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Resumo

A arquitetura de microservicos destaca-se como uma solug@o para aumentar a flexibilidade e a esca-
labilidade dos sistemas de software. Contudo, apesar dos seus beneficios, a adog@o desta arquitetura traz
consigo desafios significativos, especialmente no que diz respeito a consisténcia dos dados distribuidos
entre os vérios servigos. Uma das principais dificuldades que emergem neste contexto é garantir a con-
sisténcia das transacdes, uma vez que, ao contrario das arquiteturas monoliticas, os microservigos fre-
quentemente perdem a propriedade de isolamento que é critica para manter a integridade dos dados.

Esta tese aborda o problema da dete¢do de anomalias de consisténcia em transagdes dentro de sis-
temas baseados em microservicos. As anomalias de consisténcia, tais como as relacionadas com a
serializacdo incorreta de operagdes, podem levar a estados de dados inconsistentes, comprometendo a
fiabilidade dos sistemas. O objetivo principal deste trabalho é desenvolver uma abordagem capaz de
identificar antecipadamente estas anomalias, permitindo que os desenvolvedores possam corrigi-las an-
tes que o sistema seja implementado.

No contexto da pesquisa sobre consisténcia de dados em sistemas distribuidos, esta tese fundamenta-
se em conceitos estabelecidos tanto nas arquiteturas monoliticas quanto nas de microservicos. A lite-
ratura existente destaca a dificuldade de manter a consisténcia em sistemas que utilizam microservicos
devido a perda de isolamento e as transagdes distribuidas. Diversas abordagens tém sido propostas
para enfrentar esses desafios, incluindo ferramentas de andlise estdtica e dinamica, como CLOTHO e
ACIDRain, que se focam na detecao de anomalias de serializacdo em diferentes cendrios. No entanto,
essas ferramentas apresentam limitagdes quando aplicadas diretamente a arquiteturas de microservigos,
onde as operagdes distribuidas e as complexas interacdes entre servicos requerem solu¢des mais espe-
cializadas. Esta tese contribui para o tema ao propor uma abordagem especifica para microservigos,
complementando e estendendo as técnicas existentes.

Para enfrentar este tema, o STRIVE foi desenvolvido, um algoritmo que utiliza técnicas de andlise
estdtica para detetar potenciais anomalias de serializacdo em microservicos. A abordagem baseia-se na
modelacgdo das operacdes do sistema e nas suas interacdes através de um grafo. Neste grafo, as operagdes
de base de dados sdo representadas como nds, e as dependéncias entre elas sdo representadas como
arestas. O algoritmo foca-se na detecdo de ciclos dentro deste grafo, uma vez que os ciclos indicam
potenciais violagdes de consisténcia. Se um ciclo for detetado, isso sugere que hd uma sequéncia de
operacdes que poderia levar o sistema a um estado inconsistente.

Além do desenvolvimento do STRIVE, esta tese inclui também o design de uma Linguagem Es-
pecifica de Dominio (DSL), que facilita a descri¢do dos sistemas de microservigos. Esta DSL permite
que os desenvolvedores modelam os seus sistemas de forma abstrata, sem a necessidade de escrever

codigo de baixo nivel. A DSL foi projetada para ser intuitiva, permitindo a definicdo de operagdes,
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transacoes e fluxos de dados, o que é essencial para a anélise de anomalias de consisténcia. A modelacao
em alto nivel proporcionada pela DSL ¢ transformada pelo STRIVE num modelo interno que pode ser
analisado para a detecdo de anomalias.

Os resultados obtidos com o STRIVE sdo demonstrados através de estudos de caso, que ilustram
a aplicac@o pratica da abordagem proposta. Os estudos de caso incluem a migragdo de sistemas mo-
noliticos para arquiteturas de microservicos, onde os desafios de consisténcia sdo mais pronunciados. A
comparacdo com outras ferramentas existentes mostra que o STRIVE oferece uma solucéo igualmente
eficaz para a detecdo de anomalias, destacando-se pela sua capacidade de realizar esta analise de forma
antecipada, durante a fase de desenvolvimento, num sistema estruturado com microservigos. No entanto,
apesar das contribui¢des apresentadas por este trabalho, hd vérias dreas que permanecem abertas para
pesquisa futura. Uma delas € a extensdo do algoritmo para suportar niveis adicionais de isolamento, o
que permitiria uma andlise ainda mais abrangente das possiveis anomalias. Além disso, hd potencial
para melhorar a DSL, tornando-a mais fécil de usar e mais expressiva, de modo a capturar um maior
nidmero de detalhes do sistema. Um passo crucial para o futuro é o desenvolvimento de um parser que
automatize a tradugdo das descricdes feitas em DSL para a representacdo interna utilizada pelo STRIVE,
simplificando ainda mais o processo de modelagao e andlise.

A presente tese constitui um passo no sentido de melhorar a fiabilidade das arquiteturas de microservigos.
Ao permitir a dete¢do proativa de problemas de consisténcia nas transagdes, 0 STRIVE oferece uma fer-
ramenta prética e eficaz para os engenheiros de software, contribuindo para a robustez dos sistemas
distribuidos. No entanto, a complexidade crescente dos sistemas modernos exige uma evolugao continua
das ferramentas e abordagens aqui apresentadas, para que possam ser plenamente aplicdveis a um leque
mais vasto de cendrios e desafios.

Em resumo, o trabalho aqui desenvolvido ndo sé contribui para a compreensdo dos desafios inerentes
a consisténcia dos dados em arquiteturas de microservigos, mas também propde uma solugdo pratica para
a sua detecdo e correcdo. Esta solug@o, embora promissora, requer melhorias continuas e adaptacdes para
enfrentar as novas exigéncias impostas pela evolucio das tecnologias e das arquiteturas de software. A

continuidade deste trabalho devera focar-se na expansdo das capacidades do STRIVE e da DSL.

Palavras-chave: Microservicos, Consisténcia de Dados, Transagdes Distribuidas, Analise Estatica,

Linguagem Especifica de Dominio (DSL)






Abstract

The widespread adoption of microservices architecture in modern software development has intro-
duced significant challenges in maintaining data consistency across distributed services. This thesis
addresses the problem of detecting transaction consistency anomalies within microservices-based sys-
tems, which are prone to issues due to the loss of isolation in distributed transactions. To tackle this
problem, we propose STRIVE; a novel approach that leverages static analysis techniques to identify po-
tential serialization anomalies in microservices. By modeling system operations and their interactions as
a graph, the algorithm detects cycles that indicate possible consistency violations. This method enables
the early detection of anomalies during the development phase, thereby preventing data inconsistencies
that could arise after deployment. The work includes the design of a Domain-Specific Language (DSL)
to facilitate the description of microservices systems, allowing developers to model their systems at a
high level of abstraction without needing low-level code. The effectiveness of STRIVE is demonstrated
through case studies, showing its ability to identify potential issues in various microservices architec-
tures. Furthermore, we also identify several areas for future exploration, including the extension of the
algorithm to support additional features and the refinement of the DSL. Towards improving the reliability
of microservices architectures, this thesis provides a tool that enables the proactive detection of transac-
tion consistency issues, contributing to the broader effort of making distributed systems more robust and

reliable.

Keywords: Microservices, Data Consistency, Distributed Transactions, Static Analysis,

Domain-specific language (DSL)
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Chapter 1

Introduction

1.1 Motivation

Many existing enterprise applications that are structured according to well-known and popular architec-
tural patterns [[LO] have a monolith architecture. In these systems, the components responsible for the
different business functionalities are all bundled into a single deployable element and typically share a
single database.

Applications with a monolith architecture are generally easier to develop than distributed applica-
tions. However, these benefits come at the cost of scalability, performance and maintainability. Mi-
croservices architecture, often shortened to microservices, is a recently proposed architectural style to
counter these disadvantages. In this style, applications are structured as a set of loosely coupled services
that can be developed and deployed independently. Each service encapsulates a small and well-defined
set of business functionalities and runs in its own process and database. Systems with microservice ar-
chitecture are much easier to scale and evolve, making this architecture well-suited for the modernization
of many long-lived monolithic applications.

The migration of monolithic applications to microservices is not trivialﬂ One of the main problems
is to ensure data consistency, namely maintaining data consistency across services and obtaining a con-
sistent view of the data. This is because the database, which was once centralized, becomes partitioned
and distributed between different services. Hence, system operations might need to update data in mul-
tiple databases. In the monolith, system operations could rely on the properties of ACID transactions
to guarantee isolation and a consistent view of the database [[12]]. In microservices, it is also possible
to implement distributed transactions with similar guarantees, for instance, using the two-phase commit
protocol [11l]. However, this requires that the system’s different microservices put a lock around their
information to create a consistent view of the data for the active global distributed transaction, which
creates a bottleneck on the entire system, defeating the purpose of improving scalability (one of the
major advantages of the architectural style). Another approach is to coordinate the overall distributed
state change using local transactions together with compensating mechanisms, like Sagas [1], that do
not rely on locking and do not create such a bottleneck. Sagas are more complex than traditional ACID
transactions to implement and are error-prone. Moreover, they only guarantee eventual consistency.

Once a monolithic application is split into” several microservices unless distributed transactions

are used, isolation is lost and concurrent system operations can see the effects of each other, and data

' martinfowler.com/articles/break-monolith-into-microservices.html
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consistency anomalies can occur. Business logic can end up making decisions based on inconsistent
information.

Consider, for instance, a bank system that allows users to perform bank operations such as deposit
and withdraw as well as consult and update information about the customers (for example, name, address
and credit rating) and the accounts (for example, balance). In this system, there is also a need for dynamic
credit rating adjustments based on user behavior and transaction history. This dynamic adjustment en-
sures that customers with responsible financial behavior are rewarded with credit rating increases, while
those with risky behavior have their ratings reduced. The withdrawal operation is particularly interesting
as the maximum amount a user can withdraw is influenced by the credit rating, and after the withdraw,
a dynamic credit rating adjustment is conducted, meaning that this operation needs both account and

customer data. Apart from the withdraw, the credit rating can also be adjusted directly.

&

User

v

Customer Finance ‘

Service Service

Customer
Data

Figure 1.1: Bank system with a Monolith Architecture

Figure Epresents a version of this system with a monolithic architecture. The business logic is
implemented in Finance Service and Customer Service, two modules of the same codebase that are
deployed together. The Finance Service is responsible for the bank operations and Customer Service
for managing customers’ information. The business logic is fulfilled by components that exist, side by
side, in the same runtime instance, and the customer and account data is stored in the same database. As
mentioned before, with this architecture, an operation such as a withdrawal, which needs customer and
account data, can be performed in a single ACID transaction, isolated from other concurrent operations.
Even if a direct credit rating adjustment is made, since it is also an ACID transaction, it either is executed
before the withdraw was commited, or after the withdraw commited. A consistent view of the data is
preserved until every operation is finished.

Let us now consider that the monolith was split into microservices, resulting in the architecture
presented in Figure[I.2] In this system, there are two microservices, Customer Microservice and Finance
Microservice, and each has its own database. The two microservices correspond to the modules described
earlier but are now in different codebases and can be developed and deployed independently.

In this architecture, without any mechanism in place that provides data consistency, the system op-

erations lose isolation. For example, while a withdrawal is being executed, the Finance Microservice



Chapter 1. Introduction 3

User

/ "\/7\
Customer < /
Microservice - >

Finance
Microservice

5
Nygf
n.::,l
Account

Data

»
Customer
Data

Figure 1.2: Bank system with a Microservice Architecture

communicates with the Customer Microservice to retrieve the credit rating of the respective customer’s
account and subsequently initiates the withdrawal. However, simultaneously, that same customer’s credit
rating can be modified by a concurrent operation, such as a reduction. After the withdrawal is complete,
a dynamic credit rating adjustment is executed, for example, an increase of the credit rating. Since there
are no guarantees that a consistent view of the data is preserved until the operation is finished, the direct
credit rating reduction can occur between the withdrawal operation reading the initial credit rating, and
the subsequent increase. Due to the interleaving of these two operations, the credit rating increase can
overwrite the reduction, potentially creating a database state that does not correspond to either of the
results of the two sequential executions of both operations, as if they were isolated.

These data inconsistencies problems, or anomalies, are especially important for applications in fields
such as health or finance, where business-critical decisions rely on data consistency between executions
of business operations. This problem presents significant challenges for software developers during
the implementation of these systems, and they need to take these phenomena into account and create

coordination mechanisms across the systems’ services to avoid or compensate for these anomalies.

1.2 Goals

The goal of this thesis is to explore the challenges posed by serialization anomalies in microservice-based
systems and design an algorithm that utilizes static analysis techniques to detect such anomalies. This
includes understanding the impact of concurrent database operations, identifying the potential risks to
data consistency and integrity, and analyzing existing approaches for detecting and mitigating serializa-
tion anomalies, identifying their strengths and limitations, and proposing an alternative with a different
approach.

Another key objective of this research is the implementation of the previously designed algorithm,
allowing for comprehensive testing and evaluation. By developing a practical solution, the thesis aims to
showcase the algorithm’s effectiveness and motivate its real-world usage. This implementation will serve
as a tangible example of the algorithm’s application and facilitate the understanding of its functionality

and benefits. Furthermore, by demonstrating the practicality of the algorithm, developers can be guided



Chapter 1. Introduction 4

in taking appropriate countermeasures and preventive actions against serialization anomalies in their

microservice-based systems.

1.3 Contributions

This thesis presents a novel algorithm for detecting potential serialization anomalies in database opera-
tions within microservice-based systems in a early stage of development. By leveraging static analysis
techniques, the algorithm operates on a high-level description of system endpoints and database opera-
tions, offering a unique approach to identifying potential issues, without the need for a runtime environ-
ment. This allows for early detection of possible serialization anomalies across complex and distributed
systems, addressing scalability challenges associated with large-scale microservice architectures.
Alongside the algorithm, an actual implementation was also developed, providing a real-world usage
that complements the algorithm. The implementation showcases a concrete input and output, demon-
strating the practical application and effectiveness of the algorithm in a real-world scenario. Addition-
ally, the implementation provides an idea for a usable solution for software engineers to integrate into
their development processes, aiding in the prevention of concurrency-related problems that could affect

data integrity and consistency.

