
Course

Tournament
updateName

getStudent

addParticipant

Event

updateStudentName

x

invariant
breaks

getStudent

Add Update Add(r)

addParticipant

Simulator for Saga Implemented Microservice Systems

André Martins Esgalhado

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. António Manuel Ferreira Rito da Silva

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. António Manuel Ferreira Rito da Silva

Member of the Committee: Prof. Rodrigo Fraga Barcelos Paulus Bruno

October 2024

Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

First, I would like to thank my parents and my sister for their friendship, encouragement and caring

over all these years, for always being there for me, believing and supporting me and without whom this

project would not be possible. I would also like to thank my grandparents, aunts, uncles and cousins for

their understanding and support throughout all these years.

I would also like to acknowledge my dissertation supervisor, Prof. António Rito Silva, for his insight,

support and sharing of knowledge that has made this Thesis possible. His guidance, patience and

constant availability, for providing essential resources, discussing core aspects of the implementation,

reviewing my work, and offering constructive feedback, has been invaluable in the successful completion

of this thesis.

Additionally, I want to extend my thanks to all of my professors and the staff at Instituto Superior

Técnico for equipping me with the technical knowledge and critical thinking skills that were essential to

developing this thesis.

A special mention goes to my friends and colleagues, whose support, both academically and per-

sonally, helped me grow and provided me with the strength to keep going during difficult times. Whether

through encouraging words, thoughtful advice, or simply being there, you all made this journey more

manageable and memorable. Thank you.

To each and every one of you – Thank you.

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) through projects

UIDB/50021/2020 (INESC-ID) and PTDC/CCI-COM/2156/2021 (DACOMICO).

i

Abstract

The development frameworks for microservice systems are complex, because they are used to develop

the final system, and do not directly support the domain-driven design aspects, besides the addressing

of the microservices business logic. In this thesis, we propose a sagas microservice simulator that mod-

els the system according to a domain-based design approach. The simulator supports the definition of

compensating transactions, semantic locks, and event-based communication for upstream-downstream

aggregates, allowing for robust conflict resolution and consistency management in distributed architec-

tures. The results show that the simulator addresses the issues identified in the problem, it requires a

minimal effort to extend, and it allows the test of complex interactions. Through these scenarios, we

highlight the practical importance of implementing Sagas to handle complex interactions and ensure the

system’s correctness even under concurrent modifications.

Keywords

Microservices, Sagas, Simulator, Business Logic

iii

Resumo

As frameworks para desenvolvimento de sistemas de microsserviços são complexas, porque estão

pensadas para o desenvolvimento do sistema final, e não suportam diretamente os aspetos de domain-

driven design, para além de endereçarem a lógica de negócio dos microsserviços. Nesta tese, propo-

mos um simulador para microsserviços de arquitetura saga que modela o sistema de acordo com uma

abordagem de domain-driven design. O simulador suporta a definição de transações compensatórias,

locks semânticos, e comunicação baseada em eventos para agregados upstream-downstream, per-

mitindo uma resolução de conflitos robusta e gestão de consistência em arquiteturas distribuı́das. Os

resultados mostram que o simulador aborda os problemas identificados, requer um esforço mı́nimo para

extender, e permite testar interações complexas. Através destes cenários, destacamos a importância

prática da implementação de Sagas para lidar com interações complexas e garantir a correção do sis-

tema mesmo sob modificações simultâneas.

Palavras Chave

Microsserviços, Sagas, Simulador, Lógica de Negócio

v

Contents

1 Introduction 1

1.1 Work Objectives . 3

1.2 Organization of the Document . 3

2 Problem 5

2.1 Problem . 5

2.2 Semantics . 9

2.2.1 Saga Architecture . 9

2.2.2 Domain-Driven Design . 10

2.2.3 Sagas vs Transactional Causal Consistency . 11

2.2.4 Transactional Causal Consistent Microservices Simulator 11

3 Related Work 19

3.1 Transactional Saga Patterns . 20

3.2 Existing tools and frameworks . 20

3.2.1 Eventuate Tram Sagas . 21

3.2.2 Temporal . 23

3.2.3 SagaMAS . 25

3.2.4 Comparison Overview . 27

3.3 Comparison with the developed framework . 29

3.3.1 Eventuate Tram Sagas . 29

3.3.2 Temporal . 29

3.3.3 SagaMAS . 29

3.3.4 Overall Comparison . 30

3.4 Simulation in Microservices . 30

3.4.1 FERAL . 30

3.4.2 µqSim . 31

vii

4 Microservice Simulator 33

4.1 Microservice Sagas Simulator . 33

4.1.1 Overview . 34

4.1.2 Aggregate Design . 36

4.1.3 Coordination Design . 39

4.1.4 Workflow Design . 43

4.2 Microservice Simulator Framework . 46

5 Evaluation 49

5.1 Evaluation . 49

5.1.1 Completeness . 49

5.1.2 Ease of Extension . 50

5.1.3 Simulate Interleavings . 53

5.1.4 Complex Interleavings . 54

5.1.5 A Large Monolith System . 58

5.1.6 Usage . 62

5.1.7 Threats to Validity . 62

6 Conclusion 63

6.1 Conclusions . 63

6.2 System Limitations and Future Work . 64

6.2.1 Future Work . 65

Bibliography 66

viii

List of Figures

2.1 Simulator Decomposition View . 12

2.2 Domain Model Extension . 13

3.1 Eventuate Tram Sagas Example . 21

3.2 Temporal Example . 23

4.1 Updated Simulator Decomposition View . 35

4.2 Aggregate Domain Model. 36

4.3 Functionality Domain Model. 40

5.1 Simulator extension process . 50

5.2 Example of the implementation of a microservice in the simulator. 53

5.3 Sequential Add Participant and Update Student Name interleavings - (a) 55

5.4 Sequential Add Participant and Update Student Name interleavings - (b) 56

5.5 Sequential Add Participant and Update Student Name interleavings - (c) 56

5.6 Concurrent Add Participant and Update Student Name interleavings - (d) 57

5.7 Concurrent Add Participant and Update Student Name interleavings - (e) 57

5.8 Concurrent Add Participant and Update Student Name interleavings - (f) 58

5.9 Update Tournament interleaving. 58

5.10 Complexity of the Quizzes Tutor functionalities implemented in the simulator. 61

ix

x

List of Tables

3.1 Transactional Saga Patterns . 20

3.2 Comparison Overview . 28

3.3 Design Elements . 28

5.1 Aggregate invariants, event subscriptions, and services 59

xi

xii

Listings

2.1 Quizzes Tutor Aggregates and Invariants . 6

2.2 UpdateStudentName and AddParticipant functionalities. 7

2.3 Tournament aggregate definition. 14

2.4 CausalTournament aggregate definition. 15

2.5 Functionality implementation example. 16

2.6 addParticipant service of Tournament aggregate. 16

3.1 AddParticipant Functionality with Eventuate . 22

3.2 AddParticipant Functionality with Temporal . 25

3.3 AddParticipant Functionality with SagaMAS . 26

4.1 verifyInvariants() and getEventSubscriptions() methods 38

4.2 subscribesEvent method . 38

4.3 addParticipant method . 39

4.4 Method buildWorlflow of AddParticipantFunctionalitySagas (partial) 41

4.5 Method buildWorlflow of UpdateTournamentFunctionalitySagas (partial) 42

4.6 planOrder method in SagaWorkflow . 44

4.7 execute method in Workflow . 45

4.8 executeUntilStep method in Workflow . 46

5.1 Concurrent add participant and update name test . 54

xiii

xiv

Acronyms

ACID Atomicity Consistency Isolation Durability

API Application Programming Interface

CAP Consistency Availability Partition

DDD Domai-Driven Design

TCC Transactional Causal Consistency

xv

xvi

1
Introduction

Contents

1.1 Work Objectives . 3

1.2 Organization of the Document . 3

The microservice architecture [1,2] is being used for the design of a large number of software systems

due to its advantages for scalability and small development teams.

However, it is not without its own complexities [3], such as development complexity and the manage-

ment of data consistency. The former is related to the complexity of the middleware, e.g. Kafka1 used

to implement microservice systems. The latter is related to distributed transactions that must be coor-

dinated to support the functionalities of the microservice system, which is the result of the Consistency

Availability Partition (CAP) theorem [4], which states that there is a trade-off between consistency and

availability. When seen together, these two challenges result in the fact that it is possible to identify data

consistency issues only late in the development process. So, it can happen that only after an exten-

sive development effort does the team realize that the microservice architecture does not actually pay

off due, for instance, to the problems and complexities associated with the coordination of distributed

transactions [5].

1https://kafka.apache.org/

1

https://kafka.apache.org/

Therefore, it is worth shifting left, in the development process [6], the difficult aspects associated

with the design of microservice systems. In particular, address the complexity associated with the

implementation of distributed transactions in a microservice system [7].

Sagas [8] is the transactional model associated with the coordination of distributed transactions in

microservice systems, which is the current engineering practice [9]. Following this model, developers

must address problems resulting from the lack of isolation due to the existence of intermediate states,

such as lost updates and dirty reads. Solutions like semantic locks, where transactions flag intermediate

states for other transactions, require a case-by-case design that can be error-prone [9].

In this thesis, we propose a sagas microservice simulator that models the microservice system ac-

cording to a domain-driven design approach [10]. It contains the minimal set of elements necessary to

describe a microservice system business logic and the inter-microservice coordination, allowing for the

test of the interactions in a centralized environment. In this way, there is a shifting left of the analysis

and correction of the system coordination, before the actual implementation in the more expensive and

troublesome context of a distributed environment. Moreover, debugging in a deterministic environment

allows a faster feedback cycle for the design of the microservice system business logic. Using the sim-

ulator, software architects can assess the feasibility of the microservices architecture for the problem at

hand, or even decide that some parts of the system should be implemented using an Atomicity Consis-

tency Isolation Durability (ACID) transactional model, as some argue that not all the system has to follow

the microservice architecture [11].

The simulator is evaluated against a set of canonical set of distributed transaction coordinations in

microservice systems, and a large, business logic rich microservice system was implemented using the

simulator.

The development of microservice systems requires a complex design of the application business

logic, due to its consistency in a distributed execution context. On the other hand, there are several

architectural styles for the implementation of microservice architectures. As Chris Richardson describes,

what defines this type of architecture is a collection of services that are loosely coupled and are deployed

independently [9]. Some of the most common challenges during microservice development include

ensuring consistency, maintaining communication between services, and debugging in a distributed

environment. In addition, the development of a microservice system is difficult and requires the use of

complex technology.

Although various attempts have been made to simplify microservice development, especially when

it comes to frameworks that help build microservice systems [12, 13], there is a gap in providing a

technology-free, amenable environment for architects to experiment with architecture design and receive

feedback through short cycles.

To address some of these challenges, the Transactional Causal Consistent Microservices Simula-

2

tor [14] was developed. This simulator extends the concept of aggregate to allow its implementation in a

transactional causal consistency model, which prevents some types of anomalies resulting from lack of

isolation. Although Transactional Causal Consistency (TCC) offers a stronger consistency model, most

of the microservice systems use eventual consistency as a consistent model for two reasons: it is a

simple model that in some cases can offer enough guarantees given the application semantics; there

is no standard middleware available for more complex models that can be used in production. In such

scenarios, eventual consistency, as supported by the Saga model [8], might be a better alternative. For

these reasons, the proposed work is an extension of this simulator, which will support the Saga pat-

tern [9], which implements the Saga model for the microservice architecture. Another reason to extend

the simulator to accommodate the Saga pattern is the fact that it is a widely adopted approach, which

will help developers make more informed decisions and mimic real-world systems.

1.1 Work Objectives

This thesis aims to achieve several objectives:

• The main objective is the development of a simulator specialized for microservice environments

focused on the Saga architectural style. It needs to have a high degree of expressiveness while

being simple to extend.

• Review and documentation of approaches and technologies in the existing literature on state-of-

the-art simulators for distributed systems and the Saga pattern.

• Implementation of a large, business logic rich, microservice system where testing and validation

can be performed with the help of the simulator.

1.2 Organization of the Document

This thesis is is organized as follows: Chapter 1 introduces the project’s objectives and context. Chap-

ter 2 provides a background on essential concepts related to microservices, the Saga architecture,

domain-driven design and the problem that this thesis tackles. Chapter 3 analyzes the related work

on distributed system simulators and the frameworks for the implementation of microservices systems.

Chapter 4 outlines the solution proposed for extending a microservices simulator with the Saga pattern

and discusses its implementation. It also shows how to describe the business logic and coordination

of the microservice system in the simulator and the simulator execution engine.Chapter 5 presents the

evaluation done through the design of test cases and implementation of a large microservice system.

3

Finally, Chapter 6 concludes the thesis with recommendations for future work and a summary of the

findings.

4

2
Problem

Contents

2.1 Problem . 5

2.2 Semantics . 9

This chapter contains explanations about some relevant topics for this Thesis: the Saga Architecture,

Domain-Driven design, a comparison between Sagas and Transactional Causal Consistency, the state

of the Transactional Causal Consistency Simulator and the problems related to these concepts.

2.1 Problem

Domai-Driven Design (DDD) [10] is being adopted as the design approach for the microservice system

domain model [15, 16]. Instead of a large, interconnected domain model, the microservice is split into

a set of aggregates that are atomic units of change. Therefore, accesses to an aggregate are atomic.

In addition, they define the unit of consistency through a set of invariants that should be preserved by

the aggregate. However, there are possible inconsistencies between the aggregates, not stated in the

invariants, which should eventually be resolved.

In addition to the concept of aggregate, domain-driven design defines dependencies between the

5

teams that develop the aggregates, such that they can have some level of independence. Therefore, an

upstream-downstream relation between two teams means that the downstream team depends on the

upstream team; the downstream team is aware of the upstream aggregates, but the inverse does not

occur. This corresponds to the existence of core models that other models depend on, and it is some-

how related to the layered architecture style [17], where lower layers are independent of upper layers.

Listing 2.1: Quizzes Tutor Aggregates and Invariants

1 Aggregate Tournament {

2 Root E n t i t y Tournament {

3 I n t ege r i d key ;

4 DateTime s ta r tT ime, endTime ;

5 Creator c rea to r ;

6 L i s t<P a r t i c i p a n t> p a r t i c i p a n t s ;

7 TournamentQuiz qu iz ;

8 }

9 E n t i t y Creator {

10 I n t ege r number ;

11 S t r i n g name ;

12 }

13 E n t i t y P a r t i c i p a n t {

14 I n t ege r number ;

15 S t r i n g name ;

16 }

17 E n t i t y TournamentQuiz {

18 I n t ege r qu i z Id ;

19 }

20 I n v a r i a n t s {

21 r oo t . s ta r tT ime < r oo t . endTime ;

22 r oo t . p a r t i c i p a n t s

23 . f i l t e r (p -> p . number == roo t . c rea to r . number)

24 . a l lMatch (p -> p . name == roo t . c rea to r . name) ;

25 }

26 }

27 Aggregate CourseExecution {

28 Root E n t i t y CourseExecution {

29 I n t ege r i d key ;

30 L i s t<Student> students ;

31 }

32 E n t i t y Student {

33 I n t ege r number ;

34 S t r i n g name ;

35 }

36 }

37 Aggregate Quiz {

38 Root E n t i t y Quiz {

39 I n t ege r i d key ;

40 L i s t<Question> quest ions ;

41 }

42 E n t i t y Question {

43 I n t ege r number ;

44 S t r i n g quest ion ;

45 }

46 }

Listing 2.1 presents three aggregates, CourseExecution, Quiz and Tournament, which each have a

root entity (it has a unique id) and a set of other entities. The CourseExecution and Quiz aggregate are

core domain, and the teams that develop them should not depend on the tournament model. Actually,

the Tournament uses them. Tournament has two invariants, lines 20-25: (1) tournament start time

should be before end time; (2) if the tournament creator is also a participant, they should have the same

name.

