
TXSeries™

for

Multiplatforms

Writing

Encina

Applications

Version

5.1

SC09-4486-02

���

TXSeries™

for

Multiplatforms

Writing

Encina

Applications

Version

5.1

SC09-4486-02

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

103.

Third

Edition

(March

2004)

This

edition

replaces

SC09-4486-01.

Order

publications

through

your

IBM

representative

or

through

the

IBM

branch

office

serving

your

locality.

©

Copyright

International

Business

Machines

Corporation

1999,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

About

this

book

.

.

.

.

.

.

.

.

.

.

. ix

Who

should

read

this

book

.

.

.

.

.

.

.

.

. ix

Document

organization

.

.

.

.

.

.

.

.

.

. ix

Related

information

.

.

.

.

.

.

.

.

.

.

.

. x

Conventions

used

in

this

book

.

.

.

.

.

.

.

. x

How

to

send

your

comments

.

.

.

.

.

.

.

. xi

Chapter

1.

Basic

concepts

of

distributed

computing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Distributed

computing

.

.

.

.

.

.

.

.

.

.

. 1

The

client/server

model

.

.

.

.

.

.

.

.

. 2

Client/server

applications

under

DCE

.

.

.

.

.

. 3

Remote

procedure

calls

.

.

.

.

.

.

.

.

.

. 4

Locating

resources

.

.

.

.

.

.

.

.

.

.

. 5

Protecting

resources

.

.

.

.

.

.

.

.

.

.

. 7

Transactions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Distributed

transactions

and

the

two-phase

commit

process

.

.

.

.

.

.

.

.

.

.

.

. 11

Transaction

processing

monitors

.

.

.

.

.

. 12

Introduction

to

Encina

.

.

.

.

.

.

.

.

.

.

. 12

The

Encina

Monitor

.

.

.

.

.

.

.

.

.

. 12

The

Recoverable

Queueing

Service

(RQS)

.

.

. 13

The

Structured

File

Server

(SFS)

.

.

.

.

.

. 13

Peer-to-Peer

Communications

(PPC)

Services

.

. 13

The

Encina

Toolkit

.

.

.

.

.

.

.

.

.

.

. 13

Scope

and

layout

of

the

remainder

of

this

manual

14

Chapter

2.

Writing

the

interface

for

a

sample

client/server

application

.

.

.

. 15

Overview

of

the

sample

application

.

.

.

.

.

. 15

Defining

the

interface

.

.

.

.

.

.

.

.

.

.

. 16

The

example

interface

.

.

.

.

.

.

.

.

.

. 17

Creating

the

Transactional

Interface

Definition

Language

file

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Creating

the

Transactional

Attribute

Configuration

File

.

.

.

.

.

.

.

.

.

.

. 19

Processing

the

TIDL

and

TACF

files

.

.

.

.

. 19

Implementing

the

server

interface

.

.

.

.

.

.

. 20

A

note

on

data

types

.

.

.

.

.

.

.

.

.

. 21

Notes

on

building

and

running

the

application

.

. 22

Chapter

3.

Writing

a

Monitor

client/server

application

.

.

.

.

.

.

. 23

An

overview

of

the

Encina

Monitor

.

.

.

.

.

. 23

The

Encina

Monitor

operating

environment

.

. 23

Monitor

features

used

by

application

programs

24

Binding

in

the

Monitor

environment

.

.

.

.

.

. 25

Using

Monitor

universal

binding

.

.

.

.

.

. 25

Writing

the

server

.

.

.

.

.

.

.

.

.

.

.

. 26

Registering

the

interface

.

.

.

.

.

.

.

.

. 26

Initializing

the

resource

manager

.

.

.

.

.

. 26

Initializing

Encina

.

.

.

.

.

.

.

.

.

.

. 27

Listening

for

RPCs

.

.

.

.

.

.

.

.

.

.

. 27

The

server

application

.

.

.

.

.

.

.

.

.

. 27

Writing

the

client

.

.

.

.

.

.

.

.

.

.

.

. 28

Using

other

Monitor

features

.

.

.

.

.

.

.

. 29

Load

balancing

and

scheduling

.

.

.

.

.

.

. 30

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Using

data-dependent

routing

.

.

.

.

.

.

. 31

Using

delegation

.

.

.

.

.

.

.

.

.

.

. 32

Making

the

server

a

client

of

another

server

.

.

. 33

Defining

the

interface

.

.

.

.

.

.

.

.

.

. 33

Implementing

the

new

application

server

.

.

. 34

Notes

on

building

and

running

the

application

.

. 34

Chapter

4.

Making

the

sample

application

transactional

.

.

.

.

.

.

. 37

Making

the

application

transactional

.

.

.

.

.

. 37

Specifying

which

operations

are

part

of

a

transaction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Aborting

transactions

.

.

.

.

.

.

.

.

.

.

. 39

Aborting

with

strings

.

.

.

.

.

.

.

.

.

. 40

Aborting

with

an

abort

code

.

.

.

.

.

.

.

. 41

Notes

on

building

and

running

the

application

.

. 41

Chapter

5.

Using

RQS

.

.

.

.

.

.

.

. 43

An

overview

of

RQS

.

.

.

.

.

.

.

.

.

.

. 43

Queues

and

elements

.

.

.

.

.

.

.

.

.

. 43

Prioritization

and

queue

sets

.

.

.

.

.

.

. 44

Adding

RQS

to

our

application

.

.

.

.

.

.

. 45

Queueing

a

shipping

request

.

.

.

.

.

.

.

. 46

Defining

the

element

type

.

.

.

.

.

.

.

. 46

Getting

a

handle

to

an

RQS

server

.

.

.

.

.

. 47

Adding

the

shipping

request

to

the

queue

.

.

. 48

Dequeueing

a

shipping

request

.

.

.

.

.

.

.

. 50

Building

and

running

the

sample

application

.

.

. 51

Chapter

6.

Interacting

with

a

relational

database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Resource

managers

and

distributed

transaction

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Resource

managers

and

the

XA

specification

.

. 53

SQL

and

embedded

SQL

.

.

.

.

.

.

.

.

. 53

Modifying

the

application

to

interact

with

a

resource

manager

.

.

.

.

.

.

.

.

.

.

. 54

Registering

the

resource

manager

.

.

.

.

.

.

. 55

Accessing

the

database

.

.

.

.

.

.

.

.

.

. 56

The

database

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Using

embedded

SQL

.

.

.

.

.

.

.

.

.

. 56

The

complete

PlaceOrder

function

.

.

.

.

.

. 59

Building

and

running

the

sample

application

.

.

. 60

Chapter

7.

Using

Encina

Peer-to-Peer

Communications

.

.

.

.

.

.

.

.

.

. 61

©

Copyright

IBM

Corp.

1999,

2004

iii

Overview

of

PPC

.

.

.

.

.

.

.

.

.

.

.

. 61

Logical

units

and

transaction

programs

.

.

.

. 62

Synchronizationl

level

and

logical

units

of

work

63

Programming

interfaces

.

.

.

.

.

.

.

.

. 63

Designing

the

PPC

application

.

.

.

.

.

.

.

. 63

Writing

the

PPC

application

.

.

.

.

.

.

.

.

. 65

Initializing

PPC

.

.

.

.

.

.

.

.

.

.

.

. 66

Allocating

conversations

.

.

.

.

.

.

.

.

. 67

Exchanging

data

.

.

.

.

.

.

.

.

.

.

.

. 68

Deallocating

conversations

.

.

.

.

.

.

.

. 69

The

PPC

application:

the

mainframe

side

.

.

. 70

Notes

on

building

and

running

the

application

.

. 71

Chapter

8.

Using

TX

.

.

.

.

.

.

.

.

. 73

Introduction

to

X/Open

TX

.

.

.

.

.

.

.

.

. 73

TX

transactions

.

.

.

.

.

.

.

.

.

.

.

. 73

TX

and

Tran-C

.

.

.

.

.

.

.

.

.

.

.

. 73

When

to

use

TX

.

.

.

.

.

.

.

.

.

.

.

. 74

Using

TX

in

the

order

application

server

.

.

.

. 74

Initializing

the

TX

interface

.

.

.

.

.

.

.

. 75

Starting

and

ending

a

transaction

using

TX

.

.

. 75

Closing

the

TX

interface

.

.

.

.

.

.

.

.

. 77

Notes

on

building

the

application

.

.

.

.

.

.

. 77

Chapter

9.

Using

nested

transactions

79

Introduction

to

nested

transactions

.

.

.

.

.

. 79

Nested

and

top-level

transactions

.

.

.

.

.

. 80

Using

nested

transactions

in

the

example

application

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Changing

the

design

of

the

application

server

.

. 81

Creating

the

nested

transaction

.

.

.

.

.

.

. 81

Appendix

A.

Building

Encina

applications

.

.

.

.

.

.

.

.

.

.

.

. 83

Encina

include

files

and

libraries

for

C

programs

.

. 83

Encina

COPY-files

and

libraries

for

COBOL

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Platform-specific

libraries

.

.

.

.

.

.

.

.

.

. 85

Other

platform-specific

compiler

and

linker

options

85

Appendix

B.

Using

abort

codes

.

.

.

. 87

Overview

of

aborting

with

abort

codes

.

.

.

.

. 87

Defining

abort

codes

.

.

.

.

.

.

.

.

.

.

. 88

Defining

abort

codes

.

.

.

.

.

.

.

.

.

. 88

Writing

the

abort

formatting

function

.

.

.

.

. 89

Aborting

a

transaction

with

an

abort

code

.

.

.

. 89

Using

abort

data

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Appendix

C.

Source

code

for

the

example

application

.

.

.

.

.

.

.

.

. 93

Source

code

for

the

order

server

.

.

.

.

.

.

. 93

Source

code

for

RQS

interactions

.

.

.

.

.

.

. 94

Source

code

for

RDBMS

interactions

.

.

.

.

.

. 97

Source

code

for

the

billing

server

and

PPC

interactions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

TIDL

and

TACF

files

for

the

application

servers

100

Application

include

files

.

.

.

.

.

.

.

.

.

. 100

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Trademarks

and

service

marks

.

.

.

.

.

.

. 104

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

iv

TXSeries™:

Writing

Encina

Applications

Figures

1.

An

example

open

distributed

system

.

.

.

. 2

2.

Three-tiered

client/server

architecture

.

.

.

. 3

3.

Local

and

remote

procedure

calls

.

.

.

.

.

. 4

4.

A

DCE

RPC

.

.

.

.

.

.

.

.

.

.

.

.

. 5

5.

Encina

directory

structure

.

.

.

.

.

.

.

. 7

6.

Example

of

a

distributed

transaction

.

.

.

. 11

7.

Architecture

of

Encina

.

.

.

.

.

.

.

.

. 12

8.

Sample

order-entry

application

.

.

.

.

.

. 15

9.

The

interface

of

the

sample

order-entry

application

.

.

.

.

.

.

.

.

.

.

.

.

. 16

10.

Prototype

for

the

OrderItem

function

.

.

.

. 17

11.

TIDL

definition

for

the

OrderItem

function

18

12.

TIDL

file

for

the

example

application

.

.

.

. 18

13.

Using

a

Transactional

Attribute

Configuration

File

to

control

errors

and

exceptions

.

.

.

. 19

14.

Files

used

and

produced

by

the

TIDL

compiler

20

15.

Files

used

and

produced

by

the

IDL

compiler

20

16.

The

OrderItem

function

.

.

.

.

.

.

.

. 21

17.

Monitor

architecture

.

.

.

.

.

.

.

.

. 24

18.

Registering

the

interface

in

the

Monitor

environment

.

.

.

.

.

.

.

.

.

.

.

. 26

19.

Initializing

the

resource

manager

.

.

.

.

. 27

20.

The

Monitor

application

server

.

.

.

.

.

. 28

21.

The

client

portion

of

the

application

.

.

.

. 29

22.

An

example

binding

table

.

.

.

.

.

.

.

. 32

23.

TACF

for

use

with

data-dependent

routing

32

24.

TIDL

file

for

the

billing

interface

.

.

.

.

. 34

25.

Registering

the

billing

server

interface

.

.

. 34

26.

The

BillForItem

function

.

.

.

.

.

.

.

. 34

27.

The

Tran-C

transaction

construct

.

.

.

.

. 38

28.

Adding

transactions

to

the

server

.

.

.

.

. 39

29.

Aborting

a

transaction

.

.

.

.

.

.

.

.

. 40

30.

Handling

an

aborted

transaction

.

.

.

.

. 40

31.

FIFO

behavior

of

queues

.

.

.

.

.

.

.

. 44

32.

Sample

Order-Entry

Application:

Adding

RQS

45

33.

Sample

application’s

use

of

an

RQS

queue

set

46

34.

The

shippingType

element

type

.

.

.

.

.

. 47

35.

Getting

a

handle

to

the

RQS

server

.

.

.

. 47

36.

RQS

initialization

.

.

.

.

.

.

.

.

.

. 48

37.

Initializing

the

element

.

.

.

.

.

.

.

.

. 49

38.

Enqueueing

the

shipping

request

.

.

.

.

. 49

39.

Dequeueing

the

shipping

request

.

.

.

.

. 51

40.

Using

rqsadmin

to

create

queues,

queue

sets,

and

element

types

.

.

.

.

.

.

.

.

.

. 52

41.

SQL

precompiler

input

and

output

files

54

42.

Sample

application:

interacting

with

a

resource

manager

.

.

.

.

.

.

.

.

.

.

.

.

. 55

43.

Registering

a

resource

manager

.

.

.

.

.

. 56

44.

Declaring

host

variables

in

our

application

57

45.

Using

host

variables

in

our

application

57

46.

Embedded

SQL

for

querying

the

database

58

47.

Embedded

SQL

for

updating

the

database

58

48.

Error

handling

in

the

example

application

59

49.

The

PlaceOrder

Function

.

.

.

.

.

.

.

. 59

50.

Creating

the

RDBMS

table

needed

for

the

sample

application

.

.

.

.

.

.

.

.

.

. 60

51.

Inserting

sample

rows

into

the

inventory

table

60

52.

PPC

communications

model

.

.

.

.

.

.

. 61

53.

PPC

conversations

.

.

.

.

.

.

.

.

.

. 62

54.

PPC

portion

of

the

sample

application

.

.

. 64

55.

PPC

initialization

.

.

.

.

.

.

.

.

.

. 65

56.

Billing

for

the

item

.

.

.

.

.

.

.

.

.

. 65

57.

Sample

side

information

file

entry

.

.

.

.

. 66

58.

PPC

initialization

.

.

.

.

.

.

.

.

.

. 67

59.

Allocating

a

conversation

.

.

.

.

.

.

.

. 68

60.

Sending

and

receiving

data

.

.

.

.

.

.

. 69

61.

Deallocating

a

conversation

.

.

.

.

.

.

. 70

62.

Outline

of

the

mainframe

side

of

the

PPC

application

.

.

.

.

.

.

.

.

.

.

.

.

. 71

63.

TX

initialization

in

a

Monitor

application

server

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

64.

Using

TX

to

start

and

end

a

transaction

76

65.

An

alternate

method

of

detecting

aborts

using

TX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

66.

Closing

the

TX

interface

.

.

.

.

.

.

.

. 77

67.

Using

a

nested

transaction

in

the

sample

application

.

.

.

.

.

.

.

.

.

.

.

.

. 82

68.

Using

abort

codes

in

our

application

.

.

.

. 88

69.

Defining

abort

codes

for

our

example

.

.

.

. 88

70.

Example

function

for

formatting

an

abort

reason

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

71.

Specifying

the

abort

format

to

use

.

.

.

.

. 90

72.

Aborting

a

transaction

using

an

abort

code

90

73.

Registering

abort

formatting

functions

.

.

. 91

74.

The

REGISTER_ABORT_FORMATTER

macro

91

©

Copyright

IBM

Corp.

1999,

2004

v

vi

TXSeries™:

Writing

Encina

Applications

Tables

1.

Conventions

used

in

this

book

.

.

.

.

.

. x

2.

RPC

protection

levels

.

.

.

.

.

.

.

.

. 9

3.

Fields

in

the

example

SQL

database

.

.

.

. 56

4.

Encina

include

files

and

libraries

for

C

programs

.

.

.

.

.

.

.

.

.

.

.

.

. 83

5.

Encina

COPY-Files

and

libraries

for

COBOL

programs

.

.

.

.

.

.

.

.

.

.

.

.

. 84

6.

Platform-specific

libraries

.

.

.

.

.

.

.

. 85

7.

Platform-specific

compiler

and

linker

options

for

UNIX

.

.

.

.

.

.

.

.

.

.

.

.

. 85

8.

Platform-specific

compiler

and

linker

options

for

Windows

.

.

.

.

.

.

.

.

.

.

.

. 85

©

Copyright

IBM

Corp.

1999,

2004

vii

viii

TXSeries™:

Writing

Encina

Applications

About

this

book

This

document

focuses

on

programming

in

the

Encina®

environment.

It

presents

an

overview

of

the

concepts

of

distributed

transaction

processing.

It

then

provides

a

tutorial

on

how

to

write

a

simple

transactional

client/server

application

that

interacts

with

a

relational

database

and

uses

several

different

Encina

components.

Who

should

read

this

book

This

document

is

intended

for

use

by

programmers

who

want

to

learn

how

to

program

in

the

Encina

environment.

Basic

familiarity

with

programming

in

general

and

with

the

C

programming

language

are

assumed.

However,

no

prior

knowledge

of

Encina

or

the

Distributed

Computing

Environment

(DCE)

is

necessary.

Document

organization

This

document

has

the

following

organization:

v

Chapter

1,

“Basic

Concepts

of

Distributed

Computing,”

introduces

some

of

the

concepts

of

distributed

computing.

It

provides

background

information

on

client/server

computing,

DCE,

transactions,

and

Encina.

v

Chapter

2,

“Writing

the

Interface

for

a

Sample

Client/Server

Application,”

begins

the

development

of

a

sample

application

that

will

be

enhanced

in

subsequent

chapters.

It

describes

the

basic

steps

in

designing

and

writing

the

interface

between

the

client

and

the

server.

v

Chapter

3,

“Writing

a

Client/Server

Application

Using

the

Monitor,”

discusses

programming

in

the

Monitor

environment.

The

steps

involved

in

writing

the

sample

application

in

the

Monitor

environment

are

described.

v

Chapter

4,

“Making

the

Sample

Application

Transactional,”

shows

how

to

use

Tran-C

to

make

the

sample

application

transactional.

It

discusses

how

to

start

and

end

(commit

or

abort)

transactions

and

how

to

retrieve

information

about

aborted

transactions.

v

Chapter

5,

“Using

RQS,”

explains

how

to

use

the

Recoverable

Queueing

Service

(RQS)

with

the

sample

application.

It

introduces

basic

RQS

concepts

and

shows

how

items

are

queued

and

dequeued.

v

Chapter

6,

“Interacting

with

a

Relational

Database,”

describes

how

to

make

the

sample

application

interact

with

a

relational

database.

It

describes

Monitor

features

used

in

interacting

with

resource

managers

and

provides

an

overview

of

how

to

use

embedded

SQL.

v

Chapter

7,

“Using

Encina

Peer-to-Peer

Communications,”

describes

how

the

sample

application

can

interact

with

an

application

on

a

mainframe

using

SNA

LU

6.2.

It

describes

basic

PPC

concepts

and

shows

how

to

use

CPI-C,

the

interface

used

for

PPC

applications.

v

Chapter

8,

“Using

TX,”

explains

how

to

use

the

X/Open

TX

interface

for

managing

transactions.

v

Chapter

9,

“Using

Nested

Transactions,”

introduces

the

concept

of

nested

transactions

as

a

way

to

achieve

error

isolation.

It

provides

an

example

of

doing

so

in

the

context

of

the

sample

application.

v

Appendix

A,

“Building

Encina

Applications,”

lists

the

include

files

and

libraries

needed

to

build

Encina

applications.

©

Copyright

IBM

Corp.

1999,

2004

ix

v

Appendix

B,

“Using

Abort

Codes,”

describes

the

Encina

Abort

Facility

and

shows

how

to

use

a

more

flexible

abort

mechanism

than

the

one

used

in

the

body

of

the

manual.

v

Appendix

C,

“Source

Code

for

the

Example

Application,”

contains

the

source

code

for

the

sample

application.

Related

information

For

further

information

on

the

topics

and

software

discussed

in

this

manual,

see

the

following

documents:

v

Encina

Monitor

Programming

Guide

v

Encina

RQS

Programming

Guide

v

Encina

Transactional

Programming

Guide

v

Encina

PPC

Services

Programming

Guide

Conventions

used

in

this

book

TXSeries

documentation

uses

the

following

typographical

and

keying

conventions.

Table

1.

Conventions

used

in

this

book

Convention

Meaning

Bold

Indicates

values

you

must

use

literally,

such

as

commands,

functions,

and

resource

definition

attributes

and

their

values.

When

referring

to

graphical

user

interfaces

(GUIs),

bold

also

indicates

menus,

menu

items,

labels,

buttons,

icons,

and

folders.

Monospace

Indicates

text

you

must

enter

at

a

command

prompt.

Monospace

also

indicates

screen

text

and

code

examples.

Italics

Indicates

variable

values

you

must

provide

(for

example,

you

supply

the

name

of

a

file

for

file_name).

Italics

also

indicates

emphasis

and

the

titles

of

books.

<

>

Enclose

the

names

of

keys

on

the

keyboard.

<Ctrl-x>

Where

x

is

the

name

of

a

key,

indicates

a

control-character

sequence.

For

example,

<Ctrl-c>

means

hold

down

the

Ctrl

key

while

you

press

the

c

key.

<Return>

Refers

to

the

key

labeled

with

the

word

Return,

the

word

Enter,

or

the

left

arrow.

%

Represents

the

UNIX®

command-shell

prompt

for

a

command

that

does

not

require

root

privileges.

#

Represents

the

UNIX

command-shell

prompt

for

a

command

that

requires

root

privileges.

C:\>

Represents

the

Windows
®

command

prompt.

>

When

used

to

describe

a

menu,

shows

a

series

of

menu

selections.

For

example,

″Select

File

>

New″

means

″From

the

File

menu,

select

the

New

command.″

Entering

commands

When

instructed

to

“enter”

or

“issue”

a

command,

type

the

command

and

then

press

<Return>.

For

example,

the

instruction

“Enter

the

ls

command”

means

type

ls

at

a

command

prompt

and

then

press

<Return>.

[

]

Enclose

optional

items

in

syntax

descriptions.

{

}

Enclose

lists

from

which

you

must

choose

an

item

in

syntax

descriptions.

|

Separates

items

in

a

list

of

choices

enclosed

in

{

}

(braces)

in

syntax

descriptions.

...

Ellipses

in

syntax

descriptions

indicate

that

you

can

repeat

the

preceding

item

one

or

more

times.

Ellipses

in

examples

indicate

that

information

was

omitted

from

the

example

for

the

sake

of

brevity.

x

TXSeries™:

Writing

Encina

Applications

Table

1.

Conventions

used

in

this

book

(continued)

Convention

Meaning

IN

In

function

descriptions,

indicates

parameters

whose

values

are

used

to

pass

data

to

the

function.

These

parameters

are

not

used

to

return

modified

data

to

the

calling

routine.

(Do

not

include

the

IN

declaration

in

your

code.)

OUT

In

function

descriptions,

indicates

parameters

whose

values

are

used

to

return

modified

data

to

the

calling

routine.

These

parameters

are

not

used

to

pass

data

to

the

function.

(Do

not

include

the

OUT

declaration

in

your

code.)

INOUT

In

function

descriptions,

indicates

parameters

whose

values

are

passed

to

the

function,

modified

by

the

function,

and

returned

to

the

calling

routine.

These

parameters

serve

as

both

IN

and

OUT

parameters.

(Do

not

include

the

INOUT

declaration

in

your

code.)

$CICS

Indicates

the

full

path

name

where

the

CICS®

product

is

installed;

for

example,

C:\opt\TXSeries\cics

on

Windows®

or

/opt/cics

on

Solaris.

If

the

environment

variable

named

CICS

is

set

to

the

product

path

name,

you

can

use

the

examples

exactly

as

shown;

otherwise,

you

must

replace

all

instances

of

$CICS

with

the

CICS

product

path

name.

CICS

on

Open

Systems

Refers

collectively

to

the

CICS

product

for

all

supported

UNIX

platforms.

TXSeries®

CICS

Refers

collectively

to

the

CICS

for

AIX®,

CICS

for

HP-UX,

CICS

for

Solaris,

and

CICS

for

Windows

products.

CICS

Refers

generically

to

the

CICS

on

Open

Systems

and

CICS

for

Windows

products.

References

to

a

specific

version

of

a

CICS

on

Open

Systems

product

are

used

to

highlight

differences

between

CICS

on

Open

Systems

products.

Other

CICS

products

in

the

CICS

Family

are

distinguished

by

their

operating

system

(for

example,

CICS

for

OS/2®

or

IBM®

mainframe-based

CICS

for

the

ESA,

MVS™,

and

VSE

platforms).

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

If

you

have

any

comments

about

this

book

or

any

other

TXSeries

documentation,

send

your

comments

by

e-mail

to

idrcf@hursley.ibm.com.

Be

sure

to

include

the

name

of

the

book,

the

document

number

of

the

book,

the

version

of

TXSeries,

and,

if

applicable,

the

specific

location

of

the

information

you

are

commenting

on

(for

example,

a

page

number

or

table

number).

About

this

book

xi

|
|
|
|
|

|
|

xii

TXSeries™:

Writing

Encina

Applications

Chapter

1.

Basic

concepts

of

distributed

computing

Encina

is

a

family

of

software

products

used

to

develop

and

manage

open

distributed

systems.

Using

the

underlying

technology

of

the

Open

Software

Foundation

(OSF)

Distributed

Computing

Environment

(DCE),

Encina

provides

the

infrastructure

to

handle

the

complexities

of

large

distributed

systems

and

to

maintain

data

integrity

across

them.

Furthermore,

Encina

simplifies

many

aspects

of

programming

distributed

systems,

allowing

application

developers

to

concentrate

on

the

business

logic

of

the

program

and

to

ignore

many

of

the

underlying

details.

This

manual

describes

how

to

write

a

basic

Encina

application.

The

chapters

that

follow

develop

a

simple

client/server

application

using

a

number

of

Encina

components.

This

chapter

presents

background

information

about

distributed

computing.

It

includes

sections

summarizing

distributed

software,

the

client/server

model,

and

distributed

transaction

processing.

You

do

not

need

to

know

all

the

details

presented

here

to

write

the

simple

application

that

begins

in

Chapter

2,

“Writing

the

interface

for

a

sample

client/server

application,”

on

page

15.

If

you

are

familiar

with

the

concepts

of

client/server

computing,

you

can

skim

this

chapter.

Distributed

computing

Encina

is

designed

to

help

develop

and

manage

open

distributed

systems.

A

distributed

computer

system

consists

of

multiple

software

components

on

multiple

computers

running

as

a

single

system.

The

computers

in

a

distributed

system

can

be

physically

close

together

and

connected

by

a

local

network,

or

they

can

be

geographically

distant

and

connected

by

a

wide

area

network.

A

distributed

system

can

comprise

any

number

of

possible

configurations—mainframes,

personal

computers,

workstations,

minicomputers,

and

so

forth.

The

goal

of

distributed

computing

is

to

make

such

a

network

act

as

a

single

computer.

Distributed

systems

offer

many

benefits

over

centralized

systems,

including

the

following:

v

Scalability:

the

system

can

easily

be

expanded

by

adding

more

machines

as

needed.

v

Redundancy:

several

machines

can

provide

the

same

services,

so

if

one

is

unavailable,

work

does

not

come

to

a

halt.

Additionally,

because

a

larger

number

of

smaller

machines

can

be

used,

this

redundancy

does

not

need

to

be

prohibitively

expensive.

Although

a

distributed

system

as

just

described

can

conceivably

be

implemented

using

proprietary

hardware

and

software

from

a

small

number

of

vendors,

industry

trends

are

toward

open,

standards-based

systems.

An

open

distributed

computing

system

is

one

that

can

run

on

hardware

provided

by

multiple

vendors

and

use

a

variety

of

standards-based

software

components.

Such

systems

are

independent

of

the

underlying

software

and

run

on

various

operating

systems

using

various

communications

protocols.

For

example,

an

open

distributed

system

can

run

on

a

variety

of

hardware

platforms,

with

some

hardware

using

UNIX®

as

©

Copyright

IBM

Corp.

1999,

2004

1

the

operating

system,

other

hardware

using

the

Windows®

operating

system.

For

intermachine

communication,

this

hardware

can

use

SNA

or

TCP/IP

on

Ethernet

or

Token

Ring.

Figure

1

shows

an

example

of

such

a

distributed

system.

This

system

contains

two

local

area

networks

(LANs)—one

consisting

of

UNIX

workstations

from

several

different

manufacturers,

the

other

consisting

primarily

of

PCs

running

several

different

PC

operating

systems,

connected

together.

One

of

the

LANs

is

also

connected

to

a

mainframe,

using

an

SNA

connection.

The

client/server

model

A

common

way

of

organizing

software

to

run

on

distributed

systems

is

to

separate

functionality

into

two

parts—clients

and

servers.

A

client

is

a

program

that

uses

services

provided

by

other

programs

called

servers.

The

client

makes

a

request

for

a

service,

and

a

server

performs

that

service.

Server

functionality

often

involves

some

sort

of

resource

management,

in

which

a

server

synchronizes

and

manages

access

to

the

resource,

responding

to

client

requests

with

either

data

or

status

information.

Client

programs

typically

handle

user

interactions

and

often

request

data

or

initiate

some

data

modification

on

behalf

of

a

user.

For

example,

a

client

can

provide

a

form

on

which

a

user

(a

person

working

at

a

data

entry

terminal,

for

example)

can

enter

orders

for

a

product.

The

client

sends

this

order

information

to

the

server,

which

checks

the

product

database

and

performs

tasks

needed

for

billing

and

shipping.

A

single

server

is

typically

used

by

multiple

clients.

For

example,

dozens

or

hundreds

of

clients

can

interact

with

a

few

servers

that

control

database

access.

Clients

can

also

access

several

different

servers,

and

the

servers

themselves

can

act

as

clients

to

other

servers.

Exactly

how

the

functionality

is

distributed

across

servers,

for

example,

whether

a

single

server

provides

all

the

services

a

client

needs

or

the

client

accesses

multiple

servers

to

perform

different

requests,

is

an

application

design

decision.

The

application

designer

must

take

into

account

such

issues

as

scalability,

location

(are

both

clients

and

servers

local

or

is

the

application

Figure

1.

An

example

open

distributed

system

2

TXSeries™:

Writing

Encina

Applications

spread

out

over

a

wide

geographic

area?),

and

security

(for

example,

do

the

servers

need

to

be

on

machines

that

are

physically

secure?).

Such

design

decisions

are

outside

the

scope

of

this

introduction.

Some

servers

are

part

of

an

application

and

are

referred

to

as

application

servers.

Other

servers

are

not

part

of

a

specific

application.

Instead,

any

application

can

use

them.

DCE

and

Encina

both

provide

such

servers.

For

example,

the

Encina

Structured

File

Server

(SFS)

provides

record-oriented

file

access

for

applications.

A

common

design

of

client/server

systems

uses

three

tiers:

a

client

that

interacts

with

the

user,

an

application

server

that

contains

the

business

logic

of

the

application,

and

a

resource

manager

that

stores

data.

This

approach

is

shown

in

Figure

2.

In

this

way,

the

client

is

isolated

from

having

to

know

anything

about

the

actual

resource

manager.

If

you

change

the

database

you

are

using,

the

server

might

have

to

be

modified,

but

the

client

does

not

need

to

be

modified.

Because

there

are

usually

fewer

copies

of

the

server

than

the

client,

and

because

the

servers

are

often

in

locations

that

are

easier

to

update

(for

example,

on

central

machines

rather

than

on

PCs

running

on

users’

desks),

the

update

procedure

is

also

simplified.

Furthermore,

this

approach

provides

additional

security.

Only

the

servers,

not

the

clients,

need

access

to

the

data

controlled

by

the

resource

manager.

Client/server

applications

under

DCE

To

implement

a

client/server

application,

a

number

of

basic

services

are

needed,

including

the

following:

v

A

communications

mechanism

that

enables

clients

and

servers

to

interact

v

A

naming

mechanism

that

enables

clients

to

find

servers

that

offer

the

desired

services

Clients

Mainframe

Resource
Manager

Resources
(for example
databases)

Tier 1
(Presentation)

Tier 3
(Data/Resource)

Tier 2
(Business Logic)

Application
Servers

LAN

Figure

2.

Three-tiered

client/server

architecture

Chapter

1.

Basic

concepts

of

distributed

computing

3

v

A

security

mechanism

that

enables

secure

communications

between

clients

and

servers

DCE,

a

modular

collection

of

interfaces,

provides

these

basic

building

blocks

for

constructing

distributed

client/server

systems.

This

section

provides

background

information

about

those

DCE

services

of

special

interest

to

developers

writing

Encina

applications.

In

particular,

it

describes

the

Remote

Procedure

Call

(RPC)

Facility,

which

provides

communications

between

components;

the

Cell

Directory

Service

(CDS),

which

provides

a

naming

service

that

allows

clients

to

find

servers;

and

the

Security

Service,

which

provides

for

secure

operation

of

distributed

applications.

For

more

information

on

DCE,

see

the

OSF

DCE

documentation.

In

DCE,

a

group

of

machines

that

work

together

and

are

administered

as

a

unit

is

called

a

cell.

Each

cell

provides

the

services

needed

for

a

distributed

environment.

The

application

we

develop

in

this

manual

runs

in

a

single

DCE

cell.

DCE

also

provides

support

for

intercell

communications.

Remote

procedure

calls

Many

different

communications

models

can

be

used

for

clients

to

interact

with

servers.

For

example,

a

client

can

queue

requests

to

be

processed

by

a

server,

or

the

client

and

server

can

interact

by

using

shared

memory.

However,

the

most

common

way

for

clients

to

communicate

with

servers

(and

the

approach

used

by

DCE

and

Encina)

is

by

using

remote

procedure

calls

(RPCs).

The

RPC

mechanism

makes

the

details

of

network

communications

transparent

to

applications.

A

client

program

invokes

an

RPC

in

the

same

way

as

it

invokes

a

local

procedure

call.

However,

the

procedure

is

not

implemented

in

the

same

process

that

calls

the

procedure,

as

is

the

case

with

local

procedure

calls.

Instead,

the

underlying

RPC

run

time

transmits

the

procedure

call

to

the

server

process.

The

server

receives

the

request

and

executes

the

procedure,

returning

the

results

to

the

client.

Like

local

procedures,

a

remote

procedure

call

can

be

passed

both

input

and

output

parameters

and

can

return

a

value.

Figure

3

contrasts

local

and

remote

procedure

calls.

Figure

3.

Local

and

remote

procedure

calls

4

TXSeries™:

Writing

Encina

Applications

In

the

case

of

local

procedure

calls,

the

called

procedure

is

part

of

the

same

process

and

thus

shares

the

same

memory

space

as

the

calling

procedure.

