documentation

 

for

 

more

 

information.

 

Experiment

 

to

 

achieve

 

the

 

best

 

system

 

performance.

 

-v

 

(Not

 

PL/I)

 

produces

 

a

 

cross-reference

 

listing

 

of

 

all

 

EXEC

 

CICS

 

commands

 

in

 

filename.xrf.

 

-X

 

{ext

 

cmd

 

|

 

cicscobinsert}

 

(The

 

cicscobinsert

 

option

 

is

 

only

 

for

 

files

 

on

 

CICS

 

for

 

Windows

 

to

 

be

 

compiled

 

with

 

Micro

 

Focus

 

Net

 

Express

 

3.0

 

or

 

higher)

 

(Not

 

PL/I)

 

The

 

-X

 

ext

 

cmd

 

option

 

executes

 

the

 

specified

 

external

 

command

 

for

 

each

 

translated

 

file,

 

filename.cbl,

 

filename.c,

 

or

 

filename.C,

 

after

 

running

 

cicstran

 

for

 

the

 

file.

 

The

 

-X

 

cicscobinsert

 

option

 

executes

 

the

 

cicscobinsert

 

cicstcl

 

Appendix.

 

CICS

 

commands

 

used

 

in

 

application

 

programming

 

283



utility

 

for

 

each

 

translated

 

COBOL

 

file,

 

filename.cbl,

 

after

 

running

 

cicstran

 

for

 

the

 

file.

 

The

 

-X

 

ext

 

cmd

 

command

 

is

 

executed

 

as

 

ext

 

cmd

 

filename.cbl,

 

ext

 

cmd

 

filename.c,

 

or

 

ext

 

cmd

 

filename.C.

 

The

 

-X

 

cicscobinsert

 

command

 

is

 

executed

 

as

 

cicscobinsert

 

filename.cbl.

 

-x

 

ext

 

cmd

 

(Not

 

PL/I)

 

executes

 

the

 

specified

 

external

 

command

 

for

 

each

 

file

 

specified,

 

filename.ccp

 

or

 

filename.ccs

 

,

 

before

 

running

 

cicstran

 

for

 

that

 

file.

 

The

 

command

 

is

 

executed

 

as

 

ext

 

cmd

 

filename.ccp

 

or

 

ext

 

cmd

 

filename.ccs.

Restrictions

 

Standard

 

operating

 

system

 

access

 

permissions

 

for

 

files

 

and

 

directories

 

apply.

 

The

 

interaction

 

between

 

the

 

command-level

 

translator

 

and

 

the

 

application

 

programmer

 

is

 

through

 

a

 

set

 

of

 

error

 

codes

 

and

 

conditions

 

output

 

by

 

the

 

translator.

 

All

 

EXEC

 

CICS

 

API

 

commands

 

found

 

to

 

be

 

in

 

error

 

by

 

the

 

translator

 

are

 

highlighted

 

on

 

an

 

error

 

report.

 

You

 

can

 

then

 

amend

 

these

 

and

 

resubmit

 

your

 

source.

 

The

 

EIBLABEL

 

field,

 

used

 

only

 

for

 

COBOL

 

programs,

 

is

 

used

 

to

 

contain

 

values

 

relating

 

to

 

handled

 

conditions

 

or

 

abends.

 

The

 

values

 

are:

 

-1

 

EXEC

 

CICS

 

RETURN

 

or

 

EXEC

 

CICS

 

XCTL

 

0

 

normal

 

sequential

 

command

 

processing

 

1

 

abend

 

2

 

to

 

nn

 

a

 

value

 

identifying

 

a

 

label

 

for

 

a

 

handled

 

condition

 

or

 

abend

Returned

 

Values

 

The

 

translation

 

step

 

of

 

cicstcl

 

has

 

the

 

following

 

exit

 

values:

 

0

 

cicstcl

 

has

 

successfully

 

translated

 

the

 

application

 

program

 

and

 

has

 

generated

 

a

 

.cbl,

 

.c,

 

or

 

.C

 

file.

 

1

 

cicstcl

 

detected

 

errors

 

or

 

warnings

 

during

 

translation

 

of

 

the

 

application

 

program

 

and

 

wrote

 

messages

 

to

 

the

 

standard

 

error

 

stream.

 

cicstcl

 

generated

 

a

 

.cbl,

 

.c,

 

or

 

.C

 

file.

 

2

 

cicstcl

 

has

 

detected

 

translator

 

errors

 

and

 

has

 

written

 

messages

 

to

 

the

 

standard

 

error

 

stream.

Examples

 

v

   

To

 

compile,

 

translate,

 

and

 

link-edit

 

a

 

C++

 

application

 

complete

 

with

 

a

 

source

 

listing:

 

cicstcl

 

-l

 

IBMCPP

 

-s

 

Applic2.ccs

 

v

   

To

 

compile,

 

translate,

 

and

 

link-edit

 

an

 

IBM

 

COBOL

 

application

 

with

 

information

 

for

 

debugging

 

from

 

dump:

 

cicstcl

 

-l

 

IBMCOB

 

-d

 

-s

 

Applic3.ccp

 

Refer

 

to

 

Chapter

 

8,

 

“Translating,

 

compiling,

 

and

 

link-editing

 

CICS

 

application

 

programs,”

 

on

 

page

 

213.

 

cicstcl

 

284

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Bibliography

 

v

   

CICS

 

Application

 

Programming

 

Reference,

 

SC09-4461

 

v

   

CICS

 

Intercommunication

 

Guide,

 

SC09-4462

 

v

   

CICS

 

Family:

 

API

 

Structure,

 

SC33-1007

 

v

   

CICS

 

Family:

 

Interproduct

 

Communication,

 

SC33-0824

 

v

   

Concepts

 

and

 

Planning,

 

SC09-4582

 

v

   

TXSeries

 

Release

 

Notes,

 

GC09-4491

 

v

   

CICS

 

Family:

 

Client/Server

 

Programming,

 

SC33-1435

 

v

   

CICS

 

Administration

 

Reference,

 

SC09-4459

 

v

   

CICS

 

Administration

 

Guide

 

v

   

Planning

 

and

 

Installation

 

Guide

 

v

   

CICS

 

Application

 

Programming

 

Guide,

 

SC09-4460

 

v

   

DB2:

 

Administration

 

Guide,

 

v

   

CICS

 

Problem

 

Determination

 

Guide,

 

SC09-4465

 

v

   

CICS

 

Clients:

 

Administration,

 

SC33-1792

 

v

   

IBM

 

3270

 

Information

 

Display

 

Programmer’s

 

Reference,

 

v

   

CICS

 

Administration

 

Guide

 

for

 

Windows

 

Systems,

 

SC09-4456

 

v

   

SMARTdata

 

UTILITIES

 

for

 

AIX

 

v

   

CICS

 

Messages

 

and

 

Codes,

 

SC09-4589

 

v

   

CICS

 

Administration

 

Reference

 

v

   

CICS

 

Administration

 

Reference

 

v

   

CICS

 

Administration

 

Guide

 

for

 

Open

 

Systems,

 

SC09-4587

 

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

285



286

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Notices

 

This

 

information

 

was

 

developed

 

for

 

products

 

and

 

services

 

offered

 

in

 

the

 

U.S.A.

 

IBM

 

may

 

not

 

offer

 

the

 

products,

 

services,

 

or

 

features

 

discussed

 

in

 

this

 

document

 

in

 

other

 

countries.

 

Consult

 

your

 

local

 

IBM

 

representative

 

for

 

information

 

on

 

the

 

products

 

and

 

services

 

currently

 

available

 

in

 

your

 

area.

 

Any

 

reference

 

to

 

an

 

IBM

 

product,

 

program,

 

or

 

service

 

is

 

not

 

intended

 

to

 

state

 

or

 

imply

 

that

 

only

 

that

 

IBM

 

product,

 

program,

 

or

 

service

 

may

 

be

 

used.

 

Any

 

functionally

 

equivalent

 

product,

 

program,

 

or

 

service

 

that

 

does

 

not

 

infringe

 

any

 

IBM

 

intellectual

 

property

 

right

 

may

 

be

 

used

 

instead.

 

However,

 

it

 

is

 

the

 

user’s

 

responsibility

 

to

 

evaluate

 

and

 

verify

 

the

 

operation

 

of

 

any

 

non-IBM

 

product,

 

program,

 

or

 

service.

 

IBM

 

may

 

have

 

patents

 

or

 

pending

 

patent

 

applications

 

covering

 

subject

 

matter

 

described

 

in

 

this

 

document.

 

The

 

furnishing

 

of

 

this

 

document

 

does

 

not

 

give

 

you

 

any

 

license

 

to

 

these

 

patents.

 

You

 

can

 

send

 

license

 

inquiries,

 

in

 

writing,

 

to:

 

IBM

 

Director

 

of

 

Licensing

 

IBM

 

Corporation

 

North

 

Castle

 

Drive

 

Armonk,

 

NY

 

10504-1785

 

U.S.A.

For

 

license

 

inquiries

 

regarding

 

double-byte

 

(DBCS)

 

information,

 

contact

 

the

 

IBM

 

Intellectual

 

Property

 

Department

 

in

 

your

 

country

 

or

 

send

 

inquiries,

 

in

 

writing,

 

to:

 

IBM

 

World

 

Trade

 

Asia

 

Corporation

 

Licensing

 

2-31

 

Roppongi

 

3-chome,

 

Minato-ku

 

Tokyo

 

106,

 

Japan

 

The

 

following

 

paragraph

 

does

 

not

 

apply

 

to

 

the

 

United

 

Kingdom

 

or

 

any

 

other

 

country

 

where

 

such

 

provisions

 

are

 

inconsistent

 

with

 

local

 

law:

 

INTERNATIONAL

 

BUSINESS

 

MACHINES

 

CORPORATION

 

PROVIDES

 

THIS

 

DOCUMENT

 

“AS

 

IS”

 

WITHOUT

 

WARRANTY

 

OF

 

ANY

 

KIND,

 

EITHER

 

EXPRESS

 

OR

 

IMPLIED,

 

INCLUDING,

 

BUT

 

NOT

 

LIMITED

 

TO,

 

THE

 

IMPLIED

 

WARRANTIES

 

OR

 

CONDITIONS

 

OF

 

NON-INFRINGEMENT,

 

MERCHANTABILITY

 

OR

 

FITNESS

 

FOR

 

A

 

PARTICULAR

 

PURPOSE.

 

Some

 

states

 

do

 

not

 

allow

 

disclaimer

 

of

 

express

 

or

 

implied

 

warranties

 

in

 

certain

 

transactions,

 

therefore,

 

this

 

statement

 

may

 

not

 

apply

 

to

 

you.

 

This

 

information

 

could

 

include

 

technical

 

inaccuracies

 

or

 

typographical

 

errors.

