
Domain-Driven Design Representation of Monolith
Candidate Decompositions Based on Entity Accesses

Miguel Mota Fernandes Levezinho

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. António Manuel Ferreira Rito da Silva

Examination Committee

Chairperson: Prof. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur
Supervisor: Prof. António Manuel Ferreira Rito da Silva

Member of the Committee: Prof. André Ferreira Ferrão Couto e Vasconcelos

May 2024

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the
requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

I would like to start by expressing my deepest thanks to my dissertation supervisor, Prof. António

Rito Silva, who provided an astonishing amount of availability through out the development of this thesis,

offering whenever necessary the knowledge and guidance to make this project possible. This gratitude

also extends to Prof. Olaf Zimmermann and to Stefan Kapferer, for their time, feedback, and extensive

knowledge on the area.

I would also like to thank my family and loved ones for their endless support and care in all parts of

my life. Without their encouragement I would not be where I am today.

Last but not least, I would like to thank my friends, with whom I grew as a person over all these

academic years.

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) through projects

UIDB/50021/2020 (INESC-ID) and PTDC/CCI-COM/2156/2021 (DACOMICO) [1].

i

Abstract

Microservice architectures have gained popularity as one of the preferred architectural styles to develop

large scale systems, replacing the monolith architectural approach. Similarly, strategic Domain-Driven

Design (DDD) gained traction as the preferred architectural design approach for the development of

microservices. However, DDD and its strategic patterns are open-ended by design, leading to a gap

between the concepts of DDD and the design of microservices. This gap is especially evident in mi-

gration tools that identify microservices from monoliths, where candidate decompositions into microser-

vices provide little in terms of DDD refactoring and visualization. This thesis proposes a solution to this

problem by extending the operational pipeline of a multi-strategy microservices identification tool, called

Mono2Micro, with a DDD modeling tool that provides a language, called Context Mapper DSL (CML),

for formalizing the most relevant DDD concepts. The extension maps the content of the candidate de-

compositions, which include clusters, entities, and functionalities, to CML constructs that represent DDD

concepts such as Bounded Context, Aggregate, Entity, and Service, among others. The results are vali-

dated with a case study by comparing the candidate decompositions resulting from a real-world monolith

application with and without CML translation.

Keywords

Monolith; Microservices; Architectural migration; Domain-Driven Design; Domain-Specific Language;

Integration;

iii

Resumo

Arquiteturas de microserviços ganharam popularidade como uma das abordagens favoritas no desen-

volvimento de sistemas de larga escala, substituindo o estilo monolı́tico. Da mesma forma, Domain-

Driven Design (DDD) estratégico ganhou tração como a ferramenta de desenho arquitetural mais versátil

para o desenvolvimento de microsserviços. No entanto, DDD e os seus padrões estratégicos não

estão completamente formalizados por design, o que leva a uma separação entre os conceitos de

DDD, e o desenho de microsserviços. Esta separação é especialmente evidente no contexto de fer-

ramentas de migração que identificam microserviços em monolı́tos, onde decomposições propostas

para microsserviços incluem pouco em termos de refatorização e visualização do ponto de vista de

DDD. Esta dissertação propõe uma solução para este problema, composta pela extensão da pipeline

operacional de uma ferramenta que contém múltiplas estratégias para a identifiação de microserviços,

chamada Mono2Micro, com uma ferramenta de modelação DDD que fornece uma linguagem, chamada

Context Mapper DSL (CML), que formaliza os padrões DDD mais relevantes. Esta extensão mapeia o

conteúdo de decomposições propostas, que inclui grupos, entidades e funcionalidades, para estruturas

CML que representam conceitos DDD, como Bounded Context, Aggregate, Entity, e Service, entre out-

ras. Os resultados são validados com um caso de estudo, comparando decomposições propostas de

uma aplicação monolı́tica real com e sem a tradução para CML.

Palavras Chave

Monolito; Microsserviços; Migração Arquitetural; Domain-Driven Design; Linguagem de Domı́nio Es-

pecı́fico; Integração;