1.4 Outline

The following chapters of this thesis are structured as follows:

e Chapter 2: Background - This chapter presents the foundational concepts necessary for un-
derstanding the work, including monolithic versus microservices architectures, transactions, data

consistency, and the types of anomalies that can arise in distributed systems.

¢ Chapter 3: Related Work - This chapter reviews the literature on related topics, focusing on
migration tools for transitioning from monolithic to microservices architectures and existing tech-

niques for detecting consistency problems.

* Chapter 4: Approach - This chapter details the methodology developed in this work, including
the design and implementation of the STRIVE algorithm. It explains how the system is modeled

using the DSL and describes the graph-based approach to detecting serialization anomalies.

* Chapter 5: Modeling Systems for Static Analysis - This chapter discusses the design of the
Domain-Specific Language (DSL) used to model systems for static analysis. It covers the grammar
and structure of the DSL and addresses the challenges of modeling systems at an appropriate level

of abstraction.

* Chapter 6: Anomaly Detection - This chapter explains the core algorithm for detecting anoma-
lies, including the graph construction process and cycle detection techniques. It also discusses how

detected cycles are analyzed to identify potential serialization anomalies.
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* Chapter 7: Case Studies and Evaluation - This chapter presents case studies that demonstrate
the practical application of the proposed approach. It includes a comparison with other tools and

techniques.
* Chapter 8: Future Work - This chapter outlines potential directions for future research.

¢ Chapter 9: Conclusion - The final chapter summarizes the contributions of this work. It also

highlights the limitations of the current approach and suggests areas for further exploration.
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Chapter 2

Background

This section introduces concepts of the monolith and microservices architectures, transactions, and data
consistency. It also provides insights into the anomalies that can be present in distributed transaction and
presents a brief characterization of two types of program analysis techniques for the detection of errors.

The terminology used throughout the rest of the document is also presented.

2.1 Monoliths vs Microservices

When it comes to enterprise applications, two widely-adopted architectural styles are monoliths and
microservices [10]. Even if built in a modular way, applications with a monolithic architecture are
structured as a single deployable artifact and typically use a single relational database. This style of
organization quickly provides a simple and safe way to execute concurrent business transactions since the
code is called locally, and database accesses can benefit from ACID properties, which will be described
in more detail in the next section. This architectural style simplifies development and maintenance but
makes it very difficult to update the system when the business needs to change, creating a need to shift
to a different architecture.

Microservices architecture, on the other hand, is a style for developing flexible software applications
as it enables a more independent continuous delivery and deployment. Applications with this style are
structured as a collection of loosely coupled services that can be independently developed, updated,
deployed and scaled. Each microservice is an independent piece of software that performs a specific
function, typically aligned with a business capability and its own data. A microservice can communicate
with another synchronously, calling an API that the other service exposes, using lightweight protocols
such as HTTP and gRPC, or asynchronously with events or message passingﬂ This approach simplifies
system scalability by allowing new services to be added or existing ones to be expanded with minimal
disruption to the overall architecture.

By breaking a large application up into a collection of small services, the result is a system with
a more complex design. Services must use interprocess communication mechanisms, instead of just
doing method calls, and be designed to deal with the unavailability of the other services. As discussed
before, implementing business transactions that span multiple services requires creating coordination

mechanisms across the systems’ services to avoid or compensate for data inconsistency anomalies.

'learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication
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Migrating from monolithic to microservices requires careful planning and consideration of the ad-
vantages and disadvantages of each approach. Migration strategies should consider the costs and risks
involved in migrating existing applications, the feasibility of retaining and maintaining existing function-

ality, as well as taking transaction problems that can appear after the migration into account.

2.2 Transactions

A database’s contents can be accessed and modified as part of a single logical unit of work known as a
transaction. Read and write operations are used by transactions to access and manipulate data. In order
to preserve data consistency, transactions are required to meet specific properties. These are known as

ACID properties, with ACID standing for atomicity, consistency, isolation and durability [24].

* Atomicity, also known as the “all or nothing” rule, says that a transaction either fully executes,

meaning all steps are executed, or fails, meaning none of the steps are.

* Consistency refers to the characteristic that transactions cannot violate integrity constraints created
in the database. For instance, a defined constraint might be that all bank accounts have a positive
balance, and due to this property, any transaction that would update the balance to a negative value

would be canceled.

* Isolation specifies that transactions cannot see the effects of other concurrent transactions that did

not finish yet.

* Durability states that all committed changes from transactions will remain saved in the system

even in the case of a crash or failure.

The DBMS (Database Management System) is responsible for ensuring that transactions meet these
properties, so a developer does not need to worry about implementing them. In a microservice system,
however, each individual service can benefit from ACID transactions locally, but the problem arises in
operations that manipulate data from other services’ databases. For instance, if a business transaction
spans multiple microservices and one of them fails, then all other microservices have to act accordingly
and also fail or compensate for that failure from their point of view, otherwise the Atomicity of the
global operation is lost. The same problem can occur with the Isolation property, if a microservice starts
an operation and asks another microservice for information, that information can already be outdated
since the other microservice is always available for requests, resulting in the first microservice seeing the
effects of another concurrent transaction after its own transaction started.

As mentioned before, microservice-based systems can also be ”ACIDified”, with solutions that sup-
port distributed transactions like the two-phase commit protocolﬂ As discussed by Nitin et al. [19],
these solutions are not a viable option in general, unless we can rely on expensive data centers and
meticulously synchronized atomic clocks.

If a business transaction spans multiple services, a more common and efficient solution is to use Sagas

to implement the operation and the steps required to maintain data consistency across the services. The

2developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture
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saga pattern only grants the ACD properties to global business transactions, lacking isolation, typically

resulting in the countermeasures needed to be implemented at the application level.

2.3 Data Consistency

In monoliths with a single database, data consistency reduces to database consistency, i.e., the degree
to which data stored in the database is accurate and reliable. In the microservice architecture, it is
the degree to which data held by a given microservice is consistent with other data maintained by the
other microservices. There are several different consistency models, contracts that define the degree of
consistency. For the purpose of this work, the more relevant models are those prevalent in monoliths and
microservices: strong consistency and eventual (weak) consistency.

Data can become inconsistent due to poor design choices, or the propagation of inaccurate data. In
an enterprise environment, it may be perfectly normal for inaccurate data to exist in the system due to
the nature of that data being non-critical, or the performance benefits outweigh the cost of maintaining
consistency. On the other hand, some data is critical for the business and must be maintained consistently.

Different mechanisms can be used to ensure that data kept by a system remains consistent over time,
each offering advantages and disadvantages depending on the type of data to be stored and the application

requirements [23]].

2.3.1 Strong consistency

This model means that the user never sees an inconsistent state of the system. A monolith supports
this easily with ACID transactions since all the data related to a specific transaction is colocated, and
concurrent transactions do not see changes of each other, resulting in coherent database states. For mi-
croservices, strong consistency means that every service should only expose consistent data to the user
and every other service. To implement this model in this architecture, it is necessary to use mechanisms
that prevent any data modification while a business transaction is happening globally across the sys-
tem. While this is possible with coordination and global locks, it drastically reduces the availability and
performance of the system.

An alternative approach to achieve strong consistency, while mitigating the performance impact, is
the use of optimistic locks. In this approach, transactions proceed optimistically without acquiring locks
on data. Before committing, a transaction checks whether the data it has modified has been concurrently
modified by other transactions. If conflicts are detected, the transaction can be rolled back or merged
with the conflicting changes, ensuring that data remains consistent. Optimistic locking minimizes the
contention for locks, allowing transactions to execute in parallel more frequently, but it requires careful

conflict resolution strategies, and consumes additional resources with possible useless computations.

2.3.2 Eventual consistency

This model offers an alternative to the strong consistency model and is often favored in microservices and
other scenarios where strong consistency might lead to poor system performance, or when high system
availability is a priority. Eventual consistency relaxes the requirement of immediate consistency across

all parts of the system.
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In an eventual consistency model, the primary guarantee is that, given enough time and absence of
new updates, all replicas of data within the system will eventually converge to a consistent state. This
means that, for a given transaction committed by one service, it may take some time for all other services
to see and reflect that change. This delay in achieving consistency is known as “eventual.”

Eventual consistency allows individual transactions to complete even if other transactions have mod-
ified the same data items concurrently. However, this introduces the possibility of temporary inconsis-
tencies or anomalies in the system. If one service relies on data from another service but reads it before
the eventual propagation of the latest updates, it might operate on outdated or inaccurate information,
potentially leading to data consistency anomalies.

These anomalies are discussed in more detail in Section[2.4] Eventual consistency is favored when
high system availability and performance are paramount, and the system can gracefully handle temporary
inconsistencies in exchange for these benefits. Different strategies like conflict resolution mechanisms

and techniques to handle these anomalies are often employed to mitigate their impact.

2.4 Anomalies

Weakening the isolation property of the ACID principle implies that database inconsistencies might arise
when multiple transactions work on the same data concurrently. If an inconsistent state is achieved,
a serializability anomaly has occurred. Serializability is a property that ensures that the execution of
multiple transactions is equivalent to one of the possible executions of multiple transactions sequentially,
one at a time. It is vital to guarantee and maintain the consistency and integrity of the data. Various types
of serializability anomalies can occur depending on the type of operations and the order in which they

are executed [22]:

* Dirty read: A microservice reads data that is being updated by another microservice, and the data

is not yet in a consistent state.

* Dirty write: A microservice writes data that is being read by another microservice, and the data

is not yet in a consistent state.

* Non-repeatable read: A microservice reads the same row of data multiple times and gets different

values because another microservice updated that row.

* Phantom read: A microservice reads a set of rows, but the set changes when another microservice

inserts or deletes rows, causing the first microservice to see different results on subsequent reads.

* Lost update: Two microservices incrementally update the same data simultaneously and one

update is lost or overwritten.

* Write skew: Two microservices update different pieces of related data simultaneously, leading to

an inconsistency between the two pieces of data.

» Short/Long fork: A change is made to a service that requires a few/large (short or long) numbers
of other services to also be changed in order to maintain compatibility. This problem is more re-
lated to service coupling and interdependencies rather than immediate data inconsistencies, which

can occur if services are tightly coupled.
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All these anomalies can cause the microservices to make decisions based on incomplete or incon-
sistent data. In summary, serializability anomalies originate from concurrency side effects when the
isolation property is lost. Business operations that only rely on one microservice to be fulfilled are less
likely to suffer from anomalies, i.e., if each microservice has its own database and tables, it is less likely
that a dirty read or lost update anomaly will occur because each microservice is interacting with its own
data, plus each individual component can also support ACID properties. In cases where services need to
access or update each other’s data, such as the examples described above, the anomalies have a higher
probability of occurring due to isolation not being present in distributed transactions. Each system is
unique, with its specific requirements and characteristics, meaning that they can have their own instances
of these serializability anomalies. Fortunately, there are known techniques to prevent them, once we are
aware of them. To conclude, more efforts in identifying these anomalies, especially during a migration

process, will result in safer and more correct software.

2.5 Software Analysis for Detection of Defects

Since the serializability of business transactions is no longer ensured, there are some execution scenarios
in which a given decomposition of the monolithic application might not behave as intended.

Static and dynamic analysis are two different but complementary ways of inspecting software to
verify the absence of defects. Both provide valuable information that can be used to improve the quality
and reliability of software applications, and they complement each other by revealing different aspects
of the software’s functionality [2]. The differences between the two types of analysis are discussed in

more detail below.

2.5.1 Static Analysis

Static analysis uses formal mathematical and logical rules to search for errors in software without exe-
cuting it. A popular static analysis technique is to simulate the program execution with abstract values
(instead of the concrete runtime values in a real execution). This execution spans all possible program
states and allows for the variables to be controlled and decoupled from runtime values, thus not limiting
the analysis only to predictable and common program states. It can be used to identify any errors or bugs
in the software in the development stages. Another advantage of this kind of analysis is that it can be
used on a simpler model of the software instead of the actual code, which is typically done by having
an abstract representation of the artifact being analyzed, reducing the complexity of the analysis, but in

turn, the bugs detected in these models are not directly mapped to the original artifact.

2.5.2 Dynamic Analysis

Dynamic analysis is an execution technique that may be used to verify, diagnose, optimize or control the
behavior of software and computer systems. It involves analyzing how the code is executing during run
time, as opposed to how the code was written, to identify problems and inefficiencies. Using this kind of
analysis, the software code can be tested against unexpected situations, and can help pinpoint bugs with

genuine and precise counter-examples. However, dynamic analysis cannot be used to find all bugs due
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to the time-consuming process of executing all possible combinations of runs and should be used as a

complementary tool to static analysis.

This chapter discussed foundational concepts critical to understanding the complexities of microservices
architectures. It contrasts monolithic and microservices architectures, explains transaction management,
and details data consistency models like strong and eventual consistency. The chapter also introduces
anomalies that can arise in distributed systems, such as dirty reads and lost updates, and briefly touches
on software analysis techniques for detecting these issues. This sets the stage for the upcoming sections,
where these concepts will be further explored and applied, particularly in the context of detecting and

mitigating transaction consistency problems in microservices systems.
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Related Work

In this section, I describe work related to the problem of assisting developers in migrating to microser-

vices, including both industrial applications and theoretical techniques to detect consistency problems.

