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October 2024



Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.



Acknowledgments

I would like to thank my parents for their friendship, encouragement, and caring over all these years.

They have always been there for me through thick and thin, and without them, this project would not be

possible. I would also like to thank my grandparents, aunts, uncles, and cousins for their understanding

and support throughout all these years.

I would also like to acknowledge my dissertation supervisors Professor António Rito Silva, Professor

Luı́s Rodrigues and my colleague, Rafael Soares, for their insight, support, and sharing of knowledge,

which have made this Thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always

there for me during the good and bad times in my life. Thank you.

To each and every one of you – Thank you.

This work was supported by FCT - Fundação para a Ciência e a Tecnologia, via the projects UIDB/50021/2020

and DACOMICO (financed by the OE with ref. PTDC/CCI-COM/2156/2021).

i





Abstract

In a monolith, functionalities are executed as transactions, that are isolated from each other. In a mi-

croservice architecture, functionalities may be composed of multiple transactions, each executed in a

different microservice. When functionalities execute concurrently, these individual transactions may in-

terleave, generating states that violate correctness invariants. This work studies techniques to: 1) detect

automatically executions that may cause invariants to be violated, and 2) automatically present concrete

executions that illustrate those violations. We have built a tool, named DAVIAC, that achieves these

goals. The tool encodes the application code and the invariants as Satisfiability Modulo Theories formu-

las and then uses a Satisfiability Modulo Theories solver to explore the space of possible interleavings

and input parameters. When the violation of an invariant is found, the tool captures the exact inter-

leaving that causes the violation. We have evaluated the tool by applying it to different microservice

applications.

Keywords

Microservices, Concurrency, Invariants, Anomaly Detection, Formal Verification

iii





Resumo

Num monólito, as funcionalidades são executadas como transações, isoladas umas das outras. Numa

arquitetura de microsserviços, as funcionalidades podem ser compostas por múltiplas transações, cada

uma executada num microsserviço diferente. Quando as funcionalidades são executadas concorrente-

mente, essas transações individuais podem se intercalar, gerando estados que violam os invariantes

de consistencia. Este trabalho estuda técnicas para: 1) detectar automaticamente execuções que po-

dem causar violação de invariantes, e 2) apresentar automaticamente execuções concretas que ilus-

tram essas violações. Construı́mos uma ferramenta, chamada DAVIAC, que atinge esses objetivos. A

ferramenta codifica o código da aplicação e os invariantes como fórmulas Teorias do Módulo de Satisfi-

abilidade e então usa um solucionador Teorias do Módulo de Satisfiabilidade para explorar o espaço de

possı́veis intercalações e parâmetros de entrada. Quando a violação de um invariante é encontrada, a

ferramenta captura a intercalação exata que causa a violação. Avaliamos a ferramenta aplicando-a a

diferentes aplicativos de microsserviços.

Palavras Chave

Microsserviços, Concorencia, Invariantes, Deteção de Anomalias, Verificação Formal
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Introduction
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1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Microservices are an architectural style that promotes the development of applications through the

composition of small loosely coupled services, in contrast to the traditional monolithic architecture in

which all functionalities are provided by a centralized software component [1–3]. Microservice architec-

tures have several advantages over monolithic architectures. In particular, they are easier to scale, both

from the perspective of the software development process and from the perspective of deployment and

execution.

Unfortunately, managing the effect of concurrency becomes more challenging in a microservice ar-

chitecture compared to a centralized environment. In a monolith, functionalities are executed as isolated

ACID transactions [4]. In a microservice architecture, by design, functionalities are composed of multiple

transactions, each possibly executed in a different microservice. When functionalities execute concur-

1



rently, the resulting interleavings may generate global states that violate the application’s invariants:

applications’ correctness rules that must be enforced throughout execution.

1.1 Motivation

Our goal is to facilitate the development of correct microservice applications by simplifying the detection

of correctness violations that may occur during the execution. Detecting these violations via testing is

notably hard and impractical due to the sheer number of possible interleaving scenarios. So, we aim

to develop a tool that can automatically detect interleavings that can cause violations of invariants at

design time and that can represent the interleaving in a way that helps the programmers understand the

root cause of the violation, making it easier to resolve.

1.2 Contribution

This work analyzes, implements, and evaluates techniques to discover and represent invariant violations

that can occur in microservices applications. As such, this thesis’ main contributions are the following:

• A formulation to represent microservice executions that can be used in formal verification contexts,

in the form of SMT formulas.

• A tool that automatically generates the aforementioned formula from a microservice application

and uses it to detect invariant violations.

• Automatic procedures to visualize the violations, as concrete executions.

1.3 Results

This work has produced the following results:

• A tool named DAVIAC capable of discovering invariant violations in microservice applications and

visualizing them in various ways.

• An experimental evaluation of DAVIAC, that assesses its ability to analyze real applications and its

performance and scalability.
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1.4 Research History

This work was developed under the DACOMICO (Data Consistency in Microservices Composition)

project, which has the objective of guiding programmers in the effort of decomposing a monolith into

microservices. A tool such as DAVIAC, which is capable of detecting and simplifying the process of

handling invariant violations, in other words, application correctness violations, is a relevant contribution

to this project.

Early results from this thesis have been published as:

Deteção de Violação de Invariantes em Microserviços. J. Fitas, R. Soares, A. Silva and L.

Rodrigues. Actas do décimo quinto Simpósio de Informática (Inforum), Lisboa, Portugal,

Setembro 2023.

This work was supported by FCT - Fundação para a Ciência e a Tecnologia, via the projects

UIDB/50021/2020 and DACOMICO (financed by the OE with ref. PTDC/CCI-COM/2156/2021).

1.5 Organization of the Document

The document is organized as follows: Chapter 2 provides the required background. Chapter 3 de-

scribes the related work. Our tool, DAVIAC, is presented in Chapter 4 and Chapter 5 describes its

experimental evaluation. Chapter 6 presents the conclusion and gives directions for future work.
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2
Background

Contents

2.1 Example: Simple Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Microservices Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Domain-driven Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Example: Simple Bank

In this document, we use a toy application, named Simple Bank, to illustrate the different concepts and

mechanisms introduced in the thesis. The domain of this application includes clients that have an id, a

name, and an address, and accounts that are linked to clients by their id and have the client ’s name and

a balance, as shown in Figure 2.1. There is a functionality that allows clients to withdraw money, and

another that allows the name to be changed. Lastly, there are two correctness invariants in this domain:

the first is that no account can have a negative balance at any point, and the second is that the name of

a client should match the name on their account once the update name process is completed.

5



Figure 2.1: Simple Bank Domain

2.2 The Microservices Architecture

In a microservices architecture [1–3], the application is supported by multiple independent services,

each with a single simple responsibility, that interact with each other with little centralized control to

provide the application’s functionalities. Each of these components should be deployable and scalable

independently, potentially having its own storage. Contrary to the traditional monolithic architecture

where a centralized piece of software is responsible for handling all the functionalities of the application.

Microservice architectures have become popular and are often considered when developing new

systems. Some of the most appealing aspects of breaking up an application’s functionalities into mi-

croservices are [3,5,6]:

• Scalability: Each component of the application is now isolated into a microservice that can be indi-

vidually scaled to accommodate varying loads. By scaling only the required microservice instead

of the whole application, developers can save resources.

• Team Independence: The existence of individually deployable services allows easier separation

between components. This makes individual and parallel development of each application compo-

nent possible by different teams, speeding up development cycles.

• Robustness: Service independence allows faults and failures to be contained to a single microser-

vice environment, avoiding its propagation to the application as a whole and increasing robustness,

although application functionalities may be limited during said failures.

• Technology Diversity: Each service has its own code base, and as such, the technologies cho-

sen for each service may be different, allowing developers to choose the technologies that best fit

its requirements. Moreover, it allows individual microservices to evolve with time, changing tech-

nologies over time without affecting the remaining system, allowing for easier maintenance and

continuous development.

6



However, an application developed as multiple loosely coupled services poses several challenges,

such as [3,5,6]:

• Operation Costs: Without proper development infrastructure and monitoring tools, the increased

number of components of this architecture may be unmanageable for some organizations.

• Data Synchronization across multiple services: Multiple microservices may require access to the

same set of data. To maintain microservice independence, shared data is required to be copied

to each required microservice’s data store, allowing data to be read and modified locally by each

microservice, whilst in a monolithic architecture, data could be managed by a single database.

This creates the need for data to be synchronized across microservices.

• Consistency: When designing a microservice application, functionalities may span multiple mi-

croservices, creating space for interleavings. With increased business logic complexity, function-

alities tend to increase in size, making the correctness verification of invariants for all possible

interleavings more difficult, leading to possible incorrect behavior being unnoticed during develop-

ment.

Given the downsides of microservice compositions, it is important for the developer to weigh the pros

and cons carefully, as there have been cases where microservice applications needed to be reimple-

mented as monoliths to solve these problems [7].