v

Contents

1 Introduction 1

1.1 Context . 3

1.2 Problem . 4

1.3 Approach . 4

1.4 Contributions . 5

1.5 Document Structure . 5

2 Background 7

2.1 Domain-Driven Design . 9

2.1.1 Domain and Model . 9

2.1.2 Bounded Context and Context Map . 9

2.1.3 Bounded Context Relationships . 10

2.1.4 Entity, Value Object and Service . 10

2.1.5 Aggregate . 10

2.1.6 Domain Event . 11

2.2 Mono2Micro . 11

2.2.1 Collection Stage . 12

2.2.2 Decomposition Stage . 13

2.2.3 Quality Assessment Stage . 13

2.2.4 Visualization Stage . 14

2.2.5 Editing and Modeling Stage . 14

2.3 Context Mapper . 15

2.3.1 Discovery Library . 17

2.3.2 Architectural Refactorings . 17

2.3.3 Generators . 19

2.4 Tool Analysis . 19

3 Related Work 21

3.1 DDD Modeling Tools . 23

vii

3.2 Microservice Identification Tools . 24

4 Solution Architecture 25

4.1 Architectural Requirements . 27

4.2 Pipeline Extension . 29

4.2.1 Tool Integration . 29

4.2.2 DDD Mapping . 30

4.2.3 CML Representation and Interaction . 31

5 Implementation 35

5.1 Structure Collector . 37

5.1.1 Design . 37

5.1.2 Usage . 39

5.2 Mono2Micro Contract . 41

5.3 Translation to CML . 43

5.3.1 Entity Mapping . 43

5.3.2 Cluster Mapping . 43

5.3.3 Functionality Mapping . 45

5.4 Discovery Strategies . 47

6 Evaluation 51

6.1 Architectural Evaluation . 53

6.1.1 Modularity . 53

6.1.2 Extensibility . 54

6.1.3 Interoperability . 55

6.2 Case Study . 58

6.2.1 Decomposition Generation . 58

6.3 Discussion . 60

6.3.1 Results Validation . 61

7 Conclusion 65

7.1 Threats to Validity . 67

7.2 Future Work . 67

7.3 Conclusions . 69

Bibliography 71

viii

List of Figures

2.1 The five stages of the Mono2Micro operational pipeline [2]. Each stage can use the output

of former stages as input. 11

2.2 Example syntax of CML, containing the syntax for defining a Context Map (1-6); Bounded

Contexts (8-29, 31-32); Aggregates (9-21); Entities (10-15,17-20); and Services (24-27). 16

4.1 Mono2Micro pipeline extension to support CML representation of candidate decomposi-

tions. In blue, the relevant pipeline steps (top) and modules. In orange, the extension to

the pipeline, composed of the addition of new modules. 29

4.2 Generated Context Map diagram of the integration between Mono2Micro and Context

Mapper. PL stands for Published Language, ACL stands for Anti-Corruption Layer, and

CF stands for the Conformist pattern. U and D represent upstream and downstream

modules respectively. 30

5.1 Steps of the collector when retrieving structural information from source code. 37

5.2 Class diagram of the structure collector. The Spoon API is represented in orange, and

the implemented packages and classes are represented in yellow. 38

5.3 GUI for the structure collector. 39

5.4 Mono2Micro interface additions to support contract generation. 41

5.5 Mapping strategy of candidate decomposition concepts from Mono2Micro (M2M) to Domain-

Driven Design (DDD) and Context Mapper DSL (CML). 43

5.6 Generated CML example, representing an Aggregate that contains 2 Entities. Since

Topic referenced an Entity in its fields not present in the Aggregate, Question Reference

was generated locally to replace this reference. 45

5.7 Coordination construct in CML. The steps of the Coordination (4-6) represent ordered

calls to Service operations (10,20,11). 46

5.8 Opening a Coordination in Sketch Miner. 48

5.9 Class diagrams of the Discovery Library extensions. 48

ix

6.1 Mono2Micro decomposition visualization with fine-grained interaction between clusters.

Edges represent functionalities shared between clusters. 59

6.2 Snippet of the generated CML related to the functionality ConcludeQuiz. Triple dots (...)

represent omitted constructs for the purpose of the example. Service operation names

were also truncated. 63

6.3 Graph representation of the ConcludeQuiz functionality in Mono2Micro, and the clusters

that participate in it. Edge numbers represent the number of accessed entities in the

clusters they point to. 64

6.4 BPMN representation of the ConcludeQuiz Coordination in Context Mapper, generated

using BPMN Sketch Miner. The tasks in the diagram represent the steps of the Coor-

dination, and each participant (lane) represents the Bounded Context where the step is

defined. 64

x

List of Tables

2.1 Available editing operations in Mono2Micro . 15

2.2 Available refactoring operations in Context Mapper, as listed in [3] 18

4.1 Operations in Mono2Micro and Context Mapper. 33

6.1 Mono2MicroBoundedContextDiscoveryStrategy tests. 55

6.2 Mono2MicroelationshipDiscoveryStrategy tests. 56

6.3 Serialization tests of contract-based internal model. 56

6.4 SketchMinerCoordinationModelCreatorTest class tests. 56

6.5 SketchMinerGeneratorTest class tests. 56

6.6 SketchMinerLinkCreatorTest class tests. 57

6.7 ApplicationLayerValidationTest class tests. 57

6.8 Candidate decomposition measures for the QT case study. 58

6.9 Refactored functionalities for QT case study. CGI stands for Coarse-Grained Interaction,

and FGI stands for Fine-Grained Interactions. 59

6.10 Generated CML constructs. The number of services is represented by four values: No

heuristics used; Full Access Trace used; Ignore Access Types used; and Ignore Access