3.1 Migration Assisting Tools

The necessity of migrating monoliths to microservices lead the industry to refine and streamline this pro-
cess. The end objective is to have a decomposition with loosely connected and specialized microservices.
However, tackling this process manually is difficult, time-consuming and error-prone. The migration re-
quires complex planning, engineering time and resources, making complete rebuilds rarely feasible [19].
This has motivated the development of several approaches and tools to help developers find a good parti-
tioning of the monolith into several microservices, and establish the business functionalities boundaries
[3516} [13L {150 119]. An example of one of these tools is IBM’s Mono2Micro [[L5], which targets JavaEE
monoliths and suggests a set of partitions of application classes that are functionally cohesive.
Automatic approaches to monolith decomposition typically rely on the computation of module de-
pendencies and on the application of clustering or evolutionary algorithms over these dependencies to
create module partitions that have certain “good” properties (e.g., high functional cohesion and low
coupling). As mentioned by Nitin et al. [19]], one of the limitations of current approaches is that the rec-
ommended partitions typically do not take into account the loss of isolation and the lack of consistency

in the data that can arise after the migration.

3.2 Detection of consistency problems

Previous work on the detection of consistency problems has focused on developing static analyses to
check for serializability of programs under weaker isolation levels in centralized databases [9i|14]. More
recently, there has also been some work on static analysis to check for serializability of client applications
of weakly consistent replicated distributed databases [4} |18, |20].

For instance, Rahmani et al. [20] addressed this problem by developing CLOTHO, a parametric
tool based on the specification of the consistency model offered by the database. CLOTHO generates
abstract executions of database transactions programmed by the user, and detects serialization anomalies
by checking for cyclic dependencies between read and write events in those transactions, reporting them

back with test inputs to reproduce them. The tool does this by constructing a conjunction in First-order

13
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logic (FOL), as shown in Figure 3] composed of different clauses, such as the context axioms, the
consistency model guarantees, the dependencies between the read and writes events, and the anomalies

themselves.
© = Peontext N @os N Poer— A ©oper A Panonary

Figure 3.1: CLOTHO conjunction, adapted from Rahmani et al. [20]

The satisfiability of the formula is then checked with Z3 [17]. This way, the problem of detecting a
serializability anomaly is reduced to a SMT problem, with the goal of finding a satisfying assignment to

the logic formula that results in a cycle being present.

Considering its benchmarks, the analysis technique implemented by CLOTHO seems promising for
detecting transaction consistency problems in microservices decompositions of monolithic applications.
However, CLOTHO is not directly applicable in these scenarios because microservices architectures are
subject to different constraints and do not reduce to sets of operations executed on a single replica of a
distributed database. Specifically, when CLOTHO analyzes an application’s operations to detect cycles,
it simulates concurrent executions of the same operation across different replicas. This approach does
not align with microservice-based systems, where each operation is typically handled by the service

responsible for that operation’s specific business context.

There are also anomaly detection techniques that use dynamic analysis instead, for instance, they rely
on the execution of the system to build dependency graphs to check for cycles or analyze logs after exe-
cution [3]. The tools mentioned in the study [S]] approach a different but somehow related problem, that
is, the detection of constraint consistency errors in distributed enterprise systems (for instance, different
constraints are imposed on the same type of input in different components). These tools focus mainly on
security issues and the detection of security anomalies, and allow anomaly detection on a system that is

already deployed.

Another relevant dynamic analysis algorithm is presented in ACIDRain [25]]. The paper introduces a
novel method called Abstract Anomaly Detection (2AD) for detecting isolation anomalies in web appli-
cations. The 2AD approach utilizes dynamic traces of database accesses, real SQL logs, to analyze the
space of possible concurrent interleavings and identify potential anomalies. The methodology applies
weak isolation to reason about both API calls and concurrent executions, enabling the construction of an
abstract history that represents the infinite space of concurrent schedules in a finite data structure. The
method involves several steps (Figure@: First, it generates traces of normal application behavior from
the database, either from typical usage or explicitly for anomaly detection. Then, it lifts this trace to ex-
tract API call-generated transactions and their associated variables. Next, it detects potential anomalies
in the extracted trace, and if an anomaly is found, the method refines the trace to pinpoint the specific
sequence of API calls causing the problem. While ACIDRain detects real anomalies due to using real
SQL logs as input, the system needs to be deployed, meaning it relies on an existing operational envi-
ronment, which can limit its ability to identify issues during the early stages of development or before
deployment. This dependence on live traces can make it less effective for proactive testing and may miss

potential anomalies that could arise in different or unforeseen operational scenarios.
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Figure 3.2: 2AD workflow to discover ACIDRain attacks (Figure 2 from [23])

This chapter provides an overview of existing tools and methodologies for detecting consistency prob-
lems in microservices architectures. CLOTHO and ACIDRain are highlighted as significant contributions
in this domain. However, while CLOTHO is effective in detecting serializability anomalies in distributed
databases, it is not directly applicable to microservices, where each service often has its own database
and specific operations. CLOTHO’s focus on managing transactions across distributed replicas does not
address the complex, inter-service interactions and independent data management that are characteris-
tic of microservices architectures. On the other hand, ACIDRain’s dynamic analysis approach offers
valuable insights by analyzing real execution traces but falls short in early detection of anomalies, as it
requires the system to be already deployed. These gaps justify the need for this thesis, which aims to

develop an early anomaly detection algorithm tailored for microservices.
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Chapter 4

Approach

Given the susceptibility of microservice architectures to serialization anomalies in comparison to their
monolithic counterparts, STRIVEEI (Static Transaction Read-Write Interleaving Verification Engine)
was developed to identify these anomalies within microservices systems. This chapter introduces STRIVE’s

pipeline, designed to assist system developers in addressing these challenges.

4.1 Overview

dsl I_—_> DSL Parsing I::> Graph Construction

writes/‘

Meta-model
instance

Data dependency
graph

V

Detected cycles Cycle Detection

Path Expansion

Figure 4.1: STRIVE’s pipeline

In STRIVE, the identification of serialization anomalies within a microservice-based system requires
that some information is extracted from the system. Concretely, users are tasked with describing the
microservices within the system. This description should encompass details like available endpoints, the
composition of endpoints in terms of database operations, the database tables these operations interact

with, and which operations can be executed atomically. This description does not require a low-level

"https://github.com/andre-f-silva/strive
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code representation of the system, a high-level textual description suffices. The approach is, hence,
applicable if the system has not yet been implemented.

This textual description serves as the initial step in STRIVE’s pipeline. A text-based Domain Specific
Language (DSL) is proposed, which allows users to describe microservices, focusing primarily on the
information needed to identify anomalies, bypassing low-level decisions such as specific programming
languages and technologies.

Once all the necessary system characteristics are modeled, the next stage involves organizing this in-
formation for the anomaly detection algorithms. As detailed in subsequent sections, this approach com-
bines ideas from CLOTHO and ACIDRain, leveraging graph theory. All described endpoints, database
operations, and atomicity structures are transformed into a graph where database operations become
nodes, grouped by their atomicity and endpoints, while edges represent data dependencies among these
operations. This results in a data dependency graph representing the microservices of the system, form-
ing the foundation for anomaly detection. The graph is then explored using specific rules, to identify
anomalies, effectively reducing the anomaly detection problem to a cycle detection problem.

To provide valuable feedback to the end-user, the detected cycles need to be translated to anomalies.
This will be done by converting each cycle into a reproducible sequence of database operations, to
effectively present to the end-user scenarios in which they need to implement mechanisms to avoid the
detected anomalies. This will be achieved through dependency DAG (Directed Acyclic Graph) creation
and topological sort algorithms.

The following sections will provide an in-depth explanation of methodology, algorithms, and im-
plementation details of this approach, with the aim of providing a comprehensive understanding of this

approach’s effectiveness and potential applications in real-world scenarios.

4.2 Running Example

In this section, we revisit the bank example used in Chapter[T} An anomaly was detected in the microser-
vice version of the system, where the concurrent executions of a withdraw operation and a credit rating
modification operation created an incorrect system state. Figure@describes the two operations in more
detail. The figure shows 2 microservices, Finance and Customer. The Finance Microservice exposes a
withdraw endpoint. An execution of withdraw has 3 steps: (1) the read customer’s credit rating, that
is a remote call to the Customer Microservice, (2) update the customer’s balance, which is a database
transaction to the microservice’s respective database table, and finally, (3) a remote call to update the
customer’s credit rating. The Customer Microservice’s exposed endpoints are described in a similar way,
providing entry points to read and modify a customer’s credit rating.

This example will be constructed and verified with STRIVE to explore the different stages of the

pipeline and reach the detected anomaly.

4.3 Describing the System

To feed STRIVE with the necessary information to detect anomalies, the user needs to provide a de-

scription of the system under study, much like what Figure@portraits. To create a standardized way
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Finance
Microservice

Withdraw

Read Customer's
credit rating

Update Customer's

account balance

Update Customer's

credit rating

UPDATE account
balance = X

Customer

.
Microservice Read Customer's

Credit Rating

Read Customer's
credit rating

SELECT credit_rating
FROM customer_credit
WHERE customer_id = B

WHERE customer_id = A

Update Customer's
Credit Rating

Update Customer's
credit rating

UPDATE customer_credit
credit_rating =Y
WHERE customer_id =B

Figure 4.2: Running Example: Bank operations

of describing a system, a DSL was designed. The DSL’s grammar guides the user to delineate the mi-

croservices, indicating the available endpoints, detailing database operations executed in each endpoint,

and data flow. STRIVE will then convert the text description into an internal model in order to proceed

to the next stages.

4.3.1 DSL

The Finance Microservice represented in Figure @can be described as follows in the designed DSL:

System {
Microservice Finance {
Table account {

}

Operation updateBalance {
type: write
table: account

columns: [id, customer.id, balance]

input: [customer_id, updated_balance]

output: []
affected_columns :[ balance]

predicate: account.id == customer._id

}
Endpoint withdraw {

input : [customer.id, amount]
output : [updatedbalance]
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transactions : {
[remote getCustomerCreditRating (customer_id)]
[updateBalance (customer_id, amount)]
[remote updateCustomerCreditRating(customer_id, credit_rating)]

The description starts by describing the Table account with the columns id, customer_id, balance.

Then it describes a database operation, updateBalance that is a write operation targeting the ac-
count table. It receives as input an customer_id and updated_balance and no output is desired. It’s a
write specifically affecting the balance column and it uses account.customer_id == customer_id as
a filter, which is similar to a SQL query WHERE clause, saying that this operation affects lines in the
account table that have a customer_id equal to the input customer _id.

Lastly, there is the definition of the endpoint withdraw. This endpoint receives as input a cus-
tomer_id and amount and outputs the updatedBalance. Then the transaction sequence of the endpoint
is defined: the endpoint first does a remote call, to the getCustomerCreditRating endpoint passing
the customer_id as input, performs the withdraw, with updateBalance, and calls another endpoint,
updateCustomerCreditRating, with the respective input also. The remaining parts of the system are
described in a similar manner, namely the Customer Microservice, that owns the two endpoints that are
remotely called by the withdraw endpoint.

The square brackets surrounding the different transactions mean an atomic block, indicating that
all items within each square bracket block, including database operations or remote calls, are executed
atomically, preventing the exposure of intermediate states. STRIVE is designed to identify anomalies
in systems with distributed business transactions that lack protective mechanisms like the two-phase
commit. As a result, remote transactions should be individually encapsulated within square brackets.
This signifies that, during an endpoint’s execution, a remote call reads the visible state of the target
microservice and the obtained information can be used in the later operations of the endpoint without
concerns. If there were multiple local database operations, they could be included in a single atomic
transaction by enclosing them in square brackets, since STRIVE assumes that the local databases are
under ACID conditions. This means that the visible states of the corresponding microservice’s database

are limited to the states before and after the operations enclosed with square brackets.

4.3.2 Internal Representation

The first step in the pipeline is the parsing of the DSL input into an internal representation. Although the
parser was not developed in this thesis, its purpose is to convert the text into a meta-model instance to be
manipulated for the next algorithms.

The meta-model instance corresponding to the DSL is presented in Figure@ and It represents
an organized structure ready for manipulation. The example illustrates that an Endpoint (or a Busi-
nessTransaction), is composed of one or more TransactionUnit. A TransactionUnit can either be a
RemoteTransaction, or a LocalTransaction. A RemoteTransaction represents a call to another End-
point, and a LocalTransaction is a group of database operations that are executed atomically in the

microservice’s local database. So the three transactions items in the DSL:
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transactions : {
[remote getCustomerCreditRating (customer_id)]
[updateBalance (customer_id, amount)]
[remote updateCustomerCreditRating (customer_id)]

}

represent in sequence, a RemoteTransaction to the getCustomerCreditRating endpoint (which would
be detailed in the DSL and the meta-model), a LocalTransaction composed of only one atomic database
operation, updateBalance, and another RemoteTransaction, to the UpdateCustomerCreditRating
endpoint.

In Figure it is also possible to see the data flow through the variables. The withdraw end-
point takes in two input parameters, customer_id and amount. These parameters are then passed along
through various TransactionUnits. These parameters create connections between the data in different

TransactionUnits, establishing data dependencies.

InputParameter
is composed of Microservice exposes Endpoint receives -
System > > »| customer_id
Finance Withdraw
is composed of InputParameter
amount
4 Y 4
TransactionUnit: TransactionUnit: TransactionUnit:
RemoteTransaction LocalTransaction RemoteTransaction

GetCustomerCreditRating(customer_id)

updateBalance(customer_id, amount)

UpdateCustomerCreditRating(customer_id)

executes

A 4

Type is of Operation has Predicate
>
>
Write updateBalance(customer_id, amount) account.customer_id == customer_id
targets
Y
Table
account affects
has
i Y i Y
Column Column Column
id customer_id balance

Figure 4.3: Meta-Model Instance for Finance Microservice

4.4 Anomaly Detection

After treating the user’s input, it can now be leveraged to start the anomaly detection stages. As discussed
in ChapterEACIDRain’s anomaly detection core algorithm is based on creating a graph to capture the
dependencies and conflicts between different endpoint calls and database transactions. STRIVE builds
upon ACIDRain’s foundational concepts, with modifications tailored to fit the microservices architecture.

