
Multi-Consistency Transactional Support for
Function-as-a-Service

Rafael Soares
INESC-ID, Instituto Superior Tecnico, Universidade de Lisboa

joao.rafael.pinto.soares@tecnico.ulisboa.pt

ABSTRACT
We propose to design and implement a framework to support
the concurrent execution of transactions with different con-
sistency levels in Function-as-a-Service (FaaS) environments.
The goal is allow functionalities that have weak consistency
requirements to execute efficiently, with minimal coordi-
nation, while, at the same time, allow functionalities that
have strong consistency requirements to access the same
data. We will leverage previous works, such as SALT, that
combine both weak and strong transactional consistency
while adding support for additional transactional levels that
have been suggested for FaaS, such as Transactional Causal
Consistency.

1 INTRODUCTION
Function-as-a-Service (FaaS), also known as Serverless Com-
puting, has emerged as a key paradigm to support the exe-
cution of applications in the cloud. A significant advantage
of FaaS is that users are not required to reserve resources
explicitly: these are automatically provisioned by the cloud
provider as needed. This paradigm requires programmers
to develop their applications in the form of compositions of
stateless functions that can be organized into directed acyclic
execution graphs (DAGs) to implement complex function-
alities. In run-time, the provider assigns the computational
nodes required to execute these functions: different func-
tions, or even different instances of the same function, can
be executed in different nodes.
Functions cannot preserve state across invocations or

share state in memory. To preserve and share state, func-
tions need to store data in some external storage service.
Even if the external storage service is able to offer strong
guarantees to each individual function, it may be hard to
offer strong consistency for a DAG composition, because
functions from the same DAG may be executed by differ-
ent nodes and, therefore, can be observed as different clients
(that are not part of the same “session") by the storage service.
For instance, it may not be trivial to ensure the atomicity of
the writes performed by a DAG, if parts of the write-set are
persistent by different functions. Also, when reading from
the persistent store, functions from a given DAG can read
version that belong to different snapshots. In most cases,

functions within a DAG only have Eventual Consistency
(EC) [1] guarantees.

Due to these limitations, a number of recent works have
proposed to extend FaaS frameworks with support for con-
sistent access to persistent store, including different forms of
transactional guarantees. Examples of supported models in-
clude Transactional Causal Consistency (TCC) [3] and Strict
Serializability [6]. To the best of our knowledge, all of these
system assume that all DAGs run under the same consistency
level: the one provided by the middleware. This can be overly
restrictive, and impose a performance penalty of DAGs that
can operate under weak consistency. For example, a social
media application may require Strict Serializability for lo-
gin, TCC for adding new contacts, and EC for post creation,
while these functionalities may be using the same functions
or key-space in different transactional contexts. DAGs that
only require EC should not have their performance penalized
by others that require Strict Serializibility.

2 RESEARCH OBJECTIVES
We propose to design and implement a framework to support
the concurrent execution of transactions with different con-
sistency levels in Function-as-a-Service (FaaS) environments.
The goal is to allow DAGs that have weak consistency re-
quirements to execute efficiently, with minimal coordination,
while, at the same time, allowing DAGs that have strong
consistency requirements to access the same data.

3 APPROACH
To achieve our goal, we will use coordination mechanisms to
synchronize multiple transactional levels. There have been
past approaches that mix weak and strong consistency lev-
els at the operation granularity [2]. However, such coarse
grained levels will affect the system scalability, as different
functions that would interact on different key-spaces could
execute concurrently. We also wish to allow the possibility of
the same function being executed in different transactional
levels. As such, we will base our approach on SALT [5],
an isolation level that allows the concurrent execution of
strongly consistent ACID transactions with weakly consis-
tent BASE transactions at the object granularity. We aim at
studying techniques to implement the SALT ideas in a FaaS



ACID-R ACID-W alka-R alka-W causal-R causal-W saline-R saline-W
causal-R ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

causal-W ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Table 1: Conflict Table for TCC transactions. Causal represents TCC, ACID and Alka represent Strict Serializability
and Saline represent EC.

environment and incorporate additional consistency criteria,
such as TCC in the SALT framework

4 CHALLENGES
Multiple challenges arise when porting SALT to a FaaS en-
vironment and adding new transactional levels to it. First,
SALT was designed without considering Multi-Versioning
Concurrency Control (MVCC), which greatly affects the per-
formance of transactional levels that are lenient in their
snapshot choice, like TCC and Snapshot Isolation (SI). Sec-
ond, SALT isolation is based on a set of pessimistic locks,
dictating which transactions are allowed to be executed con-
currently (weakly consistent transactions) and which trans-
actions must be blocked and executed in complete isolation
(strongly consistent transactions). When adding new weakly
consistent levels like TCC, we wish to maintain the maxi-
mum concurrency between TCC and EC. However, it is not
a trivial task, as EC reads must respect the atomicity and
causal snapshot requirements of TCC. Finally, the coordina-
tion mechanism must be lightweight, as it may become a
bottleneck for FaaS environments in terms of scalability.