Order used. The number of entities is represented by two values: original entities and ref-

erence entities. The most accessed entity is based on external accesses to the Bounded

Context. 60

xi

xii

xiii

xiv

Listings

5.1 Example output for the structure collector. 40

5.2 Segment of the Mono2Micro contract. 42

5.3 Client code to translate a Mono2Micro contract in the Discovery Library. 49

xv

xvi

Acronyms

API Application Programming Interface

AST Abstract Syntax Tree

CML Context Mapper DSL

DL Discovery Library

DDD Domain-Driven Design

ORM Object-Relational Mapping

UML Unified Modeling Language

xvii

xviii

Glossary

SAGA

A design pattern for managing complex transactions between distributed services by breaking them

into smaller coordinated steps. 5, 68

xix

xx

1
Introduction

Contents

1.1 Context . 3

1.2 Problem . 4

1.3 Approach . 4

1.4 Contributions . 5

1.5 Document Structure . 5

1

2

1.1 Context

Microservice architectures have become one of the architectures of choice for emerging large enterprise

applications [4,5]. This adoption results from the advantages of partitioning a large system into several

independent services, which provide qualities such as:

• Strong boundaries between services, which minimize feature tangling and help maintain the sys-

tem in a modular structure.

• Independent agile development, testing and deployment of each service, which speeds up produc-

tion and contains failures inside the individual service where the failure occurred.

• Easier integration of new and diverse technologies, which encourages the refactoring of legacy

code and promotes service-tailored infrastructures, including different scalability options for each

service.

On the other hand, topics such as how to distribute the system and the consistency model might

stagger the design early on. The use of a monolith architecture, where the business logic of the system is

interconnected and focused in one place, has the advantage that it does not require early modularization.

The neat identification of modules occurs through refactorings, after initial development, which allows

one to explore the application domain first [6].

Therefore, it is common practice to start with a monolith and, as the system grows in size and

complexity, migrate to a more modular architectural approach, such as a modular monolith [7] or a mi-

croservice architecture. Since this architectural migration is not trivial [8], recent research has proposed

approaches and tools to help the migration process [9,10].

This has led to the development of Mono2Micro, a modular and extensible tool for the identification

of microservices in a monolith system [2]. Mono2Micro focuses on identifying transactional contexts

to inform its generated candidate decompositions [11]. To this end, it integrates several approaches,

such as static code analysis of monolith accesses to domain entities [12], dynamic analysis of monolith

execution logs [13], lexical analysis of abstract syntactic trees of monolith methods [14], and analysis

of the history of monolith development [15]. Furthermore, Mono2Micro supports a set of measures and

graph views to evaluate the quality of the generated candidate decompositions [16].

3

1.2 Problem

Mono2Micro and most tools that identify microservices on monolith systems accomplish their goals by

using a varied array of monolith data, coupling criteria, and clustering algorithms [9]. The result from this

process is a decomposition artifact that models a microservice architecture.

However, as with most research on the identification of microservices in monolith systems, Mono2Micro

does not allow software architects to further model generated candidate decompositions using Domain-

Driven Design (DDD) [17], which has shown good results on microservice design [18] and growing in-

terest in the industry [19]. Instead, Mono2Micro representations of candidate decompositions are based

on sequences of read and write accesses to the monolith domain entities, which are difficult to work with

when trying to redesign the original monolith system and its functionalities for a modular architecture.

If an architect wants to work on a generated decomposition from the perspective of DDD, they will

find that the decomposition elements are either not always easily mapped, leading to extra work, or not

complete enough to use the full set of tools DDD provides, specially its strategic patterns.

1.3 Approach

This thesis addresses this problem by providing a representation of the Mono2Micro candidate decom-

positions in terms of tactical and strategic DDD patterns, which is automatically generated. In this way,

software architects can work on candidate decompositions using DDD.