STRIVE also draws upon inspiration from CLOTHO’s SMT solver usage to detect anomalies, to verify
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problematic dependencies between operations. The following sections will dive into STRIVE’s anomaly

detection algorithm.

4.4.1 Data dependency graph construction

The first step of creating the data dependency graph is defining what will be the nodes. In this case, as
noted by the importance of the detailed specification of the database operations, such as the target table
columns, input, output, and the atomic groups, the database operations are important building blocks of
the anomaly detection, thus being the base nodes of the graph. Figure@ shows the base nodes of the
data dependency graph of the example presented in Figure @

Target table: account
Affected columns: balance
updateBalance Type: Write
Input: customer_id, amount
Predicate: account.customer_id == customer_id

Target table: customer
Affected columns: credit_rating
Type: Read readCustomer
Input: customer_id CreditRating
Output: userCreditRating
Predicate: customer.id == customer_id

Target table: customer
updateCustomer Affected columns: credit_rating
CreditRating Type: Write
Input: customer_id
Predicate: customer.id == customer_id

Figure 4.4: The base nodes of the data dependency graph for the running example

Edges between these nodes are then established when there are read/write conflicts or data variables
dependencies. There is a read/write conflict when at least one of the operations is a write (the anomalies
referenced in Section @do not occur without a write), and there are database table columns in common
between the pairs of the nodes’ operations. Another way to establish edges are the dependencies between
data variables. This is done by checking if there are intersections between the input and output variables
of the operations. In either case, the predicates of the operations also need be both verified. The algorithm
that establishes the edges between the nodes is explained in greater detail in Section@

In the case of the running example, a single edge is established between the 3 base nodes, as il-
lustrated in Figure @ The edge represents a read/write conflict since the two operations interact
with the same table (customer) and column (credit_rating). Then a logical conjunction is created be-
tween both of the operactions’ predicates: customer_credit.customer_id == customer_id_read A cus-
tomer_credit.customer_id == customer_id_update. This logical clause signifies that an edge is established
between the two operations under the circumstance that the customer_id used as input is the same in both
operations. If the readCustomerCreditRating were to affect user A, and updateCustomerCreditRating
were to affect user B, there would be no conflict, thus no edge.

As hinted before, the interleavings between commited database states of the different microservices
are the root problem of anomalies. These committed states are the result of atomic blocks of database
operations corresponding to the LocalTransactions (see Section@ To reflect this in the graph, the

database operations nodes in the same atomic block are grouped into LocalTransaction nodes. In the
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updateBalance

read/write conflict
customer_id_read == customer_id_update

updateCustomer
CreditRating

readCustomer
CreditRating

Figure 4.5: Edges of the data dependency graph for the running example

running example, this is represented in Figure

updateBalance

read/write conflict

-

updateCustomer
readCustomer CreditRating

CreditRating

Figure 4.6: LocalTransaction nodes around Database Operations nodes, in the data dependency graph
for the running example

Furthermore, the problematic interleavings happen when conflicting operations of other endpoints
happen in between operations of one endpoint. So, if the interleavings are going to be detected through
the LocalTransactions nodes, these need to be grouped inside the corresponding Endpoint node to main-

tain the endpoints contexts present. The result of doing this in the running example is illustrated in
Fi gurem

At this point, the database operation and LocalTransaction nodes and edges are established, but the
remote endpoint calls in the Withdraw endpoint are still not modeled has hinted by the cloud symbols in
Figure The way this is done, is that every LocalTransaction node in the endpoint that is being called

remotely, is copied into the endpoint caller. This is represented in Figure@l

Details about the remote call inlining and other ideas used in graph construction stage are explained
in Section[6.1]
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Figure 4.7: Endpoint nodes around LocalTransaction nodes, in the data dependency graph for the running
example
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Figure 4.8: Remote Call Inlining of the example in Figure[d.7]

4.4.2 Cycle Detection

Once the data dependency graph is built, STRIVE can now proceed to the actual anomaly detection.
The objective is to identify problematic interleavings in an endpoint’s execution. The approach involves
traversing the graph from an endpoint node, navigating through conflict edges, and determining if it’s
possible to return to the same endpoint node. This effectively reduces the anomaly detection problem to
a cycle detection problem.

STRIVE runs a modified depth-first search to discover these problematic cycles, which is based on
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the navigation through LocalTransaction nodes, each corresponding to visible system states. Addition-
ally, for a cycle to represent a problematic interleaving, it must contain at least two different visible
system states of the same Endpoint node.

An example of a cycle in the graph of Figure@is readCustomerCreditRating — updateCustomer-
CreditRating — updateCustomerCreditRating (see Figure @) This cycle represents the anomaly dis-
cussed in ChapterlII A call to updateCreditRating between the Withdraw read and update credit rating.

Withdraw

readCustomer
CreditRating

updateBalance updateCustomer

CreditRating

Update Customer's
Credit Rating

updateCustomer
CreditRating

Figure 4.9: Withdraw and UpdateCreditRating cycle

Note that the monolith version of the same system originates zero cycles due to database operations
all being atomic, note the LocalTransaction spanning all database operations in Figure Since in this
case, both endpoints interact with the same monolithic database and no remote calls are needed, so no

interleaving opportunities are created, thus no cycle can occur.

4.4.3 Cycle Walks

While the detected cycles point out potential problematic interleavings, they do not necessarily capture
all database operations associated with the involved endpoints. For example, consider again the cycle in
Figure@ readCustomerCreditRating — updateCustomerCreditRating — updateCustomerCreditRat-
ing, In this sequence, the updateBalance operation is excluded as it played no role in triggering the
detected anomaly and was deemed non-problematic. For a more detailed understanding, especially in
endpoints with multiple operations, it is beneficial to present a step-by-step sequence of every database
operation. This aids in pinpointing how the anomaly within the cycle can be reproduced, for instance, the
direct call to the UpdateCustomerCreditRating endpoint can occur either before or after the update-
Balance, resulting in the anomaly in both cases. Extracting such information from the cycle provides
valuable insights for further analysis.

To compute all sequences of database operations that trigger the anomaly within the identified cy-

cle, the dependencies between the nodes of the cycle need to be modeled. This modeling is achieved
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Withdraw
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Figure 4.10: Monolith Withdraw and UpdateCreditRating graph

by generating a dependency DAG based on the cycle. The idea behind this DAG is that its edges rep-
resent dependencies of precedence between operations. These dependencies encompass both the order
of execution dictated by the endpoint flow and the relationships with nodes from other endpoints that
contribute to triggering the anomaly. Figure @l shows the DAG produced for the cycle in Figure@l
The black edges denote the sequential order in which the LocalTransaction nodes are executed within
the Withdraw endpoint, reflecting the inherent flow of the endpoint. On the other hand, the red edges

represent the order that must exist for the anomaly to manifest.

readCustomer

updateCustomer
CreditRating

\ 4

CreditRating

updateCustomer
CreditRating

Figure 4.11: Cycle dependency DAG

Valid sequences of LocalTransactions that trigger the anomaly are those that adhere to the established
DAG dependencies. To extract these sequences, the DAG is topologically sorted. In the context of the
DAG in Figure[f:TT] two topological paths are generated, as depicted in Figure[.12] These paths serve

as valuable guides for users seeking to reproduce the anomaly, offering a clear understanding of the
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sequential orderings necessary for the anomaly to occur.

readCustomer updateCustomer

updateCustomer

updateBalance CreditRating

CreditRating CreditRating

updateCustomer
CreditRating

readCustomer updateCustomer

updateBalance CreditRating

CreditRating

Figure 4.12: Topological sort paths of the DAG

4.5 Output Analysis

With the example paths generated by STRIVE, users gain insights into identified cycles and paths that
trigger anomalies within the system. Equipped with this information and their own understanding of
the system’s intricacies, users can make informed decisions to proactively avoid potential anomalies.
An example of an interpretation of the anomaly represented in the cycle in Figure f.1T] could be: If
the Withdraw endpoint and the UpdateCustomerCreditRating endpoints are called at the same time,
both targeting the same customer, a consistency problem can occur and an erroneous behavior will be
provoked. A potential solution could be to guarantee that in the system’s environment, these endpoints
can never be called in parallel when referencing the same customer.”

As the anomaly detection problem was simplified into a cycle detection problem, the corresponding
anomaly prevention strategy revolves around eliminating these cycles. This elimination is achieved by
removing edges, which translate to introducing concurrency protection mechanisms into the system, like
the previous solution discussed.

Nevertheless, users must carefully analyze the cycles, verifying whether they genuinely correspond
to anomalies within the visualized system. As the detection relies on a simplified text-based description
of the system through the DSL, certain safeguards against concurrency issues, such as conditional execu-
tions or domain invariants, may not be fully captured, potentially leading to false positives. For instance,
the previous solution can already be considered or implemented in the system, but was not captured in
STRIVE’s input.

Acknowledging the possibility of false positives, STRIVE empowers users with the flexibility to
make manual adjustments. This includes options like pruning specific edges to refine the system model,
followed by re-running the analysis. This iterative process serves to pinpoint and enhance the accuracy

of detected anomalies, aligning the results more closely with the nuanced realities of the system.
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Chapter 5

Modeling systems for static analysis

Following the introduction of a DSL in the previous chapter as an interface for users in STRIVE’s
anomaly detection pipeline, this chapter dives deeper into the DSL’s objectives, design philosophy, and
grammar, as it aims to bridge the gap between system designs and practical and effective anomaly de-
tection. This chapter will also focus on the broader topic of modeling systems for static analysis and the

challenges that come with it.

5.1 DSL
5.1.1 Objectives and Design

The DSL, as an illustrative example of system modelling, is designed with two main objectives in mind:
to abstract the complexity inherent in microservices architectures and to capture what is needed to detect
anomalies. It does this by allowing users to provide descriptions of the system’s architecture, which are
subsequently refined into detailed models for anomaly analysis. The DSL’s syntax and grammar, detailed
below, offer a structured method to capture such descriptions, including service composition, data flow,

and transactional behavior, without requiring in-depth technical detail.

5.1.2 Grammar

The DSL’s grammar is designed to encapsulate the nuances of microservices systems effectively:

System ::= ’System’ ’{’ Microservice+ '}’

Microservice ::= ’Microservice’ Identifier ’{’
(Table | Operation | Endpoint)+ '}’

Table ::= ’'Table’ Identifier ’{’ ’'columns:’ ’[’ [Parameters] ']’ '}’
Operation ::= ’Operation’ ldentifier ’{’

‘type:’ (‘read’ | ’write )

"table:’ ldentifier

“input:’ [’ [Parameters] ']’

‘output:’ [’ [Parameters] ']’

"affected_columns:’ ’[’ [Parameters] ']’

"predicate :’ BooleanExpression

3%
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BooleanExpression ::= 'Any valid boolean first-order logic expression
with parameters’
// Omitted for simplicity

Endpoint ::= [’Internal’] ’'Endpoint’ Identifier ’'{’
“input:’ [’ [Parameters] ']’
‘output:’ [’ [Parameters] ']’
"transactions:’ ’{’ TransactionAtomicBlock+ '}’
1}1
TransactionUnit ::= [’ FunctionCallList ']’
FunctionCallList ::= FunctionCall (’,’ FunctionCall)
FunctionCall ::= LocalCall | RemoteCall
LocalCall ::= Identifier ’(’ [Parameters] ’)’
RemoteCall ::= ’remote’ Identifier ’(’ [Parameters] ')’
Parameters ::= Identifier (’,’ Identifier)=
Identifier = [a-zA-Z_][a-zA-Z0-9_]~

Description of the main components:

 System: The system is defined as a collection of one or more Microservices, each identified by a

unique name, reflecting the hierarchical nature of microservices architectures.

* Microservice: A microservice is a core component of the system, representing an independently
deployable service within the architecture. Each microservice can define one or more Tables,
Operations and Endpoints.

» Table: Represents a database table, specifying the columns that are relevant for the operations and
endpoints within the microservice. This component allows the DSL to model the data aspects of

microservices.

* Operation: Represents a database operation (read or write) performed by the microservice. It
includes references to the target table, input and output parameters, affected columns, and a pred-
icate for conditional operations. This component is crucial for understanding the data flow and

potential points of data contention.

* Endpoint: Defines an API endpoint of a microservice, including its input and output parameters
and a set of TransactionUnits. The optional keyword “Internal” can designate an endpoint as

inaccessible for direct calls.

* BooleanExpression: A condition used in operations to specify the data selection criteria, aiding
in the precise modeling of operations’ behavior. This constructor will be explored in greater detail

in the next chapter.
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* TransactionUnit: A sequence of function calls that are executed atomically as part of an endpoint.
Function calls can be local database operations (LocalCall) or remote calls to other microservice

endpoints (RemoteCall), highlighting the distributed nature of microservices systems.

This DSL allows the user to construct diverse system models using textual descriptions that closely
mirror the descriptions that would be made during the initial planning and development phases of the sys-
tem’s architecture. This DSL also aids in building a meta-model that accurately represents the system’s
architecture and behavior, such as the one illustrated in Figure@ The meta-model serves as an abstract
blueprint of the system, capturing key elements such as microservices, operations, and data flows, that
provides a foundation for the analysis performed by STRIVE.

While the DSL above represents a possible solution towards abstracting and modeling systems for
STRIVE’s pipeline, it’s important to note that a formal evaluation of the DSL has not been conducted
within the scope of this thesis. The practical effectiveness of the DSL, particularly in terms of its usability,

expressiveness, and impact on the anomaly detection process, remains to be empirically validated.