When mapping these concepts in the microservice architecture [9], we can associate a microservice

with each aggregate because it is an atomic unit of change. The upstream-downstream relation between

the microservices corresponds to an Application Programming Interface (API) of services offered by the

upstream aggregate, which is used by the downstream aggregates, and a set of events published by

6

the upstream aggregate that can be subscribed to by downstream aggregates. The former corresponds

to a dependence of the team responsible for the downstream aggregate on the API provided by the

upstream aggregate. The latter supports the independence of the upstream team on the downstream

teams; whenever changes occur in the upstream, they only have to publish the events; if interested, it is

the responsibility of the downstream team to subscribe them and perform the necessary changes.

Considering the aggregates above, the Course and Quiz aggregates are microservices that offer ser-

vice APIs that the microservice associated with Tournament aggregate can invoke. For example, when

a student enrolls in the tournament, the Tournament microservice invokes a query service in the Course

microservice to obtain the student’s information. And when a tournament is created, the Tournament

microservice invokes the Quiz microservice to create the tournament quiz. On the other hand, if a stu-

dent changes name, the Course microservice publishes an event that is subscribed by the Tournament

microservice because the team that develops Course is not aware of Tournament microservice.

We can consider two functionalities that complement this example. The UpdateStudentName func-

tionality accesses the Course aggregate, emitting an event that is subscribed to by the downstream

Tournament aggregate, because this is a Course functionality which is upstream. Upon processing of

the emitted event, the creator and participant names in the Tournament aggregate respect their invari-

ants. Meanwhile, the AddParticipant functionality reads from the Course aggregate to obtain student

information, then writes into the Tournament aggregate, adding the student to the participants list. This

process is feasible because the Tournament aggregate is downstream and this is a Tournament func-

tionality. This is depicted in Listing 2.2.

Listing 2.2: UpdateStudentName and AddParticipant functionalities.

1 F u n c t i o n a l i t y UpdateStudentName {

2 student = query CourseExecution#Student

3 update student . name

4 emit UpdateStudentNameEvent (s tudent)

5 }

6

7 F u n c t i o n a l i t y AddPar t i c ipan t {

8 tournament = query Tournament

9 student = query CourseExecution#Student

10 t ou rnamentPar t i c ipan t = create TournamentPar t ic ipant (tournament , s tudent)

11 update tournament (tou rnamentPar t i c ipan t)

12 }

The behavior of the microservice system is defined by its functionalities that may correspond to the

coordination of one or more microservices. When several microservice transactions are coordinated,

there is a distributed transaction that may result in inconsistent states. For instance, after the change of

a student name in CourseExecution microservice, the system can be inconsistent if that student is en-

rolled in Tournament. Eventually, the update name event will be processed and consistency restored. A

7

more complex interaction between transactions that can cause inconsistent states occurs in a particular

interleaving of the student enrollment functionality and the student update name functionality, when the

student being enrolled is the creator. The student enrollment functionality has two local transactions:

read student in the CourseExecution microservice, and register participant in the Tournament microser-

vice. When the update name functionality occurs after the read student (including the processing of its

update event in Tournament) and before the register participant, it will result that the creator will have

the updated name and the participant will have the initial name, which violates one invariant. Another

situation occurs when a Tournament in being created, which takes several steps, and if a query is done

to obtain all the tournament, an incompletely constructed tournament will be part of the result.

To address these types of problems, the Sagas transactional model was proposed, where due to

the lack of isolation, it is possible that transactions execute compensating transactions to restore a

consistent state in case of abort [8]. Currently, several patterns have been defined to implement the

Sagas transactional model [9], such as semantic locks that local transactions write on aggregates that

are in an intermediate state. In the mentioned case of a query for all tournaments, the microservice

implementing the query can filter the tournaments that are not completely constructed. Note that what

to do with semantic locks depends on the functionality; if the tournament has a different semantic lock

indicating that is being changed, it may not be filtered. Therefore, the definition of the behavior of Sagas

is done on a case-by-case basis, which increases the business logic complexity and makes it relevant

to be addressed soon in the development process because it determines the application behavior.

Synthesizing, the following aspects need to be addressed by a simulator for microservice systems

designed according to domain-driven design and following the Saga transactional model:

• Atomic Aggregates: According to the aggregate model, the aggregate is an atomic unit for change.

So the simulator should ensure that at any moment an aggregate cannot be changed by two trans-

actions, avoiding the lost update problem. For instance, two functionalities that enroll a student,

both read the same tournament and then update it. The last to write the tournament aggregate

should not overwrite the changes done by the first one;

• Aggregate Invariants: It is also necessary that the invariants are preserved at the aggregate level,

for each atomic change. For instance, after a student enrolls in the tournament, it is necessary to

verify the invariant associated with the names of the creator and participants;

• Upstream-Downstream Aggregate Relations: The processing of events is asynchronous, which

raises several situations: (1) by itself there is eventual consistency in the system that the function-

alities should be aware of, for instance, after the update student name, a functionality that accesses

the tournament may not get the most recent name, and if that is important from the functionality

business logic, it has to query the CourseExecution; (2) more complex is the possibility of a per-

8

manent inconsistencies due to the order of execution of the events, as described above, when the

update name event is processed before the register of the student;

• Aggregate Intermediate States: When a functionality has changed an aggregate but it has not

finished yet this state may be read by other functionalities, and, if the first functionality aborts

it occurs a dirt read problem. To address this, semantic locks need to be supported to mark

intermediate states. Therefore, in the simulator, upon accessing an aggregate with a semantic

lock, it is up to the functionality (it depends on its business logic) to decide whether it aborts and

retries, or it reads the aggregate, or if it ignores the semantic lock and continues processing. For

example, when a tournament is being updated, the last step is to update its quiz. If the quiz

update fails, the tournament update needs to be undone, and to inform other functionalities that

the tournament is in an intermediate state, a semantic lock is added to the tournament.

2.2 Semantics

2.2.1 Saga Architecture

As explained in the book Microservices Patterns [9], one of the most difficult tasks when working with a

microservice architecture is how to implement transactions that affect multiple services. In this type of

architecture, the problem lies when transactions affect data in multiple services, opposed to when they

happen in a single service in which we can still use ACID (Atomicity, Consistency, Isolation, Durability)

transactions.

The solution to this problem revolves around the use of Sagas [8]. Richardson proposes Saga as

a ”message-driven sequence of local transactions to maintain data consistency” [9]. The downside of

using Sagas is that they do not have the isolation property of ACID transactions, and therefore, the

application must use some countermeasures to mitigate this lack of isolation.

Neal Ford et al. [18] go even beyond Richardson and expand on the fact that there can be a multitude

of Transactional Saga patterns made from the different combinations of key dimensions: communication,

consistency, and coordination dimensions.

1. Communication: The mode or method of information exchange between different elements or

stages of the Sagas, which can be synchronous or asynchronous.

2. Consistency: The property regarding a system’s correctness and integrity of data in which multiple

operations are executed concurrently or in a distributed manner. It can be eventual or atomic.

3. Coordination: The approach used to manage and control the execution flow of a distributed trans-

action in a Saga. It can be orchestrated or choreographed.

9

2.2.2 Domain-Driven Design

In the world of microservice architecture, Domain-Driven Design is a fundamental approach used in

the development process. It is not only an architectural approach, but also a design philosophy that is

focused on the modeling of the domain of an application. This is particularly useful in the context of mi-

croservices, since it can help to better define and structure each service and its boundaries in the realm

of the application. The principles used in DDD are often based on concepts such as aggregates, events,

functionalities, entities, value objects, repositories, bounded contexts, and upstream-downstream rela-

tionships.

• Aggregates represent transactional consistency boundaries and dictate the rules for data modifi-

cations within a domain, which define the aggregate consistency. It is a unit of atomic change.

• Entity and Value objects are the elements that constitute aggregates, they contain the domain-

specific behavior and data.

• Events act as triggers for functionalities related to upstream-downstream relationships between

aggregates. They help orchestrate interactions between different components of the system, help-

ing to maintain coherence and consistency.

• Repositories are responsible for managing the lifecycle of aggregates, which includes their per-

sistence management.

• Bounded contexts group aggregates that are the development responsibility of a team.

• Upstream-downstream relationships between bounded contexts define development depen-

dencies between the teams responsible for the bounded contexts. The downstream team is aware

of the upstream team, and the inverse is not true. When a change occurs in an aggregate in an

upstream bounded context, an event is published that the aggregates in downstream bounded

contexts can subscribe to.

• Functionality defines the coordination of an interaction between aggregates through the invoca-

tion of their services. Aggregates also interact with each other via the publish-subscribe pattern.

A functionality is associated with an aggregate, known as the main aggregate of the functionality. It

invokes services in its main aggregates and all aggregates that are upstream, however, it cannot invoke

services in downstream aggregates because the team developing the functionality is not aware of down-

stream aggregates. Therefore, when an aggregate service changes an aggregate, it may publish events

that are subscribed by downstream aggregates. Upon receiving an event, the downstream aggregates

may trigger another functionality to handle it.

10

2.2.3 Sagas vs Transactional Causal Consistency

While Sagas are one of the most well-established approaches when it comes to maintaining data consis-

tency in microservice architectures, different alternatives have recently been proposed to mitigate some

of its problems. Transactional Causal Consistency (TCC) [19], for example, is another way to tackle

this problem. In contrast to Sagas, TCC aims to ensure consistency based on the causal relationships

between transactions. This can be relevant in scenarios where stronger consistency and isolation are

more important than the flexibility provided by Sagas. In fact, the high level of complexity of TCC is not

worth it for several applications, especially those that do not need strong consistency levels. Additionally,

currently there are no commercial implementations of TCC, and research implementations are on top

of key-value stores. In summary, at the business logic level, Sagas decentralize transaction manage-

ment, prioritize eventual consistency, continue to be more appropriate for complex workflows, and are

the industry standard.

In the following sections, we will explore how Sagas and TCC relate to the development of microser-

vice systems.

2.2.4 Transactional Causal Consistent Microservices Simulator

This simulator was previously developed to test and experiment with the design of microservices built

on the concept of aggregate. Aggregates are specified according to the concepts of invariants, which

define their business logic. Furthermore, the simulator supported the definition of the TCC behavior

associated with interactions between aggregates [20].

11

Figure 2.1: Simulator Decomposition View

The simulator consisted of three modules, as shown in Figure 2.1. There was the domain module

(red), which contained the concepts of aggregate and event that are used to define a microservice.

Then there was the causal module (green), where the infrastructure for TCC behavior was implemented

using the unit of work pattern [21]. Finally, there was the quizzes module, which corresponds to an

example of a microservice system implemented using the simulator. This module contained two sub-

modules: one related to microservices business logic independent of a particular transactional model

that extends the domain (blue) and the other that extends the transactional agnostic business logic with

TCC behavior (orange). A detailed explanation of these modules can be found in an article submitted

for publication [22].

Figure 2.2 exemplifies how the simulator could be used to implement a microservice. The diagram

shows the classes that needed to be extended and the methods that needed to be redefined. Firstly,

the microservice business logic was defined (blue). Then, the TCC behavior was added (orange). Note

how the domain elements (red) and the TCC infrastructure (green) were used in the extension.

12

Figure 2.2: Domain Model Extension

Some of its key architectural elements were:

• Aggregates: The aggregates in the simulator are designed to be independent of any specific

transactional model. This allows for a versatile foundation where the core business entities and

rules are defined without being initially bound to a particular transactional model.

• UnitOfWork: The unit of work pattern in the simulator serves as a mechanism for coordinating

complex transactions, especially those that span multiple aggregates or services.

• Functionality: Defines the coordination of aggregate services, using UnitOfWork to add transac-

tional behavior to their execution.

This approach allows the simulator to maintain a modular and flexible architecture, where the core busi-

ness logic encapsulated in aggregates and driven by events can be defined independently and later

integrated with a specific transactional model. It is worth mentioning that the simulator could help de-

velopers experiment with these different architectures and help them mimic the impact of the implemen-

tation according to their necessities and choices. To better understand how the simulator worked, an

example is described below that shows how the cases in Listings 2.1 and 2.2 were implemented. First,

the tournament aggregate and its corresponding invariants are defined as shown in Listing 2.3. The

Tournament id comes from extending Aggregate, where it is generated. Then, invariantStartTimeBe-

13

foreEndTime(), lines 8-10, represents the first invariant. After that, the verifyInvariants() method needs

to be overridden. The same is done for the getEventSubscriptions() method, lines 20-25. Both methods

are abstract methods defined in Aggregate. It should be noted that while only one case is demonstrated

here, developers are expected to include all relevant cases for invariants.

Listing 2.3: Tournament aggregate definition.

1 @Entity

2 p u b l i c abs t r ac t c lass Tournament extends Aggregate {

3 p r i v a t e LocalDateTime s ta r tT ime ;

4 p r i v a t e LocalDateTime endTime ;

5

6 . . .

7

8 p u b l i c boolean invar iantStar tT imeBeforeEndTime () {

9 r e t u r n t h i s . s ta r tT ime . i sBe fo re (t h i s . endTime) ;

10 }

11

12 @Override

13 p u b l i c vo id v e r i f y I n v a r i a n t s () {

14 i f (! invar iantStar tT imeBeforeEndTime () && . . .) {

15 throw new TutorExcept ion (INVARIANT BREAK , getAggregateId ()) ;

16 }

17 }

18

19 @Override

20 p u b l i c Set<EventSubscr ip t ion> getEventSubscr ip t ions () {

21 Set<EventSubscr ip t ion> eventSubscr ip t ions = new HashSet<>();

22 i n t e r I n v a r i a n t C r e a t o r E x i s t s (even tSubscr ip t ions) ;

23 . . .

24 r e t u r n even tSubscr ip t ions ;

25 }

26 }

Next, the Tournament aggregate is extended by the CausalTournament implementing the causal

aggregate. The three methods that have to be extended, getMutableFields(), lines 9-12, getIntentions(),

lines 14-20 and mergeFields(), lines 22-37, provide the causal semantics of the aggregate. Listing 2.4

shows the class definition.

14

Listing 2.4: CausalTournament aggregate definition.

1 @Entity

2 p u b l i c c lass CausalTournament extends Tournament implements CausalAggregate {

3 p u b l i c CausalTournament (I n tege r aggregateId , TournamentDto tournamentDto , UserDto creatorDto ,

4 CourseExecutionDto courseExecut ionDto) {

5 super (aggregateId , tournamentDto , creatorDto , courseExecut ionDto) ;

6 }

7 . . .

