
IEEE CLUSTER COMPUTING AND THE GRID 2002 1

Latency Performance of SOAP Implementations
Dan Davis † and Manish Parashar ‡

† Compaq Computer Corporation, Manalapan, NJ 07726, USA
‡ Department of Electrical and Computer Engineering
Center for Advanced Information Processing (CAIP)

Rutgers, The State University of New Jersey
Piscataway, NJ 08855-1390, USA
{dand,parashar}@caip.rutgers.edu

Abstract— This paper presents an experimental evalua-
tion of the latency performance of several implementations
of Simple Object Access Protocol (SOAP) operating over
HTTP, and compares these results with the performance of
JavaRMI, CORBA, HTTP, and with the TCP setup time.
SOAP is an XML based protocol that supports RPC and
message semantics. While SOAP has been designed as an
interoperable business-to-business protocol usable over the
Internet, we believe that applications will also use SOAP
for interactive web applications running within an intranet.
The objective of this paper is to identify the sources of ineffi-
ciency in the current implementations of SOAP and discuss
changes that can improve their performance. SOAP im-
plementations studied include Microsoft SOAP Toolkit, the
SOAP::Lite Perl module, and Apache SOAP.

Keywords—Performance study, SOAP, JavaRMI, CORBA,
Network programming

I. Introduction

Remote Procedure Call (RPC) and Remote Method In-
vocation (RMI) provide elegant and powerful models for
programming distributed systems. These programming
models typically include a protocol to exchange informa-
tion, a language to describe an application’s interface, and
bindings that preserve the syntax of intra-computer com-
munication for inter-computer communication.

The Simple Object Access Protocol (SOAP) and Web
Service Description Language (WSDL) are a new protocol
and an interface language that provide these same bene-
fits for web services and web applications in peer-to-peer
systems [1][2]. These technologies are capable of support-
ing a web service infrastructure [4] where SOAP accessible
services are described using WSDL and discovered through
service registries. In such an infrastructure, Web services
can be directly accessed and can be combined and com-
posed. For example, the practice of screen scraping [5],
where relevant information is extracted from a web page
and is reformatted and passed to another web page, can be
avoided using these technologies. One service can directly
invoke another to produce composite results.

SOAP and WSDL are increasingly accepted as the means
for supporting distributed applications on the web. This
has made the performance of SOAP critical. As SOAP
will be used to support evolving interactive web applica-
tions, it should be fast enough for productive human com-
puter interaction. Furthermore, web services will also be
deployed on intranets where there are fewer hops and fire-
walls between the web service producing information and

the consumer of that information.
In this paper, we analyze the latency performance of sev-

eral SOAP implementations and compare these with results
for JavaRMI, CORBA, TCP setup delay, and HTTP ser-
vices using Microsoft Internet Information Services (IIS)
and Apache Tomcat. Previous studies have shown the im-
pact of XML parsing and formatting on SOAP performance
[3]. The evaluation presented in this paper supports these
results and identifies additional factors at the network level
that can have a significant impact on SOAP performance.
Based on the results, the paper discusses strategies in net-
work programming that will improve the performance of
Microsoft SOAP Toolkit, Perl SOAP::Lite, and Apache
SOAP.

II. Protocol Overview

SOAP is a lightweight protocol for exchange of informa-
tion in a decentralized, distributed environment. It is an
XML based protocol that consists of three parts: an enve-
lope that defines a framework for describing what is in a
message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and
a convention for representing remote procedure calls and
responses.

While SOAP doesn’t specify a transport mechanism,
most SOAP RPC implementations use HTTP. The SOAP
request is the body of an HTTP POST request; the re-
sponse is the body of the HTTP response. Figure 1 shows
a request sent to a SOAP service. The trace was generated
using Apache SOAP with the Tomcat application server.