5.2 Modeling Detail and Scope

The selection of an appropriate level of abstraction and detail is critical not only in the design of the
DSL but also across the broader spectrum of system modeling techniques employed for static analysis.
A high-level abstraction, such as that utilized in the DSL design, offers significant advantages. It allows
the anomaly detection algorithm to work at the design phase, when not a single line of production level
code exists, while also working on existing systems, where only a text-based description is needed. The
former being one of the main use cases, such as migrating an existing monolith to microservices, where
the potential anomalies STRIVE aims to find start to arise. Moreover, it encourages rapid prototyping
and architectural iteration, allowing for preemptive adjustments that can conserve time and resources
during software development.

While this high abstraction helps the user conceptualize different system compositions, it could lead
to lack of important details and over-generalizations. This can cause the anomaly detection algorithm to
report false positives, which are identified anomalies that, in reality, would not affect the actual system.
This contrasts with dynamic analysis tools, which, by analyzing running systems, tend to report fewer
false positives.

Despite the potential for false positives, false negatives will not exist as long as all anomalies can be
reached by the system’s description. This happens because STRIVE works under a worst case scenario
premise, adopting a conservative approach in its analysis, assuming the most challenging conditions
under which serialization anomalies might occur. This emphasizes the necessity for careful evaluation

of anomaly reports and precise and thoughtful system descriptions by the users.

5.3 Addressing false positives

False positives are a well-known consequence of performing static analysis over system abstractions.
Here are some scenarios where false positives might arise due specific aspects not being captured in the

proposed DSL:
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* Conditional Execution Paths: The DSL lacks the ability to express conditional logic within
transactions. This could lead to the detection of potential anomalies that, in reality, would never

occur because the conditions for their occurrence are not met in actual system operation.

* Domain-Specific Invariants: Systems often have domain-specific invariants or business rules that
ensure consistency and correctness. The anomaly analysis might flag transactions as potentially
problematic when, in fact, their executions are constrained by these unrepresented rules to always

maintain consistency.

* Concurrency Control Mechanisms: As STRIVE uses a pessimistic approach, it does not elim-
inate any sort of read or write anomaly from its analysis that would be prevented by concurrency
control mechanisms. STRIVE wants to show the user the necessity of having these mechanisms

in place.

For instance, in Chapterﬂ the anomaly being showcased occurs during the concurrent execution
of withdraw and credit rating modification transactions targeting the same customer. A proposed
solution was to implement a custom concurrency control mechanism in the system that prevents
multiple operations from occurring simultaneously on the same customer. Mentioning this mecha-
nism in the system’s abstract model is currently not possible, thus assuming the mechanism exists,

a false positive like the anomaly above is reported, as the analysis in the previous chapter showed.

* Error Handling and Recovery Procedures: Many systems implement sophisticated error han-
dling and recovery procedures that ensure consistency even in the face of operations that might

initially seem problematic.

While considering some of these aspects are a compromise of static analysis, other aspects can still
be covered using a more primitive approach. Conditional executions paths and error handling procedures
can be modeled, by unfolding these behaviors to a linear transaction. For instance, the Withdraw endpoint
that was explored in the last chapter, was modeled after a very simple happy path execution, without error
treatment. However, an error path can also be modeled as its own endpoint, for example:

Endpoint withdrawError {
input: [customerid, amount]
output: []
transactions: {
[remote getCustomerCreditRating (customerid)]
[writeErrorLog (customerid, amount), cancelOperation ()]

This new endpoint for the Finance microservice captures situations where an error occurs after the
getCustomerCreditRating endpoint call and the error is handled by an operation that writes to a log
table, and the executions of other recovery procedures. This updates the Finance microservice’s model
for the analysis, as shown in[5.1]

By considering this updated model of the system, the anomaly detection will consider the error
path being executed concurrently with all other transactions in the system, and could uncover anomalies

during the error and recovery procedure itself, which could prove valuable. The same modeling strategy
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Finance Withdraw

Microservice

Read Customer's Update Customer's Update Customer's

credit rating account balance credit rating

UPDATE account
balance = X
WHERE customer_id = A

. INSERT log...
WithdrawError

Read Customer's Write error log...
credit rating Cancel operation...

O

P e |

Figure 5.1: Finance microservice with Withdraw error endpoint

can be applied for transactions with conditional logic. An if-else statement and the different branches of
a transaction can all be unfolded and linearized into a transaction or endpoint of their own.

Aside from the scenarios above, features like the predicates and the atomic transaction blocks were
implemented to add some flexibility and mimic real mechanisms, in attempt to also reduce the number
of false positives and increase the fidelity of reported anomalies. Predicates allows STRIVE to consider
the logical dependencies and constraints inherent in the system’s transactions by defining specific condi-
tions under which database operations execute. This precision ensures that the framework’s analysis is
grounded in the actual logic of the system, rather than broad assumptions that could lead to identifying
non-existent anomalies. On the other hand, atomic transaction blocks encapsulate groups of opera-
tions that the system intends to execute as a single unit, reflecting the ACID properties of transactional
databases. This encapsulation helps STRIVE establish data dependencies correctly, focusing on more
realistic group of database transactions, rather than examining each individual database interaction for

potential dependencies. The next chapter will cover how these features are applied in practice.
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Chapter 6

Anomaly Detection

This chapter will discuss in detail the anomaly detection algorithm, starting with the extraction of infor-

mation from the DSL and following to the analysis of detected anomalies.

6.1 Graph Construction

As explained in the previous chapter, the objectives of the Domain-Specific Language (DSL) were to
abstract the implementation details and focus on the microservice architecture and the distributed trans-
actions. This abstraction requires only the essential information for anomaly detection without the need
to describe all the implementation steps, or framework and infrastructure-specific code. From a microser-
vice architecture described by the user in the DSL, the first step is to create a graph that represents the
interactions between the different operations that make up a BusinessTransaction.

In particular, the graph models system operations as nodes and their interactions as edges. Later,
the graph will be used to detect anomalies, as each cycle in the graph will correspond to one or more

sequence of instructions that possibly cause anomalies.

6.1.1 Node Creation

Because we need to model several aspects such as LocalTransactions, BusinessTransactions and Mi-
croservices, the graph operates across three layers. At the lower-level layer are the database operations,
acting as nodes where edge establishment takes place. These nodes are derived from the user’s system
description provided through the DSL and carry essential properties such as the associated database ta-
ble, operation type (read or write), variables involved, and predicates. These database operation nodes
are then grouped within LocalTransaction nodes. These nodes represent instances where database opera-
tions are executed atomically, thereby marking visible states of the system’s data. This layer serves as the
focal point for cycle detection. Furthermore, all LocalTransaction nodes linked to a common endpoint
are grouped under the umbrella of BusinessTransaction nodes. These nodes are required to guarantee
that each cycle starts in one LocalTransaction and concludes in another, within the same BusinessTrans-
action.
Considering this endpoint block of the DSL:

Endpoint E {
input : [...]
output : [...]
transactions : {

35
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[operation_1(...), operation_.2 (...)]
[operation_3 (...)

¥
}

three database operation nodes are created, operation_1, operation_2 and operation_3. The square
brackets around operation_1 and operation_2 denote that they are executed atomically, so a Local-
Transaction node is created around these two nodes. A separated LocalTransaction node is created for
operation_3 since it is isolated in a different square bracket block. Then a BusinessTransaction node is
created that gathers all these sub-nodes, since they are all part of the execution of endpoint E. This is
depicted Figure[6.]

Operation 1 Operation 2 Operation 3

Q Database Operation

LocalTransaction / Atomic block

BusinessTransaction / Endpoint

Figure 6.1: Basic endpoint node, with LocalTransactions and database operations

In the DSL, an Endpoint is encapsulated in a Microservice block, but there is no need to represent
them explicitly in the graph the microservice itself plays no role in the anomaly detection. They are
however needed to represent remote calls to another microservice. Processing these remote calls will be
explained later, in Sectionl@ after the edge establishment algorithm. Two concurrent client calls to
the same endpoint may also cause anomalies. As such, Section mwill cover how we support two or

more concurrent calls to the same endpoint in the graph construction.

6.1.2 Remote Call In-lining

In a microservice based system, it is very common for an endpoint to call other endpoints from other
microservices during its execution, and this has to be modelable by STRIVE.

In practice, a remote call means that the logic being called remotely is a part of the context of the
execution of the original call, and the algorithm does this by in-lining all LocalTransaction nodes being
called, into the caller BusinessTransaction. An endpoint with a remote call can be described in the
DSL with the “remote” keyword, in the transactions list. The following is the DSL block that would
reflect in Figure[6.2]

Endpoint A {
transactions : {
[operation X (...)],

[remote B(...)],
[operation_Z (...)]

}
}
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Endpoint B {
transactions : {
[operation_1(...), operation_2(...)]
[operation_3 (...)]

0l0
0l0

Figure 6.2: Example of a remote call in-lining

B

A remote call also has to be in an isolated atomic block, as the algorithm treats a remote call as an ex-
plicit loss of isolation from the previous transactions, implying that the database’s state up to remote call
is committed and thus visible. We do not consider scenarios where reads and writes remain uncommitted
until the outcome of the remote call is determined, and we leave it for future work.

This method of processing remote calls respects how the graph is constructed, where the Busi-
nessTransaction node is meant to encompass all database operations that are executed while traversing
it. The BusinessTransaction node being remotely called is also kept without any additional edge, as it

can be accessed directly.

6.1.3 Concurrent Transactions Cloning

The same endpoint can be called concurrently by multiple users (or even the same user). The probability
of conflicts is higher in this scenario since concurrent calls to the same endpoint share the same logic and
resources.

To model this concurrency, duplicate versions of the nodes for each endpoint are generated before
any edges are established. If there are data dependencies between these duplicates, the graph will contain
edges between them (or between them and other nodes). This approach intuitively reflects the fact that
a write operation affects the same data as its concurrent counterpart, and a read operation dependent
on a write is also dependent on the corresponding cloned operation. Therefore, conflicts between two
concurrent calls of the same endpoint (e.g., A and A’) are represented in the graph by edges between
them. Similarly, edges established between two distinct endpoints (e.g., A and B) will also be established
between A’ and B. This is visualized in Figure@ This interconnection ensures that interactions and
dependencies are accurately depicted across concurrent executions, and anomalies of this nature will be
found as the cycle detection algorithm traverse cloned nodes.

Each endpoint is cloned only once. If an anomaly traverses an endpoint and its clone, it indicates that
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Figure 6.3: Example of Concurrent Endpoint Cloning

an anomaly would also be present among more than two calls of that endpoint; it would just be a longer
path of that anomaly. Similarly, if an anomaly traverses the endpoint and two clones, there must be a
shorter problematic path, as each clone has the same edges with all other nodes, and more than one clone
just extends the path redundantly. Thus, one clone is sufficient to identify if an endpoint is problematic
when called concurrently.

ACIDRain’s algorithm addressed this by considering it a special property of a write operation, where
a write node always interacts with itself, establishing a self-edge, and the cycle detection algorithm was
adjusted for this special case. In STRIVE’s case, this is simply reflected by creating copies, and the rest
of the algorithm remains agnostic to this case, keeping the logic simplified.

Let us consider another scenario where an edge is established between a read and a write operation.
Here, the write operation uses a value extracted by the read, which, in turn, relies on an endpoint input.
The edge linking the read and its concurrent write counterpart assumes that the passed variable remains
the same. However, in concurrent executions, the endpoint input may differ, leading to different IDs.
An edge based on this ID could yield false positives. This highlights the importance of saving edge
assumptions (i.e, the assertions) for later verification, rather than merely for establishing the edges.

This feature is embedded within the algorithm implementation and can be toggled on or off to facili-
tate analysis, allowing the inclusion or exclusion of concurrent versions of the endpoints, as this increases
the number of nodes in the graph and the possible anomalies. Additionally, the algorithm enables lim-
iting the number of parallel transactions traversed by a cycle. This capability allows for a faster, but

limited, analysis.

6.1.4 Edge Establishment

In order to detect cycles, meaningful edges have to be established between the graph’s nodes. There

are three possible combinations of database operation pairs, depending on the operation types involved:
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read-read, read-write, and write-write. A problematic serialization anomaly has at least one write, since
executions of transactions with just read operations will never operate on wrong or outdated data, even
with the lack of isolation.

While the nature of potential anomalies generated by the interactions of a read-write and write-write
can be different, for example, read-write operations can induce a dirty read, while write-write operations
can induce a lost update anomaly, the algorithm does not classify or distinguish the types of anomalies
found, thus, the conditions for establishing edges between both types of operation pairs are the same.

Edges represent dependencies of two possible types. Table dependencies occur when the two op-
erations access the same database table or columns. Variable dependencies exist when a subsequent
operation uses values obtained by a previous operation. This is where the attributes declared in the DSL
during an operation declaration come into play. The type to specify if the operation is a read or write.
The table and affected_columns are used to find the table dependencies, and the input and output are

used to find the variable dependencies.

Table dependency
This DSL description has two operations that will be connected due to a table dependency:

Operation read_age {
type: read
table: user
input: [user_id]
output: [user_age]
affected_columns :[id, age]
predicate: (...)

}

Operation update_age {
type: write
table: user
input: [user_id, new_age]
output: []
affected_columns :[id, age]

}

// Endpoint with operation read_age
Endpoint {...}

/! Endpoint with operation update_age
Endpoint {...}
Both read_age and update_age interact with the same table, user, and the same columns, id and
age, despite existing in their own endpoint of the same microservice. These operations can lead to dirty
reads or dirty writes of the age of users so, due to this table relation, an edge is established in order to

form a cycle that will later be detected as an anomaly.

Variable dependency

In addition to table dependencies, operations can also be connected due to variable dependencies. Vari-
able dependencies occur when the value read or written, by one operation is used by another operation,
regardless of whether these operations interact with the same table or not. Consider the following DSL

description where two operations are connected due to a variable dependency:
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Operation place_order {
type: write
table: order
input: [user_id]
output: [order_id]
affected_columns :[id, user_id]

}

Operation notify_new_order {
type: write
table: notification
input: [order_.id]
output: []
affected_columns:[id, order.id]

}

// Endpoint with sequence of operations
// place_order and notify_new_order
Endpoint {...}

In this case, each operation targets a different table, but the notify_new_order operation creates
a new notification record for the order_id of the order that was created in the previous place_order
operation. This is modeled by the order_id variable in the place_order’s output field matching the one
in notify_new_order’s input field, reflecting a variable dependency, thus establishing an edge.