 

Changes

 

are

 

periodically

 

made

 

to

 

the

 

information

 

herein;

 

these

 

changes

 

will

 

be

 

incorporated

 

in

 

new

 

editions

 

of

 

the

 

document.

 

IBM

 

may

 

make

 

improvements

 

and/or

 

changes

 

in

 

the

 

product(s)

 

and/or

 

the

 

program(s)

 

described

 

in

 

this

 

publication

 

at

 

any

 

time

 

without

 

notice.

 

Any

 

references

 

in

 

this

 

information

 

to

 

non-IBM

 

Web

 

sites

 

are

 

provided

 

for

 

convenience

 

only

 

and

 

do

 

not

 

in

 

any

 

manner

 

serve

 

as

 

an

 

endorsement

 

of

 

those

 

Web

 

sites.

 

The

 

materials

 

at

 

those

 

Web

 

sites

 

are

 

not

 

part

 

of

 

the

 

materials

 

for

 

this

 

IBM

 

product

 

and

 

use

 

of

 

those

 

Web

 

sites

 

is

 

at

 

your

 

own

 

risk.

 

IBM

 

may

 

use

 

or

 

distribute

 

any

 

of

 

the

 

information

 

you

 

supply

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

287



Licensees

 

of

 

this

 

program

 

who

 

wish

 

to

 

have

 

information

 

about

 

it

 

for

 

the

 

purpose

 

of

 

enabling:

 

(i)

 

the

 

exchange

 

of

 

information

 

between

 

independently

 

created

 

programs

 

and

 

other

 

programs

 

(including

 

this

 

one)

 

and

 

(ii)

 

the

 

mutual

 

use

 

of

 

the

 

information

 

which

 

has

 

been

 

exchanged,

 

should

 

contact:

 

IBM

 

Corporation

 

ATTN:

 

Software

 

Licensing

 

11

 

Stanwix

 

Street

 

Pittsburgh,

 

PA

 

15222

 

U.S.A.

Such

 

information

 

may

 

be

 

available,

 

subject

 

to

 

appropriate

 

terms

 

and

 

conditions,

 

including

 

in

 

some

 

cases,

 

payment

 

of

 

a

 

fee.

 

The

 

licensed

 

program

 

described

 

in

 

this

 

document

 

and

 

all

 

licensed

 

material

 

available

 

for

 

it

 

are

 

provided

 

by

 

IBM

 

under

 

terms

 

of

 

the

 

IBM

 

International

 

Program

 

License

 

Agreement

 

or

 

any

 

equivalent

 

agreement

 

between

 

us.

 

Any

 

performance

 

data

 

contained

 

herein

 

was

 

determined

 

in

 

a

 

controlled

 

environment.

 

Therefore,

 

the

 

results

 

obtained

 

in

 

other

 

operating

 

environments

 

may

 

vary

 

significantly.

 

Some

 

measurements

 

may

 

have

 

been

 

made

 

on

 

development-level

 

systems

 

and

 

there

 

is

 

no

 

guarantee

 

that

 

these

 

measurements

 

will

 

be

 

the

 

same

 

on

 

generally

 

available

 

systems.

 

Furthermore,

 

some

 

measurements

 

may

 

have

 

been

 

estimated

 

through

 

extrapolation.

 

Actual

 

results

 

may

 

vary.

 

Users

 

of

 

this

 

document

 

should

 

verify

 

the

 

applicable

 

data

 

for

 

their

 

specific

 

environment.

 

Information

 

concerning

 

non-IBM

 

products

 

was

 

obtained

 

from

 

the

 

suppliers

 

of

 

those

 

products,

 

their

 

published

 

announcements

 

or

 

other

 

publicly

 

available

 

sources.

 

IBM

 

has

 

not

 

tested

 

those

 

products

 

and

 

cannot

 

confirm

 

the

 

accuracy

 

of

 

performance,

 

compatibility

 

or

 

any

 

other

 

claims

 

related

 

to

 

non-IBM

 

products.

 

Questions

 

on

 

the

 

capabilities

 

of

 

non-IBM

 

products

 

should

 

be

 

addressed

 

to

 

the

 

suppliers

 

of

 

those

 

products.

 

All

 

statements

 

regarding

 

IBM’s

 

future

 

direction

 

or

 

intent

 

are

 

subject

 

to

 

change

 

or

 

withdrawal

 

without

 

notice,

 

and

 

represent

 

goals

 

and

 

objectives

 

only.

 

This

 

information

 

contains

 

examples

 

of

 

data

 

and

 

reports

 

used

 

in

 

daily

 

business

 

operations.

 

To

 

illustrate

 

them

 

as

 

completely

 

as

 

possible,

 

the

 

examples

 

may

 

include

 

the

 

names

 

of

 

individuals,

 

companies,

 

brands,

 

and

 

products.

 

All

 

of

 

these

 

names

 

are

 

fictitious

 

and

 

any

 

similarity

 

to

 

the

 

names

 

and

 

addresses

 

used

 

by

 

an

 

actual

 

business

 

enterprise

 

is

 

entirely

 

coincidental.

 

If

 

you

 

are

 

viewing

 

this

 

information

 

softcopy,

 

the

 

photographs

 

and

 

color

 

illustrations

 

may

 

not

 

appear.

 

Trademarks

 

and

 

service

 

marks

 

The

 

following

 

terms

 

are

 

trademarks

 

or

 

registered

 

trademarks

 

of

 

the

 

IBM

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both:

  

AIX

 

C-ISAM

 

CICS

 

CICS/400

 

CICS/6000®

 

CICS/ESA

 

CICS/MVS

 

CICS/VSE

 

Database

 

2™

 

DB2

   

288

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



DB2

 

Universal

 

Database™

 

DFS

 

Domino™

 

Encina

 

IBM

 

IMS™

 

Informix

 

Lotus®

 

MQSeries

 

MVS

 

MVS/ESA

 

Notes®

 

OS/2

 

RACF®

 

SecureWay

 

SupportPac™

 

System/390

 

TXSeries

 

VisualAge

 

VTAM®

 

WebSphere®

   

Domino,

 

Lotus,

 

and

 

LotusScript

 

are

 

trademarks

 

or

 

registered

 

trademarks

 

of

 

Lotus

 

Development

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

ActiveX,

 

Microsoft,

 

Visual

 

Basic,

 

Visual

 

C++,

 

Visual

 

J++,

 

Visual

 

Studio,

 

Windows,

 

Windows

 

NT®,

 

and

 

the

 

Windows

 

95

 

logo

 

are

 

trademarks

 

or

 

registered

 

trademarks

 

of

 

Microsoft

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

Java

 

and

 

all

 

Java-based

 

trademarks

 

and

 

logos

 

are

 

trademarks

 

or

 

registered

 

trademarks

 

of

 

Sun

 

Microsystems,

 

Inc.

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

UNIX

 

is

 

a

 

registered

 

trademark

 

of

 

The

 

Open

 

Group

 

in

 

the

 

United

 

States

 

and

 

other

 

countries.

 

Pentium®

 

is

 

a

 

trademark

 

of

 

Intel™

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

    

This

 

software

 

contains

 

RSA

 

encryption

 

code.

   

Other

 

company,

 

product,

 

and

 

service

 

names

 

may

 

be

 

trademarks

 

or

 

service

 

marks

 

of

 

others.

   

Notices

 

289



290

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



Index

 

Numerics
3270

 

Information

 

Display

 

System
attribute

 

characters

 

78

 

conversion

 

of

 

datastreams

 

204

 

datastream

 

migration

 

204

 

datastream,

 

setting

 

3270

 

204

 

field

 

concepts

 

77

 

field

 

outlining

 

79,

 

205

 

field

 

validation

 

205

 

input

 

operations

 

76

 

programmed

 

symbols

 

79

 

screen

 

sizes

 

80

 

setting

 

3270

 

datastreams

 

204

 

untranslated

 

3270

 

datastreams

 

204

 

8775

 

Display

 

Terminal
field

 

validation

 

attribute

 

character

 

78,

 

79

 

A
abend

 

code

 

244,

 

245,

 

246

 

ABEND

 

command

 

16,

 

56,

 

64,

 

66,

 

244,

 

246

 

abend

 

exit
program

 

level

 

244,

 

245

 

user

 

exit

 

244,

 

245

 

abend

 

handling

 

244

 

abnormal

 

termination

 

handling

 

246

 

abort,

 

used

 

in

 

CICS

 

programs

 

50

 

ADDRESS

 

command

 

15,

 

29,

 

184,

 

186

 

AID

 

(attention

 

identifier)

 

90,

 

243

 

ALARM

 

option

 

87

 

ALLOCATE

 

command

 

15,

 

243

 

alternate

 

(secondary)

 

106

 

alternate

 

index

 

structure

 

40

 

alternate

 

key

 

106

 

Animator
application

 

development

 

tool

 

17

 

using

 

268,

 

269

 

ANSI

 

mode,

 

compiling

 

it

 

219

 

application

 

data

 

area

 

of

 

screen

 

80

 

Application

 

Debugger

 

258

 

application

 

program
Animator

 

17

 

application

 

migration

 

191

 

calling

 

18

 

cicstran

 

16

 

debugging

 

17

 

logical

 

levels

 

174

 

transactions

 

18

 

translation

 

16

 

application

 

server

 

9,

 

10,

 

53

 

ASIS

 

option
Basic

 

Mapping

 

Support

 

(BMS)

 

90

 

ASKTIME

 

command

 

14

 

assert,

 

used

 

in

 

CICS

 

programs

 

50

 

ASSIGN

 

command

 

15,

 

184,

 

186

 

asynchronous

 

journal

 

output

 

140

 

asynchronous

 

operation

 

68

 

asynchronous

 

page

 

build

 

93

 

asynchronous

 

processing

 

5

 

attention

 

identifier

 

(AID)
3270

 

input

 

operation

 

77

 

HANDLE

 

AID

 

command

 

91,

 

243

 

NOHANDLE

 

option

 

243

 

RESP

 

option

 

243

 

RESP2

 

option

 

243

 

attention

 

key

 

definition

 

52,

 

61

 

attribute

 

characters

 

78,

 

83

 

attributes,

 

use

 

of
IndexName

 

(FD)

 

106

 

ProgramCacheSize

 

44,

 

215

 

automatic

 

transaction

 

initiation

 

(ATI)

 

173

 

autoskip

 

field

 

78

 

auxiliary

 

temporary

 

storage

 

27,

 

136

 

auxiliary

 

trace

 

37,

 

248

 

B
base

 

color

 

78

 

base

 

key

 

106

 

Basic

 

Mapping

 

Support

 

(BMS)
application

 

development

 

tool

 

16

 

assembling

 

maps

 

73

 

attribute

 

constants

 

83

 

CICS

 

on

 

Open

 

Systems

 

map

 

migration

 

203

 