WSDL provides an interface definition language for
SOAP. WSDL is not required, but the use of WSDL with
SOAP is a de facto standard. WSDL supports the defi-
nition of complex structures. WSDL defines the request
and response messages for a number of ports, which cor-
respond to methods for an RPC service. The definition
of a message specifies the names and XML types for each
parameter. WSDL can also describe messages and doc-
uments for non-RPC SOAP. SOAP implementations use
WSDL to dynamically bind to web services. However,
SOAP implementations differ in their support for binding
to application-defined datatypes. In general, associating
high-level structures is not as easy for the programmer as
with JavaRMI or CORBA.

IEEE CLUSTER COMPUTING AND THE GRID 2002 2

POST /soap/servlet/rpcrouter HTTP/1.0

Host: 192.168.1.1

Content-Type: text/xml; charset=utf-8

Content-Length: 408

SOAPAction: "urn:test:soap"

Cookie: JSESSIONID=hypwiuar12

Cookie2: JSESSIONID=hypwiuar12

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:getIntegers xmlns:ns1="urn:test:soap"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/

soap/encoding/">

</ns1:getIntegers>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fig. 1. HTTP POST request with SOAP request

III. SOAP Implementations and Related Work

Several implementations of SOAP are maturing rapidly.
Web sites facilitate interoperability testing and provide tu-
torials for rapid learning [6][7]. Implementations differ in
their support for class binding, ease of use, and perfor-
mance.

A. Apache SOAP and Apache Axis

Apache SOAP was developed by IBM alphaWorks and
donated to the Apache Software Foundation [8]. It provides
SOAP support for Apache’s Tomcat application server.
Apache Axis is planned to replace Apache SOAP. To in-
crease performance, Apache Axis uses SAX for XML pars-
ing and processes messages in stages.

B. SoapRMI

Indiana University’s Extreme Laboratory wrote SoapRMI
(now called XSOAP) to study how SOAP might be ap-
plied for high performance technical computing [9]. They
compared the performance of SOAP with JavaRMI, Nexus
RMI, and HPC++ and also analyzed the performance limi-
tations of SOAP. They found that the encoding and decod-
ing time for SOAP was greater than for protocols such as
Java’s object serialization. SoapRMI uses their own parser,
the XML Pull Parser (XPP), to improve performance on
large arrays and data structures. SoapRMI excels because
the interface is nearly identical with JavaRMI. XSOAP 1.3
plans to increase performance using HTTP keep-alive (per-
sistent connections) and chunked encoding.

C. SOAP::Lite module for Perl

Paul Kulchenko has written this module so Perl may be
used for a web service server or client [10]. A server may
be run as a stand-alone HTTP server, as a CGI script, or

as an Apache module through mod perl. Both the server
and client support non-basic types using Perl’s associative
arrays.

D. Microsoft SOAP Toolkit

Microsoft SOAP Toolkit provides a wizard that exports
the methods of a COM object using SOAP [11]. The COM
objects may be written using Visual C++ or Visual Basic.
The wizard generates deployment files including the Web
Service Description Language (WSDL) file that defines the
interface.

E. JavaRMI and CORBA

JavaRMI and CORBA should be compared with SOAP
because Java makes it easy to invoke these protocols from
Java Applets. JavaRMI’s advanced features include code
distribution, graph serialization, and distributed garbage
collection [12]. CORBA is designed for interoperability and
a model-oriented software process [13].

F. Peer-to-peer performance studies

Web services are often associated with peer-to-peer soft-
ware. The composition expected of web services resembles
the forwarding common to Gnutella and Freenet peers. The
performance studies of peer-to-peer small world networks
suggest that if such a model evolves for web services, then
the network of composite web services is likely to have short
paths [5].

IV. Experimental Design

For each protocol or SOAP implementation we tested,
we implemented a remotely accessible server with this in-
terface:
• void doNothing() – Our tests call this method to de-
termine the overhead associated with a SOAP call.
• void setSize(int size) – Our tests call this method
to set the size of the string and array returned by
getString() and getIntegers(). The time required for
this call is not measured.
• String getString() – Our tests call this method be-
cause the encoded response to each getString() call has
the same XML elements regardless of the size of the string
returned.
• int[] getIntegers() – Our tests call this method so we
can compare the latency performance as additional XML
elements are encoded and decoded.