Therefore,

the

called

procedure

can

easily

access

any

parameters

passed

to

it

because

these

parameters

are

stored

in

the

process’s

memory.

This

is

not

possible

for

RPCs

because

the

called

procedure

does

not

have

access

to

the

caller’s

memory,

which

is

in

a

different

process

and

often

on

a

different

machine.

RPCs

thus

provide

a

mechanism

for

passing

parameters

between

clients

and

servers.

When

a

client

program

makes

an

RPC

to

a

server,

the

procedure’s

parameters

are

automatically

packed

into

a

request

message,

which

is

sent

to

the

remote

program.

Packing

procedure

parameters

in

this

way

is

called

marshaling.

When

the

message

is

received

by

the

remote

program,

the

RPC

facility

unpacks

(unmarshals)

the

message

and

makes

the

actual

procedure

call.

The

results

of

the

call

are

packed

into

a

reply

message,

which

is

returned

to

the

calling

program

and

unmarshalled

there

by

the

RPC

system.

Marshaling

and

unmarshaling

are

handled

for

a

program

by

code

called

a

stub.

A

stub

translates

the

local

procedure

call

into

a

remote

procedure

call,

marshaling

and

unmarshaling

the

arguments.

The

client

stub

communicates

with

the

server

stub

by

using

the

DCE

RPC

run-time

library.

This

is

shown

in

Figure

4.

These

implementation

details

do

not

need

to

be

considered

when

writing

client/server

applications;

the

details

are

handled

by

DCE.

An

interface

is

a

group

of

remote

procedure

calls

that

a

server

makes

available

to

clients.

Interfaces

are

described

by

using

the

Interface

Definition

Language.

The

Interface

Definition

Language

(IDL)

is

a

high-level

language

with

a

declaration

syntax

similar

to

that

of

the

C

programming

language,

with

additional

attributes

needed

for

defining

remote

procedures.

An

IDL

file

contains

definitions,

similar

to

ANSI

C

function

prototypes,

of

each

procedure,

including

the

procedure

name

and

descriptions

of

return

values

and

argument

types.

This

file

is

compiled

with

the

DCE

idl

compiler,

which

produces

the

client

and

server

stubs

as

well

as

an

interface

header

file

that

can

be

included

in

the

client

and

server

program.

Locating

resources

Before

a

client

can

make

an

RPC

to

a

server,

it

must

first

identify

a

server

that

supports

the

desired

interface

and

make

the

connection

to

the

server.

The

server

must

advertise

itself,

making

available

the

information

the

client

needs

to

make

this

connection.

This

information

is

called

binding

information,

and

the

relationship

between

the

client

and

the

server

is

called

binding.

Binding

information

includes

the

following:

v

The

communications

protocols

(for

example,

TCP/IP)

the

server

can

use

Figure

4.

A

DCE

RPC

Chapter

1.

Basic

concepts

of

distributed

computing

5

v

Protocol-specific

address

information,

which

typically

includes

the

hostname

of

the

machine

on

which

the

server

runs

and

a

process

address

on

that

machine

v

The

interfaces

the

server

supports

DCE

stores

this

information

in

two

places.

The

protocol

information,

the

host

identifier,

and

the

interface

information

are

stored

in

the

DCE

Cell

Directory

Service

(CDS).

The

process

address

at

which

the

server

listens

for

RPCs

(called

an

endpoint)

is

stored

in

the

endpoint

map

on

the

host

on

which

the

server

is

running.

The

endpoint

map

is

a

simple

database

that

relates

interfaces

to

the

process

addresses

of

servers

that

support

those

interfaces.

When

a

server

is

initialized,

it

exports

binding

information

to

CDS

and

registers

its

endpoint

and

the

interfaces

it

supports

with

the

endpoint

map.

The

client

imports

the

binding

information

exported

by

the

server.

Importing

binding

information

can

be

explicit

(the

client

calls

DCE

functions

to

bind

to

the

server)

or

implicit

(DCE

automatically

makes

the

connection

on

the

client’s

behalf).

The

process

of

binding

is

described

in

more

detail

in

“An

overview

of

the

binding

process”

on

page

7.

First,

however,

the

following

section

describes

CDS

in

more

detail.

The

DCE

Cell

Directory

Service

The

DCE

Cell

Directory

Service

provides

a

consistent

way

of

identifying

resources

in

a

DCE

cell.

CDS

maintains

a

database

of

names

and

attributes

(including

locations)

of

servers

in

a

cell.

A

server

exports

its

name,

its

location,

and

the

interfaces

it

supports

to

CDS;

clients

locate

the

server

by

looking

up

the

name

or

interface

in

CDS.

CDS

is

comparable

to

a

telephone

book.

By

providing

CDS

with

the

name

of

a

resource,

a

user

can

obtain

the

location

of

the

resource.

For

example,

because

a

server

exports

its

name

and

supported

interfaces

to

CDS,

users

can

refer

to

this

server

by

name.

They

do

not

need

to

know

the

server’s

network

address

to

locate

the

server.

CDS

is

actually

one

part

of

the

DCE

Directory

Service,

which

also

supports

a

global

name

service

for

identifying

resources

outside

a

cell.

For

the

remainder

of

this

manual,

we

use

a

single

DCE

cell;

thus,

when

we

refer

to

the

DCE

Directory

Service,

we

are

referring

to

the

CDS

component.

To

enable

users

to

identify

resources,

CDS

stores

objects

that

represent

machines

and

resources.

Each

machine

or

resource

must

have

an

entry

in

CDS.

CDS

stores

attributes

of

each

object

(for

example,

a

network

address).

Object

names

are

independent

of

attributes

so

that

only

the

object’s

attributes,

not

its

name,

need

to

change

if

the

program

or

resource

it

represents

is

moved

to

a

different

node

in

the

cell.

Users

can

continue

to

locate

the

moved

object

by

using

the

same

name.

The

names

and

attributes

of

client/server

applications

in

a

DCE

cell

are

stored

together

in

an

area

called

the

CDS

namespace.

This

namespace

has

a

directory

structure,

with

the

root

directory

at

the

top

and

one

or

more

directories

beneath

the

root

directory.

For

example,

the

Encina

Monitor

cell

for

an

order

entry

system

might

be

called

order_cell

and

have

a

root

directory,

/.:/order_cell.

Under

this

root

directory,

there

is

a

directory

called

server,

under

which

the

servers

that

are

used

in

the

application

are

registered.

Figure

5

on

page

7

shows

an

example

in

which

two

example

servers—orderServer

and

billingServer—are

registered.

6

TXSeries™:

Writing

Encina

Applications

After

servers

have

entries

in

the

namespace,

clients

can

use

CDS

to

find

them.

A

resource

has

a

path-like

name

that

identifies

the

resource

relative

to

the

DCE

cell

in

which

it

exists.

The

path

includes

each

directory

in

the

directory

structure

under

which

the

resource

name

is

registered,

as

in

/.:/order_cell/server/orderServer.

The

/.:

prefix

used

when

specifying

CDS

names

is

an

abbreviation

for

/.../dce_cell_name.

An

overview

of

the

binding

process

For

a

client

and

a

server

to

establish

a

binding,

both

must

perform

certain

steps.

Depending

upon

the

programmatic

interface

used,

some

of

these

steps

might

be

performed

automatically

for

the

application.

For

example,

as

described

in

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23,

the

Monitor

performs

most

of

these

steps

for

both

the

client

and

the

server.

To

enable

itself

to

be

contacted

by

clients,

a

server

performs

the

following

steps:

1.

Register

each

interface

it

supports

with

the

RPC

run-time

library.

2.

Publish

its

binding

information,

which

includes

the

following

steps:

a.

Select

the

protocol

sequences

it

can

use.

Most

servers

support

TCP/IP,

UDP/IP,

or

both.

b.

Register

its

server

address

information

in

the

endpoint

map.

c.

Export

its

binding

information

to

CDS.
3.

Listen

for

incoming

RPCs.

To

contact

a

server,

a

client

performs

the

following

steps:

1.

Import

server

binding

information

from

CDS.

This

tells

the

client

on

which

host

it

can

find

the

desired

interface

exported

by

the

server.

2.

Look

in

the

endpoint

map

on

that

host

to

find

the

endpoint

of

the

desired

server.

This

lookup

is

performed

by

the

DCE

daemon

(dced)

process,

working

on

behalf

of

the

client.

After

the

client

has

obtained

the

endpoint

information,

it

communicates

directly

with

the

server.

That

is,

it

no

longer

uses

CDS

or

the

endpoint

map

when

making

RPCs.

Protecting

resources

Most

computer

systems

use

some

method

of

protecting

resources.

This

can

be

a

special

concern

in

a

distributed

environment,

where

many

different

systems,

often

with

thousands

of

users,

are

communicating.

Users

of

distributed

systems

typically

must

identify

themselves

to

the

system

by

specifying

a

user

name

and

a

password.

The

system

maintains

a

record

of

the

password

for

each

user

and

checks

the

password

it

has

recorded

against

that

specified

by

the

user.

The

system

also

must

Figure

5.

Encina

directory

structure

Chapter

1.

Basic

concepts

of

distributed

computing

7

determine

which

resources

the

user

is

permitted

to

access

and

to

what

degree.

Permissions

give

specific

users

a

specified

level

of

access

to

files

and

resources.

For

instance,

a

particular

user

can

be

allowed

to

read

data

from

a

particular

file

but

not

to

modify

the

file.

The

DCE

Security

Service

provides

the

following

security

features

to

protect

DCE

resources:

v

Authentication

ensures

that

a

principal

(the

DCE

term

for

a

user

or

server)

is

who

he

or

she

claims

to

be.

v

Protection

levels

for

RPCs

control

the

frequency

of

authentication

and

the

degree

of

encryption

for

RPCs

from

clients

to

servers.

v

Authorization

determines

whether

an

authenticated

principal

is

authorized

(that

is,

has

the

required

permissions)

to

make

a

particular

request.

Authentication

and

protection

levels

are

closely

related.

When

a

client

is

authenticated

with

the

DCE

Security

Service,

the

client

is

given

an

encrypted

ticket.

The

client

presents

this

ticket

to

a

server

as

proof

that

it

is

who

it

claims

to

be.

The

protection

level

defines

how

often

the

server

checks

the

client’s

authentication.

Servers

running

in

the

Encina

environment

can

use

all

three

security

features.

When

configuring

a

server,

administrators

determine

whether

to

make

use

of

the

features.

User

authentication

is

the

most

basic

DCE

security

mechanism.

Protection

levels

provide

further

security

control,

and

authorization

provides

even

more

detailed

security

control.

Servers

check

the

security

for

an

RPC

by

following

a

sequence

from

the

most

basic

to

the

most

advanced

security

feature

(authentication

to

authorization).

For

users

and

applications

to

obtain

access

to

Encina

server

resources

as

authenticated,

protected,

and

authorized

clients,

they

must

v

Be

authenticated

to

DCE.

v

Communicate

at

(at

least)

the

minimum

level

of

protection

specified

by

the

server.

v

Be

authorized

to

access

the

resources.

A

client

that

is

unauthenticated

or

underprotected

is

treated

as

an

unauthenticated

client;

unauthenticated

clients

are

granted

or

denied

access

to

a

resource

based

on

the

permissions

that

an

administrator

grants

to

unauthenticated

principals.

A

client

that

is

authenticated

and

protected

but

does

not

have

adequate

permissions

for

a

resource

is

considered

authenticated

but

unauthorized;

unauthorized

clients

are

denied

access

to

resources.

Authentication,

protection

levels,

and

authorization

are

described

in

more

detail

in

the

next

three

sections.

Authentication

The

Authentication

Service

enables

principals

to

prove

their

identities

to

DCE

and

to

other

principals.

Each

principal

has

an

associated

account,

which

holds

information

about

the

principal

(for

instance,

the

principal’s

password).

The

account

also

contains

information

about

the

groups

to

which

a

principal

belongs.

Each

principal

can

be

assigned

to

one

or

more

groups.

Groups

simplify

authorization,

as

described

in

“Authorization”

on

page

10.

Before

requesting

access

to

resources,

a

principal

proves

its

identity

by

authenticating

to

DCE.

An

interactive

principal

(such

as

a

user)

typically

authenticates

by

logging

into

the

system

(for

example,

by

using

the

dce_login

8

TXSeries™:

Writing

Encina

Applications

command)

and

specifying

a

password.

A

noninteractive

principal

(such

as

a

server)

authenticates

when

it

is

started

by

obtaining

a

key

(password)

from

its

DCE

keytab

file,

which

is

located

on

the

machine

on

which

it

runs.

When

an

authenticated

principal

starts

a

process,

that

process

inherits

the

principal’s

authentication

information.

However,

a

principal’s

authentication

information

eventually

expires,

causing

processes

started

by

that

principal

to

lose

authentication.

Interactive

principals

refresh

their

authentication

by

specifying

their

passwords.

Noninteractive

principals

periodically

reauthenticate

programmatically

by

using

their

keytab

files,

ensuring

that

their

processes

are

authenticated

even

over

long

periods

of

time.

Protection

levels

Protection

levels

determine

the

level

of

security

on

RPCs

between

clients

and

servers.

The

application

designer

must

decide

what

level

of

security

is

needed.

For

example,

must

authentication

occur

only

when

the

client

binds

to

the

server,

or

must

each

RPC

be

authenticated?

Clients

use

authenticated

RPCs

for

secure

communications

with

servers.

Authenticated

RPCs

ensure

that

the

sender

is

authenticated

and

define

the

protection

level

used

for

the

RPC.

DCE

provides

various

levels

of

protection,

ranging

from

not

authenticating,

through

authenticating

at

the

beginning

of

an

RPC

session,

to

encrypting

all

data.

These

levels

are

summarized

in

Table

2.

The

names

shown

in

parenthesis

in

the

table

(rpc_c_protect_level_default,

rpc_c_protect_level_none,

and

so

forth)

are

the

DCE-defined

constants

for

the

protection

levels.

Table

2.

RPC

protection

levels

Protection

level

Meaning

Default

(0)

(rpc_c_protect_level_

default)

Use

the

DCE

default

protection

level.

None

(1)

(rpc_c_protect_level_

none)

Perform

no

authentication.

Connect

(2)

(rpc_c_protect_level_

connect)

Verify

authentication

only

when

the

client

establishes

a

connection

to

the

server.

Call

(3)

(rpc_c_protect_level_

call)

Verify

authentication

at

the

beginning

of

each

RPC.

Packet

(4)

(rpc_c_protect_level_

pkt)

Verify

authentication

at

the

beginning

of

each

RPC

and

verify

that

packet

headers

have

not

been

modified.

Packet

Integrity

(5)

(rpc_c_protect_level_

pkt_integrity)

Verify

authentication

at

the

beginning

of

each

RPC

and

verify

that

none

of

the

data

transferred

between

client

and

server

has

been

modified.

Packet

Privacy

(6)

(rpc_c_protect_level_

pkt_privacy)

Verify

authentication

at

the

beginning

of

each

RPC

and

verify

that

none

of

the

data

transferred

between

client

and

server

has

been

modified.

In

addition,

encrypt

each

RPC.

In

general,

the

higher

the

protection

level

for

an

RPC,

the

higher

the

performance

cost.

The

application

designer

and

system

administrator

determine

the

optimal

trade-off

between

data

integrity

and

performance

cost

when

defining

an

RPC’s

level

of

protection.

Chapter

1.

Basic

concepts

of

distributed

computing

9

Authorization

Authorization

enables

administrators

to

control

access

to

resources

and

services.

Administrators

use

DCE

access

control

lists

(ACLs)

to

specify

which

users

can

access

or

use

administrative

services,

application

interfaces,

functions

within

those

interfaces,

and

data.

An

ACL

grants

permission

to

perform

operations

on

the

object

(for

example,

the

server

or

file)

with

which

it

is

associated.

It

can

grant

permissions

to

individual

principals

or

to

groups

of

principals.

Groups

simplify

authorization:

users

with

similar

responsibilities

can

be

assigned

to

the

same

group

and

that

group

can

be

given

permissions,

which

are

granted

to

each

member

of

the

group.

Specific

permissions

are

granted

to

authenticated

principals.

Principals

who

are

unauthenticated

can

be

granted

the

same

or

fewer

permissions,

or

they

can

be

denied

access

altogether.

Transactions

A

transaction

is

a

tool

for

distributed

systems

programming

that

simplifies

failure

scenarios.

A

transaction

is

a

set

of

operations

that

transforms

data

from

one

consistent

state

to

another.

This

set

of

operations

is

an

indivisible

unit

of

work,

and

in

some

contexts,

a

transaction

is

referred

to

as

a

logical

unit

of

work

(LUW).

Transactions

provide

the

ACID

properties:

v

Atomicity.

A

transaction’s

changes

are

atomic:

either

all

operations

that

are

part

of

the

transaction

happen

or

none

happen.

v

Consistency.

A

transaction

moves

data

between

consistent

states.

v

Isolation.

Even

though

transactions

can

execute

concurrently,

no

transaction

sees

another’s

work

in

progress.

The

transactions

appear

to

run

serially.

v

Durability.

Once

a

transaction

completes

successfully,

its

changes

survive

subsequent

failures.

As

an

example,

consider

a

transaction

that

transfers

money

from

one

account

to

another.

Such

a

transfer

involves

money

being

deducted

from

one

account

and

deposited

in

the

other.

Withdrawing

the

money

from

one

account

and

depositing

it

in

the

other

account

are

two

parts

of

an

atomic

transaction:

if

both

cannot

be

completed,

neither

must

happen.

If

multiple

requests

are

processed

against

an

account

at

the

same

time,

they

must

be

isolated

so

that

only

a

single

transaction

can

affect

the

account

at

one

time.

If

the

bank’s

central

computer

goes

down

just

after

the

transfer,

the

correct

balance

must

still

be

shown

when

the

system

becomes

available

again:

the

change

must

be

durable.

Note

that

consistency

is

a

function

of

the

application;

if

money

is

to

be

transferred

from

one

account

to

another,

the

application

must

subtract

the

same

amount

of

money

from

one

account

that

it

adds

to

the

other

account.

Transactions

can

be

completed

in

one

of

two

ways:

they

can

commit

or

abort.

A

successful

transaction

is

said

to

commit.

An

unsuccessful

transaction

is

said

to

abort.

Any

data

modifications

made

by

an

aborted

transaction

must

be

completely

undone

(rolled

back).

In

the

above

example,

if

money

is

withdrawn

from

one

account

but

a

failure

prevents

the

money

from

being

deposited

in

the

other

account,

any

changes

made

to

the

first

account

must

be

completely

undone.

The

next

time

any

source

queries

the

account

balance,

the

correct

balance

must

be

shown.

10

TXSeries™:

Writing

Encina

Applications

Distributed

transactions

and

the

two-phase

commit

process

A

distributed

transaction

is

one

that

runs

in

multiple

processes,

usually

on

several

machines.

Each

process

works

for

the

transaction.

This

is

illustrated

in

Figure

6,

where

each

oval

indicates

work

being

done

on

a

different

machine

and

each

arrow

indicates

an

RPC.

Distributed

transactions,

like

local

transactions,

must

adhere

to

the

ACID

properties.

However,

maintaining

these

properties

is

greatly

complicated

for

distributed

transactions

because

a

failure

can

occur

in

any

process,

yet

even

in

the

event

of

such

a

failure,

each

process

must

undo

any

work

already

done

on

behalf

of

the

transaction.

A

distributed

transaction

processing

system

maintains

the

ACID

properties

in

distributed

transactions

by

using

two

features:

v

Recoverable

processes.

Recoverable

processes

are

those

that

log

their

actions

and

thus

can

restore

earlier

states

if

a

failure

occurs.

v

A

commit

protocol.

A

commit

protocol

allows

multiple

processes

to

coordinate

the

committing

or

aborting

of

a

transaction.

The

most

common

commit

protocol,

and

the

one

used

by

Encina,

is

the

two-phase

commit

protocol.

Recoverable

processes

can

store

two

types

of

information:

transaction

state

information

and

descriptions

of

changes

to

data.

This

information

allows

a

process

to

participate

in

a

two-phase

commit

and

ensures

isolation

and

durability.

Transaction

state

information

must

be

stored

by

all

recoverable

processes.

However,

only

processes

that

manage

application

data

(such

as

resource

managers)

must

store

descriptions

of

changes

to

data.

Not

all

processes

involved

in

a

distributed

transaction

need

to

be

recoverable.

In

general,

clients

are

not

recoverable

because

they

do

not

interact

directly

with

a

resource

manager.

Encina

calls

processes

that

are

not

recoverable

ephemeral.

The

two-phase

commit

protocol,

as

the

name

implies,

involves

two

phases:

a

prepare

phase

and

a

resolution

phase.

In

each

transaction,

one

process

acts

as

the

coordinator.

The

coordinator

oversees

the

activities

of

the

other

participants

in

the

transaction

to

ensure

a

consistent

outcome.

In

the

prepare

phase,

the

coordinator

sends

a

message

to

each

process

in

the

transaction,

asking

each

process

to

prepare

to

commit.

When

a

process

prepares,

it

guarantees

that

it

can

commit

the

transaction

and

makes

a

permanent

record

of

its

work.

After

guaranteeing

that

it

can

commit,

it

can

no

longer

unilaterally

decide

to

abort.

If

a

process

cannot

prepare

(that

is,

if

it

cannot

guarantee

that

it

can

commit

the

transaction),

it

must

abort.

Figure

6.

Example

of

a

distributed

transaction

Chapter

1.

Basic

concepts

of

distributed

computing

11

In

the

resolution

phase,

the

coordinator

tallies

the

responses.

If

all

participants

are

prepared

to

commit,

the

transaction

commits;

otherwise,

the

transaction

aborts.

In

either

case,

the

coordinator

informs

all

participants

of

the

result.

In

the

case

of

a

commit,

the

participants

acknowledge

that

they

have

committed.

Transaction

processing

monitors

Transaction

processing

is

supported

by

programs

called

transaction

processing

monitors

(TP

monitors).

TP

monitors

perform

the

following

three

types

of

functions:

v

System

run-time

functions:

TP

monitors

provide

an

execution

environment

that

ensures

the

integrity,

availability,

and

security

of

data;

fast

response

time;

and

high

transaction

throughput.

v

System

administration

functions:

TP

monitors

provide

administrative

support

that

lets

users

configure,

monitor,

and

manage

their

transaction

systems.

v

Application

development

functions:

TP

monitors

provide

functions

for

use

in

custom

business

applications,

including

functions

to

access

data,

to

perform

intercomputer

communications,

and

to

design

and

manage

the

user

interface.

Encina

provides

a

TP

monitor,

the

Encina

Monitor.

Introduction

to

Encina

Encina

is

a

family

of

software

products

for

building

and

running

large-scale,

distributed

client/server

systems.

Encina

uses

and

enhances

the

facilities

provided

by

DCE.

Figure

7

shows

the

high-level

architecture

of

Encina.

This

section

provides

a

brief

overview

of

the

Encina

products.

Subsequent

chapters

describe

in

more

detail

various

parts

of

Encina

as

they

are

used

to

develop

a

transactional

client/server

application.

The

Encina

Monitor

The

Encina

Monitor,

or

just

the

Monitor,

is

a

TP

monitor

that

provides

the

means

to

develop,

run,

and

administer

transaction

processing

applications.

The

Encina

Monitor,

in

conjunction

with

resource

managers,

provides

an

environment

to

maintain

large

quantities

of

data

in

a

consistent

state,

controlling

which

users

and

clients

access

specific

data

through

defined

servers

in

specific

ways.

The

Monitor

provides

an

open,

modular

system

that

is

scalable

and

that

interoperates

with

existing

computing

resources

such

as

IBM

mainframes.

The

application

built

in

subsequent

chapters

of

this

manual

uses

the

Monitor.

The

Monitor

and

its

programming

interface

are

described

in

more

detail

in

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23.

Figure

7.

Architecture

of

Encina

12

TXSeries™:

Writing

Encina

Applications

The

Recoverable

Queueing

Service

(RQS)

The

Recoverable

Queueing

Service

(RQS)

allows

applications

to

queue

transactional

work

for

later

processing.

Applications

can

then

commit

their

transactions

with

the

assurance

that

the

queued

work

will

be

completed

transactionally

at

a

later

time.

The

application

built

in

this

manual

uses

RQS

to

queue

shipping

requests

for

later

processing.

RQS

is

described

in

more

detail

in

Chapter

5,

“Using

RQS,”

on

page

43.

The

Structured

File

Server

(SFS)

The

Encina

Structured

File

Server

(SFS)

is

a

record-oriented

file

system

that

provides

transactional

integrity,

log-based

recovery,

and

broad

scalability.

SFS

uses

structured

files,

which

are

composed

of

records.

The

records

themselves

are

made

up

of

fields.

For

example,

each

record

can

contain

information

about

an

employee,

with

fields

for

the

name,

employee

number,

and

salary.

SFS

is

described

in

the

Encina

SFS

Programming

Guide.

Peer-to-Peer

Communications

(PPC)

Services

PPC

Services

enable

Encina

transaction

processing

systems

to

interoperate

with

systems,

typically

mainframes,

that

have

System

Network

Architecture

(SNA)

LU

(Logical

Unit)

6.2

communications

interfaces.

PPC

Services

provide

bidirectional

transactional

communications,

which

enable

applications

to

share

data

between

mainframes

and

Encina.

For

example,

Encina

applications

can

both

make

requests

of

services

provided

by

mainframe-based

applications

and

service

requests

from

mainframe

systems,

manipulating

data

on

both

systems

with

transactional

consistency

in

either

case.

The

application

built

in

this

manual

uses

PPC

to

interact

with

a

mainframe.

PPC

is

described

in

more

detail

in

Chapter

7,

“Using

Encina

Peer-to-Peer

Communications,”

on

page

61.

The

Encina

Toolkit

The

Encina

Toolkit

is

a

collection

of

modules,

libraries,

and

programs

that

provide

the

functions

required

for

large-scale

distributed

client/server

system

development.

The

modules

of

the

Toolkit

include

log

and

recovery

services,

transaction

services,

and

Transactional

Remote

Procedure

Call

(TRPC,

an

extension

to

the

DCE

RPC

technology).

These

modules

transparently

ensure

distributed

transactional

integrity.

The

Toolkit

also

provides

Transactional-C

(Tran-C),

a

transactional

extension

to

the

C

programming

language.

In

this

manual,

the

only

parts

of

the

Toolkit

that

are

used

directly

are

Tran-C,

which

we

use

for

creating

transactions,

and

TRPC,

which

are

used

for

ensuring

transactional

integrity

of

RPCs.

Lower-level

modules

of

the

Encina

Toolkit

include

the

following:

v

The

Distributed

Transaction

Service

(TRAN),

which

coordinates

transactions.

v

The

Lock

Service

(LOCK),

which

prevents

conflicting

access

to

data.

v

The

Log

Service

(LOG)

and

Recovery

Service

(REC),

which

guarantee

that

changes

made

to

data

on

behalf

of

a

transaction

are

either

performed

in

their

entirety

or

appear

never

to

have

occurred.

v

The

Volume

Service

(VOL),

which

enables

applications

to

address

storage

in

terms

of

logical

units

called

volumes.

Volumes

can

consist

of

single

or

multiple

physical

disk

partitions,

can

include

entire

disks,

and

can

span

multiple

physical

Chapter

1.

Basic

concepts

of

distributed

computing

13

disks.

The

Volume

Service

maintains

the

storage

used

by

the

Log

Service,

which

in

turn

stores

the

data

required

by

the

Recovery

Service

to

restart

a

recoverable

application.

v

The

Transaction

Manager-XA

Service

(TM-XA),

which

implements

the

transaction

manager

side

of

the

X/Open

XA

interface

(see

Chapter

6,

“Interacting

with

a

relational

database,”

on

page

53).

TM-XA

coordinates

distributed

transactions

with

relational

database

managers.

v

The

Transarc/Encina

DCE

Utilities

Library

(TRDCE),

which

provides

utilities

for

constructing

client

and

server

programs.

As

the

application

is

developed

in

subsequent

chapters,

we

do

not

use

the

lower-level

modules

directly

(although

application

programs

can

access

them

if

they

need

to).

For

example,

we

use

Tran-C,

not

TRAN,

for

creating

transactions.

Tran-C

itself

calls

TRAN;

we

do

not

have

to

call

TRAN

directly.

Scope

and

layout

of

the

remainder

of

this

manual

Throughout

the

remainder

of

this

manual,

we

develop

a

sample

application.

This

application

illustrates

many

of

the

techniques

used

in

distributed

client/server

applications.

Although

it

is

simplified,

the

application

uses

a

number

of

DCE

and

Encina

components.

As

much

as

possible,

we

follow

good

design

and

coding

principles.

In

those

cases

where

we

deviate

from

such

principles

(generally

in

an

attempt

to

keep

the

application

simple

and

our

discussion

focused

on

Encina

programming

issues),

we

explicitly

say

so.

We

begin

this

application

in

the

next

chapter,

where

we

develop

a

simple,

nontransactional

client/server

application.

In

subsequent

chapters,

we

make

the

application

transactional,

run

it

under

the

Monitor,

and

have

it

interact

with

a

database,

RQS,

and

PPC.

We

discuss

using

the

X/Open

TX

interface

to

manage

transactions.

Finally,

we

use

the

application

to

demonstrate

some

basic

concepts

of

error

isolation

in

the

Encina

environment.

14

TXSeries™:

Writing

Encina

Applications

Chapter

2.

Writing

the

interface

for

a

sample

client/server

application

In

this

chapter

and

throughout

the

remainder

of

this

manual,

we

develop

a

simple

Encina

application.

We

start

in

this

chapter

by

designing

and

writing

the

interface.

In

the

next

two

chapters,

we

write

the

client/server

aspects

of

the

application

and

make

the

application

transactional.

In

subsequent

chapters,

we

add

features

using

other

parts

of

Encina.

Overview

of

the

sample

application

This

manual

uses

a

simple

order

entry

system

as

an

example

of

a

basic

application.

Within

this

sample

application,

the

user

has

one

option:

to

order

an

item.

The

application

checks

for

the

ordered

item

in

its

database,

decrements

the

inventory,

and

sends

requests

to

billing

and

shipping.

Orders

of

over

$1000

are

considered

high

priority

and

are

shipped

before

orders

under

this

amount.

A

real

application

would,

of

course,

have

more

features

and

options,

and

a

more

robust

user

interface.

Figure

8

shows

the

basic

design

of

this

application.

In

this

application,

the

client,

which

interacts

with

the

user,

makes

a

remote

procedure

call

to

an

application

server

(which

might

be

running

on

the

same

machine

or

on

a

different

machine).

This

application

server,

in

turn,

does

three

things:

it

checks

for

the

item

in

a

relational

database,

decrementing

that

database

entry

by

the

amount

ordered;

it

queues

a

shipping

request,

using

the

Recoverable

Queueing

Service

(RQS);

and

it

sends

a

billing

request

to

a

mainframe.

It

executes

the

billing

request

by

making

a

remote

procedure

call

to

another

application

server,

which

in

turn

uses

Encina

Peer-to-Peer

Communications

(PPC)

support

to

start

a

conversation

with

the

mainframe.

If

any

of

these

operations

fails

(for

example,

if

there

is

insufficient

inventory

to

fill

the

order),

the

server

returns

a

status

code

to

the

client,

indicating

that

an

error

has

occurred.

If

all

operations

succeed,

a

small,

stand-alone

application

dequeues

the

shipping

request.

Figure

8.

Sample

order-entry

application

©

Copyright

IBM

Corp.

1999,

2004

15

This

application

is

designed

to

demonstrate

Encina

functionality.

It

is

not

intended

to

show

the

best

possible

or

the

most

robust

design.

As

much

as

possible,

we

try

to

follow

good

design

and

programming

practices.

However,

the

application

is

far

simpler

than

a

real

application

would

be.

For

example,

the

server

interface

offers

only

one

function.

Furthermore,

the

application

does

not

try

to

recover

from

errors;

it

simply

aborts

when

an

error

occurs.

Some

application

design

choices

were

made

to

demonstrate

certain

Encina

features,

even

though

an

actual

application

would

not

need

to

be

designed

this

way.

For

example,

one

application

server

makes

an

RPC

to

another,

which

in

turn

uses

PPC

to

interact

with

a

mainframe.

The

first

application

server

could

have

contacted

the

mainframe

directly.

It

does

not

because

we

want

to

demonstrate

the

way

in

which

one

application

server

can

be

a

client

to

another

application

server.

This

chapter

develops

the

interface

between

the

client

and

the

server.

The

shaded

area

in

Figure

9

shows

the

part

of

the

application

that

is

described

in

this

chapter.

Other

chapters

develop

other

parts

of

the

application.

Defining

the

interface

The

first

step

in

writing

an

application

is

defining

the

interface

the

server

exports

(makes

available

to

the

client).

To

do

so,

we

must

decide

which

functions

the

server

exports,

what

their

arguments

are,

and

so

forth.

One

decision

that

we

must

make

is

exactly

how

to

modularize

the

interface:

does

the

interface

consist

of

a

number

of

small,

general

purpose

functions

that

perform

specific

task

or

a

smaller

number

of

larger

functions

that

perform

multiple

tasks?

For

example,

ordering

an

item

in

the

order-entry

system

described

in

the

previous

section

involves

the

following

steps:

v

Checking

to

see

whether

the

item

is

available

v

Decrementing

the

inventory

v

Sending

a

billing

request

v

Queueing

a

shipping

request

Figure

9.

The

interface

of

the

sample

order-entry

application

16

TXSeries™:

Writing

Encina

Applications

As

part

of

designing

the

interface,

we

must

decide

whether

the

server

exports

four

functions

(one

for

each

task),

one

function

(for

“ordering

an

item”),

or

some

number

in

between.

In

general,

it

is

practical

to

have

the

interface

reflect

the

logic

of

what

the

client

wants

to

do

and

to

allow

the

server

to

perform

as

much

of

the

work

as

possible.

This

approach

has

several

benefits:

v

It

simplifies

client

programming.

The

client

must

know

only

that

it

has

to

order

an

item;

it

does

not

need

to

know

the

steps

involved

in

this

process.

v

It

makes

it

easier

to

change

implementation

details.

If

we

later

decide

that

“ordering

an

item”

also

includes

sending

electronic

mail

to

the

manufacturing

department

if

the

inventory

drops

below

a

certain

amount,

only

the

server,

not

the

client,

needs

to

be

modified.

Similarly,

we

could

replace

one

relational

database

with

another

or

with

Encina

SFS

without

modifying

the

client.

Because

there

are

usually

fewer

copies

of

the

server

than

the

client,

and

because

the

servers

are

often

in

locations

that

are

easier

to

update

(for

example,

on

central

machines

rather

than

on

PCs

running

on

users’

desks),

the

update

procedure

is

also

simplified.

v

It

reduces

the

number

of

remote

procedure

calls

(RPCs)

made

by

the

client

to

the

server.

In

this

example,

the

client

must

make

only

one

RPC,

not

four

separate

RPCs

(one

for

each

of

the

four

parts

of

an

order

listed

above).

This

can

result

in

better

performance.

v

It

provides

for

better

application

security

because

only

the

server

needs

to

know

how

to

access

the

database.