This is achieved by extending the operational pipeline of Mono2Micro with a connection to Context

Mapper, a DDD-focused modeling tool that provides a Domain-Specific Language, named Context Map-

per DSL (CML). CML supports the declarative description of DDD domain models, using DDD concepts

as building blocks of the language [20]. To integrate the tools, Context Mapper provides a peripheral

module named Discovery Library, which is designed to be a CML mapping utility [21]. With this goal in

mind, the following research questions are raised:

• RQ1: How can current approaches to the identification of microservices in monolith systems be

extended to include DDD.

• RQ2: Can the results of a candidate decomposition based on entity accesses be represented in

terms of DDD?

• RQ3: Can an architect benefit from the use of such an integrated tool when analyzing and working

on a candidate decomposition?

To answer these research questions, a real monolith system is used as a case study. The result-

ing candidate decompositions of this system were generated with and without the new DDD modeling

4

capabilities and then compared.

1.4 Contributions

In practice, the integration of both tools resulted in the following contributions:

• A new data collector on the side of Mono2Micro, focused on collecting source code structural

information. This information is lacking in the decomposition representations of the tool, but is

necessary for its DDD view since DDD is structural in nature;

• A new contract between Mono2Micro and Context Mapper, which serves as the means of com-

munication between tools by supplying information about Mono2Micro decompositions to Context

Mapper. This also includes an export functionality on the side of Mono2Micro;

• New Mono2Micro decomposition discovery strategies using the Discovery Library module of Con-

text Mapper, that convert decomposition data into valid CML code;

• New syntax rules in CML on the side of Context Mapper, labeled Coordination and Coordination

Steps, that augment the language and facilitate the representation of not only Mono2Micro de-

compositions, but also generic inter-Bounded Context processes like SAGAs. This addition also

includes diagram visualization of these rules in the BPMN format.

1.5 Document Structure

The remainder of this thesis is structured as follows. Chapter 2 gives some background on DDD, as

well as the Mono2Micro and Context Mapper tools. Chapter 3 goes over the current literature on DDD

application and microservice identification tools. Chapter 4 presents the solution to the aforementioned

research questions, followed by how this solution was implemented in Chapter 5. Chapter 6 provides

the validation of the solution with a case study application, and the results and answers to the research

questions are discussed. Finally, Chapter 7 concludes the thesis work.

5

6

2
Background

Contents

2.1 Domain-Driven Design . 9

2.2 Mono2Micro . 11

2.3 Context Mapper . 15

2.4 Tool Analysis . 19

7

8

To better inform the integration of Context Mapper into the Mono2Micro pipeline, this section gives

an overview of the architecture of both tools and analyses them. Before that, it also provides insight on

the basics of Domain-Driven Design (DDD), including the main concepts and patterns, so that its value

as a design philosophy is better understood.

2.1 Domain-Driven Design

Being introduced by Evans in his book [17] and expanded upon by Vernon in [22], Domain-Driven Design

(DDD) provides a way to design software with a focus on the business for which the software is being

developed. This top-down approach leverages the knowledge of domain experts, which know the inside-

outs of the business, to help software developers envision domain models that represent the business

domain.

The literature provides patterns that help organize and solve complex problems during the design

and development of software. Tactical design patterns like Entity, Value Object or Aggregate are applied

closer to implementation, and focus on defining meaningful objects that capture elements of the domain

and clustering them appropriately. Strategic design patterns, like Context Map and Bounded Context,

are applied at a higher level, and help partitioning the domain into more focused sub-domains, with

different models and development teams, so that software becomes easier to maintain and scale.

2.1.1 Domain and Model

When talking about DDD, the word domain refers to a subject area that exists in reality. Stakeholders

in a project are most of the time not interested in modeling the entirety of a business domain, only

selected aspects of it that are crucial for the application at hand. A domain can thus be broken down

into sub-domains, which are more easily tackled by modelers.

The process of modeling involves a continuous dialogue between business experts and developers,

and produces what DDD calls domain models. These are images of reality that abstract the aspects

relevant to what is being architectured, and underlie not only design and implementation, but also team

communication, since they are the source of common vocabulary to be used by all stakeholders in the

context of the model. This last point is formally defined in DDD as Ubiquitous Language.

2.1.2 Bounded Context and Context Map

Given these definitions for domain and model, a Bounded Context functions as a border that contains

a specific domain model, i.e. where the model is valid and applicable. As more Bounded Contexts are

9

identified, along with the relationships between them, a Context Map starts to be formed. A Context Map

serves as an overview of the project structure.

2.1.3 Bounded Context Relationships

Although Bounded Contexts define barriers, some level of relationship must exist between different

contexts in a Context Map. DDD defines several patterns to express how Bounded Contexts, and the

teams that develop them, should interact with each other.