Each protocol or SOAP implementation is tested as a
black box. This allows our approach to generalize to com-
mercial implementations such as Microsoft SOAP Toolkit,
but also limits our ability to analyze the precise cause of
performance problems.

Each client implementation makes a tunable number
of calls to one of the timed functions, doNothing(),
getString(), or getIntegers(). The client prints the
time required for these calls excluding a warm-up period
and one-time protocol costs. So, for CORBA and RMI, the

IEEE CLUSTER COMPUTING AND THE GRID 2002 3

times we report exclude the lookup time in the ORB reg-
istry. Similarly, for Apache SOAP, the times we report ex-
clude the setup time to create the objects that correspond
to each method. This experiment uses a single client to
access the server.

These protocols and SOAP implementations are included
in all tests:
• JavaRMI – The client and server are written in Java and
compiled and run with Sun’s JDK 1.3.1 02 for Microsoft
Windows.
• CORBA – The client and server are written in Java and
compiled and run with Sun’s JDK 1.3.1 02 for Microsoft
Windows.
• Microsoft SOAP Toolkit SP2 – The client and
server are written in Visual Basic with Visual Studio 6.0.
The client uses the Win32 call GetTickCount() to get
a timer with comparable millisecond resolution to Java’s
System.currentTimeMillis(). We used an ASP listener
for these tests instead of an ISAPI listener. Microsoft In-
ternet Information Services (IIS) provided the web server.
• SoapRMI/Java 1.1 – The client and sever are written
in Java and compiled with Sun’s JDK 1.3.1 02. SoapRMI
can be run with a registry or with an HTTP endpoint for
interoperability. Tests performed for normalization show
little difference between these two options.
• SOAP::Lite module in Perl – The client and server
were written using ActiveState distribution of Perl 5.6.0
• Apache SOAP 2.2 and Axis Alpha 3 – The client
and server were written in Java and compiled and run with
Sun’s JDK 1.3.1 02 for Microsoft Windows. Tomcat 4.0.2
provided the web server; xerces and xalan are included with
Tomcat 4.0.2 for XML parsing.

We performed each test with both client and server on
the same host, and then repeated the test with separate
client and server hosts joined by a small LAN. The LAN
was a 10 Mbps LAN with only these two hosts. For the
client machine, we used a laptop with a Pentium-III 550
MHz processor and 256 MB RAM, running Windows 2000
Professional. For the server, we used a desktop with an
AMD Athlon 700 MHz processor and 160 MB RAM, run-
ning Windows 2000 Server. The desktop was used for both
client and server when both client and server were on the
same host.

Since each time measurement represents 200 calls and
the timer’s precision is 10 ms, the precision of our mea-
surements is +-0.05 milliseconds.

A. void doNothing()

In order to seperate the overhead contributed by TCP,
HTTP, and SOAP, we added these experiments to the
doNothing() case:
• TCP setup time – How long does it take in our envi-
ronment to connect and then close a TCP connection using
Java?
• HTTP to Apache Tomcat – How long does it take to
get the response to a Servlet request of Tomcat? Tomcat
is the Web Server for Apache SOAP.

TABLE I

doNothing() with server and client on same host

System Language Latency
(ms)

JavaRMI Java 1.2
CORBA Java 1.5
MS SOAP Toolkit Visual Basic 16.8
SoapRMI Java 19.5
SOAP::Lite Perl 42.0
Apache SOAP Java 23.4
Apache Axis Java 15.6
TCP setup time Java 1.9
HTTP to Tomcat Java 3.4
HTTP to IIS - 1.1

• HTTP to Microsoft IIS – How long does it take to get
a cached file from Microsoft Internet Information Services
(IIS)? Microsoft IIS is the web server for Microsoft SOAP
Toolkit.

Just as with the other experiments, we repeated these
tests with the client and server on the same host and with
separate client and server hosts.