CICS

 

OS/2

 

map

 

migration

 

203

 

cicsmap

 

command

 

276

 

coordinating

 

BMS

 

and

 

another

 

screen

 

manager

 

88

 

cursor

 

position

 

87

 

defining

 

maps

 

73,

 

98

 

defining

 

mapsets

 

98

 

device

 

control

 

options

 

87

 

exception

 

conditions

 

90

 

field

 

data

 

format

 

82

 

field

 

definition

 

macro

 

(DFHMDF)

 

98

 

GDDM

 

coordination

 

88

 

how

 

to

 

copy

 

symbolic

 

maps

 

92

 

how

 

to

 

define

 

maps

 

97

 

how

 

to

 

obtain

 

printed

 

output

 

93

 

how

 

to

 

use

 

the

 

BMS

 

processor

 

75

 

input

 

field

 

suffix

 

82

 

invalid

 

data

 

84

 

map

 

definition

 

macro

 

(DFHMDI)

 

98

 

map

 

set

 

definition

 

macro

 

(DFHMSD)

 

97

 

map

 

set

 

definition

 

termination

 

99

 

map

 

set

 

suffixing

 

74

 

mapping

 

considerations

 

202

 

mapping

 

input

 

data

 

89

 

mapping

 

output

 

data

 

84

 

migrating

 

maps

 

from

 

CICS

 

on

 

Open

 

Systems

 

203

 

migrating

 

maps

 

from

 

CICS

 

OS/2

 

203

 

minimum

 

function

 

BMS

 

72

 

output

 

field

 

suffixes

 

82

 

overview

 

67,

 

71,

 

73

 

physical

 

map

 

16,

 

74

 

Basic

 

Mapping

 

Support

 

(BMS)

 

(continued)
screen

 

attribute

 

definition

 

52,

 

61

 

sending

 

data

 

to

 

a

 

display

 

84

 

symbolic

 

map

 

16,

 

74,

 

92

 

using

 

12

 

wrapping

 

map

 

fields

 

202

 

writing

 

programs

 

for

 

81

 

blank

 

field

 

95

 

blank

 

lines

 

and

 

3270

 

printer

 

94

 

bright

 

intensity

 

field

 

78

 

browse

 

13,

 

108

 

end

 

123

 

ESDS

 

123

 

KSDS

 

122

 

path

 

123

 

sequential

 

122

 

simultaneous

 

123

 

skip-sequential

 

120

 

business

 

logic

 

14

 

C
C

abend

 

handling

 

in

 

144

 

BMS

 

source

 

files

 

16

 

cached

 

programs,

 

restriction

 

62

 

compiler

 

considerations

 

198

 

compiling

 

a

 

program

 

219

 

length

 

of

 

CICS

 

commands

 

37

 

link

 

libraries

 

214

 

passing

 

data

 

to

 

another

 

program

 

175

 

recursive

 

invocations

 

27

 

source

 

directories

 

214

 

SQL,

 

use

 

of

 

14,

 

31

 

storage,

 

accessing

 

183

 

translated

 

code

 

217

 

translation

 

of

 

source

 

16

 

C

 

programs,

 

caches

 

44,

 

215

 

C++
BMS

 

source

 

files

 

16

 

compiler

 

considerations

 

198

 

length

 

of

 

CICS

 

commands

 

37

 

link

 

libraries

 

214

 

passing

 

data

 

to

 

another

 

program

 

175

 

source

 

directories

 

214

 

SQL,

 

use

 

of

 

31

 

storage,

 

accessing

 

183

 

translating

 

198

 

translation

 

of

 

source

 

16

 

versions

 

of

 

198

 

cached

 

programs

 

62,

 

64,

 

215

 

CALL

 

statement

 

53

 

CANCEL

 

command

 

14

 

catch(...),

 

used

 

in

 

CICS

 

programs

 

51

 

CCFLAGS

 

62

 

CDCN

 

258

 

CEBR
use

 

of

 

255

 

use

 

with

 

transient

 

data

 

256

 

CECI

 

transaction
security

 

rules

 

257

  

©

 

Copyright

 

IBM

 

Corp.

 

1999,

 

2004

 

291



CECS

 

transaction
security

 

rules

 

257

 

CEDF
application

 

development

 

tool

 

17

 

description

 

of

 

258

 

reference

 

258

 

syntax

 

258

 

CEMT
DUMP

 

command

 

253

 

use

 

of

 

55

 

cerr,

 

used

 

in

 

CICS

 

programs

 

50

 

checkout,

 

program

 

17

 

CheckpointInterval

 

attribute,

 

use

 

of

 

34

 

CICS
names

 

reserved

 

for

 

49

 

CICS

 

client
tracing

 

249

 

CICS

 

internal

 

functions,

 

used

 

in

 

CICS

 

programs

 

50

 

CICS

 

on

 

Open

 

Systems

 

clients

 

9

 

CICS

 

on

 

Open

 

Systems,

 

defined

 

4

 

CICS

 

OS/2
BMS

 

map

 

202

 

map

 

migration

 

203

 

CICS_XFH_DBNAME

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_LOCAL_INDEXED

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_LOCAL_LINE_SEQ

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_LOCAL_RELATIVE

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_LOCAL_SEQ

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_LOGFILE

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_TRANMODE

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_USERNAME

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS_XFH_USERPASS

 

environment

 

variable,

 

use

 

of

 

160,

 

163

 

CICS-private

 

shared

 

storage

 

184

 

CICS-safe

 

functions

 

50

 

CICS-supplied

 

transactions

 

253

 

summary

 

of

 

18

 

cicsdb2conf

 

command,

 

use

 

of

 

113

 

cicsddt

 

command,

 

use

 

of

 

113

 

cicsmap

 

command
description

 

276

 

flags

 

276

 

parameters

 

276

 

purpose

 

276

 

syntax

 

276

 

cicsmfmt

 

251

 

cicsmkcobol

 

199

 

cicsprCOBOL

 

199

 

cicstcl

 

213

 

cicstcl

 

command
description

 

281

 

flags

 

281

 

parameters

 

281

 

program

 

invocation

 

environment

 

53

 

purpose

 

281

 

syntax

 

281

 

transaction

 

execution

 

11

 

use

 

of

 

215

 

cicstcl

 

command

 

(continued)
using

 

the

 

IBM

 

PL/I

 

compiler

 

64

 

cicsteld
replaceable

 

67

 

terminals

 

supported

 

by

 

67

 

use

 

of

 

67

 

cicsterm

 

9,

 

10

 

replaceable

 

67

 

terminals

 

supported

 

by

 

67

 

use

 

of

 

67

 

using

 

with

 

Animator

 

269

 

cicstermp

 

9

 

cicstfmt

 

247

 

cicstran

 

213

 

use

 

of

 

216

 

cicstran

 

command
cicstran

 

16

 

description

 

278

 

flags

 

278

 

parameters

 

278

 

purpose

 

278

 

syntax

 

278

 

cin,

 

used

 

in

 

CICS

 

programs

 

50

 

CJDB

 

transaction

 

271

 

CLEAR

 

key

 

71,

 

91,

 

95

 

client
defined

 

67

 

tracing

 

249

 

client

 

processes

 

9

 

client/server

 

application

 

programming
developing

 

7

 

CLOSE

 

DATABASE

 

statement,

 

use

 

of

 

144

 

clustered

 

file

 

109

 

COBDIR

 

environment

 

variable,

 

use

 

of

 

166,

 

169

 

COBOL
abend

 

handling

 

in

 

144

 

API

 

commands

 

support

 

(CICS)

 

51

 

argument

 

value

 

51

 

BMS

 

source

 

files

 

16

 

calling

 

programs

 

from

 

53

 

character

 

sets

 

supported

 

51

 

cicsmkcobol,

 

reference

 

to

 

199

 

cicsprCOBOL,

 

reference

 

to

 

199

 

commands

 

supported

 

(CICS

 

API)

 

51

 

COMP-5

 

51,

 

179

 

compiler

 

considerations

 

198

 

compiling

 

your

 

program

 

166,

 

167,

 

169

 

debugging

 

with

 

Animator

 

268,

 

269

 

default

 

option

 

51

 

length

 

of

 

CICS

 

commands

 

37

 

link

 

libraries

 

214

 

mixing

 

languages

 

55

 

passing

 

data

 

to

 

another

 

program

 

175

 

releasing

 

resources

 

56

 

restrictions

 

58

 

returning

 

from

 

56

 

running

 

the

 

program

 

167,

 

168,

 

170

 

source

 

directories

 

214

 

SQL,

 

use

 

of

 

14,

 

31

 

storage,

 

accessing

 

183

 

translating

 

198

 

translation

 

of

 

source

 

16

 

using

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

EXTFH

 

159,

 

162,

 

165

 

COBOL

 

(continued)
versions

 

of

 

198

 

working

 

storage

 

55

 

working

 

storage

 

loading

 

27

 

COBOL.
compiling

 

with

 

IBM

 

COBOL

 

228

 

coded

 

character

 

set

 

116

 

coexistence
BTAM

 

terminals

 

195

 

command-level

 

applications

 

195

 

files,

 

TDQs

 

and

 

TSQs

 

195

 

macro-level

 

applications

 

195

 

VTAM

 

terminals

 

195

 

Coexistence

 

with

 

other

 

CICS

 

family

 

members

 

194

 

COLLECT

 

STATISTICS

 

command

 

16,

 

252

 

color,

 

extended

 

79

 

command
default

 

options

 

52

 

lengths

 

37

 

summary

 

18

 

Command

 

Level

 

Interpreter

 

(CECI)
security

 

rules

 

257

 

commands
cicsdb2conf

 

113

 

cicsddt

 

113

 

cicsmkcobol

 

199

 

default

 

options

 

64

 

COMMAREA

 

26,

 

29,

 

174,

 

183,

 

184

 

obtaining

 

address

 

62

 

COMMIT

 

WORK

 

command,

 

use

 

of

 

144

 

common

 

work

 

area

 

28,

 

184

 

COMP-5

 

179

 

compilation
ANSI

 

mode

 

219

 

compile

 

a

 

translated

 

application

 

218

 

compile

 

an

 

application

 

214,

 

218

 

compiling

 

a

 

C

 

application

 

program

 

219

 

compiling

 

a

 

Micro

 

Focus

 

Net

 

Express

 

application

 

program

 

226

 

compiling

 

a

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

application

 

program

 

225

 

compiling

 

a

 

PL/I

 

application

 

program

 

229

 

compiling

 

an

 

IBM

 

COBOL

 

application

 

program

 

229

 

EBCDIC-enabled

 

programs

 

57,

 

227

 

link-edit

 

a

 

translated

 

application

 

218

 

link-edit

 

an

 

application

 

214,

 

218

 

position

 

independent

 

219

 

translate

 

an

 

application

 

214,

 