A Shared Kernel indicates that a subset of the domain model, and its design and integration, is

shared between two Bounded Contexts, and their respective teams; A Customer/Supplier relationship

between two Bounded Contexts ensures that the upstream context, i.e the supplier, which has influence

over its peers, respects the needs of the downstream context, i.e. the customer; Conformist is used by

the downstream context when there is a high level of dependency with the upstream, but the upstream

does not intend to provide for the needs of the downstream. In this case, the downstream submissively

conforms to the model and language of the upstream; Anticorruption Layer serves as a translation layer

when the isolation and protection of the downstream model from the upstream model is paramount;

Open Host Service specifies and exposes, through a Published Language, a set of services that provide

access to a subsystem when the functionality of this subsystem is needed by many different downstream

contexts.

2.1.4 Entity, Value Object and Service

Looking now at tactical DDD applied inside of Bounded Contexts, classes and their objects can be

classified according to their internal behavior and intended purpose. Objects that have identity and a

life cycle that spans different states are called Entities. On the other hand, objects that only serve to

describe those states and are themselves stateless, transient and immutable are called Value Objects.

When classes contain actions or operations that do not fit in as an Entity or Value Object, they are called

Services, not to be confused with the concept of API service on the application layer of a system.

2.1.5 Aggregate

At the heart of tactical DDD is the concept of Aggregate. An Aggregate is a cluster of associated domain

objects that can be seen as a unit for the purposes of data changes. Each Aggregate defines a root

and a boundary: The boundary defines what is inside the Aggregate, which includes Entities and Value

Objects, among others; and the root is a specific Entity, called the Root Entity, which serves not only

as the Aggregate entry point, but also as the reference point outside the Aggregate boundaries. The

10

Aggregate must also remain consistent as a whole by following certain invariants, or consistency rules,

contained in it.

2.1.6 Domain Event

Domain Events are objects that capture state changes inside Aggregates, and relegate this changes to

the outside so that interested parts of the system, like other Aggregates or Bounded Contexts, can be

notified of the change and act accordingly.

2.2 Mono2Micro

Mono2Micro is a migration tool that provides candidate monolith decompositions composed of clus-

ters of domain classes. This work initially focused on the identification of microservices driven by the

identification of transactional contexts [11], but other strategies have been added [13–15].

Figure 2.1: The five stages of the Mono2Micro operational pipeline [2]. Each stage can use the output of former
stages as input.

Mono2Micro is designed as a pipeline [2], which is represented in Figure 2.1. The five stages of the

pipeline are:

1. Collection: Implements several static and dynamic code collection strategies to represent mono-

liths, including representations based on accesses to source code domain entities, functionality

logs, and commit history and authors.

2. Decomposition Generation: Partitions the monolith domain entities into clusters using a set of

similarity criteria, with a focus on producing good quality decompositions.

3. Quality Assessment : Compares the decompositions and calculates the measures that are used

to evaluate the generated decompositions. The measures include coupling, cohesion, size, and

complexity.

11

4. Visualization: Depicts decompositions in the form of graphs with multiple levels of detail. Nodes

and edges can represent different elements, depending on the chosen collection strategy.

5. Editing and Modeling: Provides an interface with operations to modify the automatically generated

decompositions so that the architect can refine them. Quality measures are also automatically

recalculated, if applicable.

The following sections describe the five stages of the tool in more detail.

2.2.1 Collection Stage

In Mono2Micro, the collection stage is represented by the External Collectors module. Unlike others,

this module is not fully integrated in the architecture due to the variety of collection strategies that can

be used when representing a monolith [2]. For example, while static analysis reads bare source code,

dynamic approaches might need extra steps in this stage like source code instrumentation. Leaving the

module decoupled adds flexibility for when new collection strategies need to be introduced with varying

technology.

As it is, Mono2Micro implements several collection strategies, both static and dynamic, to represent

monoliths: A call graph with the sequence of accesses to the source code domain entities (reads and

writes) [11, 12]; a dynamic tracer that logs accesses per functionality [13]; and a development history

collector based on the commit history and code authors [15].

One of the more prominent collectors Mono2Micro provides is the Spoon-Collector [12], which will be

relevant later on when the solution pipeline is discussed. This collector uses a static analysis framework,

called Spoon [23], to analyze source code and collect information on sequences of accesses to domain

entities per functionality, supporting source code written using two distinct Object-Relational Mapping

(ORM) frameworks: Fenix Framework and Spring Data JPA. The sequences of accesses to domain

entities are collected by capturing the call graph associated with each controller. A controller represents

a monolith functionality. From that point on, a depth first search is performed into each method call

within the controller, and every single line of code is analyzed for a possible domain entity access. In

broad terms, a read or write access is registered when either the fields of a domain entity are accessed,

directly or indirectly, or a method from a repository responsible for persisting a certain domain entity is

accessed.