B. String getString()

Tests were performed for strings of length 200, 400, and
800. Since the strings contain no XML tags, parsing the
message is independent of the string length. We expected
the latency performance with each of these lengths to re-
flect additional transfer time. Since all of these are under
the minimum packet size of the network, we expected the
getString() results to be similar to the doNothing() re-
sults.

C. int[] getIntegers()

Tests were performed for integers arrays containing 200,
400, and 800 integers. Because Visual Basic is unable to
return arrays, the Visual Basic of getIntegers() returns
an XML node list designed to produce responses of sim-
ilar size and complexity. Unfortunately, that makes the
getIntegers() results not quite an apples to apples com-
parison. To characterize how much difference this makes,
we include an alternate implementation of getIntegers()
for Apache SOAP that returns the same XML node list.

V. Experimental Results

When the client and server are run on separate hosts,
SOAP performs very poorly. Table II presents results for
the doNothing() call when the the client and server run
on separate hosts. The network delay is calculted by com-
paring identical rows in Table I and II. TCP connection
setup is about the same between the client and the server,
yet Apache SOAP, the Microsoft SOAP Toolkit, and the
SOAP::Lite Perl module all take roughly 200 milliseconds.
Since this time is so surprising and so constant, we expected
this was due to something other than SOAP processing.

IEEE CLUSTER COMPUTING AND THE GRID 2002 4

TABLE II

doNothing() with separate client and server

System Language Latency
(ms)

JavaRMI Java 0.8
CORBA Java 1.3
MS SOAP Toolkit Visual Basic 200.9
SoapRMI Java 37.7
SOAP::Lite Perl 200.1
Apache SOAP Java 205.9
Apache Axis Java 13.1
TCP setup time Java 1.2
HTTP to Tomcat Java 2.6
HTTP to IIS - 1.5

HTTP POST
request

HTTP body
(SOAP envelope)

HTTP response

header

TCP delayed

ACK prevents

server ACK

Nagle algorithm

prevents immediate

send of SOAP

envelope

Client

system

Server

system

HTTP body

(SOAP envelope)

.

.

.

Fig. 2. Event trace of SOAP communication

To explain the delay, we compared network traces of the
communication for Apache SOAP and SoapRMI. Figure 2
shows the network packets exchanged for Apache SOAP.
We found that the HTTP POST request was divided into
two packets, one containing the HTTP headers and one
containing the HTTP body including the SOAP envelope.
For Apache SOAP, the second packet in the HTTP request
was delayed about 170 milliseconds from the first request.
Once the second packet is received, the server processes
the SOAP call. Then, at least two packets are sent for the
HTTP response, one containing the headers and additional
packets for the body with the SOAP envelope. The delay in
the request is caused by the interaction between the Nagle
algorithm and TCP delayed ACK algorithm in the operat-
ing systems for the client and server. The Nagle algorithm
is controlled using the TCP NDELAY socket option [14]. Both
the Nagle algorithm and TCP delayed ACK algorithm are
designed to reduce the number of small network packets
from telnet like applications.

Microsoft SOAP Toolkit has a different pattern of net-
work communication, shown in Figure 3. The Nagle al-

HTTP POST request

& body (SOAP message)

HTTP continue

response

TCP delayed

ACK prevents

client ACK

Nagle algorithm

prevents immediate

send of response

SOAP envelope

Client

system

Server

system

HTTP ok status & body

(SOAP envelope)

.

.

.

Fig. 3. Event trace of Microsoft SOAP communication.