2.3 Domain-driven Design

The design of microservice applications is a difficult task when the application has complex business

logic and tightly coupled functionalities [8]. One common way to do so is through a Domain-Driven

Design (DDD) approach [9]. Central to this approach is the notion of aggregate: an aggregate is a

cluster of objects that are tightly connected by the domain logic and are considered the atomic unit

of the domain. The state of an aggregate is updated by the execution of functionalities, which are

operations over aggregates.

Aggregates capture relevant aspects of the domain by including data types, and relationships among

objects. However, this information is often not sufficient to represent the domain’s data entirely, as it

does not contemplate any business logic that may constrain what values can be taken by each object.

For this purpose, it is possible to express predicates over one or more aggregates that define a correct

state. These predicates are called invariants [9]. If the invariant only involves data from one aggregate,

then it is said to be an intra-invariant. Conversely, if it involves data from several aggregates, then it is

called an inter-invariant. Another relevant distinction is that while intra-invariants must always be upheld

for an aggregate to be consistent and guarantee that the business logic is respected, inter-invariants

7



can often be temporarily violated without breaking the correctness of the application, as long as they

are eventually satisfied. This second aspect is intrinsic to the expected eventual consistent model of the

behavior of a microservices application.

Often, business logic requires different aggregates to share a given piece of data, requiring the

performed changes to a given aggregate’s data to be propagated to other aggregates. Note that each

aggregate may have a different view of the same data, and thus the multiple copies of the data may not

be exact replicas of the same content. Propagation is often ensured by events [9]. In order to avoid

circular dependencies.

To clarify these concepts, let us expand on the previously 2.1 introduced Simple Bank application.

Listing 2.1 presents the entities of the Clients and Accounts aggregates, where the name is an example

of duplicate information kept in both aggregates.

Listing 2.1: Simple Bank Aggregates

1 Aggregate Clients {

2 Root Entity Client {

3 Long id;

4 String name;

5 Address address;

6 }

7

8 Entity Address {

9 Long id;

10 String street;

11 String city;

12 }

13 }

14

15 Aggregate Accounts {

16 Root Entity Account {

17 Long id;

18 Client holder;

19 Float balance;

20 }

21

22 Entity Client {

23 Long id;

24 String name;
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25 }

26 }

Listing 2.2 expands the Accounts aggregate by introducing its invariants. There is one intra-invariant

stating that the balance of the account entities must be greater than or equal to zero. And there is

one inter-invariants that states that the name of the client entities in the Accounts microservice must

correspond to the name of that client in the Clients microservice.

Listing 2.2: Simple Bank Accounts aggregate’s Invariants

1 Aggregate Accounts {

2 IntraInvariants {

3 root.balance >= 0;

4 }

5

6 InterInvariants {

7 Clients.get(root.client.id).name == root.client.name;

8 }

9 }

Figures 2.2 and 2.3 present two functionalities of Simple Bank: Update Name and Withdrawal, which

are responsible for updating the client entities’ name and withdrawing money, respectively.

Figure 2.2: Update Name Functionality Figure 2.3: Withdrawal Functionality

2.3.1 Invariant Violations

There are two main possible causes for invariant violations to occur in a microservice composition. The

first is the existence of bugs in the code that implements a functionality that, under some combination of

system state and inputs, may drive the application to a state when there is an invariant violation. Such

a violation of invariants could happen even in a isolated execution of the functionality. The second is

the occurrence of anomalies during the concurrent execution of functionalities. Both of these cases are

relevant to our work, and it is our goal to detect both occurrences.
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Furthermore, not all invariant violations are the same. As mentioned in the previous Section 2.3,

not all invariants need to be upheld at all times. Some may be relaxed during the intermediate state of

functionalities and only need to eventually be met in quiescence states. As such, this work defines two

invariant categories: Absolute Invariants and Eventual Invariants. The first must be upheld at all times

during execution. The second may be violated during intermediate states, but must be upheld after all

the functionalities manipulating entities relevant to the invariant have terminated, meaning that these will

only cause violations if they are breached in a state when no functionality is manipulating data related

to them.
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There are two main distinct approaches to analyze the execution of an application, namely following a

black-box approach or following a white-box approach. The first approach focuses only on the effects of

an execution, having no knowledge of the application’s inner workings, while the second approach also

covers the internal operation of the application. However, the use of white-box tools might not always

be possible, namely if the source code of an application is not accessible. Tools following the white-box

approach are presented in Section 3.1 and tools following the black-box approach in Section 3.2. All

addressed systems are designed for or related to invariant analysis. Furthermore, Section 3.3 covers

tools related to the development and testing of microservices. After this, Section 3.1 compares the tools

and highlights their pertinence for this work. Lastly, Section 3.5 makes an in dept analysis of the tools,

closer to achieving the goals of this work.
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3.1 White-Box Analysis Tools

3.1.1 Harmony

Harmony [10] is a white-box tool designed to detect errors in multi-threaded programming by finding

executions where the application’s invariants are breached. Harmony performs its analysis by model-

checking the representation of an application and its invariants in HarmonyLang, a Python-like language

designed to simplify the analysis of concurrent programming applications. As such, the application under

test must be translated manually into HarmonyLang to use this tool. This tool discovers any possible

execution sequence in which at least one of the invariants is breached, presenting them in a graph

that displays the shortest path from the application’s initial state to the state where the invariant breach

occurred.

Due to its design and the use of a model checker, this tool provides a complete analysis of the

representation of the application under test application. It is also important to mention that HarmonyLang

does not support the full syntax of many programming languages; for instance, it does not support

classes. Lastly, since this tool uses a model checker, the time required to run complex scenarios is

significant, or it may not finish within a useful period.

3.1.2 Alloy

Alloy [11] is a modeling language and solver designed to help developers verify the properties of their

domain. More specifically, the Alloy Analyzer is a solver that, given a set of domain constraints, produces

a sample instance that meets the constraints if one can be generated. In addition to constraints, Alloy

supports the validation of invariants and the analysis of methods; that is, it can verify if the execution of

a method or methods can lead to invariant breaches.

The versatility of this language and solver has led to its use in several domain verification tools,

but most of the research is focused on the verification of domain representations like UML, such as

[12, 13] due to the similarity between the two [14], which makes translation easier than coming from

an application source code. Furthermore, this tool also, provides graphical representation of sample

instances which violate the domain constraints.

3.1.3 Ucheck

Ucheck [15] is a runtime-static hybrid white-box tool that provides invariant verification during runtime

based on traffic between microservices. More specifically, this tool uses a model for each microservice

along with its invariants for two things. First, it validates whether the models verify the invariants, and
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second, it uses them to determine validity criteria for the messages exchanged between the microser-

vices during runtime.

Ucheck operates in three stages. The first two statically validate the application and determining

what is a valid message, and the third occurs during runtime when the application’s communication is

validated against the previously defined rules. Any message that goes against the rules is flagged and

dropped.

3.1.4 MAD

MAD [16] is a white-box tool designed to assist developers in assessing the costs associated with the

migration of a monolith to a given microservice decomposition, indicating the number and types of data

anomalies that will arise from applying a decomposition.

More specifically, MAD takes as input a representation of a monolith application and a desired de-

composition of its functionalities into microservices, which are then translated to Z31 statements that,

combined with its anomaly finding engine, lead to the discovery of execution sequences that generate

transactional anomalies [17]. The use of an SMT solver in this tool allows for a complete analysis, dis-

covering all possible data anomalies in the application with the trade-off of long execution times and the

risk that it may not finish within a useful period.

3.1.5 Noctua

Noctua [18] is a white-box tool designed to verify the consistency of distributed web applications by

indicating execution instances where consistency is not preserved.

To do so, Noctua receives as input the source code of a web server (supporting only Python Django

web servers), and automatically converts it into SMT formulations representing each possible function-

ality execution of the web server. By analyzing said formulas, Noctua can discover which execution

or which combination of executions causes inconsistent states in the web server. The aforementioned

inconsistent states originate from data anomalies which are not handled by the web server.

3.2 Black-Box Analysis Tools

3.2.1 HawkEDA

HawkEDA [19] is a black-box tool designed to help developers weigh the advantages of microservice

implementations and assess the number of data integrity anomalies for different workloads. The user is

1Z3 Theorem Prover is an SMT solver developed by Microsoft: https://www.microsoft.com/en-us/research/project/

z3-3/
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required to provide a description of the application’s interface and the relevant invariants, described in

terms of calls to the interface, along with some configuration parameters for the intensity of the scenario,

which entail, among others, the skewness and frequency of requests. The tool runs the application in a

controlled environment, providing performance metrics such as average latency and throughput, along

with any invariant breaches that might have encountered. Requests are randomized according to the

configuration parameters, so there are no guarantees of the completeness of the analysis.

3.2.2 PETIT

PETIT [20] is a tool designed to test microservice applications provided as a black-box, for example,

to test a third-party API, of which the implementation is unknown. The tool is introduced along with a

specification language for annotating APIs called APOSTL, which should be used to annotate the API

under test with the invariants that define the correct operation of that API. In essence, this tool takes

the definition of an API annotated with rules that define the correct behaviors of each API method and

performs tests with randomly generated inputs or according to some user-provided pattern. This means

that while the analysis can reveal some invariant violations, there are no guarantees that it discovers all

of them.