8

9 @Override

10 p u b l i c Set<St r ing> getMutab leF ie lds () {

11 r e t u r n Set . o f (” s ta r tT ime ” , ” endTime ” , ” tournamentCreator ” , . . .) ;

12 }

13

14 @Override

15 p u b l i c Set<S t r i n g []> g e t I n t e n t i o n s () {

16 r e t u r n Set . o f (

17 new S t r i n g []{ ” s ta r tT ime ” , ” endTime ” } ,

18 new S t r i n g []{ ” s ta r tT ime ” , ” numberOfQuestions ” } ,

19 . . .) ;

20 }

21

22 @Override

23 p u b l i c Aggregate mergeFields (Set<St r ing> toCommitVersionChangedFields ,

24 Aggregate committedVersion , Set<St r ing> committedVersionChangedFields){

25 i f (! (committedVersion ins tanceo f Tournament)) {

26 throw new TutorExcept ion (AGGREGATE MERGE FAILURE, getAggregateId ()) ;

27 }

28

29 Tournament committedTournament = (Tournament) committedVersion ;

30

31 mergeCreator (committedTournament , t h i s) ;

32 mergeStartTime (toCommitVersionChangedFields , committedTournament , t h i s) ;

33 mergeEndTime (toCommitVersionChangedFields , committedTournament , t h i s) ;

34 . . .

35

36 r e t u r n t h i s ;

37 }

38 . . .

39 }

Functionalities execute on transactional model-specific aggregates, in this case TCC. Listing 2.5

shows an example of how the addParticipant functionality, from Listing 2.2, was implemented in the

simulator. First, a unitOfWork is created, lines 2-3. Then, the necessary data is retrieved, in this case,

the tournament and the user (participant), lines 3-9. After that, a new TournamentParticipant is created.

The service is then invoked, and the participant is added to the tournament, line 11. All of this is done in

the context of the created unitOfWork. Finally, the unitOfWork service commits the changes, which are

dependent on the transactional model.

15

Listing 2.5: Functionality implementation example.

1 p u b l i c vo id addPar t i c i pan t (I n tege r tournamentAggregateId , I n tege r userAggregateId) {

2 CausalUnitOfWork unitOfWork = uni tOfWorkService . createUnitOfWork (

3 new Throwable () . getStackTrace () [0] . getMethodName ()) ;

4 TournamentDto tournamentDto = tournamentService . getTournamentById (

5 tournamentAggregateId , unitOfWork) ;

6 UserDto userDto = courseExecut ionServ ice . getStudentByExecut ionIdAndUserId (

7 tournamentDto . getCourseExecution () . getAggregateId () ,

8 userAggregateId ,

9 unitOfWork) ;

10 TournamentPar t ic ipant p a r t i c i p a n t = new TournamentPar t ic ipant (userDto) ;

11 tournamentService . addPar t i c i pan t (tournamentAggregateId , p a r t i c i p a n t , userDto . getRole () , unitOfWork) ;

12 uni tOfWorkService . commit (unitOfWork) ;

13 }

The functionality invokes aggregate services. The addParticipant service of Tournament aggregate

is shown in Listing 2.6.

Listing 2.6: addParticipant service of Tournament aggregate.

1 @Retryable (

2 value = { SQLException . c lass } ,

3 backo f f = @Backoff (delay = 5000))

4 @Transactional (i s o l a t i o n = I s o l a t i o n .READ COMMITTED)

5 p u b l i c vo id addPar t i c i pan t (I n tege r tournamentAggregateId ,

6 TournamentPar t ic ipant tournamentPar t i c ipan t , S t r i n g userRole , CausalUnitOfWork unitOfWork) {

7 Tournament oldTournament = (Tournament) uni tOfWorkService .

8 aggregateLoadAndRegisterRead (tournamentAggregateId , unitOfWork) ;

9

10 Tournament newTournament = new CausalTournament ((CausalTournament) oldTournament) ;

11

12 newTournament . addPar t i c i pan t (tou rnamentPar t i c ipan t) ;

13

14 unitOfWork . registerChanged (newTournament) ;

15 }

It can be observed that the implementation of the service is strongly coupled with the transactional

model, it creates CausalTournament instances, line 10. Also, note that the method aggregateLoadAn-

dRegisterRead() also depends on the transactional model but it is already encapsulated inside the

UnitOfWork.

Some problems that were identified with the state of the simulator before the work of this thesis was

conducted include:

• Hardcoded Functionalities and Services: The implementation tightly integrated specific functionali-

ties and services with the transactional model (TCC), limiting the simulator’s flexibility to experiment

with different architectural styles, such as the Saga pattern. This can be seen in the functionality

implementation, that used a concrete UnitOfWork that implements TCC, and in the order of invo-

16

cations. This is visible in Listings 2.5 and 2.6 where a CausalUnitOfWork is created and used,

respectively. Also, a particular class of Causal aggregate is created. This is shown in Listing 2.6,

where a tournament is created from a CausalTournament. Note that if compensating transac-

tional needs to be added, the functionality implementation needs to be changed. Furthermore, the

services depend on the UnitOfWork and the transactional specific aggregates.

• Limited Communication Patterns: The simulator’s design assumed synchronous communication

patterns, which can be seen in Listing 2.5 where the code directly invokes service methods in a

specific sequence. This may not be suitable for all microservice architectures, especially those

employing asynchronous methods.

These problems may hinder the use of the simulator in more contexts and handicap its effective

utilization in diverse architectural contexts and practical applications. The following sections will explore

and discuss these challenges in more depth and potential solutions.

17

18

3
Related Work

Contents

3.1 Transactional Saga Patterns . 20

3.2 Existing tools and frameworks . 20

3.3 Comparison with the developed framework . 29

3.4 Simulation in Microservices . 30

There are middleware technologies for the implementation of microservice systems, such as Spring

Cloud1. However, by using them, it is not possible to do some upfront design of the system functionalities

and their business logic because the developer soon becomes immersed in the technology complexity.

On the other hand, there are frameworks that support the design of microservice applications at a higher

level, such as Eventuate Tram [23], Temporal [24] and SagaMAS [25]. Although these frameworks

provide higher level constructs, such as service orchestration and compensating transactions, they do

not explicitly provide constructs for domain-driven design, and are still focus on the development of a

production system, which raise the same technology complexity problems.

There are several simulators for distributed systems that focus on the modeling of the network and

the analysis of its qualities [26–29] or to describe distributed algorithms [30–32] but they do not focus on
1https://spring.io/projects/spring-cloud

19

https://spring.io/projects/spring-cloud

microservice architectural style, nor address problems such as transaction management.

A new set of simulators have recently been proposed for microservice systems. They focus more

on aspects such as performance [33], where a dependency graph is designed to identify performance

bottlenecks, or focus in a particular domain like manufactoring [34], or simulation for edge/fog computing

environments [35, 36] with service migration, dynamic distributed cluster formation, and microservice

deployment, or focus on the performance of cloud native microservice chains [37], or the microservices

system resilence on the occurrence of faults [38], or on the issue of integrating several simulators for

embedded systems [39]. Overall, these simulators ignore the business logic complexity of some mi-

croservice systems.

Some research is done on the extension of aggregates to ensure consistency between replicas of

entities in data-intensive distributed systems, such as microservices [40]. They address the same type

of problems common to microservice systems that our simulator intends to identify through simulation.

3.1 Transactional Saga Patterns

As mentioned before, multiple combinations of key dimensions can generate a series of various Trans-

actional Saga patterns. This idea is well presented in the book by Ford et al. [18] from which we can

take the patterns in the table 3.1 below.

Table 3.1: Transactional Saga Patterns

Pattern Name Communication Consistency Coordination

Epic Saga (sao) Synchronous Atomic Orchestrated
Phone Tag Saga (sac) Synchronous Atomic Choreographed
Fairy Tale Saga (seo) Synchronous Eventual Orchestrated
Time Travel Saga (sec) Synchronous Eventual Choreographed
Fantasy Fiction Saga (aao) Asynchronous Atomic Orchestrated
Horror Story Saga (aac) Asynchronous Atomic Choreographed
Parallel Saga (aeo) Asynchronous Eventual Orchestrated
Anthology Saga (aec) Asynchronous Eventual Choreographed

3.2 Existing tools and frameworks

There are already some tools and frameworks that help developers in the process of building microser-

vice systems that use the Saga transactional pattern. There are already some studies that compare

some of these tools [12, 13]. From there, we took inspiration to seek and propose meaningful alterna-

tives for the simulator to explore.

20

3.2.1 Eventuate Tram Sagas

Eventuate Tram [23] is an open-source framework that facilitates the development of applications when

it comes to transactional messaging and Sagas. The main focus of this framework are Sagas with an

asynchronous communication style such as the Fantasy Fiction Saga (aao), Horror Story Saga (aac),

Parallel Saga and Anthology Saga (aec) from Table 3.1. This framework provides abstract classes, in-

terfaces and a DSL on which developers can build and use to define a Saga’s state machine. These

interfaces and method overriding encourage polymorphism that supports the reuse of framework com-

ponents.

The aggregates not only represent the domain elements but also implement business logic, which

can be described by a state machine. This consists of the definition of several groups of methods, each

group corresponding to a Saga. Creating a Saga is a simple process of extending the Saga class as in

Figure 3.1:

1. Define the orchestrator

(a) Define the sequence of steps the Saga should execute in the functionality;

(b) Specify handlers for each step with the logic for what should happen when a step is executed;

(c) Define the compensating actions for each step, in case of failure;

(d) Set the conditions that determine when the Saga should proceed to the next step or terminate.

2. Define the participants

(a) Define the methods that are invoked with commands by the orchestrator.

3. Both for the orchestrator and the participants services command handlers need to be implemented.

Figure 3.1: Eventuate Tram Sagas Example

Although the framework is intended for distributed systems, it can also be deployed in a centralized

way. It provides the necessary means to be tested locally and, so, simulate a distributed environmnent

and some of its characteristics like asynchronous communication, Saga execution and coordination

21

sequences and transactional messaging, failure scenarios and compensation logic and the concept of

eventual consistency.

This framework allows for easy specification and implementation of microservices while maintaining

a high degree of expressiveness. The framework provides a structured way to define Sagas through

the orchestration of multiple microservices (participants). This orchestration includes specifying the

sequence of steps, handling each step, and defining compensating actions for failures. It makes complex

interactions within a distributed system clearer and more manageable. Communication typically occurs

through commands and events. Commands are directives to perform an action, and events signal that

something has happened. This method of communication is expressive, as it clearly delineates actions

(commands) and reactions (events) within the system. It is well documented and moderately easy to

use and configure. Although, it is a bit limited when it comes to the different types of Sagas that are

possible to implement, especially with the high degree of specification complexity proposed by Ford et

al. [18].

Listing 3.1 shows a simple version of how the previously discussed AddParticipant functionality could

be implemented with Eventuate as a Saga. First, a compensating action is defined, lines5-6, in case

the subsequent steps fail. Then the next, lines 8-9, step creates the getParticipant command message

by calling AddParticipantSagaData.getParticipant() and sends it to the channel specified by courseEx-

ecutionService.getParticipant. Finally, if a successful reply is received from courseExecutionService,

saveTournamentCourseExecution() is executed, lines 10-11.

Listing 3.1: AddParticipant Functionality with Eventuate

1 p u b l i c AddPart ic ipantSaga (TournamentServiceProxy tournamentService ,

2 CourseExecut ionServiceProxy courseExecut ionServ ice) {

3 t h i s . sagaDe f i n i t i on =

4 step ()

5 . withCompensation (tournamentService . r e j ec tAddPa r t i c i pan t ,

6 AddPart ic ipantSagaData : : undoAddPart ic ipant)

7 . s tep ()

8 . i n v o k e P a r t i c i p a n t (courseExecut ionServ ice . g e t P a r t i c i p a n t ,

9 AddPart ic ipantSagaData : : g e t P a r t i c i p a n t)

10 . onReply (TournamentPar t ic ipantDto . c lass ,

11 AddPart ic ipantSagaData : : saveTournamentCourseExecution)

12 . s tep ()

13 . i n v o k e P a r t i c i p a n t (tournamentService . addPar t i c ipan t ,

14 AddPart ic ipantSagaData : : addPar t i c i pan t)

15 . b u i l d () ;

16 }

22

3.2.2 Temporal

Temporal [24] is also an open-source framework to build resilient, distributed, and scalable applications.

It has several features like workflow orchestration, state management or retry, and compensation logic

that can be useful in the development of Saga-based patterns. Abstraction, modularity, encapsulation,

and inheritance are some of the design principles that Temporal is based on and solidify it as a viable

object-oriented framework that can be easily reusable in different applications and contexts.

While there is no direct equivalent of aggregates and Sagas in Temporal, the concept of a Work-

flow shares some similarities, particularly in managing business logic, maintaining state, and ensuring

consistency and fault tolerance. Each Workflow has activities that correspond to what steps are in a

Saga.

The following steps can be used to reproduce the implementation of a Saga:

1. Define Activities: These are the transaction steps and their corresponding compensations.

2. Define a Workflow Interface: This will orchestrate the activities.

3. Implement the Workflow: Define the logic to execute activities and handle failures.

Figure 3.2 contains the classes needed to implement the equivalent behavior of a Saga in Temporal.

Figure 3.2: Temporal Example

Temporal can also be run in a local environment with the help of technologies like Docker for sim-

ulation purposes, but not in a single process like the Transactional Causal Consistent Microservices

Simulator.

This framework is also well documented, but the nomenclature of concepts requires some adaptation,

which might require additional effort from the user. Although it allows for the development of complex

systems and applications, it also lacks versatility when it comes to the different types of Sagas proposed

by Ford et al. [18].

The main difference between Temporal and Eventuate Tram Sagas is that Temporal focuses on or-

chestrating complex workflows and activities, providing a robust framework for state management and

23

fault tolerance, while Eventuate focuses on managing distributed transactions using the Saga pattern.

Temporal is more process-oriented, focusing on workflow orchestration and stateful long-running pro-

cesses, opposed to Eventuate, which is more transaction-oriented.

Listing 3.2 shows a simple version of how the previously discussed AddParticipant functionality could

be implemented with Temporal. Firstly, the interface for the activities is defined, lines 2-9. These methods

should then be implemented according to the business logic. After that, the interface for the workflow

is defined, lines 12-16. Finally, the workflow is implemented, lines 28-40. Several options for how

the activities are executed, for example, retry timers can be configured. Then, said activities and the

corresponding compensating activities are executed.