Our

example

uses

this

“light

client/heavy

server”

approach.

The

client

makes

a

single

RPC.

The

server

then

performs

the

steps

involved

in

ordering

an

item,

issuing

RPCs

of

its

own.

The

example

interface

For

simplicity,

our

example

interface

consists

of

only

one

function:

OrderItem.

As

input,

this

function

takes

three

arguments:

the

stock

number

of

the

item,

the

number

of

items

ordered,

and

the

identifier

of

the

customer

ordering

the

item.

It

returns

a

status

code.

If

this

function

were

a

local

procedure,

its

prototype

would

look

like

that

shown

in

Figure

10.

To

be

invoked

as

a

remote

procedure

call,

this

function

must

be

defined

in

an

interface

definition

file

using

the

DCE

Interface

Definition

Language

(IDL)

or

the

Encina

transactional

extension

to

IDL,

TIDL.

For

our

example,

because

we

are

using

the

Monitor

for

binding,

we

are

using

a

TIDL

file.

Creating

the

Transactional

Interface

Definition

Language

file

In

a

TIDL

file,

we

must

specify

the

following

about

each

function:

v

The

arguments

to

the

function

and

their

types

v

Whether

the

function

is

to

be

invoked

transactionally

or

nontransactionally

unsigned

long

OrderItem

(unsigned

long

stockNum,

unsigned

long

numOrdered,

unsigned

long

customerId);

Figure

10.

Prototype

for

the

OrderItem

function

Chapter

2.

Writing

the

interface

for

a

sample

client/server

application

17

v

Whether

each

argument

is

input,

output,

or

both

The

OrderItem

function

is

defined

in

the

TIDL

file

as

shown

in

Figure

11.

The

type

error_status_t

is

defined

by

DCE

for

error

status.

It

is

equivalent

to

the

unsigned

long

type,

but

it

also

specifies

to

DCE

that

this

is

a

status

parameter

or

return

value.

This

fact

is

used

by

DCE

if

we

specify

that

DCE

use

a

status

code

to

return

errors

it

detects

to

our

client

rather

than

generating

exceptions

(see

“Creating

the

Transactional

Attribute

Configuration

File”

on

page

19).

The

OrderItem

function

is

defined

as

nontransactional

because

it

is

not

invoked

transactionally

by

the

client.

However,

the

function

itself

starts

a

transaction,

as

described

in

Chapter

4,

“Making

the

sample

application

transactional,”

on

page

37.

The

full

TIDL

file

must

include

a

universal

unique

identifier

(UUID)

generated

by

the

DCE

uuidgen

command.

The

UUID

is

a

number

that

uniquely

identifies

an

interface

across

all

network

configurations.

You

can

use

the

following

command

to

generate

the

UUID

as

well

as

the

skeleton

for

the

TIDL

file:

%

uuidgen

-i

-o

OrderInterface.tidl

Because

we

are

using

Monitor

transparent

binding

(which

we

add

to

our

application

in

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23),

our

client

automatically

binds

to

a

server

exporting

an

interface

with

this

UUID

when

it

makes

an

RPC.

Were

we

to

use

explicit

binding,

we

would

specify

this

UUID

when

obtaining

a

binding

handle

to

the

server.

We

must

edit

the

skeleton

produced

by

the

uuidgen

command

to

add

the

interface

name

(OrderInterface)

and

the

prototype

for

the

function

(OrderItem)

that

makes

up

the

interface.

The

complete

TIDL

file

for

this

application

is

shown

in

Figure

12.

The

version

(1.0)

is

the

version

number

of

the

interface;

our

sample

application

does

not

use

the

version

number.

[nontransactional]

error_status_t

OrderItem(

[in]

unsigned

long

stockNum,

[in]

unsigned

long

numOrdered,

[in]

unsigned

long

customerId);

Figure

11.

TIDL

definition

for

the

OrderItem

function

[

uuid(002978fe-bb72-1ea6-b3fb-9e620404aa77),

version(1.0)

]

interface

OrderInterface

{

import

"tpm/mon_handle.idl";

[nontransactional]

error_status_t

OrderItem(

[in]

unsigned

long

stockNum,

[in]

unsigned

long

numOrdered,

[in]

unsigned

long

customerId);

}

Figure

12.

TIDL

file

for

the

example

application

18

TXSeries™:

Writing

Encina

Applications

The

import

statement

in

the

TIDL

file

imports

a

file

needed

for

a

client

that

is

using

the

Monitor

binding

facilities

(see

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23).

Creating

the

Transactional

Attribute

Configuration

File

A

client

or

a

server

can

use

an

attribute

configuration

file

(ACF)

or

a

transactional

attribute

configuration

file

(TACF)

to

modify

the

way

the

TIDL

and

IDL

compilers

create

stubs.

Our

application

uses

a

TACF,

so

the

remainder

of

this

section

describes

TACFs.

However,

much

of

what

is

discussed

also

applies

to

ACFs.

The

TACF

has

two

primary

uses:

v

To

control

the

way

binding

occurs

v

To

control

the

way

errors

and

exceptions

are

reported

Our

client

is

using

Monitor

universal

binding,

which

is

explained

in

detail

in

“Binding

in

the

Monitor

environment”

on

page

25.

Using

this

method,

the

client

specifies

an

extra

parameter

—

a

binding

string

—

which

specifies

how

the

Monitor

is

to

determine

the

server

to

which

the

client

binds.

We

specify

that

the

client

is

going

to

use

universal

binding

in

the

TACF.

The

TACF

also

allows

communications

errors

and

exceptions

in

the

underlying

DCE

layers

to

be

returned

to

the

client.

Errors

that

are

detected

by

the

server

are

returned

to

the

client

as

status

codes.

However,

errors

detected

by

DCE

(for

example,

network

communications

errors)

normally

generate

exceptions,

which

typically

cause

the

client

to

exit.

Applications

can

be

designed

to

handle

exceptions,

but

this

is

a

more

complicated

programming

task

than

simply

checking

a

status

code.

We

can

use

a

TACF

to

specify

that

such

exceptions

are

instead

to

be

returned

as

status

codes,

which

can

be

handled

by

the

client

in

the

same

way

that

it

handles

other

status

codes.

Figure

13

shows

a

TACF.

The

handle

definition

in

the

TACF

([explicit_handle

(encina_handle_t

void)])

specifies

that

we

are

using

Monitor

universal

binding.

See

“Using

Monitor

universal

binding”

on

page

25

for

more

information.

The

TACF

also

specifies

that

communications

status

and

fault

status

are

to

be

returned

by

the

OrderItem

function.

Thus,

for

example,

if

a

network

error

occurs,

an

indication

of

this

is

returned

by

the

OrderItem

function

and

the

client

can

handle

the

error

as

it

sees

fit;

an

exception

is

not

raised

and

the

application

is

not

terminated.

Processing

the

TIDL

and

TACF

files

The

TIDL

file

is

compiled

by

using

the

TIDL

compiler,

tidl.

It

produces

a

number

of

files,

including

an

IDL

file,

which

must

in

turn

be

compiled

by

the

IDL

compiler,

idl.

The

IDL

compiler

produces

the

necessary

stub

files

(the

code

that

turns

the

local

procedure

call

into

a

remote

procedure

call)

and

the

/*

TACF

for

OrderInterface

*/

[explicit_handle

(encina_handle_t

void)]

interface

OrderInterface

{

[comm_status,

fault_status]

OrderItem();

}

Figure

13.

Using

a

Transactional

Attribute

Configuration

File

to

control

errors

and

exceptions

Chapter

2.

Writing

the

interface

for

a

sample

client/server

application

19

OrderInterface.h

file.

The

TIDL

compiler

automatically

compiles

the

TACF

for

the

interface

if

a

TACF

exists

(see

“Creating

the

Transactional

Attribute

Configuration

File”

on

page

19).

Figure

14

shows

the

files

used

and

produced

in

the

compilation

process.

The

dotted

lines

in

the

figure

indicate

files

that

are

optional.

Figure

15

shows

how

several

of

these

output

files

are

processed

further

by

the

IDL

compiler.

The

OrderInterface.h

header

file

is

included

in

both

the

client

and

the

server.

The

C

files

produced

are

compiled

and

linked

with

the

client

and

server.

Implementing

the

server

interface

The

interface

as

we

have

defined

it

consists

of

one

function,

OrderItem,

which

takes

three

arguments

and

returns

a

status

code.

The

function

in

turn

calls

three

functions:

v

PlaceOrder,

which

checks

for

the

item

in

a

database

and

decrements

that

database

by

the

number

ordered

v

QueueItemForShipping,

which

places

information

about

the

order

on

a

queue

for

subsequent

shipping

Figure

14.

Files

used

and

produced

by

the

TIDL

compiler

Figure

15.

Files

used

and

produced

by

the

IDL

compiler

20

TXSeries™:

Writing

Encina

Applications

v

BillForItem,

which

bills

the

customer’s

account

maintained

in

a

mainframe

database

If

any

of

these

functions

fail,

the

OrderItem

function

returns.

Figure

16

shows

this

function

at

this

point

in

its

development.

The

application

as

shown

in

Figure

16

does

not

perform

any

error

checking

or

error

recovery.

If

a

function

call

fails,

the

OrderItem

function

does

not

try

to

undo

the

results

of

previous

successful

function

calls.

For

example,

if

billing

for

the

item

fails,

the

application

does

not

try

to

undo

the

order

or

remove

it

from

the

shipping

queue.

In

Chapter

4,

“Making

the

sample

application

transactional,”

on

page

37,

we

use

a

transaction

to

implement

error

checking

and

recovery

and

fill

in

the

missing

parts

of

this

function.

A

note

on

data

types

In

the

TIDL

file,

we

used

the

data

type

unsigned

long.

This

type

in

DCE

IDL

files

and

Encina

TIDL

files,

unlike

the

C

data

type

of

the

same

name,

is

defined

to

be

exactly

32

bits

long.

All

of

the

types

that

are

used

in

TIDL

and

IDL

files

are

defined

this

way.

The

C

types,

on

the

other

hand,

are

defined

so

that

they

can

be

different

sizes

on

different

systems;

on

many

platforms,

unsigned

long

integers

are

32

bits

long,

but

on

others,

they

are

64

bits

long.

The

parameters

of

the

OrderItem

function

must

be

the

same

as

those

defined

in

the

TIDL

file;

thus,

we

cannot

define

them

as

unsigned

long.

IDL

and

TIDL

provide

data

types

for

use

in

C

programs.

The

OrderItem

function

uses

the

idl_ulong_int

data

type

for

unsigned

32-bit

integers.

DCE

functions

also

customarily

use

the

error_status_t

data

type

for

status

codes.

This

type

is

identical

to

the

idl_ulong_t

type,

and

our

application

uses

it

for

status

codes.

#include

"OrderInterface.h"

error_status_t

OrderItem(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

customerId)

{

idl_long_int

costPerItem,

totalCost;

short

priority;

/*

Start

a

transaction

here,

as

described

in

the

chapter

on

transactions.

*/

...

PlaceOrder(stockNum,

numOrdered,

&costPerItem);

totalCost

=

numOrdered

*

costPerItem;

if

(totalCost

>

1000)

priority

=

HIGH_PRIORITY;

else

priority

=

NORMAL_PRIORITY;

QueueItemForShipping(stockNum,

numOrdered,

customerId,

priority);

BillForItem(customerId,

totalCost);

/*

If

the

transaction

aborts,

return

failure

indication.*/

...

return

SUCCESS;

}

Figure

16.

The

OrderItem

function

Chapter

2.

Writing

the

interface

for

a

sample

client/server

application

21

For

a

complete

list

of

available

DCE

data

types,

see

the

OSF

DCE

Application

Development

Guide.

Notes

on

building

and

running

the

application

As

we

create

and

enhance

our

application,

each

chapter

ends

with

a

section

of

notes

on

building

and

running

the

application.

These

notes

are

not

intended

to

provide

all

of

the

information

needed,

which

varies

from

platform

to

platform;

they

are

intended

to

provide

some

guidance

for

the

general

steps

involved

in

building

and

running

an

Encina

application.

For

more

details,

see

Appendix

A,

“Building

Encina

applications,”

on

page

83

and

the

manuals

for

the

specific

Encina

components.

At

this

point,

our

application

is

divided

into

the

following

four

files:

v

OrderInterface.tidl

—

the

TIDL

file

for

the

order

interface

v

OrderInterface.tacf

—

the

client-side

TACF

file

for

the

order

interface

v

OrderServer.c

—

the

application

code

for

the

order

server,

which

currently

contains

only

the

code

for

the

OrderItem

function

v

order.h

—

an

application-specific

header

file

The

server

(and

the

client,

when

we

write

it)

must

include

the

OrderInterface.h

file

generated

by

the

IDL

compiler

and

the

order.h

file.

The

order.h

file

is

written

as

part

of

the

application;

it

includes

definitions

of

macros,

constants,

and

data

types

used

by

both

the

client

and

the

server.

22

TXSeries™:

Writing

Encina

Applications

Chapter

3.

Writing

a

Monitor

client/server

application

In

the

previous

chapter,

we

defined

the

interface

for

a

sample

client/server

application.

In

this

chapter,

we

begin

to

write

that

application.

Chapter

1,

“Basic

concepts

of

distributed

computing,”

on

page

1

introduced

the

Encina

Monitor.

The

current

chapter

starts

by

providing

more

background

information

about

the

Monitor,

particularly

about

the

Monitor

programming

model.

For

more

information

on

the

Monitor,

see

the

Encina

Monitor

Programming

Guide.

An

overview

of

the

Encina

Monitor

The

Encina

Monitor

provides

a

number

of

features

that

we

use

in

our

application.

Many

of

these

features

simplify

the

program

or

automate

some

of

the

basic

tasks

that

must

be

performed

by

a

client/server

application.

The

Monitor

also

provides

a

number

of

run-time

and

administrative

benefits,

including

load

balancing

and

centralized

administration.

Although

these

features

are

not

explicitly

discussed

in

this

chapter,

they

provide

further

benefits

to

our

application.

The

Encina

Monitor

operating

environment

The

Monitor

provides

an

environment

that

simplifies

creating

and

running

client/server

applications.

This

run-time

environment

is

the

Monitor

cell,

or

single

administrative

unit,

which

consists

of

nodes

(machines)

on

which

applications

and

Monitor

software

run.

The

machines

on

which

a

Monitor

cell

runs

are

a

subset

of

the

machines

on

which

a

DCE

cell

runs;

all

nodes

on

which

the

Monitor

runs

must

be

part

of

the

same

DCE

cell

because

the

Monitor

uses

DCE

services

such

as

the

Cell

Directory

Service

and

the

Security

Service.

More

than

one

Monitor

cell

can

exist

in

a

single

DCE

cell.

The

Monitor

is

not

a

single

process.

It

consists

of

a

number

of

processes.

Some

of

these

processes

(such

as

the

cell

manager,

which

manages

the

entire

cell,

and

the

node

manager,

one

of

which

manages

each

node

on

which

a

server

process

runs)

are

part

of

the

Monitor

environment;

you

do

not

have

to

write

them.

Others,

such

as

the

client

and

the

application

server,

are

part

of

your

application.

Some

of

these

processes

are

shown

in

Figure

17

on

page

24.

The

node

manager

runs

on

the

same

node

as

the

application

servers

it

manages.

The

cell

manager

can

run

on

any

node

in

the

cell.

In

Figure

17

on

page

24,

those

processes

that

are

part

of

the

application

are

in

the

lower

half

of

the

figure.

The

processes

in

the

upper

half

of

the

figure

are

part

of

the

Monitor

environment.

©

Copyright

IBM

Corp.

1999,

2004

23

A

Monitor

application

follows

the

general

three-tiered

design

that

we

have

used

in

the

previous

two

chapters:

a

client

makes

an

RPC

to

an

application

server,

which

in

turn

communicates

with

resource

managers

and

other

servers.

A

Monitor

application

server

consists

of

one

or

more

processes

called

processing

agents

(PAs),

each

of

which

executes

the

application

server

code.

All

PAs

that

make

up

a

server

run

on

the

same

machine

and

are

administered

as

a

single

entity.

In

this

chapter,

we

write

a

Monitor

application

server,

which

implements

the

order

interface,

and

a

Monitor

client.

We

also

write

a

second

Monitor

application

server

for

processing

billing

information.

Monitor

features

used

by

application

programs

The

Monitor

provides

a

number

of

features

that

simplify

the

writing

of

application

programs:

v

Simplified

binding.

The

client,

when

it

makes

an

RPC,

can

specify

whether

binding

occurs

to

any

server

that

offers

the

interface,

to

a

specific

server,

or

to

a

server

based

on

the

data

supplied

in

a

named

routing

table.

The

Monitor

handles

all

the

details.

v

Simplified

initialization.

The

Monitor

performs

most

of

the

initialization

needed

by

both

client

and

server;

the

application

does

not

need

to

initialize

each

of

the

underlying

components

individually.

v

Ease

of

scheduling

and

load

balancing.

A

Monitor

application

server

can

consist

of

multiple

processing

agents,

each

of

which

executes

the

server

code.

The

Monitor

also

allows

administrators

to

assign

priorities

to

servers.

For

example,

an

administrator

can

assign

priorities

such

that

servers

on

more

powerful

machines

service

more

RPCs.

v

Automated

recoverability.

The

server

needs

to

call

only

a

single

function

during

initialization.

The

Monitor

handles

all

other

aspects

of

making

the

server

recoverable,

including

initializing

and

using

the

Encina

Log

and

Recovery

Services.

Figure

17.

Monitor

architecture

24

TXSeries™:

Writing

Encina

Applications

v

Simplified

access

to

DCE

services.

The

Monitor

simplifies

the

use

of

many

of

the

other

underlying

DCE

features

in

addition

to

RPCs

and

CDS.

For

example,

many

aspects

of

security

are

handled

automatically

by

the

Monitor.

We

use

a

number

of

these

features

as

we

enhance

our

application.

These

and

many

other

features

provided

by

the

Monitor

are

described

in

the

Encina

Monitor

Programming

Guide.

Binding

in

the

Monitor

environment

A

client

making

an

RPC

to

a

server

must

bind

to

that

server.

A

Monitor

client

can

specify

the

server

to

which

it

binds

in

several

ways:

v

It

can

bind

to

any

server

that

supports

the

desired

interface.

v

It

can

bind

to

a

specific

server

that

supports

the

interface.

v

It

can

bind

to

a

server

based

on

the

data

in

one

of

the

remote

procedure’s

parameters.

This

method

is

referred

to

as

data-dependent

routing,

in

that

the

RPC

is

routed

to

a

server

based

on

the

data

used.

The

client

can

specify

the

type

of

binding

to

use

as

a

parameter

to

the

RPC.

This

parameter,

which

must

be

the

first

parameter

passed

to

the

remote

procedure

call,

is

called

a

binding

string.

The

exact

format

of

the

string

depends

upon

the

type

of

binding

being

used.

This

type

of

binding,

in

which

a

binding

string

is

explicitly

passed

as

a

parameter,

is

called

Monitor

universal

binding.

It

is

the

type

of

binding

we

specified

in

the

TACF

we

created

in

“Creating

the

Transactional

Attribute

Configuration

File”

on

page

19.

A

client

can

also

use

Monitor

simple

binding.

In

Monitor

simple

binding,

the

client

does

not

specify

a

binding

string

when

making

an

RPC.

Instead,

a

default

binding

string

is

assigned

administratively

to

an

interface.

If

a

default

is

not

specified,

the

client

binds

to

any

server

that

supports

the

interface.

Our

example

uses

Monitor

universal

binding

to

bind

to

any

server

that

supports

the

interface.

Assuming

our

server

is

replicated

on

multiple

machines,

this

makes

the

client/server

application

resistant

to

server

failures.

This

also

enhances

load

balancing

because

the

administrator

can

specify

the

percentage

of

RPCs

that

go

to

each

server

supporting

the

desired

interface.

The

example

also

demonstrates

how

easy

it

is

to

change

the

binding

method

by

simply

changing

the

binding

string.

“Using

data-dependent

routing”

on

page

31

expands

the

example,

to

show

how

data-dependant

routing

could

be

added

to

the

application.

Using

Monitor

universal

binding

An

application

that

is

using

Monitor

universal

binding

typically

specifies

this

in

the

TACF.

The

TACF

for

the

sample

application

was

shown

in

Figure

Figure

13

on

page

19.

The

following

line

from

that

TACF

specifies

the

binding

method:

[explicit_handle

(encina_handle_t

void)]

The

encina_handle_t

modifier

specifies

that

the

client

passes

a

binding

string

in

each

RPC

that

it

makes.

The

void

modifier

specifies

that

manager

functions

at

the

server

do

not

receive

this

binding

string

as

a

parameter.

If

the

TACF

had

not

included

the

void

attribute,

the

binding

string

specified

by

the

client

would

have

been

passed

to

the

manager

function

as

the

first

parameter

of

the

RPC.

Chapter

3.

Writing

a

Monitor

client/server

application

25

Writing

the

server

A

server

must

implement

its

interface

and

perform

initialization.

In

the

previous

chapter,

we

implemented

the

interface.

In

this

chapter,

we

describe

the

steps

for

server

initialization.

The

Monitor

automatically

initializes

most

of

the

underlying

Encina

Toolkit

components

such

as

Tran-C

and

the

Transaction

Service.

The

Monitor

also

handles

all

the

details

of

registering

the

server

with

CDS.

Our

application

needs

only

to

direct

the

Monitor

to

perform

certain

initialization

steps

that

it

does

not

perform

automatically

and

to

register

the

interface

explicitly.

The

general

steps

for

initializing

a

server

in

the

Monitor

environment

follow:

1.

Call

the

mon_InitServerInterface

function

to

register

the

interface

(see

“Registering

the

interface”).

2.

Inform

the

Monitor

what

other

initialization

needs

to

be

performed

in

addition

to

its

normal

default

initialization.

In

our

case,

we

initiate

interaction

with

a

resource

manager

(see

“Initializing

the

resource

manager”).

3.

Call

the

mon_InitServer

function

to

initialize

both

the

server

and

Encina

(see

“Initializing

Encina”

on

page

27).

4.

Perform

any

actions

that

must

be

performed

after

Encina

has

been

initialized

but

before

the

server

begins

accepting

RPCs.

Our

server

performs

no

such

actions

at

this

point;

later,

after

we

modify

it

to

use

RQS,

it

will

do

so.

5.

Call

the

mon_BeginService

function

to

signal

to

the

Monitor

that

the

server

is

ready

to

listen

for

RPCs

(see

“Listening

for

RPCs”

on

page

27).

Registering

the

interface

The

Monitor

handles

registration

in

CDS.

We

need

only

to

specify

to

the

Monitor

the

interface

to

be

registered.

This

is

done

with

the

Monitor

mon_InitServerInterface

function.

The

mon_InitServerInterface

function

takes

two

arguments:

an

interface

handle

and

a

manager

entry

point

vector.

These

arguments

can

be

obtained

from

the

TIDL-generated

OrderInterface.h

file.

However,

the

Monitor

provides

a

macro,

MON_SERVER_INTERFACE,

that

generates

both

arguments,

given

the

interface

name,

the

major

version

number,

and

the

minor

version

number.

Figure

18

shows

the

call

to

the

mon_InitServerInterface

function

that

registers

the

OrderInterface

interface.

The

version

number,

as

specified

in

the

TIDL

file,

is

1.0,

so

the

second

and

third

arguments

to

the

MON_SERVER_INTERFACE

macro

are

1

and

0,

respectively.

Because

MON_SERVER_INTERFACE

is

a

macro,

there

can

be

no

spaces

between

its

arguments.

Initializing

the

resource

manager

The

resource

managers

that

we

will

work

with

follow

the

X/Open

Specification

for

Distributed

Transaction

Processing

and

so

are

referred

to

as

XA-compliant

resource

managers.

Interaction

with

resource

managers

is

described

in

detail

in

Chapter

6,

“Interacting

with

a

relational

database,”

on

page

53.

For

now,

we

simply

add

a

call

status

=

mon_InitServerInterface

(MON_SERVER_INTERFACE(OrderInterface,1,0));

Figure

18.

Registering

the

interface

in

the

Monitor

environment

26

TXSeries™:

Writing

Encina

Applications

to

the

mon_RegisterRmi

function

to

our

server.

We

pass

this

function

a

switch,

which

is

initialized

by

the

resource

manager

client

library,

and

the

name

of

the

resource

manager

instance.

This

function

registers

the

resource

manager,

informing

Encina

that

it

is

an

XA-compliant

resource

manager

and

can

participate

in

transactions.

The

function

returns

a

resource

manager

ID

for

the

resource

manager.

Figure

19

shows

initialization

of

the

resource

manager.

Any

server

that

deals

with

a

resource

manager

must

be

recoverable.

(Recoverable

processes

were

described

in

“Distributed

transactions

and

the

two-phase

commit

process”

on

page

11.)

This

means

that

the

server

keeps

track

of

transaction

state

information

so

that

the

state

can

be

restored

in

the

event

of

a

failure.

In

the

Monitor

environment,

the

Monitor

automatically

makes

a

server

recoverable

if

the

server

calls

the

mon_RegisterRmi

function.

Initializing

Encina

To

initialize

the

server,

we

need

only

to

call

the

mon_InitServer

function.

This

function

initializes

the

server

and

all

underlying

Encina

Toolkit

components.

It

also

performs

any

of

the

initialization

that

we

specified

(such

as

making

the

server

recoverable).

After

this

function

has

been

called

successfully,

we

can

perform

any

additional

initialization

that

relies

on

Encina

having

been

initialized.

Currently,

our

application

does

not

need

to

perform

any

such

initialization.

However,

in

Chapter

5,

“Using

RQS,”

on

page

43,

we

initiate

communications

with

an

RQS

server,

so

we

need

to

add

a

call

to

a

function

that

does

this

initialization.

Listening

for

RPCs

To

begin

listening

for

RPCs,

the

application

calls

the

mon_BeginService

function.

This

function

informs

the

Monitor

that

our

server

is

ready

to

accept

RPCs.

If

the

mon_InitServer

function

is

not

called,

the

mon_BeginService

function

also

initializes

Encina.

Our

application

uses

the

mon_InitServer

function

because

later

we

will

add

an

additional

initialization

step

between

the

calls

to

mon_InitServer

and

mon_BeginService.

The

mon_BeginService

function

does

not

return

until

the

server

is

shut

down.

Any

cleanup

work

can

be

performed

after

the

function

returns.

The

server

application

Figure

20

on

page

28

shows

the

complete

server

at

this

point.

We

have

not

modified

the

OrderItem

function.

int

rmiId;

/*

Set

up

interaction

with

a

resource

manager

*/

status

=

mon_RegisterRmi(&db_xa_switch,

RM_NAME,

&rmiId);

CHECK_STATUS(status);

Figure

19.

Initializing

the

resource

manager

Chapter

3.

Writing

a

Monitor

client/server

application

27

Writing

the

client

In

our

application,

the

client

interacts

with

the

user

and

makes

a

remote

procedure

call

on

the

user’s

behalf.

Because

this

manual

is

not

about

writing

user

interfaces,

our

user

interface

is

simple;

the

user

invokes

the

client

with

three

command-line

arguments:

a

customer

ID,

the

stock

number

of

the

item

to

order,

and

the

number

of

items

to

order.

In

addition

to

implementing

the

user

interface,

the

client

must

v

Initialize

any

Encina

components

it

is

using.

v

Make

the

remote

procedure

call.

v

Notify

the

user

of

the

call’s

success

or

failure.

The

mon_InitClient

function

initializes

the

Monitor

client

execution

environment

and

all

the

Encina

components

needed

by

the

client.

Our

application

is

using

TRPC,

which

must

be

initialized.

If

we

were

not

using

the

Monitor,

we

would

have

to

call

the

appropriate

TRPC

initialization

functions

directly.

However,

the

mon_InitClient

function

performs

this

initialization

for

us.

The

mon_InitClient

function

takes

two

arguments:

the

name

of

the

application

and

the

name

of

the

Monitor

cell

in

which

the

application

is

running.

In

our

application,

the

latter

is

obtained

from

an

environment

variable.

The

client

makes

the

RPC

by

calling

the

OrderItem

function.

Invoking

this

function

looks

very

much

like

invoking

a

local

function.

The

only

difference

is

the

first

parameter,

which

is

the

binding

string.

In

this

example,

the

client

uses

a

int

main

(void)

{

unsigned32

status;

int

rmiId;

extern

struct

xa_switch_t

db_xa_switch;

/*

Register

the

interface

*/

status

=

mon_InitServerInterface(

MON_SERVER_INTERFACE(OrderInterface,1,0));

CHECK_STATUS(status);

/*

Set

up

interaction

with

a

resource

manager

*/

status

=

mon_RegisterRmi(&db_xa_switch,

RM_NAME,

&rmiId);

CHECK_STATUS(status);

/*

Initialize

the

server

and

Encina

*/

status

=

mon_InitServer();

CHECK_STATUS(status);

/*

Later,

we

will

add

RQS

initialization

here

*/

...

/*

Begin

listening

for

RPCs

*/

...

status

=

mon_BeginService();

CHECK_STATUS(status);

exit(0);

}

Figure

20.

The

Monitor

application

server

28

TXSeries™:

Writing

Encina

Applications

binding

string

of

"interface:".

This

specifies

that

it

binds

to

any

server

that

offers

the

desired

interface.

After

the

call

to

OrderItem

returns,

the

client

checks

the

return

status

and

informs

the

user

of

the

success

or

failure

of

the

order.

The

client

code

is

shown

in

Figure

21.

If

the

client

wanted

to

bind

to

a

specific

server

instead

of

any

server

offering

the

interface,

it

could

specify

that

in

the

binding

string

by

using

the

word

server:

in

the

binding

string,

followed

by

the

name

of

the

server.

In

that

case,

the

call

to

the

OrderItem

function

is

specified

as

follows:

status

=

OrderItem("server:orderServer",

stockNum,

numOrdered,

custId);

In

this

example,

the

name

of

the

server,

as

specified

when

it

was

defined,

is

orderServer.

Using

other

Monitor

features

This

section

describes

several

other

Monitor

features

that

can

be

used

by

simple

applications.

For

more

information

on

these

and

other

features,

refer

to

the

Encina

Monitor

Programming

Guide

and

Encina

Administration

Guide

Volume

1:

Basic

Administration.

int

main(int

argc,

char

**

argv)

{

idl_ulong_int

custId,

stockNum,

numOrdered;

unsigned32

status;

char

*cellName;

if

(argc

!=

4){

fprintf(stderr,

"Usage

OrderItem

<custId>

<stockNum>

<numOrdered>\n");

exit

(1);

}

custId

=

strtoul(argv[1],NULL,10);

stockNum

=

strtoul(argv[2],NULL,10);

numOrdered

=

strtoul(argv[3],NULL,10);

/*

Determine

the

cell

name

*/

cellName

=

getenv("ENCINA_TPM_CELL");

if

(cellName

==

NULL){

fprintf(stderr,

"You

must

set

the

ENCINA_TPM_CELL

environment

variable.\n");

exit(1);

}

/*

Initialize

the

client

*/

status

=

mon_InitClient("OrderItem",

cellName);

CHECK_STATUS(status);

/*

Invoke

the

RPC

*/

status

=

OrderItem("interface:",

stockNum,

numOrdered,

custId);

if

(status

!=

SUCCESS){

fprintf(stderr,

"Order

failed.\n");

}

else

{

fprintf(stderr,

"Order

processed.\n");

}

exit(0);

}

Figure

21.

The

client

portion

of

the

application

Chapter

3.

Writing

a

Monitor

client/server

application

29

Load

balancing

and

scheduling

The

Monitor

provides

the

following

methods

for

simplifying

load

balancing

and

scheduling:

v

Each

application

server

can

be

assigned

a

priority.

v

Each

application

server

can

consist

of

multiple

processing

agents.

v

Each

processing

agent

can

be

multithreaded.

The

first

two

options

require

no

additional

programming.

They

are

set

when

the

application

server

is

configured

and

started.

Multithreaded

servers

require

some

additional

programming.

Specifying

a

server

priority

An

administrator

can

specify

a

priority

when

starting

a

server.

This

priority

is

used

by

the

Monitor

to

balance

requests

among

application

servers

that

export

the

same

interface.

Client

requests

are

distributed

over

a

group

of

application

servers

based

on

their

priority.

The

priority

is

used

only

by

clients

that

use

transparent

binding.

Setting

the

number

of

processing

agents

A

Monitor

application

server

consists

of

one

or

more

processes

called

processing

agents

(PAs),

each

of

which

executes

the

application

server

code.

When

configuring

the

application

server,

an

administrator

can

specify

that

it

use

more

than

one

PA.

A

single

application

server

with

several

processing

agents

needs

to

be

configured

and

started

only

once;

the

Monitor

then

manages

the

processing

agents

as

a

single

group.

The

programmer

does

not

need

to

be

concerned

with

whether

the

server

contains

one

PA

or

several;

the

use

of

multiple

PAs

is

transparent

to

the

program.

Using

multithreaded

PAs

A

thread

is

a

single

sequential

flow

of

control

within

a

process.

The

processes

we

have

used

so

far

have

consisted

of

single

threads.

However,

DCE

and

Encina

provide

tools

for

creating

multiple

threads

within

a

single

process.

These

threads

can

be

thought

of

as

lightweight

processes

sharing

the

same

address

space.

Although

the

operating

system

continues

to

view

a

multithreaded

process

as

a

single

process,

this

process

can

perform

several

operations

concurrently.

The

PAs

in

our

Monitor

application

server

currently

service

one

client

at

a

time.

To

use

Monitor

terminology,

they

are

exclusive

PAs.

Monitor

PAs

can

also

serve

multiple

clients

at

the

same

time.

Such

PAs

are

called

concurrent

shared

PAs.

For

such

PAs,

the

Monitor

automatically

starts

a

new

thread

to

handle

each

incoming

RPC.

An

application

server,

as

part

of

its

initialization,

can

specify

whether

its

processing

agents

permit

shared

access.

The

default

permits

only

exclusive

access.

The

mon_SetSchedulingPolicy

function

specifies

whether

a

server

permits

shared

access

of

its

PAs.

If

we

specify

the

use

of

concurrent

shared

PAs,

the

Monitor

automatically

makes

the

application

server

multithreaded.

However,

multithreaded

servers

can

be

a

problem

with

databases

that

are

not

thread-safe

(that

is,

that

are

not

designed

to

correctly

isolate

the

actions

of

one

thread

in

a

process

from

other

threads

in

that

process).

Moreover,

all

threads

in

a

process

share

any

global

variables

used

by

the

process;

thus,

a

multithreaded

process

that

uses

global

variables

might

need

to

take

steps

to

synchronize

access

to

these

variables.

Due

to

these

additional

concerns,

we

are

not

adding

multithreading

to

our

server.

30

TXSeries™:

Writing

Encina

Applications

Security

The

Monitor

automatically

uses

a

number

of

the

DCE

security

features.

We

do

not

need

to

modify

the

application

to

use

security

in

the

Monitor

environment.

The

administrator

specifies

what

level

of

security

to

use

when

starting

the

application

server.