3.3 Testing and Development Tools

3.3.1 Transactional Causal Consistent Simulator

The Transactional Causal Consistent Simulator [21] is a tool designed to allow the development of Trans-

actional Causal Consistent microservice applications in a user-friendly environment, providing a starting

point for their implementation and a friendly environment for testing. The simulator provides the boiler-

plate code for the implementation of a causal consistent aggregate. These aggregates have versioning

control and support the definition of methods to merge them in case of version conflicts. However, it is

up to the developer to make use of these classes, implement the remaining logic of their application,

and the required merge procedures, along with any desired test cases.

The simulator does not perform any analysis of the application code and relies on user-generated

code and test cases to operate. As such, it does not find any invariant violations on its own but instead

empowers the user to find and resolve violations themselves.

3.3.2 Jolie & JoT

Jolie [22] is a service-oriented programming language that focuses on providing syntax for the devel-

opment and composition of services, facilitating the interoperability of Services provided in different
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technologies while also introducing a new way to build services that are service-oriented. This is done

by providing a completely new grammar built on top of Java with database connectivity options, concur-

rent programming clauses, and other necessary tools for the purpose. In addition, it provides seamless

interoperability with other services deployed in different languages.

For this work, a relevant tool built on top of Jolie is JoT [23], which is a testing framework that

allows developers to test all components of their microservice applications regardless of their individual

technologies due to its use of Jolie.

This framework does not make any analysis of the application code and is only a tool for users

to write test cases that can span across multiple microservices implemented in different technologies,

it does not find any violations on its own, but instead empowers the user to find and test violations

themselves, like the previously presented simulator. However, unlike the simulator, this framework allows

the development of test cases involving microservices using different technologies.

3.4 Comparison and Discussion

To sum up the most relevant characteristics of the tools presented in the previous section, their charac-

teristics are presented in Table 3.1, along with the new tool produced by this work, DAVIAC.

Tool Black/White-Box Invariants Microservice Complete Source Code
Oriented Analysis Analysis

HawkEDA Black-Box API Level ✓ ✗ ✓

PETIT Black-Box API Level ✓ ✗ ✓

Simulator White-Box Entity Level ✓ ✗ ✓

JoT White-Box Entity Level ✓ ✗ ✓

Ucheck White-Box Entity Level ✓ ✓ ✗

Harmony White-Box Entity level ✗ ✓ ✗

Alloy White-Box Entity level ✗ ✓ ✗

MAD White-Box Not Supported ✓ ✓ ✓

Noctua White-Box Not Supported ✗ ✓ ✓

DAVIAC White-Box Entity level ✓ ✓ ✓

Table 3.1: Tool Comparison

By definition, invariants are correctness constraints over the application’s domain, which are often

defined in terms of domain entities. As such, representing them at the entity level is simpler, albeit

they can also be defined at the API level through methods that interact with the entities. This leads to

invariants defined at the API level, requiring several methods to be called to validate the invariant. In

contrast, invariants defined at the entity level can be validated by analyzing the entities directly, making

the entity-level representation more efficient.

Harmony [10], Ucheck [15], and Alloy [11] define invariants at the entity level, while HawkEDA [19]
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and PETIT [20] define them at the API level. As a consequence, the representation of the same invariant

in the first group is closer to the domain representation of the same invariant, also being smaller and

simpler, as it can directly access the entities involved.

Black-box approaches lack knowledge of application internals, such as entities, and are therefore

unable to define invariants at the entity level. This gives them a disadvantage compared to white-box

approaches. Furthermore, black-box approaches are unable to achieve a complete analysis, as they are

based on testing approaches. Due to both of these factors, black-box tools are less interesting for this

work as they are inherently further away from its goals than white-box tools. Albeit they are still useful

for testing services whose code-base cannot be accessed.

The Simulator [21] and JoT [23] are white-box tools. However, as they require the user to manually

create all the test cases required to provide a complete analysis, their invariant violation detection ca-

pabilities are also not as interesting for this work as the remaining white-box tools. However, they are

relevant for this work in terms of testing environments and techniques, as is shown later in this Chapter.

Ucheck stands out from the remaining white-box tools because it operates both at a static level to

discover possible invariant violations in the domain model and infer what correct behaviors are during

runtime; and at runtime to prevent the occurrence of said incorrect behaviors. That is, while it shares

some similarities with this work, it acts more like an invariant violation countermeasure tool than a

detection tool.

With all this in mind, the tools that are more related to the goal of detecting all invariant violations in

an application are MAD, Harmony, Alloy, and Noctua. Within these, it is worth highlighting that MAD and

Noctua are the only ones that support source code analysis and do not require a manually generated

model of the application. The capabilities of these four tools and their potential application as a solution

to the problem of this work are discussed in Section 3.5.

Another relevant aspect of this work is addressing the discovered violations. From a high-level per-

spective, this is done in three stages: understanding the violation, reworking the problematic function-

alities, and testing the new code. In terms of addressing the first step, Alloy and Harmony are the only

tools with specific components for the understating of the results, by providing a graphical representa-

tions of the results. The second stage could be addressed with suggestions of possible ways to alter

the code to avoid violations. However, that is outside the scope of this work and will not be covered.

Lastly, when testing the code, different testing techniques may be required depending on the technolo-

gies used in the application under test. One possible solution is to support multiple technologies and

generate technology-specific test cases, such as those in the Simulator [21]. Another would be to use

a generic framework like Jot [23] that can be used regardless of the technologies used by each mi-

croservice. Both approaches are not without limitations. The first allows for more in-depth testing of

each individual microservice at the cost of making tests that span multiple microservices complex. In
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contrast, Jot makes high-level tests spanning across several microservices simple at the cost of more

complex configuration and forcing testing to be made over remote procedure calls, making the tests

slower and more complex. Given the various approaches to this issue in the industry, it was decided not

to include concrete test case generation in this work and instead to focus on providing the information

required to create test cases in a useful way.

3.5 Discovering Invariant Violations Using Previous Work

To clarify what Harmony [10], MAD [16], Noctua [18] and Alloy [11] (the tools highlighted in the previous

Section 3.4) are already capable of achieving and what their limitations are this section discusses their

use to discover violations.

3.5.1 Discovering Invariant Violations Using Harmony

Harmony [10] is designed to discover scenarios in which invariants are violated in a concurrent program-

ming setting, much like what this work aims to achieve. To use Harmony for the purpose of this work,

functionalities have to be translated into HarmonyLang functions, domain invariants represented as Har-

mony invariants, and aggregates represented as Harmony variables. Performing this translation requires

some engineering work due to disparities between the technologies, but the logic of the application re-

mains the same. However, to correctly modulate this work’s problem, order within the transactions that

make up a functionality has to be enforced. To do so, the created functions call each other in the correct

order, ensuring that the functionalities are executed according to the specification. After translating the

whole domain, Harmony requires that the possible input for each function be bounded, and methods for

random input values are provided and could be used. Furthermore, indications of which functions may

be executed in parallel and how many instances of each have to be provided. Defining this value is not

a trivial matter, as this problem is again encountered in DAVIAC, and discussed in Section 4.4.1. Using

the procedure just described, Harmony will report any execution in which an invariant can be breached

and for what values.

However, Harmony does not possess any syntax to indicate when an invariant should be verified. As

such, when Harmony is used, it is impossible to make the distinction between eventual invariants and

absolute invariants, as described in Section 2.3.1. This means that using Harmony for the purpose of

this work will lead to the report of a significant number of violations that are not relevant, in other words

to a very significant number of false positives. Harmony will report every intermediate state where an

eventual invariant is breached, including scenarios when, in the final state, the invariant is upheld, cases

which do not constitute a violation.
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3.5.2 Discovering Invariant Violations Using MAD

MAD [16] is not designed for invariant analysis. Its goal is the discovery of data anomalies. As such, to

discover invariant breaches, a parallel between invariant breaches and data anomalies is required. Our

research revealed that looking for invariant breaches in cases where there are data anomalies yields very

good results in the discovery of breaches that are caused by the interleaving of correct functionalities.

However, if the invariant breach occurs due to a bug in the functionality, using MAD is not sufficient, as

it occurs outside a data anomaly. Therefore, to use MAD for the purpose of this work, the application

should be analyzed by MAD, and then the discovered scenarios where there are data anomalies must

be analyzed by hand. However, as previously mentioned, for a complete analysis, the functionalities’

sequential executions have be tested as well to cover the missing cases, meaning that a lot of the work

still has to be done outside MAD. Eventual invariants should be tested at the end of each scenario and

absolute invariant at each step to look for possible invariant violations. Note that invariants only need

to be tested in scenarios where they could be affected, that is, in scenarios where the data anomalies

involve functionalities that manipulate entities relevant to the invariants. Although this procedure did

not automatically discover any invariant breaches, running MAD was useful in narrowing the search.

Furthermore, MAD does not require any manual modulation of the application because it automatically

translates the application’s source code. This introduces a significant reduction in the analysis time while

also removing space for human error.