24

Listing 3.2: AddParticipant Functionality with Temporal

1 / / A c t i v i t i e s I n t e r f a c e

2 @ A c t i v i t y I n t e r f a c e

3 p u b l i c i n t e r f a c e TournamentAc t i v i t i es {

4 @Activi tyMethod

5 TournamentPar t ic ipantDto g e t P a r t i c i p a n t (AddPart ic ipantSagaData data) ;

6 vo id addPar t i c i pan t (AddPart ic ipantSagaData data , TournamentPar t ic ipantDto p a r t i c i p a n t) ;

7 vo id undoAddPart ic ipant (AddPart ic ipantSagaData data) ;

8 vo id saveTournamentCourseExecution (AddPart ic ipantSagaData data) ;

9 }

10

11 / / Workflow I n t e r f a c e

12 @Workf lowInterface

13 p u b l i c i n t e r f a c e AddPar t ic ipantWorkf low {

14 @WorkflowMethod

15 vo id addPart ic ipantSaga (AddPart ic ipantSagaData data) ;

16 }

17

18 / / Workflow Implementat ion

19 p u b l i c c lass AddPar t ic ipantWork f lowImpl implements AddPar t ic ipantWorkf low {

20 p r i v a t e f i n a l A c t i v i t y O p t i o n s opt ions = A c t i v i t y O p t i o n s . newBui lder ()

21 . setStar tToCloseTimeout (Durat ion . ofHours (1))

22 . se tRet ryOpt ions (RetryOpt ions . newBui lder () . setMaximumAttempts (1) . b u i l d ())

23 . b u i l d () ;

24

25 p r i v a t e f i n a l TournamentAc t i v i t i es a c t i v i t i e s =

26 Workflow . newAct iv i t yS tub (TournamentAc t i v i t i es . c lass , op t ions) ;

27

28 @Override

29 p u b l i c vo id addPart ic ipantSaga (AddPart ic ipantSagaData data) {

30 Saga . Options sagaOptions = new Saga . Options . Bu i l de r () . setPara l le lCompensat ion (t r ue) . b u i l d () ;

31 Saga Saga = new Saga (SagaOptions) ;

32 t r y {

33 TournamentPar t ic ipantDto p a r t i c i p a n t = a c t i v i t i e s . g e t P a r t i c i p a n t (data) ;

34 a c t i v i t i e s . addPar t i c i pan t (data , p a r t i c i p a n t) ;

35 Saga . addCompensation (a c t i v i t i e s : : undoAddPart ic ipant , data) ;

36 a c t i v i t i e s . saveTournamentCourseExecution (data) ;

37 } catch (A c t i v i t y F a i l u r e e) {

38 Saga . compensate () ;

39 throw e ;

40 }

41 }

42 }

3.2.3 SagaMAS

SagaMAS [25] is essentially a multi-agent based framework that is being developed, where the com-

munication and coordination aspects of Sagas are handled by multi-agent systems principles. Although

25

there is no specific implementation yet, the idea is that each microservice is associated with a specific

agent. This agent may be located on the same server as the microservice or elsewhere. When a trans-

action is initiated in a microservice, it communicates the start of this transaction to its associated agent.

After the agent is informed about the start of the transaction, an independent multi-agent layer takes

over the handling of the transaction. This layer is also responsible for managing any errors related to

the transactions and the agent layer itself. By doing this, the novelty is that there is a decoupling of the

coordination aspect of transactions that becomes a responsibility of the agent layer, opening the door for

future AI solutions and discoveries. Since its implementation is not publicly available yet, it is difficult to

predict how the framework should be used. However, the authors specify that developers need to define

the following predicates:

• incoming action(st name, action): to define the action to be executed in the microservice given the

sub-transaction.

• compensation action(st name, action): to define action that is to be executed in case there is a

problem in the transaction as a compensating mechanism.

• next(st name, agent): to define the agent to execute the given subtransaction.

• next(st name, new st name, agent): to link an existing subtransaction with a new sub-transaction

and set the agent that will start it. This can be used to define non simple paths in the transaction

without ambiguity.

Listing 3.3 shows how this translates to the AddParticipant functionality.

Listing 3.3: AddParticipant Functionality with SagaMAS

1 / / Agent Tournament

2 i ncoming ac t ion (addPar t i c ipan t , c rea teAddPar t i c i pan t) .

3 compensat ion act ion (addPar t i c ipan t , undoAddPart ic ipant) .

4 next (addPar t i c ipan t , courseExecut ion) .

5 i ncoming ac t ion (saveTournamentCourseExecutionApproval , saveTournamentCourseExecution) .

6 compensat ion act ion (saveTournamentCourseExecutionApproval , cance lAddPar t i c ipan t) .

7

8 / / Agent CourseExecution

9 i ncoming ac t ion (addPar t i c ipan t , g e t P a r t i c i p a n t) .

10 next (addPar t i c ipan t , saveTournamentCourseExecutionApproval , tournament) .

Although the paper does not mention other transactional models apart from Sagas, the idea of using

a multi-agent system architecture that is responsible for the coordination aspects of microservices could

be explored for other models like TCC for example, or even a combination where different services don’t

follow the same model. This becomes a possibility to explore thanks to the abstraction layer provided by

the use of agents.

26

3.2.4 Comparison Overview

Tables 3.2 and 3.3 show comparisons between the mentioned frameworks.

It should be taken into account that in Eventuate Tram Sagas both the functionality and coordination

elements are decoupled from the actual service. An attempt to implement this structure could be made in

the TCC Microservices Simulator, which uses the concepts of aggregates to encapsulate business logic

and data, and services to handle business operations associated with these aggregates. This would

require re-writing the functionalities and services so that they would be decoupled from the transactional

model.

To extend the simulator to accommodate Sagas presented a significant challenge, some considera-

tions revolving around its architecture and mechanisms were taken into account:

• Functionalities were defined as a coordination mechanism tied to aggregate service operations. To

accommodate Sagas, it is essential to conceptualize these functionalities as Saga steps, which are

essentially service invocations. This shift will require rethinking how the simulator treats operations,

making them a series of interrelated actions across multiple services.

• The simulator’s Unit of Work supported a transactional model, not direct coordination. Extend-

ing the simulator for Sagas involved integrating an orchestration or choreography mechanism for

coordinating these Saga steps. To accomplish this, another version of the unit of work was imple-

mented, since its main purpose was to support a transactional model instead of coordination.

• Communication in the TCC simulator was primarily direct invocations and publishing and subscrip-

tion of events. For Sagas, the communication strategy was made to include both direct service

invocations and asynchronous messaging (commands and events), which are typical in Saga im-

plementations. This allows for greater decoupling between services and more flexibility since

services’ behavior was previously hardcoded.

• One of the most significant aspects of the Saga pattern is its approach to handling failures through

compensating transactions. Since the TCC simulator, in its previous form, did not inherently con-

sider compensating logic due to TCC’s atomic nature, a key part of the extension was introducing

and integrating this mechanism. This involved designing ways to reverse the effects of previous

operations in a Saga when a subsequent operation fails.

In conclusion, making the TCC Microservices Simulator compatible with Sagas required considerable

changes to its core structure, particularly if we take into account the various Saga patterns outlined by

Neal Ford et al [18].

27

Table 3.2: Comparison Overview

Eventuate Tram Sagas Temporal SagaMAS

Communication Asynchronous Both Asynchronous

Consistency Eventual Eventual Eventual

Coordination Orchestrated Orchestrated Semi-orchestrated

Ease of Integration Moderate Moderate -

Expressiveness Moderate Low -

Scalability Good Good Good

Distributed environment yes yes yes

Local environment Centralized or Simulated Distribution in the same machine Centralized or Simulated Distribution in the same machine -

Compensating Transactions yes yes yes

Automatic retry yes yes no

Built-in language support Java Go, Java, php, python -

Table 3.3: Design Elements

Design Element Eventuate Tram Sagas Temporal SagaMas TCC Microservices Simulator

Functionality/Operation Saga Steps Activities Actions Service Invocation

Orchestration/Coordination Saga Orchestrator Workflow Interface Multi-Agent System Coordination Functionality/Unit of Work

Communication Commands & Events Workflow Signal Methods Agent Communication Service invocation, Publish/Subscription of Events

Compensation Logic Compensating Actions for Each Step Activity Retries and Compensations Compensating Actions Merge Process

Consistency Model Eventual Consistency Eventual Consistency Eventual Consistency Transactional Causal Consistency

Testing Environment Local & Distributed Local (via Docker) & Distributed - Local & Simulated Distributed

Additional Features - State Management, Workflow Orchestration - Invariants

28

3.3 Comparison with the developed framework

In this section, we compare the proposed microservice framework with other existing solutions to high-

light its strengths and areas for improvement. While many frameworks provide tools for microservice

architecture, such as handling distributed transactions and communication, the framework developed in

this thesis brings unique advantages in terms of flexibility, domain-driven design, and ease of testing.

3.3.1 Eventuate Tram Sagas

Eventuate Tram Sagas is a well-known framework for implementing distributed transactions using the

Saga pattern. Like our framework, it supports compensating transactions and event-based communi-

cation, which helps ensure eventual consistency across services. However, Eventuate Tram Sagas is

focused primarily on asynchronous communication and lacks direct support for domain-driven design

principles.

Our framework, on the other hand, integrates domain-driven design deeply into the architecture,

making it easier for developers to map their business logic directly into the microservices without ad-

ditional complexity. Additionally, the support for upstream-downstream aggregate relationships in our

framework encourages cleaner separations of responsibilities between teams, reducing dependencies

and enhancing productivity.

3.3.2 Temporal

Temporal is another framework that allows developers to build resilient, distributed systems. It focuses

on workflow orchestration and offers strong state management and retry mechanisms for long-running

processes. Temporal’s main strength lies in its ability to handle complex workflows with fault tolerance,

which is beneficial for certain use cases, but it can also introduce complexity in terms of configuration

and setup.

Compared to Temporal, our framework offers a more lightweight approach, with a simpler configu-

ration process, making it easier for smaller teams or projects that do not require complex state man-

agement to get started. While Temporal excels at handling highly complex workflows, our framework

strikes a balance between flexibility and ease of use, providing sufficient robustness for most business

applications without unnecessary overhead.

3.3.3 SagaMAS

SagaMAS is a multi-agent-based system that manages distributed transactions through agents. It

presents an innovative approach by decoupling transaction coordination from the services themselves,

29

allowing the coordination to be handled independently. However, SagaMAS is still in its early stages,

and its practical applications are yet to be fully explored.

In contrast, our framework is already fully implemented and tested, providing concrete tools for han-

dling distributed transactions with well-defined patterns. By incorporating both semantic locks and com-

pensating transactions, our framework delivers a reliable solution for ensuring consistency while allowing

teams to work independently on their services.

3.3.4 Overall Comparison

Each of the compared frameworks has its strengths, but our framework offers a unique combination of

features that make it particularly suitable for development teams following domain-driven design and

aiming to simulate complex microservice interactions early in the development process.

3.4 Simulation in Microservices

With the increasing popularity of microservice architectures, there is also a need for good and reliable

simulation environments and tools for these systems [41,42]. In this section, we will explore some of the

work that has already been developed in this area.

3.4.1 FERAL

FERAL [39], as the name indicates, is a Framework for Efficient simulator coupling on Requirements and

Architecture level. Feral attempts to address several challenges when it comes to accurately predicting

the behavior of embedded systems in complex environments. Communication behavior, system envi-

ronments, and functional behavior of system components are some characteristics that usually involve

the coupling of specialized simulators. This introduces restricted flexibility in choosing simulators and

an inability to create integrated scenarios efficiently. To address this, FERAL enables the integration

of heterogeneous simulators and simulation models, offering high reuse potential, simplifying simulator

integration, and enabling the rapid development of simulator coupling scenarios. The framework aims

to address the problems of semantic integration between simulators, correct synchronization, and the

need for extensibility to accommodate additional simulators and models. Although FERAL is focused on

embedded systems, dealing with hardware-software interaction, there are some key ideas that could be

taken into consideration when developing the microservices simulator. Both incorporate multiple compo-

nents. Feral integrates multiple simulators in a single framework; similarly, the microservices simulator

intends to integrate different transactional models, architectural styles and patterns within microservice

systems. The simulator would allow for a different combination of aspects to be simulated, such as

30

Sagas or TCC and synchronous or asynchronous communication. Both attempt to be modular and

flexible, allowing for the reuse of components and adapting to different simulation needs. To achieve a

high level of modularity, like in FERAL, the simulator could try to maximize the number of independent

components/modules, so that they could be easily replaced and operate independently without affecting

each other. This would also facilitate the addition of new features, models, and simulating components

contributing to better extensibility. As FERAL allows for different execution models that are integrated

as directors, the simulator could try a similar approach where the execution and communication are

also managed in independent layers. FERAL’s correct synchronization, which refers to the precise co-

ordination of multiple simulation components, is a concept that could also be applied to the simulator.

This would ensure that multiple microservices interact cohesively, even if they follow different transac-

tional patterns. This is also important in the context of distributed systems, where services may operate

asynchronously or depend on one another’s outputs.

3.4.2 µqSim

µqSim [43] is a scalable and validated queueing network simulator for interactive microservices. The

main problems addressed by µqSim are the complexity introduced by changing from monolithic designs

to microservices and the difficulty in studying microservices at scale. µqSim provides detailed intra- and

inter-microservice models, allowing for accurate reproduction of complex applications. µqSim is modular,

supporting the reuse of individual models across different microservices and applications. Similarly to

what was discussed in 3.4, although the focal point of µqSim is microservices and its domain is slightly

different from the microservices simulator, there are some points that could be considered. µqSim

focuses on microservices, emphasizing scalability and performance in interactive systems, while the

simulator focuses on exploring transactional models in microservices. Even though µqSim specifically

targets performance metrics such as throughput and tail latency, it was also developed with adaptability

and modularity in mind, allowing component reuse, such as the microservices simulator. µqSim also

provides users with the possibility of using high-level, declarative specifications of the microservices

dependency graph and server platforms. Something like this could be implemented in the simulator to

allow for configuration specification or easier testing development.

These works solidify the increasing adoption of microservices and reinforce the need for simulators

and tools that help with their comprehension and development. Both works provide valuable insights

on how to approach and model a simulation environment and how to handle complexity in microservice

architectures.

31

32

4
Microservice Simulator

Contents

4.1 Microservice Sagas Simulator . 33

4.2 Microservice Simulator Framework . 46

This chapter contains the details and explanations about the implementation and the work that was

done to transform the Transactional Causal Consistent Microservices Simulator into a Microservice Sim-

ulator Framework that allows for both Transactional Causal Consistent and Sagas implemented mi-

croservice simulation.

4.1 Microservice Sagas Simulator

The microservice simulator supports domain-driven design concepts and their integration in a microser-

vice architecture. In addition, it provides a centralized execution engine that simulates the execution of

Sagas in a distributed environment.

This section presents the implementation and adaptation of key concepts within the microservice

architecture, focusing on the integration of the Saga pattern into the simulator framework. To achieve

this the previous TCC simulator was extended and adapted to allow for both transactional models.

33

The next sections explain how aggregates were adapted to allow for the Saga architecture, how

workflows and the unit of work pattern were used to manage functionalities and the remaining structural

changes that were made in the simulator.

4.1.1 Overview

In order to accommodate for the Sagas architecture and simulation, some changes and refactorizations

were made to the structure of the simulator. These can be seen in Figure 4.1. In this updated view, a

new module for coordination is implemented. It contains the abstractions for unitOfWork and workflow,

which will be used to define the transactional logic. The unitOfWork is responsible for the management

of the transactional aspect of operations. The workflow is responsible for defining and managing the

sequence in which business operations are performed. Each of these is also extended according to

a specific transactional model. These abstract modules separate the transactional behavior from the

execution logic of the functionality. Regarding the implementation of quizzes, a new module equivalent

to quizzes causal appears, but for the Saga model. These modules contain the aggregate extension and

the definitions of the workflows for each functionality behavior that are specific to each model. Finally,

quizzes microservices contains all the components that are common to both transactional modules.