218

 

with

 

IBM

 

COBOL

 

228

 

compiler

 

debugging

 

tools

 

253

 

compiler

 

options

 

281

 

CONNECT

 

PROCESS

 

command

 

15,

 

37

 

control

 

and

 

flow

 

14

 

conversational

 

transaction

 

10,

 

21

 

CONVERSE

 

command

 

13,

 

15,

 

68,

 

71

 

copying

 

symbolic

 

description

 

maps

 

92

 

cout,

 

used

 

in

 

CICS

 

programs

 

50

 

CURSOR

 

option

 

87

 

cursor

 

position
Basic

 

Mapping

 

Support

 

(BMS)

 

87

   

292

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



cursor

 

select

 

key
handling

 

in

 

program

 

91

 

CWA

 

28,

 

184

 

D
data

consistency

 

33

 

fields

 

on

 

screen

 

80

 

integrity

 

33

 

passing

 

to

 

another

 

program

 

175

 

reading

 

from

 

a

 

display

 

89

 

services

 

13

 

tables

 

183

 

data

 

declaration
C

 

61

 

C++

 

61

 

COBOL

 

52

 

PL/I

 

65

 

data

 

sharing
within

 

transaction

 

25

 

data-entry

 

operations

 

96

 

databases
CLOSE

 

DATABASE

 

statement,

 

and

 

use

 

of

 

144

 

COMMIT

 

WORK

 

command,

 

and

 

use

 

of

 

144

 

DB2

 

142

 

improving

 

performance

 

of

 

45

 

Informix

 

142

 

Oracle

 

142

 

SQL

 

142

 

SQL

 

COMMIT

 

WORK

 

command,

 

and

 

use

 

of

 

144

 

Sybase

 

142

 

SYNCPOINT

 

commands,

 

and

 

use

 

of

 

144

 

databases

 

and

 

files
exclusive

 

control

 

38

 

locking

 

38

 

DATAONLY

 

option

 

85,

 

96

 

datastream

 

71,

 

94

 

basic

 

mapping

 

support

 

94

 

compressing

 

96

 

conversion

 

of,

 

3270

 

204

 

field

 

outlining

 

205

 

field

 

validation

 

205

 

inbound

 

95

 

migration

 

204

 

migration

 

requirements

 

204

 

untranslated,

 

3270

 

204

 

DB2
concurrency

 

102

 

example

 

transaction

 

for

 

145

 

file

 

access

 

13

 

file

 

types

 

106

 

keyed

 

13

 

locking

 

102

 

relative

 

13

 

sequential

 

13

 

table

 

space

 

46

 

DB2

 

EXTFH

 

157

 

non-transactional

 

access

 

160

 

transactional

 

access

 

160

 

DCE
asynchronous

 

cancellation,

 

used

 

in

 

CICS

 

programs

 

50

 

DCE

 

(continued)
programming

 

considerations

 

49

 

threads,

 

used

 

in

 

CICS

 

programs

 

50

 

deadlock
avoiding

 

185

 

deadly

 

embrace,

 

avoiding

 

185

 

debugging
CEDF

 

17

 

EDF

 

258

 

overview

 

263

 

performance

 

monitoring

 

16

 

remote

 

transaction

 

258

 

tools

 

263

 

using

 

Animator

 

268

 

using

 

IBM

 

VisualAge

 

C++

 

(Windows

 

only)

 

264

 

using

 

IBM

 

VisualAge

 

for

 

COBOL

 

265

 

using

 

NT

 

msdev

 

267

 

using

 

NT

 

windbg

 

267

 

Debugging

 

with

 

CDCN

 

258

 

default

 

options,

 

EXEC

 

CICS

 

52,

 

64

 

deferred

 

journal

 

output

 

141

 

DELAY

 

command

 

14,

 

59

 

FOR/UNTIL

 

in

 

C

 

59

 

DELETE

 

command

 

121,

 

125,

 

129

 

DELETEQ

 

TS

 

command

 

133

 

DEQ

 

command

 

14,

 

181

 

destinations
extrapartition

 

131

 

indirect

 

132

 

developing

 

applications

 

within

 

CICS
overview

 

5

 

device

 

control

 

options,

 

BMS

 

87

 

DFHAID

 

52,

 

91,

 

244

 

dfhaid.h

 

61

 

DFHBMSCA

 

52,

 

83

 

dfhbmsca.h

 

61

 

DFHCOMMAREA

 

54

 

DFHEIBLK

 

54

 

DFHMDF

 

97

 

DFHMDI

 

97

 

DFHMSD

 

97

 

DFHRESP

 

234

 

direct

 

read

 

120,

 

121

 

display

 

screens

 

29

 

display,

 

reading

 

from

 

89

 

distributed

 

program

 

link

 

(DPL)

 

5

 

distributed

 

transaction

 

processing

 

5,

 

68

 

DL/I,

 

reference

 

to

 

18

 

dump
overview

 

250

 

DUMP

 

command

 

16,

 

253

 

DUPKEY

 

condition

 

123,

 

125

 

duplicate

 

key

 

123

 

DUPREC

 

condition
cause

 

of

 

110,

 

118

 

in

 

a

 

KSDS

 

121

 

dynamic

 

backout

 

34

 

dynamic

 

loading

 

11

 

E
EBCDIC-enabled

 

programs

 

57,

 

227

 

ECI

 

7

 

programs

 

8

 

EDF

 

258

 

EIB

 

52,

 

187

 

EIBAID

 

field

 

91,

 

244

 

EIBTRNID

 

field

 

61

 

with

 

C

 

and

 

C++

 

61

 

EIBAID

 

field

 

91,

 

244

 

EIBTRNID

 

field

 

61

 

emulator

 

control
3270

 

field

 

concept

 

77

 

handle

 

attention

 

identifier

 

91

 

map

 

input

 

data

 

89

 

print

 

(ISSUE

 

PRINT)

 

93

 

Encina
threadTid,

 

used

 

in

 

CICS

 

programs

 

51

 

TRAN,

 

used

 

in

 

CICS

 

programs

 

51

 

Transactional

 

C,

 

used

 

in

 

CICS

 

programs

 

51

 

Encina

 

EXTFH

 

157

 

ENDBR

 

command

 

123

 

ENDFILE

 

condition

 

123,

 

233

 

ENQ

 

command

 

14,

 

37,

 

181,

 

243

 

ENQBUSY

 

condition

 

37,

 

181,

 

234

 

enqueue

 

interlock
avoiding

 

185

 

ENTER

 

command

 

16,

 

253

 

ENTER

 

key

 

91

 

ENTER

 

MONITOR

 

command

 

251

 

ENTER

 

PERFORM

 

command

 

251

 

Entry-sequenced

 

data

 

set

 

(ESDS)
RBA

 

108

 

environment

 

variables
CICS_XFH_DBNAME,

 

use

 

of

 

160,

 

163

 

CICS_XFH_LOGFILE,

 

use

 

of

 

160,

 

163

 

CICS_XFH_TRANMODE,

 

use

 

of

 

160,

 

163

 

CICS_XFH_USERNAME,

 

use

 

of

 

160,

 

163

 

CICS_XFH_USERPASS,

 

use

 

of

 

160,

 

163

 

COBDIR,

 

use

 

of

 

166,

 

169

 

environment

 

variables

 

for

 

accessing

 

SFS

 

features

 

170

 

EPI

 

7

 

programs

 

8

 

EPTF,

 

use

 

of

 

249

 

ERASE

 

option

 

87,

 

95

 

ERASEAUP

 

option

 

87,

 

95,

 

96

 

ERROR

 

condition

 

234,

 

243

 

error

 

handling

 

16

 

default

 

action

 

233

 

description

 

233

 

ESDS

 

110,

 

121

 

event

 

performance

 

trace

 

facility,

 

use

 

of

 

249

 

exception

 

conditions
Basic

 

Mapping

 

Support

 

(BMS)

 

90

 

HANDLE

 

CONDITION

 

command

 

238

 

IGNORE

 

CONDITION

 

command

 

237

 

RESP

 

option

 

234

 

exclusive

 

control

 

(SFS)

 

40

 

EXEC

 

CICS

 

commands
default

 

options

 

52,

 

64

 

EXEC

 

interface

 

block

 

52,

 

61,

 

187

 

exec,

 

used

 

in

 

CICS

 

programs

 

50

   

Index

 

293



Execution

 

Diagnostic

 

Facility

 

(CEDF)
application

 

development

 

tool

 

17

 

exit
or

 

_exit,

 

used

 

in

 

CICS

 

programs

 

50

 

EXIT

 

PROGRAM

 

56

 

exit()

 

64,

 

66

 

expiration

 

time
specifying

 

180

 

EXPIRED

 

condition

 

234

 

extended

 

color

 

79

 

external

 

call

 

interface

 

(ECI)

 

7

 

external

 

file

 

handler

 

157

 

External

 

File

 

Handler

 

(EXTFH)
accessing

 

other

 

SFS

 

features

 

170

 

environment

 

variables

 

170

 

EXTFH

 

and

 

SFS

 

165

 

EXTFH

 

and

 

SFS

 

on

 

Windows

 

168

 

EXTFH

 

file

 

type

 

mappings

 

170

 

preparing

 

a

 

COBOL

 

runtime

 

165,

 

169

 

standalone

 

EXTFH

 

and

 

SFS

 

167

 

using

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

EXTFH

 

159,

 

162

 

external

 

presentation

 

interface

 

(EPI)

 

7

 

external

 

trace

 

249

 

EXTRACT

 

ATTRIBUTES

 

command

 

15

 

EXTRACT

 

PROCESS

 

command

 

15

 

extrapartition
destination

 

131

 

transient

 

data

 

30,

 

131,

 

137

 

F
FD

 

attributes,

 

use

 

of
IndexName

 

106

 

field

 

concepts,

 

3270

 

77

 

field

 

data

 

format,

 

BMS

 

82

 

field

 

outlining

 

79,

 

205

 

field

 

validation

 

205

 

field,

 

blank

 

95

 

File

 

Definitions

 

(FD)

 

attributes,

 

use

 

of
IndexName

 

106

 

file

 

types

 

106

 

files
access

 

from

 

CICS

 

application

 

programs

 

120

 

adding

 

records

 

125

 

deleting

 

records

 

125

 

external

 

file

 

handler

 

157

 

external

 

files

 

131

 

recoverable

 

102

 

services

 

13

 

unlocking

 

125

 

updating

 

from

 

non-CICS

 

applications

 

157

 

user

 

30

 

fork,

 

used

 

in

 

CICS

 

programs

 

50

 

form

 

feed

 

control,

 

BMS

 

94

 

formatted

 

data

 

95

 

FORMATTIME

 

command

 

14

 

FORMFEED

 

option

 

87

 

FREE

 

command

 

15

 

FREEKB

 

option

 

87

 