There

are

several

security

features

that

we

can

use:

v

RPC

authentication.

The

administrator

who

starts

the

server

specifies

an

RPC

authentication

level

for

the

interface.

The

Monitor

rejects

any

RPCs

from

clients

that

do

not

specify

at

least

that

level.

A

Client

can

use

the

mon_SetRpcProtectionLevel

function

to

set

the

protection

level

for

the

next

RPC

it

makes.

v

Access

control

lists

(ACLs).

ACLs

can

be

placed

on

an

entire

interface

or

on

individual

functions

in

an

interface.

The

Monitor

rejects

RPCs

from

clients

that

are

not

granted

access

by

the

appropriate

ACL.

Note

that

in

in

both

of

these

cases,

the

server

program

does

not

need

to

do

anything.

The

server

never

sees

the

rejected

RPCs.

In

addition,

clients

can

set

a

login

context,

specifying

on

whose

behalf

an

RPC

is

being

made.

Clients

can

set

their

login

context

using

the

mon_BindSetLoginContext

function.

For

more

information

on

security,

see

Chapter

1,

“Basic

concepts

of

distributed

computing,”

on

page

1.

Using

data-dependent

routing

In

the

example

program,

there

can

be

multiple

copies

of

the

same

server

running.

All

copies

are

identical;

all

offer

the

same

interface.

If

the

client

binds

by

interface

(that

is,

if

it

specifies

″interface:″

in

its

binding

string),

the

RPC

it

makes

goes

to

any

of

the

servers.

However,

there

are

applications

in

which

servers

offer

the

same

interface,

but

for

which

we

want

the

RPC

to

go

to

a

particular

server.

For

example,

if

our

application

were

busy

enough

we

might

want

to

split

the

database

into

multiple

databases—one

for

stock

numbers

1

through

1000,

the

next

for

stock

numbers

1001

through

2000

and

a

third

for

stock

numbers

2001

through

3000.

Different

copies

of

the

application

server

interact

with

each.

The

servers

are

still

identical,

but

each

server

receives

only

the

RPCs

that

hve

stock

numbers

within

a

specified

range.

One

way

to

do

this

is

would

be

to

modify

the

client.

It

could

examine

the

stock

number,

then

specify

a

server

in

a

binding

string.

However,

we

can

instead

simply

change

the

binding

method

we

use

and

allow

the

Monitor

to

route

the

RPC

to

the

correct

server.

Routing

of

RPCs

based

on

the

value

of

one

or

more

of

the

parameters

is

called

data-dependent

routing.

To

use

data-dependent

routing,

we

must

do

three

things:

v

Create

a

routing

table,

which

specifies

which

server

an

RPC

is

to

be

routed

to

based

on

the

data

in

the

RPC.

v

Modify

the

TACF

to

specify

which

parameter

or

parameters

serve

as

the

routing

key

(that

is,

the

value

upon

which

the

routing

decision

is

to

be

made).

v

Modify

the

client

to

specify

that

it

is

binding

based

on

a

routing

table

and

not

based

on

interface.

A

routing

table

simply

specifies

values

or

ranges

of

values

and

a

binding

string

based

on

those

values.

Figure

22

on

page

32

shows

an

example

of

a

binding

table.

In

this

example,

RPCs

that

have

a

key

value

of

1

to

1000

go

to

orderServer1.

Those

Chapter

3.

Writing

a

Monitor

client/server

application

31

in

which

a

key

value

is

1001

to

2000

go

to

orderServer2,

and

those

with

a

key

value

of

2001

or

higher

go

to

orderServer3.

The

square

brackets

([

and

])

indicate

that

the

range

is

inclusive.

That

is,

1

and

1000

are

included

in

the

first

range.

We

must

modify

the

TACF

to

specify

the

routing

key.

To

specify

a

routing

key,

we

must

include

the

data

types

and

parameter

names

for

the

parameters

that

make

up

the

routing

key.

For

our

example,

the

modified

TACF

specifies

that

the

key

for

the

OrderItem

function

is

the

stockNum

parameter.

This

is

shown

in

Figure

23.

The

name

of

the

parameters

for

the

routing

key

(in

this

case,

stockNum)

must

match

the

names

specified

in

the

TIDL

file.

Finally,

we

change

the

call

to

the

OrderItem

function

to

specify

the

binding

table,

as

shown

in

the

following

example:

status

=

OrderItem("table:orderBindingTable",

stockNum,

numOrdered,

custId);

Routing

tables

are

created

administratively

by

using

either

Enconsole

or

enccp.

See

the

online

help

for

Enconsole

or

Encina

Administration

Guide

Volume

3:

Advanced

Administration.

For

more

details

on

data

dependent

routing

and

the

use

of

routing

tables,

see

the

Encina

Monitor

Programming

Guide.

Using

delegation

Authorization

decisions

are

based

on

the

principal

of

the

initiator

of

the

request.

However,

when

a

Monitor

application

server

makes

an

RPC,

it

does

so

on

behalf

of

the

server’s

principal,

not

the

client’s

principal.

Delegation

enables

a

server

to

make

an

RPC

on

behalf

of

the

client

that

initiates

the

call,

preserving

the

identity

of

the

initiator

of

the

operation.

A

delegation

chain

is

the

collection

that

consists

of

the

initiator

and

one

or

more

intermediaries.

Monitor

clients

can

turn

on

delegation

for

an

RPC

by

calling

the

mon_SetDelegation

function.

A

server

can

determine

the

current

delegation

status

using

the

mon_GetCallerDelegationType

function.

For

more

information,

see

the

Encina

Monitor

Programming

Guide.

orderBindingTable

=

{

[1,1000]:

"server:orderServer1"

[1001,2000]:

"server:orderServer2"

[2001,max]:

"server:orderServer3"

}

Figure

22.

An

example

binding

table

/*

TACF

for

OrderInterface

*/

[explicit_handle

(encina_handle_t

void)]

interface

OrderInterface

{

[comm_status,

fault_status]

OrderItem();

[routing_key

(unsigned

long,

stockNum)]

OrderItem();

}

Figure

23.

TACF

for

use

with

data-dependent

routing

32

TXSeries™:

Writing

Encina

Applications

Making

the

server

a

client

of

another

server

A

Monitor

application

server,

like

any

other

server,

can

also

act

as

a

client

of

other

servers.

Our

application

server

acts

as

a

client

of

an

RQS

server.

It

also

acts

as

a

client

of

another

Monitor

application

server.

The

use

of

RQS

with

our

application

is

described

in

Chapter

5,

“Using

RQS,”

on

page

43.

In

this

section,

we

address

what

we

need

to

do

to

enable

our

application

server

to

make

RPCs

to

another

application

server.

In

particular,

our

OrderInterface

server

makes

TRPCs

to

the

server

that

exports

the

billing

interface,

which

in

turn

uses

PPC

to

communicate

with

a

mainframe.

To

add

a

new

application

server

to

the

application,

we

must

perform

two

primary

tasks:

v

Define

and

implement

the

interface

for

the

new

server.

v

Implement

the

new

billing

server.

We

do

not

have

to

perform

any

client-specific

initialization,

such

as

calling

the

mon_InitClient

function.

This

initialization

is

performed

automatically

as

part

of

server

initialization.

To

distinguish

between

our

two

application

servers,

we

call

our

initial

application

server,

which

exports

the

order

interface,

the

order

application

server

(or

simply

the

order

server).

We

call

the

new

application

server

the

billing

application

server

(or

simply

the

billing

server).

Defining

the

interface

To

define

the

billing

interface,

we

must

create

a

TIDL

file

and,

because

we

are

using

Monitor

universal

binding

again,

a

TACF.

Except

for

the

interface

name,

the

TACF

is

the

same

as

that

for

the

order

interface.

The

new

TIDL

file

defines

one

function,

BillForItem.

This

function

takes

two

arguments:

a

customer

ID

and

a

dollar

amount.

It

does

not

return

status.

If

the

server

that

implements

this

function

encounters

an

error

condition

(such

as

insufficient

funds

to

cover

the

cost

of

the

items

ordered),

it

simply

aborts

the

transaction

(see

Chapter

4,

“Making

the

sample

application

transactional,”

on

page

37).

The

new

TIDL

file

is

shown

in

Figure

24

on

page

34.

Note

that

the

function

is

defined

as

transactional.

This

means

that

a

TRPC

is

made

to

the

new

server,

which

enables

the

new

server

to

abort

the

transaction

if

it

encounters

an

error

and

guarantees

that

the

billing

operation

adheres

to

the

ACID

properties.

Chapter

3.

Writing

a

Monitor

client/server

application

33

Implementing

the

new

application

server

Implementing

the

new

application

server

involves

two

steps:

1.

Performing

the

required

initialization

steps

2.

Implementing

the

BillForItem

function

At

this

point,

the

server

initialization

consists

only

of

registering

the

interface

and

initializing

Encina.

Initializing

Encina

is

the

same

as

for

the

order

server.

Registering

the

interface

is

shown

in

Figure

25.

Figure

26

shows

the

skeleton

of

the

BillForItem

function.

This

function

makes

a

PPC

connection

to

a

mainframe

to

check

the

customer’s

available

funds

and

debit

the

customer’s

account.

As

with

previous

functions,

this

function

does

not

return

status;

if

it

detects

a

failure,

it

aborts

the

transaction.

We

complete

the

function

in

Chapter

7,

“Using

Encina

Peer-to-Peer

Communications,”

on

page

61.

Notes

on

building

and

running

the

application

At

this

point,

our

application

consists

of

the

following

eight

files:

v

OrderInterface.tidl

—

the

TIDL

file

for

the

order

interface

v

OrderInterface.tacf

—

the

TACF

file

for

the

order

interface

v

OrderServer.c

—

the

code

for

the

Order

Server

v

BillingInterface.tidl

—

the

TIDL

file

for

the

billing

interface

v

BillingInterface.tacf

—

the

TACF

file

for

the

billing

interface

[

uuid(002513cc-da57-1ec0-8a0f-9e620a3aaa77),

version(1.0)

]

interface

BillingInterface

{

import

"tpm/mon_handle.idl";

[transactional]

void

BillForItem(

"interface:",

[in]

unsigned

long

customerID,

[in]

unsigned

long

amount);

}

Figure

24.

TIDL

file

for

the

billing

interface

/*

Register

the

interface

*/

status

=

mon_InitServerInterface(

MON_SERVER_INTERFACE(BillingInterface,1,0));

CHECK_STATUS(status);

Figure

25.

Registering

the

billing

server

interface

void

BillForItem(ild_ulong_int

customerId,

idl_ulong_int

amount)

{

/*

Use

PPC

to

check

for

the

amount

on

a

mainframe

*/

/*

To

be

filled

in

in

the

PPC

chapter

*/

}

Figure

26.

The

BillForItem

function

34

TXSeries™:

Writing

Encina

Applications

v

BillingServer.c

—

the

code

for

the

billing

server

v

OrderItem.c

—

the

code

for

the

client

v

order.h

—

an

application-specific

header

file

Both

the

client

and

the

order

server

must

also

include

the

OrderInterface.h

file

generated

by

the

IDL

compiler

and

the

order.h

file,

which

includes

definitions

used

in

both

the

client

and

the

server.

In

addition,

both

the

client

and

the

server

must

link

with

the

encina

and

dce

libraries.

The

client

must

include

the

tpm/mon_client.h

file.

The

order

serverand

the

billing

server

must

include

the

tpm/mon_server.h

file.

The

client

must

link

to

the

Monitor

client

library,

EncMonCli.

Both

the

order

server

and

the

billing

server

must

link

to

the

Monitor

server

library,

EncMonServ.

Because

this

library

is

a

superset

of

the

EncMonCli

library,

the

order

server

does

not

have

to

include

the

Monitor

client

library.

To

start

a

Monitor

application,

use

the

Encina

Enconsole

utility.

Enconsole

provides

an

interactive

environment

for

defining

and

starting

Monitor

cells

and

servers.

You

must

first

define

the

application

server

to

the

Monitor

and

then

start

it.

You

can

set

tracing

options

when

defining

the

server.

For

more

information

on

starting

servers,

see

Encina

Administration

Guide

Volume

1:

Basic

Administration.

Before

the

client

is

started,

the

ENCINA_TPM_CELL

environment

variable

must

be

set

to

the

name

of

the

Monitor

cell

in

which

the

application

server

is

running.

To

run

the

client,

simply

specify

the

name

of

the

client,

followed

by

the

three

arguments

for

the

application.

For

example,

the

following

command

orders

15

instances

of

the

item

with

stock

number

5

for

the

customer

with

customer

ID

2:

%

OrderItem

2

5

15

Chapter

3.

Writing

a

Monitor

client/server

application

35

36

TXSeries™:

Writing

Encina

Applications

Chapter

4.

Making

the

sample

application

transactional

This

chapter

builds

on

the

sample

application

that

was

started

in

the

previous

chapter

by

making

the

application

transactional.

It

discusses

the

steps

that

must

be

followed

to

add

transactional

capabilities

to

the

server.

It

describes

the

Encina

Tran-C

language

and

the

various

ways

that

aborted

transactions

can

be

handled.

Making

the

application

transactional

The

server

divides

the

concept

of

ordering

an

item

into

three

steps:

the

actual

ordering

of

the

item,

placing

the

order

in

the

shipping

queue,

and

billing

the

customer.

However,

at

this

point

in

the

development

of

our

sample

application,

if

one

function

fails,

the

results

of

previous

functions

are

not

undone.

For

example,

if

the

billing

operation

fails,

the

inventory

database

is

still

updated

and

the

item

is

still

shipped.

We

must

modify

the

server

so

that

these

three

actions

are

tied

together

in

such

a

way

that

either

all

happen

or

none

happens.

In

other

words,

we

must

group

these

three

operations

into

a

single

transaction.

As

described

in

Chapter

1,

“Basic

concepts

of

distributed

computing,”

on

page

1,

a

transaction

is

a

group

of

actions

that

adheres

to

the

ACID

properties.

That

is,

a

transaction

is

atomic,

consistent,

isolated,

and

durable.

In

the

context

of

our

application,

“atomic”

means

that

either

all

three

operations

happen

or

none

does.

“Consistent”

means

that

if

we

deduct

three

items

from

the

database,

we

ship

and

bill

for

three

items.

“Isolated”

means

that,

in

a

multiclient

environment,

work

our

transaction

does

for

one

client

is

invisible

to

transactions

from

other

clients

until

our

transaction

ends.

“Durable”

means

that

after

the

transaction

commits,

all

actions

happen,

even

in

the

event

of

system

failures;

for

example,

even

if

a

disk

fails,

our

changes

are

recorded

in

the

database.

We

must

do

three

things

to

make

the

server

transactional:

v

We

must

make

the

server

recoverable.

v

We

must

modify

the

initialization

steps

so

that

our

server

initializes

the

parts

of

Encina

needed

for

transactions.

Depending

upon

the

component

we

use

for

this,

we

may

also

have

to

modify

the

way

the

server

terminates.

v

We

must

delimit

(indicate

the

beginning

and

end

of)

the

transaction,

specifying

which

operations

are

to

be

part

of

the

transaction.

We

already

peformed

the

first

step.

The

call

to

the

mon_RegisterRmi

function,

described

in

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23,

automatically

made

the

server

recoverable.

If

we

were

not

running

in

the

Monitor

environment,

we

would

have

to

initialize

and

use

a

recovery

service

(such

as

the

Encina

Recovery

Service).

This

in

turn

would

require

us

to

use

a

log

service.

The

final

two

steps

are

related:

the

initialization

steps

we

need

depend

upon

which

Encina

component

we

use

to

delimit

transactions.

The

Encina

Toolkit

provides

several

transactional

interfaces.

In

this

manual,

we

use

two

of

them,

Tran-C

and

TX

(the

X/Open

transactional

interface).

In

this

chapter,

we

use

Tran-C.

In

Chapter

8,

“Using

TX,”

on

page

73,

we

will

modify

the

application

to

use

TX

instead.

The

Monitor

automatically

initializes

Tran-C,

so

we

have

no

other

initialization

to

perform.

However,

any

application

that

uses

Tran-C

transaction

constructs

(as

our

server

does)

must

register

the

name

of

the

module

(typically

the

name

of

the

©

Copyright

IBM

Corp.

1999,

2004

37

source

file)

with

the

Tran-C

run

time

by

using

the

inModule

statement.

If

we

were

not

using

the

Monitor,

we

would

have

to

explicitly

initialize

Tran-C,

as

described

in

the

Encina

Transactional

Programming

Guide.

After

we

perform

these

steps,

Encina

handles

all

the

details

of

transactions

and

two-phase

commit

processing

(see

Chapter

1,

“Basic

concepts

of

distributed

computing,”

on

page

1)

for

us.

We

do

not

have

to

write

the

code

that

coordinates

processing

if

the

transaction

commits

or

that

rolls

back

changes

if

it

aborts.

Encina

does

this

for

us.

For

example,

if

we

abort

the

transaction

after

having

updated

the

database

and

queueing

a

shipping

request,

Encina

rolls

back

changes

to

the

database

and

removes

the

shipping

request

from

the

queue.

Specifying

which

operations

are

part

of

a

transaction

The

final

step

in

adding

transactions

to

our

server

is

to

specify

which

operations

are

part

of

the

transaction.

To

do

this,

we

must

delimit

the

transaction,

specifying

where

the

transaction

begins

and

where

it

ends.

We

use

Tran-C

to

accomplish

this.

Tran-C

provides

a

number

of

features

used

by

transactional

applications.

It

provides

several

constructs

for

delimiting

transactions.

It

also

automatically

associates

a

transaction

with

a

thread

of

execution

and

handles

the

flow

of

control,

automatically

transferring

execution

to

the

appropriate

location

if

a

transaction

aborts.

It

provides

a

number

of

additional

features,

all

of

which

are

described

in

the

Encina

Transactional

Programming

Guide.

We

use

some

of

these

other

features

in

later

chapters.

The

Tran-C

construct

that

delimits

the

transaction

in

the

server

is

the

transaction

construct.

The

transaction

construct

delimits

a

transaction

and

provides

a

mechanism

for

specifying

the

transfer

of

control

when

the

transaction

commits

or

aborts.

The

transaction

construct

is

shown

in

Figure

27.

In

the

construct,

the

keyword

transaction

indicates

the

start

of

the

transaction.

When

the

flow

of

control

reaches

the

closing

brace

for

this

construct,

Encina

tries

to

commit

the

transaction.

If

the

transaction

commits,

the

flow

of

control

proceeds

into

the

onCommit

clause.

If

at

any

point

the

transaction

is

aborted

(by

the

current

process

or

by

any

other

process

in

the

transaction),

control

automatically

transfers

to

the

onAbort

clause.

If

the

transaction

aborts,

we

can

use

several

Tran-C

functions

to

get

more

information

about

why

the

abort

occurred.

Figure

28

on

page

39

shows

the

OrderItem

function

after

we

have

modified

it

to

use

the

transaction

construct

to

group

its

three

functions

into

a

transaction.

transaction{

/*

Operations

that

are

part

of

the

transaction

go

here

*/

}onCommit{

/*

Operations

to

perform

after

the

transaction

commits

go

here

*/

}onAbort{

/*

Operations

to

perform

after

the

transaction

aborts

go

here

*/

}

Figure

27.

The

Tran-C

transaction

construct

38

TXSeries™:

Writing

Encina

Applications

Note

that

the

functions

that

make

up

the

transaction

do

not

return

status

codes.

This

does

not

mean

that

the

server

is

no

longer

performing

error

checking.

Instead,

the

called

functions

abort

the

transaction

if

they

discover

an

error.

Control

then

switches

to

the

onAbort

clause.

The

server

prints

an

error

message,

including

the

text

that

the

aborting

operation

specified

when

it

aborted,

which

is

returned

by

the

abortReason

function.

This

is

described

in

more

detail

in

“Aborting

transactions.”

Aborting

transactions

Tran-C

provides

functions

for

explicitly

aborting

a

transaction.

If

it

detects

a

failure,

the

server

uses

an

abort

function

to

abort

a

transaction.

For

example,

if

a

billing

error

occurs,

the

server

aborts

the

transaction;

all

actions

in

the

transaction,

such

as

changes

to

the

database,

are

then

rolled

back

to

the

state

before

the

transaction.

In

this

manual,

we

use

the

following

two

Tran-C

functions

for

aborting

transactions:

v

abort

v

abortWithCode

Both

functions

abort

the

transaction.

The

difference

between

them

concerns

how

you

specify

an

abort

reason.

The

abort

function

provides

a

simple

abort

mechanism.

It

takes

one

argument,

a

string.

This

string

is

simply

passed

to

applications

that

are

notified

of

the

abort.

These

applications

use

the

abortReason

function

to

retrieve

the

string.

error_status_t

OrderItem(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

customerId)

{

idl_long_int

returnStatus;

idl_long_int

costPerItem,

totalCost;

short

priority;

transaction{

PlaceOrder(stockNum,

numOrdered,

&costPerItem);

totalCost

=

numOrdered

*

costPerItem;

if

(totalCost

>

1000)

priority

=

HIGH_PRIORITY;

else

priority

=

NORMAL_PRIORITY;

PlaceItemOnQueue(stockNum,

numOrdered,

customerId,

priority);

BillForItem(customerId,

totalCost);

}onCommit{

fprintf(stderr,

"We

committed.\n");

return

SUCCESS;

}onAbort{

fprintf(stderr,

"We

aborted.

%s\n",

abortReason());

return

ORDER_FAILED;

}

}

Figure

28.

Adding

transactions

to

the

server

Chapter

4.

Making

the

sample

application

transactional

39

The

abortWithCode

function

provides

a

more

flexible

abort

mechanism.

It

takes

one

argument,

an

abort

code.

Applications

that

are

notified

of

the

abort

can

take

action

based

on

this

code,

including

converting

the

code

to

a

string.

These

two

mechanisms

are

described

in

somewhat

more

detail

in

the

following

sections.

Note

that

at

this

point

our

server

does

not

explicitly

abort

transactions.

However,

it

must

be

able

to

handle

aborts

generated

by

other

parts

of

the

application

or

by

the

underlying

RPC

mechanism.

In

the

next

chapter,

when

we

add

a

second

server,

that

server

will

explicitly

call

an

abort

function.

Aborting

with

strings

The

abort

function

aborts

a

transaction.

The

application

aborting

the

transaction

can

pass

a

string

specifying

the

reason

for

the

abort.

All

applications

that

are

notified

of

the

abort

can

retrieve

this

string.

This

method

is

used

by

our

server

as

it

now

stands.

If

any

part

of

the

application

aborts

the

transaction,

control

is

transferred

to

the

onAbort

clause.

Our

application

uses

the

abortReason

function

to

determine

why

the

transaction

aborted.

This

function

returns

whatever

string

the

aborting

component

specified

as

an

abort

reason.

Figures

Figure

29

and

Figure

30

show

an

example

of

a

call

to

the

abort

function

as

it

might

be

made

by

some

part

of

our

application.

It

also

shows

how

our

server

uses

the

abortReason

function

to

display

the

reason

for

the

abort

before

returning

from

the

RPC.

Note

that

in

our

example

application,

the

call

to

the

abortReason

function

occurs

in

the

order

server

(that

is,

in

the

server

that

we

have

been

developing

up

to

this

point).

The

call

to

the

abort

function

occurs

in

the

billing

server,

which

we

develop

in

the

next

chapter.

In

general,

the

abort

can

be

initiated

by

any

process

in

the

distributed

transaction,

including

the

process

that

started

the

transaction.

If

the

transaction

aborts,

the

order

server

writes

the

following

string

to

the

standard

error

stream:

Transaction

aborted.

Insufficient

funds.

/*

Billing

Server

*/

abort("Insufficient

funds");

Figure

29.

Aborting

a

transaction

/*

Order

Server

*/

transaction{

.

.

.

}onAbort{

fprintf(stderr,

"Transaction

aborted.

%s.\n",

abortReason());

return

ORDER_FAILED;

}

Figure

30.

Handling

an

aborted

transaction

40

TXSeries™:

Writing

Encina

Applications

Aborting

with

an

abort

code

Encina

applications

can

also

use

an

abort

code

rather

than

an

explicit

abort

string.

The

application

that

receives

this

abort

code

can

then

take

action

based

on

this

code,

including

converting

it

to

a

string.

Abort

codes

offer

several

advantages

over

strings:

v

It

is

easier

to

compare

codes

(which

are

integers)

than

it

is

to

compare

strings.

Thus,

an

application

can

more

easily

take

action

based

on

a

code.

v

Codes

can

be

translated

into

strings

by

using

external

catalogs

of

messages.

It

is

thus

easier

to

internationalize

programs

using

codes.

The

abort

code

interface

is

somewhat

more

complex

than

the

string

interface.

Thus,

for

applications

whose

only

response

to

an

abort

notification

is

to

print

a

string

and

exit,

aborting

with

strings

can

be

a

better

approach,

especially

if

such

applications

are

used

in

only

one

language.

For

more

information

on

aborting

using

abort

codes,

see

Appendix

B,

“Using

abort

codes,”

on

page

87.

Notes

on

building

and

running

the

application

Both

the

client

and

the

server

must

continue

to

include

the

header

files

specified

in

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23.

In

addition,

the

server

must

include

the

Tran-C

header

file,

tc/tc_server.h.

Chapter

4.

Making

the

sample

application

transactional

41

42

TXSeries™:

Writing

Encina

Applications

Chapter

5.

Using

RQS

This

chapter

discusses

using

the

Encina

Recoverable

Queueing

Service

(RQS)

with

our

example

application.

RQS

allows

applications

to

queue

transactional

work

to

be

completed

at

a

later

time.

Applications

can

then

commit

any

existing

transactions

with

the

assurance

that

the

queued

work

will

not

be

lost.

RQS

guarantees

that

after

an

element

has

been

added

to

a

queue

and

the

transaction

has

committed

the

element

remains

in

the

queue

until

dequeued

by

another

transaction.

An

overview

of

RQS

Transactions

are

isolated

from

one

another.

In

general,

this

means

that

other

transactions

are

prevented

from

accessing

data

that

a

transaction

is

using

until

the

transaction

is

complete.

For

example,

a

transaction

can

lock

records

in

a

database,

preventing

other

users

from

accessing

those

records

until

the

transaction

commits

or

aborts.

As

a

result,

a

design

goal

of

transactional

applications

is

to

complete

transactions

quickly,

unlocking

locked

data

and

allowing

access

to

it

by

other

transactions

as

quickly

as

possible.

This

can

be

a

problem,

however,

when

one

part

of

the

transaction

takes

much

longer

than

other

parts.

In

our

sample

application,

for

example,

the

steps

in

ordering

an

item

are

accessing

the

database,

shipping

the

item,

and

billing

for

the

item.

Accessing

the

database

and

billing

for

the

item

are

relatively

quick

operations

(in

this

case,

billing

means

debiting

against

a

credit

database).

Shipping

the

item,

however,

can

take

longer.

We

need

an

approach

that

guarantees

shipping

will

happen

but

allows

the

transaction

to

commit

without

waiting.

For

example,

it

is

preferable

not

to

wait

for

a

person

in

the

shipping

warehouse

to

acknowledge

the

shipping

request.

We

can

solve

this

problem

by

using

the

Encina

Recoverable

Queueing

Service

(RQS).

Instead

of

waiting

for

a

reply

from

shipping,

our

server

simply

places

a

request

on

an

RQS

queue.

It

then

commits

with

the

assurance

that

the

shipping

request

will

not

be

lost;

the

request

remains

on

the

queue

until

it

is

dequeued

by

an

application

in

the

shipping

department.

Encina

also

provides

a

way

for

applications

to

queue

TRPCs,

which

can

be

forwarded

to

Monitor

application

servers.

The

Queued

Request

Facility

(QRF)

enables

applications

to

queue

data

along

with

the

name

of

a

Monitor

application

server

and

a

function

name.

QRF

monitors

specified

queues

and

forwards

requests

to

the

specified

application

server.

Our

application

does

not

use

QRF,

so

we

do

not

discuss

it

further

in

this

manual.

For

more

information,

see

the

Encina

Monitor

Programming

Guide.

Queues

and

elements

Queues

are

linear

data

structures

that

can

be

used

to

pass

information

from

one

application

to

another.

Applications

enqueue

(add)

elements

to

the

tail

of

a

queue

and

dequeue

(remove)

elements

from

the

head

of

a

queue

in

a

first-in

first-out

(FIFO)

manner.

This

is

shown

in

Figure

31

on

page

44.

©

Copyright

IBM

Corp.

1999,

2004

43

Enqueueing

and

dequeueing

are

performed

from

within

the

scope

of

a

user

transaction.

RQS

guarantees

that

after

an

element

has

been

added

to

a

queue

and

the

transaction

has

committed,

that

element

remains

in

the

queue

until

dequeued

by

another

transaction.

Successfully

enqueued

elements

are

not

lost

due

to

system

failures,

media

failures,

or

failed

dequeue

attempts.

If

the

dequeueing

transaction

is

aborted,

the

element

is

returned

to

the

queue.

Each

queue

is

maintained

by

one

and

only

one

RQS

server.

All

interactions

with

that

queue

are

handled

by

the

server.

An

application

queues

an

element,

for

example,

by

making

an

RPC

to

the

RQS

server,

which

then

places

the

element

on

the

queue.

Client

applications

use

queues

to

store

data

in

the

form

of

elements.

An

element

contains

record-oriented

data

specific

to

an

application.

The

fields

of

an

element

store

related

pieces

of

the

data.

For

example,

a

shipping

element

might

have

fields

for

storing

the

customer

ID,

the

item

number,

and

the

number

ordered.

Each

element

must

have

a

type,

which

is

specified

when

the

element

is

queued.

An

element

type

is

a

named

specification

that

defines

the

data

type

and

size

for

each

field

of

an

element.

Element

types

are

independent

of

queues;

elements

of

different

element

types

can

be

queued

and

dequeued

from

the

same

queue.

Types

are

typically

defined

administratively,

although

they

can

also

be

defined

programmatically.

RQS

provides

a

number

of

field

types

that

can

be

used

when

defining

an

element

type.

Prioritization

and

queue

sets

An

application

might

want

to

specify

that

certain

elements

be

dequeued

before

other

elements.

That

is,

it

might

want

to

specify

a

priority

for

an

element.

However,

when

an

application

dequeues

an

element

from

a

queue,

it

dequeues

the

next

available

element,

not

the

“most

important”

element.

To

prioritize

elements

in

RQS,

an

application

uses

queue

sets.

A

queue

set

is

a

collection

of

queues.

Inside

the

queue

set,

queues

are

ranked

based

on

a

priority

class.

Elements

can

be

queued

to

the

specific

queue

in

the

queue

set

that

has

the

appropriate

priority

class.

The

dequeueing

application

then

dequeues

an

element

from

the

set

as

a

whole;

RQS

returns

an

element

to

the

application

from

a

queue

based

on

the

priorities.

Priorities

can

be

weighted

(using

a

concept

called

service

levels,

as

described

in

the

Encina

RQS

Programming

Guide)

so

that

the

dequeueing

application

does

not

always

dequeue

the

highest-priority

element

first.

However,

in

our

example,

we

will

use

a

strict

prioritization

scheme.

Note

that

if

a

dequeueing

application

does

not

want

to

use

the

queue

set,

it

can

still

dequeue

an

element

from

an

individual

queue

in

the

set.

Multiple

applications

can

be

used

to

dequeue

elements

from

the

queues

in

a

set.

For

example,

one

Figure

31.

FIFO

behavior

of

queues

44

TXSeries™:

Writing

Encina

Applications

application

can

dequeue

elements

from

the

set

as

a

whole

(as

our

sample

dequeueing

application

does)

while

other

applications

can

dequeue

elements

from

specific

queues.

Adding

RQS

to

our

application

Our

application

will

use

RQS

to

queue

shipping

requests.

In

this

way,

the

order

transaction

can

commit

without

waiting

for

the

shipping

department

to

actually

process

the

request

but

with

assurance

that

the

request

will

be

processed.

Specifically,

we

will

do

two

things:

1.

Modify

the

order

application

server

so

that

it

queues

the

shipping

request

to

an

RQS

queue.

2.

Write

a

simple

application

to

dequeue

the

requests

from

the

shipping

queue

and

process

them.

The

parts

of

the

application

that

we

develop

in

this

chapter

are

shaded

in

Figure

32.

The

application

server

queues

a

shipping

request

to

one

of

two

queues—a

normal-priority

queue

(normalShippingQueue)

or

a

high-priority

queue

(priorityShippingQueue)—based

on

the

value

of

the

order.

These

two

queues

form

a

queue

set

called

shippingQueueSet.

The

dequeueing

application

dequeues

from

the

queue

set,

which

has

been

set

up

such

that

dequeues

occur

following

a

strict

prioritization

scheme.

Requests

on

the

high-priority

queue

are

returned

to

the

dequeueing

application

before

requests

on

the

normal-priority

queue.

This

is

summarized

in

Figure

33

on

page

46.

Figure

32.

Sample

Order-Entry

Application:

Adding

RQS

Chapter

5.

Using

RQS

45

Although

RQS

provides

administrative

functions

for

creating

queues,

queue

sets,

and

element

types,

we

will

not

use

these

in

our

program.

Instead,

we

will

assume

that

the

queues

and

element

types

have

already

been

created

and

that

the

two

queues

have

already

been

placed

in

a

queue

set,

either

using

another

program

or

using

the

rqsadmin

command.

“Building

and

running

the

sample

application”

on

page

51

shows

several

example

rqsadmin

commands

for

doing

so.

For

more

information,

see

the

Encina

RQS

Programming

Guide

and

the

Encina

Administration

Guide

Volume

2:

Server

Administration.

Queueing

a

shipping

request

In

previous

chapters,

our

application

server

called

a

function

called

PlaceItemOnQueue

to

queue

a

shipping

request.

In

this

section,

we

write

this

function.

We

also

write

two

other

functions:

one

to

initiate

communications

with

the

RQS

server

and

one

to

close

communications.

These

functions

will

be

called

during

application

server

initialization

and

termination,

respectively.

These

three

functions

will

be

grouped

into

one

source

file,

allowing

all

three

to

access

a

single

global

static

variable

used

to

hold

the

handle

to

the

RQS

server

(see

“Getting

a

handle

to

an

RQS

server”

on

page

47).

Defining

the

element

type

All

elements

used

in

RQS

are

of

types

defined

by

a

user.

The

element

type

specifies

the

layout

of

fields

in

the

element.

When

an

application

enqueues

an

element,

it

specifies

the

type

of

that

element.

When

it

dequeues

an

element,

the

type

is

returned

to

the

dequeueing

application,

providing

it

with

the

information

it

needs

to

interpret

the

field

layout.

We

must

define

the

element

type

or

types

that

our

program

is

going

to

use.

These

types

must

then

be

created

at

the

RQS

server,

either

programmatically

or

by

an

administrator.

Because

creation

of

element

types

is

generally

an

administrative

task,

we

are

going

to

assume

that

the

element

types,

like

the

queues

themselves,

have

been

created

by

an

administrator

prior

to

program

execution.

“Building

and

running

the

sample

application”

on

page

51

shows

the

rqsadmin

commands

that

create

the

necessary

queues

and

element

types.