34

Figure 4.1: Updated Simulator Decomposition View

35

4.1.2 Aggregate Design

Aggregate

+ aggregateId

+ verifyInvariants()
+ getEventSubscriptions()

Event Subscription

+ subscribesEvent()

Event

<<Interface>>
Saga Aggregate

+ getSagaState()
+ setSagaState(...)

Tournament

+ startTime: DateTime
+ endTime: Datetime
+ creator: Creator
+ participants: List<Participant>
+ quiz: TournamentQuiz

+ verifyInvariants()
+ getEventSubscriptions()

Saga Tournament

+ aggregateState

Update Student
Name Event

Tournament Subscribes
Update Student

Name Event

+ subscribesEvent()

Event Handler

+ handleEvent()

Tournament Update
Student Name
Event Handler

+ handleEvent()

<<Interface>>
Saga State

+ getStateName()

Saga Tournament State

+ getStateName()

Tournament
Service

+ createTournament(...)
+ addParticipant(...)
+ getParticipants()
...

Figure 4.2: Aggregate Domain Model.

36

The simulator supports the specification of aggregates that are prepared to execute according to a Sagas

transactional model. Figure 4.2 presents the main entities of the simulator domain model to represent

Sagas. For modularity and extensibility, the model has different levels of cohesion. The classes in red

and in green are independent of the application domain; they belong to the simulator core and are reused

for all simulations. The red classes are related to the definition of aggregates, and the green classes to

the definition of a Sagas transactional model; therefore, it is possible to extend the simulator to support

other transactional models. The blue and orange classes are application dependent, whereas the blue

is independent of the transactional model and the orange is specific of the Sagas transactional model.

The central concept is the aggregate that comprises a set of entities and has a unique identifier, such

that other microservices can refer to it. Abstract class Aggregate has a unique aggregateId and defines

two abstract methods: verifyInvariants which define the invariant aggregates; and getEventSubscriptions

that define the events to which it subscribes from upstream microservices. In the figure, these methods

are overriden in Tournament. In addition, Tournament refers to the other entities that comprise the

aggregate, Participant and TournamentQuiz. Note that these entities are not aggregates.

The SagaAggregate interface provides methods to support semantic locks (getSagaState and set-

SagaState). These methods are implemented in SagaTournament to enrich Tournament with Sagas

transactional management. In addition, the implementations of the SagaState interface define the se-

mantic locks for each type of aggregate.

Abstract classes Event, EventSubscription and EventHandler define the simulator core for upstream-

downstream asynchronous processing of events. Upstream microservices emit their events during the

execution of services, and downstream events implement EventSubscription and EventHandler to, re-

spectively, subscribe and process the events they are interested in. The instances of EventSubscription

are returned by the getEventSubscriptions of the aggregate.

Below, we present the code for some of the simulator extensions for the Quizzes Tutor system.

37

Listing 4.1: verifyInvariants() and getEventSubscriptions() methods

1 p u b l i c vo id v e r i f y I n v a r i a n t s () {

2 i f (! (t h i s . s ta r tT ime . i sBe fo re (t h i s . endTime) &&

3 . . . {

4 throw new TutorExcept ion (INVARIANT BREAK , . . .) ;

5 }

6 }

7

8 p u b l i c Set<EventSubscr ip t ion> getEventSubscr ip t ions () {

9 Set<EventSubscr ip t ion> eventSubscr ip t ions = new HashSet<>();

10 eventSubscr ip t ions . add (

11 new TournamentSubscribesUpdateStudentName (t h i s)) ;

12 . . .

13 r e t u r n even tSubscr ip t ions ;

14 }

The code in Listing 4.1 shows the definition of the two methods in aggregate Tournament for invariant

verification, lines 1-6, and subscription of events, lines 8-14. For the event subscription it registers an

instance of TournamentSubscribesUpdateStudentName which subscribesEvent method is defined to

verify if there is an event of UpdateStudentNameEvent for one of the tournament participants, as shown

in the following code in Listing 4.2.

Listing 4.2: subscribesEvent method

1 p u b l i c boolean subscr ibesEvent (Event e) {

2 r e t u r n

3 getEventType () . equals (e . getEventType) &&

4 p a r t i c i p a n t s . stream () . anyMatch (p ->

5 p . getAggregateId . equals (((UpdateStudentNameEvent) e)

6 . getStudentAggregateId ()))

7 }

Handling events triggers the execution of a functionality. The simulator periodically handles the

events by invoking the handleEvent method of TournamentUpdateStudentNameEventHandler.

Finally, class TournamentService defines the methods of the microservice API, in this case for the

Tournament microservice. The simulator expects that a class is defined for each microservice, and

although it does not inherit from an abstract class, common to all microservice APIs, it reuses some

generic methods provided by the simulator coordinator part, such as, for instance, a method to emit

events (registerEvent) or update changed aggregates (registerChanged) in class UnitOfWorkService in

Figure 4.3).

38

Listing 4.3: addParticipant method

1 @Transactional (i s o l a t i o n = I s o l a t i o n . SERIALIZABLE)

2 p u b l i c vo id addPar t i c i pan t (. . .) {

3 Tournament oldTournament = (Tournament)

4 uni tOfWorkService . aggregateLoadAndRegisterRead (. . .) ;

5 Tournament newTournament = oldTournament . c lone () ;

6 newTournament . addPar t i c i pan t (tou rnamentPar t i c ipan t) ;

7 uni tOfWorkService . registerChanged (newTournament) ;

8 }

In the method addParticipant of the Tournament microservice API, shown in Listing 4.3, the tourna-

ment aggregate is read using the unit of work service, lines 3-4, then it is duplicated, line 5, and the

participant is added, line 6. Finally, the new aggregate is registered in the Saga unit of work service to

be committed, line 7.

4.1.3 Coordination Design

The coordination design describes how the functionality of a system is achieved through the interaction

of several microservices. The execution of a system functionality is triggered by an external interaction

with the system, such as updating the name of a student, for instance.

The design applies the Unit of Work pattern to define the transactional context associated with the

execution of a functionality [44] and the Workflow patterns to define the coordination of several ser-

vices [45]

39

Workflow
Functionality

+ workflow: Workflow

+ executeWorkflow(...)

Workflow

+ unitOfWork: UnitOfWork
+ executionPlan: ExecutionPlan

+ addStep(...)
+ planOrder(...)
+ execute()

Flow Step

+ name: String

+ getDependencies()
+ execute(...) dependencies

*

SyncStep

+ operation: Runnable

+ execute()

AsyncStep

+ operation: Supplier<Future>

+ execute()

*

<<Interface>>
Saga Step

+ registerCompensation()

Saga SyncStep

+ compensation: Runnable

+ registerCompensation()

Saga AsyncStep

+ compensation: Supplier<Future>

+ registerCompensation()

Saga Workflow

+ planOrder(...)

Add Participant
Functionality Sagas

+ buildWorkflow(...)

UnitOfWork

Saga UnitOfWork

+ compensatingOperations: List<Runnable>
+ aggregatesInSaga: Set<Aggregate>

+ registerCompensation(...)
+ addToAggregatesInSaga()

UnitOfWork Service

+ createUnitOfWork(...)
+ registerChanged(...)
+ registerEvent(...)
+ commit(...)
+ abort(...)

Saga UnitOfWork Service

+ createUnitOfWork(...)
+ registerChanged(...)
+ registerEvent(...)
+ registerSagaState(...)
+ commit(...)
+ abort(...)

Figure 4.3: Functionality Domain Model.

To define a functionality, it is necessary to implement a single class, like AddParticipantFunctionali-

tySagas in Figure 4.3 for adding a student as a participant of the tournament. This class uses the core

coordination classes of the simulator that will manage the execution of the functionality. The architect

only has to define the coordination implementation method buildWorkflow and indicate the events that

may have to be handled during functionality execution, method handleEvents. The latter is due to the

fact that during the execution of a Saga the functionality may be interested in some event that occurred

in an aggregate which it has interacted with.

By invoking the executeWorkflow method in WorklowFunctionlity a concrete functionality triggers the

execution of the functionality according to the coordination defined in Workflow. The execution starts

with the creation of an SagaUnitOfWork that registers the aggregates that are changed and the events

to emit as a result of the execution of the functionality. It also stores compensation operations in case

the functionality execution has to abort. The SagaUnitOfWorkService is the transactional manager

responsible for initializing the unit of work and deciding on its commit or abort.

The simulator implements a simple workflow, which comprises a set of FlowStep which have an

execution dependence relation between them. The dependencies are used to generate an execution

plan. Each flow step executes on its own thread. There are two types of FlowStep: SyncStep, where

the workflow waits for the callee to finish before executing the next step; and AsyncStep, where the

workflow executes the steps asynchronously and uses futures to synchronize results availability [46].

The two Java used constructs, Runnable and Supplier, in their operation attributes, encapsulate the

40

invocation of the microservice API, such as the method addParticipant of class TournamentService

in Figure 4.2. Finally, the subclasses SagaSyncStep and SagaAsyncStep define the compensating

operations associated with each step, which are added to the UnitOfWork when the step is executed

using the registerCompensation method.

Listing 4.4: Method buildWorlflow of AddParticipantFunctionalitySagas (partial)

1 p u b l i c vo id bui ldWorkf low (. . .) {

2 t h i s . workf low = new SagaWorkflow (. . .) ;

3

4 SagaSyncStep getStudentStep =

5 new SagaSyncStep (” getStudentStep ” , () -> {

6 StudentDto studentDto =

7 courseServ ice . getStudentById (. . .) ;

8 setStudentDto (studentDto) ;

9 t h i s . cur ren tStep = ” getStudentStep ” ;

10 }) ;

11

12 SagaSyncStep addPar t i c ipan tS tep =

13 new SagaSyncStep (” addPar t i c ipan tS tep ” , () -> {

14 P a r t i c i p a n t p a r t i c i p a n t =

15 new P a r t i c i p a n t (getStudentDto ()) ;

16 tournamentService . addPar t i c i pan t (. . .) ;

17 t h i s . cur ren tStep = ” addPar t i c ipan tS tep ” ;

18 } , new Ar rayL i s t <>(Arrays . a s L i s t (getStudentStep))) ;

19

20 t h i s . workf low . addStep (getStudentStep) ;

21 t h i s . workf low . addStep (addPar t i c ipan tS tep) ;

22 }

Listing 4.4 presents the buildWorkflow method of the addParticipantFunctionalitySagas class. It

starts by creating a 2 step Saga workflow. The first step, lines 4-10, gets the student information from

the Course microservice API by invoking getStudentById. The second step creates the Participant

entity using the information received from a previous step through getStudentDto; then invokes the

addParticipant method of the Tournament microservice API. The creation of the step also indicates that

getStudentStep should precede it (added to the step using an array list), line 18. Finally, the steps are

added to the workflow in the last three instructions, lines 20-21.

Another example, in which semantic locks and compensation operations are used, is the Update-

TournamentFunctionalitySagas functionality, which updates two aggregates Tournament and Quiz. This

is shown in Listing 4.5

41

Listing 4.5: Method buildWorlflow of UpdateTournamentFunctionalitySagas (partial)

1 p u b l i c vo id bui ldWorkf low (TournamentDto tournamentDto , . . .) {

2 t h i s . workf low = new SagaWorkflow (. . .) ;

3

4 SagaSyncStep getOr ig inalTournamentStep =

5 new SagaSyncStep (” getOr ig inalTournamentStep ” , () -> {

6 TournamentDto or ig ina lTournamentDto =

7 tournamentService . getTournamentById (. . .) ;

8 swi tch (or ig ina lTournamentDto . getSagaState ()) {

9 case IN UPDATE TOURNAMENT -> {

10 throw new TutorExcept ion (. . .) ;

11 }

12 . . .

13 }

14 }) ;

15

16 SagaSyncStep updateTournamentStep =

17 new SagaSyncStep (” updateTournamentStep ” , () -> {

18 TournamentDto newTournamentDto =

19 tournamentService

20 . updateTournament (tournamentDto , . . .) ;

21 uni tOfWorkService

22 . reg is te rSagaSta te (IN UPDATE TOURNAMENT , . . .) ;

23 t h i s . setNewTournamentDto (newTournamentDto) ;

24 } , new Ar rayL i s t <>(

25 Arrays . a s L i s t (getOr ig inalTournamentStep))) ;

26

27 updateTournamentStep . registerCompensat ion (() -> {

28 tournamentService

29 . updateTournament (or ig inalTournamentDto , . . .) ;

30 uni tOfWorkService . reg is te rSagaSta te (NOT IN SAGA , . . .) ;

31 } , unitOfWork) ;

32

33 SagaSyncStep updateQuizStep =

34 new SagaSyncStep (” updateQuizStep ” , () -> {

35 QuizDto quizDto =

36 new QuizDto (t h i s . getNewTournamentDto ()) ;

37 qu izServ ice . updateGeneratedQuiz (. . .) ;

38 } , new Ar rayL i s t <>(Arrays . a s L i s t (updateTournamentStep))) ;

39

40 workf low . addStep (getOr ig inalTournamentStep) ;

41 workf low . addStep (updateTournamentStep) ;

42 workf low . addStep (updateQuizStep) ;

43 }

In this functionality, it can be seen that the original tournament is kept in the Saga, obtained in the first

step (getOriginalTournamentStep), such that if an abort occurs, it is used in the compensation operation

(registerCompensation) of the second step (updateTournamentStep). This can occur if the third step

updateQuizStep fails. In the second step, a semantic lock (IN UPDATE TOURNAMENT) is written in

42

the tournament, lines 21-22. The lock is released (NOT IN SAGA) in the compensation operation, line

30. According to this functionality business logic, it is not possible to have two simultaneous updates

of the same tournament, which is verified in getOriginalTournamentStep and if that is the case, an

exception is thrown, lines 8-11.

Once the workflow associated with the functionality is built, it is executed according to the Sagas

transactional behavior, which is implemented applying the Unit of Work pattern. To apply the pattern,

two classes are defined SagaUnitOfWorkService and SagaUnitOfWork, where the former corresponds

to the API provided to the functionality and the latter contains the state of a Saga execution.

A new SagaUnitOfWork instance is passed to the buildWorkflow method and is passed to each of

the services that are executed by the functionality. The services register the updated aggregates and

events that have to be emitted due to their business logic execution (methods registerChanged and

registerEvent of the SagaUnitOfWorkService, see the code of addParticipant service for a case of reg-

isterChanged). For registerChanged, the SagaUnitOfWorkService verifies aggregate invariants, and if

they pass, it writes the updated aggregate, otherwise it aborts the execution of the functionality. Note

that, this way, the intermediate state of the aggregate becomes visible before the functionality commits,

which is the expected lack of isolation of Sagas behavior. For the implementation of registerEvent, the

event is written and can be subscribed to. Since the registerChanged method can result in an abort, in a

service, it should always be invoked before registerEvent to guarantee that the event is published only if

the service does not abort. On the other hand, when a semantic lock is written in the context of a work-

flow execution, the method registerSagaState of SagaUnitOfWorkService, the aggregate is written, so

that other functionalities can read the semantic lock, and it is also added to the set of aggregatesInSaga

in SagaUnitOfWork.