FREEMAIN

 

command

 

15,

 

183

 

abend

 

codes

 

244

 

FRSET

 

option

 

87,

 

95

 

FSET

 

option

 

95

 

function

 

shipping

 

5

 

G
generic

 

browse

 

108

 

generic

 

delete

 

125

 

generic

 

key

 

107,

 

121

 

GENERIC

 

option

 

107,

 

127

 

GET

 

command
PUT

 

command

 

256

 

GETMAIN

 

command

 

15,

 

37,

 

183,

 

243

 

GETMAIN

 

SHARED

 

command

 

183

 

GOBACK

 

56

 

GTEQ

 

option

 

107,

 

123,

 

127

 

H
HANDLE

 

ABEND

 

command

 

16,

 

58,

 

234,

 

239,

 

246

 

CANCEL

 

option

 

245

 

LABEL

 

option

 

244

 

PROGRAM

 

option

 

244

 

RESET

 

option

 

245,

 

246

 

HANDLE

 

AID

 

command

 

13,

 

58,

 

91,

 

234,

 

237,

 

239,

 

243

 

HANDLE

 

CONDITION

 

command

 

16,

 

58,

 

141,

 

234,

 

236,

 

237,

 

238,

 

239,

 

241,

 

243

 

handling

 

errors

 

233

 

highlighting

 

79

 

HOURS(hh)

 

option

 

60

 

I
IBM

 

CICS

 

for

 

Windows,

 

defined

 

4

 

IBM

 

COBOL
compiling

 

a

 

program

 

229

 

program

 

invocation

 

environment

 

53

 

IBM

 

mainframe-based

 

CICS,

 

defined

 

4

 

IBM

 

PL/I
program

 

invocation

 

environment

 

64

 

IC

 

attribute

 

87

 

idebug

 

265

 

IGNORE

 

CONDITION

 

command

 

16,

 

58,

 

234,

 

237,

 

239

 

ILLOGIC

 

condition

 

113,

 

121

 

inbound

 

datastream

 

95

 

index

 

(RRDS)
alternate

 

107

 

primary

 

107

 

IndexName

 

attribute

 

(FD),

 

use

 

of

 

106

 

indirect

 

destination

 

132

 

Informix
example

 

transaction

 

for

 

145

 

inhibit

 

wait,

 

NOSUSPEND

 

option

 

37

 

input

 

operations

 

77

 

INPUTMSG

 

174

 

INQUIRE

 

command

 

15,

 

187,

 

236

 

INQUIRE

 

STATISTICS

 

command

 

16,

 

252

 

insert-cursor

 

indicator

 

79

 

installation

 

phase

 

193

 

Installation

 

Verification

 

Procedures

 

(IVPs)

 

195

 

integrity

 

33

 

interlock,

 

transaction
avoiding

 

185

 

intersystem

 

communication

 

(ISC),

 

defined

 

4

 

interval

 

control

 

59

 

expiration

 

time

 

180

 

interval

 

control

 

(continued)
specifying

 

request

 

identifier

 

181

 

transaction

 

initiation

 

173

 

intrapartition
destination

 

130

 

transient

 

data

 

30,

 

131

 

intrapartition

 

transient

 

data
implicit

 

locking

 

upon

 

40

 

INVREQ

 

condition

 

129

 

IOERR

 

condition

 

238

 

IOERR

 

condition

 

processing

 

247

 

iostream

 

objects

 

63

 

ISC,

 

defined

 

4

 

ISSUE

 

ABEND

 

command

 

15

 

ISSUE

 

CONFIRMATION

 

command

 

15

 

ISSUE

 

ERROR

 

command

 

15

 

ISSUE

 

PREPARE

 

command

 

15

 

ISSUE

 

SIGNAL

 

command

 

15,

 

68

 

ITEMERR

 

condition

 

133

 

IVPs

 

(Installation

 

Verification

 

Procedures)

 

195

 

J
journal

 

141

 

services

 

14

 

journal

 

control
output

 

synchronization

 

140

 

journaling

 

137,

 

253

 

CICS

 

journaling

 

137

 

DTB

 

138

 

Dynamic

 

Transaction

 

Backout

 

138

 

recovery

 

after

 

a

 

system

 

abnormally

 

terminates

 

138

 

K
key-sequenced

 

data

 

set

 

107

 

KEYLENGTH

 

option

 

107

 

remote

 

file

 

127

 

keys
generic

 

121

 

keyword

 

fields

 

on

 

screen

 

80

 

kill,

 

used

 

in

 

CICS

 

programs

 

50

 

KSDS

 

121

 

generic

 

107

 

key

 

107

 

RIDFLD

 

107

 

segmented

 

107

 

L
LENGERR

 

condition

 

128,

 

234,

 

242

 

LENGTH

 

option
default,

 

COBOL

 

52

 

default,

 

PL/I

 

64

 

Lengths

 

for

 

CICS

 

commands

 

37

 

line

 

width

 

for

 

printer

 

94

 

LINK

 

command

 

14,

 

62,

 

175,

 

241

 

restrictions

 

144

 

link

 

libraries

 

214

 

link

 

to

 

program

 

anticipating

 

return

 

175

 

link-edit

 

an

 

application

 

214,

 

218

 

linker

 

options

 

281

 

LOAD

 

command

 

15,

 

183,

 

184

 

lock

 

modes

 

102

   

294

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



locking

 

33

 

explicit

 

locking

 

by

 

application

 

program

 

41

 

implicit

 

locking

 

on

 

nonrecoverable

 

files

 

38

 

implicit

 

locking

 

on

 

recoverable

 

files

 

39

 

implicit

 

locking

 

on

 

temporary

 

storage

 

queues

 

41

 

implicit

 

locking

 

on

 

transient

 

data

 

destinations

 

40

 

in

 

application

 

programs

 

38

 

logging

 

resource

 

states

 

34

 

logical

 

unit

 

of

 

work

 

(LUW)

 

34

 

services

 

185

 

terminal

 

services

 

67

 

LUW

 

(logical

 

unit

 

of

 

work)

 

185

 

M
macro

 

instructions
field

 

definition

 

macro

 

99

 

field

 

definition,

 

DFHMDF

 

99

 

map

 

definition,

 

DFHMDI

 

98

 

map

 

set

 

definition,

 

DFHMSD

 

98

 

main

 

storage
buffer

 

248

 

trace

 

248

 

main

 

temporary

 

storage

 

27,

 

136

 

map

 

definition

 

macro,

 

DFHMDI

 

98

 

MAPFAIL

 

condition

 

90,

 

235

 

MAPONLY

 

option

 

85,

 

96

 

mapping

 

considerations

 

202

 

mapping

 

input

 

data

 

89

 

maps
BMS

 

95,

 

96

 

CICS

 

on

 

Open

 

Systems

 

map

 

migration

 

203

 

CICS

 

OS/2

 

map

 

migration

 

203

 

copying

 

symbolic

 

description

 

92

 

defining

 

73

 

migrating

 

maps

 

from

 

CICS

 

on

 

Open

 

Systems

 

203

 

migrating

 

maps

 

from

 

CICS

 

OS/2

 

203

 

mapset

 

74,

 

75

 

MDT

 

95

 

message

 

area

 

of

 

screen

 

81

 

MF

 

COBOL

 

EXTFH
DB2

 

159

 

Oracle

 

162

 

Micro

 

Focus

 

Net

 

Express
compiling

 

a

 

program

 

226

 

compiling

 

an

 

EBCDIC-enabled

 

program

 

57,

 

227

 

Micro

 

Focus

 

Server

 

Express

 

COBOL
available

 

memory

 

55

 

compiling

 

a

 

program

 

225

 

program

 

invocation

 

environment

 

53

 

migration
3270

 

Information

 

Display

 

System

 

datastream

 

204

 

API

 

201

 

application

 

migration

 

191

 

CEMT

 

199

 

change

 

control

 

191

 

CICS

 

OS/2

 

203

 

CICS

 

OS/2

 

map

 

migration

 

203

 

migration

 

(continued)
databases

 

199

 

macro-level

 

applications

 

199

 

map

 

migration

 

203

 

maps

 

from

 

CICS

 

OS/2

 

203

 

migrating

 

data

 

196

 

monitoring

 

and

 

statistics

 

199

 

planning

 

and

 

control

 

191

 

minimizing

 

errors

 

253

 

minimum

 

function

 

BMS

 

72

 

MINUTES(mm)

 

option

 

60

 

mixing

 

languages

 

55,

 

62,

 

66

 

modified

 

data

 

tag

 

(MDT)

 

77,

 

79,

 

95

 

MONITOR

 

POINT

 

command

 

251

 

monitoring
cicsmfmt

 

251

 

monitoring

 

application

 

performance

 

251

 

record

 

251

 

MRO,

 

defined

 

4

 

msdev

 

267

 

multiregion

 

operation

 

(MRO),

 

defined

 

4

 

N
names

 

reserved

 

for

 

CICS

 

49

 

NEWCOPY

 

215

 

NEWCOPY,

 

use

 

of

 

55

 

NOBUFSP

 

condition

 

234

 

NOHANDLE

 

option

 

58,

 

234,

 

236,

 

237,

 

243

 

NOJBUFSP

 

condition

 

37,

 

141

 

non-migrated

 

regions

 

or

 

applications

 

194

 

non-transactional

 

access,

 

DB2

 

EXTFH

 

160

 

non-transactional

 

access,

 

Oracle

 

EXTFH

 

163

 

non-XA

 

enabled

 

databases
restrictions

 

144

 

nonconversational

 

transaction

 

21

 

nondisplay

 

fields

 

78

 

NOQUEUE

 

option

 

37,

 

243

 

NORMAL

 

condition

 

233,

 

234,

 

239

 

normal

 

intensity

 

field

 

78

 

NOSPACE

 

condition

 

234

 

NOSTG

 

condition

 

234

 

NOSUSPEND

 

option

 

243

 

inhibit

 

wait

 

37

 

NOTAUTH

 

condition

 

234

 

NOTFND

 

condition

 

121

 

null

 

lines

 

and

 

3270

 

printer

 

94

 

numeric-only

 

field

 

(3270

 

attribute

 

character)

 

78

 

O
ODBC

 

API
using

 

to

 

write

 

a

 

CICS

 

application

 

program

 

151

 

in

 

C

 

151

 

in

 

IBM

 

VisualAge

 

COBOL

 

153

 

Micro

 

Focus

 

NetExpress

 

COBOL

 

156

 

OFD,

 

use

 

of

 

101

 

OFF

 

parameter

 

258

 

open

 

file

 

descriptor

 

101

 

operating

 

system
programming

 

considerations

 

49

 

operations

 

and

 

recovery

 

35

 

operator

 

identification

 

card

 

reader

 

91

 

Oracle
concurrency

 

and

 

locking

 