The information collected is then compiled into a Representation artifact, to be used in the next

stage. This Representation is what connects the External Collectors module output to the rest of the

pipeline. It is also a point of extension in this stage for when new collectors are added.

12

2.2.2 Decomposition Stage

The decomposition stage is responsible for generating a decomposition of the monolith based on the

information collected from its representation, and according to a set of similarity measures relating the

different monolith elements within the representation. The process uses a hierarchical clustering algo-

rithm, with a focus on maximizing internal cluster cohesion, while minimizing coupling between clusters

and the complexity of distributed transactions in candidate decompositions [11].

This stage is broken down into two modules, Similarity Generator and Aggregation Algorithm. Like

other modules, these exist as extension points, so that different similarity measures and different algo-

rithms can be implemented in the tool, respectively. For example, to minimize distributed transactions,

the tool uses four similarity measures: Access similarity, read similarity, write similarity and sequence

similarity [12]. Other similarity measures are supported, such as commit similarity and authorship simi-

larity formulae when the representation also includes the development history [15]. The first 4 similarity

measures apply to pairs of domain entities, and are calculated based on the system functionalities, i.e.

number of accesses, reads, writes or sequential accesses done by functionalities on the entities.

When reaching this stage, the architect can specify before the decomposition the weights of several

metrics, described in the next paragraphs, and the number of resulting clusters.

2.2.3 Quality Assessment Stage

With the decomposition artifact, the Quality Assessment stage can compare the result with other decom-

positions and calculate the values of the metrics that are used to evaluate the generated decomposition.

While the Comparison Tool module handles the comparisons, the module responsible for qualifying

metrics is the Metrics Calculator. This module takes into account four metrics [11,12,15], whose values

range from 0 to 1: Complexity (the cost of implementing the migration); cohesion (between the domain

entities of a cluster); coupling (between clusters); and team size reduction (of authors of source code).

The complexity metric is defined, per functionality, as the cost of the functionality redesign when

undergoing the migration. Here, functionality redesign is in regards to the transactional context, i.e. the

change from an ACID context to a distributed one. The complexity depends on the number of intermedi-

ate states that other functionalities can introduce on the entities read by the functionality. The cohesion

metric measures, per cluster, the percentage of entities that are accessed by a given functionality. The

more entities that are accessed, the more cohesive the cluster is. The coupling metric measures, be-

tween two clusters, the percentage of entities that are exposed to one another. The team size reduction

metric uses the number of authors of the original monolith system to measure the level of reduction in

team sizes when clusters are formed, by giving an average of contributing authors per cluster.

13

2.2.4 Visualization Stage

After generating a decomposition, the next step for the system is to represent it in a way that enables

the architect to visualize it, from different perspectives if possible [2]. The Visualization stage accom-

plishes this by depicting the decomposition in the form of graphs, whose nodes and edges can represent

different elements depending on the view and level of detail the architect chooses.

Powered by the View module, the graphs rendered by the tool represent the different clusters from

the decomposition with different colors. In the broadest of views, the graph nodes can map to clusters,

and the edges between nodes can map to the dependencies between clusters. A more detailed view

can instead represent the nodes as entities, and clusters become defined as the group of nodes that

share the same color. In this case, edges play the crucial role of grouping together the same-colored

nodes in the graph view so that clusters are easily spotted. This is done by having the length of edges

between nodes represent their cophenetic distance, that is, how similar both nodes are to each other

based on similarity measures from a previous stage [2]. Entities from different clusters are less similar to

those in their cluster, so the length of the edges connecting two entities from different clusters becomes

bigger compared to when connecting two entities from the same cluster. Additionally, the thickness of

edges is also used to represent the number of functionalities between the two entities, or number of

shared authors [15].

These different measurements that make up the graph representation can be accessed when select-

ing a cluster, entity, or edge in the view, which displays information regarding that element. Besides the

metrics previously discussed and the values used for the graph representation, it is also here that one

can see which functionalities access the selected element, and what type of access it is (read/write).

2.2.5 Editing and Modeling Stage

The last stage of the pipeline is responsible for providing an interface for operations to modify the re-

sulting decomposition. The purpose of including this stage is so that the architect has the tools to refine

the decomposition into something closer to what they have envisioned. As such, operations will trigger

the recalculation of metrics and redraw of the view graphs each time they are applied [2]. The available

operations are listed in Table 2.1.