At the end of a functionality execution, the workflow invokes the method commit of SagaUnitOfWork-

Service. It releases all the semantic locks for the set of aggregatesInSaga. If an abort occurs during the

execution of the functionality, the compensation operations are invoked by the inverse order of their reg-

ister. Note that when a SagaStep executes it registers its compensating operation in SagaUnitOfWork.

The simulator is implemented as a Spring Boot1 application and is publicly available.

4.1.4 Workflow Design

The workflow design in the simulator implements the coordination of multiple microservices, ensuring

that distributed transactions are handled properly, especially in the context of Sagas. The workflows are

realized using an execution plan that organizes the steps required to complete a functionality depending

on the dependencies specified by the developer when building the workflow. The core components of

the workflow include the ExecutionPlan, planOrder, and execute methods, which manage the ordering
1https://spring.io/projects/spring-boot

43

https://spring.io/projects/spring-boot

and execution of the steps in the workflow.

The ExecutionPlan class is responsible for managing the workflow steps and their dependencies. It

maintains a list of steps and their execution statuses, allowing the simulator to control when each step

can be executed based on its dependencies. Steps without dependencies are executed immediately,

while steps with dependencies wait until all prerequisite steps have been completed.

The method planOrder shown in Listing 4.6 defines the ordering of steps in the workflow by ana-

lyzing their dependencies. It computes the in-degree (number of dependencies) for each step, lines

3-5, and uses a queue to manage steps that are ready for execution. This method ensures that steps

are executed in the correct order while avoiding cyclic dependencies, which could lead to deadlocks or

inconsistent states.

Listing 4.6: planOrder method in SagaWorkflow

1 p u b l i c Execut ionPlan planOrder (HashMap<FlowStep , A r rayL i s t<FlowStep>> stepsWithDependencies) {

2 / / Ca lcu la te how many dependencies each step has

3 f o r (HashMap . Entry<FlowStep , A r rayL i s t<FlowStep>> en t ry : stepsWithDependencies . en t rySet ()) {

4 inDegree . put (en t ry . getKey () , en t ry . getValue () . s i ze ()) ;

5 }

6

7 / / Steps w i thou t dependencies are ready to be ordered

8 f o r (HashMap . Entry<FlowStep , In teger> en t ry : inDegree . ent rySet ()) {

9 i f (en t r y . getValue () == 0) {

10 readySteps . add (en t ry . getKey ()) ;

11 }

12 }

13

14 / / Order steps based on dependency r e s o l u t i o n

15 whi le (! readySteps . isEmpty ()) {

16 FlowStep step = readySteps . p o l l () ;

17 orderedSteps . add (step) ;

18

19 f o r (HashMap . Entry<FlowStep , A r rayL i s t<FlowStep>> en t ry : stepsWithDependencies . en t rySet ()) {

20 i f (! en t r y . getKey () . equals (step) && en t ry . getValue () . conta ins (step)) {

21 inDegree . put (en t ry . getKey () , inDegree . get (en t ry . getKey ()) - 1) ;

22 i f (inDegree . get (en t ry . getKey ()) == 0) {

23 readySteps . add (en t ry . getKey ()) ;

24 }

25 }

26 }

27 }

28

29 i f (orderedSteps . s ize () != stepsWithDependencies . s ize ()) {

30 throw new I l l e g a l S t a t e E x c e p t i o n (” Cyc l i c dependency detected i n steps ”) ;

31 }

32

33 r e t u r n new Execut ionPlan (orderedSteps , stepsWithDependencies , t h i s . g e t F u n c t i o n a l i t y ()) ;

34 }

Once the steps are ordered using the planOrder method, the execute method shown in Listing 4.7

44

is responsible for running the workflow. It executes each step sequentially or concurrently, depending

on whether the steps are synchronous or asynchronous. This method also handles compensations in

case a step fails, ensuring that the system remains consistent by invoking the registered compensation

actions in reverse order.

Listing 4.7: execute method in Workflow

1 p u b l i c CompletableFuture<Void> execute (UnitOfWork unitOfWork) {

2 t h i s . execut ionPlan = planOrder (t h i s . stepsWithDependencies) ;

3 t r y {

4 r e t u r n execut ionPlan . execute (unitOfWork)

5 . thenRun (() -> {

6 uni tOfWorkService . commit (unitOfWork) ;

7 })

8 . e x c e p t i o n a l l y (ex -> {

9 Throwable cause = (ex ins tanceo f Complet ionExcept ion) ? ex . getCause () : ex ;

10 uni tOfWorkService . abor t (unitOfWork) ;

11 throw new RuntimeException (cause) ;

12 }) ;

13 } catch (TutorExcept ion e) {

14 uni tOfWorkService . abor t (unitOfWork) ;

15 throw e ;

16 }

17 }

The execute method initiates the workflow’s execution, commits the transaction if successful, or

aborts and compensates if an exception occurs.

To simulate concurrency within the microservices system, the simulator allows developers to use the

executeUntilStep and resume methods. These methods allow the workflow to be paused and resumed

at specific steps, simulating scenarios where multiple workflows are executing concurrently.

The executeUntilStep method allows the execution of the workflow up to a particular step. This is

useful for simulating partial executions, where a process is interrupted, and the system must handle

concurrent modifications or other workflows operating in parallel. Once a workflow has been paused at

a certain step, the resume method can be used to continue the execution from that point. This simu-

lates real-world scenarios where a process is resumed after waiting for external conditions or parallel

transactions to complete. Both these methods are shown in Listing 4.8.

45

Listing 4.8: executeUntilStep method in Workflow

1 p u b l i c CompletableFuture<Void> executeUnt i lS tep (FlowStep targetStep , UnitOfWork unitOfWork) {

2 Ar rayL i s t<FlowStep> stepsToExecute = new Ar rayL i s t <>();

3 f o r (FlowStep step : plan) {

4 stepsToExecute . add (step) ;

5 i f (s tep . equals (ta rge tS tep)) {

6 break ;

7 }

8 }

9 r e t u r n executeSteps (stepsToExecute , unitOfWork) ;

10 }

11

12 p u b l i c CompletableFuture<Void> resume (UnitOfWork unitOfWork) {

13 Ar rayL i s t<FlowStep> remainingSteps = new Ar rayL i s t <>();

14 f o r (FlowStep step : plan) {

15 i f (! executedSteps . get (step)) {

16 remainingSteps . add (step) ;

17 }

18 }

19 r e t u r n executeSteps (remainingSteps , unitOfWork) ;

20 }

By combining the use of executeUntilStep and resume, the simulator can simulate complex inter-

leavings between workflows, allowing developers to test concurrent scenarios where multiple workflows

affect the same set of microservices. This is particularly useful in distributed systems where concur-

rency can introduce challenges like race conditions, inconsistent states, and the need for compensating

transactions.

Concurrency in microservice systems can result in inconsistent states if not handled correctly. By

leveraging the simulator’s ability to pause and resume workflows, along with the compensating mecha-

nisms of Sagas, it is possible to resolve these inconsistencies. For instance, if two workflows attempt

to modify the same aggregate, the simulator can simulate one workflow completing, while the other

compensates for any conflicts.

The simulator ensures that the workflow steps are executed in the correct order and that compen-

sations are applied whenever necessary, providing a robust framework to test concurrent microservice

interactions.

4.2 Microservice Simulator Framework

With these adaptions made to the simulator, the previous TCC simulator was enriched and now also

allows for the simulation of Sagas. The structural changes that were made allow for the developers

to reuse most of the code having only as a task to rewrite the specifications of the aggregates and

46

functionalities according to the desired transactional model. By using workflows, the simulator now

provides a unified framework where different transactional behaviors can be simulated, ensuring that

both models can coexist, and complex transactions can be handled flexibly.

47

48

5
Evaluation

Contents

5.1 Evaluation . 49

5.1 Evaluation

To evaluate the simulator, we show that it supports aspects identified in the problem, it requires a minimal

effort to extend, and that it allows the test of complex interactions. Finally, a large microservice system

was implemented using the simulator, and the lessons learned are reported.

5.1.1 Completeness

The solution addresses all identified aspects of microservice systems using a domain-driven design

approach in Section 2.1.

• Atomic Aggregates: Atomic aggregates are supported because each service is executed in an

ACID transactional context (@Transactional in the service implementation). Moreover, when the

49

service reads an aggregate it reads the complete aggregate, clones it, does the changes in the

clone, and then writes it (inside registerChanged);

• Aggregate Invariants: Aggregate invariants are preserved because for each atomic change of an

aggregate, all the invariants are verified. The method verifyInvariants of the aggregate is invoked

by registerChanged, and if a verification fails the functionality aborts;

• Upstream-Downstream Aggregate Relations: The downstream-upstream relations between the

aggregates are supported by the service APIs and the communication between events. The ser-

vice emits events by invoking registerEvent at the end of its execution, and each aggregate defines

its events subscriptions and handlings;

• Aggregate Intermediate States: A state is added to all Saga aggregates through the implemen-

tation of the SagaAggregate and SagaState interfaces, where the latter allows the definition of

aggregate-specific intermediate states. Intermediate states are managed by the functionalities

and are decoupled from the service business logic, because Saga management is performed at

the level of functionality execution. Therefore, the functionality is responsible for reading and writ-

ing semantic locks.

5.1.2 Ease of Extension

Aggregate Upstream
Downstream Sagas

Structure
Invariants

Services
Events

Upstream Downstream

Service event
emission

Aggregate event
subscription

Aggregate
functionality
Event handling
Aggregate saga
Aggregate saga
state

Figure 5.1: Simulator extension process

Figure 5.1 shows the steps to implement an aggregate by extending the simulator. This is an iterative

process that starts by defining for each aggregate its structure and invariants. The former requires

the extension from Aggregate class and the implementation of the classes for each of the aggregate

entities. Additionally, some queries may be needed to be implemented to retrieve the aggregate from

the repository. The complexity is proportional to the number of entities, but each entity definition only

requires the definition of its attributes. With regard to aggregate invariants, it is only necessary to extend

50

the verifyInvariants method. The complexity of this task is equal to the complexity of the business logic,

but since the goal of the simulator is to verify the transactional behavior of the microservice system given

its business logic, their implementation is required.

In the second step, the focus is on the aggregate upstream-downstream relationships. The aggregate

microservice API, provided for downstream aggregates, is defined through a set of methods in a class

service. These methods only have to change the aggregate state and register the changed aggregate in

the UnitOfWorkService. In addition, it may be necessary to emit events required by downstream aggre-

gates, also using the UnitOfWorkService. Events are defined by extending class Event. Furthermore, it

is necessary to subscribe to events published by upstream aggregates by extending EventSubscription

class and redefining aggregate method getEventSubscriptions. The complexity associated to this step

is proportional to the number of services and events, and no extra work need to be done. The simulator

allows event subscription based on the aggregate state, see the example above, which requires the

definition of some logic.

Finally, in the third step, the aggregate functionalities are implemented using the Sagas transactional

model. To do so, it is defined for each aggregate its set of Saga states by extending SagaState. Then,

by implementing each aggregate functionality, using the simulator workflow constructs, new states are

added to its Saga state. It is also necessary to handle the subscribed events by extending from Even-

tHandler and implement the handling functionality. This is the most complex part in terms of the Sagas

business logic that deals with semantic locks, but the developer can focus on the core problem, while

the simulator provides the mechanisms for functionality steps and transactional management.

To extend the simulator and implement an application, such as the Quizzes tutor example, we can

follow a structured approach. This involves defining microservices and establishing interactions between

them, using the tournament microservice as a reference.

The process begins with defining the microservice’s core structure, which in the simulator is repre-

sented by aggregates. Each aggregate encapsulates related data and behavior, ensuring that changes

adhere to business rules and consistency requirements. Figure 5.2 illustrates the following procedure

that demonstrates how simple it is to implement a microservice in the simulator.

1. Defining the Aggregate

The first step is to define the aggregate class, such as Tournament, which represents the mi-

croservice’s central concept. This class includes essential properties and defines invariants that

must be maintained (e.g., tournament start and end times). The aggregate should also specify

event subscriptions to react to relevant domain events, thereby ensuring that the microservice

remains consistent with changes occurring in other parts of the system.

2. Creating Repositories

Repositories, such as TournamentRepository, are necessary for persisting aggregates in the

51

database. They provide methods for querying and storing aggregates, thus supporting the trans-

actional operations performed during the Saga execution.

3. Defining Services

Aggregate services, such as TournamentService, are created to encapsulate business logic oper-

ations related to the aggregate. These services are used within functionalities to manipulate the

aggregate in a consistent and controlled manner. For example, TournamentService might offer

methods for creating, updating, and retrieving tournament data.

4. Handling Events

Event handling plays a crucial role in the simulator’s architecture. Implementations such as

TournamentEventHandling and TournamentEventProcessing manage domain events that affect

the aggregate. These components ensure that the microservice can react to changes in other

parts of the system, allowing for asynchronous processing and eventual consistency.

5. Implementing the Saga Logic

To support distributed transactions, the Saga pattern is employed. Each aggregate requires a

corresponding Saga implementation, like SagaTournament, which manages the aggregate’s state

throughout the transaction lifecycle. The Saga implementation defines possible states (Tourna-

mentSagaState) that act as semantic locks, allowing the system to handle intermediate states and

ensure data consistency across multiple services.

6. Implementing Functionalities

Functionalities represent the business processes that coordinate the execution of workflows, lever-

aging the defined services. Each functionality, like CreateTournamentFunctionalitySagas, uses

workflow steps to define the sequence of operations required for a business process, including

compensation actions in case of failure. This allows the system to manage distributed transactions

robustly.

7. Exposing the Functionality via Web API

To make the functionalities accessible to the application, web API controllers are implemented,

such as TournamentController. These controllers expose RESTful endpoints that clients can call

to execute functionalities (e.g., creating a tournament). The controllers interact with the underlying

services and functionalities, providing a bridge between the client and the business logic.

52

Aggregate

Tournament

Saga TournamentSaga
Tournament

State

1

5

Event Subscription Event

Update Student
Name Event

Tournament
Subscribes

Update Student
Name Event

Event Handler

Tournament Update
Student Name
Event Handler

Tournament
Service

Workflow
Functionality

Workflow

CreateTournament
Saga Functionality

TournamentRepository

2

3

Tournament
Functionalities

6

Tournament
Controller

7

Tournament
EventHandling

Tournament
EventProcessing

4

Figure 5.2: Example of the implementation of a microservice in the simulator.

By following these steps, the simulator can be easily extended to implement new microservices or

enhance existing ones. As we have seen, the developer doesn’t need to change any logic related to

the core concepts of the simulator like the UnitOfWork and the Workflow, instead, he can focus on

the implementation of the business logic. The use of aggregates, Sagas, and workflows provides a

flexible and modular approach, enabling developers to introduce new functionalities while maintaining

consistency and adhering to business rules.

5.1.3 Simulate Interleavings

To use the simulator and test the microservices business logic implemented using Sagas, it is necessary

to provide two features: (1) the ability to partially execute a functionality; (2) control the when to process

events. The former allows to control when the steps of a functionality are executing, making it possible

to interleave their execution with the steps of another functionality. The latter allows to decide when the

handling of an event occurs, because events are handled periodically, but that way it is possible to make

their handling deterministic.