3.5.3 Discovering Invariant Violations Using Noctua

Much like MAD [16], Noctua [18] is not designed for invariant analysis. Its goal is the discovery of

inconsistencies in distributed web applications. To do so, Noctua probes the executions of the web

server for data anomalies, meaning that, like MAD, the results would then have to be verified for invariant

violations. Essentially, the use of this tool for the goals of this work is very similar to the use of MAD,

having the same pros and cons. Still, Noctua’s methods for translating Python source code to SMT

syntaxes were relevant for this work, especially the ability to translate from Object Relational Mapping

(ORM) syntax.

3.5.4 Discovering Invariant Violations Using Alloy

Alloy [11] is designed to validate the integrity of domains. However, it is not designed for direct analysis

of source code. So, to use Alloy for the detection of an application’s possible invariant violations, it is

necessary to translate the aggregates to Alloy Signatures and represent any relationships as Alloy Facts.

Invariants can then be modulated as Alloy Asserts over the created signatures. Lastly, each transaction

of the functionalities should be represented as a predicate. This modulation is not trivial, as there are
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significant differences between the syntax of Alloy and that of an average programming language. Alloy

is designed so that the representation of the consequences of executing a transaction is simple and

not to represent the full procedure of a transaction. However, just representing the consequences of

a transaction and not the exact procedure can lead to an incorrect representation of the application’s

implementation and miss invariant violations that occur not due to domain design flaws, but due to

implementation specifics. For clarification, consider a functionality that updates an entry on a list. The

implementation of that functionality may iterate over the entire list, performing several validations before

finally updating the desired entry. The representation of this functionality in Alloy could miss these

validations as they are only a byproduct of the implementation and not a feature; however, they may still

be relevant for invariant violations.

In summary, Alloy will produce executions where there are assert breaches, that is, where there are

invariant violations, but it will only produce those that arise from domain design flaws, falling short of the

objectives of this work by not covering all invariant violations. At the same time, it also does not provide

any clause that could represent the distinction between eventual invariants and absolute invariants,

meaning that this would have to be represented some other way. During this study, no representation

was discovered that could solve this problem.

3.5.5 Takeaways

Harmony can discover invariant violations in a microservice application. However, it does not provide

syntax to distinguish eventual invariants from absolute invariants, and adding such clauses is impossible.

That means that even if an automatic way to translate an application’s source code to HarmonyLang

were available, the tool would still not meet all the invariant violation detection goals of this work.

MAD and Noctua are not capable of detecting invariant violations. Detecting anomalies in the data

that may lead to invariant violations in some cases. But it does not cover all the cases and requires a lot

of manual work. However, their components for automatically translating and modulating source code

were very insightful to achieve this work’s goals.

Alloy is capable of discovering domain inconsistencies. However, it is not fully capable of representing

the implementation of that domain and, as such, does not detect all possible invariant violations that may

occur in an application. Furthermore, it also does not provide clauses to represent eventual invariants

separately from absolute invariants.

As such, Harmony [10], MAD [16], Noctua [18], and Alloy [11] all lack some aspect to achieve the

invariant violation detection goals of this work. In summary, the requirements for the new tool and what

these tools have already accomplished are as follows.

• Verify Microservices Invariants: Alloy and Harmony do this, while MAD and Noctua do not.
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• Make A Complete Analysis: All these tools do it.

• Analyze Source Code: MAD and Noctua perform source code analysis

• Distinguishing Between Eventual and Absolute Invariants: None of the tools provide this feature,

nor a way to emulate it.

For these reasons, this work produced a new tool, DAVIAC, that achieved all of its goals, using some

of MAD and Noctuas’s concepts on automatic source code analysis. It does not rely on the user’s ability

to model their application to provide accurate results, but instead analyzes the source code directly.

Furthermore, taking inspiration from these tools, the new tool uses formal verification techniques to grant

a complete analysis of the application. Given that both MAD and Noctua use an internal representation

optimized for SMT solvers, this work will also follow that approach. This tool is presented in the next

chapter.
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DAVIAC
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This chapter presents a tool produced by this work for theautomatic detection of invariant violations

in business logic rich applications, using static analysis and without the use of code instrumentaliza-

tion, DAVIAC (from the Portuguese Deteção Automática de Violação de Invariantes em Aplicações de

Domı́nio Complexo). To detect possible invariant breaches in an application, the tool encodes the appli-

cation’s invariants and transactions in Satisfiability Modulo Theories (SMT) [24]. Using an SMT solver,

the tool explores the universe of possible functionality interleavings and arguments in search of combi-

nations that cause invariant violations. Upon discovery, the initial state, functionality interleaving, and

arguments are recorded, and all violations are presented at the end of the tool’s execution.
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4.1 Usage Overview

To use DAVIAC the user first provides a description of the application under test, specifically the descrip-

tion of the application’s entities, invariants, transactions, and functionalities. Details of these descriptions

are presented in Section 4.2.1. Then, to run the tool, the user must define the number of concurrent

functionalities to consider (fmax); naturally, the user is free to choose any number. However, an incre-

mental approach is recommended. In other words, it is recommended that the user begins with a fmax

value of one and resolves any discovered violation test. Once resolved, the user should run once again

with the same fmax value, ensuring no other violation remains and, if solved, moves to fmax of two

and so on until no violations are discovered. This approach is not without limitations, as is discussed in

Section 4.4.1.

4.2 Architecture

The architecture and execution flow of the DAVIAC tool are represented in Figure 4.1. The tool follows

this execution: first, the source code, the entities, and the information about the functionalities and trans-

actions are supplied to the tool, processed, and transformed into an internal representation, independent

of the specific technologies used in the provided specification.

This internal representation is compiled into an SMT formula and analyzed by an SMT solver to

detect invariant violations. Lastly, the discovered violations are presented to the user using several

visualization strategies. The following sections describe each DAVIAC module in detail.

DAVIAC Modules

Figure 4.1: DAVIAC Module Sequence

4.2.1 Input Parser

DAVIAC uses four parser classes: I) Entity Parser, II) Invariant Parser, III) Transaction Code Parser, and

IV) Functionality Parser.
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Listing 4.1: Sample entity description file

1 CREATE TABLE accounts (
2 id INTEGER,
3 balance INTEGER,
4 PRIMARY KEY (id)
5 );

4.2.1.A Entity Parser

The entity parser is responsible for translating the systems entities (including their attributes and respec-

tive types) into the internal representation used by the tool. The details of the internal representation are

presented in Section 4.2.2. Entities are usually represented in SQL or ORM) [25]. The tool can extract

attributes and their types using the database schemes used in both techniques. Currently, the DAVIAC

prototype only supports entities encoded as SQL, considering each table as an entity and its comprising

columns the entities’ attributes. Information on database schemas can be obtained from SQL database

creation commands, whether manually written by the programmer or automatically generated by the

ORM. The listing 4.1 presents an example of the entity representation currently supported by the tool.

It consists of an SQL file with the commands for the creation of a table containing data referring to the

entity accounts, made up of two attributes, id and balance, both of type integer. Currently, only basic

types are supported by the tool.

4.2.1.B Invariant Parser

Invariants capture the domain’s consistency rules, which, according to DDD, should be formalized for

each aggregate during its design. This formalization is supplied to the tool, including information related

to the type of each invariant (i.e. eventual or absolute).

For clarification, an eventual invariant is breached if it is not upheld in an application’s quiescent

state. This means that it can be breached during the execution of a functionality as long as it is restored

before the execution finishes. Conversely, absolute invariants must be upheld at all times during the

application’s execution.

The Invariant Parser is responsible for translating these high-level specifications to an internal repre-

sentation, connecting each invariant with the entities and functionalities involved.

Concretely, the current parser in the prototype takes a JSON file that contains the invariant descrip-

tion in an SQL-like syntax, as shown in the Listing 4.2. Extending the previously presented domain, the

file contains two invariants: an absolute invariant, indicating that at no point the balance attribute of any

accounts entity be less than 0, and an eventual invariant, indicating that any accounts entity for which

the id attribute is the same as that of a clients entity must have the same value for the name attribute on
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Listing 4.2: Sample Invariant description file

1 {
2 "Absolute Invariants": [ "accounts.balance >= 0" ],
3 "Eventual Invariants": [ "WHERE accounts.id == clients.id THEN
4 accounts.name == clients.name" ]
5 }

Listing 4.3: Invariant Grammar

1 Invariant := Where Conditions Then Conditions | conditions
2

3 Conditions := Condition AND Condition | Condition OR Condition | Condition
4

5 Condition := Entity.Attribute Operator Entity.Attribute
6 | Entity.Attribute Operator Literal
7

8 Operator := < | > | <= | >= | == | !=

both entities.

Currently, the prototype supports invariants that affect all entities of a type or subset of entities in-

dicated by a given condition, presented as a clause WHERE. The prototype supports logic changing of

conditions using conjunctions and disjunctions as well as the following operators: “<”, “>”, “<=”, “>=”,

“==” e “! =”. Concretely the Invariant Grammar can be defined as shown in Listing 4.3.