TABLE III

getString() with server and client on same host

System char[200]
Latency
(ms)

char[400]
Latency
(ms)

char[800]
Latency
(ms)

JavaRMI 1.3 1.2 1.3
CORBA 1.5 1.5 1.6
MS SOAP Toolkit 16.6 23.7 34.8
SoapRMI 19.3 19.6 19.9
SOAP::Lite 42.4 42.3 42.6
Apache SOAP 22.8 24.2 25.1
Apache Axis 17.1 19.0 19.6

gorithm and delayed ACK cause the same delay, but this
time, the server waits for the client’s ACK. The HTTP
POST request and body are sent in the first packet af-
ter the TCP connection is built. Microsoft SOAP Toolkit
sends an HTTP response with continue status (status code
100) before sending the HTTP message with the SOAP re-
sponse. The purpose of the added continue is to reduce
network communication [15]. If the server will reject an
HTTP request, it can do so before receiving the body of
the request. In this case, the header and body are in the
same packet, and so the reason for the continue status is
unclear. The server doesn’t send the SOAP response until
after the client has acknowledged the HTTP continuation
packet. In our tests, the client has no more data to send,
and so the TCP delayed ACK algorithm applies.

The getString() results in Tables III and IV provide
additional support for this analysis. The responses for
getString() add one XML element (the result) and one
XML attribute (the datatype) relative to doNothing().
So, a larger string adds little more XML overhead to a
message. The getString() results are very similar to the
doNothing() results.

When the client and server are run on the same host, the
network delays are not significant. Under these conditions,
XML parsing and formatting is the largest factor of the

IEEE CLUSTER COMPUTING AND THE GRID 2002 5

TABLE IV

getString() with separate client and server

System char[200]
Latency
(ms)

char[400]
Latency
(ms)

char[800]
Latency
(ms)

JavaRMI 1.2 1.6 2.3
CORBA 1.7 2.1 2.7
MS SOAP Toolkit 200.2 200.3 200.3
SoapRMI 44.1 41.4 41.6
SOAP::Lite 200.2 200.3 200.3
Apache SOAP 209.9 213.8 237.4
Apache Axis 14.3 14.7 15.6

latency performance. Table I presents the results when the
doNothing() call is made from a client to a server on the
same host. For those results, the client and server are sep-
arate processes, and a loop-back socket is used rather than
an in-memory call. Since Apache SOAP is implemented
as a Tomcat servlet, the No-op Servlet results show what
portion of the time for Apache SOAP is due to HTTP pro-
cessing. Excluding the HTTP processing, SOAP and XML
processing represents 20.2 milliseconds, 86% of the time,
in an Apache SOAP call that does nothing. Similarly, the
Microsoft IIS results in Table II show that Microsoft SOAP
Toolkit takes 15.4 milliseconds, 94% of the time, for SOAP
and XML processing. These numbers are illustrative, but
might be different with a faster processor.

SOAP is also orders of magnitude slower than JavaRMI
and CORBA. In Table I, The performance of JavaRMI and
CORBA are comparable, but SoapRMI, Apache SOAP,
SOAP::Lite, and Microsoft SOAP Toolkit latency are much
worse.

There are surprises when we compare the getIntegers()
performance of the different implementations. Microsoft
SOAP Toolkit’s performance is exceptionally good when
the client and server are on different hosts. In Table V, Mi-
crosoft SOAP Toolkit scales well, but is not far out of line
with other results. In Table VI, Microsoft SOAP Toolkit is
much better than we’d expect based on the network delays
due to the Nagle algorithm.

The network delays we analyzed for the doNothing()
call don’t seem to apply to Microsoft SOAP Toolkit’s
getIntegers() performance. Microsoft SOAP Toolkit
benefits because there is no translation from an XML node
list to an integer array representation, but this doesn’t ex-
plain the differences seen in Table VI. The Apache SOAP
results for an XML element list demonstrates there’s still a
wide margin between Microsoft SOAP Toolkit and Apache
SOAP. Analysis of the network communication confirms
that the delays mentioned above are missing between pack-
ets. Suppose the response to a call for 200 integers writes
enough data into the TCP connection’s send buffer to over-
ride the Nagle algorithm on the server. If this is so, then
the performance should degrade for an array whose XML
format isn’t as large. A simple experiment with a 20 inte-
ger array confirms that the latency per call is roughly 200

TABLE V

getIntegers() with client and server on same host

System int[200]
Latency
(ms)

int[400]
Latency
(ms)

int[800]
Latency
(ms)