Listing 5.1 shows a Spock1 test that exemplifies the use of these features for an interleaving of
1https://spockframework.org/

53

https://spockframework.org/

UpdateStudentName and AddParticipant functionalities.

Listing 5.1: Concurrent add participant and update name test

1 def ' concur rent add p a r t i c i p a n t and update name ' () {

2 given : ' two f u n c t i o n a l i t i e s '

3 def a d d P a r t i c i p a n t F u n c t i o n a l i t y =

4 new AddPar t i c ipan tFunc t iona l i t ySagas (uow1 , . . .)

5 def updateStudentNameFunct ional i ty =

6 new UpdateStudentNameFunctional i tySagas (uow2 , . . .)

7 and : ' add p a r t i c i p a n t reads student from course '

8 a d d P a r t i c i p a n t F u n c t i o n a l i t y

9 . executeUnt i lS tep (” getStudentStep ” , uow1)

10 and : ' update name i s executed '

11 updateStudentNameFunct ional i ty . executeWorkflow (uow2)

12

13 when : ' add p a r t i c i p a n t executes remaining steps '

14 a d d P a r t i c i p a n t F u n c t i o n a l i t y . resumeWorkflow (uow1)

15 then : ' s tudent i s added wi th o ld name '

16 def r e s u l t = tou rnamen tFunc t i ona l i t i e s . f indTournament (. . .)

17 r e s u l t . g e t P a r t i c i p a n t s () . f i n d{ i t . aggregateId ==

18 aggregateId } .name == ORIGINAL NAME

19

20 when : ' update name event i s processed '

21 tournamentEventHandl ing . handleUpdateStudentNameEvent () ;

22 then : ' the student name i s updated '

23 r e s u l t = tou rnamen tFunc t i ona l i t i e s . f indTournament (. . .)

24 r e s u l t . g e t P a r t i c i p a n t s () . f i n d{ i t . aggregateId ==

25 aggregateId } .name == UPDATED NAME

26 }

In the example, the first step to add the participant functionality is executed using the auxiliary method

executeUntilStep, lines 8-9. Then comes the complete execution of the update student name function-

ality, line 11, and then the remaining steps of the add participant functionality are executed using the

auxiliary method resumeWorkflow, line 14. The first check verifies that the student is added as a par-

ticipant using the original name. Then the handling of the update name event is triggered using the

method handleUpdateStudentNameEvent, line 21, and the verification returns that it has the updated

name (eventual consistency). Note the use of two different units of work, uow1 and uow2, for each of

the functionalities, addParticipantFunctionality and updateStudentNameFunctionality, respectively.

5.1.4 Complex Interleavings

Complex interactions that can arise in distributed microservice systems coordinated by the Sagas trans-

actional model. The simulator supports test case design to force their occurrence in a deterministic

context and assess its behavior. These test cases explore scenarios in which different functionalities

are executed in parallel or in sequence, affecting the state of multiple microservice aggregates. The test

54

scenarios can illustrate concurrency issues such as lost updates, dirty reads, and eventual consistency.

We highlight how the Sagas model addresses these issues using semantic locks, compensations, and

event-based synchronization to maintain consistency across the system.

In Figures 5.3 to 5.8, 6 scenarios are described for the update student name and add participant

functionalities, represented, respectively, as Update and Add. Moreover, an additional functionality is

considered, resulting from the handling of the update name event by the Tournament aggregate, identi-

fied as Event. The functionalities are composed of steps that invoke aggregate services. For instance,

the add participant functionality comprises two steps that invoke two services: getStudent of Course

and addParticipant of Tournament. Two aggregates are represented with their timelines: Course and

Tournament.

The initial state of the scenarios, corresponding to their test setup, is the one where the student being

added to the tournament as a participant, is the tournament creator, because we intend to exercise the

invariant that states that the participant and the creator must have the same name. In addition, we want

to verify in which situations there are eventual consistency of the name between the Course and the

Tournament.

The scenarios cover all interleavings to be tested and are split into sequential and concurrent, where

in the former there is no interleaving of the functionality steps. The eventual consistency delay occurs

between the end of the update student name functionality and the event handling.

In scenario (a) the creator name is updated first, and then the participant is added with the updated

name.

Course

Tournament

Update

Event

Add

updateStudentName

updateName

getStudent

addParticipant

Figure 5.3: Sequential Add Participant and Update Student Name interleavings - (a)

In scenario (b) an invariant violation occurs because the add reads the updated name and tries to

add the participant before the event is handled, in which situation the creator name still has the old name,

the violation is detected, when, on registerChanged of the tournament, the verifyInvariants is invoked;

55

as a result, and also shown in the scenario, the add participant functionality is retried and succeeds

because it reads from the updated course.

Course

Tournament

Update

Event

Add

updateStudentName

updateName

getStudent

addParticipant

invariant
breaks

Add(r)

addParticipant

getStudent

x

Figure 5.4: Sequential Add Participant and Update Student Name interleavings - (b)

In scenario (c) the add participant is done before the update and when the event is handled both,

creator and participant are updated.

Course

Tournament

Add

getStudent

addParticipant

Update

updateStudentName

Event

updateName

Figure 5.5: Sequential Add Participant and Update Student Name interleavings - (c)

In scenario (d) the name update occurs first, the add reads the update name and the event is pro-

cessed before the the participant is added, which updates the creator name and the invariant is pre-

served when the participant is added.

56

Course

Tournament

Add

updateName

getStudent

addParticipant

Event

Update

updateStudentName

Figure 5.6: Concurrent Add Participant and Update Student Name interleavings - (d)

In scenario (e) an invariant violation is detected because the add participant reads the student before

it is updated, and the update name, as well as the event handling occur before the participant is added;

after adding the participant, the creator has the updated name while the corresponding participant has

the old name.

Course

Tournament
updateName

getStudent

addParticipant

Event

updateStudentName

x

invariant
breaks

getStudent

Add Update Add(r)

addParticipant

Figure 5.7: Concurrent Add Participant and Update Student Name interleavings - (e)

In scenario (f) the update name occurs in between the add participant, but since the event is only

handled in the end, the invariant is not violated because both the creator and the participant have the

old name.

57

Course

Tournament updateName

updateStudentName

addParticipant

Add Update

Event

getStudent

Figure 5.8: Concurrent Add Participant and Update Student Name interleavings - (f)

Figure 5.9 shows a scenario in which there is the interleaving of two executions of an update tour-

nament functionality in the same tournament. The scenario tests that the semantic lock avoids lost

updates. Suppose that the first execution is the first to write the tournament and the second to write the

quiz, which would result in a quiz that is not consistent with the tournament. A dirty read is also avoided

by the semantic lock in the cases where the updateQuiz service fails and other functionalities have read

the updated tournament (interaction between functionalities not shown in the figure).

Tournament

Quiz

Update1

getTournament
L(IN_UPDATE_
TOURNAMENT)

update
Tournament

updateQuiz

getTournament

Update2
semantic

lock validation
x

Figure 5.9: Update Tournament interleaving.

5.1.5 A Large Monolith System

In this section, we describe an experiment involving a large microservices system, focusing on the in-

teractions between functionalities and aggregates and the implications for maintaining consistency in a

distributed microservices system. The microservices system we analyzed was the Quizzes Tutor appli-

cation, which consisted of 8 aggregates, and respective microservices: Course, User, Topic, Question,

CourseExecution, Quiz, Answer, and Tournament.

58

Each of these aggregates was studied in detail to identify the number of aggregate invariants, even-

tual consistency dependencies between aggregates, which correspond to their event subscriptions, and

API methods. Table 5.1 shows a summary:

Table 5.1: Aggregate invariants, event subscriptions, and services

Aggregates Invariants Event Subscription API Methods
Course 2 0 2
User 2 0 6
Topic 0 0 5
Question 0 2 7
CourseExecution 4 1 10
Quiz 7 3 7
Answer 5 5 6
Tournament 13 11 11

The Course aggregate, for example, is managed by the Course microservice and maintains two in-

variants to ensure the integrity of its entities. There are no eventual consistency dependencies for this

aggregate, because it operates independently within its microservice. In contrast, the Tournament ag-

gregate is significantly more complex, containing 13 invariants and 11 event subscriptions, and involves

multiple microservices such as User, Quiz, and CourseExecution.

The data above reveals the variety and distribution of invariants and eventual consistency depen-

dencies in a typical microservice system, providing insight into the complexity of enforcing consistency

within and across aggregates.

The experiment clearly demonstrates that handling large aggregates with a rich set of business logic

in a microservices system requires sophisticated consistency mechanisms, especially when compared

to a monolithic architecture where all data consistency is managed in a centralized manner.

A total of 45 functionalities were implemented in the experiment. A functionality is associated with

an aggregate, referred as the main aggregate of the functionality, and may invoke the API of upstream

aggregates or publish events to be subscribed by downstream aggregates, the secondary aggregates.

The following list defines the levels of complexity associated with a functionality, which depend on the

number of read and writes it performs on different aggregates:

• A: Query : The functionality reads the main and/or secondary upstream aggregate.

• B: Simple Functionality : The functionality writes its main aggregate only and can read its main

aggregate and other upstream aggregates.

• C: Complex Functionality : The functionality writes its main and other secondary upstream aggre-

gates, and it can read the main of other upstream aggregates.

• D: Event Functionality : The functionality writes a secondary downstream aggregate. This is an

59

indirect write because the upstream aggregate does not know the downstream aggregate, but the

downstream aggregate may hold some state of the upstream aggregate.

Note that it is possible that a functionality belongs to more than one case, for instance, it can be a

simple and event functionality, which is the case of the update student name.

In order to better understand the complexity and dependencies in the quizzes application, we catego-

rized and analyzed the 45 different functionalities based on the previous complexity classification 5.10.

By analyzing Figure 5.10 we can observe a diverse range of complexities across the implemented

functionalities of Quizzes Tutor, including cases from all categories. This proves that the simulator is

able to support various levels of interaction and coordination, from simple queries to complex opera-

tions involving multiple aggregates and event-driven behaviors. The considerable amount of cases C

and D, shows that the simulator is capable of testing complex scenarios where distributed transactions

and eventual consistency play a critical role. The coverage across all cases also proves the robust-

ness of the simulator when it comes to handling different types of microservice interactions, ensuring

that both straightforward operations and more intricate workflows involving distributed transactions and

asynchronous event handling are effectively tested.

60

A

FindParticipant
FindQuestionByAggregateId
FindQuestionsByCourse

FindQuiz
FindTopicsByCourse
FindTournament
FindUserById

GetAvailableQuizzes
GetClosedTournamentsForCourseExecution

GetCourseExecutionById
GetCourseExecutionsByUser

GetCourseExecutions
GetOpenedTournamentsForCourseExecution

GetStudents
GetTeachers
GetTopicById

GetTournamentsForCourseExecution

Total 17 24 104

B
ActivateUser

AnonymizeStudent
AnswerQuestion
AddParticipant
AddStudent

CancelTournament
ConcludeQuiz

CreateCourseExecution
CreateQuestion
CreateQuiz
CreateTopic
CreateUser
DeleteTopic
DeleteUser

LeaveTournament
RemoveCourseExecution

RemoveQuestion
RemoveStudentFromCourseExecution

RemoveTournament
StartQuiz

UpdateQuestion
UpdateQuiz

UpdateStudentName
UpdateTopic

C

CreateTournament
SolveQuiz

UpdateQuestionTopics
UpdateTournament

D

AnonymizeStudent
AnswerQuestion

DeleteUser
DeleteTopic

RemoveCourseExecution
RemoveQuestion

RemoveStudentFromCourseExecution
UpdateQuestion

UpdateStudentName
UpdateTopic

Figure 5.10: Complexity of the Quizzes Tutor functionalities implemented in the simulator.

61

5.1.6 Usage

The framework offers a powerful and flexible solution for implementing microservices using a domain-

driven design approach. Besides that, the usage of the framework can present some challenges. One

of the main difficulties developers can encounter is defining the dependencies between steps when

writing a functionality. This process requires a moderate amount of knowledge of the system due to the

involvement of semantic locks and event-based communication mechanisms. These locks help prevent

lost updates or inconsistent reads but add complexity to the implementation, as they need to be carefully

defined based on the system’s business logic.

Furthermore, developers must handle events correctly to ensure smooth inter-service communica-

tion, which is not straightforward. Different teams working on various microservices might have different

interpretations of the events and locks, which could lead to misunderstandings or conflicting implemen-

tations. Therefore, proper coordination between teams is essential to ensure the framework is used

effectively.

5.1.7 Threats to Validity

Some aspects need to be considered in terms of the threats to the validity of the evaluation:

• Orchestration vs Choreography - the simulator implements a functionality in terms of a workflow of

services that follow an orchestration approach. This is a limitation of the simulator because it does

not support a set of microservices where the coordination of services is a choreography. However,

given the complexity of business logic in an eventual consistent environment, applications that

have a rich business logic should adopt the orchestration strategy [9].

• Asynchronous Communication - the communication between microservices is usually asynchronous,

using message queues, to increase the system robustness to temporary failures in microservices.

Although we support both synchronous and asynchronous steps, the evaluation was performed us-

ing the synchronous version. Although this is a limitation of the evaluation, it is also recommended

that the coordinator waits for the response from the microservice before progressing to the next,

to simplify the business logic, although the communication between the coordinator and the mi-

croservices is done asynchronously [9]. Note that the events in the simulator are asynchronous,

but relate to a different type of interaction between microservices (upstream-downstream), and

those are evaluated.

62

6
Conclusion

Contents

6.1 Conclusions . 63

6.2 System Limitations and Future Work . 64

6.1 Conclusions

In conclusion, this thesis’ proposed microservice system simulator offers a useful tool for handling

the challenges involved in developing microservices, especially when utilizing the Sagas transactional

model. Through the use of a domain-driven design approach, the simulator considerably lowers the

risks and expenses associated with problems that arise later in the development process by enabling

the early identification and resolution of possible difficulties related to data consistency and coordina-

tion. The simulator’s evaluation shows that it can handle intricate relationships between aggregates,

guaranteeing that invariants are maintained and conflicts are successfully resolved via compensating

transactions and semantic locks.

One of the simulator’s key strengths is its flexibility in simulating different transactional models. While

it is primarily designed to simulate the Sagas pattern with eventual consistency, it also supports Trans-

63

actional Causal Consistency (TCC), a stronger consistency model that ensures causal relationships

between transactions are respected. This dual capability allows the simulator to model both eventual

consistency systems, which prioritize performance and availability, and systems that require stricter

consistency guarantees. By providing support for TCC, the simulator extends its applicability to a wider

range of use cases, enabling developers to evaluate the trade-offs between different consistency models

and choose the most appropriate one for their system.

The ease of extension and support for simulating intricate interleavings further highlights the practical

utility of this tool for developers seeking to optimize the design and functionality of their microservice-

based systems. Ultimately, before committing to expensive implementations in distributed environments,

developers can use this simulator to investigate various coordination mechanisms, evaluate the viability

of microservice architectures, and make well-informed design decisions. In order to further increase the

simulator’s usefulness in simulating real-world microservice behaviors, future development will concen-

trate on expanding it to better accommodate asynchronous step executions.