In

our

application,

all

elements

queued

by

the

order

server

have

three

fields:

v

The

customer

ID

(customerId)

v

The

stock

number

of

the

item

ordered

(stockNum)

v

The

number

of

items

ordered

(numOrdered)

Figure

33.

Sample

application’s

use

of

an

RQS

queue

set

46

TXSeries™:

Writing

Encina

Applications

Our

application

needs

only

one

element

type,

shippingType,

which

contains

these

three

fields.

The

type

of

each

of

the

fields

is

rqs_unsignedInt32,

the

RQS

field

type

corresponding

to

the

DCE

idl_ulong_t

data

type.

The

layout

of

the

shippingType

element

type

is

shown

in

Figure

34.

Getting

a

handle

to

an

RQS

server

Before

we

can

add

elements

to

a

queue,

we

must

first

obtain

a

handle

to

the

RQS

server

that

controls

the

queue.

This

is

done

by

using

the

rqs_GetServerHandle

function.

Our

application

can

be

designed

such

that

each

time

an

element

is

enqueued,

the

enqueueing

function

would

first

get

a

handle

to

the

server,

and

then

queue

the

element.

However,

because

each

queue

is

under

the

control

of

one

and

only

one

RQS

server,

our

application

would

obtain

a

handle

to

the

same

server

each

time.

Thus,

to

reduce

the

overhead

of

having

to

obtain

a

handle

(which

involves

looking

up

the

server

in

the

Cell

Directory

Service)

each

time

an

item

is

shipped,

the

server

obtains

this

handle

just

once.

During

initialization,

the

order

server

calls

a

function

we

call

ConnectToShippingServer.

This

function

obtains

the

handle

to

the

RQS

server

and

saves

it

in

a

global

static

variable,

which

is

accessible

to

the

other

functions

in

the

source

file,

including

the

function

that

enqueues

shipping

requests.

Figure

35

shows

this

function.

The

rqs_GetServerHandle

function

takes

one

input

argument:

the

name

of

the

RQS

server.

To

simplify

things,

the

order

server

uses

a

constant

string

(RQS_SERVER_NAME)

to

specify

the

RQS

server

name;

we

define

the

RQS_SERVER_NAME

in

a

header

file

used

by

the

application.

The

rqs_GetServerHandle

function

returns

a

handle

to

the

RQS

server.

This

handle

is

then

used

in

RPCs

to

that

server.

In

particular,

the

order

server

uses

the

handle

when

it

enqueues

a

shipping

request.

Because

the

order

server

cannot

function

if

it

cannot

queue

shipping

requests

to

RQS,

it

exits

if

it

cannot

obtain

a

handle

to

the

RQS

server.

Figure

34.

The

shippingType

element

type

/*

Global

Variable

*/

static

rqs_serverHandle_t

rqsHandle;

error_status_t

ConnectToShippingServer(void)

{

rqs_status_t

status;

status

=

rqs_GetServerHandle(RQS_SERVER_NAME,

&rqsHandle);

if

(status

!=

RQS_SUCCESS)

return

RQS_FAILURE;

else

return

SUCCESS;

}

Figure

35.

Getting

a

handle

to

the

RQS

server

Chapter

5.

Using

RQS

47

The

ConnectToShippingServer

function

is

called

during

initialization,

after

Encina

has

been

initialized

but

before

we

begin

listening

for

RPCs.

This

is

shown

in

Figure

36.

When

the

server

terminates

(when

the

mon_BeginService

function

returns),

the

server

calls

the

DisconnectFromShippngServer

function,

which

simply

calls

the

rqs_FreeServerHandle

function

to

free

the

server

handle.

Adding

the

shipping

request

to

the

queue

Our

server

adds

an

element

to

one

of

the

shipping

queues

by

calling

the

function

PlaceItemOnQueue.

The

server,

prior

to

calling

this

function,

determines

whether

the

request

is

high

or

normal

priority,

based

on

the

value

of

the

order

(greater

or

less

than

$1000).

The

server

then

calls

this

function

with

four

parameters:

the

three

items

that

make

up

the

element

to

be

queued

and

a

parameter

that

specifies

which

queue

(high

priority

or

normal

priority)

is

to

be

used.

This

function

in

turn

places

the

item

on

an

RQS

queue

using

the

rqs_Enqueue

function.

The

PlaceItemOnQueue

function

is

passed

three

separate

parameters

corresponding

to

the

three

fields

in

the

defined

element

type.

We

must

combine

these

three

parameters

into

a

single

element

before

we

enqueue

an

element.

That

is,

we

must

arrange

them

contiguously

in

memory,

with

no

space

between

the

fields.

The

fields

must

be

in

the

order

specified

by

the

element

type,

and

each

field

must

take

up

its

full

width

(which,

for

each

of

the

three

fields

in

our

application,

is

4

bytes).

There

are

various

ways

to

combine

the

separate

values

into

a

single

element.

One

common

way

is

to

define

a

structure

that

contains

the

three

elements

and

use

this

structure

as

the

element.

This

is

a

straightforward

way

of

creating

the

element;

however,

although

it

works

on

most

systems,

it

is

not

guaranteed

to

be

portable

by

the

ANSI

C

standard

(which

allows

a

compiler

to

insert

padding

bytes

between

fields

in

a

structure).

Because

all

three

of

our

fields

are

of

the

same

type,

we

could

have

simply

created

an

array

of

three

elements

and

copied

the

three

elements

to

the

array.

However,

we

want

to

demonstrate

a

more

general

approach,

which

can

be

used

in

all

cases.

To

provide

a

general

solution

while

maintaining

strict

ANSI

compliance

in

our

example,

we

copy

the

three

parameters

into

a

buffer

using

the

C

memcpy

function.

This

is

shown

in

Figure

37

on

page

49.

int

main()

{

...

/*

Initialize

Encina

*/

mon_InitServer();

/*

Initialize

interaction

with

RQS

*/

status

=

ConnectToShippingServer();

if

(status

!=

SUCCESS){

fprintf(stderr,

"Unable

to

connect

to

RQS

server.\n");

exit(1);

}

/*

Begin

listening

for

RPCs

*/

mon_BeginService();

DisconnectFromShippingServer();

}

Figure

36.

RQS

initialization

48

TXSeries™:

Writing

Encina

Applications

Each

call

to

the

memcpy

function

copies

4

bytes.

The

first

call

copies

the

customerId

parameter

to

the

first

4

bytes

of

the

element.

The

second

call

copies

the

stockNum

parameter

to

the

next

4

bytes

of

the

element;

the

third

call

copies

the

numOrdered

parameter

to

the

final

4

bytes

of

the

element.

After

the

element

has

been

set

up,

we

enqueue

it

with

the

rqs_Enqueue

function.

The

application

specifies

the

following

information

when

calling

this

function:

v

The

handle

returned

by

the

rqs_GetServerHandle

function

v

The

name

of

the

queue:

normalShippingQueue

or

priorityShippingQueue

v

The

element

type:

shippingType

v

The

element

we

are

enqueueing

and

its

length

The

rqs_Enqueue

function

returns

an

element

identifier

(ID)

for

the

enqueued

element.

Because

our

server

does

not

access

elements

again

after

queueing

them,

it

does

not

use

this

returned

ID.

Figure

38

shows

the

call

to

the

rqs_Enqueue

function.

This

function

must

be

called

from

within

the

scope

of

a

transaction

(for

example,

from

within

a

Tran-C

transaction

construct).

In

our

application,

the

transaction

is

started

by

the

server

before

it

calls

the

PlaceItemOnQueue

function.

idl_ulong_t

itemLength

=

sizeof(customerId)

+

sizeof(stockNum)

+

sizeof(numOrdered);

/*

Allocate

the

item

to

queue

and

pack

fields

into

it

*/

itemToQueue

=

malloc(itemLength);

/*

Start

copying

at

start

of

itemToQueue

buffer

*/

itemCursor

=

itemToQueue;

memcpy(itemCursor,

customerId,

sizeof(customerId));

itemCursor

+=

sizeof(customerId);

memcpy(itemCursor,

stockNum,

sizeof(stockNum));

itemCursor

+=

sizeof(stockNum);

memcpy(itemCursor,

numOrdered,

sizeof(numOrdered));

Figure

37.

Initializing

the

element

if

(priority

==

HIGH_PRIORITY)

queueName

=

"priorityShippingQueue";

else

queueName

=

"normalShippingQueue";

status

=

rqs_Enqueue

(rqsHandle,

queueName,

elementType,

itemLength,

itemToQueue,

NULL,

/*

Ignore

work

accumulation

*/

&elementId);

if

(status

!=

RQS_SUCCESS){

abort("Enqueue

attempt

failed.");

}

Figure

38.

Enqueueing

the

shipping

request

Chapter

5.

Using

RQS

49

Dequeueing

a

shipping

request

The

application

that

dequeues

shipping

requests

is

a

stand-alone

RQS

client.

The

same

application

interacts

with

a

user

and

dequeues

elements

from

the

RQS

queue

set,

with

no

intervening

application

server.

In

this

section,

we

write

only

that

portion

of

the

application

that

interacts

with

RQS.

A

simple

but

complete

RQS

client

program

is

available

with

the

documentation.

Our

dequeueing

application

must

do

the

following

three

things:

1.

Obtain

a

handle

to

the

RQS

server.

2.

Dequeue

elements

from

a

queue

set.

3.

Free

the

handle

to

the

server.

As

was

the

case

with

the

order

server,

the

dequeueing

application

obtains

a

handle

to

the

server

once,

storing

it

in

a

global

static

variable.

It

then

loops,

dequeueing

requests

until

the

user

decides

to

terminate.

It

then

frees

the

handle

to

the

server.

Obtaining

and

freeing

the

handle

are

performed

using

the

same

functions

that

were

used

by

the

order

server.

The

rest

of

this

section

describes

dequeueing

an

element

from

a

queue

set,

which

we

do

by

using

the

rqs_QSDequeue

function.

When

we

enqueued

an

element,

we

had

to

select

a

queue

in

the

queue

set:

the

high-priority

queue

or

the

normal-priority

queue.

However,

when

we

dequeue

from

a

queue

set,

we

do

not

have

to

specify

this.

We

simply

specify

the

name

of

the

queue

set.

Because

our

queues

are

using

strict

prioritization,

RQS

first

checks

the

high-priority

queue.

If

there

is

an

element

on

that

queue,

RQS

returns

it

to

the

application.

If

not,

RQS

checks

the

normal-priority

queue.

We

must

specify

what

RQS

does

if

there

is

no

element

on

any

queue

in

the

queue

set.

RQS

can

either

wait

until

an

element

is

available

or

return

with

a

status

code

indicating

that

no

element

is

available.

Our

application

waits

for

an

element

if

none

are

available.

To

do

this,

it

specifies

TRUE

as

the

value

of

the

blockOnEmpty

argument

of

the

rqs_QSDequeue

function.

We

must

specify

whether

RQS

should

delete

the

element

from

the

RQS

server

after

we

have

successfully

dequeued

it.

To

optimize

moving

elements

between

queues,

RQS

allows

applications

to

specify

that

an

element

not

be

deleted

from

the

server

when

it

is

dequeued.

This

allows

the

element

to

be

requeued

to

a

different

queue

without

having

to

actually

resend

the

element

to

the

RQS

server.

An

element

that

has

been

dequeued

and

is

not

now

on

any

queue

but

that

has

not

been

deleted

from

the

server

is

called

an

orphan.

Because

our

application

is

not

requeueing

elements,

it

specifies

rqs_DeleteElement

as

the

value

of

the

deleteOption

argument

of

the

rqs_QSDequeue

function.

An

element

is

thus

deleted

from

the

server

after

our

application

has

successfully

dequeued

it.

The

rqs_QSDequeue

function

returns

a

structure

of

type

rqs_elementDescriptor_t.

This

structure

contains

the

element

and

fields

that

specify

the

element

type,

the

queue

from

which

the

element

was

dequeued,

and

so

forth.

However,

because

our

application

is

using

only

one

element

type

and

is

not

moving

elements

between

queues,

it

ignores

all

fields

except

the

field

that

contains

the

element.

In

general,

applications

do

not

know

the

size

of

the

element

that

will

be

returned

to

them

when

they

dequeue

an

element.

An

application

might

be

processing

several

different

element

types,

or

the

element

types

might

contain

varying-length

fields.

Thus,

applications

cannot

allocate

the

rqs_elementDescriptor_t

structure.

50

TXSeries™:

Writing

Encina

Applications

Instead,

an

application

declares

a

pointer

to

an

element

of

this

type

and

passes

the

address

of

this

pointer

to

the

function

that

performs

the

dequeueing

(in

our

case,

the

rqs_QSDequeue

function).

RQS

then

allocates

the

structure

for

the

application.

When

the

application

is

done

with

the

structure,

it

must

free

the

structure

using

the

rqs_Free

function,

which

frees

memory

allocated

for

the

application

by

RQS.

Our

application

must

also

follow

this

procedure,

even

though,

in

our

simple

example,

we

do

know

the

exact

size

of

the

element

to

be

dequeued.

When

the

element

is

returned,

we

must

extract

the

three

fields

from

it.

We

do

this

by

using

the

C

memcpy

function

in

a

fashion

similar

to

the

way

we

packed

the

fields

into

the

element

before

enqueueing

it.

We

place

the

fields

in

the

three

parameters

that

were

passed

to

this

function.

The

function

return

these

three

parameters

to

the

calling

application.

The

complete

DequeueFromShippingQueueSet

function

is

shown

in

Figure

39.

This

function

must

be

called

from

within

a

transaction

that

is

started

before

the

function

is

called.

Building

and

running

the

sample

application

Our

application

now

uses

the

following

three

new

source

files:

v

ShipItem.c

—

the

code

for

the

part

of

the

Order

Server

that

interacts

with

RQS

v

DequeueRequest.c

—

the

simple

client

that

dequeues

shipping

requests

v

orderRqs

—

an

application-specific

header

file

containing

RQS

information

used

by

both

the

Order

Server

and

the

dequeueing

client

error_status_t

DequeueFromShippingQueueSet(idl_ulong_int

*stockNum,

idl_ulong_int

*numOrdered,

idl_ulong_int

*customerId,

short

priority)

{

rqs_elementDescriptor_t

*itemDequeued;

char

*itemCursor;

rqs_status_t

status;

/*

Dequeue

the

element

*/

status

=

rqs_QSDequeue(rqsHandle,

"shippingQueueSet",

rqs_deleteElement,

TRUE,

/*

Wait

for

element

to

dequeue

*/

&itemDequeued);

if

(status

!=

RQS_SUCCESS)

return

DEQUEUE_FAILED;

/*

Break

the

item

into

its

three

components.

*/

itemCursor

=

itemDequeued->value;

memcpy(customerId,

itemCursor,

sizeof(*customerId));

itemCursor

+=

sizeof(*customerId);

memcpy(stockNum,

itemCursor,

sizeof(*stockNum));

itemCursor

+=

sizeof(*stockNum);

memcpy(numOrdered,

itemCursor,

sizeof(*numOrdered));

rqs_Free(itemDequeued);

return

SUCCESS;

}

Figure

39.

Dequeueing

the

shipping

request

Chapter

5.

Using

RQS

51

The

order

application

server

and

the

new

dequeueing

client

must

include

the

rqs.h

header

file.

Both

must

link

with

the

EncRqs

library.

Before

the

application

can

be

run,

we

must

create

the

two

queues,

create

the

queue

set,

and

add

the

queues

to

the

queue

set.

This

can

be

done

with

rqsadmin

commands

shown

in

Figure

40.

These

commands

perform

the

following

actions:

v

Create

two

queues,

a

normal-priority

shipping

queue

and

a

high-priority

shipping

queue.

v

Create

a

queue

set.

v

Insert

the

two

shipping

queues

into

the

queue

set.

v

Specify

that

we

wish

to

use

a

strict

(unweighted)

priority

scheme

in

the

queue

set.

v

Create

the

element

type

we

need

for

our

application.

Note

that

when

we

insert

the

queues

into

the

queue

set,

we

assign

a

priority

of

5

to

the

normal-priority

queue

and

a

priority

of

1

to

the

high-priority

queue.

The

absolute

numbers

do

not

matter

as

long

as

the

normal-priority

queue

has

a

lower

priority

(a

higher

number)

than

the

high-priority

queue.

For

information

on

the

rqsadmin

command,

see

Encina

Administration

Guide

Volume

2:

Server

Administration.

%

rqsadmin

create

queue

\

-server

/.:/order_cell/server/rqsShippingServer

\

normalShippingQueue

disableaccumulation

%

rqsadmin

create

queue

\

-server

/.:/order_cell/server/rqshippingServer

\

priorityShippingQueue

disableaccumulation

%

rqsadmin

create

qset

\

-server

/.:/order_cell/server/rqshippingServer

\

shippingQueueSet

%

rqsadmin

insert

queue

\

-server

/.:/order_cell/server/rqshippingServer

\

shippingQueueSet

normalShippingQueue

5

%

rqsadmin

insert

queue

\

-server

/.:/order_cell/server/rqshippingServer

\

shippingQueueSet

priorityShippingQueue

1

%

rqsadmin

set

servicelevels

\

-server

/.:/order_cell/server/rqshippingServer

\

shippingQueueSet

strict

%

rqsadmin

create

type

\

-server

/.:/order_cell/server/rqshippingServer

\

shippingType

3

customerId

unsignedInt32

\

stockNum

unsignedInt32

numOrdered

unsignedInt32

Figure

40.

Using

rqsadmin

to

create

queues,

queue

sets,

and

element

types

52

TXSeries™:

Writing

Encina

Applications

Chapter

6.

Interacting

with

a

relational

database

Most

applications

need

to

deal

with

data.

Often,

this

data

is

stored

in

a

database.

This

chapter

discusses

the

ways

in

which

our

application

can

interact

with

a

resource

manager

and

access

data

stored

in

a

relational

database.

Resource

managers

and

distributed

transaction

processing

A

resource

manager

(RM)

controls

access

to

a

resource

such

as

a

database.

A

resource

manager

can

be

a

relational

database

management

system

(RDBMS)

or

one

of

the

Encina

resource

managers,

such

as

SFS

or

RQS.

In

this

chapter,

we

modify

our

application

to

allow

it

to

interact

with

an

RDBMS

and

access

data

stored

in

a

relational

database.

Resource

managers

and

the

XA

specification

Our

application

must

be

able

to

access

a

relational

database

transactionally.

Thus,

the

RDBMS

must

support

transactional

semantics.

For

example,

if

a

transaction

is

aborted,

any

changes

made

to

the

database

must

be

undone.

The

X/Open

document

Distributed

Transaction

Processing:

The

XA

Specification

describes

what

a

resource

manager

must

do

to

support

transactional

access.

Resource

managers

that

follow

this

specification

are

said

to

be

XA-compliant

and

can

participate

in

distributed

transactions

with

Encina.

The

XA

Specification

does

not

mandate

any

particular

interface

for

starting

and

ending

transactions

or

for

interacting

with

a

resource

manager.

Although

X/Open

does

define

several

interfaces

for

accessing

relational

databases

and

for

managing

transactions,

an

application

is

free

to

use

other

interfaces,

as

long

as

those

interfaces

support

the

XA

standard

(which

all

of

the

Encina

transactional

interfaces

support).

The

X/Open-defined

interface

to

relational

databases

is

SQL,

which

we

use

in

this

chapter

and

which

is

described

in

the

next

section.

The

defined

transactional

interface

is

TX,

which

we

use

in

a

subsequent

chapter;

in

this

chapter,

we

continue

to

use

Tran-C.

SQL

and

embedded

SQL

The

Structured

Query

Language

or

SQL

(pronounced

“sequel”)

is

a

fourth-generation

language

used

by

many

RDBMSs.

There

is

an

ANSI/ISO

standard

that

defines

the

language,

as

well

as

an

X/Open

specification

based

on

the

standard.

Most

RDBMSs

also

provide

their

own

extensions

to

SQL.

We

will,

as

much

as

possible,

use

ANSI

SQL.

Our

example

can,

with

little

change,

be

used

with

a

number

of

different

RDBMSs.

SQL

can

be

used

in

a

number

of

ways.

The

various

RDBMS

vendors

provide

interactive

environments

for

issuing

SQL

statements,

form-building

products

that

use

SQL,

and

so

forth.

However,

in

writing

a

program

that

accesses

a

database,

we

need

to

use

SQL

from

within

the

program.

To

do

this,

we

make

use

of

embedded

SQL,

in

which

we

embed

SQL

statements

in

a

C

program.

ANSI/ISO

and

X/Open

provide

a

standard

way

of

embedding

SQL

statements

in

a

program.

This

standard

is

followed

by

all

the

major

SQL

vendors

and

is

used

in

our

example.

A

program

that

contains

embedded

SQL

statements

cannot

simply

be

compiled

because

a

compiler

does

not

know

how

to

process

the

embedded

SQL

statements.

The

program

must

first

be

processed

by

a

SQL

precompiler.

A

SQL

precompiler

is

a

©

Copyright

IBM

Corp.

1999,

2004

53

program

that

allows

you

to

embed

SQL

statements

in

a

C

(or

other

high-level

language)

program.

Each

of

the

major

database

vendors

provides

a

precompiler

that

can

process

a

source

program

and

translate

the

embedded

SQL

calls

to

RDBMS

library

calls.

A

precompiler

produces

a

file

that

can

then

be

compiled

by

a

standard

C

compiler.

This

is

illustrated

in

Figure

41.

In

this

figure,

the

PlaceOrder.precomp

file,

which

contains

embedded

SQL

statements,

is

converted

by

the

precompiler

into

a

standard

C

source

file

(PlaceOrder.c).

It

is

then

compiled

and

linked

to

produce

the

executable

file.

Modifying

the

application

to

interact

with

a

resource

manager

We

have

to

do

two

things

to

modify

our

application

to

use

a

resource

manager:

1.

Register

the

resource

manager.

2.

Use

SQL

to

read

and

write

records

in

the

database.

In

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23,

we

showed

the

function

that

is

used

to

register

the

resource

manager.

At

that

point,

though,

we

deferred

discussing

the

function.

In

this

chapter,

we

examine

its

use

in

more

detail

and

explain

the

arguments

that

we

must

pass

to

it.

Figure

42

on

page

55

shows

the

part

of

the

application

we

develop

in

this

chapter.

Figure

41.

SQL

precompiler

input

and

output

files

54

TXSeries™:

Writing

Encina

Applications

To

use

the

resource

manager,

we

divide

our

application

server

code

into

two

source

modules:

v

The

OrderServer.c

source

file,

which

remains

essentially

as

it

was

in

the

last

chapter.

The

resource

manager

is

registered

in

this

file.

v

The

PlaceOrder.precomp

source

file,

which

contains

all

the

code

that

interacts

with

the

database.

All

embedded

SQL

is

in

this

module;

thus,

this

module

is

the

only

one

that

must

be

processed

by

the

SQL

precompiler

before

it

is

compiled.

(Note

that

the

file

suffix

depends

upon

the

precompiler.

Different

precompilers

for

different

RDBMSs

use

different

suffixes.)

Registering

the

resource

manager

The

resource

manager

must

be

registered

with

the

Monitor

environment.

This

is

done

by

using

the

mon_RegisterRmi

function

during

Monitor

initialization,

prior

to

the

call

to

the

mon_InitServer

function.

We

must

supply

the

following

information:

v

The

resource

manager’s

XA

switch.

This

switch

is

provided

by

the

RDBMS

vendor.

v

The

name

of

this

instance

of

the

resource

manager.

This

name

must

match

a

name

already

configured

with

the

Monitor.

The

Monitor

uses

the

information

already

configured

about

this

resource

manager

to

register

it.

The

mon_RegisterRmi

function

returns

an

ID,

which

can

be

used

in

those

SQL

calls

that

take

an

interface

ID.

With

some

RDBMSs,

this

ID

enables

you

to

work

with

multiple

instances

of

that

RDBMS.

In

our

application,

we

do

not

need

this

ID.

Typically,

the

RDBMS

library

exports

the

XA

switch.

We

need

to

declare

only

an

external

variable

of

the

appropriate

name,

as

specified

in

the

RDBMS

documentation.

For

example,

the

Oracle

library

exports

its

XA

switch

under

the

name

xaosw.

The

linker

initializes

this

variable;

we

can

use

it

in

the

call

to

the

mon_RegisterRmi

function.

For

example,

to

register

Oracle

as

the

resource

manager,

the

call

shown

in

Figure

43

on

page

56

is

used.

Figure

42.

Sample

application:

interacting

with

a

resource

manager

Chapter

6.

Interacting

with

a

relational

database

55

Accessing

the

database

After

the

resource

manager

has

been

registered,

we

can

begin

to

access

the

relational

database.

Embedding

SQL

code

directly

in

an

application

is

the

simplest

and

most

common

way

to

access

relational

databases

programmatically.

It

is

the

approach

we

will

follow

in

our

example

in

this

chapter.

Although

the

embedded

SQL

interface

is

straight

forward,

it

has

the

drawback

that

you

can

use

only

one

resource

manager:

if

you

want

to

use

multiple

resource

managers

(or

multiple

instances

of

the

same

resource

manager),

there

is

no

way

to

indicate

which

SQL

code

is

for

which

manager

or

which

embedded

SQL

statements

are

to

be

translated

by

which

preprocessor.

Calling

the

RDBMSs’

library

routines

directly

rather

than

using

the

preprocessor

to

translate

embedded

SQL

into

library

calls

is

one

way

to

use

multiple

resource

managers.

However,

the

functions

used

depend

on

which

resource

manager

is

used.

Alternatively,

statements

that

access

different

relational

databases

can

be

placed

in

different

source

files

and

precompiled

separately.

Each

precompiler

produces

the

calls

needed

for

the

appropriate

database.

The

database

Our

example

database

consists

of

one

table

(called

inventory).

Each

record

in

this

table

contains

three

fields:

the

stock

number,

the

quantity,

and

the

price.

A

more

complex

application

would

have

more

fields

and

tables.

However,

to

be

simple,

we

limit

our

example

database

to

the

three

fields

needed

by

our

application.

Table

3

shows

the

definition

of

the

three

fields.

We

use

a

naming

convention

that

uses

underbars

in

the

names

of

the

fields

(for

example,

stock_num)

to

distinguish

fields

from

variables

(which

use

uppercase

letters

to

distinguish

words,

as

in

stockNum).

Note

that

the

field

type

name

varies

depending

upon

RDBMS

vendor.

For

example,

Oracle

calls

the

INTEGER

type

NUMBER

and

Sybase

calls

it

INT.

Table

3.

Fields

in

the

example

SQL

database

Field

Name

Field

Type

stock_num

INTEGER

num_available

INTEGER

item_cost

INTEGER

The

inventory

table

is

indexed

on

the

stock_num

field,

enabling

us

to

select

records

based

on

the

stock

number.

We

assume

that

the

database

and

table

exist

prior

to

execution.

A

sample

SQL

statement

to

create

the

table

is

shown

in

“Building

and

running

the

sample

application”

on

page

60.

Using

embedded

SQL

To

use

embedded

SQL,

our

application

needs

to

do

the

following

things:

v

Declare

the

variables

needed

in

embedded

SQL

statements.

int

rmiId;

extern

struct

xa_switch_t

xaosw;

mon_RegisterRmi(&xaosw,

"myOracle",

&rmiId);

Figure

43.

Registering

a

resource

manager

56

TXSeries™:

Writing

Encina

Applications

v

Query

the

database

using

the

given

stock

number

to

make

sure

that

there

are

sufficient

items

in

stock

to

satisfy

the

order.

We

then

determine

the

price

per

item

and

return

this

information

to

the

caller

(which

then

passes

this

information

to

the

billing

server).

v

Update

the

database

(that

is,

decrement

the

database

by

the

number

ordered)

if

there

are

sufficient

items

in

stock

to

place

the

order.

Embedded

SQL

allows

us

to

freely

use

SQL

statements

in

a

C

program.

To

embed

SQL

statements

in

a

program,

we

begin

each

SQL

statement

with

the

EXEC

SQL

keywords.

Declaring

the

variables

needed

for

SQL

Embedded

SQL

provides

a

method

for

declaring

variables

that

are

to

be

used

in

SQL

statements.

Such

variables

are

called

host

variables.

Host

variables

are

variables

declared

in

the

host

language

(in

our

case,

in

C)

and

shared

with

the

RDBMS.

A

program

uses

input

host

variables

to

pass

information

to

the

RDBMS.

The

RDBMS

returns

information

to

the

program

in

output

host

variables.

Host

variables

are

declared

in

a

declare

section,

which

is

delimited

using

the

DECLARE

SECTION

keywords.

Host

variables

can

be

used

in

a

C

program

in

the

same

way

as

any

other

variables.

They

can

also

be

used

in

any

embedded

SQL

statements

by

preceding

the

name

with

a

:

(colon).

In

our

application,

we

use

three

host

variables

in

embedded

SQL

statements.

These

must

be

declared

in

a

declare

section,

as

shown

in

Figure

44.

Once

these

variables

are

declared,

the

stockNumber

variable

is

initialized

at

the

beginning

of

the

function

by

assigning

the

stockNum

parameter

to

it.

The

quantityAvailable

and

pricePerItem

variables

are

initialized

when

they

are

read

from

the

database;

this

is

shown

in

Figure

45.

The

pricePerItem

variable

is

assigned

to

the

function

parameter

that

returns

this

value

to

the

calling

program.

Querying

the

database

Our

application

uses

the

SQL

SELECT

statement

to

determine

the

quantity

of

the

specified

item

currently

in

stock

and

the

price

of

the

item.

It

reads

the

values

of

EXEC

SQL

BEGIN

DECLARE

SECTION;

unsigned

long

stockNumber;

unsigned

long

pricePerItem;

unsigned

long

quantityAvailable;

EXEC

SQL

END

DECLARE

SECTION;

Figure

44.

Declaring

host

variables

in

our

application

void

PlaceOrder

(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

*costPerItem);

{

....

stockNumber

=

stockNum;

...

*costPerItem

=

pricePerItem;

}

Figure

45.

Using

host

variables

in

our

application

Chapter

6.

Interacting

with

a

relational

database

57

the

num_available

and

item_cost

fields

into

the

quantityAvailable

and

pricePerItem

host

variables.

This

is

shown

in

Figure

46.

Updating

the

database

Our

application

uses

the

SQL

UPDATE

statement

to

update

the

database

to

reflect

the

new

quantity

available

after

the

item

has

been

ordered.

Prior

to

performing

the

update,

the

application

first

makes

sure

that

there

are

enough

items

available

to

fill

the

order.

If

there

are,

the

application

calculates

the

number

that

will

be

available

after

the

order

has

been

fulfilled.

It

then

performs

the

actual

updating,

setting

the

number

of

items

available

to

the

new

value.

This

is

shown

in

Figure

47.

Error

handling

Our

application

must

also

have

a

mechanism

for

deciding

whether

embedded

SQL

statements

execute

correctly.

When

SQL

statements

are

issued

interactively,

the

interactive

system

generally

provides

an

indication

of

whether

the

statement

executed

successfully.

However,

such

a

method

does

not

work

from

within

a

program,

so

another

method

is

needed

for

embedded

SQL.

Embedded

SQL

provides

a

standard

mechanism

for

checking

the

success

of

SQL

statements,

and

many

RDBMS

products

provide

additional

mechanisms.

In

our

application,

we

use

the

standard

error–handling

mechanism,

the

SQL

communications

area.

The

SQL

communications

area

(SQLCA)

defines

the

sqlca

data

structure.

This

data

structure

has

fields

for

error,

warning,

and

status

information.

These

fields

are

updated

by

the

RDBMS

after

each

SQL

statement

is

executed.

An

application

can

then

check

these

fields

to

determine

whether

the

SQL

statement

was

successful.

The

sqlca

field

of

most

interest

to

us

in

our

application

is

the

sqlcode

field,

which

contains

the

return

code

of

the

most

recently

executed

SQL

statement.

The

sqlca

structure

is

included

in

a

program

by

using

an

embedded

SQL

include

statement.

After

each

SQL

call,

our

application

checks

the

sqlcode

field

to

determine

if

the

call

was

successful.

If

the

call

fails,

we

abort

the

transaction.

For

the

UPDATE

statement,

this

is

shown

in

Figure

48

on

page

59.

EXEC

SQL

SELECT

num_available,

item_cost

INTO

:quantityAvailable,

:pricePerItem

FROM

inventory

WHERE

stock_num

=

:stockNumber;

Figure

46.

Embedded

SQL

for

querying

the

database

if

(quantityAvailable

<

numOrdered)

abort("Insufficient

quantity.");

quantityAvailable

-=

numOrdered;

EXEC

SQL

UPDATE

inventory

SET

num_available

=

:quantityAvailable

WHERE

stock_num

=

:stockNumber;

Figure

47.

Embedded

SQL

for

updating

the

database

58

TXSeries™:

Writing

Encina

Applications

The

complete

PlaceOrder

function

The

complete

PlaceOrder

function

is

shown

in

Figure

49.

EXEC

SQL

INCLUDE

sqlca;

...

EXEC

SQL

UPDATE

inventory

SET

num_available

=

:quantityAvailable

WHERE

stock_num

=

:stockNumber;

if

(sqlca.sqlcode

!=

SQL_SUCCESS){

abort("Database

update

failed.");

}

Figure

48.

Error

handling

in

the

example

application

void

PlaceOrder

(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

*costPerItem);

{

EXEC

SQL

INCLUDE

sqlca;

EXEC

SQL

BEGIN

DECLARE

SECTION;

unsigned

long

stockNumber;

unsigned

long

pricePerItem;

unsigned

long

quantityAvailable;

EXEC

SQL

END

DECLARE

SECTION;

stockNumber

=

stockNum;

/*

Determine

the

number

in

stock

and

the

cost.

*/

EXEC

SQL

SELECT

num_available,

item_cost

INTO

:quantityAvailable,

:pricePerItem

FROM

inventory

WHERE

stock_num

=

:stockNumber;

if

(sqlca.sqlcode

!=

SQL_SUCCESS){

abort("Database

lookup

failed.");

}

*costPerItem

=

pricePerItem;

if

(quantityAvailable

<

numOrdered){

abort("Insufficient

stock.");

}

/*

*

Update

the

database.

This

update

will

be

*

backed

out

if

it

later

turns

out

we

do

not

*

have

sufficient

funds

in

the

billing

database.

*/

quantityAvailable

-=

numOrdered;

EXEC

SQL

UPDATE

inventory

SET

num_available

=

:quantityAvailable

WHERE

stock_num

=

:stockNumber;

if

(sqlca.sqlcode

!=

SQL_SUCCESS){

abort("Database

update

failed.");

}

}

Figure

49.

The

PlaceOrder

Function

Chapter

6.

Interacting

with

a

relational

database

59

Building

and

running

the

sample

application

Our

application

now

consists

of

one

new

source

file—PlaceOrder.precomp.

To

build

the

application,

we

must

first

run

the

precompiler

on

this

precompiler

file.

The

command

used

depends

upon

the

actual

RDBMS

that

is

used.

Consult

the

documentation

for

the

RDBMS

you

are

using

for

specific

information.