4.2.1.C Transaction Code Parser

The Transaction Code Parser is responsible for translating the entity accesses performed by the appli-

cation transactions into the internal representation. These accesses are represented as an execution

graph containing the operations performed over the accessed entities and the conditions required to

perform the said operations. This graph is translated to an internal representation that is agnostic to the

programming language used by the application, allowing the implementation of multiple parses, each

supporting a different input technology.

The current prototype includes a parser for Java code, which uses SQL statements to manipulate the

entities. This parser uses the Java Parser1 Library to build and traverse an Abstract Syntax Tree (AST),

which represents the transactions that make up the functionalities of the application under test. As it

traverses the tree, the parser generates the corresponding nodes in the internal representation, which

will store the types of the entities in the code, the arguments of each transaction, and all expressions

that are used in conditions or writes to entities. In the future, the tool can be expanded with parsers

1https://javaparser.org/
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Listing 4.4: Sample source code file (trimmed)

1 public void balancce(int id account) throws SQLException {
2 PreparedStatement stmt1 = connection.prepareStatement("SELECT balance" +
3 "FROM accounts WHERE id = ?");
4 stmt1.setInt(1, id account);
5 ResultSet rs = stmt1.executeQuery();
6 rs.next();
7 int balance = rs.getInt("balance");
8 }

Listing 4.5: Functionality description file sample

1 {
2 "Withdrawal": [
3 "balance",
4 "withdraw"
5 ],
6 "Update Name": [
7 "update clients",
8 "update accounts"
9 ]

10 }

that support code using popular frameworks, like Spring2, Django3, among others that are common

throughout the microservice world.

The Listing 4.4 presents the “balance” method of a simple banking application, written as Java code

in the style currently supported by DAVIAC.

4.2.1.D Functionality Parser

The Functionality parser is responsible for translating the sequences of transactions into functionalities.

A functionality corresponds to a sequence of transactions executed on one or more microservices and

by an order defined by the functionality. Information about these sequences allows the tool to narrow

its search universe, avoiding the exploration of interleavings of transactions that are impossible in the

application.The current prototype of DAVIAC only supports linear sequences of transactions, which were

enough to completely analyze our test case.

The Listing 4.5 presents an example of the information currently used by the prototype of the tool.

It receives a JSON file containing the functionalities and their transactions, presented as a list sorted

by sequence order. The sample only contains one functionality, Withdrawal, which is composed of two

transactions, balance and withdraw, executed in this order.

2https://spring.io/
3https://www.djangoproject.com/
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4.2.2 Internal Representation

The internal representation allows the decoupling of the generation of the SMT formula from the cod-

ification of the system under test, which makes the tool’s expansion easier. It stores the information

extracted by the input parsers required for the SMT formulation created by DAVIAC. Concretely, the in-

ternal representation is composed of three lists of objects: entities, invariants, and functionalities. The

entities hold information related to their attributes, specifically related to their type. The invariants define

the restrictions imposed on the possible coherent entity attribute states and are categorized as absolute

or eventual. The functionalities keep a sequence of transactions, where each transaction is represented

by an AST and captures the entities and attributes manipulated by itself. The AST representation is

generic in the sense that it is agnostic to the input programming language. Yet, it is capable of capturing

all its relevant aspects, namely the chaining of entity accesses and all branching and conditions relevant

to these accesses.

The internal representation also connects the invariants, the relevant attributes to maintaining their

correctness, and the transactions that interact with these attributes. These connections are essential to

the generation of the SMT formulation, allowing the search universe to be reduced to include only the

functionalities relevant to each invariant.

Figure 4.2 presents the internal representation of the sample banking application, highlighting the

connections pertaining to the absolute invariant ”+Accounts.balance ¿= 0+”. In this example, the abso-

lute invariant restricts the range of possible values for the attribute balance of the entity Accounts, being

this attribute manipulated by the transactions balance and withdraw of the functionality Withdrawal. In

this way, the tool is capable of identifying the relevant functionalities for a given invariant, restricting the

search of executions that breach the invariant only to executions that involve these transactions.

ent:Clients

ent:Accounts

func:Withdrawal

Figure 4.2: Simple Bank’s internal representation on DAVIAC (Update Name Functionality is omitted)
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4.2.3 Formula Generator

This component is responsible for compiling the internal representation to SMT by generating the formu-

las that the solver will verify to discover invariant violations. The tool explores, for each invariant, all the

possible functionality executions that interact over the relevant entities to the invariant. For that purpose,

the tool covers all the possible functionality interleavings, not only among different functionalities but also

among concurrent instances of the same functionality. In addition, for each interleaving, DAVIAC covers

all possible inputs for each transaction and possible initial application states. DAVIAC only explores

initial states which verify all of the application’s invariants. Using the information contained in the AST,

the tool can explore all branchings of accesses to entities that occur from conditional accesses within a

transaction.

Taking advantage of the fact that the search of violations for each invariant is independent, DAVIAC

generates separate formulas for each invariant. This separation allows not only the parallelization of the

violation search, making concurrent invocations of the solver possible, but it also reduces the complexity

of the SMT formulations, improving the search performance. The possibility of parallelizing the analysis

is discussed further in Section 6.2.

To limit the maximum search depth of the tool, the maximum number of concurrent functionality

instances in a given execution is a predetermined value fmax, defined in the tool configuration. For

a more complete analysis, multiple incremental values of fmax should be tested. More details on the

impact of the choice of this value are discussed in Section 4.4.1.

Lastly, DAVIAC’s current prototype assumes that all transactions are serializable, although this will

be expanded in the future, as discussed in Section 6.2.2.

Design details on the SMT formulas are covered in Section 4.3.

4.2.4 Analyzer

This component verifies the satisfiability of the formulas produced by the generator. DAVIAC uses Z34

as a solver due to its efficiency and popularity in the area. The analyzer is invoked for each generated

formula and, if a formula is satisfiable, the solution model is used to represent the violation. Otherwise,

it is guaranteed that the execution represented by that formula cannot lead to an invariant violation and,

as such, can be discarded. Concretely, approaching the problem as an SMT problem provides the

guarantee of total coverage of violations in the applications caused by the simultaneous execution of

up to fmax functionalities because DAVIAC analyzes all the executions for all the possible functionality

combinations of length up to fmax as SMT formulas which are mathematically proven satisfiable or not.

In case no violations are found for a certain fmax, it is guaranteed that no violations can occur when up

4https://github.com/Z3Prover/z3
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to fmax concurrent functionalities are executed in the application.

4.2.5 Invariant Violation Representation

This representation is generated by extracting information from the solution model created by the ana-

lyzer, and contains all the relevant data to identify and reproduce the discovered violation. Namely, it

contains which invariant was breached, the involved functionalities, the execution order, the application’s

initial state, and the inputs that caused the violation. The purpose of this representation is to separate

the SMT solver’s output from the result presented to the programmer. This allows the violation to be

reported in several ways and makes it possible for the programmer to create multiple visualizers for the

violation according to their use cases.

4.2.6 Visualizers

These components are responsible for meaningfully presenting the invariant violations to the program-

mer. DAVIAC is prepared to use several visualizers and encourages the user to augment it by imple-

menting visualizers that best suit their needs, such as a visualizer that automatically creates test cases

for their specific environment. The prototype is equipped with two visualizers, one that generates a

JSON description of the violation 4.2.6.A, and one that generates a graph of the violation 4.2.6.B.

4.2.6.A JSON Visualizer

This visualizer creates a JSON file containing a data flow description of the execution where the invariant

violation occurs. This description comprises a list of the states of the application’s entities, with the

functionalities that originate each state between them, along with their respective arguments. A concrete

example is Listing 4.6, where the interleaving of two instances of the Withdrawal functionality makes it

so that, in the last state, the account with id 0 has a negative balance, breaching the invariant.

Listing 4.6: JSON visualization of a Simple Bank Invariant violation

1 [

2 "Accounts.balance >= 0",

3 {

4 "Accounts": [

5 {

6 "balance": 15,

7 "id": 0

8 }
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9 ]

10 },

11 {

12 "Functionality": "Withdrawal",

13 "Functionality instance": 1,

14 "Transaction number": 1,

15 "Transaction name": "balance",

16 "Arguments": {

17 "id account": 0

18 }

19 },

20 {

21 "Accounts": [

22 {

23 "balance": 15,

24 "id": 0

25 }

26 ]

27 },

28 {

29 "Functionality": "Withdrawal",

30 "Functionality instance": 2,

31 "Transaction number": 1,

32 "Transaction name": "balance",

33 "Arguments": {

34 "id account": 0

35 }

36 },

37 {

38 "Accounts": [

39 {

40 "balance": 15,

41 "id": 0

42 }

43 ]

44 },

45 {

46 "Functionality": "Withdrawal",
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47 "Functionality instance": 1,

48 "Transaction number": 2,

49 "Transaction name": "withdraw",

50 "Arguments": {

51 "id account": 0,

52 "balance": "15",

53 "amount": "10"

54 }

55 },

56 {

57 "Accounts": [

58 {

59 "balance": 5,

60 "id": 0

61 }

62 ]

63 },

64 {

65 "Functionality": "Withdrawal",

66 "Functionality instance": 2,

67 "Transaction number": 2,

68 "Transaction name": "withdraw",

69 "Arguments": {

70 "id account": 0,

71 "balance": "15",

72 "amount": "15"

73 }

74 },

75 {

76 "Accounts": [

77 {

78 "balance": -10,

79 "id": 0

80 }

81 ]

82 }

83 ]
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4.2.6.B Graph Visualizer

This visualizer creates a graph that contains a description of the data flow of the execution where the

invariant violation occurs. This description comprises a sequence of entities states that compose the

application, with the functionalities that originate each state linked to them, along with their respective

arguments. The red arrows indicate the sequence of transactions, whereas the links between the initial

and final states of the transactions are annotated in black. Furthermore, any changes from one state

to the next are highlighted in yellow or red, and the latter also indicates that the changes in that state

caused a violation.