JavaRMI 1.5 1.6 1.8
CORBA 1.5 1.9 2.0
MS SOAP Toolkit † 28.1 44.8 76.7
SoapRMI 22.2 24.4 31.5
SOAP::Lite 229.6 493.6 1810.6
Apache SOAP 65.8 117.3 190.7
Apache SOAP † 54.1 73.2 119.0
Apache Axis 73.2 150.2 229.4

TABLE VI

getIntegers() with separate client and server

System int[200]
Latency
(ms)

int[400]
Latency
(ms)

int[800]
Latency
(ms)

JavaRMI 2.3 3.2 4.7
CORBA 2.7 4.0 5.5
MS SOAP Toolkit † 33.3 55.8 104.1
SoapRMI 75.0 73.0 108.6
SOAP::Lite 400.3 600.8 1120.1
Apache SOAP 310.3 380.5 561.7
Apache SOAP † 293.7 285.0 449.2
Apache Axis Alpha 3 76.9 138.6 243.7

† Marked results are for XML node lists.

milliseconds for a 20 integer array. So, if the messages are
large enough, the network delay is removed. Since an 800
integer array is roughly 30 KB for both Apache SOAP and
Microsoft SOAP Toolkit, why doesn’t this apply to Apache
SOAP? For Apache SOAP, the Nagle algorithm applies to
the HTTP POST request containing the call rather than
the response

Another surprise with the getIntegers() results is the
poor performance of the SOAP::Lite Perl module. The
network packets generated by Perl show that Perl’s integer
array representation is much larger than that of Apache
SOAP or Microsoft SOAP Toolkit. However, analysis of
the representation shows that there are about the same
number of XML elements, attributes, and namespaces.
Each XML element representng an item in the array is
named automatically and differently for SOAP::Lite, for
instance, gensym4819 is one element. Axis and Apache
use an element named item for every integer in the ar-
ray. SOAP::Lite automatically serializes associative arrays
where the same object may be referenced more than once.
My guess is that while this is very convenient, it has a large
impact on performance. Another thing to remember is that
Perl is a purely interpreted language. In contrast, Java’s
hotspot virtual machine may optimize the tight loops that
perform our tests during the warming period.

IEEE CLUSTER COMPUTING AND THE GRID 2002 6

Apache Axis is written for better performance, but that
doesn’t show in the getIntegers() latency. Axis uses a
pipe-lined approach to SOAP processing, so it isn’t surpris-
ing that latency suffers for larger messages. A pipe-lined
architecture improves scalability and throughput.

SoapRMI was written to improve the performance for
tests such as getIntegers(). So, it isn’t surprising how
well SoapRMI scales. SoapRMI scales well because it
was designed to scale to large structures. SoapRMI also
avoids the network delays that we see for other implemen-
tations. However, SoapRMI’s performance is comparable
with Apache SOAP in Table I, and both Apache SOAP and
SoapRMI are orders of magnitude slower than JavaRMI. As
discussed earlier, this is due to the overhead of SOAP and
not due to the use of HTTP.

All of the implementations set the HTTP Content-Length
header in their response. This header is difficult to
pre-determine for dynamic content. To calculate the
Content-Length, SOAP implementations may buffer the
data. Such buffering may cause delays. One option to
avoid buffering is to use HTTP chunking[15] as planned
for XSOAP 1.3.

VI. Discussion

SOAP shows great potential for simplifying web service
composition and the distribution of software using the In-
ternet. Within Corporate Intranets, consolidated web ap-
plications and services also require fast, convenient proto-
cols. Regardless of performance, business and system man-
agement concerns may make SOAP attractive for these ap-
plications. Therefore, SOAP’s performance can and should
be improved through designs for faster parsing and better
network programming.

Binary XML encodings may also improve SOAP. Mi-
crosoft .NET uses a proprietary binary encoding for SOAP
communication when both client and server understand
that protocol.