Moreover, while the current focus is on synchronous transactions, the simulator is poised for future

development to incorporate asynchronous step executions, which will more accurately reflect real-world

microservice environments where message delays and network latencies are common. Expanding the

simulator to better accommodate asynchronous operations will further enhance its ability to simulate

realistic system behaviors and evaluate their performance in distributed contexts.

Overall, the proposed simulator not only simplifies the early stages of microservice system design

but also contributes to the broader effort of developing reliable and consistent distributed systems using

state-of-the-art architectural patterns. By supporting both Sagas and TCC models, it provides a com-

prehensive platform for testing and improving microservice architectures, making it a highly versatile tool

for developers working on distributed applications.

The simulator and the Quizzes Tutor system experiment are available in a public repository.

6.2 System Limitations and Future Work

The development of the microservice simulator, while successful in achieving its goals of simulating

distributed systems using the Saga architectural pattern, has certain limitations. One of the most no-

table constraints is the reliance on synchronous communication. While asynchronous communication,

typical in real-world microservices, is supported by the simulator, the evaluation largely depended on

synchronous transactions. This creates a gap when attempting to fully simulate environments where

microservices operate asynchronously, particularly when considering message queuing systems that

delay responses or introduce network latency.

Another limitation is that the simulator currently supports orchestration-based coordination, which

64

https://github.com/socialsoftware/microservices-simulator

simplifies workflow management by centralizing control. However, many microservice systems prefer

choreography-based coordination, where services manage interactions independently. This divergence

from real-world usage patterns may result in a simulation that does not fully capture all interaction nu-

ances, especially in systems that emphasize high service autonomy.

The handling of compensating transactions also presents challenges. While the simulator incorpo-

rates compensating actions for failure recovery, these are primarily orchestrated. Future improvements

should extend support to hybrid models, where not all transactions rely on a single transactional pattern.

This would include scenarios where ACID transactions coexist with Saga-based eventual consistency

models, better representing a broader range of distributed systems.

Moreover, the usage of the framework presents certain challenges, especially when developers need

to define dependencies between steps in a functionality. These dependencies often involve the use of

semantic locks and event-based communication mechanisms, which prevent issues like lost updates

and inconsistent reads but add complexity to the design. Developers must carefully define these mech-

anisms based on the system’s business logic, which requires a moderate to high level of system knowl-

edge. However, a potential improvement would be to enhance the simulator to automatically calculate

dependencies between steps in a functionality. By analyzing the events, locks, and services involved,

the simulator could suggest or enforce the correct sequence of actions, helping developers reduce errors

and streamline the implementation process.

6.2.1 Future Work

Several enhancements could address the identified limitations:

• Asynchronous Communication Enhancements: Expanding the evaluation to incorporate asyn-

chronous communication steps will allow the simulator to more accurately reflect real-world mes-

sage queuing and delayed responses.

• Choreography-based Coordination: Introducing choreography alongside orchestration will en-

able developers to explore decentralized coordination strategies, allowing greater flexibility in sim-

ulating real-world systems.

• Support for Hybrid Transaction Models: Extending the simulator to manage hybrid transactional

environments where some services utilize strict ACID transactions while others rely on eventual

consistency models like Sagas.

• Dependency Calculation Between Steps: Developing a feature within the simulator that calcu-

lates the dependencies between steps in a functionality based on semantic locks, events, and

service interactions. This feature could help automate the detection of correct step sequences and

prevent inconsistencies during development.

65

• Integration with Cloud Environments: Adding the ability to simulate microservices running on

distributed cloud platforms to enable testing under more realistic distributed conditions and provide

insights into cloud-native system behavior.

By addressing these areas, the simulator could become a more powerful tool for designing and

testing large-scale, resilient, and efficient microservice-based systems.

66

Bibliography

[1] J. Lewis and M. Fowler, “Microservices,” 2014. [Online]. Available: http://martinfowler.com/articles/

microservices.html

[2] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, 2015.

[3] N. Ford, M. Richards, P. Sadalage, and Z. Dehghani, Software Architecture: The Hard Parts.

O’Reilly Media, Inc., 2021.

[4] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tolerant systems,” in Proceedings of the The

Seventh Workshop on Hot Topics in Operating Systems, ser. HOTOS ’99. USA: IEEE Computer

Society, 1999, p. 174.

[5] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan, “The monolith strikes back: Why istio migrated

from microservices to a monolithic architecture,” IEEE Software, vol. 38, no. 5, pp. 17–22, 2021.

[6] N. Nader-Rezvani, Agile Quality Test Strategy. Berkeley, CA: Apress, 2019, pp. 121–138.

[Online]. Available: https://doi.org/10.1007/978-1-4842-3751-9 7

[7] N. Santos and A. Rito Silva, “A complexity metric for microservices architecture migration,” in 2020

IEEE International Conference on Software Architecture (ICSA), 2020, pp. 169–178.

[8] H. Garcia-Molina and K. Salem, “Sagas,” in Proceedings of the 1987 ACM SIGMOD International

Conference on Management of Data, ser. SIGMOD ’87. New York, NY, USA: Association for

Computing Machinery, 1987, p. 249–259.

[9] C. Richardson, Microservices Patterns. Manning Publications Co., 2019.

[10] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison Wesley,

2003.

[11] D. Haywood, “In defense of the monolith,” in Microservices vs. Monoliths - The Reality Beyond

the Hype. InfoQ, 2017, vol. 52, pp. 18–37. [Online]. Available: https://www.infoQ.com/minibooks/

emag-microservices-monoliths

67

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-1-4842-3751-9_7
https://www.infoQ.com/minibooks/emag-microservices-monoliths
https://www.infoQ.com/minibooks/emag-microservices-monoliths

[12] M. Štefanko, O. Chaloupka, and B. Rossi, “The saga pattern in a reactive microservices environ-

ment,” in Proceedings of the 14th International Conference on Software Technologies - Volume 1:

ICSOFT,, INSTICC. SciTePress, 2019, pp. 483–490.

[13] K. Dürr, R. Lichtenthäler, and G. Wirtz, “An evaluation of saga pattern implementation technologies,”

in Central-European Workshop on Services and their Composition, 2021.

[14] “Blcm simulator,” https://github.com/socialsoftware/business-logic-consistency-models, accessed:

2023-10-13.

[15] H. Vural and M. Koyuncu, “Does domain-driven design lead to finding the optimal modularity of a

microservice?” IEEE Access, vol. 9, pp. 32 721–32 733, 2021.

[16] O. Özkan, Önder Babur, and M. van den Brand, “Domain-driven design in software development:

A systematic literature review on implementation, challenges, and effectiveness,” 2023.

[17] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and J. Stafford,

Documenting Software Architectures: Views and Beyond, Second Edition, ser. SEI Series in Soft-

ware Engineering. Upper Saddle River, NJ: Addison-Wesley, 2010.

[18] Neal Ford, Mark Richards, Pramod Sadalage, Zhamak Dehghani, Software Architecture: The Hard

Parts. O’Reilly Media, Inc, 2022.

[19] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro,

“Cure: Strong semantics meets high availability and low latency,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), 2016, pp. 405–414.

[20] P. Pereira and A. R. Silva, “Transactional causal consistent microservices simulator,” in Distributed

Applications and Interoperable Systems, M. Patiño-Martı́nez and J. Paulo, Eds. Cham: Springer

Nature Switzerland, 2023, pp. 57–73.

[21] M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing

Co., Inc., 2002.

[22] P. Pereira and A. R. Silva, “Microservices simulator: An object-oriented framework for transactional

causal consistency,” submitted.

[23] “Eventuate tram,” https://github.com/eventuate-tram/eventuate-tram-core, accessed: 2023-10-13.

[24] “Temporal,” https://temporal.io/, accessed: 2023-10-13.

68

https://github.com/socialsoftware/business-logic-consistency-models
https://github.com/eventuate-tram/eventuate-tram-core
https://temporal.io/

[25] X. Limón, A. Guerra-Hernández, A. J. Sánchez-Garcı́a, and J. C. Peréz Arriaga, “Sagamas: A

software framework for distributed transactions in the microservice architecture,” in 2018 6th In-

ternational Conference in Software Engineering Research and Innovation (CONISOFT), 2018, pp.

50–58.

[26] W. Kun, D. Han, Y. Zhang, S. Lu, D. Chen, and L. Xie, “Ndp2psim: a ns2-based platform for

peer-to-peer network simulations,” in Proceedings of the 2005 International Conference on Parallel

and Distributed Processing and Applications, ser. ISPA’05. Berlin, Heidelberg: Springer-Verlag,

2005, p. 520–529. [Online]. Available: https://doi.org/10.1007/11576259 57

[27] H. Wan and N. Ishikawa, “Design and implementation of a simulator for peer-to-peer networks:

optimal-sim,” in PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and

signal Processing, 2005., 2005, pp. 105–108.

[28] J. Pujol-Ahullo and P. Garcia-Lopez, “Planetsim: An extensible simulation tool for peer-to-peer

networks and services,” in 2009 IEEE Ninth International Conference on Peer-to-Peer Computing,

2009, pp. 85–86.

[29] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in 2009 IEEE Ninth International

Conference on Peer-to-Peer Computing, 2009, pp. 99–100.

[30] P. Urban, X. Defago, and A. Schiper, “Neko: a single environment to simulate and prototype

distributed algorithms,” in Proceedings 15th International Conference on Information Networking,

2001, pp. 503–511.

[31] L. Leonini, E. Rivière, and P. Felber, “Splay: distributed systems evaluation made simple (or how

to turn ideas into live systems in a breeze),” in Proceedings of the 6th USENIX Symposium on

Networked Systems Design and Implementation, ser. NSDI’09. USA: USENIX Association, 2009,

p. 185–198.

[32] Y. A. Liu, S. D. Stoller, and B. Lin, “From clarity to efficiency for distributed algorithms,” ACM Trans.

Program. Lang. Syst., vol. 39, no. 3, May 2017. [Online]. Available: https://doi.org/10.1145/2994595

[33] Y. Zhang, Y. Gan, and C. Delimitrou, “uqsim: Scalable and validated simulation of cloud

microservices,” 2019. [Online]. Available: https://arxiv.org/abs/1911.02122

[34] M. Ciavotta, M. Alge, S. Menato, D. Rovere, and P. Pedrazzoli, “A microservice-based

middleware for the digital factory,” Procedia Manufacturing, vol. 11, pp. 931–938, 2017, 27th

International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, 27-30

June 2017, Modena, Italy. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S2351978917304055

69

https://doi.org/10.1007/11576259_57
https://doi.org/10.1145/2994595
https://arxiv.org/abs/1911.02122
https://www.sciencedirect.com/science/article/pii/S2351978917304055
https://www.sciencedirect.com/science/article/pii/S2351978917304055

[35] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “ifogsim2: An extended ifogsim

simulator for mobility, clustering, and microservice management in edge and fog computing

environments,” Journal of Systems and Software, vol. 190, p. 111351, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121222000863

[36] H. Shi, X. He, T. Wang, and Z. Wang, “Servicesim: A modelling and simulation toolkit of microser-

vice systems in cloud-edge environment,” in Service-Oriented Computing, F. Monti, S. Rinderle-Ma,

A. Ruiz Cortés, Z. Zheng, and M. Mecella, Eds. Cham: Springer Nature Switzerland, 2023, pp.

258–272.

[37] M. G. Khan, J. Taheri, A. Al-Dulaimy, and A. Kassler, “Perfsim: A performance simulator for cloud

native microservice chains,” IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp. 1395–1413,

2023.

[38] S. Frank, L. Wagner, A. Hakamian, M. Straesser, and A. van Hoorn, “Misim: A simulator for re-

silience assessment of microservice-based architectures,” in 2022 IEEE 22nd International Confer-

ence on Software Quality, Reliability and Security (QRS), 2022, pp. 1014–1025.

[39] T. Kuhr, T. Forster, T. Braun, and R. Gotzhein, “Feral — framework for simulator coupling on re-

quirements and architecture level,” in 2013 Eleventh ACM/IEEE International Conference on Formal

Methods and Models for Codesign (MEMOCODE 2013), 2013, pp. 11–22.

[40] S. Braun, A. Bieniusa, and F. Elberzhager, “Advanced domain-driven design for consistency

in distributed data-intensive systems,” in Proceedings of the 8th Workshop on Principles and

Practice of Consistency for Distributed Data, ser. PaPoC ’21. New York, NY, USA: Association for

Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3447865.3457969

[41] M. R. S. Sedghpour, A. O. Duque, X. Cai, B. Skubic, E. Elmroth, C. Klein, and J. Tordsson, “Hydra-

gen: A microservice benchmark generator,” in 2023 IEEE 16th International Conference on Cloud

Computing (CLOUD), 2023, pp. 189–200.

[42] H. H. A. Valera, M. Dalmau, P. Roose, J. Larracoechea, and C. Herzog, “Draceo: A smart simulator

to deploy energy saving methods in microservices based networks,” in 2020 IEEE 29th Interna-

tional Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-

ICE), 2020, pp. 94–99.

[43] Y. Zhang, Y. Gan, and C. Delimitrou, “uqsim: Scalable and validated simulation of cloud microser-

vices,” 2019.

[44] M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.

70

https://www.sciencedirect.com/science/article/pii/S0164121222000863
https://doi.org/10.1145/3447865.3457969

[45] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros, “Workflow patterns,”

Distributed and parallel databases, vol. 14, pp. 5–51, 2003.

[46] D. Caromel, L. Henrio, and B. P. Serpette, “Asynchronous sequential processes,” Information

and Computation, vol. 207, no. 4, pp. 459–495, 2009. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0890540108001582

71

https://www.sciencedirect.com/science/article/pii/S0890540108001582
https://www.sciencedirect.com/science/article/pii/S0890540108001582

72

73

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Work Objectives
	1.2 Organization of the Document

	2 Problem
	2.1 Problem
	2.2 Semantics
	2.2.1 Saga Architecture
	2.2.2 Domain-Driven Design
	2.2.3 Sagas vs Transactional Causal Consistency
	2.2.4 Transactional Causal Consistent Microservices Simulator

	3 Related Work
	3.1 Transactional Saga Patterns
	3.2 Existing tools and frameworks
	3.2.1 Eventuate Tram Sagas
	3.2.2 Temporal
	3.2.3 SagaMAS
	3.2.4 Comparison Overview

	3.3 Comparison with the developed framework
	3.3.1 Eventuate Tram Sagas
	3.3.2 Temporal
	3.3.3 SagaMAS
	3.3.4 Overall Comparison

	3.4 Simulation in Microservices
	3.4.1 FERAL
	3.4.2 µqSim

	4 Microservice Simulator
	4.1 Microservice Sagas Simulator
	4.1.1 Overview
	4.1.2 Aggregate Design
	4.1.3 Coordination Design
	4.1.4 Workflow Design

	4.2 Microservice Simulator Framework

	5 Evaluation
	5.1 Evaluation
	5.1.1 Completeness
	5.1.2 Ease of Extension
	5.1.3 Simulate Interleavings
	5.1.4 Complex Interleavings
	5.1.5 A Large Monolith System
	5.1.6 Usage
	5.1.7 Threats to Validity

	6 Conclusion
	6.1 Conclusions
	6.2 System Limitations and Future Work
	6.2.1 Future Work

	Bibliography