A concrete example is in Figure 4.3, where, as in the previous section, the interleaving of two in-

stances of the Withdrawal functionality makes it so that, in the last state, the account with id 0 has a

negative balance, breaching the invariant.
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Figure 4.3: Graph visualization of a Simple Bank Invariant violation

4.3 SMT Formula Specifics

The goal of the SMT formulas is to represent the execution of an interleaving of functionalities in order

to discover Invariant breaches. The execution of the application is represented as a series of chained

states, and moves from one state to the next due to the execution of transactions which manipulate

entities, upon which the Invariants are defined.
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DAVIAC generates separate SMT formulas for all possible functionality interleavings for each invari-

ant. However, much of the information contained in this formulas is the same, and is recycled from one

formula generation to the other in order to save resources.

The application starts from an initial state respecting all invariants, while the final state is the system

state after the execution of all transactions. Lastly, given that DAVIAC assumes transactions to be

serializable, each transaction has a start state and an end state.

4.3.1 Formula Components

Concretely, each formula contains: the encoding of the domain Entities into SMT sorts; the encoding of

the application’s Transactions into SMT clauses; the Initial State Constraints, i.e. all the invariants to be

upheld on the initial state; the Execution Order under test; the Invariant which is under test. From this

list, only the last two need to be generated again for each formula. The rest are generated once and

reused in all formulas.

In this section we now breakdown each component of the formula. The Execution Order, Initial

State Constraints and Invariants are all contained within the body of the Exist clause. The Exist clause

header, defines how many states and functionality parts should exist, while the Entities and Transactions

are introduced as a set of separate clauses. These separate clauses remain the same for the formula of

each execution while the Exists clause is adapted depending on the transaction/functionality types and

their execution order.

4.3.1.A Entities

Entities are modeled in the formula as SMT sorts. These sorts are then used in functions, as arguments,

to obtain the values of each entities’ attributes. Each function takes as an argument the state and entity

which the attribute is being accessed on and returns the value in the correct type. Furthermore, to

represent whether an entity exists in a state or not (in case it is created or deleted in the middle of an

execution), an additional function is created to represent its existence in a given state, receiving the

entity and state in question, and returning a boolean. Lastly the formula also needs to capture the

behavior of both unique and foreign attributes. Unique attributes are represented by clauses indicating

that in any state, if two entities of the same type have the same unique attribute, then they are the same

entity. Foreign attributes are represented by clauses stating that if in a state an entity holds a foreign

attribute, then the entity reponsible for the foreign attribute must also exist, similar to SQL foreign keys.

For example, in the bank application, the Accounts Entity is represented by the Accounts sort, the exists

function and the one function for each of its attributes, as shown in Listing 4.7. Listing 4.8 contains the

unique clause for the id attribute of the Accounts entity. Lastly, Listing 4.9 introduces a foreign clause
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for the name attribute of the Accounts entity. For the purpose of this example, assume that this attribute

is a foreign attribute linked to the name attribute of the Clients entity.

Listing 4.7: SMT formula representation of Simple Bank’s Accounts Entity

1 (declare-sort Accounts)

2

3 (declare-fun Accounts exists (State) Bool)

4

5 (declare-fun Accounts id (Accounts State) Int)

6 (declare-fun Accounts name (Accounts State) String)

7 (declare-fun Accounts balance (Accounts State) Int)

Listing 4.8: SMT formula representation of a unique atribute

1 (assert (forall ((accounts 1 Accounts) (accounts 2 Accounts) (state 1 State)

2 (state 2 State))

3 (=> (= (Accounts id accounts 1 state 1) (Accounts id accounts 2 state 2))

4 (= accounts 1 accounts 2)

5 )

6 ))

Listing 4.9: SMT formula representation of a foreign atribute

1 (assert (forall ((accounts Accounts) (state State))

2 (=>

3 (Accounts exists accounts state)

4 (exists ((clients Clients))

5 (and

6 (= (Accounts id accounts state) (Clients id clients state))

7 (Clients exists clients state)

8 )

9 )

10 )

11 ))
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4.3.1.B Transactions

Unlike entities, transactions are modeled as the sort Functionality Part and are identified by an id. Each

transaction in the application is assigned a distinct integer id by a function named after the transaction,

that takes no arguments and returns an Int. This id can be retrieved by the use of the get func part type

function which takes as an argument an instance of a Functionality Part and returns its Int id. The id is

used for matching the Functionality Parts to their transaction types.

Each Functionality Part (transaction) is part of a functionality, represented by the Functionality sort,

which can be obtained by using the get func function, which takes as an argument an instance of a

Functionality Part and returns an instance of Functionality, corresponding to its parent Functionality.

The arguments of each transaction, as well as any value that is propagated from one transaction to

the next is represented by a function named as <transaction name> <argument name> which receives

as an argument the Functionality Part instance and returns the argument value.

Lastly, the effect of executing the transaction is represented as an assert. These asserts enforce

conditions to all Functionality Part instances of the same type, translating the operations performed by

the transaction on the Entities values in terms of the Functionality Part ’s start and end states.

The start and end states can be obtained using the start state and start state functions, which take

as input the Functionality Part instance and return the corresponding State instance.

The representation of the balance transaction (introduced in Listing 4.4) in the formula can be seen

in Listing 4.10

Listing 4.10: SMT formula representation of Simple Bank’s balance transaction

1 (declare-fun balance () Int)

2 (declare-fun balance id account (Functionality Part) Int)

3 (declare-fun balance balance (Functionality Part) Int)

4

5 (assert (forall ((func part Functionality Part))

6 (=>

7 (= (get func part type func part) balance)

8 (exists ((start state State) (end state State))

9 (ite

10 (and

11 (= (start state func part) start state)

12 (= (end state func part) end state)

13 )

14 (forall ((clients Clients) (accounts Accounts))
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15 (and

16 (=>

17 (and

18 (Accounts exists accounts start state)

19 (= (Accounts id accounts start state)

20 (balance id account func part))

21 )

22 (= (Accounts balance accounts start state)

23 (balance balance func part))

24 )

25

26 (= (Accounts exists accounts start state)

27 (Accounts exists accounts end state))

28 (= (Accounts id accounts start state)

29 (Accounts id accounts end state))

30 (= (Accounts balance accounts start state)

31 (Accounts balance accounts end state))

32 (= (Accounts name accounts start state)

33 (Accounts name accounts end state))

34

35 (= (Clients exists clients start state)

36 (Clients exists clients end state))

37 (= (Clients id clients start state)

38 (Clients id clients end state))

39 (= (Clients address clients start state)

40 (Clients address clients end state))

41 (= (Clients name clients start state)

42 (Clients name clients end state))

43 )

44 )

45 false

46 )

47 )

48 )

49 ))
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4.3.1.C Execution Order

The execution order is what represents each execution in the SMT formula, as it introduces the chaining

of transactions, what type of transaction they are and which functionality they belong to.

First, it indicates the execution flow, setting the start and end states of each Functionality Part using

the start state and end state functions declared in the Exists clause. Then, it sets the type of each

Functionality Part using the get func part type function, according to the given interleaving the formula

is validating.

Finally, instances of Functionality Part that belong to the same functionality are also matched using

the get func function which receives an instance of Functionality Part and returns the corresponding

instance of Functionality.

To exemplify this, the Listing 4.11 contains part of the Exists clause, corresponding to an execution of

two instances of the Withdrawal functionality, where the execution order is: Withdrawal 1.1 (tx:balance),

Withdrawal 2.1 (tx:balance), Withdrawal 1.2 (tx:withdrawal), Withdrawal 2.2 (tx:withdrawal); like the

example on Figure 4.3.

Listing 4.11: SMT formula representation of Simple Bank’s Execution Order Example

1 ;; Exists Clause

2 (assert (exists ((state 0 State) (state 1 State) (state 2 State)

3 (state 3 State) (state 4 State) (func part 0 Functionality Part)

4 (func part 1 Functionality Part) (func part 2 Functionality Part)

5 (func part 3 Functionality Part))

6 (and

7 [...]