103

 

example

 

transaction

 

for

 

145

 

Oracle

 

EXTFH

 

157

 

non-transactional

 

access

 

163

 

transactional

 

access

 

163

 

output

 

operations

 

77

 

P
PA

 

(program

 

access)

 

key

 

91

 

PA

 

keys

 

71,

 

95

 

page

 

width

 

for

 

printer

 

94

 

parallel

 

running

 

196

 

passing

 

control
anticipating

 

return

 

(LINK)

 

175

 

path

 

106,

 

122

 

PERFORM

 

SNAP

 

command

 

254

 

PERFORM

 

SNAP

 

DUMP

 

command

 

253

 

PERFORM

 

STATISTICS

 

command

 

252

 

PERFORM

 

STATISTICS

 

RECORD

 

command

 

16

 

performance

 

and

 

recovery

 

36

 

PF

 

(program

 

function)

 

key
BMS

 

91

 

PF

 

keys

 

71,

 

95

 

phased

 

cutover

 

193

 

non-migrated

 

regions

 

or

 

applications

 

194

 

terminal

 

owning

 

regions

 

193

 

PL/I
cached

 

programs,

 

restriction

 

64

 

compiler

 

considerations

 

198

 

compiling

 

a

 

program

 

229

 

data

 

declarations

 

65

 

length

 

of

 

CICS

 

commands

 

37

 

passing

 

data

 

to

 

another

 

program

 

175

 

SQL,

 

use

 

of

 

14,

 

31

 

storage,

 

accessing

 

183

 

translating

 

198

 

versions

 

of

 

198

 

planning

 

phase

 

192

 

POP

 

HANDLE

 

command

 

16,

 

58,

 

234,

 

237,

 

239,

 

243,

 

245

 

portability

 

and

 

recovery

 

36

 

POS

 

operand
DFHMDF

 

macro

 

99

 

preparing

 

applications
cicstran

 

command

 

278

 

preparing

 

Applications
cicsmap

 

command

 

276

 

overview

 

214

 

presentation

 

services
overview

 

67

 

primary

 

index

 

107

 

primary

 

key

 

106

 

print

 

monitor

 

record

 

251

 

PRINT

 

option

 

87

 

printers
3270

 

printer

 

page

 

width

 

93

 

3270

 

printers

 

and

 

blank

 

lines

 

93

 

printing

 

displayed

 

data

 

93

   

Index

 

295



printers

 

(continued)
starting

 

a

 

printer

 

task

 

93

 

printing

 

contents

 

of

 

screen

 

93

 

program

 

access

 

(PA)

 

key

 

91

 

program

 

compatibility
API

 

198

 

BMS

 

198

 

other

 

considerations

 

198

 

source

 

language

 

and

 

compilers

 

198

 

program

 

design
conversational

 

21

 

nonconversational

 

21

 

pseudoconversational

 

21

 

program

 

execution

 

174

 

linking

 

to

 

another

 

program

 

175

 

passing

 

data

 

to

 

another

 

program

 

175

 

program

 

function

 

(PF)

 

key
BMS

 

91

 

program

 

reloads

 

55

 

program

 

testing

 

17

 

EDF

 

258

 

program-level

 

abend

 

exit

 

244,

 

245

 

programmed

 

symbols

 

79

 

programming

 

considerations

 

49

 

migration

 

199

 

protected

 

fields

 

78

 

pseudoconversational

 

transaction

 

10,

 

21

 

PUSH

 

HANDLE

 

command

 

58,

 

234,

 

237,

 

239,

 

243,

 

245

 

Put

 

command
Get

 

command

 

256

 

Q
QBUSY

 

condition

 

37,

 

234

 

queue

 

31,

 

135

 

intrapartition

 

131

 

temporary

 

storage

 

14

 

transient

 

data

 

14,

 

136

 

QZERO

 

condition

 

133

 

R
raise,

 

used

 

in

 

CICS

 

programs

 

50

 

RBA

 

108

 

READ

 

command

 

121,

 

124

 

READ

 

MODIFIED

 

command

 

95

 

reading

 

data

 

from

 

a

 

display

 

89

 

READNEXT

 

command

 

108,

 

233

 

READPREV

 

command

 

108

 

READQ

 

TD

 

command

 

133

 

NOSUSPEND

 

option

 

37

 

READQ

 

TS

 

command

 

133,

 

243

 

RECEIVE

 

command

 

13,

 

15,

 

68,

 

71,

 

237,

 

244

 

RECEIVE

 

MAP

 

command

 

13,

 

89,

 

234

 

FROM

 

option

 

244

 

records

 

139

 

recovery

 

34

 

journaling

 

35

 

of

 

resources

 

34

 

operations

 

35

 

performance

 

36

 

portability

 

36

 

region

 

pool

 

184

 

relational

 

database

 

services

 

14

 

relative

 

byte

 

address

 

108

 

relative

 

record

 

data

 

set

 

(RRDS)
record

 

number

 

108

 

slot

 

number

 

108

 

RELEASE

 

command

 

15,

 

183,

 

184

 

reloads,

 

program

 

55

 

remote

 

file
KEYLENGTH

 

option

 

127

 

remote

 

procedure

 

call

 

10,

 

71,

 

94

 

RPC

 

9

 

replaceable

 

CICS

 

Clients

 

9

 

replaceable

 

cicsterm

 

9,

 

254

 

REQID

 

option

 

123

 

resource

 

definition

 

198

 

macro-level

 

198

 

RESP

 

option

 

58,

 

233,

 

234,

 

243

 

RESP2

 

option

 

236,

 

243

 

restrictions,

 

COBOL

 

58

 

RETRIEVE

 

command

 

14

 

return

 

64,

 

66

 

RETURN

 

command

 

14,

 

15,

 

56,

 

64,

 

66,

 

246

 

returning

 

from

 

C

 

programs

 

63

 

returning

 

from

 

COBOL

 

program

 

56

 

returning

 

from

 

COBOL

 

programs

 

56

 

returning

 

from

 

PL/I

 

programs

 

66

 

REWRITE

 

command

 

121,

 

124,

 

129

 

RIDFLD

 

107,

 

108,

 

127

 

RRDS

 

108,

 

110,

 

121

 

RRDS

 

Files

 

118

 

run

 

unit

 

55

 

run

 

unit

 

in

 

XCTL

 

62,

 

66

 

S
sample

 

transaction

 

20

 

screen

 

attribute

 

definition

 

52,

 

61

 

screen

 

layout

 

design
application

 

data

 

area

 

80

 

data

 

fields

 

80

 

input

 

operations

 

77

 

keyword

 

fields

 

80

 

message

 

area

 

81

 

output

 

operations

 

77

 

requirements

 

80

 

stopper

 

fields

 

80

 

title

 

area

 

80

 

screen

 

size
alternate

 

screen

 

size

 

80

 

default

 

screen

 

size

 

80

 

screen,

 

printing

 

contents

 

93

 

secondary

 

index

 

107

 

secondary

 

key

 

106

 

SECONDS(ss)

 

option

 

60

 

security

 

rules
CECI

 

257

 

CECS

 

257

 

segmented

 

key

 

107

 

SEND

 

command

 

13,

 

15,

 

68,

 

71

 

SEND

 

CONTROL

 

command

 

13,

 

96

 

SEND

 

MAP

 

command

 

13,

 

84

 

SEND

 

TEXT

 

13

 

SEND

 

TEXT

 

command

 

68

 

sequential

 

browse

 

122

 

SESSBUSY

 

condition

 

37

 

SET

 

command

 

15,

 

187,

 

236

 

SET

 

option

 

120

 

SET

 

STATISTICS

 

command

 

16,

 

252

 

setlocale,

 

used

 

in

 

CICS

 

programs

 

50

 

SFS
consistency

 

101

 

file

 

10

 

file

 

access

 

13

 

file

 

types

 

106

 

isolation

 

101

 

keyed

 

13

 

lock

 

modes

 

102

 

locking

 

101

 

open

 

file

 

descriptor

 

101

 

performance

 

with

 

large

 

files

 

103

 

recoverable

 

files

 

102

 

relative

 

13

 

sequential

 

13

 

server

 

9,

 

10

 

SFS

 

External

 

File

 

Handler

 

(EXTFH)
using

 

the

 

Micro

 

Focus

 

Server

 

Express

 

COBOL

 

EXTFH

 

165

 

sfs_noLock

 

mode

 

102

 

sfs_writeLock

 

mode

 

102

 

shared

 

memory

 

functions,

 

used

 

in

 

CICS

 

programs

 

50

 

sharing

 

and

 

distribution

 

and

 

recovery

 

32

 

sharing

 

data
across

 

transactions

 

27

 

Shippable

 

terminal,

 

transaction

 

routing

 

195

 

SIGNAL

 

condition

 

234

 

signals,

 

used

 

in

 

CICS

 

programs

 

50

 

sigprocmask,

 

used

 

in

 

CICS

 

programs

 

50

 

simultaneous

 

browse

 

123

 

skip-sequential

 

processing

 

124

 

SNA

 

67

 

source

 

code

 

translation

 

16

 

source

 

directories

 

214

 

source

 

language

 

and

 

compiler

 

considerations

 

198

 

SQL

 

14,

 

105,

 

142

 

example

 

transaction

 

for

 

145

 

restrictions

 

for

 

non-XA

 

enabled

 

databases

 

142

 

SQL

 

COMMIT

 

command,

 

use

 

of

 

144

 

SQL

 

COMMIT

 

WORK

 

command,

 

use

 

of

 

144

 

START

 

AT/AFTER

 

command

 

in

 

C

 

59

 

START

 

command

 

14,

 

59

 

START

 

TRANSID

 

commands

 

181

 

STARTBR

 

command

 

122

 

static

 

storage

 

62,

 

64

 

statistics

 

services

 

252

 

stderr,

 

used

 

in

 

CICS

 

programs

 

50

 

stdin,

 

used

 

in

 

CICS

 

programs

 

50

 

stdout,

 

used

 

in

 

CICS

 

programs

 

50

 

stopper

 

fields

 

on

 

screen

 

80

 

terminating

 

reverse

 

video

 

81

 

storage
of

 

data

 

31

 

task-private

 

183

 

task-shared

 

183

 

task-shared

 

pool

 

183

 

temporary

 

27,

 

31

 

user

 

26

 

violation

 

29

 

working

 

55

   

296

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide



string

 

handling

 

63

 

structure

 

and

 

function

 

and

 

recovery

 

32

 

structured

 

file

 

server

 

13

 

SUFFIX

 

operand

 

74

 

supplied

 

transactions

 

197

 

summary

 

of

 

18

 

SUSPEND

 

command

 

14

 

symbolic

 

cursor

 

positioning

 

87

 

symbolic

 

description

 

maps
copying

 

92

 

field

 

data

 

format

 

82

 

symbolic

 

map

 

data

 

structures

 