The

RDBMS

documentation

also

specifies

any

database

libraries

with

which

the

application

must

be

linked.

Before

the

application

is

run,

we

must

create

the

database

table

that

is

used

by

our

application.

The

SQL

command

shown

in

Figure

50

creates

the

necessary

table.

As

described

previously,

the

data

type

name

(number

in

the

example

shown)

varies

from

RDBMS

to

RDBMS.

The

application

may

also

need

to

include

an

RDBMS-specific

header

file.

Before

the

application

can

access

the

table,

we

must

insert

a

few

sample

entries

(rows)

into

the

table.

Figure

51

show

an

example

of

this.

The

values

are

inserted

into

the

fields

in

the

order

specified

when

the

table

is

created.

For

example,

the

first

insert

statement

creates

an

item

with

Stock

Number

1

and

specifies

that

there

are

100

of

these

available

at

a

cost

of

10

(dollars)

each.

create

table

inventory

(stock_num

number

not

null,

num_available

number

not

null,

item_cost

number

not

null)

Figure

50.

Creating

the

RDBMS

table

needed

for

the

sample

application

insert

into

inventory

values

(1,

100,

10)

insert

into

inventory

values

(2,

75,

5)

insert

into

inventory

values

(3,

200,

100)

Figure

51.

Inserting

sample

rows

into

the

inventory

table

60

TXSeries™:

Writing

Encina

Applications

Chapter

7.

Using

Encina

Peer-to-Peer

Communications

The

Encina

Peer-to-Peer

Communications

(PPC)

Services

enable

Encina

applications

to

interact

with

applications

running

in

Systems

Network

Architecture

(SNA)

networks,

typically

on

mainframes.

In

this

chapter,

we

expand

our

application

to

enable

it

to

communicate

with

a

mainframe

using

PPC

Services.

Overview

of

PPC

Many

Encina

applications

need

to

interact

with

applications

on

systems

such

as

mainframes

that

are

not

running

Encina.

Encina

Peer-to-Peer

Communications

(PPC)

Services

allow

Encina

applications

to

interact

with

applications

running

in

SNA

networks.

PPC

Services

consist

of

two

components:

the

PPC

Executive

and

the

PPC

gateway.

The

PPC

Executive

provides

the

application

interface

for

Encina

applications.

The

PPC

gateway

provides

the

bridge

between

an

Encina/DCE

system

and

an

SNA

network.

The

PPC

gateway

runs

on

a

machine

called

the

PPC

gateway

that

is

part

of

a

DCE

cell

and

an

SNA

network;

it

is

transparent

to

application

programs.

This

model

is

shown

in

Figure

52.

PPC

Executive

applications

are

fully

integrated

into

the

Encina/DCE

environment.

That

is,

while

using

Encina

and

DCE

to

communicate

with

applications

in

the

Encina/DCE

environment,

an

application

can

communicate

with

a

mainframe

usng

SNA.

PPC

uses

different

terminology

and

a

different

programming

interface

from

the

rest

of

Encina.

The

remainder

of

this

section

describes

SNA/PPC

terminology

and

the

PPC

programming

interface.

Figure

52.

PPC

communications

model

©

Copyright

IBM

Corp.

1999,

2004

61

Logical

units

and

transaction

programs

A

logical

unit

(LU)

is

an

abstract

representation

that

allows

an

application

program

to

access

an

SNA

network

to

communicate

with

another

end

user.

The

SNA

networking

specifications

define

a

number

of

types

of

LUs.

LUs

of

type

6.2

provide

peer-to-peer

communications

between

end

users;

the

SNA

protocol

for

peer-to-peer

communications

is

called

the

LU

6.2

protocol.

Multiple

application

programs

can

use

the

same

LU.

The

two-way

communication

between

two

application

programs

is

called

a

conversation.

The

two

applications

are

partners

in

the

conversation

and

exchange

information.

The

application

programs

are

also

referred

to

as

transaction

programs,

and

the

logical

name

that

an

application

uses

to

identify

peers

is

called

the

transaction

program

name

(TPN).

Generally,

the

term

TPN

refers

specifically

to

the

function

that

is

invoked

by

an

incoming

communication.

A

TPN

is

the

PPC

equivalent

of

a

function

in

an

exported

interface

under

DCE/Encina.

Thus,

a

PPC

application

can

contain

one

or

more

TPNs.

To

establish

a

conversation,

one

program

allocates

the

conversation;

that

is,

it

specifies

the

LU

and

TPN

with

which

it

wants

to

communicate.

The

program

that

allocates

the

conversation

is

called

the

allocator.

The

program

that

is

the

recipient

of

an

allocator’s

conversation

request

is

called

the

acceptor.

To

end

a

conversation,

one

peer

deallocates

the

conversation;

its

peer

receives

notification

of

the

deallocation.

Between

allocation

and

deallocation,

the

application

programs

can

exchange

data

and

do

work

on

each

other’s

behalf.

Figure

53

provides

an

example

of

a

typical

conversation.

To

allocate

a

conversation

to

a

peer,

a

program

requires

certain

initialization

information,

such

as

the

peer’s

TPN,

the

name

of

the

partner

LU,

and

so

forth.

This

information

is

called

side

information.

It

is

generally

supplied

and

maintained

by

the

system

administrator

in

a

side

information

file,

which

a

program

reads

before

allocating

a

conversation.

Peer-to-peer

communications

and

client/server

communications

The

peer-to-peer

communications

model

differs

from

the

client/server

model

used

by

the

rest

of

Encina.

In

the

Encina

client/server

model,

a

client

initiates

a

remote

procedure

call

(RPC)

to

a

server

and

waits

for

a

response.

The

server

receives

and

processes

the

RPC,

and

then

returns

to

the

client.

The

client

and

server

are

not

peers.

The

server

acts

only

on

RPCs

received

from

the

client.

A

single

path

of

execution

weaves

from

the

client,

through

the

server

function,

and

back

to

the

client.

Figure

53.

PPC

conversations

62

TXSeries™:

Writing

Encina

Applications

In

contrast,

in

the

peer-to-peer

model

of

LU

6.2,

an

application

allocates

a

conversation

to

another

application,

which

starts

processing

the

conversation

concurrently.

The

partners

establish

a

conversational

context,

sharing

control

of

the

conversation

and

exchanging

data.

The

partners

are

true

peers.

Either

side

can

send

or

receive

data,

ask

the

other

side

to

do

work,

and

so

forth.

There

is

still

an

originator

of

a

conversation,

akin

to

the

client

that

originates

an

RPC;

but

once

the

conversation

is

established,

there

is

no

distinction

between

the

roles

of

the

two

partners.

Synchronizationl

level

and

logical

units

of

work

Every

PPC

conversation

has

a

synchronization

level.

The

synchronization

level

(synclevel)

specifies

the

degree

to

which

the

conversation

is

transactional.

LU

6.2

supports

three

synchronization

levels.

The

highest

level,

synclevel

syncpoint

(SL2),

provides

transactional

conversations,

which

use

the

two-phase

commit

protocol.

Lower

synchronization

levels

provide

for

simple

confirmation

that

messages

have

been

received

(SL1)

or

for

no

confirmation

at

all

(SL0).

In

our

application,

we

will

use

synclevel

syncpoint

conversations.

The

PPC

term

for

a

transaction

is

logical

unit

of

work

(LUW).

Synclevel

syncpoint

conversations

work

on

behalf

of

an

LUW.

As

with

other

transactions,

LUWs

in

PPC

can

be

completed

by

being

committed

or

aborted.

To

commit

an

LUW,

either

peer

calls

for

a

syncpoint.

To

abort

an

LUW,

either

peer

can

backout

the

LUW.

An

application

starts

a

transaction

before

allocating

a

synclevel

syncpoint

conversation.

LUWs

are

then

chained:

when

one

is

committed

or

aborted,

another

starts

automatically.

The

conversation

is

thus

a

series

of

one

or

more

LUWs.

Programming

interfaces

PPC

applications

are

written

using

the

Common

Programming

Interface–Communications

(CPI-C),

as

specified

by

IBM

and

X/Open.

CPI-C

provides

a

programming

interface

for

PPC

communications.

The

CPI-C

interface

provides

a

number

of

services,

including

the

following:

v

Allocating,

accepting,

and

deallocating

conversations

v

Sending

and

receiving

data

v

Synchronizing

processing

between

programs

v

Notifying

peers

of

errors

The

IBM

Common

Programming

Interface–Resource

Recovery

(CPI-RR)

provides

functions

for

committing

and

aborting

transactions.

These

functions

are

also

supported

by

PPC

Services

and

can

be

used

by

applications

involved

in

synclevel

syncpoint

(SL2)

conversations.

(Our

application

does

not

use

the

CPI-RR

functions

but

instead

uses

Encina

for

starting

and

ending

transactions.)

Designing

the

PPC

application

When

designing

PPC

applications,

many

design

choices

are

often

made

based

on

an

existing

application.

For

example,

an

Encina

application

may

be

written

based

on

an

existing

mainframe

application

with

which

it

will

communicate.

Design

choices

such

as

which

peer

allocates

the

conversation

and

whether

the

conversation

consists

of

one

or

a

series

of

LUWs

are

based

on

what

the

existing

application

is

already

doing.

These

decisions,

in

turn,

necessitate

other

decisions,

such

as

what

interface

to

use;

for

example,

Tran-C

cannot

chain

transactions,

so

our

application

cannot

use

Tran-C

if

the

mainframe

application

expects

the

conversation

to

be

a

series

of

LUWs

and

not

a

single

LUW.

Chapter

7.

Using

Encina

Peer-to-Peer

Communications

63

In

other

cases,

design

is

dictated

by

the

overall

architecture

of

the

program.

For

our

application,

PPC

is

used

to

query

a

mainframe

database.

Thus,

our

application

allocates

the

conversation.

Figure

54

shows

the

overall

design

of

the

application;

the

shaded

areas

indicate

the

portion

that

uses

PPC,

which

we

will

write

in

this

chapter.

Because

our

application

is

accessing

and

modifying

permanent

data,

we

want

our

conversation

to

be

transactional;

in

the

language

of

PPC,

it

must

be

a

synclevel

syncpoint

(SL2)

conversation.

Furthermore,

in

our

design,

the

conversation

is

short-lived.

It

consists

of

a

single

LUW.

The

billing

server

allocates

a

conversation

to

the

mainframe,

requesting

an

account

balance.

The

mainframe

application

checks

its

account

database,

debits

the

account

if

sufficient

funds

exist,

and

returns

an

indication

of

success

or

failure

to

the

Encina

application.

The

billing

server

aborts

the

transaction

if

the

billing

operation

fails.

A

failure

in

the

underlying

PPC

mechanism

can

also

cause

the

transaction

to

be

aborted.

Because

PPC

sets

abort

reasons,

we

can

continue

to

display

abort

reasons

in

the

order

application

server

even

though

the

abort

reasons

are

not

set

by

the

application

itself.

Remember

that

our

PPC

application

is

a

Monitor

application

server,

which

we

referred

to

as

the

billing

server

in

previous

chapters.

The

one

function

exported

by

this

server,

BillForItem,

is

invoked

from

within

a

transaction

started

by

the

order

server.

The

order

server

initiates

commit

processing,

not

the

billing

server.

The

billing

server

needs

only

to

abort

in

the

case

of

error,

not

commit

in

the

case

of

success.

The

application

did

not

need

to

be

designed

this

way.

The

PPC

order

application

server

could

have

used

PPC

directly

without

an

intermediate

application

server.

We

used

the

intermediate

application

server

in

our

example

because

we

wanted

to

demonstrate

the

use

of

a

second

application

server,

not

because

we

were

required

to

do

so.

Also,

our

application

is

a

very

simple

PPC

application.

It

does

not

deal

with

the

special

conditions

necessary

when

LUWs

are

chained,

nor

does

it

have

to

handle

the

special

processing

necessary

when

the

mainframe

side

initiates

the

transaction.

We

could,

for

example,

have

used

long-lived

conversations,

saving

the

performance

cost

of

allocating

and

deallocating

a

conversation

for

each

order.

Figure

54.

PPC

portion

of

the

sample

application

64

TXSeries™:

Writing

Encina

Applications

Writing

the

PPC

application

In

this

section,

we

complete

our

billing

application

server,

which

uses

a

PPC

conversation

to

interact

with

a

billing

program

on

a

mainframe.

Our

application

must

perform

the

following

four

steps:

1.

Initialize

PPC

2.

Allocate

a

conversation

3.

Exchange

data

4.

Deallocate

the

conversation

We

write

a

separate

function

to

perform

each

of

these

steps.

The

initialization

function,

InitializePpc,

is

called

as

part

of

server

initialization

because

we

want

to

initialize

only

once,

not

at

each

RPC

(see

Figure

55).

The

other

three

functions

are

called

by

the

BillForItem

function,

the

remote

procedure

exported

by

our

billing

server.

Figure

56

shows

the

BillForItem

function.

Note

that

the

convesationId

variable

that

is

passed

to

the

latter

three

functions

is

a

pointer.

It

is

returned

by

the

AllocateConversation

function

and

passed

to

the

DebitCustomerAccount

and

DeallocateConversation

functions.

Each

function

returns

a

status

code.

In

the

case

of

the

InitializePpc

function,

if

the

function

fails,

we

terminate

the

server.

If

any

of

the

other

three

functions

fail,

we

abort

the

transaction

using

the

Tran-C

abort

function.

The

transaction

can

also

be

aborted

by

the

remote

peer

if

it

detects

an

error

(for

example,

if

the

account

does

not

contain

sufficient

funds).

int

main()

{

...

status

=

mon_InitServer();

status

=

InitializePpc();

if

(status

!=

SUCCESS){

fprintf(stderr,

"Unable

to

initialize

PPC.\n");

exit(1);

}

status

=

mon_BeginService();

}

Figure

55.

PPC

initialization

void

BillForItem(idl_ulong_int

customerId,

idl_ulong_int

amount)

{

unsigned

long

status;

CONVERSATION_ID

conversationId;

status

=

AllocateConversation(conversationId);

if

(status

!=

SUCCESS)

abort("Conversation

Allocation

Failed.");

status

=

DebitCustomerAccount(conversationId,

customerId,

amount);

if

(status

!=

SUCCESS)

abort("Data

Exchange

Failed.");

status

=

DeallocateConversation(conversationId);

if

(status

!=

SUCCESS)

abort("Conversation

Deallocation

Failed.”);

}

Figure

56.

Billing

for

the

item

Chapter

7.

Using

Encina

Peer-to-Peer

Communications

65

Initializing

PPC

Before

an

application

can

allocate

or

accept

conversations,

it

must

initialize

PPC

Services.

If

the

application

is

using

synclevel

syncpoint

(SL2)

conversations,

it

must

also

initialize

Encina.

Because

our

application

is

a

Monitor

application

server,

Encina

initialization

is

performed

by

the

Monitor,

so

we

have

to

initialize

only

the

PPC

Services.

The

cpic_Init

function

initializes

PPC

Services.

This

function

takes

one

argument,

the

application’s

complete

LU

name.

This

complete

LU

name

(for

example,

MAINFRAM.REMOTLU1)

is

furnished

by

the

system

administrator

and

must

match

the

one

used

when

PPC

was

configured.

To

simplify

our

application,

the

application

header

file

uses

the

LU_NAME

constant

to

define

the

LU

name.

A

PPC

Executive

application

that

is

going

to

allocate

a

conversation

must

first

determine

the

identity

of

its

conversation

partner.

The

partner’s

identity

is

stored

in

a

side

information

file;

this

information

is

read

into

the

program

using

the

cpic_ReadSideInfo

function.

Again,

to

simplify

our

application,

the

application

header

file

uses

the

SIDE_INFO_FILE_NAME

constant

to

define

the

name

of

the

side

information

file.

Figure

57

shows

a

sample

entry

in

a

side

information

file.

When

our

application

initializes

a

conversation,

it

specifies

the

symbolic

destination

name.

This

provides

a

key

into

the

side

information

file,

which

in

turn

provides

more

information

about

the

conversation.

For

example,

it

specifies

that

the

partner

name

is

BillingApp

(which

in

turn

keys

into

the

partner

section

of

the

table,

which

provides

the

LU

to

use—in

this

case

REMOTLU1),

that

the

conversation

connects

to

the

QUERY

TPN,

and

so

forth.

(For

more

information

on

all

the

entries

in

the

side

information

file,

see

the

Encina

Administration

Guide

Volume

2:

Server

Administration.)

Figure

58

on

page

67

shows

the

InitializePpc

function.

sideInfo

{

"CHCKACCT",

/*

Symbolic

Destination

Name

*/

"",

/*

Use

default

mode

*/

"BillingApp",

/*

Partner

name

(see

below)

*/

"QUERY",

/*

TPN

*/

ENCRYPT_NONE,

/*

No

encryption

*/

SECURITY_NONE,

/*

No

login

security

*/

"",

""

/*

User

ID

and

password

*/

}

partner

{

"BillingApp",

/*

Partner

name

*/

CONNECTION_GWY_TCP,

/*

Use

PPC

Gateway

*/

"REMOTLU1"

/*

LU

*/

}

Figure

57.

Sample

side

information

file

entry

66

TXSeries™:

Writing

Encina

Applications

Allocating

conversations

Allocating

a

conversation

includes

the

following

steps:

1.

Initializing

the

conversation

2.

Setting

the

synclevel

3.

Actually

allocating

the

conversation

To

initialize

a

conversation,

our

application

calls

the

CPI-C

Intitialize_Conversation

function.

This

function

takes

one

input

argument,

the

symbolic

destination

name

of

the

program

to

which

the

conversation

is

to

be

allocated.

This

name

provides

a

key

into

the

side

information

file

read

in

as

part

of

PPC

initialization,

which

provides

other

information

about

the

conversation,

such

as

the

partner

name

and

the

TPN.

In

our

program,

we

use

the

symbolic

destination

name

CHCKACCT.

After

initializing

the

conversation

but

before

actually

allocating

it,

our

application

must

specify

that

we

are

using

a

transactional

(synclevel

syncpoint)

conversation.

To

do

so,

the

application

calls

the

CPI-C

Set_Sync_Level

function.

For

a

synclevel

syncpoint

conversation,

a

transaction

must

be

started

before

allocating

the

conversation.

In

our

application,

the

transaction

is

started

by

the

order

server

before

it

invokes

the

BillForItem

remote

procedure

that

is

implemented

by

the

billing

server.

The

conversation

is

allocated

using

the

CPI-C

Allocate

function.

A

return

status

code

of

CM_OK

indicates

that

the

conversation

has

been

successfully

allocated.

The

application

is

in

send

state

and

can

begin

sending

data.

The

AllocateConversation

function

is

shown

in

Figure

59

on

page

68.

error_status_t

InitializePpc(void)

{

char

*luName

=

LU_NAME;

char

*sideInfoFile

=

SIDE_INFO_FILE_NAME;

CM_RETCODE

returnCode;

returnCode

=

cpic_Init(luName);

if

(returnCode)

return

INIT_FAILED;

returnCode

=

cpic_ReadSideInfo(sideInfoFile);

if

(returnCode)

return

INIT_FAILED;

return

SUCCESS;

}

Figure

58.

PPC

initialization

Chapter

7.

Using

Encina

Peer-to-Peer

Communications

67

Exchanging

data

Applications

exchange

data

by

using

the

CPI-C

functions

that

send

and

receive

data.

Our

application

only

needs

to

send

data.

In

particular,

it

must

send

the

customer

ID

and

the

amount

of

the

purchase

to

the

mainframe

application.

The

mainframe

application

uses

this

information

to

query

a

database

and

aborts

the

transaction

if

it

encounters

a

failure

(for

example,

if

there

is

not

enough

money

in

the

account

to

cover

the

amount

of

the

purchase).

To

send

data,

our

application

uses

the

CPI-C

Send_Data

function.

Note

that

we

need

to

specify

whether

the

data

is

buffered

or

sent

immediately.

Our

application

uses

the

Set_Send_Type

function

to

specify

that

data

is

sent

immediately.

Because

the

data

supplied

to

the

Send_Data

function

must

be

a

single

buffer,

our

application

must

first

pack

the

two

fields

that

it

sends

into

one

buffer.

To

do

this,

it

uses

the

standard

C

sprintf

function.

We

could

also

have

used

the

C

memcpy

function,

as

we

did

in

the

RQS

portion

of

the

application

in

Chapter

5,

“Using

RQS,”

on

page

43.

Note

that

we

have

chosen

a

very

simple

data

format

for

our

example.

Actual

mainframe

applications

typically

follow

more

formal

rules

and

use

more

complex

formats.

If

the

Send_Data

function

returns

the

status

code

CM_OK,

the

data

was

successfully

sent

to

the

mainframe.

However,

this

does

not

mean

that

the

mainframe

successfully

debited

the

customer

account;

our

application

is

only

assured

of

this

when

the

transaction

commits.

If

the

mainframe

application

cannot

debit

the

account,

due

to

insufficient

funds

or

to

some

other

problem,

it

aborts

the

transaction.

Our

application

is

then

notified

of

this

in

the

onAbort

clause

in

the

order

server

(where

the

transaction

was

started),

not

via

a

status

code

in

the

billing

server.

The

DebitCustomerAccount

function

is

shown

in

Figure

60

on

page

69.

error_status_t

AllocateConversation(CONVERSATION_ID

conversationId)

{

CM_RETCODE

returnCode;

char

*symDestName

=

"CHCKACCT";

char

*syncLevel

=

CM_SYNC_POINT;

/*

Initialize

the

conversation

and

set

the

synclevel

*/

Initialize_Conversation(conversationId,

symDestName,

&returnCode);

if

(returnCode

!=

CM_OK)

return

ALLOCATE_FAILED;

Set_Sync_Level(conversationId,

syncLevel,

&returnCode);

if

(returnCode

!=

CM_OK)

return

ALLOCATE_FAILED;

Allocate(conversationId,

&returnCode);

if

(returnCode

!=

CM_OK)

return

ALLOCATE_FAILED;

return

SUCCESS;

}

Figure

59.

Allocating

a

conversation

68

TXSeries™:

Writing

Encina

Applications

Deallocating

conversations

To

deallocate

a

conversation,

one

peer

initiates

deallocation.

The

other

peer

receives

notification

of

the

deallocation

when

it

calls

the

Receive

function.

To

deallocate

a

conversation,

an

application

performs

the

following

steps:

1.

Sets

how

it

wants

to

deallocate

the

conversation

(for

example,

normally

or

abnormally)

using

the

Set_Deallocate_Type

function

or

using

the

default

deallocation

type

of

CM_DEALLOCATE_SYNC_LEVEL.

2.

Deallocates

the

conversation

using

the

Deallocate

function.

3.

For

synclevel

syncpoint

conversations,

completes

the

transaction.

For

our

application,

the

billing

server

initiates

deallocation.

It

performs

the

first

two

steps.

The

final

step—completing

the

transaction—is

performed

by

the

order

server

after

the

RPC

to

the

billing

server

returns.

If

the

conversation

is

a

synclevel

syncpoint

conversation,

the

application

must

first

deallocate

the

synclevel

conversation

and

then

commit

the

transaction.

These

steps

may

appear

to

be

in

the

wrong

order.

However,

for

synclevel

syncpoint

conversations,

the

Deallocate

function

does

not

actually

deallocate

the

conversation.

It

simply

marks

the

conversation

to

be

deallocated

when

the

transaction

is

complete.

In

our

case,

the

transaction

is

not

committed

by

the

billing

server

but

by

the

order

server

after

the

RPC

to

the

billing

server

returns.

The

conversation

is

deallocated

at

that

point.

Figure

61

on

page

70

shows

the

DeallocateConversation

function.

Note

that

the

application

calls

the

Set_Deallocate_Type

function

to

set

the

deallocation

type

to

error_status_t

DebitCustomerAccount(CONVERSATION_ID

convId,

idl_ulong_int

customerId,

idl_ulong_int

amount)

{

char

debitInfo[MAX_SEND_LENGTH];

int

debitInfoLen

=

0;

REQUEST_TO_SEND_RECEIVED

requestToSendReceived;

CM_RETCODE

status;

/*

The

data

is

sent

immediately

rather

than

buffered

*/

SEND_TYPE

sendType

=

CM_SEND_AND_FLUSH;

/*

Pack

the

buffer

to

send

to

the

peer

*/

sprintf(debitInfo,

"%lu

%lu",

customerId,

amount);

debitInfoLen

=

strlen(debitInfo);

Set_Send_Type(convId,

&sendType,

&status);

if

(returnCode

!=

CM_OK)

return

CPIC_ERROR;

Send_Data(convId,

debitInfo,

&debitInfoLen,

&requestToSendReceived,

&status);

if

(returnCode

!=

CM_OK)

return

SEND_ERROR;

return

SUCCESS;

}

Figure

60.

Sending

and

receiving

data

Chapter

7.

Using

Encina

Peer-to-Peer

Communications

69

CM_DEALLOCATE_SYNC_LEVEL.

We

could

have

eliminated

this

call

in

our

application

because

CM_DEALLOCATE_SYNC_LEVEL

is

the

default.

If

an

abort

occurs,

Encina

deallocates

the

conversation

abnormally.

This

is

the

method

used

by

our

example

application.

However,

in

general,

either

peer

in

a

conversation

can

deallocate

abnormally

by

setting

the

deallocation

type

to

CM_DEALLOCATE_ABEND,

then

calling

the

Deallocate

function;

this

method

unconditionally

deallocates

the

conversation,

regardless

of

synchronization

level

or

conversation

state.

The

PPC

application:

the

mainframe

side

Developing

the

mainframe

side

of

the

PPC

application

is

beyond

the

scope

of

this

document.

The

mainframe

application

can

be

written

a

number

of

ways,

using

various

languages

or

packages

(such

as

CICS).

Figure

62

on

page

71

shows

the

basic

outline

of

the

mainframe

application.

Note

that

the

mainframe

application

initiates

commit

processing

by

calling

the

Commit

function.

The

transaction

is

not

committed,

however,

until

the

Encina

PPC

application

also

completes

the

transaction,

which

occurs

when

the

RPC

to

the

billing

server

returns

to

the

order

server

and

the

Tran-C

transaction

block

is

completed.

Also

note

that

because

PPC

automatically

chains

transaction,

the

mainframe

has

a

local

transaction

of

its

own

to

end

after

the

conversation

has

been

deallocated.

We

did

not

need

to

perform

this

step

on

the

Encina

side

because

Tran-C

automatically

handles

this

for

us.

For

more

information,

see

the

Encina

PPC

Services

Programming

Guide.

error_status_t

DeallocateConversation(CONVERSATION_ID

conversationId)

{

CM_RETCODE

returnCode;

Set_Deallocate_Type(conversationId,

CM_DEALLOCATE_SYNC_LEVEL

&returnCode);

if

(returnCode

!=

CM_OK)

return

DEALLOCATION_FAILURE;

Deallocate(conversationId,

&returnCode);

if

(returnCode

!=

CM_OK)

return

DEALLOCATION_FAILURE;

return

SUCCESS;

}

Figure

61.

Deallocating

a

conversation

70

TXSeries™:

Writing

Encina

Applications

Notes

on

building

and

running

the

application

Our

application

now

consists

of

one

additional

source

file—ppcConstants.h.

This

header

file

contains

PPC

constants

such

as

the

name

of

the

side

information

file.

It

is

included

by

the

Billing

Server.

In

addition

to

the

include

files

listed

in

the

previous

chapters,

the

billing

application

server

must

now

include

the

ppc/cpic.h

file.

The

billing

application

server

must

link

to

the

EncPpcExec

library

in

addition

to

the

libraries

listed

in

the

previous

chapters.

The

billing

server

is

started

like

any

other

Monitor

application

server

(see

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23).

For

further

details

on

administering

and

running

PPC

applications,

see

the

Encina

Administration

Guide

Volume

2:

Server

Administration.

HandleCustomerDebit(tpn,

...)

{

...

/*

Accept

the

conversation.

*/

ACCEPT_CONVERSATION(tpn,

convId,

&status);

CheckSuccess(status);

/*

Receive

data

from

allocator

*/

Receive(convId,

receiveBuffer,

...);

if

(

...)

{

/*

If

successful,

actually

debit

the

account.

*/

DEBIT_CUSTOMER_ACCOUNT(customerId,

amount);

}

/*

If

not

successful,

set

the

deallocate

type

to

abend

(abnormal

deallocation),

deallocate,

then

call

Backout.

Otherwise,

deallocate,

then

Commit.

*/

if

(debitStatus

!=

SUCCESS)

{

deallocType

=

CM_DEALLOCATE_ABEND;

Set_Deallocate_Type(convId,

&deallocType,

&status);

}

Deallocate(convId,

&status);

/*

Conversation

now

marked

for

deallocation

after

*

commit

or

backout.

At

this

point,

commit

or

back

out,

*

based

on

success

of

debit

operation.

*/

if

(debitStatus

==

SUCCESS)

Commit(&status);

else

Backout(&status);

/*

End

any

local

(non-distributed)

transaction

*/

...

}

Figure

62.

Outline

of

the

mainframe

side

of

the

PPC

application

Chapter

7.

Using

Encina

Peer-to-Peer

Communications

71

72

TXSeries™:

Writing

Encina

Applications

Chapter

8.

Using

TX

In

previous

chapters,

we

used

Tran-C

to

start

and

end

transactions.

In

this

chapter,

we

discuss

some

of

the

situations

in

which

you

may

want

to

use

TX

instead

of

Tran-C.

In

this

chapter,

we

also

describe

how

to

use

TX

with

our

example

application.

Introduction

to

X/Open

TX

X/Open

defines

an

application

program

interface

for

starting

and

ending

transactions,

directing

the

completion

of

transactions,

and

obtaining

status

information

about

transactions.

This

interface

is

called

the

TX

interface.

Encina

supports

the

TX

interface

and

provides

several

extensions

to

it.

TX

can

be

used

to

manage

transactions

in

clients

and

servers.

In

this

chapter,

we

use

it

in

a

Monitor

application

server.

TX

transactions

Unlike

Tran-C,

TX

uses

explicit

functions

to

begin

and

end

transactions.

v

The

tx_begin

function

starts

a

transaction.

v

The

tx_commit

function

tries

to

commit

a

transaction.

v

The

tx_rollback

function

aborts

a

transaction.

The

initiator

of

a

transaction

is

the

only

process

that

can

initiate

commit

processing;

no

other

process

can

call

the

tx_commit

function.

Another

process

can

indicate

that

it

would

like

to

abort

the

transaction

(for

example,

by

calling

the

tx_rollback

function

or

the

Tran-C

abort

function).

However,

this

only

marks

the

transaction

for

subsequent

abort.

The

transaction

is

not

actually

resolved

until

the

initiator

calls

either

the

tx_commit

function

or

the

tx_rollback

function.

Remember

that,

under

the

rules

for

the

two-phase

commit

process,

all

processes

must

agree

to

commit

a

transaction;

if

any

process

in

the

distributed

transaction

wants

to

abort

the

transaction,

it

is

aborted.

Thus,

if

another

process

has

marked

the

transaction

to

be

aborted

and

the

initiator

calls

the

tx_commit

function,

the

transaction

is

aborted;

the

tx_commit

function

returns

a

status

code

informing

the

initiator

that

the

transaction

aborted.

In

TX,

the

initiator

of

the

transaction

is

not

informed

immediately

if

another

process

requests

that

the

transaction

be

aborted.

There

is

no

TX

equivalent

of

the

Tran-C

onAbort

clause;

that

is,

there

is

no

automatic

transfer

of

control

when

another

process

initiates

an

abort.

The

initiator

finds

out

about

the

requested

abort

when

it

tries

to

commit

the

transaction.

However,

in

some

cases,

this

can

mean

that

the

process

first

does

a

great

deal

of

work

that

the

transaction

manager

then

has

to

undo.

To

avoid

this,

the

initiator

can

call

the

tx_info

function,

which

returns

information

about

a

transaction.

If

this

function

indicates

that

an

abort

has

been

requested,

the

process

can

call

the

tx_rollback

function

immediately.

TX

and

Tran-C

A

single

process

must

use

either

Tran-C

or

TX.

A

transaction

begun

with

a

TX

function

must

end

with

a

TX

function

and

must

not

contain

any

Tran-C

constructs

(such

as

transaction

or

abort).

Likewise,

a

process

using

Tran-C

must

not

call

any

TX

functions.

Tran-C

and

TX

can,

however,

be

used

in

a

single

transaction

when

©

Copyright

IBM

Corp.

1999,

2004

73

more

than

one

process

is

involved.

That

is,

a

Tran-C

client

can

make

a

TRPC

to

a

TX

server,

or

a

TX

client

can

make

a

TRPC

to

a

Tran-C

server.

Encina

extensions

to

TX

enable

an

application

to

use

either

of

the

abort

mechanisms

described

in

Chapter

4,

“Making

the

sample

application

transactional,”

on

page

37.

Prior

to

calling

the

tx_rollback

function,

the

application

can

set

an

abort

string

by

calling

the

tx_set_rollback_string

function

or

set

an

abort

code

by

calling

the

tx_set_rollback_code

function.

It

can

retrieve

abort

strings,

including

strings

passed

to

the

Tran-C

abort

function,

by

using

the

tx_get_rollback_string

function.

Similarly,

it

can

retrieve

abort

codes,

including

those

passed

to

the

Tran-C

abortWithCode

function,

by

using

the

tx_get_rollback_code

function.

Unlike

Tran-C

transactions,

TX

transactions

can

be

chained.

When

transactions

are

chained,

a

new

transaction

is

automatically

started

when

a

transaction

commits

or

aborts.

This

may

be

necessary,

for

example,

if

the

process

is

using

PPC

to

communicate

with

a

mainframe

application

that

is

expecting

chained

transactions.

Tran-C

also

provides

some

advanced

features

not

provided

by

TX.

For

example,

Tran-C

provides

simplified

threading

capabilities

(see

the

Encina

Transactional

Programming

Guide).

When

to

use

TX

As

noted

earlier,

TX

is

an

alternative

to

Tran-C.

The

following

cases

can

dictate

the

use

of

TX:

v

The

application

is

being

ported

from

another

system

and

already

uses

TX.

In

this

case,

it

may

be

simpler

to

continue

to

use

TX

under

Encina

than

to

modify

the

application

to

use

Tran-C.

v

The

application

is

using

C++

rather

than

C.

Conflicts

between

the

C++

exception

mechanism

and

the

Tran-C

exception

mechanism

can

make

it

difficult

to

use

Tran-C

constructs

in

C++

applications.

v

The

transaction

must

span

a

lexical

scope.

For

example,

the

transaction

may

have

to

be

started

in

one

function

and

committed

in

another.

This

can

happen

in

event-driven

programming.

v

The

application

is

written

in

some

high-level

language

other

than

C

(such

as

COBOL).

v

The

application

is

written

using

a

tool

that

automatically

uses

TX.

This

is

true

of

some

PC-based

tools.

v

The

application

is

using

PPC

and

must

chain

transactions

to

communicate

properly

with

the

mainframe

application.

This

is

described

briefly

in

Chapter

7,

“Using

Encina

Peer-to-Peer

Communications,”

on

page

61.