8

9 ;; Execution Order

10 (= (start state func part 0) state 0)

11 (= (end state func part 0) state 1)

12 (= (start state func part 1) state 1)

13 (= (end state func part 1) state 2)

14 (= (start state func part 2) state 2)

15 (= (end state func part 2) state 3)

16 (= (start state func part 3) state 3)

17 (= (end state func part 3) state 4)

18

19 (= (get func part type func part 0) balance)

20 (= (get func part type func part 1) balance)
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21 (= (get func part type func part 2) withdrawal)

22 (= (get func part type func part 3) withdrawal)

23

24 (= (get func func part 0) (get func func part 2))

25 (= (get func func part 1) (get func func part 3))

26

27 [...]

28 )

29 ))

4.3.1.D Initial State Constraints

Executions must start from a correct initial state (i.e. one which upholds all Invariants), otherwise one

could detect invariant breaches raised due to already invalid initial states. As such, the Exists clause

contains a clause for each invariant, indicating that it must be upheld in the initial state. The Simple

Bank’s invariants would be represented as shown in Listing 4.12.

Listing 4.12: SMT formula representation of Simple Bank’s Initial State Invariants

1 ;; Exists Clause

2 (assert (exists ((state 0 State) (state 1 State) (state 2 State)

3 (state 3 State) (state 4 State) (func part 0 Functionality Part)

4 (func part 1 Functionality Part) (func part 2 Functionality Part)

5 (func part 3 Functionality Part))

6 (and

7 [...]

8

9 ;; Initial State Invariants

10 (forall ((accounts Accounts) (clients Clients))

11 (=>

12 (= (Accounts id accounts state 0)

13 (Clients id clients state 0))

14 (= (Accounts name accounts state 0)

15 (Clients name clients state 0))

16 )

17 )

18 (forall ((accounts Accounts))

19 (>= (Accounts balance accounts state 0) 0)
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20 )

21

22 [...]

23 )

24 )

4.3.1.E Invariants

The last component of the SMT formula is the representation of the invariant under test. This is repre-

sented by another exist clause inside the main Exists clause. The internal clause makes use of all the

clauses defined so far to represent if there is a state X where the invariant under test is not verified.

To distinguish between eventual and absolute invariants, the state X must either be the final state or

any state (other than the initial), respectively. To illustrate this, the representation of both Simple Bank’s

invariants is presented, the eventual invariant in Listing 4.13 and the absolute in Listing 4.14.

Listing 4.13: SMT formula representation of Simple Bank’s Eventual Invariant

1 ;; Exists Clause

2 (assert (exists ((state 0 State) (state 1 State) (state 2 State)

3 (state 3 State) (state 4 State) (func part 0 Functionality Part)

4 (func part 1 Functionality Part) (func part 2 Functionality Part)

5 (func part 3 Functionality Part))

6 (and

7 [...]

8

9 ;; Enventual Invariant

10 (exists ((state State) (accounts Accounts) (clients Clients))

11 (and

12 (or

13 (= state state 4)

14 )

15

16 (Accounts Exists accounts state)

17 (= (Accounts id accounts state)

18 (Clients id clients state))

19 (not

20 (= (Accounts name accounts state)

21 (Clients name clients state))
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22 )

23 )

24 )

25 )

26 ))

Listing 4.14: SMT formula representation of Simple Bank’s Absolute Invariant

1 ;; Exists Clause

2 (exists ((state 0 State) (state 1 State) (state 2 State)

3 (state 3 State) (state 4 State) (func part 0 Functionality Part)

4 (func part 1 Functionality Part) (func part 2 Functionality Part)

5 (func part 3 Functionality Part))

6 (and

7 [...]

8

9 ;; Absolute Invariant

10 (exists ((state State) (accounts Accounts) (clients Clients))

11 (and

12 (or

13 (= state state 1)

14 (= state state 2)

15 (= state state 3)

16 (= state state 4)

17 )

18

19 (Accounts Exists accounts state)

20 (not

21 (>= (Accounts balance accounts state) 0)

22 )

23 )

24 )

25

26 [...]

27 )

28 )
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Listing 4.15: Tool limitation sample application

1 //Invariant: Accounts.balancce < 100
2

3 func1 T0(){
4 assert Accounts.balancce < 50
5 }
6

7 func1 T1(){
8 Accounts.balance += 10
9 }

4.4 Limitations

4.4.1 Choosing fmax

To ensure the analysis is finite, DAVIAC imposes a limit, fmax, to the number of concurrent functionalities

to be considered when analyzing an application. As previously stated, it is recommended that the user

takes an incremental approach when analyzing their application, that is to run the tool several times with

increasing fmax values. However, deciding the highest fmax value to consider is difficult because there

might be a gap between two fmax values that discover invariant violations. For example, there may be

violations for fmax of 1 and 2 but then only again for fmax 20.

Consider the simple application introduced in Listing 4.15 that has only one functionality func1, com-

posed of two transactions: T0, that verifies whether the attribute balance of an Accounts entity is less

than 50 and aborting the functionality in case the restriction does not hold. And another transaction T1

that increments the balance attribute by 10. Note that T1 only executes if the verification in T0 passes. In

this application, there is an invariant on the balance attribute, which states that the value of this attribute

is never greater than or equal to 100. In this example, with only one invocation of func1, in other words,

fmax of one, it is impossible to violate the invariant because only one increment 10 is performed to the

balance attribute and that increment only occurs in the case where the attribute had an initial value

lower than 50. However, in the case where, initially, the value of the balance attribute is 49, and there

are six instances of the functionality executing with fmax of six, there are several executions where all

the instances of T0 execute before all the instances of T1. In this case, all the T0 instances will validate

that the balance attribute is less than 50, and all six instances of T1 will execute, resulting in a combined

increase of 60 to the value of the balance attribute making it 109 and violating the invariant. For fmax

values up to five, no violations would be detected, and similar examples can be given with even larger

intervals of fmax values without violations, followed by values that yield violations.

By default, a maximum fmax value corresponding to the number of functionalities that affect each

invariant is recommended, so that the tool explores interleavings that involve at least one instance of
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each functionality that affects the invariant under analysis; however, when dealing with cases such as

the one presented above, this may not be sufficient. Another possible approach would be to choose

a fmax value higher than the number of concurrent functionalities that the deployed application allows.

However, such value is not easily determined in a microservice application due to its distributed nature.

An automatic approach to determine the required value would be most useful. This is discussed

further in Section 6.2.1

4.4.2 Duplicate Violations

During the search for invariant violations, the same violation can be found in several different executions.

However, the number of such occurrences is severely reduced by the use of the proposed incremental

analysis, as shown in Section 5.1. Currently, DAVIAC presents all the discovered executions that cause

violations, which can result in different versions of the same anomaly being presented to the user. This

limitation will be addressed in future work, as discussed in Section 6.2.1.
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This Chapter discusses the experiences performed to evaluate DAVIAC. The machine used in said

experiences has a Intel Core i7-9750H CPU @ 2.60GHz and 43GB of DDR4 memory.

5.1 Pertinence of the Results

To evaluate DAVIAC’s capacity to detect invariant violations in real applications and validate the use

of the proposed incremental analysis, we ran DAVIAC on the Quizzes Tutor1 application, whose mi-

croservice implementation is available in [21], which was translated to a syntax supported by DAVIAC.

This application is composed of four functionalities and four invariants (two absolute and two eventual),

where, on average, each invariant is accessed for writing or reading by three functionalities. Applying

the incremental analysis, the results are as presented in Table 5.1, while the results of directly running

each fmax value are presented in Table 5.2.

1https://quizzes-tutor.tecnico.ulisboa.pt/
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fmax #Violations Runtime #Violations Runtime Total Runtime
after Fix after Fix

1 1 0.557s 0 0.501s 1.058s
2 9 7.048s 0 8.626s 15.674s
3 0 3725.432s aprox 1h − − 3725.432s aprox 1h

Table 5.1: Quizzes Tutor incremental analysis results

fmax #Violations Runtime
1 1 0.684s
2 27 10.529s
3 464 3973.447s aprox 1h

Table 5.2: Quizzes Tutor non incremental analysis results

Looking at these results, two things become clear: one is that DAVIAC is indeed capable of ana-

lyzing real applications in useful time, the combined analysis time for fmax up to three is little over an

hour, using the incremental analysis (excluding the time to fix the invariant violations) and it discovers

relevant and real invariant violations. The other is that the use of incremental analysis removes 254

duplicate violations that the programmer would have to manually check if they opted to directly analyze

the application with fmax value of three.

The reduction of duplicates caused by the use of incremental analysis is expected, as violations

are detected using the minimal number of required functionalities, stopping the propagation of the bug

to executions with more functionalities. By doing so, the developer can discover the same violations

without having to analyze as many cases.

Even though Quizzes Tutor is a small application when compared to some of the microservice com-

positions that exist in the industry, its functionalities are of similar complexity, showing the capability of

DAVIAC handling real, complex applications. While larger applications may take more time to analyze

(as we will explore in the next section), we believe the parallelization of the analysis may significantly

reduce the analysis time complexity, as discussed in Section 6.2.1.