81

 

synchronization

 

68,

 

181

 

journal

 

output

 

140

 

SYNCPOINT

 

command

 

15,

 

121,

 

144

 

SYNCPOINT

 

ROLLBACK

 

command

 

102,

 

245

 

Syntax

 

Checker

 

(CECS)
security

 

rules

 

257

 

SYSBUSY

 

condition

 

234

 

sysid

 

parameter

 

258

 

system

 

trace

 

248

 

T
table

 

space,

 

DB2

 

46

 

tabs

 

in

 

map

 

and

 

program

 

sources

 

49

 

task
automatic

 

transaction

 

initiation

 

(ATI)

 

173

 

definition

 

of

 

4

 

initiation

 

173

 

interval

 

control

 

transaction

 

initiation

 

173

 

terminal

 

task

 

initiation

 

(TTI)

 

173

 

triggered

 

transaction

 

initiation

 

173

 

task-private

 

storage

 

183

 

task-shared

 

storage
data

 

tables

 

183

 

use

 

of

 

183

 

TCTUA

 

184

 

TCTUALen

 

option

 

29

 

techniques,

 

programming

 

36

 

temporary

 

storage

 

10,

 

14,

 

133

 

auxiliary

 

27,

 

136

 

dynamic

 

definition

 

27

 

implicit

 

locking

 

upon

 

41

 

main

 

27,

 

136

 

names

 

135

 

uses

 

of

 

134

 

TERMERR

 

condition

 

246

 

terminal
input/output

 

area

 

96

 

services

 

13

 

user

 

area

 

29

 

terminal

 

owning

 

regions

 

193

 

terminal

 

services
overview

 

67

 

terminal

 

task

 

initiation

 

(TTI)

 

173

 

terminal

 

user

 

area

 

184

 

terminating

 

reverse

 

video

 

81

 

testing
Installation

 

Verification

 

Procedures

 

(IVPs)

 

195

 

minimizing

 

errors

 

253

 

tests

 

and

 

parallel

 

running

 

195

 

thread

 

safety

 

50

 

time

 

arguments

 

in

 

C

 

60

 

time

 

fields

 

in

 

commands

 

59

 

time-related

 

services

 

14

 

TIOA

 

26,

 

96

 

title

 

area

 

of

 

screen

 

80

 

tools

 

for

 

testing

 

253

 

TRACE

 

command

 

16

 

trace

 

facility
overview

 

247

 

trace

 

entry

 

points

 

249

 

transaction
definition

 

of

 

4

 

transaction

 

deadlock
avoiding

 

129,

 

185

 

transaction

 

identifier

 

(CEDF)

 

17

 

transaction

 

processing

 

4

 

transaction

 

routing

 

5

 

transaction

 

scheduler

 

9,

 

10

 

transaction

 

type
conversational

 

21

 

nonconversational

 

21

 

pseudoconversational

 

21

 

transaction

 

work

 

area

 

26

 

TWASize

 

option

 

26

 

transactional

 

access,

 

DB2

 

EXTFH

 

160

 

transactional

 

access,

 

Oracle

 

EXTFH

 

163

 

transactions
CECI

 

257

 

CECS

 

257

 

CEDF

 

17,

 

258

 

pseudoconversational

 

21

 

transient

 

data

 

14,

 

136

 

extrapartition

 

30,

 

131,

 

137

 

extrapartition

 

destination

 

131

 

indirect

 

destination

 

132

 

intrapartition

 

10,

 

30

 

intrapartition

 

destination

 

130,

 

132

 

READQ

 

TD

 

command

 

132

 

trigger

 

level

 

132

 

transient

 

data

 

queues

 

30

 

transient

 

data,

 

extrapartition

 

30

 

transient

 

data,

 

intrapartition
implicit

 

locking

 

upon

 

40

 

translate

 

an

 

application

 

214,

 

218

 

translation

 

16

 

translator
cicstran

 

command

 

278

 

trigger

 

level

 

133

 

triggered

 

transaction

 

initiation

 

132,

 

173

 

TTI,

 

defined

 

173

 

TWA
TWASize

 

option

 

26

 

U
unformatted

 

data

 

94

 

UNLOCK

 

command

 

121,

 

125,

 

129

 

unprotected

 

field,

 

3270

 

attribute

 

character

 

78

 

UPDATE

 

option

 

121,

 

124

 

upgrade

 

set

 

107

 

user

 

exit
abend

 

exit

 

244

 

monitoring

 

251

 

program

 

level

 

244

 

user

 

files

 

30

 

user

 

storage

 

26

 

user

 

trace

 

247

 

V
variables

 

in

 

static

 

storage

 

62,

 

64

 

variables

 

in

 

static

 

storage,

 

restriction

 

62,

 

64

 

vertical

 

forms

 

control

 

94

 

violation

 

of

 

storage

 

29

 

virtual

 

storage

 

environment

 

36

 

VSAM

 

data

 

set

 

types

 

106

 

VSAM

 

emulation

 

108,

 

113

 

W
wait

 

conditions

 

37

 

WAIT

 

CONVID

 

command

 

15

 

WAIT

 

option

 

140

 

WAIT

 

TERMINAL

 

68

 

WAIT

 

TERMINAL

 

command

 

13

 

windbg

 

267

 

working

 

storage

 

55

 

WRITE

 

EXEC

 

CICS

 

JOURNAL

 

command

 

37

 

WRITE

 

JOURNAL

 

command

 

141

 

WRITEQ

 

TD

 

command

 

234

 

WRITEQ

 

TS

 

command

 

133,

 

234,

 

243

 

WRITEQ

 

TS

 

REWRITE

 

command

 

133

 

X
XA-enabled

 

databases
restrictions

 

145

 

XA-enabled

 

relational

 

database

 

145

 

XCTL

 

command

 

14,

 

56,

 

64,

 

66,

 

241

 

restrictions

 

144

 

Z
zero

 

length

 

field

 

81

   

Index

 

297



298

 

TXSeries™:

 

CICS

 

Application

 

Programming

 

Guide





����

  

Printed

 

in

 

USA

    

SC09-4460-03

               



Sp
in
e

 

in
fo
rm
at
io
n:

  �
�

�
 

T
X

Se
rie

s™
 

C
IC

S
 

Ap
pl

ic
at

io
n

 

Pr
og

ra
m

m
in

g
 

G
ui

de
 

Ve
rs

io
n

 

5.
1

 

SC
09

-4
46

0-
03

 


	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	How to send your comments
	Conventions used in this book

	Part 1. Writing applications
	Chapter 1. Introduction to CICS application programming
	Why use CICS?
	What does CICS do for you?
	CICS transaction processing
	The CICS family
	Transaction processing terms and concepts
	Distributed transaction processing
	Developing applications within CICS
	How a CICS-based application differs from a batch application
	Application program development life cycle

	Developing client/server applications
	The external call interface (ECI)
	The external presentation interface (EPI)
	Writing ECI and EPI application programs


	How CICS runs your transactions
	Components of the CICS runtime system
	Interacting with the CICS region
	Transaction scheduler
	Application servers
	Structured File Server (SFS)
	PPC Gateway server

	How CICS executes your transactions
	Requesting a transaction to be run
	Executing the transaction


	The CICS application programming interface (API)
	How to split the program logic
	Summary of API presentation services
	Using Basic Mapping Support (BMS) in CICS
	Using terminal services in CICS

	Summary of API data services
	File services
	Queue services
	Journal services
	Relational database services

	Summary of API business logic
	Program execution services
	Timer services
	Synchronization services
	Storage services
	Logical unit of work (LUW) services
	Configuration services
	Intersystem communication services

	Summary of API problem determination logic
	Error handling
	Debugging services
	Performance monitoring


	CICS application development tools
	Presentation interface development
	Application program translation
	Application program debugging
	Using transactions to call your program
	Summary of commands used in application development
	Summary of CICS-supplied transactions used in application development

	A sample transaction
	Prerequisites for the “Hello World” transaction
	To create a “Hello World” application
	To run the “Hello World” transaction


	Chapter 2. CICS application design considerations
	CICS transaction design efficiency considerations
	CICS program design efficiency considerations
	Shareable, loadable, and executable operating system objects
	EXEC CICS LINK and EXEC CICS XCTL commands
	COBOL PERFORM and CALL commands
	C program function calls and single executable objects
	C++ Object Oriented design
	Internal and external procedures and functions in PL/I programs

	Transaction data storage considerations
	Storing data within a transaction
	Sharing data across transactions

	Data management storage considerations
	Issues affecting your data management storage decisions

	CICS environment efficiency considerations
	Wait conditions
	Auxiliary trace
	The NOSUSPEND option
	Access permissions for maps and transaction programs
	CICS commands lengths

	Efficiency issues for CICS locking functions
	Implicit locking on nonrecoverable and recoverable files
	Implicit locking on logically recoverable transient data queues
	Implicit locking on recoverable temporary storage queues
	Explicit locking (by the application programmer)


	Performance considerations for CICS developers
	Improving performance of CICS application programs
	Selecting the appropriate class of storage
	BMS map suffixing
	Resident options and shared libraries
	Avoiding locks
	Reading programs
	Using the program cache

	Improving performance of database access
	Improving performance of DB2 file management
	Improving performance of Oracle file management

	Using CICS with WebSphere MQ

	Chapter 3. Programming constraints
	General programming considerations
	Tabs in map and program sources
	The use of DCE and operating system functions
	Names reserved for CICS
	Thread safety
	CICS-safe functions

	Using the COBOL compilers
	Default options in EXEC CICS commands for COBOL
	Data declarations needed in COBOL
	COBOL program invocation environment (Micro Focus Server Express COBOL only) On CICS on Open Systems only
	COBOL program invocation environment (IBM COBOL only)
	Calling programs from COBOL
	Working storage
	Recursion
	Available memory (Micro Focus Server Express COBOL On CICS on Open Systems only)
	Mixing languages
	Passing integer data between C or C++ and COBOL
	Returning from COBOL programs
	Releasing resources
	Object-oriented COBOL support
	Compiling EBCDIC-enabled COBOL programs
	Restrictions

	Using the C and the C++ compilers
	Argument values in C and C++
	Delay processing the task (EXEC CICS DELAY)
	Start a task (EXEC CICS START)
	Time arguments
	Defaulting options in CICS commands
	Data declarations needed in C and C++
	C and C++ program invocation environment
	Restriction in cached programs using variables in static storage
	EXEC CICS address COMMAREA
	Calling programs from C or C++
	Mixing languages
	EXEC CICS address EIB
	Releasing resources
	String handling
	C++ considerations
	Returning from C and C++ programs

	Using the IBM PL/I compiler
	Restriction in cached programs using variables in static storage
	Default options in EXEC CICS commands for PL/I
	PL/I program invocation environment
	Calling programs from PL/I
	Data declarations needed for PL/I
	OPTIONS(MAIN) specification
	Mixing languages
	Returning from PL/I programs
	Releasing resources