Using

TX

in

the

order

application

server

In

this

section,

we

modify

one

of

our

application

servers

(the

order

server)

to

use

TX

instead

of

Tran-C

to

manage

transactions.

To

use

TX,

we

must

do

the

following

three

things

in

the

order

server:

v

Modify

the

application

to

initialize

the

TX

interface.

v

Remove

the

Tran-C

constructs

and

instead

use

TX

to

delimit

the

transaction.

v

Modify

the

termination

steps

to

close

the

TX

interface

as

part

of

application

shutdown.

74

TXSeries™:

Writing

Encina

Applications

We

do

not

need

to

change

the

client

or

the

billing

server.

Moreover,

the

billing

server

continues

to

use

Tran-C

and,

in

particular,

still

calls

the

Tran-C

abort

function

if

an

error

occurs.

Initializing

the

TX

interface

Normally,

the

TX

interface

is

initialized

simply

by

calling

the

tx_open

function,

which

also

opens

communications

with

RDBMSs

that

the

application

is

using.

However,

in

our

case,

we

are

using

TX

in

a

Monitor

application

server.

By

default,

the

Monitor

automatically

initializes

Tran-C.

We

must

direct

the

Monitor

not

to

initialize

Tran-C.

To

do

so,

as

part

of

initialization,

our

application

calls

the

mon_ServerUsesTx

function

before

calling

the

mon_InitServer

function.

The

Monitor

then

calls

the

tx_open

function

to

complete

initialization;

our

server

does

not

need

to

explicitly

call

the

tx_open

function.

If

we

were

starting

transactions

in

the

client,

we

would

have

had

to

call

the

tx_open

function.

The

new

initialization

steps

are

shown

in

Figure

63.

Starting

and

ending

a

transaction

using

TX

Using

TX,

transactions

are

started

by

calling

the

tx_begin

function

and

ended

by

calling

either

the

tx_commit

function

or

the

tx_rollback

function.

Between

these

statements,

the

application

does

the

work

associated

with

the

transaction,

which

for

our

application

is

the

same

work

it

performed

in

previous

chapters.

All

TX

functions

return

a

status

code,

which

we

must

check.

This

is

especially

important

in

the

case

of

the

tx_commit

function.

As

noted

earlier,

TX

does

not

have

the

equivalent

of

the

Tran-C

onAbort

clause.

Instead,

our

application

is

notified

that

another

process

wants

to

abort

the

transaction

by

a

return

code

from

a

TX

function.

For

example,

if

the

billing

server

aborts

the

transaction,

our

server

is

notified

of

the

abort

by

a

non-zero

return

code

from

the

tx_commit

function.

(If

the

function

is

successful,

it

returns

a

status

code

of

zero.)

The

code

is

shown

in

Figure

64

on

page

76.

mon_ServerUsesTx();

status

=

mon_InitServer();

Figure

63.

TX

initialization

in

a

Monitor

application

server

Chapter

8.

Using

TX

75

Note

in

the

example

code

that

if

the

transaction

aborts,

our

application

is

notified

only

when

it

calls

the

tx_commit

function.

At

this

point,

all

the

work

done

as

part

of

the

transaction

is

rolled

back.

This

is

not

a

problem

in

our

application

because

the

transaction

is

short

and

not

much

work

is

done

during

any

of

the

steps.

However,

in

applications

that

do

more

work

(and

thus

would

have

much

more

work

to

roll

back),

waiting

until

the

end

of

the

transaction

to

roll

back

the

work

can

be

a

problem.

We

can

solve

this

problem

by

either

of

the

following

methods:

v

Modifying

the

three

functions

that

are

part

of

the

transaction

to

return

status

codes,

rather

than

abort

the

transaction

themselves,

when

they

encounter

an

error.

The

server

can

then

check

these

status

codes

and

call

the

tx_rollback

function

to

abort

the

transaction

if

necessary.

v

Calling

the

tx_info

function

after

each

function

call.

The

tx_info

function

returns

information

about

the

current

transaction.

If

another

process

has

marked

the

transaction

to

be

aborted,

the

tx_info

function

returns

this

information.

The

server

can

then

immediately

call

the

tx_rollback

function

to

abort

the

transaction

if

necessary.

An

example

of

the

second

approach

is

shown

in

Figure

65

on

page

77.

We

pass

a

structure

of

type

TXINFO

to

the

tx_info

function.

The

transaction_state

field

of

this

structure

contains

the

state

of

the

transaction.

If

the

transaction

is

still

active

(and

thus

has

not

been

marked

for

abort),

the

value

of

this

field

is

TX_ACTIVE.

int

txRetCode;

...

txRetCode

=

tx_begin();

if

(txRetCode)

{

/*

Print

error

message

and

return.

*/

fprintf

(stderr,"Transaction

failed.\n");

}

PlaceOrder(stockNum,

numOrdered,

&costPerItem);

totalCost

=

numOrdered

*

costPerItem;

PlaceItemOnQueue(stockNum,

numOrdered,

customerId);

BillForItem(customerId,

totalCost);

txRetCode

=

tx_commit();

if

(txRetCode)

{

/*

Commit

failed.*/

fprintf

(stderr,"Transaction

failed:

%s\n",

tx_get_rollback_string();

return

ORDER_FAILED;

}

else

return

SUCCESS;

Figure

64.

Using

TX

to

start

and

end

a

transaction

76

TXSeries™:

Writing

Encina

Applications

Closing

the

TX

interface

To

close

the

TX

interface,

our

server

calls

the

tx_close

function.

The

server

calls

this

function

as

part

of

server

termination,

after

the

mon_BeginService

function

returns.

This

is

shown

in

Figure

66.

Notes

on

building

the

application

To

use

TX,

the

application

must

include

the

tx/tx.h

header

file.

No

additional

libraries

are

needed:

TX

functions

are

included

in

the

Encina

Toolkit

libraries

that

we

have

been

linking

with

since

Chapter

3,

“Writing

a

Monitor

client/server

application,”

on

page

23.

int

txRetCode;

TXINFO

txInfo;

txRetCode

=

tx_begin();

if

(txRetCode)

{

/*

Print

error

message

and

return

*/

fprintf

(stderr,"Transaction

failed.\n");

}

PlaceOrder(stockNum,

numOrdered,

&costPerItem);

txRetCode

=

tx_info(&txInfo);

if

(txInfo.transaction_state

!=

TX_ACTIVE)

{

tx_rollback();

fprintf

(stderr,"Transaction

failed:

%s\n",

tx_get_rollback_string());

return

ORDER_FAILED;

}

/*

Place

similar

calls

to

tx_info

after

other

functions

*/

...

txRetCode

=

tx_commit();

if

(txRetCode)

{

fprintf

(stderr,"Transaction

failed:

%s\n",

tx_get_rollback_string());

return

ORDER_FAILED

}

Figure

65.

An

alternate

method

of

detecting

aborts

using

TX

mon_BeginService();

tx_close();

Figure

66.

Closing

the

TX

interface

Chapter

8.

Using

TX

77

78

TXSeries™:

Writing

Encina

Applications

Chapter

9.

Using

nested

transactions

In

this

chapter,

we

introduce

the

concept

of

nested

transactions

as

a

way

to

achieve

error

isolation.

After

introducing

the

concepts,

we

add

a

nested

transaction

to

our

example.

Introduction

to

nested

transactions

Using

transactions

as

we

have

to

this

point

does

not

always

allow

applications

the

granularity

of

error

isolation

that

may

be

desired.

If

the

transaction

aborts,

all

changes

are

rolled

back.

As

our

example

application

is

now

written,

this

is

the

desired

behavior.

However,

for

more

complicated

transactions,

we

may

want

a

finer

granularity

in

error

isolation.

For

example,

we

may

not

want

to

undo

all

parts

of

a

transaction

due

to

an

error

in

one

operation.

As

an

example,

consider

the

billing

part

of

our

application.

Currently,

the

billing

algorithm

is

the

following:

1.

The

order

server

makes

an

RPC

to

the

billing

server.

2.

The

billing

server,

using

PPC,

queries

the

billing

database

on

the

mainframe

and

decrements

the

account

balance.

3.

If

the

customer

has

insufficient

funds

in

the

billing

database,

the

transaction

is

aborted.

Any

other

PPC

failures

also

result

in

the

transaction

being

aborted.

The

abort

in

Step

3

results

in

all

parts

of

the

transaction

being

aborted.

Not

only

is

the

change

to

the

billing

database

backed

out;

changes

to

the

inventory

database

are

backed

out,

and

the

shipping

request

is

dequeued.

This

algorithm

is

used

for

orders

from

all

customers.

However,

suppose

we

want

to

extend

credit

to

preferred

customers.

These

customers

are

listed

in

preferred

customer

database,

which

also

records

the

current

credit

and

maximum

credit

for

preferred

customers.

The

preferred

customer

database

is

local;

thus

our

application

does

not

have

to

access

the

mainframe

for

preferred

customers.

To

use

this

database,

we

change

the

billing

algorithm

as

follows:

1.

The

order

server

first

checks

the

preferred

customer

database

(which

could

be

another

RDBMS

or

an

SFS

file).

2.

If

the

customer

has

an

entry

in

that

database,

we

increment

the

“current

credit”

amount

by

the

amount

of

the

order.

3.

If

the

current

order

places

that

customer

over

the

credit

limit,

we

abort

the

transaction

to

back

out

any

changes

we

made

to

the

database.

4.

Only

if

the

customer

is

not

a

preferred

customer

or

does

not

have

sufficient

credit

do

we

make

an

RPC

to

the

billing

server.

In

our

current

transactional

model,

the

abort

in

Step

3

in

the

new

billing

algorithm

backs

out

not

only

any

changes

to

the

preferred

customer

database

but

all

work

done

by

the

transaction.

We

can

of

course

change

the

algorithm

so

that

the

application

does

not

abort

in

the

case

of

insufficient

funds

but

instead

queries

the

database

and

then

decrements

it

only

if

sufficient

funds

exist.

However,

as

we

will

discuss

in

“Changing

the

design

of

the

application

server”

on

page

81,

there

are

reasons

for

not

doing

so.

©

Copyright

IBM

Corp.

1999,

2004

79

We

need

a

way

to

isolate

any

errors

that

occur

in

the

interaction

with

the

local

database,

preventing

such

errors

from

aborting

the

entire

transaction.

The

solution

is

to

check

and

decrement

the

local

database

from

within

a

nested

transaction.

A

nested

transaction

is

a

new

transaction

begun

from

within

the

scope

of

another

transaction.

Nested

transactions

offer

several

features,

including:

v

Nested

transactions

enable

an

application

to

isolate

errors

in

certain

operations.

v

Nested

transactions

allow

an

application

to

treat

several

related

operations

as

a

single

atomic

operation.

v

Nested

transactions

can

operate

concurrently.

Nested

transactions,

like

any

other

transactions,

do

incur

a

performance

cost.

Therefore,

they

should

be

used

only

when

necessary.

Nested

and

top-level

transactions

As

described

in

the

previous

section,

a

nested

transaction

is

begun

within

the

scope

of

another

transaction.

The

transaction

that

starts

the

nested

transaction

is

called

the

parent

of

the

nested

transaction.

There

are

two

types

of

nested

transactions:

v

A

nested

top-level

transaction

commits

or

aborts

independently

of

the

enclosing

transaction.

That

is,

after

it

is

created,

it

is

completely

independent

of

the

transaction

that

created

it.

The

Tran-C

topLevel

construct

for

creating

nested

top-level

transactions.

The

syntax

of

this

construct

is

identical

to

that

of

the

transaction

construct,

but

the

topLevel

keyword

is

used

instead

of

the

transaction

keyword.

v

A

nested

subtransaction

commits

with

respect

to

the

parent

transaction.

That

is,

even

though

the

subtransaction

commits,

the

permanence

of

its

effects

depends

on

the

parent

transaction

committing.

If

the

parent

transaction

aborts,

the

results

of

the

nested

transaction

are

backed

out.

However,

if

the

nested

transaction

aborts,

the

parent

transaction

is

not

aborted.

The

easiest

way

to

create

a

nested

subtransaction

transaction

in

Tran-C

is

to

simply

use

a

transaction

block

within

the

scope

of

an

existing

transaction.

Tran-C

automatically

makes

the

new

transaction

a

subtransaction

of

the

existing

transaction.

In

this

chapter,

when

we

discuss

nested

transactions,

we

are

generally

referring

to

nested

subtransactions

unless

we

specify

otherwise.

A

series

of

nested

subtransactions

is

viewed

as

a

hierarchy

of

transactions.

When

transactions

are

nested

to

an

arbitrary

depth,

the

transaction

that

is

the

parent

of

the

entire

tree

(family)

of

transactions

is

referred

to

as

the

top-level

transaction.

If

the

top-level

transaction

aborts,

all

nested

transactions

are

aborted

as

well.

By

default,

nested

subtransactions

of

the

same

parent

transaction

are

executed

sequentially

within

the

scope

of

the

parent.

The

Tran-C

concurrent

and

cofor

statements

can

be

used

to

create

subtransactions

that

execute

concurrently

with

each

other

on

behalf

of

their

parent

transaction.

For

more

information,

see

the

Encina

Transactional

Programming

Guide.

Using

nested

transactions

in

the

example

application

In

this

section,

we

will

add

a

nested

transaction

to

the

example

that

we

developed

in

preceding

chapters.

80

TXSeries™:

Writing

Encina

Applications

Changing

the

design

of

the

application

server

We

are

changing

our

application

to

perform

one

additional

action:

prior

to

checking

a

mainframe

database

for

billing

information,

the

application

first

checks

a

local

preferred

customer

database.

Only

if

this

lookup

fails

do

we

check

the

mainframe

database.

The

function

that

checks

the

local

database

aborts

the

transaction

if

the

customer

is

not

a

preferred

customer

(not

in

the

database)

or

if

it

encounters

an

error.

To

prevent

this

abort

from

aborting

the

whole

transaction,

we

isolate

it

using

a

nested

transaction.

We

could

implement

this

extra

lookup

without

using

nested

transactions.

For

example,

we

could

have

the

new

function

return

a

status

code

and

have

the

application

query

the

mainframe

only

if

the

function

returns

an

error.

However,

there

are

several

reasons

for

using

a

nested

transaction:

v

Using

a

nested

transaction

isolates

any

errors

that

occur

in

the

underlying

RPC

mechanism.

Such

errors

could

abort

the

transaction.

A

nested

transaction

isolates

these

aborts

in

the

same

way

that

it

isolates

aborts

explicitly

generated

by

the

application.

v

Using

a

nested

transaction

allows

the

function

to

abort

(and

thus

back

out)

its

own

actions.

If

it

did

not

use

a

nested

transaction,

the

function

would

first

have

to

query

the

database,

then

update

it

if

the

query

indicated

sufficient

credit.

If

each

update

required

an

RPC,

this

design

would

result

in

two

RPC

for

each

successful

call.

By

contrast,

if

the

function

instead

aborts

the

transaction,

it

needs

only

one

RPC.

Although

this

results

in

an

abort

(and

hence

more

work

for

the

application)

in

the

failure

case,

it

is

more

efficient

in

the

normal

case.

v

None

of

the

other

functions

called

as

part

of

the

transaction

returns

a

status

code.

All

abort

if

they

encounter

an

error.

Thus,

using

a

nested

transaction

gives

the

new

function

an

interface

similar

to

other

functions

in

the

transaction.

Note

that

in

this

particular

case,

we

could

not

reverse

the

order

of

the

lookups

(that

is,

first

check

the

mainframe

database

and

then

check

the

local

database).

The

LU

6.2

specification

(and

hence

PPC)

does

not

support

nested

transactions.

Thus,

if

the

mainframe

transaction

were

to

abort,

the

top-level

transaction

(not

simply

the

nested

transaction)

would

be

aborted.

Creating

the

nested

transaction

To

create

a

nested

transaction

in

our

application,

we

simply

use

a

second

transaction

construct

within

the

scope

of

the

first.

Tran-C

creates

a

nested

subtransaction

when

it

encounters

the

new

transaction

construct.

When

execution

reaches

the

closing

brace

of

the

nested

subtransaction,

Tran-C

initiates

commit

processing

and

commits

the

subtransaction

with

respect

to

the

parent

transaction.

That

is,

changes

made

in

this

subtransaction

are

backed

out

if

the

parent

transaction

aborts.

Figure

67

on

page

82

shows

the

top-level

transaction

and

the

nested

subtransaction.

Chapter

9.

Using

nested

transactions

81

The

BillPreferredCustomer

function

is

part

of

the

nested

transaction.

If

this

function

is

successful,

the

nested

transaction

commits.

However,

the

results

can

still

be

backed

out

if

the

parent

transaction

is

aborted.

If

the

BillPreferredCustomer

function

aborts,

only

the

nested

transaction

is

aborted,

not

the

parent

transaction.

Control

transfers

to

the

onAbort

clause

of

the

nested

transaction,

where

the

preferredCustomer

flag

is

set

to

FALSE.

The

BillForItem

function,

which

queries

the

mainframe

database,

must

be

part

of

the

top-level

transaction

and

must

be

invoked

only

if

the

nested

transaction

aborts.

Therefore,

the

BillForItem

function

is

invoked

if

the

value

of

the

preferredCustomer

flag

is

FALSE.

error_status_t

OrderItem(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

customerId)

{

idl_long_int

returnStatus;

idl_long_int

costPerItem,

totalCost;

short

priority;

volatile

short

preferredCustomer

=

TRUE;

transaction{

PlaceOrder(stockNum,

numOrdered,

&costPerItem);

totalCost

=

numOrdered

*

costPerItem;

if

(totalCost

>

1000)

priority

=

HIGH_PRIORITY;

else

priority

=

NORMAL_PRIORITY;

PlaceItemOnQueue(stockNum,

numOrdered,

customerId,

priority);

transaction{/*

Begin

a

nested

transaction.

*/

BillPreferredCustomer(customerId,

totalCost);

}

onAbort

{

/*

If

nested

transaction

aborts.

*/

preferredCustomer

=

FALSE;

}

/*

If

nested

transaction

aborted,

check

mainframe

database

*/

if

(!preferredCustomer)

BillForItem(customerId,

totalCost);

}onCommit{

fprintf(stderr,

"We

committed.\n");

return

SUCCESS;

}onAbort{

fprintf(stderr,

"We

aborted.

%s\n",

abortReason());

return

ORDER_FAILED;

}

}

Figure

67.

Using

a

nested

transaction

in

the

sample

application

82

TXSeries™:

Writing

Encina

Applications

Appendix

A.

Building

Encina

applications

This

appendix

provides

information

needed

in

compiling

and

building

Encina

applications.

It

lists

the

C

header

files,

COBOL

COPY-files,

and

libraries

for

all

parts

of

Encina.

It

also

lists

platform-specific

libraries.

For

information

about

C++

libraries,

see

Encina

Object-Oriented

Programming

Guide.

Encina

include

files

and

libraries

for

C

programs

Table

4

specifies

the

header

files

and

libraries

that

must

be

used

when

compiling

and

linking

Encina

applications

written

in

C.

For

information

on

C++

and

Java

libraries,

see

Encina

Object-Oriented

Programming

Guide

The

order

of

the

list

of

libraries

for

each

component

is

significant.

In

addition,

user

libraries

should

be

specified

before

the

libraries

listed

here.

Note

that

on

UNIX

platforms,

the

library

names

shown

are

the

names

that

are

used

with

the

-l

compiler

option

(for

example,

-lEncRqs);

the

actual

name

of

each

library

file

is

prefaced

by

lib

and

has

a

suffix

of

.a

(for

example,

libEncRqs.a).

On

Windows

platforms,

the

actual

name

of

the

library

file

that

is

linked

with

the

application

is

prefixed

by

lib

and

has

a

prefix

of

.lib

(for

example,

libEncRqs.lib).

Table

4.

Encina

include

files

and

libraries

for

C

programs

Encina

component

Header

files

Libraries

Toolkit

Executive

Transaction

Service

tran/tran.h

Encina

Thread-to-Tid

Mapping

Service

threadTid/threadTid.h

Encina

TRPC

trpc/trpc.h

Encina

Encina

Abort

Facility

encina/afac.h

Encina

DCE

Utilities

Library

trdce/trdce.h

Encina

TX

Interface

tx/tx.h

Encina

TX

Interface

with

Encina

Extensions

tx/tx_extensions.h

Encina

Transactional-C

tc/tc.h,

tc/rpc/tc_trpc.h

Encina

Toolkit

Server

Core

Transactional-C

Server

Extensions

tc/tc_server.h,

tc/rpc/tc_trpc.h

EncServer,

Encina

Lock

Service

lock/lock.h

EncServer,

Encina

Log

Service

log/log.h

EncServer,

Encina

Recovery

Service

rec/rec.h

EncServer,

Encina

TM-XA

Service

tmxa/tmxa.h

EncServer,

Encina

TranLog

-

Client

tranLog/tranLog.h

EncClient,

Encina

TranLog

-

Server

tranLog/tranLog.h

EncServer,

Encina

Volume

Service

vol/vol.h

EncServer,

Encina

©

Copyright

IBM

Corp.

1999,

2004

83

|

Table

4.

Encina

include

files

and

libraries

for

C

programs

(continued)

Encina

component

Header

files

Libraries

Restart

Service

restart/restart.h

EncServer,

Encina

Structured

File

Server

(SFS)

Base

Functionality

sfs/sfs.h

EncSfs,

Encina

ISAM

Interface

tisam/tisam.h

EncSfs,

Encina

Recoverable

Queueing

Service

(RQS)

Base

Functionality

rqs/rqs.h

EncRqs,

Encina

Peer-to-Peer

Communications

(PPC)

Services

X/Open

CPI-C

ppc/cpic.h

EncPpcExec,

Encina

IBM

SAA

CPI-C

and

CPI-RR

ppc/cmc.h,

ppc/srrc.h

EncPpcExec,

Encina

Encina

Monitor

Client

tpm/mon_client.h

EncMonCli,

Encina

Jam

Client

tpm/mon_client.h,

tpm/mon_jam.h

EncMonCliJam,

EncMonCli,

Encina

Administrative

Client

tpm/ema.h

EncMonCli,

Encina

Application

Server

tpm/mon_server.h

EncMonServ,

EncServer,

EncClient,

Encina

Encina

COPY-files

and

libraries

for

COBOL

applications

Table

5

shows

the

COPY-files

and

libraries

that

should

be

used

when

compiling

and

linking

Encina

applications

written

in

COBOL.

The

COBOL

products

are

not

available

in

the

Encina

2.5

release

on

Windows.

Table

5.

Encina

COPY-Files

and

libraries

for

COBOL

programs

Encina

component

COPY-files

(used

as

needed)

Libraries

Monitor

Client

EncMonCliCobol,

EncMonCli,

Encina

Monitor

Application

Server

ADL-AUTHN.cbl,

ADL-AUTHZ.cbl,

ENCINA-OPAQUE.cbl,

MON-ACCESS.cbl,

MON-LOCK.cbl,

MON-PROTS.cpy,

MON-RESERV.cbl,

MON-SCHED.cbl,

MON-STATUS.cbl,

MON-SUSP.cbl

or

MON-SUSPEND.cbl,

MON-TIMER.cbl,

MON-TRAN.cbl,

OPAQUE.cbl,

SFS-CONFIG-PROTS.cpy,

TX-PROTS.cpy

EncMonServCobol,

EncMonServ,

EncServer,

Encina

TX

Interface

with

Encina

Extensions

TXINFDEF.cbl,

TXSTATUS.cbl

Encina

SFS

External

File

Handler

(EXTFH)

None

EncSfsExtfh,

EncSfs,

Encina

84

TXSeries™:

Writing

Encina

Applications

Platform-specific

libraries

Additional

libraries

must

be

linked

with

the

application

code.

The

additional

libraries

depend

on

the

operating

system

and

machine

type.

On

most

platforms,

the

DCE

library

(dce)

must

be

explicitly

specified.

For

various

platforms,

the

libraries

needed

are

shown

in

Table

6.

For

those

platforms

on

which

command-line

compilers

are

typically

used,

the

actual

command-line

arguments

for

the

compilers

are

shown

in

the

table.

Table

6.

Platform-specific

libraries

Platform

Additional

libraries

to

include

Solaris

2.x

-ldce

-lm

-lnsl

-lthread

-lsocket

HP-UX

-ldce

-lndbm

-lM

-ldld

-lc_r

AIX

-ldce

Windows

(Microsoft

Visual

C++

and

IBM

DCE)

msvcrt,

pthreads,

libdce

Note:

Information

on

system

libraries

may

change

with

time.

See

the

release

notes

for

the

platform

you

are

using

for

the

most

current

information

on

system

libraries

for

that

platform.

Also

refer

to

the

make

file

installed

with

the

sample

Encina

applications.

Other

platform-specific

compiler

and

linker

options

Table

7

lists

other

platform-specific

compiler

and

linker

options

for

UNIX

platforms.

Table

8

lists

compiler

and

linker

flags

required

on

Windows

platforms.

This

information

can

change

with

time.

For

the

most

up

to

date

list,

see

the

Makefile

for

the

sample

Encina

applications

installed

as

part

of

Encina.

Table

7.

Platform-specific

compiler

and

linker

options

for

UNIX

Platform

Additional

compiler

options

Solaris

2.x

-D_REENTRANT

HP-UX

-D_REENTRANT

-Aa

-D_HPUX_SOURCE

-Dhpux

-Dhp9000s800

AIX

-Dunix

-D_BSD

-D_ALL_SOURCE

Note:

On

AIX

4.3

or

later,

when

building

executables

that

use

DCE

libararies

and

other

third-party

libraries

that

use

.so

libraries,

specify

the

-brtl

and

-bnortllib

options,

in

addition

to

those

shown

in

Table

7.

Table

8.

Platform-specific

compiler

and

linker

options

for

Windows

Flags

Description

-MD

Uses

the

dynamically-linked

C

run-time

library.

-DWIN32

Defines

the

symbol

WIN32.

Note:

If

you

define

the

symbol

elsewhere

before

you

include

Encina

header

files,

you

can

omit

this

flag.

Appendix

A.

Building

Encina

applications

85

Table

8.

Platform-specific

compiler

and

linker

options

for

Windows

(continued)

Flags

Description

-DIBM-DCE

Enables

Encina

header

files

to

be

used

with

this

version

of

DCE.

-Gz

Sets

the

default

stack

discipline

to

stdcall.

Note:

Most

Encina

header

files

declare

the

calling

convention

for

all

functions.

However,

on

Windows

platforms

you

must

specify

either

the

-Gz

or

the

-Gd

flag

for

some

DCE

and

Encina

functions,

including

IDL-

and

TIDL-generated

code.

These

requirements

will

be

removed

in

a

future

Encina

release.

86

TXSeries™:

Writing

Encina

Applications

Appendix

B.

Using

abort

codes

This

appendix

describes

the

Encina

Abort

Code

Facility.

Overview

of

aborting

with

abort

codes

In

the

example

application

developed

in

the

body

of

this

manual,

a

character

string

is

specified

when

a

function

aborts.

This

character

string

can

be

retrieved

and

printed

by

the

function

that

receives

notification

of

the

abort.

Encina

applications

can

also

use

abort

codes

rather

than

explicit

character

strings.

Abort

codes

offers

the

following

advantages

over

strings:

v

As

integers,

they

are

easier

to

compare

than

strings.

Thus,

an

application

can

respond

to

a

code

more

easily

than

to

a

string.

v

They

can

be

translated

into

strings

using

external

catalogs

of

messages.

Thus,

programs

that

use

codes

can

be

internationalized

more

easily

than

programs

that

use

strings.

However,

the

abort

code

interface

is

somewhat

more

complex

than

the

character-string

interface.

Thus,

aborting

with

strings

can

be

a

better

approach

for

those

applications

that

are

used

in

only

one

language

and

that

respond

to

abort

notifications

by

simply

printing

a

string

and

exiting.

The

basic

steps

in

using

the

abort

code

mechanism

follow:

v

Each

process

that

can

abort

transactions

defines

a

set

of

abort

codes

and

an

associated

abort

formatting

function.

The

formatting

function

translates

the

abort

codes

into

character

strings.

v

Each

process

that

can

abort

transactions

specifies

which

abort

codes

it

is

using.

v

Each

process

that

can

be

notified

of

an

abort

registers

the

abort

formatting

function

for

each

set

of

abort

codes

used

in

transactions

in

which

it

participates.

When

the

process

calls

the

Tran-C

abortReason

function

or

the

TX

tx_get_rollback_string

function,

Encina

automatically

calls

the

formatting

function

associated

with

the

abort

code

to

translate

the

code

into

a

string.

For

example,

to

use

abort

codes

with

the

initial

transactional

server

(the

order

server)

that

we

developed

in

Chapter

4,

“Making

the

sample

application

transactional,”

on

page

37,

we

define

a

set

of

abort

codes,

which

we

call

order

abort

codes

to

associate

them

with

the

order

server.

We

then

write

a

simple

abort

formatting

function

to

convert

these

codes

into

strings.

At

run

time,

the

order

server

specifies

that

it

is

using

the

order

abort

codes

for

aborting

transactions.

It

also

registers

the

abort

formatting

function

because,

in

addition

to

aborting

transactions,

it

also

is

notified

of

aborts

and

prints

out

abort

messages.

Note

that

the

client

does

not

need

to

register

the

abort

formatting

function

because

the

server

manages

transactions.

The

client

does

not

receive

abort

notifications

and

thus

does

not

handle

abort

codes.

In

the

case

of

the

order

server,

the

same

process

both

initiates

aborts

and

receives

notification

of

them.

The

billing

server,

which

is

invoked

from

the

order

server,

can

also

abort

transactions,

so

it

too

must

define

and

use

abort

codes.

We

must

also

write

an

abort

formatting

function

associated

with

these

billing

abort

codes.

However,

the

billing

server

does

not

need

to

register

this

abort

formatting

function

because

it

does

not

print

abort

messages;

it

only

initiates

aborts.

The

order

server

©

Copyright

IBM

Corp.

1999,

2004

87

must

register

the

abort

formatting

function

for

the

billing

server

abort

codes;

this

formatting

function

must

be

linked

with

the

order

server

code

(that

is,

it

is

not

invoked

as

an

RPC).

The

order

server

therefore

registers

two

abort

formatting

functions:

one

for

its

own

abort

codes

and

one

for

the

abort

codes

used

by

the

billing

server.

This

is

summarized

in

Figure

68.

The

abort

code

facility

can

be

used

with

Tran-C,

TX,

or

the

underlying

Toolkit

components.

In

this

appendix,

we

show

only

the

Tran-C

interface.

Defining

abort

codes

Defining

abort

codes

involves

the

following

two

steps:

1.

Defining

the

abort

codes

themselves

2.

Writing

the

abort

formatting

function

Defining

abort

codes

For

each

condition

under

which

an

application

can

abort

a

transaction,

we

must

define

an

abort

code.

An

abort

code

is

an

unsigned-integer

constant

that

indicates

the

reason

why

a

transaction

aborted.

These

codes

are

typically

placed

in

a

header

file.

In

our

example,

we

define

abort

codes

for

a

few

common

reasons,

as

shown

in

Figure

69.

Each

set

of

abort

codes

must

have

a

unique

format

identifier

so

that

Encina

can

associate

a

formatting

function

with

the

abort

reason

generated

by

an

aborted

Figure

68.

Using

abort

codes

in

our

application

/*

Abort

codes

and

abort

format

used

to

abort

transactions

*/

typedef

enum

{

BAD_STOCK_NUM

=

1,

INSUFF_STOCK,

ILLEGAL_QTY,

RESOURCE_MGR_OP_FAILED,

ENQUEUE_FAILED,

}

order_abort_t;

static

char

ORDER_ABORT_FORMAT[]

=

"0014ad20-e154-1d68-85b0-9e62092caa77";

Figure

69.

Defining

abort

codes

for

our

example

88

TXSeries™:

Writing

Encina

Applications

transaction.

The

format

identifier

is

a

DCE

UUID

(universal

unique

identifier)

that

uniquely

identifies

the

format

for

abort

reasons.

This

format

UUID

is

created

with

the

DCE

uuidgen

utility.

Writing

the

abort

formatting

function

For

each

set

of

abort

codes

defined,

we

must

provide

an

abort

formatting

function.

The

purpose

of

the

formatting

function

is

to

take

the

information

in

an

abort

reason

and

use

it

to

generate

output

appropriate

to

the

application.

This

formatting

function

can

then

be

registered

by

any

process

that

wants

to

obtain

the

abort

reasons.

When

invoked,

the

formatting

function

is

automatically

passed

two

arguments:

a

pointer

to

an

abort

reason

for

the

aborted

transaction

and

a

pointer

to

a

buffer

that

can

be

used

to

hold

the

string

that

corresponds

to

the

abort

reason.

In

our

example,

the

function

OrderAbortFormatter

is

defined

as

the

formatting

function

for

the

abort

codes

defined

by

the

order

server

(see

Figure

70).

The

function

checks

the

abort

code

set

for

the

abort

reason,

and

based

on

the

value

of

the

abort

code,

returns

a

string

that

describes

the

reason

for

the

abort

in

the

bufferP

parameter.

Note

that

this

example

generates

a

printable

string

in

English.

In

production,

an

application

might

instead

look

up

abort

strings

in

a

message

catalog,

making

it

easier

to

internationalize

the

application.

Aborting

a

transaction

with

an

abort

code

Each

module

that

can

abort

a

transaction

using

abort

codes

must

specify

which

abort

codes

it

is

using

with

the

useAbortFormat

function,

which

can

be

placed

after

the

call

to

the

inModule

function,

as

shown

in

Figure

71

on

page

90.

In

this

example,

the

order

server

specifies

that

it

is

using

the

order

abort

codes.

The

billing

server

makes

a

similar

call

to

specify

that

it

is

using

the

billing

abort

codes.

Encina

uses

this

information

to

determine

which

abort

formatting

function

to

call

static

void

OrderAbortFormatter(encina_abortReason_t

*abortReasonP,

char

*bufferP)

{

char

*abortString;

switch(abortReasonP->code)

{

case

BAD_STOCK_NUM:

abortString

=

"Stock

number

out

of

range.";

break;

case

INSUFF_STOCK:

abortString

=

"Stock

not

available

in

that

quantity.";

break;

case

ILLEGAL_QTY:

abortString

=

"Illegal

value

for

a

stock

quantity.";

break;

case

RESOURCE_MGR_OP_FAILED:

abortString

=

"Operation

on

underlying

resource

manager

failed.";

break;

case

ENQUEUE_FAILED:

abortString

=

"Enqueue

attempt

failed.";

break;

default:

abortString

=

"Unknown

abort

code.";

}

strcpy(bufferP,

abortString);

}

Figure

70.

Example

function

for

formatting

an

abort

reason

Appendix

B.

Using

abort

codes

89

when

an

application

calls

the

abortReason

function

(see

“Using

abort

data”).

Note

that

although

each

module

can

register

multiple

abort

format

functions,

it

can

use

only

one

set

of

abort

codes

and

thus

calls

useAbortFormat

only

once.

After

specifying

which

abort

codes

it

is

using,

the

module

uses

the

abortWithCode

function

to

abort

transactions.