The algorithm does not prioritize one dependency type over the other, considering them equal, partic-
ularly since both types can overlap when operations interact with the same table columns and share
variables.

Both of the previous examples established edges under a weak assumption that any operation affect-
ing the same table columns or involving the same variables inherently creates a dependency, regardless
of specific conditions or constraints that might limit such interactions. For instance, the read_age and
update_age operations can coexist without any data conflict at all, if they target different entries in the
user table. Thus, establishing an edge in this example, and further detecting cycles using this edge,
can lead to false positives in the anomaly analysis results. To mitigate this issue, the DSL supports

user-defined WHERE predicates, that restrict the rows that are affected by the operation.

Predicates

Predicates play a crucial role in refining the conditions under which database operations interact. Each
operation in the DSL is associated with a predicate that specifies a condition that must be true for the
operation to execute. For instance, in the context of table dependencies, predicates ensure that edges are
established only when the specified conditions are met, such as having matching IDs or filtering values in
the relevant columns. In the case of the previous table dependency example, a predicate could be defined

as:

Operation read_age {
(.-)

input: [user_id]

(...)

predicate: user.id == user._id
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}

Operation update_age {
(.

input: [user_id, new_age]

(...)

predicate: user.id == user.id

The predicate user.id == user_id specifies that the column id in the user table must equal to the input
variable user_id. This specification defines which records of the table are affected by the operation,
and not limiting the edge establishment to column intersection. Now to establish an edge, a logical
conjunction between the predicates of the two nodes is made, user.id == user_id A user.id == user_id.
It is important to note that while both operations use a variable called user_id, it is effectively a different
variable, due to variables being unique by name, in each endpoint. For clarity, let’s rename the user_id
variable name to match the respective operation, such as user_id_read_age and user_id_update_age,
and now the predicate becomes user.id == user_id_read_age A user.id == user_id_update_age. The
predicate translates to: “The operations have a dependency if and only if both endpoints are called with
the same user ID”, which is much more powerful and precise than simply establishing an edge because
both operations seem to interact with the same table columns.

In a similar manner, the variable dependency example would also have predicates to increase the

edge establishment’s precision:

Operation place_order {
(...)

input: [user_id]

(...)

predicate: order.user_id == user.id

}

Operation notify_new_order {
(!

input: [order_.id]

(...)

predicate: notification.order_id == order_id
}

Figure @reﬂects the edges established in this running example.

A predicate can be any boolean first-order logic expression, with the common operators (==, !=, and,
or, <, >), that can reference variables in the input and table columns, in order to establish conditions
where the operation is executed. These predicates are evaluated with z3, an SMT solver, and in order to
the edge to be established, the logical conjunction between predicates has to be satisfiable.

These predicates could just be evaluated for satisfiability where a cycle is found, but performance
wise it is much better to check the satisfiability at each edge, to prevent establishing impossible edges
right away, speeding up the cycle detection process. As it will be demonstrated in the cycle detection
algorithm section, a cycle can be unsatisfiable even if all individual edges are satisfiable.

When evaluating predicates that reference variables it is also important to consider that the variables
might have been constrained by prior operations. Figure@shows an example, where an edge between
the update user” operation and the update non admin user” operation can be established when looking

only at the two operations, but actually cannot when considering previous operations. The predicate
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Read Age

user.id == user_id_read_age

A

user.id == user_id_update_age

Update Age

Place order

A

Notify new

order

order.user_id == user_id

notification.order_id == order_id

Figure 6.4: Edges established in the age and order examples

user.id == admin_ids A (user.id == user_id A — user.admin) seems satisfiable to the SMT solver
without anymore context, but the admin_ids variable was actually an output of a operation where the
predicate user.admin was asserted, which contradicts the — user.admin. Past predicates of all previous
LocalTransactions also need to be considered in a logical conjunction with the predicates of the pair that
is being evaluated, in this case: ((user.age == target_age A user.admin) A (user.id == admin_ids A
(user.id == user_id A — user.admin)), which is now unsatisfiable. This ensures the edge establishing

process respects all historical conditions affecting the current operation, thereby maintaining the integrity

and consistency of the data flow and logical dependencies.

Input: target_age —>» Read Admin

By Age

Output: admin_ids

N

Input: admin_ids

Update User

user.age == target_age A user.admin

Table: user

id (integer)
age (integer)

admin (boolean)

user.id == admin_ids

Input: user_id —>|

Update non

admin user

user.id ==

Figure 6.5: Example where past assertions affect subsequent edges

As mentioned before, it is also possible to establish edges without predicates. However this approach

generates more false positives due to the lack of context verification, but it speeds up the writing of the

user_id A — user.admin
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DSL description since there is no need to write predicates or even define input/output variables. The
analysis is also faster because the SMT solver is not used. This method shifts much of the responsibility
to the user to verify if the detected anomalies are meaningful, knowing that the cycles were found in a
forced manner. For smaller systems, this trade-off between the effort required to describe the system and

the accuracy of detected anomalies might be acceptable.

Algorithm 1: Pseudocode of the edge establishment algorithm

1 Function establish_edge:

2 LT1, LT2

3 solver + smit_solver;

4 assertions < [ |;

s foreach pair of operations (01, 02) between LocalTransaction LT1 and LT?2 do

6 if LT'1 and L'T2 are in the same BusinessTransaction then

7 variable_dependency < intersect(ol.output, 02.input) or intersect(o2.output,
ol.input);

8 end

9 table_dependency < (operationsInteractSameTableColumns(o1, 02) and (o1l.type is

WRITE or 02.type is WRITE)

10 if not variable_dependency and not table_dependency then
11 skip;

12 end

13 assertions.append(ol.predicate A 02.predicate);

14 end

15 solver.add(z3.0Or(assertions));
16 foreach LT in past of LT1 and L'T2 do

17 foreach operation in LT .operations do

18 if intersection(o.output, L'T1.input) or intersection(o.output, L'T'2.input) then
19 solver.add(o.predicate)));

20 end

21 end

22 end

23 result < solver.check;

24 return (result == satisfiable, solver.assertions);

Algorithm presents the consolidated version of the edge establishment procedure. The estab-
lish_edge function is applied to each pair of LocalTransaction nodes, attempting to establish an edge
between them, as cycle detection occurs at this node level. An edge exists if dependencies arise between
the database operations executed within the pair.

The algorithm begins by iterating through all operation pairs and evaluating whether there is a table
and/or variable dependency between the operations. The variable dependency check is inside a condition
(line 6) that specifies this is only checked if the LocalTransactions being evaluated are in the same
BusinessTransaction, as the input and output variables are propagated within the context of a single
endpoint. If a dependency exists, a logical conjunction of both predicates is added to a list of assertions
(line 14). After all pairs have been iterated through, the list of assertions is added to the SMT solver
with a logical disjunction between each element (line 14), since at least one of the logical conjunctions

between the operation pairs has to be true to establish an edge.
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Next, as previously mentioned, all predicates of past operations must be added to the solver to include
past assertions. In the context of a BusinessTransaction, all LocalTransactions are executed in order, so
”past” refers to all LocalTransactions up to the current one.

Finally, the function returns the solver’s result. If the set of assertions is satisfiable, the edge is
established. The edges established in the graph are not directed, reflecting the symmetric nature of the
conflicts between transactions. The function also returns the assertions used, which will later be used to
validate the candidate cycles.

In summary, the predicates capture complex dependencies and add row-level precision, ensuring that
operations are only considered dependent under specific conditions, which minimizes false positives.
They also improve debugging and troubleshooting by clearly outlining the conditions for dependen-
cies, as it will be shown in the output analysis section. This level of detail aids in modeling real-world
constraints and business rules more accurately, increasing the reliability and robustness of the anomaly

detection algorithm.

6.2 Cycle Detection

As previously discussed in Sectionm the primary goal of the algorithm is to identify cycles between
BusinessTransaction nodes, aiming to discover interleavings within the endpoint execution. To achieve
this, the search is conducted within the LocalTransaction node layer of the multi-graph. Each search
begins at a valid starting node (see Section @ explores the edges established by the algorithm in
Section [6.1.4] and terminates when it encounters a different LocalTransaction node from the starting
point, provided that they belong to the same BusinessTransaction node. There are also some additional
conditions for a cycle to be valid, explained in Section Considering the valid starting nodes and

the valid cycle conditions, the pseudocode in Algorithm[J]illustrates the cycle detection algorithm.

6.2.1 Valid Starting Nodes

While the algorithm can theoretically start from any node, there are potential performance optimizations.
For instance, if a BusinessTransaction node contains only one LocalTransaction node, it is impossible to
return to the same BusinessTransaction node, rendering any search starting at that BusinessTransaction
node futile.

Additionally, nodes in cloned endpoints created through the concurrent transaction cloning process
are not considered as starting nodes, as all relevant anomaly cycles for these cloned endpoints can be
found through the original ones. In other words, all cycles detected through the clone have a correspond-
ing cycle that starts in the original node.

Another optimization involves not starting the search from LocalTransaction nodes that are accessible
from other LocalTransaction nodes within the same BusinessTransaction. This is because initiating a
search from one LocalTransaction node in a BusinessTransaction will naturally encompass the search
through its subsequent neighboring nodes.

Besides performance optimizations, some endpoints might only be called in specific flows, and not
be called directly, on their own. In the DSL, this can be done by marking the endpoints as “internal”.

This will eliminate cycles that start from these endpoints.
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Consider the scenario depicted in Figure[6.6] The valid starting nodes for the search, based on the
outlined conditions, are highlighted in red. Node B is excluded because it is reachable from node A.
For instance, a cycle like B—1—D that starts from node B can also be detected by starting the search
from node A as A—B—1—D. Since the search from A will naturally include all paths that pass through
B, starting from B is redundant. Similarly, nodes 1 and 2 are excluded because their corresponding
endpoint, Z, is marked as an internal endpoint, meaning that cycles originating from these nodes are
not considered. Finally, node M is excluded because it is the only node within its respective endpoint,

making any search starting from it irrelevant.

Endpoint X

Svasw—"-

Internal
Endpoint Z

Figure 6.6: Example of endpoints X and Y with highlighted starting nodes

6.2.2 Filtering Invalid Cycles

When a cycle is found, by the search starting at one LocalTransaction node of one endpoint and ending
in a subsequent LocalTransaction node of the same endpoint, it does not necessarily mean that cycle
corresponds to potential anomalies. Firstly, the cycle path must also include nodes from at least two
distinct endpoints to indicate the presence of interleaving. Furthermore, the cycle paths must follow
the chronological sequence, aligning with the sequence of LocalTransaction nodes within the endpoint
nodes to map to potential executions accurately. It would not make sense to consider cycles that violate
the temporal sequence as anomalies as they would never occur in reality. Considering this filter, node
D from Figure @ can also be excluded from a valid starting node, since D is the last node of that
BusinessTransaction node and there is no cycle that would respect the temporal sequence. Finally, as
mentioned in Section [6.1.4] the edges are annotated with specific assertions. During cycle validation,
it is necessary to assert whether the combination of all assertions associated with the edges used in
the cycles can be satisfied or not. This step eliminates impossible anomalies with respect to low-level

constraints.

6.3 Anomaly Reporting

Once cycles are identified, the next step is to create a sequence of operation execution that would cause

an anomaly (modulo the abstraction of our model). Each cycle contains only some of the LocalTrans-
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Algorithm 2: Cycle Detection Algorithm

Data: starting_node
Result: cycles

1 cycles « [|;

2 queue < [[;

3 queue.append((starting_node, [starting_node)));
4 while queue is not empty do

5 current_node, current_path < queue.pop();
6 if current_node is in the same business transaction as starting_ node and current_node is
not starting_node then
isCycle, assertions < valid_cycle (current_path);

8 if isCycle then

9 cycles.append((current_path, assertions));

10 continue;

11 end
12 end
13 for neighbor in neighbors of current_node do

14 if neighbor not in current_path then

15 queue.append((neighbor, current_path + [neighbor)));
16 end
17 end
18 end

19 return cycles;

action nodes of the involved endpoints. However, to address anomalies related to endpoint execution
interleavings, it is essential to explore the complete endpoint contexts. This is achieved by constructing
a Directed Acyclic Graph (DAG) for each cycle. These DAGs model the dependencies of each node
within the cycle, with edge directions indicating the execution sequence. After constructing the DAGs,
they are topologically sorted to obtain valid sequences, representing the execution order of the original
cycle. These sequences are valuable for investigating anomalies, reproducing them in real systems, or

preventing them in future systems.

6.3.1 DAG Generation

The construction algorithm of the cycle’s dependency DAG is outlined in Algorithm [3] The algorithm
generates a Directed Acyclic Graph (DAG) for each cycle detected in the previous phase. For each node
in the cycle, it retrieves the associated BusinessTransaction and iterates through its LocalTransactions. It
establishes edges in the DAG to represent the execution sequence of these LocalTransactions, up to the
current node being iterated. Finally, it adds an edge from the current node to the next node in the cycle.
This ensures that the resulting DAG maintains the chronological order of the execution as defined by the
cycle. By constructing a DAG, we can visualize and analyze the sequence of operations that originates
the corresponding anomaly.