These results confirm DAVIAC’s ability to analyze real applications and detect invariant violations

within an acceptable time, and prove that the incremental analysis is effective in fighting the occurrence

of duplicate violations.

5.2 Tool Performance

Beyond the ability to detect invariant violations, analysis time is critical for a development aid tool such as

DAVIAC. As such, to evaluate the execution time scaling with the application size, a synthetic application

with a varying number of functionalities, varying functionality length, and varying number of invariants
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(a) Vs. Invariants (b) Vs. functionalities

Figure 5.1: Execution time in terms of number of Invariants and Functionalities

was analyzed with DAVIAC, and the analysis times were recorded. For the first three experiments,

the value of fmax is fixed at two, and the application has no violations reported for fmax value of one.

The initial synthetic application consists of one absolute invariant, which relates two attributes, and a

functionality composed of two transactions, each updating one of the invariant’s attributes.

First, the impact of the number of invariants on an application was measured. For that, the number

of invariants in the original application was increased while maintaining the number of functionalities that

interact with each invariant unchanged, as well as the number of transactions in each functionality (two).

The results of this experience are shown in figure 5.1(a), where the tool’s execution time is measured

in terms of the number of invariants, which increase up to sixty-four. The performance of the tool grows

linearly with the increasing number of invariants, as is to be expected given that the analysis of each

invariant is independent of the previous and given the number of functionalities that affect each invariant

is the same, the analysis time for each invariant is approximately the same. Given the possibility of

running the analysis for each invariant in parallel, the analysis time can be reduced linearly with the

increase of logical processors, as discussed in Section 6.2.

Second, the impact of the number of functionalities that interact with each invariant on performance

was measured. For that, we fix our application to our single original invariant and increase the number

of functionalities by introducing extra functionalities with the same behavior as that of the original, each

composed of two transactions. The results of this experience are shown in figure 5.1(b), where the tool’s

execution time is measured in terms of the number of functionalities, which increase up to sixty-four. As

expected, the execution time displays approximately exponential growth due to the increase of possible

functionality combinations and consequentially executions that DAVIAC has to cover.

Third, the impact of the length of the functionalities was measured. For that, we maintain a single
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(a) Vs. Functionality Length (b) Vs. fmax

Figure 5.2: Execution time in terms of Functionality Length and fmax

invariant and two functionalities, both affecting the same invariant, increasing the number of transactions

in each functionality. The results of this experience are shown in figure 5.2(a), where the tool’s execution

time is measured in terms of the length of the functionalities, which increase up to five. The execution

time displays approximately exponential growth due to increased possible functionality interleavings

and consequentially executions that DAVIAC has to cover. However, this growth is expected to be

less significant than the one introduced by increasing the number of functionalities, as the interleavings

between transactions must still respect the order of execution within a functionality, while functionalities

may be interleaved in any order. We will further explore this difference in growth later in the section.

We now evaluate the impact of the fmax value in the analysis time. For that, we use an application

with four functionalities and two transactions each, all affecting the same unique invariant. As expected

and as can be observed in Figure 5.2(b), the execution time shows an approximate factorial growth

due to the increasing number of functionalities and transactions involved in each execution, causing a

significant increase in the possible functionality interleavings that DAVIAC has to cover. This result has

a very direct impact on the analysis; it means that more extensive analyses, in other words, those that

cover higher fmax values, will see a significant increase in execution time for each analysis step as the

value of fmax increases.

Finally, we test whether the number of functionalities causes a greater increase in execution time

than their length while maintaining the number of transactions involved in each formula constant. Which

was not clear from the previous experiments given that the number of transactions involved in each

formula was not constant.

To do so, we use four applications, each composed by the same eight transactions but evenly dis-

tributed over a varying number of functionalities, increasing from 1 to 8 functionalities. Each application
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Figure 5.3: Execution time in terms of Number of Functionalities with constant Total Transaction Number

was analyzed using fmax values such that the analysis involve all functionalities in each formula. The

results are presented in Figure 5.3, and as expected, as the number of transactions are increasingly

distributed along more functionalities, the increased space for interleavings leads to an increase in time

complexity. This verifies that increasing the number of functionalities has a more significant time com-

plexity impact than increasing the number of transaction in each functionality.
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6
Conclusion and Future Work
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6.1 Conclusion

This thesis describes the design, implementation, and evaluation of DAVIAC, a tool for formal verification

of microservice applications that discovers all possible invariant violations. By mapping JAVA code to

SMT statements, the tool is capable of analyzing real applications and does so in useful time, presenting

graphic visualizations of the results. As far as we know, DAVIAC is the first tool capable of performing a

complete invariant analysis of a microsservice application directly from its source code.

6.2 Future Work

Future work for this project is divided into two categories: Addressing Current Limitations, in Sec-

tion 6.2.1, where proposed solutions for the current limitations of DAVIAC are addressed; and Expanding
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The Tool, in Section 6.2.2, where we address possible extensions to the tool.

6.2.1 Addressing Current Limitations

Currently, it is recognized that DAVIAC has four limitations that need to be addressed in future work:

picking the highest fmax value to consider, the inability to recognize different versions of the same

violation, the reduced set of allowed inputs, and the analysis time.

6.2.1.A Picking the Highest fmax to Consider

In order to guarantee termination of the SMT solver execution, the number of concurrent functionali-

ties in each formulation must be finite. However, this means that the user must decide on which fmax

value to stop the analysis which, as previously mentioned, may result in some invariant violations with

higher concurrent number of functionalities to remain undetected. As such, future studies on automated

approaches to analyze the content of transactions and look for clauses similar to those presented in

Section 4.4.1 in order to indicate the ideal fmax would be most advantageous. Another possible ap-

proach to this problem, albeit not ideal, could be to analyze many real-world microservice applications

and determine the average max fmax value for which invariant violations are still discovered and use

that value as a reference. Lastly, some related work [26,27] presents approaches to determine how cer-

tain transactions can potential violate some invariant or to prove that they cannot. Future work should

evaluate if such approaches could be applied to the Microservices Architecture, where the impact of the

whole functionality has to be considered, not that of a single transaction.

6.2.1.B Recognizing Different Versions of the Same Violation

Naturally, the same invariant violation can occur in different executions. However, DAVIAC lacks the

ability to recognize which invariant violation instances correspond to the same violation, which leads

to duplicate violations being counted as new violations. Currently, DAVIAC groups violations that are

discovered for the same set of invariant and functionalities. During the development of the tool, it was

observed that in most cases, the detected violations were in fact duplicates. However, some cases still

presented distinct violations for the same invariant and functionalities. To address this, a mechanism to

detect equivalent violations should be developed in future work. A good start for this mechanism would

be to group equivalent executions.

6.2.1.C Augmenting the Allowed Inputs

Currently, DAVIAC only supports the analysis of applications in which the entire code base is developed

in JAVA and makes direct use of SQL statements to manipulate its entities. However, most microservice
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applications are not developed exclusively using the JAVA programming language, and even those that

use JAVA tend to use ORM frameworks. To address this, future work on DAVIAC will add a parser for

JAVA code that supports the use of the Spring framework in JAVA. This expansion will allow further

testing of the tool on popular benchmark microservice applications such as the Train Ticket application 1

or other real-world code bases that are publicly available. Further work on this aspect should include

parsers for other popular programming languages and frameworks. This process is expected to be

simple and mechanical, not involving much, if any, engineering work. This is due to the existence of

the internal representation, which makes the input parsers independent from the analysis, and similar

parses have been done in related work [18].

6.2.1.D Parallelization of the Analysis

One of the concerns with using SMT solvers is the high temporal complexity of solver. To address this,

the formulas used by DAVIAC are as simple as possible, meaning that the solver execution time for each

formula is short. However, as the application grows in size, this leads to an increase in the number of

formulas to analyze. Given that several instances of the solver can be run concurrently, DAVIAC’s next

step should include implementing a pool of solver instances to analyze the formulas concurrently. This

would reduce the analysis time linearly with the increase of workers. Further improvements could be

gained by paralyzing the formula generation process, namely the process of computing all the possible

functionality executions.

6.2.2 Expanding the Tool

To make DAVIAC even more appealing to the microservice community, we believe two particular features

should be added to the tool. The first is the ability to support different isolation levels. The second is the

ability to support more complex microservice orchestrations than linear sequences.

6.2.2.A Support for Varying Isolation Levels

Presently, DAVIAC assumes all transaction executions are serializable; however, this is not industry

standard. In fact, due to efficiency concerns, developers often opt to execute some transactions with

weaker isolation levels, such as read committed. A useful feature for DAVIAC would be the ability to

indicate the desired isolation level for each transaction. This would allow the tool to evaluate the impact

of different transaction isolation levels on the number of invariant violations.

1https://github.com/FudanSELab/train-ticket
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6.2.2.B Support for Other Microservice Orchestrations

DAVIAC only supports functionalities that are a linear sequence of transactions. Corrective and branch-

ing transactions are not currently supported and are often used in microservice deployments. While this

feature is not critical for the tool to yield useful results, it would be a useful addition as it would make the

tool more complete.
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