For web applications operating in both WAN and LAN
environments, there’s no silver bullet. Web applications
operating over a WAN would benefit from a limited number
of larger messages, as long as code download doesn’t take
too long. For web applications operating over a LAN, many
small messages would lead to smaller client applications.

For web services, JavaRMI may be encapsulated within
HTTP or routed through firewalls using protocols like
SOCKS. Since SOAP’s overhead is greater than JavaRMI
even discounting HTTP overhead, we expect that JavaRMI
or CORBA will be faster over HTTP as well.

If a faster RMI system can provide the system manage-
ment and programming benefits of SOAP, including inter-
operability, the ability to transfer XML DOM data, and
the ability to call through firewalls, then such an RMI sys-
tem should be preferred until SOAP matures.

VII. Conclusions

Our analysis points to areas where SOAP performance
can be improved without changing the HTTP protocol.
One large source of inefficiency in SOAP is the use of mul-
tiple system calls to send one logical message. Another
source of inefficiency in SOAP is the XML parsing and for-
matting time. SOAP’s performance may also be improved
by using different capabilities of the HTTP protocol such
as HTTP chunking.

References

[1] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Lay-
man, Noah Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte,
and Dave Winer, “Simple Object Access Protocol (SOAP)
1.1,” World Wide Web Consortium (W3C), May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, visited
Feb. 2001.

[2] Erik Christensen, Francisco Curbera, Greg Meredith, and
Sanjiva Weerawarana, “Web Services Description Language
(WSDL) 1.1,” World Wide Web Consortium (W3C), Mar.
2001, http://www.w3.org/TR/2001/NOTE-wsdl-20010315, vis-
ited Sep. 2001.

[3] Madhusudhan Govindaraju, Aleksander Slominski, Venkatesh
Choppella, Randall Bramley, and Dennis Gannon, “Require-
ments for and Evaluation of RMI Protocols for Scientific Com-
puting,” in Supercomputing. 2000, IEEE.

[4] Williams Bordes and Johann Dumser, “SOAP:
Simple Object Access Protocol,” TechMetrix
Research-Trendmarkers e-Newsletter, Dec. 2000,
http://www.techmetrix.com/trendmarkers/tmk1200/tmk1200-
3.php3, visited Jan. 2001.

[5] Theodore Hong, ed. Andy Oram, Peer-To-Peer: Harnessing the
Power of Disruptive Technologies, ch. 14, OReilly and Asso-
ciates, Inc., 2001.

[6] “A Quick-Start Guide for Installing
Apache SOAP,” XMethods, Feb. 2001,
http://www.xmethods.com/gettingstarted/apache.html, visited
Feb. 2001.

[7] James Snell, “Exposing Application Ser-
vices with SOAP,” XML.COM, July 2000,
http://www.xml.com/pub/a/2000/07/12/soap/mssoaptutorial.html,
visited Nov. 2000.

[8] Apache Software Foundation, http://xml.apache.org/, visited
Feb. 2001.

[9] University of Indiana, Extreme Lab,
http://www.extreme.indiana.edu/soap, visited Feb. 2001.

[10] Paul Kulchenko, SOAP::Lite Perl module,
http://www.soaplite.com/, visited Feb. 2001.

[11] Rob Caron, “Develop a Web Service: Up and Running with the
SOAP Toolkit for Visual Studio,” MSDN Magazine, Aug. 2000,
http://msdn.microsoft.com/library/, visited Feb. 2001.

[12] “Java Remote Method Invocation (RMI) Specification”, Sun
Microsystems, http://java.sun.com/products/jdk/rmi/, visited
Dec. 2000.

[13] “The Common Object Request Broker: Architecture and spec-
ification” rev 2.0, Object Management Group, Feb. 2000,
http://www.omg.org/, visited Feb. 2001.

[14] W. Richard Stevens, UNIX Network Programming: Networking
APIs (Second Edition), vol. 1, Prentice Hall, 1997.

[15] “Hypertext Transfer Protocol - HTTP/1.1,” RFC 2616, Internet
Engineering Taskforce (IETF), http://www.ietf.com/, visited
Dec. 2000.