Let us consider again the previously mention cycle A—B—1—D from Figurel@ This cycle in-
dicates that there is an anomaly when Endpoint X and Z are executed concurrently, particularly when

node 1 is executed between node B and D. Node C is also executed since it is a part of endpoint X,
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but the cycle does not contain node C, and the same goes for node 2. Therefore, creating a DAG is an
important step to consider every LocalTransaction that is being executed, and to explicitly show the user
what LocalTransaction sequences trigger the anomaly, which are not obvious to extract just by reading

the cycle. The dependency DAG for this cycle is showed in Figure@

AN

Y
o

Y
N

Figure 6.7: Dependency DAG of cycle A—=B—1—D of Figure@

Algorithm 3: Generate Dependency DAG
Input : graph, cycle
Output: dag

1 dag < empty_graph;

2 foreach (node, next_node) in cycle do

3 node_business_transaction < graph.get business_transaction_of (node);
4 foreach (current_LT,next_LT) in node_business_transaction do
5 if current_LT == node then
6 ‘ break;
7 end
8 dag.add_edge(current LT, next_LT);
9 end
10 dag.add_edge(node, next_node);
11 end

12 return dag;

6.3.2 Topological Sorting

After constructing the DAG for each cycle, the paths to reproduce the anomaly need to be extracted.
This is done by performing topological sorting on the DAGs, generating sequences of LocalTransactions
that maintain the constraints defined by the DAG and are necessary to reproduce the anomaly. In the
context of anomaly reporting, these sequences help map out the exact sequence of transactional events
that lead to anomalies. They provide a clear understanding of the interleavings and conflicts within the
transactions, making it possible to reproduce and debug anomalies in real systems or prevent them from

occurring in hypothetical systems. Considering the DAG from Figure these are the possible paths:

e A—-B—-1—-2—-C—=D

e A—-B—-1—-C—-2—D
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e A—-B—-1—-C—>D—2
e A—-B—-C—1—-D—2

e A—-B—+C—-1—-2—->D

Each of these paths trigger the anomaly provoked by the interleavings found from the original cycle,
in particular, LocalTransaction 1 being executed between B and D.

This process abstracts the complexity of identifying anomalies embedded in the cycles and graphs
and simplifies the overall analysis by reporting problematic step-by-step executions of operations that

were originally described in a high-level system’s description.



Chapter 7

Case Studies and Evaluation

This chapter provides an overview of various case studies that were used to evaluate the functional-
ity of STRIVE. It covers different scenarios to observe how STRIVE identifies potential anomalies in
microservice architectures.

Section[7.T]discusses the migration from a monolithic system to microservices, with a focus on how
STRIVE might be used in this context.

Section[7.2Jcompares the results of STRIVE with other tools in detecting anomalies.

The evaluation process of this tool heavily relies on a specific description language for defining the

system and analyzing the output, consequently, the examples were manually constructed and adapted.

7.1 Migrating a Monolith to Microservices

Migrating from a monolithic architecture to microservices is a common approach for improving scal-
ability, flexibility, and maintainability in software systems. This section provides an overview of this
migration process, using the Food To Go (FTGO) system as an example. FTGO, discussed in “Mi-
croservices Patterns” by Chris Richardson [22], illustrates how a monolithic system can be broken down
into microservices. This section explores this migration and how STRIVE can help identify and prevent

potential anomalies.

7.1.1 Food To Go

Food To Go (FTGO) is a popular system with a microservice architectured that is studied in Microser-
vices Patterns [22], as an example of migrating a monolith to microservices. Its business logic consists
of users placing food orders, managing deliveries, restaurants and payments.

The backend is composed of multiple services: Order service that manages orders, Consumer Service
that manages the user’s information; Delivery service that manages the delivery of orders from restau-
rants to consumers; Restaurant Service that maintains information about restaurants; Kitchen service that
manages the preparation of orders; Accounting service, that handles billing and payments. As mentioned
in the book, a simple view of the main flow of creating a new food order is as follows: The Order Service
creates a new order, the consumer service verifies that the user can place an order, the kitchen service
validates the order’s details and creates a new ticket, The accounting service authorizes the user’s credit
card, and if successful, the ticket can then proceed and eventually the order is fulfilled. These interactions

between the different services are critical, and need to mantain data consistency.

49
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In a monolith architecture, the data consistency is maintained trivially if all services share the same
database with ACID properties. Taking a description of this monolith architecture as input for STRIVE
the read-write dependency graph, and no cycles are detected since there is only one node, confirming
that no serialization anomalies can occur.

Now, considering a decomposition of the monolith in microservices, a natural decomposition that
follows a 1-1 mapping from services is presented in Figure@ This can be modeled into STRIVE by
creating a microservice for each of the domain’s services. The operations that occur between the create

and approve order transactions are opportunities of interleaving, that can be detected.

Order Service Consumer Service Kitchen Service Accounting Service

Create order

Verify consumer

Txn:4

Authorize card
Approve ticket

]

)

)

1

'

)

]

)

;

: Create ticket
)

]

]

)

]

'

:

: Approve order
)

Figure 7.1: FTGO Order operation in a microservice architecture (Figure 4.2 from [22])

One critical point of data consistency between all these services is the connection between an order
and a ticket. The order service creates an order and keeps track of its status, and the Kitchen service
creates tickets associated to orders. Some of the detected cycles show interleavings between the order
and ticket operations, meaning that if a new order is created while a new ticket is also being created
for the same order in parallel, some anomalies can occur. These errors are preventable since the order
service acts like an orchestrator, and the kitchen service is never accessed directly as an entry point. This
approach is a common practice in microservice-based systems and can also be restricted with STRIVE,
by making all microservices internal, except the order service. This eliminates the anomalies created by
conflicts of parallel calls between all microservices.

The remaining reported cycles are conflicts between parallel new order operations, which represents
a common issue of a concurrent anomaly, and if the developers know that the system does not allow this
to happen, then the cycles are taken care of, and no anomalies are left, which is a good indicator that the
current microservice structure is good.

Anomalies can arise when errors occur in the system, such as when a new order transaction fails and
a reject order must be executed, which can also be vulnerable. For instance, in a SAGA, compensation
transactions are commonly used to handle such errors. STRIVE can model these compensation transac-
tions just as it models the original order transaction, making them targets for anomaly detection. This
approach also allows for this detection to check interactions between happy paths and error paths.

If the services were to be refactored, such as by merging the order and kitchen services to prevent

anomalies between the two domains, STRIVE would assist in identifying cycles within this refactor and
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any other microservice compositions.

7.2 Comparison with other tools

As an attempt to test STRIVE with benchmark-like examples, BenchBase was used. BenchBase [§] is a
test suite specifically designed for benchmarking relational databases, providing a framework for gener-
ating and executing workloads that simulate online transaction processing (OLTP) scenarios. CLOTHO
was also tested with examples from BenchBase, so some results will be compared. Additionally, STRIVE
will evaluate a specific case from the same authors of CLOTHO, featuring a tool that automatically pro-
poses refactors to avoid anomalies. This use case highlights the importance of refactoring the database
schema to avoid serialization anomalies. Finally, STRIVE will explore case studies from ACIDRain to

compare the results between the two tools.

7.2.1 Comparison with CLOTHO on OLTP Benchmarks

An OLTP (Online Transaction Processing) benchmark simulates real-world scenarios where multiple
users concurrently perform transactions on a database system. These transactions involve various op-
erations such as inserting, updating, or querying data. The benchmark measures different performance
metrics like transaction throughput, response times, and scalability. In this evaluation, the benchmarks’
SQL queries are used as a basis for constructing inputs for STRIVE, to capture the essence of OLTP
workloads and evaluate the algorithm’s capability to detect serialization anomalies.

Four benchmarks were tested: TPC-C, Smallbank, Twitter, and Voter. However, directly compar-
ing the results between STRIVE and CLOTHO presents significant challenges due to the fundamental
differences in the underlying principles and objectives of each algorithm. CLOTHO is designed to de-
tect serialization anomalies in distributed databases, focusing primarily on cyclic dependencies across
concurrent operations in a weakly consistent environment. In contrast, STRIVE is tailored specifically
for microservices architectures, where it models and analyzes the interaction between services to detect
potential anomalies. These differences in focus lead to variations in the types of anomalies each tool is
designed to detect, and how the anomalies are reported. For instance, CLOTHO’s methodology empha-
sizes detecting cycles in operations across different database replicas, which may not directly correspond
to the inter-service communication patterns analyzed by STRIVE. Therefore, direct comparisons what
and how many anomalies each tool found will not be made, but Twitter and Voter showed interesting

differences, which will be explored in the following sections.

Twitter Benchmark

The Twitter benchmark is a benchmark that simulates a microblogging social media platform similar to
Twitter. It involves various operations such as tweeting, getting followers, and getting tweets from users.

These are the SQL procedures used in this benchmark:

e GetTweet:
SELECT  FROM "tweets" WHERE id = ?

* GetTweetsFromFollowing:
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— getFollowing: SELECT f2 FROM "follows" WHERE f1 = ? LIMIT 20

— getTweets: SELECT x* FROM "tweets" WHERE uid IN (?27?)
¢ GetFollowers:

— getFollowers: SELECT f2 FROM "followers" WHERE fl1 = ? LIMIT 20

— getFollowerNames: SELECT uid, name FROM "user_profiles" WHERE uid
IN (?7?)

¢ GetUserTweets:
SELECT » FROM "tweets" WHERE uid = ? LIMIT 10

¢ InsertTweet:
INSERT INTO "added_tweets" VALUES (default, 2, 2?2, ?)

Each procedure was converted to an endpoint to simulate a system with a microservice with these
operations. For this benchmark, CLOTHO reports 2 anomalies, whereas STRIVE detects no anomalies.
Upon examination of the dependency graph created by STRIVE, it was observed that the only write
operation is an isolated node, since the target table is added_tweet s, and there is no read targeting this
table. This results in no interleavings occuring between any of the procedures, resulting in no cycle being
found, suggesting that there are no serialization anomalies within the benchmark. Despite the anomalies
reported by CLOTHO, no definitive conclusion could be drawn regarding the nature of these anomalies.
Given that Clotho is designed to work in distributed environments, it likely detected anomalies where
the system’s operations across different replicas could lead to non-serializable behaviors. These detected
anomalies might not be present in a single-instance or isolated microservice environment (as modeled
by STRIVE), but Clotho’s ability to simulate distributed environments with replicated databases makes

it sensitive to potential inconsistencies that arise from the replication process itself.

Voter Benchmark

The Voter benchmark simulates a phone-based talent show voting system, where voters are allowed a
limited number of votes.

This benchmark consists of a single transaction with four SQL operations:

¢ CheckContestant:

SELECT contestant_number FROM contestants WHERE contestant_number =

?

* CheckVoter:
SELECT num.votes FROM v_votes_ by phone_number WHERE phone_number = ?

¢ CheckState:
SELECT state FROM area_code_state WHERE area_code = ?

¢ CheckState:
INSERT INTO votes (phone_number, state, contestant_number) VALUES

?, ?)

(?

4
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To model a microservice environment, this procedure was implemented with four LocalTransactions
of one endpoint, maximizing the possibility of interleavings between all operations. Since there is only
one transaction, any anomalies that may occur can only arise from concurrent executions of that same
transaction. A vote in excess can be wrongly inserted by a user with the same phone number if it is
executed at the same time. CLOTHO does not detect an anomaly on this example, but it may have
considered an execution with higher isolation than the one used by this algorithm. CLOTHO might
also be focusing on detecting serialization anomalies that involve operations across different database
replicas. Since the Voter benchmark involves a single transaction with sequential operations and the
anomaly arises from concurrent execution, CLOTHO might not have flagged it as an issue, particularly

if it assumes that the operations are properly serialized or isolated by the database system.

7.2.2 Refactoring Database Schema

The authors of CLOTHO have also worked on database schema refactoring to repair serializability bugs
[21]. The motivating example is an online course management application, which presented several
anomalies, described in Figure@ and after the transactions and database schema were refactored, the
anomalies were no longer present (Figure m After modeling the transactions, STRIVE identified nine
cycles with the original schema, and no cycles with the refactored schema, showing that this algorithm

can correctly detect anomalies according to the author’s refactoring tool.

STUDENT lst_id Ist_name I st_em_id I st_co_id | st_reg |

COURSE l co_id | co_avail | co_st_cnt | EMAIL m

getSt(id):

x:=select * from STUDENT where st_id=id//S1

y:=select em_addr from EMAIL where em_id=x.st_em_id//S2
z:=select co_aval from COURSE where co_id=x.st_co_id//S3

W e

1 setSt(id,name,email):

2 x := select st_em_id from STUDENT where st_id=id//S4

3 update STUDENT set st_name=name where st_id=id//U1

4 update EMAIL set em_addr=emal where em_id=x.st_em_id//U2

1 regSt (id, course):

2 update STUDENT set st_co_id=course, st_reg=true

3 where st_id=id//U3

4 x:=select co_st_cnt from COURSE where co_id=course//S5
5 update COURSE set co_st_cnt=x.co_st_cnt+1,

6 co_avail=true where co_id=course //U4

Figure 7.2: Database schemas and code snippets from an online course management program (Figure 1
from [12]])

7.2.3 Comparison with ACIDRain on E-Commerce Examples

ACIDRain focuses on detecting and preventing concurrency-related attacks on database-backed web
applications by identifying anomalies that could compromise application integrity, using runtime logs as
input. While ACIDRain and STRIVE differ in some respects, both algorithms share the goal of detecting

anomalies caused by concurrent operations that lead to non-serializable states in their respective systems.
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STUDENT | st_id I st_name I st_em_id I st_em_addr | st_co_id |st_co_avail |st_reg |

COURSE_CO_ST_CNT_LOG [ co_id | log_id [co_st_cnt_log]

1 getSt(id):
2 x:=select * from STUDENT where st_id=id //RS1,RS2,RS3

setSt(id,name,email):
update STUDENT set st_name=name,st_em_addr=email
where st_id=id //RU1,RU2

1 regSt(id,course):

2 update STUDENT set st_co_id=course, st_co_avail=true,
3 st_reg=true where st_id=id //RU3

4 insert into COURSE_CO_ST_CNT_LOG values

5 (co_id=course,log_id=uuid(),co_st_cnt_log=1) //RU4

Figure 7.3: Refactored transactions and database schemas (Figure 3 from [12])

ACIDRain has reported anomalies in several e-commerce applications, and we will examine whether

STRIVE can also identify these anomalies.