	Chapter 4. Coding for presentation services
	What are the presentation services?
	Terminal services
	How text is formatted
	Printing the text
	Terminal services design considerations

	Basic mapping support (BMS) services
	Developing applications that use BMS services
	BMS functions supported in CICS
	How BMS affects programming
	The BMS processor
	3270 terminal emulation
	Screen layout design

	Using BMS services in application programs
	Symbolic map data structures
	Copying symbolic description maps into your application program
	How to obtain BMS printed output


	BMS design considerations
	Sending unformatted data
	Sending formatted data
	Avoid turning on modified data tags unnecessarily
	Use FRSET to reduce inbound traffic
	Do not send blank fields to the screen
	Use the MAPONLY option when possible
	Send only changed fields to a screen that is not new
	Design data entry operations to reduce line traffic
	Compress data sent to the screen
	Use nulls instead of blanks
	Use methods that avoid the need for nulls or blanks


	Using the BMS macros to code BMS map sets
	Defining a map set
	Defining maps within a map set
	Defining fields within a BMS map
	Defining field groups
	Terminating a map set definition
	Coding the BMS definition macros


	Chapter 5. Coding for data services
	Relationship between CICS and file managers
	SFS consistency, isolation, and locking
	DB2 concurrency and locking
	Oracle concurrency and locking
	CICS and SFS performance with large files

	Mixed resource manager applications
	File services
	Using a VSAM perspective to examine distributed CICS
	Record handling in CICS files
	Using primary and alternate indexes to access files

	The types of files used by CICS
	Key-sequenced data set (KSDS)
	Entry-sequenced data set (ESDS)
	Relative record data set (RRDS)
	VSAM emulation by SFS and distributed CICS
	VSAM emulation by DB2 and distributed CICS
	Differences in file behavior between SFS and DB2

	Accessing files from CICS application programs
	Reading records
	Updating records
	Deleting records
	Adding records
	Using options with file services commands
	Avoiding transaction deadlocks


	Queue services
	Transient data queue services
	Intrapartition destinations
	Extrapartition destinations
	Indirect destinations
	Triggered transaction initiation

	Temporary storage queue services
	Typical uses of temporary storage control
	Naming temporary storage queues
	Deleting temporary storage queues
	Location of temporary data
	Queue aging
	Queue attributes
	Differences between transient data queues and temporary storage queues
	Differences in queue behavior between SFS and DB2


	Journal services
	CICS journaling
	Dynamic transaction backout
	Recovery after a system abnormally terminates
	CICS journaling

	Journal records
	Journal output synchronization

	Relational database services
	SQL restrictions and relational database services
	SQL restrictions for XA-enabled relational databases
	SQL restrictions for non-XA enabled relational databases

	An example transaction for XA-enabled relational databases
	Example for CICS on Open Systems
	Example for CICS for Windows

	Writing a CICS application program by using an ODBC API that accesses a Microsoft SQL Server database (CICS for Windows only)
	Writing Programs using ODBC API/ODBC Driver Library in C
	Writing Programs using ODBC API/ODBC Driver Library in IBM VisualAge COBOL
	Writing Programs using E-SQL API/ODBC Driver Library in Micro Focus NetExpress COBOL


	File processing using EXTFH with non-CICS applications
	Using DB2 EXTFH with Micro Focus Server Express COBOL and Net Express
	Using Micro Focus Server Express COBOL runtime with DB2 EXTFH on UNIX
	Building a standalone MF COBOL program using DB2 EXTFH on UNIX
	Using Micro Focus Net Express COBOL runtime with DB2 EXTFH on Windows
	Customization of the DB2 EXTFH on UNIX and on Windows
	File and record locking behavior when DB2 EXTFH is used with Micro Focus Server Express COBOL on UNIX and Net Express on Windows

	Using Oracle EXTFH with Micro Focus Server Express COBOL
	Using Micro Focus Server Express COBOL runtime with Oracle EXTFH on UNIX
	Building a standalone MF COBOL program using Oracle EXTFH on UNIX
	Using Micro Focus Net Express COBOL runtime with Oracle EXTFH on Windows
	Customization of the Oracle EXTFH on UNIX and on Windows
	File and record locking behavior when Oracle EXTFH is used with Micro Focus Server Express COBOL on UNIX and Net Express on Windows

	Using SFS EXTFH with a Micro Focus Server Express COBOL or Net Express runtime
	Using SFS EXTFH with Micro Focus Server Express COBOL runtime on UNIX
	Using a standalone SFS EXTFH with Micro Focus Server Express COBOL on UNIX
	Using SFS EXTFH with Micro Focus Net Express COBOL runtime on Windows
	Customizing the SFS EXTFH



	Chapter 6. Coding for business logic
	Introduction to business logic
	Task initiation

	Program execution services
	Application program logical levels
	Link to another program anticipating return
	Transfer control from one program to another
	Passing data to other programs
	Using the COMMAREA option
	Using the INPUTMSG option
	Using the INPUTMSG option on the RETURN command
	Other ways of passing data

	Passing integer data between programs

	Timer services
	Expiration times
	Request identifiers
	START TRANSID commands

	Synchronization services
	Storage services
	Task-private storage
	Task-shared storage
	CICS private shared storage

	Logical unit of work (LUW) services
	Possibility of transaction deadlock and its avoidance
	Techniques for avoiding transaction deadlock

	Configuration services
	EXEC CICS ADDRESS and EXEC CICS ASSIGN commands
	INQUIRE and SET commands
	EXEC interface block (EIB)


	Part 2. Migrating Applications
	Chapter 7. Migrating CICS applications to and from TXSeries CICS
	Preparing to migrate your applications
	What is migration?
	Controlling the migration process
	The migration planning phase
	The migration installation phase
	Migration phased cutover

	Coexistence strategies
	Tests and parallel running
	Installation verification procedures
	Testing the running TXSeries CICS
	Running TXSeries CICS in parallel with your existing CICS system

	Migrating data
	Migration and the CICS-supplied transactions
	Migration and CICS resource definitions

	Migration and programming compatibility
	Source language and compiler considerations for migration
	Micro Focus Server Express COBOL upgrades On CICS on Open Systems only
	COBOL base locater linkage (BLL) cells
	Service reload statements

	Other programming considerations for migration
	Macro-level applications
	Database systems
	Monitoring, dump, statistics, and trace post-processors
	Journal post-processors
	CEMT programmable interface
	Short-on-storage conditions
	Hexadecimal character representation
	Static and global data


	Migration and the API
	Overview of migration and the API
	Presentation services API migration
	Migration and Basic Mapping Support (BMS) services
	Migration and 3270 Information Display System datastreams

	Data services API migration
	File services
	Queue services



	Part 3. Compiling Applications
	Chapter 8. Translating, compiling, and link-editing CICS application programs
	The PL/I compiler
	Examples (CICS for Windows)

	Source directories and link libraries
	Translating, compiling, and link-editing in one step
	Prerequisite Tasks
	Procedure
	Caching transaction programs and NEWCOPY (CICS for Windows)

	Translating, compiling and link-editing in separate steps
	How translation works
	Pre-translating COBOL copybooks
	The translation procedure
	Prerequisite task
	Procedure


	Requirements for compiling CICS application programs
	Compiling and linking a C application program (CICS on Open Systems)
	Compiling and linking a C application program (CICS for Windows)
	Compiling and linking a C++ program (CICS on Open Systems)
	Using cicstcl for a C++ program
	Using cicstran for a C++ program
	Building a class library

	Compiling and linking a C++ program (CICS for Windows)
	Using cicstran for a C++ program
	Building a class library

	Compiling a Micro Focus Server Express COBOL application program (CICS on Open Systems)
	Compiling a Micro Focus Net Express COBOL application program (CICS for Windows)
	Using Micro Focus Net Express to compile EBCDIC-enabled COBOL programs

	Compiling an IBM COBOL application program (CICS for Windows)
	Compiling an IBM COBOL application program (CICS on Open Systems)
	Compiling a PL/I application program


	Part 4. Debugging Applications
	Chapter 9. Coding for problem determination
	Error-handling services
	Handling error conditions
	C and C++ restrictions for error handling

	Letting the program continue
	How to use the RESP option
	How to use NOHANDLE
	How to use IGNORE condition (COBOL and PL/I only)

	Passing control to a specified label
	How to use the HANDLE CONDITION command
	How to use HANDLE CONDITION ERROR

	Relying on the system default action
	The PUSH HANDLE and POP HANDLE commands
	How to use an EXEC CICS HANDLE CONDITION command
	How CICS decides whether to take the system default action

	Mixing methods
	How CICS keeps track of what to do
	Handling attention identifiers (EXEC CICS HANDLE AID)
	Abend handling
	Creating a program-level abend exit
	Restrictions on retrying operations

	Coding considerations for recovery

	Debugging services
	Using the API for trace services
	User trace
	System trace
	Trace entry points

	Dump
	Maximizing Dump Information


	Performance monitoring services
	The monitoring service
	Statistics services


	Chapter 10. Testing and debugging your application
	Preparing your application for testing
	Useful tools for identifying problems
	Preparing your testing environment

	Using standard CICS facilities to test your application
	Trace and dump
	Journals and error handling

	Using CICS-supplied transactions to test your application
	Using Temporary Storage Browse (CEBR)
	Using CEBR with transient data

	Using Command Level Interpreter (CECI) and Syntax Checker (CECS)
	Using Execution Diagnostic Facility (CEDF)
	Using CDCN and the IBM Application Debugging Program (xldb) with CICS for AIX only
	Configuring CDCN
	Development conventions required for effective use of the IBM Application Debugging Program
	Activating the IBM Application Debugging Program
	Deactivating the IBM Application Debugging Program


	Using a compiler's integrated debugging tool to debug CICS applications
	Using debugging tools integrated with compilers running on CICS for Windows
	Preparing to use the debugging tool integrated with IBM VisualAge C/C++
	Preparing to use the debugging tool integrated with IBM VisualAge for COBOL
	Using the debugging tool integrated with Microsoft Visual C/C++ (windbg)
	Using the debugging tool integrated with Microsoft Visual C/C++ (msdev)
	Using the debugging tool integrated with Micro Focus Net Express on CICS for Windows (Animator)

	Using debugging tools integrated with compilers running on CICS on Open Systems
	Using the debugging tool integrated with Micro Focus Server Express COBOL on CICS on Open Systems (Animator)
	Accessing Java debugging facilities with the CJDB transaction



	Part 5. Appendixes
	Appendix. CICS commands used in application programming
	cicsmap - generate BMS map files
	cicstran - translates source code
	cicstcl - translate, compile, and link

	Bibliography
	Notices
	Trademarks and service marks

	Index