Beside these four operations, there is one additional operation that can be applied on candidate

decomposition: Redesign Functionalities Transaction Sequence.

This operation is implemented in the Refactorization Tool, which is an extension of Mono2Micro

implemented in its own container, with its own model and language.

What is particular about this operation is that it refactors the functionalities of a decomposition in a

way that minimizes their migration complexity. As addressed in [24, 25], this operation is the result of

14

Table 2.1: Available editing operations in Mono2Micro

Name Subject Description

OP-1: Merge Clusters Cluster Merges two clusters into a single cluster.

OP-2: Split Clusters Cluster Extract selected entities into a new cluster.

OP-3: Transfer Entities Entity Transfer selected entities from one cluster to
another selected cluster.

OP-4: Rename Clusters Cluster Change the name of a selected cluster.

the realization that, due to the monolithic architectural style, the structure of functionalities in monoliths

includes a lot of fine-grained interactions between objects, which can translate to an excess level of invo-

cations between microservices if not considered and addressed during the migration. The consequence

of not refactoring the functionalities structure when moving to microservices will be a higher complexity

value presented by the metrics, leading to a non-optimal and skewed view of the migration complexity.

Besides the operations that modify the decomposition, there are also operations that only change

the view of the graph, making it easier to evaluate the decomposition. These include: a way to show or

hide the contents of a cluster; a way to show only nodes and edges which neighbor the selected node;

and a way to unlock node positions so that the nodes can be moved and rearranged in the graph [2].

2.3 Context Mapper

Mono2Micro is a versatile microservice identification tool. However, its pipeline does not include any

way for an architect to model candidate decompositions using DDD after the Decomposition Generation

stage. More concretely, in the Visualization stage, graph representations of the decomposition include

cluster-based views of the decomposition domain entities, and functionality-based views that represent

its sequence of accesses to domain entities (”Graphs” in Figure 2.1). There are no DDD-based views

that show the model of each candidate microservice. Likewise, the Editing and Modeling stage does not

contain any operations related to the application of DDD. This is where Context Mapper comes in.

Context Mapper is a modeling framework that provides a DSL to design systems using DDD con-

cepts. This DSL, henceforth called Context Mapper DSL (CML), was developed to unify the many

patterns of DDD and their invariants in a concise language [20]. Figure 2.2 shows an example of the

CML syntax, with the declaration of a Context Map containing two Bounded Contexts.

Within Bounded Contexts, one can define Aggregates, which consist of a group of closely related

domain objects that form a unit for the purpose of data consistency. This consistency is enforced inside

the Aggregate by its root Entity, which represents the only entry point. For example, in Figure 2.2 the

15

Figure 2.2: Example syntax of CML, containing the syntax for defining a Context Map (1-6); Bounded Contexts
(8-29, 31-32); Aggregates (9-21); Entities (10-15,17-20); and Services (24-27).

Customers aggregate has the Customer entity as its root.

Although DDD focuses on the Domain Layer of systems, where the business logic is residing, a CML

Bounded Context can also represent the Application Layer, which manages services that call different

parts of the system, including processes in other layers. Using the Application keyword, Application

Services can be defined, among other constructs, and contain operations like createCustomer and

getCustomer as represented in Figure 2.2.

In addition to CML, Context Mapper also contains other utilities to facilitate modeling activities. These

include the following:

1. Discovery Library : Implements several strategies to reverse engineer source code artifacts and

represent them in CML [26].

2. Architectural Refactoring: Includes operations to refactor and transform CML code for easier mod-

eling.

16

3. Diagram Generators: Provide translators to visualize CML artifacts in diagram form, such as UML

representations of Bounded Contexts and BPMN maps of Aggregate states.

2.3.1 Discovery Library

The Discovery Library [21] is implemented as a reverse engineering module that transcribes the source

code to a CML representation that includes DDD constructs, like Bounded Contexts, Aggregates and

Entities [26].

The module is implemented to work with Spring Boot1 projects, using static analysis to find specific

Spring Boot annotations in source code, and mapping them to the relevant DDD concepts used in CML

as follows: Each @SpringBootApplication is mapped to a Bounded Context ; Spring REST endpoints

that use the @RequestMapping at the class level are mapped to Aggregates with one Root Entity ; the

methods in controllers that use @PutMapping, @GetMapping, etc are mapped to methods of the Root

Entity ; and parameters/return types from these controllers, which can include DTOs2, are mapped to

Value Objects.