Oscar

The Oscar eCommerce application has a voucher system. For a single-use voucher to be used, a read
operation checks if it was already used, and then a write operation applies the voucher. Logs from
this application show that a voucher vulerability can occur if these two operations are not isolated, and
two applications of the same voucher happen at the same time, allowing a voucher to be applied twice.
After modeling these two operations, STRIVE can detect a path between the read operation to the write
operation of a parallel call, and back to the write operation of the first call, creating a cycle and reporting

this anomaly.

To demonstrate, the following python code from STRIVE models the operations involved in the

voucher application process:

def oscar(self):
voucher_application_t =
Table ("voucher_application_t”,
[Column(”id”, int), Column(”user_id”, int)])

select_voucher = Operation(
"select_voucher”,
[InputParameter (”voucher_.id”, int)],
OperationType .READ,
voucher_application_t,
lambda ctx: voucher_application_t.column(”id”) == ctx[”voucher_id”],
[?”voucher_id”])

insert_voucher = Operation(”insert_voucher”,
[InputParameter (”voucher_.id”, int)],
OperationType .WRITE,
voucher_application_t,
lambda ctx: voucher_application_t.column(”id”) == ctx[”voucher_id”],
[?voucher_id”])

select_voucher_It = LocalTransaction ([ select_.voucher],
select_voucher.params)



Chapter 7. Case Studies and Evaluation

insert_voucher_It = LocalTransaction([insert_voucher],
insert_voucher.params)

checkout_bt = BusinessTransaction (

"checkout”,

[select_voucher_It, insert_voucher_It],

[InputParameter ("voucher_id”, int)])
ms = Microservice ("oscar”, [checkout_bt])

system = System ([ms])
graph = create_graph_from_system (system)

cycles, paths, topological_paths_for_cycles, cycle_assertions =
get_cycles_and_dag-paths(graph)

Running this script produces the following output, which confirms the detection of an anomaly:

”System endpoints:
[['select_.voucher '] checkout (1), [’insert_.voucher 'Jcheckout (2)]
[[*select_voucher '] checkout2 (3), [’insert_voucher ']Jcheckout2 (4)]
Number of detected cycles: 1
cycle:
([’ select_voucher '] checkout (1),
["insert_voucher '] checkout2 (4),
[’insert_voucher '] checkout (2))

assertions: [And(voucher_application_t.id == voucher_id_checkout,
voucher_application_t.id == voucher_id_.checkout2)]

Number of topological paths 2
[(¢’3’, "1, 4, 2%, (1’7, '8, 4, '2))”

Magento

The Magento checkout anomaly is a vulnerability in the Magento application that allows an attacker to

exploit a race condition in the checkout process. The vulnerability arises because Magento attempts to
use SELECT FOR UPDATE to lock the database row before writing it, but the read operation used in the

inventory check is made outside of the transaction, thus Magento is still vulnerable. This vulnerability

is caused by database accesses that are not properly encapsulated in transactions, allowing concurrent

API requests to trigger the vulnerability independent of the level of isolation provided by the database

backend. STRIVE is also capable of detecting this anomaly, since the SQL operations form a cycle

reflecting the mentioned lost update.

To demonstrate, the following Python code from STRIVE models the operations involved in the

stock management process of the Magento eCommerce platform:

def magento(self):
catalog_inventory_stock_item_t =
Table (" catalog_inventory_stock_item”, [Column(”id”, int), Column(”stock”, int)])

check_stock = Operation(

"check_stock”,

[InputParameter (”item_.id”, int)],

OperationType .READ,

catalog_inventory_stock_item_t ,

lambda ctx: catalog_inventory_stock_item_t.column(”id”) == ctx[”item_.id”"],
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[”stock "])

update_stock = Operation(
"update_stock”,
[InputParameter (”item_id”, int)],
OperationType .WRITE,
catalog-inventory_stock_item_t ,
lambda ctx: catalog_inventory_stock_item_t.column(”id”) == ctx[”item_.id”"],
[”stock”])

check_stock_lt = LocalTransaction ([check_stock],
check_stock .params)

decrease_stock_It = LocalTransaction (
[check_stock , update_stock], check_stock.params)

checkout_bt = BusinessTransaction (

"checkout”,
[check_stock_It, decrease_stock_It],
[InputParameter (”item_.id”, int)])

ms = Microservice ("magento”, [checkout_bt])
system = System ([ms])

graph = create_graph_from_system (system)
cycles, paths, topological_paths_for_cycles, cycle_assertions =
get_cycles_and_dag-paths(graph)

Running this script produces the following output, which confirms the detection of an anomaly:

”System endpoints:
[['check_stock '] checkout (1), [’check_stock’, ’'update_stock ']checkout (2)]
[['check_stock '] checkout2 (3), [’'check_stock’, ’update_stock ']checkout2 (4)]

Number of detected cycles: 1

cycle: ([’ check_stock ’]checkout (1),
['check_stock’, ’'update_stock ']checkout2 (4),
[’check_stock’, ’'update_stock ']checkout (2))

assertions: [And(catalog_inventory_stock_item.id == item_id_checkout,
catalog.inventory_stock_item.id == item_id_checkout2)]

Number of topological paths 2
((’3*, "17, 47, 2%, ("17, '37, 47, 2"

The output indicates that STRIVE successfully identifies a cycle involving concurrent operations in
the Magento stock management process. Specifically, it detects a sequence of operations where a read
(check_stock) is followed by an update (update_stock) in a parallel transaction (checkout2), forming a

cycle.

Lightning Fast Shop

ACIDRain analyzed logs from the Lightning Fast Shop application revealing a shopping cart vulnera-
bility. There is a read operation that gathers the pricing information from all items in the shopping cart.
The order items are calculated with this read operation but the order total is calculated using a different
read operation. This means that in between the calculation of the order items and the order total, a new

item can be inserted into the order and not be accounted for, and allow an exploiter to purchase items at
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a lower price. This lack of isolation between the two read operations creates an interleaving between the

operations, which also allows STRIVE to detect this cycle and report this anomaly.

To demonstrate, the following Python code from STRIVE models the operations involved in the

shopping cart and checkout process of the Lightning Fast Shop platform:

def lightning_fast_shop(self):

cart_item_t =
Table (" cart_item_t”,
[Column(”id”, int), Column(”cart_id”, int), Column(”product.id”, int)])

order_t = Table(”order_t”, [Column(”id”, int)])
order_items_t = Table(”order_items_t”, [Column(”id”, int)])

insert_to_cart = Operation(
“insert_to_cart”,

[InputParameter (” product_id”, int),
InputParameter (”amount”, int),
InputParameter(”cart_id”, int)],

OperationType .WRITE,

cart_item_t ,

(1.

[7id”, "cart_id”, "product_id”])

select_cart_items = Operation(
"select_cart_items”,
[InputParameter (" cart_id”, int)],
OperationType .READ,
cart_item_t,
lambda ctx: cart_item_t.column(”cart_id”) == ctx["cart_.id”],
["id”, ”"cart_.id”, "product_id”])

insert_.order = Operation(”insert_order”,[], OperationType.WRITE, order_t, [], [])

insert_order_items =
Operation ("insert_order_items”, [], OperationType.WRITE, order_items_t, [], [])

insert_to_cart_It = LocalTransaction([insert_to_cart],
insert_to_cart.params)

insert_order_It = LocalTransaction(
[select_cart_items, insert_order],
select_cart_items .params)

insert_order_items_It = LocalTransaction(
[select_cart_items, insert_order_items],
select_cart_items .params)

insert_.to_cart_bt = BusinessTransaction (
"insert_to_cart”,
[insert_to_cart_It],

[InputParameter (”amount”, int),
InputParameter (” product_id”, int),
InputParameter (" cart_id”, int)])

order_bt = BusinessTransaction(
“order”,
[insert_order_lt, insert_order_items_It],
[InputParameter(”cart_id”, int)])



Chapter 7. Case Studies and Evaluation 58

ms = Microservice (" Ifs”, [insert_to_cart_bt, order_bt])

system = System ([ms])

graph = create_graph_from_system (system)

cycles, paths, topological_paths_for_cycles, cycle_assertions =

get_cycles_and_dag_paths (graph)

Running this script produces the following output, which confirms the detection of an anomaly:

”System endpoints:
[["insert_to_cart ']insert_to_cart (1)]

[[*select_cart_items’, ’insert_order ']Jorder (2),
['select_cart_items’, ’insert_order_items 'Jorder (3)]

[["insert_to_cart ']insert_to_cart2 (4)]

[['select_cart_items’, ’insert_order ']Jorder2 (5),
['select_cart_items ', ’insert_order_items 'Jorder2 (6)]

Number of detected cycles: 1 cycle:

([ "select_cart_items’, ’insert_order ']Jorder (2),
[insert_to_cart ']Jinsert_to_cart (1),
[’select_cart_items’, ’insert_order_items ’'Jorder (3))
assertions: [cart_item_t.cart_.id == cart_.id_order]

Number of topological paths 1 [(’2’, '1’, ’'3")]”

The output indicates that STRIVE successfully identifies a cycle in the Lightning Fast Shop’s work-
flow, where operations in the cart and order systems are executed concurrently. Specifically, a sequence
of operations starting with a read (select_cart_items) followed by a write (insert_to_cart) and another write

(insert_order_items) creates a cycle.



Chapter 8

Future Work

This work has defined an approach for detecting transaction consistency problems in microservices.
However, there are still various aspects that remain unexplored or could be improved. This chapter

suggest possible directions for future research and development.

8.1 Support for Additional Isolation Levels

The current model primarily focuses on anomalies that occur due to weak isolation levels in microser-
vices. Future work could explore the extension of this model to support a broader range of isolation
levels, such as Read Committed, Repeatable Read, or Serializable. This would allow for more compre-

hensive anomaly detection across different database configurations and usage patterns.

8.2 Branching

Currently, transactions are modeled as a sequence of operations, but in reality, transactions can change
behavior during runtime. While STRIVE can model these different behaviors, by creating a transaction
for each possible path, doing so is computationally inefficient and imposes additional effort on the user
by requiring each behavior to be described as a separate transaction. A potential solution could be to
expand the transaction definition to support conditional operations, such as using an if-else syntax in the
DSL. In the graph algorithms, this could be represented by nodes with different edges to the respective

nodes based on those if-else conditions, while the cycle detection process would remain unchanged.

8.3 Edge Pruning

Currently, STRIVE establishes edges based on the transactions and conditions defined by the user. How-
ever, if the user is aware that the system prevents certain conflicts but STRIVE still defines edges, they
could manually prune those edges. This would eliminate cycles involving those edges. While this prun-
ing can currently be done by directly modifying the internal graph generated by the algorithm, the pos-
sibility of incorporating this input directly from the user through the DSL or another mechanism has
not been explored. Potential solutions could include allowing the user to define boolean expressions in

the DSL to be treated as system invariants and add them to the SMT solver’s context when establishing
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edges, or making the algorithm interactive, enabling the user to modify the graph and run subsequent

iterations with the updated graph.

8.4 C(Case Study Expansion

Additional case studies involving a variety of systems could be conducted to validate the effectiveness of
the proposed solution in diverse environments. This would not only help to generalize the findings but

also uncover new challenges and edge cases that need to be addressed in future iterations of the tool.

8.5 Remote Calls in Isolated Atomic Blocks

Currently a remote call is modeled in an isolated atomic block, as the algorithm treats a remote call as
an explicit loss of isolation from the previous transactions, implying that the database’s state up to the
remote call is committed and thus visible. The concept of permitting remote calls without exposing the
database’s state, a scenario where reads and writes remain uncommitted until the outcome of the remote
call is determined, can be valuable to allow STRIVE to model systems where this occurs. The solution
to support this is probably around copying remote nodes into an existing node and not breaking isolation,

but this was not tested.

8.6 Parser Development

The DSL was developed to understand what is needed to be extracted from a system in order to identify
anomalies, however, the parser itself was not developed. During the development and testing, the DSL
descriptions were manually converted to the internal meta-model of the algorithm. Developing the parser

would allow to automate this process and make this tool a more user-friendly experience.



Chapter 9

Conclusion

The shift from monolithic to microservices architectures, while beneficial in terms of scalability and
flexibility, introduces complexities in ensuring that data remains consistent across distributed services.
This thesis proposed a methodology n the detection of distributed transaction consistency problems.

STRIVE, leveraging static analysis techniques, was developed to detect potential serialization anoma-
lies within microservices. By modeling system operations and their interactions as a graph, the algorithm
identifies problematic cycles that could lead to data inconsistencies. The process begins with the user
providing a high-level description of the system using the Domain-Specific Language (DSL). This de-
scription serves as the input, which the algorithm then transforms into an internal graph representation
of the system’s operations and dependencies. The algorithm proceeds by analyzing the graph to detect
cycles that represent potential anomalies, ultimately producing a report that highlights these issues as its
output. This approach allows for the early detection of anomalies, aiding developers in addressing these
issues during the development phase, rather than after deployment.

The evaluation of STRIVE was carried out through case studies, including comparisons with similar
tools an one example drawn from the literature. Although these tools vary in their approaches and results,
the evaluation confirmed STRIVE’s effectiveness in identifying anomalies within distributed systems.

Despite the advancements presented in this work, several areas remain open for future research.
These include extending the algorithm to support additional features, refining the DSL, and developing
the parser.

In summary, the work presented in this thesis provides a valuable foundation for improving the
reliability of microservices architectures by enabling early detection of transaction consistency issues.
While progress has been made, continued research and development will be crucial in enhancing these
tools and approaches to fully meet the challenges posed by increasingly complex and distributed software

systems.
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