5 RESEARCH DIRECTIONS
I will now present some research directions to tackle the
above challenges.

• Regarding the locking system, we wish to improve
upon the concurrency control design of SALT. We
will introduce multi-versioning concurrency control
(MVCC) to the locking design of SALT, allowing a
smoother transition of optimistic approaches for TCC
and SI implementations to the pessimistic locking of
SALT.

• Regarding the addition of new transactional levels, an
analysis of their interactions must be made to decide
which transactional levels should be allowed to exe-
cute concurrently and what limitations exist between
each other. Interactions with TCC are of special in-
terest here, as translating causal information to other
consistency levels is not trivial.

• Regarding the coordination mechanism, we will imple-
ment an additional layer to FaaS to provide the SALT
isolation to all functions.

6 PRELIMINARY RESULTS
A first step for this work was the prototype of FaaSSI [4],
a system that provides SI support for FaaS environment re-
lying on an eventual consistent key-value store. We used
an intermediate layer between the computational and stor-
age layer to ensure system correctness, comprised of a set
of servers responsible for conflict detection, known as con-
flict managers. We will further level our previous work on
FaaSTCC [3] to add a caching system and a TCC storage to
reduce some of the workload on the conflict manager nodes
on read transactions. This intermediate layer will become
the basis for the SALT implementation on FaaS.
Regarding interactions between TCC and other consis-

tency levels, Table 1 shows our current design for TCC trans-
actions in the SALT framework, without considering MVCC.
The most surprising constraints for TCC transactions come
in the form of Read-Write conflicts. Because TCC must be
read from a causal snapshot, transactions may not read con-
currently with writes, as they may break transaction atom-
icity. However, Write-Write transactions for weaker consis-
tency levels are allowed, as TCC allows concurrent writes
as long as values converge. Note that in a MVCC scenario,
the above scenarios would be allowed, as long as additional
metadata checks for causal dependencies are added.
Acknowledgments: This work was supervised by professor Luis Rodrigues in INESC-
ID. This work was partially funded by Fundação para a Ciência e Tecnologia (FCT)
under grant UI/BD/153590/2022 and via project UIDB/50021/2020 and DACOMICO
(via OE withref. PTDC/CCI-COM/2156/2021).

REFERENCES
[1] Tabby Ward (AWS). 2020. AWS Step Function transaction Saga

Pattern. Retrieved April 29, 2022 from https://docs.aws.amazon.com/
prescriptive-guidance/latest/patterns/implement-the-serverless-saga-
pattern-by-using-aws-step-functions.html

[2] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues.
2012. Making Geo-Replicated Systems Fast as Possible, Consistent when
Necessary (OSDI 12). Hollywood, CA.

[3] T. Lykhenko, R. Soares, and L. Rodrigues. 2021. FaaSTCC: Efficient
Transactional Causal Consistency for Serverless Computing (Middle-
ware ’21). Virtual Event, Canada.

[4] R. Soares. 2021. An Architecture to Offer Transactional Strong Consis-
tency for FaaS Applications. Master’s thesis. Instituto Superior Tecnico,
Universidade de Lisboa.

[5] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi, and
P. Mahajan. 2014. Salt: Combining ACID and BASE in a Distributed
Database (OSDI’14). Broomfield, CO.

[6] H. Zhang, A. Cardoza, P. Baile Chen, S. Angel, and V. Liu. 2020. Fault-
tolerant and transactional stateful serverless workflows (OSDI 20). Banff,
Canada.

2

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-the-serverless-saga-pattern-by-using-aws-step-functions.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-the-serverless-saga-pattern-by-using-aws-step-functions.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-the-serverless-saga-pattern-by-using-aws-step-functions.html

	Abstract
	1 Introduction
	2 Research Objectives
	3 Approach
	4 Challenges
	5 Research Directions
	6 Preliminary Results
	References