The

abortWithCode

function

requires

one

argument,

an

integer

abort

code

that

describes

the

reason

for

the

abort.

For

example,

in

Chapter

5,

“Using

RQS,”

on

page

43,

when

an

attempt

to

queue

a

shipping

request

to

RQS

failed,

the

application

aborted

the

transaction

using

the

string

&odq;Enqueue

attempt

failed.&cdq;

We

can

change

the

application

to

instead

specify

an

abort

code,

as

shown

in

Figure

72.

The

abort

formatting

function

for

the

order

abort

codes

(shown

previously

in

Figure

70

on

page

89)

can

convert

this

abort

code

into

a

string.

Using

abort

data

In

previous

chapters,

we

used

the

Tran-C

abortReason

function

to

return

a

string

that

contains

the

reason

a

transaction

was

aborted.

We

can

continue

to

use

this

function

when

aborting

with

abort

codes.

However,

because

the

process

that

aborts

transactions

specifies

an

abort

code

instead

of

a

string,

we

must

tell

Encina

which

formatting

function

to

use

to

convert

the

code

into

a

string.

A

module

must

register

an

abort

formatting

function

for

each

set

of

abort

codes

for

which

it

needs

to

print

corresponding

abort

strings.

For

example,

our

order

server

must

register

two

abort

formatting

functions:

one

for

its

own

abort

codes

and

one

for

the

billing

server’s

abort

codes.

To

register

an

abort

formatting

function,

we

use

the

encina_RegisterAbortFormatter

function.

This

function

takes

two

arguments:

a

pointer

to

a

format

UUID

and

the

name

of

a

formatting

function.

The

format

UUID

passed

to

the

function

must

be

of

type

uuid_t.

Our

application

uses

strings

to

represent

UUIDs

(see

the

example

header

file

in

Figure

69

on

page

88).

A

string

representing

a

UUID

can

be

converted

to

a

UUID

using

the

uuid_from_string

DCE

function.

To

simplify

our

application,

we

use

the

REGISTER_ABORT_FORMATTER

macro,

which

converts

the

string

to

a

UUID

and

then

invokes

the

encina_RegisterAbortFormatter

function.

This

macro

is

defined

in

the

order.h

header

file.

Figure

73

on

page

91

shows

how

the

order

server

registers

the

abort

formatting

functions

it

uses.

Figure

74

on

page

91

shows

the

REGISTER_ABORT_FORMATTER

macro.

inModule("OrderServer");

useAbortFormat(ORDER_ABORT_FORMAT);

Figure

71.

Specifying

the

abort

format

to

use

status

=

rqs_Enqueue

(...);

if

(status

!=

RQS_SUCCESS)

abortWithCode(ENQUEUE_FAILED);

Figure

72.

Aborting

a

transaction

using

an

abort

code

90

TXSeries™:

Writing

Encina

Applications

After

a

function

registers

an

abort

code

formatting

function,

subsequent

calls

to

the

abortReason

function

return

a

string

formatted

by

the

appropriate

registered

function.

If

the

application

needs

to

retrieve

the

code

itself,

it

can

use

the

abortCode

function.

mon_InitServer();

REGISTER_ABORT_FORMATTER(ORDER_ABORT_FORMAT,OrderAbortFormatter);

REGISTER_ABORT_FORMATTER(BILLING_ABORT_FORMAT,BillingAbortFormatter);

mon_BeginService();

Figure

73.

Registering

abort

formatting

functions

/*

*

REGISTER_ABORT_FORMATTER

--

register

a

function

to

convert

abort

*

codes

to

strings.

*/

#define

REGISTER_ABORT_FORMATTER(formatUuidString,

formatFunction)\

BEGIN_MACRO

\

unsigned32

_status;

\

uuid_t

_abortFormatUuid;

\

uuid_from_string((unsigned_char_t

*)

(formatUuidString),

\

&_abortFormatUuid,

&_status);

\

CHECK_STATUS(_status);

\

_status

=

encina_RegisterAbortFormatter(&_abortFormatUuid,

\

(formatFunction));

\

CHECK_STATUS(_status);

\

END_MACRO

Figure

74.

The

REGISTER_ABORT_FORMATTER

macro

Appendix

B.

Using

abort

codes

91

92

TXSeries™:

Writing

Encina

Applications

Appendix

C.

Source

code

for

the

example

application

This

appendix

contains

source

code

for

the

example

application.

Source

code

for

the

order

server

This

section

contains

the

code

for

the

Monitor

version

of

the

order

application

server.

It

shows

the

initialization

code

and

the

code

for

the

OrderItem

function.

The

code

for

the

functions

called

by

the

OrderItem

function

is

given

in

subsequent

sections.

#include

<stdio.h>

#include

<tc/tc_server.h>

#include

<tpm/mon/mon_server.h>

#include

"OrderInterface.h"

#include

"billingInterface.h"

#include

"order.h"

inModule("OrderServer");

int

main

(int

argc,

char

**argv)

{

unsigned32

status;

char

*serverName;

int

rmiId;

/*

XA

switch.

For

actual

operation,

use

the

db_xa_switch

for

*

your

resource

manager.

*/

extern

struct

xa_switch_t

db_xa_switch;

/*

Register

the

interface.

*/

status

=

mon_InitServerInterface(

MON_SERVER_INTERFACE(OrderInterface,1,0));

CHECK_STATUS(status);

/*

Make

the

server

recoverable.

*/

status

=

mon_ServerRecoverable();

CHECK_STATUS(status);

/*

Set

up

interaction

with

a

resource

manager.

*/

status

=

mon_RegisterRmi(&db_xa_switch,

RM_NAME,

&rmiId);

CHECK_STATUS(status);

/*

Initialize

Enina

and

the

server.

*/

status

=

mon_InitServer();

CHECK_STATUS(status);

/*

RQS

initialization.

*/

status

=

ConnectToShippingServer();

CHECK_STATUS(status);

/*

Begin

listening

for

RPCs

*/

status

=

mon_BeginService();

CHECK_STATUS(status);

/*

Clean-up

actions.

*/

DisconnectFromShippingServer();

exit(0);

}

/***

*

OrderItem()

--

Starts

a

transaction

and

places

an

order.

**

©

Copyright

IBM

Corp.

1999,

2004

93

*/

error_status_t

OrderItem(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

customerId)

{

error_status_t

returnStatus;

idl_long_int

costPerItem,

totalCost,

priority;

transaction{

PlaceOrder(stockNum,

numOrdered,

&costPerItem);

totalCost

=

numOrdered

*

costPerItem;

if

(totalCost

>

1000)

priority

=

HIGH_PRIORITY;

else

priority

=

NORMAL_PRIORITY;

PlaceItemOnQueue(stockNum,

numOrdered,

customerId);

BillForItem(customerId,

totalCost);

}onCommit{

fprintf(stderr,

"We

committed.\n");

returnStatus

=

SUCCESS;

}onAbort{

fprintf(stderr,

"We

aborted.

%s\n",

abortReason());

returnStatus

=

ORDER_FAILED;

}

return

returnStatus;

}

Source

code

for

RQS

interactions

This

section

shows

the

soruce

file

contain

the

functions

for

obtaining

a

handle

the

RQS

server,

queueing

a

shipping

request,

and

freeing

the

handle.

#include

<stdio.h>

#include

<rqs/rqs.h>

#include

"order.h"

#include

"orderRqs.h"

inModule("PlaceItemOnQueue");

/*

Global

Variable

*/

static

rqs_serverHandle_t

rqsHandle;

/*

*

ConnectToShippingServer

--

gets

a

handle

to

an

RQS

server.

*/

error_status_t

ConnectToShippingServer(void)

{

rqs_status_t

status;

status

=

rqs_GetServerHandle(RQS_SERVER_NAME,

&rqsHandle);

if

(status

!=

RQS_SUCCESS)

return

RQS_FAILURE;

else

return

SUCCESS;

}

/*

*

PlaceItemOnQueue

--

Queues

a

shipping

request.

Aborts

*

the

transaction

if

queueing

operation

fails.

*/

void

PlaceItemOnQueue(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

customerId,

short

priority)

{

94

TXSeries™:

Writing

Encina

Applications

char

*queueName;

char

*elementType

=

SHIPPING_TYPE;

rqs_elementId_t

elementId;

rqs_status_t

status;

char

*itemToQueue,

*itemCursor;

idl_ulong_int

itemLength

=

sizeof(customerId)

+

sizeof(stockNum)

+

sizeof(numOrdered);

/*

Allocate

the

item

to

queue

and

pack

fields

into

it.

*/

itemToQueue

=

malloc(itemLength);

/*

Start

copying

at

start

of

itemToQueue

buffer

*/

itemCursor

=

itemToQueue;

memcpy(itemCursor,

&customerId,

sizeof(customerId));

itemCursor

+=

sizeof(customerId);

memcpy(itemCursor,

&stockNum,

sizeof(stockNum));

itemCursor

+=

sizeof(stockNum);

memcpy(itemCursor,

&numOrdered,

sizeof(numOrdered));

/*

Now

queue

item

*/

if

(priority

==

HIGH_PRIORITY)

queueName

=

"priorityShippingQueue";

else

queueName

=

"normalShippingQueue";

status

=

rqs_Enqueue

(rqsHandle,

queueName,

elementType,

itemLength,

itemToQueue,

NULL,

/*

Ignore

work

accum.

*/

&elementId);

if

(status

!=

RQS_SUCCESS)

{

abort("Enqueue

failed.");

}

}

/*

*

DisconnectFromShippingServer

--

Frees

the

server

handle.

Called

*

during

Monitor

termination.

*/

void

DisconnectFromShippingServer(void)

{

rqs_FreeServerHandle(rqsHandle);

}

The

following

example

shows

the

source

code

used

for

dequeueing

shipping

requests.

#include

<rqs/rqs.h>

#include

"order.h"

#include

"orderRqs.h"

/*

Global

Variable

*/

static

rqs_serverHandle_t

rqsHandle;

error_status_t

ConnectToShippingServer(void)

{

rqs_status_t

status;

status

=

rqs_GetServerHandle(RQS_SERVER_NAME,

&rqsHandle);

if

(status

!=

RQS_SUCCESS)

return

RQS_FAILURE;

else

return

SUCCESS;

}

Appendix

C.

Source

code

for

the

example

application

95

/*

*

DequeueFromShippingQueueSet

--

Dequeues

and

item

from

the

*

shipping

queue

set.

Aborts

the

transaction

if

*

dequeue

attempt

fails.

*/

error_status_t

DequeueFromShippingQueueSet(idl_ulong_int

*stockNum,

idl_ulong_int

*numOrdered,

idl_ulong_int

*customerId)

{

rqs_status_t

status;

char

*itemCursor;

rqs_elementDescriptor_t

*itemDequeued;

/*

Dequeue

the

element

*/

status

=

rqs_QSDequeue(rqsHandle,

SHIPPING_QUEUE_SET,

rqs_deleteElement,

TRUE,

/*

Wait

for

an

element

to

dequeue.

*/

&itemDequeued);

if

(status

!=

RQS_SUCCESS)

return

DEQUEUE_FAILED;

/*

Break

the

item

into

its

three

components.

*/

itemCursor

=

itemDequeued->value;

memcpy(customerId,

itemCursor,sizeof(*customerId));

itemCursor

+=

sizeof(*customerId);

memcpy(stockNum,

itemCursor,

sizeof(*stockNum));

itemCursor

+=

sizeof(*stockNum);

memcpy(numOrdered,

itemCursor,

sizeof(*numOrdered));

rqs_Free

(itemDequeued);

return

SUCCESS;

}

void

DisconnectFromShippingServer(void)

{

rqs_FreeServerHandle(rqsHandle);

}

The

following

example

shows

the

simple

client

that

interacts

with

the

dequeueing

code

shown.

#include

<stdio.h>

#include

<order.h>

#include

<orderRqs.h>

#include

<trdce/trdce.h>

#include

<tc/tc_server.h>

error_status_t

ConnectToShippingServer(void);

error_status_t

DequeueFromShippingQueueSet(idl_ulong_int

*stockNum,

idl_ulong_int

*numOrdered,

idl_ulong_int

*customerId);

void

CloseConnectionToQueue(void);

inModule("DequeueClient");

int

main(void)

{

idl_ulong_int

numOrdered;

idl_ulong_int

stockNum;

idl_ulong_int

customerId;

error_status_t

status;

/*

Encina/Tran-C

Initialization.

*/

preInitTC();

96

TXSeries™:

Writing

Encina

Applications

status

=

trpc_InitWithTrdce();

CHECK_STATUS(status);

tc_InitTRPC();

postInitTC();

status

=

ConnectToShippingServer();

if

(status

!=

SUCCESS)

{

printf("Couldn’t

connect

to

server.\n");

exit(1);

}

transaction{

DequeueFromShippingQueueSet(&stockNum,

&numOrdered,

&customerId);

}onCommit{

printf("Stock

number:

%u\n",

stockNum);

printf("Number

ordered:

%u\n",

numOrdered);

printf("Customer

ID:

%u\n",

customerId);

}onAbort{

fprintf(stderr,

"We

aborted.

%s\n",

abortReason());

}

quiesceTC();

exitTC(0);

}

Source

code

for

RDBMS

interactions

The

complete

PlaceOrder

function

is

shown

in

this

section.

Note

that

this

code

uses

standard

SQL,

not

embedded

SQL

particular

to

any

specific

RDBMS.

Modifications

may

be

required

for

some

RDBMSs.

void

PlaceOrder

(idl_ulong_int

stockNum,

idl_ulong_int

numOrdered,

idl_ulong_int

*costPerItem);

{

EXEC

SQL

INCLUDE

sqlca;

EXEC

SQL

BEGIN

DECLARE

SECTION;

unsigned

long

stockNumber;

unsigned

long

pricePerItem;

unsigned

long

quantityAvailable;

EXEC

SQL

END

DECLARE

SECTION;

stockNumber

=

stockNum;

/*

Determine

the

number

in

stock

and

the

cost.

*/

EXEC

SQL

SELECT

num_available,

item_cost

INTO

:quantityAvailable,

:pricePerItem

FROM

inventory

WHERE

stock_num

=

:stockNumber;

if

(sqlca.sqlcode

!=

SQL_SUCCESS){

abort("Database

lookup

failed.");

}

*costPerItem

=

pricePerItem;

if

(quantityAvailable

<

numOrdered){

abort("Insufficient

stock.");

}

/*

*

Update

the

database.

This

update

will

be

*

backed

out

if

it

later

turns

out

we

do

not

*

have

sufficient

funds

in

the

billing

database.

*/

quantityAvailable

-=

numOrdered;

Appendix

C.

Source

code

for

the

example

application

97

EXEC

SQL

UPDATE

inventory

SET

num_available

=

:quantityAvailable

WHERE

stock_num

=

:stockNumber;

if

(sqlca.sqlcode

!=

SQL_SUCCESS){

abort("Database

update

failed.");

}

}

Source

code

for

the

billing

server

and

PPC

interactions

The

source

code

for

the

billing

serverand

for

the

BillForItem

function

are

shown

in

this

section.

#include

<stdio.h>

#include

<tc/tc_server.h>

#include

<tpm/mon/mon_server.h>

#include

<ppc/cpic.h>

#include

"OrderInterface.h"

#include

"BillingInterface.h"

#include

"order.h"

inModule("BillingServer");

int

main

(void)

{

unsigned32

status;

int

rmId;

extern

struct

xa_switch_t

db_xa_switch;

/*

Register

the

interface.

*/

status

=

mon_InitServerInterface(

MON_SERVER_INTERFACE(BillingInterface,1,0));

CHECK_STATUS(status);

mon_InitServer();

status

=

InitializePpc();

if

(status

!=

SUCCESS){

fprintf(stderr,

"Unable

to

initialize

PPC.\n");

exit(1);

}

mon_BeginService();

exit(0);

}

error_status_t

InitializePpc(void)

{

char

*luName

=

LU_NAME;

char

*sideInfoFile

=

SIDE_INFO_FILE_NAME;

CM_RETCODE

returnCode;

returnCode

=

cpic_Init(luName);

if

(returnCode)

return

INIT_FAILED;

returnCode

=

cpic_ReadSideInfo(sideInfoFile);

if

(returnCode)

return

INIT_FAILED;

return

SUCCESS;

}

void

BillForItem(idl_ulong_int

cutomerId,

idl_ulong_int

amount)

{

98

TXSeries™:

Writing

Encina

Applications

unsigned

long

status;

CONVERSATION_ID

conversationId;

status

=

AllocateConversation(conversationId);

if

(status

!=

SUCCESS)

abort("Conversation

Allocation

Failed.");

status

=

DebitCustomerAccount(conversationId,

customerId,

amount);

if

(status

!=

SUCCESS)

abort("Data

Exchange

Failed.");

status

=

DeallocateConversation(conversationId);

if

(status

!=

SUCCESS)

abort("Conversation

Deallocation

Failed.&cdq;);

}

error_status_t

AllocateConversation(CONVERSATION_ID

conversationId)

{

CM_RETCODE

returnCode;

char

*smDestName

=

"CHECK_ACCOUNT";

char

*syncLevel

=

CM_SYNC_POINT;

/*

Initialize

the

conversation

and

set

the

synclevel.

*/

Initialize_Conversation(conversationId,

symDestName,

&returnCode);

if

(returnCode

!=

CM_OK)

return

ALLOCATE_FAILED;

Set_Sync_Level(conversationId,

syncLevel,

&returnCode);

if

(returnCode

!=

CM_OK)

return

ALLOCATE_FAILED;

Allocate(conversationId,

&returnCode);

if

(returnCode

!=

CM_OK)

return

ALLOCATE_FAILED;

return

SUCCESS;

}

error_status_t

DebitCustomerAccount(CONVERSATION_ID

convId,

idl_ulong_int

customerId,

idl_ulong_int

amount)

{

char

debitInfo[MAX_SEND_LENGTH];

int

debitInfoLen

=

0;

REQUEST_TO_SEND_RECEIVED

requestToSendReceived;

CM_RETCODE

status;

/*

The

data

is

sent

immediately

rather

than

buffered.

*/

SEND_TYPE

sendType

=

CM_SEND_AND_FLUSH;

/*

Pack

up

the

buffer

to

send

to

the

peer.

*/

sprintf(debitInfo,

"%lu

%lu",

customerId,

amount);

debitInfoLen

=

strlen(debitInfo);

Set_Send_Type(convId,

&sendType,

&status);

if

(returnCode

!=

CM_OK)

return

CPIC_ERROR;

Send_Data(convId,

debitInfo,

&debitInfoLen,

&requestToSendReceived,&status);

if

(returnCode

!=

CM_OK)

return

SEND_ERROR;

return

SUCCESS;

}

error_status_t

DeallocateConversation(CONVERSATION_ID

conversationId)

{

CM_RETCODE

returnCode;

Set_Deallocate_Type(conversationId,

CM_DEALLOCATE_SYNC_LEVEL

&returnCode);

if

(returnCode

!=

CM_OK)

return

DEALLOCATION_FAILURE;

Deallocate(conversationId,

&returnCode);

if

(returnCode

!=

CM_OK)

Appendix

C.

Source

code

for

the

example

application

99

return

DEALLOCATION_FAILURE;

return

SUCCESS;

}

TIDL

and

TACF

files

for

the

application

servers

The

TIDL

file

for

the

sample

application

is

shown

in

the

following

example.

[

uuid(0016a2ce-526e-1eba-bda1-9e620a3aaa77),

version(1.0)

]

interface

OrderInterface

{

import

"tpm/mon/mon_handle.idl";

[nontransactional]

long

OrderItem(

[in]

unsigned

long

stockNum,

[in]

unsigned

long

numOrdered,

[in]

unsigned

long

customerId);

}

The

TACF

file

for

the

sample

application

is

shown

in

the

following

example.

[explicit_handle

(encina_handle_t

void)]

interface

OrderInterface

{

[comm_status,

fault_status]

OrderItem();

}

The

TIDL

and

TACF

files

for

the

billing

server

are

shown

in

the

following

examples.

[

uuid(002513cc-da57-1ec0-8a0f-9e620a3aaa77),

version(1.0)

]

interface

BillingInterface

{

import

"tpm/mon/mon_handle.idl";

[transactional]

void

BillForItem(

[in]

unsigned

long

customerID,

[in]

unsigned

long

amount);

}

[explicit_handle

(encina_handle_t

void)]

interface

BillingInterface

{

}

Application

include

files

The

following

example

shows

the

order.h

header

file.

/*

order.h

*/

#include

<stdio.h>

#include

<dce/rpc.h>

#include

<dce/dce_error.h>

#include

<encina/encina.h>

#include

<encina/afac.h>

#include

<tc/tc.h>

#define

SUCCESS

0

100

TXSeries™:

Writing

Encina

Applications

#define

ORDER_FAILED

1

#define

INIT_FAILED

2

#define

ALLOCATE_FAILED

3

#define

CPIC_FAILURE

4

#define

SEND_ERROR

5

#define

DEALLOCATION_FAILURE

6

/*

Order

priorities

*/

#define

HIGH_PRIORITY

1

#define

NORMAL_PRIORITY

0

/*

Boolean

constants

*/

#define

FALSE

0

#define

TRUE

1

/*

Macro

delimiters

*/

#define

BEGIN_MACRO

do

{

#define

END_MACRO

}

while

(0)

/*

FATAL

--

Failure.Print

error

message

and

exit

the

program.*/

#define

FATAL(args)

\

BEGIN_MACRO

\

printf

args;

\

exit(1);

\

END_MACRO

/*

CHECK_STATUS:

Make

sure

status

is

0;

print

error

msg

&

*

exit

if

it

isn’t.

*/

#define

CHECK_STATUS(status)

\

BEGIN_MACRO

\

char

_errorMsg[ENCINA_MAX_STATUS_STRING_SIZE];

\

if

(status)

{

\

encina_StatusToString(status,

\

ENCINA_MAX_STATUS_STRING_SIZE,

\

_errorMsg);

\

FATAL(("%s(%d):

%s\n",

__FILE__,

__LINE__,

_errorMsg));

\

}

\

END_MACRO

The

following

example

shows

the

include

file

used

by

the

RQS

part

of

the

sample

application.

#define

SHIPPING_TYPE

"shippingType"

#define

RQS_SERVER_NAME

"/.:/order_cell/server/rqsShippingServer"

#define

SHIPPING_QUEUE_SET

"shippingQueueSet"

#define

DEQUEUE_FAILED

10

Appendix

C.

Source

code

for

the

example

application

101

102

TXSeries™:

Writing

Encina

Applications

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

DOCUMENT

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OR

CONDITIONS

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

document.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1999,

2004

103

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

ATTN:

Software

Licensing

11

Stanwix

Street

Pittsburgh,

PA

15222

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

the

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

AIX

C-ISAM

CICS

CICS/400

CICS/6000®

CICS/ESA

CICS/MVS

CICS/VSE

Database

2™

DB2

104

TXSeries™:

Writing

Encina

Applications

DB2

Universal

Database™

DFS

Domino™

Encina

IBM

IMS™

Informix

Lotus®

MQSeries

MVS

MVS/ESA

Notes®

OS/2

RACF®

SecureWay

SupportPac™

System/390

TXSeries

VisualAge®

VTAM®

WebSphere®

Domino,

Lotus,

and

LotusScript

are

trademarks

or

registered

trademarks

of

Lotus

Development

Corporation

in

the

United

States,

other

countries,

or

both.

ActiveX,

Microsoft®,

Visual

Basic,

Visual

C++,

Visual

J++,

Visual

Studio,

Windows,

Windows

NT®,

and

the

Windows

95

logo

are

trademarks

or

registered

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Java™

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Pentium®

is

a

trademark

of

Intel™

Corporation

in

the

United

States,

other

countries,

or

both.

This

software

contains

RSA

encryption

code.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

105

106

TXSeries™:

Writing

Encina

Applications

Index

A
abort

codes

87

defining

88

formatting

89

registering

formatting

functions

90

specifying

89

abort

function

39

aborting
transactions

10

transactions

by

using

abort

codes

87,

89

transactions

in

Tran-C

38,

39,

40,

41

transactions

in

TX

interface

73

abortReason

function

89,

90

abortWithCode

function

39,

90

ACFs

19

ACID

properties

10

ACLs

10,

31

Allocate

function

67

allocating
conversations

62,

66,

67

authentication

7,

8

RPCs

31

authorization

7,

10

B
binding

5,

7

binding

handles
getting

in

RQS

47

building
sample

application

22,

34,

41,

60,

71,

77

C
CDS

5,

6

cell

managers

23

cells
DCE

4

Monitor

23

chaining
transactions

in

PPC

63

transactions

in

TX

interface

74

client/server

computing

2

DCE

3

closing
TX

interface

77

committing
transactions

10

transactions

in

Tran-C

38

compiler

options

85

conversations
allocating

62,

66,

67

deallocating

62,

69

synclevels

63

coordinators

11

CPI-C

63

CPI-RR

63

cpic_Init

function

66

cpic_ReadSideInfo

function

66

cpic.h

header

file

71

D
DCE

3

Cell

Directory

Service

6

cells

4

data

types

21

deallocating
conversations

62,

69

defining
abort

codes

88

element

types

in

RQS

46

interfaces

16

delimiting
transactions

in

Tran-C

38

transactions

in

TX

interface

75

distributed

computing

1

distributed

transactions

11

E
element

types

(RQS)

44

defining

46

elements

(RQS)

44

dequeing

50

enqueueing

48

prioritizing

44

queueing

46

embedded

SQL

53,

56,

57,

58

encina_RegisterAbortFormatter

function

90

enconsole

command

35

endpoints
map

6

ephemeral

processes

11

error_status_t

data

type

18

errors
handling

in

TACFs

19

isolating

79

exchanging
data

in

PPC

68

exclusive

shared

PAs

30

H
header

files

83

host

variables

57

I
IDL

(DCE)

5

compiler

5

Initialize_Conversation

function

67

initializing
Monitor

application

servers

26

PPC

66

resource

managers

26,

55

initializing

(continued)
TX

interface

75

inModule

statement

37

interfaces
defining

16

UUIDs

18

L
library

files

83

lightweight

processes

30

linker

options

85

listening
for

RPCs

in

Monitor

27

Lock

Service

13

Log

Service

13

LU

6.2

62

LUs

62

M
mainframes

PPC

applications

70

marshaling

5

mon_BeginService

function

27

mon_client.h

header

file

35

mon_InitServer

function

27

mon_InitServerInterface

function

26

mon_RegisterRmi

function

26,

55

MON_SERVER_INTERFACE

macro

26

mon_server.h

header

file

35

mon_ServerUsesTx

function

75

mon_SetSchedulingPolicy

function

30

Monitor

12,

23,

24

cell

managers

23

listening

for

RPCs

27

load

balancing

30

node

managers

23

PAs

24,

30

resource

managers

26

security

31

server

initialization

26

Monitor

application

servers
initializing

26

making

recoverable

27

multithreaded

PAs

30

N
nested

transactions

79

node

managers

23

O
onAbort

clause

38

onCommit

clause

38

open

systems

1

orphans

(RQS)

50

©

Copyright

IBM

Corp.

1999,

2004

107

P
parent

transactions

80

PAs

24

exclusive

shared

30

multithreaded

30

setting

number

30

platform-specific

library

files

85

PPC

13,

61

allocating

conversations

62,

66,

67

applications

63

deallocating

conversations

62,

69

exchanging

data

68

initializing

66

mainframe

applications

70

PPC

gateway

61

ppcConstants.h

header

file

71

prepare

phase

11

principals

8

protection

levels

7

RPCs

9

Q
QRF

43

queue

sets

44

queues

43

dequeing

elements

50

enqueing

elements

48

priorities

44

queueing

elements

46

R
recoverable

servers

11,

27

Recovery

Service

13

relational

databases

53

remote

procedure

calls
See

RPCs

resolution

phase

12

resource

managers

53

initializing

26,

55

XA

specification

53

RPCs

4

authentication

31

listening

for

in

Monitor

6,

27

marshaling

and

unmarshaling

5

protection

levels

9

stub

files

5

RQS

13,

43

dequeueing

elements

50

element

types

44,

46

elements

44

enqueueing

elements

48

getting

binding

handles

47

orphan

elements

50

prioritizing

elements

44

queue

sets

44

queues

43

rqs_Enqueue

function

48

rqs_Free

function

50

rqs_FreeServerHandle

function

48

rqs_GetServerHandle

function

47

rqs_QSDequeue

function

50

S
sample

application

15

adding

transactions

37

building

22,

34,

41,

60,

71,

77

client

28

database

design

56

defining

interface

16

embedded

SQL

56,

60

error

handling

58

host

variables

57

IDL

file

18

Monitor

application

server

27

nested

transactions

81

PPC

63

querying

the

database

57

resource

manager

54,

55

RQS

45,

47,

51

source

code

93

SQL

precompiler

file

56

stub

files

20

TACF

19

TIDL

file

33

Tran-C

38

TX

interface

74

updating

the

database

58

security

7

Monitor

31

Security

Service

7

SFS

13

side

information

files

62,

66

SQL

53,

56,

58

creating

tables

60

precompiler

file

56

sqlca

data

structure

58

stub

files

5,

20

synclevels

63

system

library

files

85

T
TACFs

19

handling

errors

19

tc_server.h

header

file

41

threads
using

multiple

30

three-tiered

architecture

3

tickets

8

TIDL
compiler

19

creating

files

17

sample

file

for

application

33

TM-XA

Service

14

Toolkit

13

TPNs

62

TRAN

13

Tran-C

13,

73

aborting

transactions

38,

39,

40,

41

committing

transactions

38

transaction

construct

38,

81

transaction

processing

monitors

12

transactions

10

aborting

10

aborting

in

Tran-C

38,

39,

40,

41

aborting

in

TX

interface

73,

76

aborting

with

abort

codes

87,

89

chaining

in

PPC

63

transactions

(continued)
chaining

in

TX

interface

74

committing

10

committing

in

Tran-C

38

coordinators

11

delimiting

in

Tran-C

38

delimiting

in

TX

interface

73,

75

distributed

11

getting

information

in

TX

interface

76

nested

79

parent

80

prepare

phase

11

resolution

phase

12

two-phase

commit

11

TRDCE

14

two-phase

commit

11

TX

interface

73,

74

aborting

transactions

73,

76

closing

77

delimiting

transactions

73,

75

getting

information

76

initializing

75

specification

73

tx_begin

function

73

tx_close

function

77

tx_commit

function

73,

75

tx_get_rollback_code

function

74

tx_get_rollback_string

function

74

tx_info

function

73,

76

tx_open

function

75

tx_rollback

function

73,

75

tx.h

header

file

77

U
unauthenticated

users

8

unmarshaling

5

uuidgen

command

18

UUIDs

18

V
version

numbers

18

Volume

Service

14

X
X/Open

CPI-C

63

CPI-RR

63

TX

specification

73

XA

specification

53

XA

53

108

TXSeries™:

Writing

Encina

Applications

����

Printed

in

USA

SC09-4486-02

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

T
X

Se
rie

s™

W
ri

tin
g

En
ci

na

Ap
pl

ic
at

io
ns

Ve
rs

io
n

5.
1

SC
09

-4
48

6-
02

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Related information
	Conventions used in this book
	How to send your comments

	Chapter 1. Basic concepts of distributed computing
	Distributed computing
	The client/server model

	Client/server applications under DCE
	Remote procedure calls
	Locating resources
	The DCE Cell Directory Service
	An overview of the binding process

	Protecting resources
	Authentication
	Protection levels
	Authorization

	Transactions
	Distributed transactions and the two-phase commit process
	Transaction processing monitors

	Introduction to Encina
	The Encina Monitor
	The Recoverable Queueing Service (RQS)
	The Structured File Server (SFS)
	Peer-to-Peer Communications (PPC) Services
	The Encina Toolkit

	Scope and layout of the remainder of this manual

	Chapter 2. Writing the interface for a sample client/server application
	Overview of the sample application
	Defining the interface
	The example interface
	Creating the Transactional Interface Definition Language file
	Creating the Transactional Attribute Configuration File
	Processing the TIDL and TACF files

	Implementing the server interface
	A note on data types

	Notes on building and running the application

	Chapter 3. Writing a Monitor client/server application
	An overview of the Encina Monitor
	The Encina Monitor operating environment
	Monitor features used by application programs

	Binding in the Monitor environment
	Using Monitor universal binding

	Writing the server
	Registering the interface
	Initializing the resource manager
	Initializing Encina
	Listening for RPCs
	The server application

	Writing the client
	Using other Monitor features
	Load balancing and scheduling
	Specifying a server priority
	Setting the number of processing agents
	Using multithreaded PAs

	Security
	Using data-dependent routing
	Using delegation

	Making the server a client of another server
	Defining the interface
	Implementing the new application server

	Notes on building and running the application

	Chapter 4. Making the sample application transactional
	Making the application transactional
	Specifying which operations are part of a transaction
	Aborting transactions
	Aborting with strings
	Aborting with an abort code

	Notes on building and running the application

	Chapter 5. Using RQS
	An overview of RQS
	Queues and elements
	Prioritization and queue sets
	Adding RQS to our application

	Queueing a shipping request
	Defining the element type
	Getting a handle to an RQS server
	Adding the shipping request to the queue

	Dequeueing a shipping request
	Building and running the sample application

	Chapter 6. Interacting with a relational database
	Resource managers and distributed transaction processing
	Resource managers and the XA specification
	SQL and embedded SQL
	Modifying the application to interact with a resource manager

	Registering the resource manager
	Accessing the database
	The database
	Using embedded SQL
	Declaring the variables needed for SQL
	Querying the database
	Updating the database
	Error handling

	The complete PlaceOrder function

	Building and running the sample application

	Chapter 7. Using Encina Peer-to-Peer Communications
	Overview of PPC
	Logical units and transaction programs
	Peer-to-peer communications and client/server communications

	Synchronizationl level and logical units of work
	Programming interfaces

	Designing the PPC application
	Writing the PPC application
	Initializing PPC
	Allocating conversations
	Exchanging data
	Deallocating conversations
	The PPC application: the mainframe side

	Notes on building and running the application

	Chapter 8. Using TX
	Introduction to X/Open TX
	TX transactions
	TX and Tran-C
	When to use TX

	Using TX in the order application server
	Initializing the TX interface
	Starting and ending a transaction using TX
	Closing the TX interface

	Notes on building the application

	Chapter 9. Using nested transactions
	Introduction to nested transactions
	Nested and top-level transactions

	Using nested transactions in the example application
	Changing the design of the application server
	Creating the nested transaction

	Appendix A. Building Encina applications
	Encina include files and libraries for C programs
	Encina COPY-files and libraries for COBOL applications
	Platform-specific libraries
	Other platform-specific compiler and linker options

	Appendix B. Using abort codes
	Overview of aborting with abort codes
	Defining abort codes
	Defining abort codes
	Writing the abort formatting function

	Aborting a transaction with an abort code
	Using abort data

	Appendix C. Source code for the example application
	Source code for the order server
	Source code for RQS interactions
	Source code for RDBMS interactions
	Source code for the billing server and PPC interactions
	TIDL and TACF files for the application servers
	Application include files

	Notices
	Trademarks and service marks

	Index