A Context Map is also generated through the analysis of the relationships of the several Spring Boot

applications. This is implemented by interpreting the docker-compose file from Docker3, which lists the

different containers in the system and their dependencies. The result from this process is an initial CML

view of the source code, which can then be further refined either manually, or through the other available

modules, like Service Cutter or Architectural Refactorings.

2.3.2 Architectural Refactorings

The Architectural Refactorings module of Context Mapper is composed of 11 code refactoring operations

that can be applied to CML artifacts. These operations are split into two categories: structural refactor-

ings and relationship refactorings. Both categories of operations apply modifications to CML code at

the level of DDD: structural refactorings are able to re-structure the CML decomposition by modifying

Bounded Contexts and Aggregates; and relationship refactorings are able to modify relationship types

between Bounded Contexts in Context Maps. Table 2.2 lists the available refactoring operations in Con-

text Mapper and the results off applying them.

1https://spring.io/projects/spring-boot
2https://en.wikipedia.org/wiki/Data_transfer_object
3https://www.docker.com

17

https://spring.io/projects/spring-boot
https://en.wikipedia.org/wiki/Data_transfer_object
https://www.docker.com

Table 2.2: Available refactoring operations in Context Mapper, as listed in [3]

Name Subject Description

AR-1: Split Aggregate by
Entities

Aggregate Takes an aggregate which contains multiple entities and
produces one aggregate per entity.

AR-2: Split Bounded
Context by Features

Bounded Context Takes a bounded context with several aggregates and
groups them into different bounded contexts based on the
aggregates use case(s) and/or user stories (features).

AR-3: Split Bounded
Context by Owner

Bounded Context Takes a bounded context with several aggregates and
groups them into different bounded contexts based on the
aggregates owner (team).

AR-4: Extract Aggregates
by Volatility

Bounded Context Takes a bounded context with several aggregates and
extracts the ones with a given likelihood for change value
(volatility) into a different bounded context.

AR-5: Extract Aggregates
by Cohesion

Bounded Context Takes a bounded context with several aggregates and
extracts the ones chosen by the user into a different
bounded context.

AR-6: Merge Aggregates Aggregate Merges two aggregates within a bounded context into one
aggregate.

AR-7: Merge Bounded
Contexts

Bounded Context Merges two bounded contexts together. The result is one
new bounded context containing all the aggregates of the
two other bounded contexts.

AR-8: Extract Shared
Kernel

Shared Kernel
relationship

Extracts a new bounded context for the common model
parts of the Shared Kernel and establishes two
upstream-downstream relationship between the new and
existing Bounded Contexts.

AR-9: Suspend
Partnership

Partnership
relationship

Suspends a Partnership relationship and replaces it with
another structure how the two Bounded Context can
depend on each other. The AR provides three strategies
to suspend the partnership.

AR-10: Change Shared
Kernel to Partnership

Shared Kernel
relationship

Changes the type of a Shared Kernel relationship to a
Partnership relationship.

AR-11: Change
Partnership to Shared
Kernel

Partnership
relationship

Changes the type of a Partnership relationship to a
Shared Kernel relationship.

18

2.3.3 Generators

Context Mapper provides a Generators module, capable of converting CML code into a varied set of dia-

grams. Context Maps can be converted into context map diagrams, as presented in the DDD book [17].

Bounded Contexts can be translated into Unified Modeling Language (UML) diagrams by using Plan-

tUML4 generators, including class diagrams that contain all the Entities information represented as

classes, use case diagrams that convert Use Case and User Story definitions in CML, and state dia-

grams, from converting Aggregate state transitions if their are defined within the Aggregate. Processes

that are modeled like Event Flows in the application layer of Bounded Contexts can also be converted

and viewed with BPMN diagrams.

Another type of generator support are service contracts. This includes generating contracts in the

Microservice Domain Specific Language (MDSL), which is another DSL for specifying microservices,

and that can lead to direct code generation for Open API, gRPC, Jolie, GraphQL, and plain Java.

2.4 Tool Analysis

Each Mono2Micro stage is composed of one or more modules that output artifacts for the next stage in

the pipeline. The underlying model of the tool that makes up these modules and artifacts is also built

with several extension points, making it possible to support multiple decomposition strategies.

However, this pipeline does not include any way for an architect to model candidate decompositions

using DDD after the Decomposition Generation stage. More concretely, in the Visualization stage, graph

representations of the decomposition include cluster-based views of the decomposition domain entities,

and functionality-based views that represent its sequence of accesses to domain entities (”Graphs” in

Figure 2.1). There are no DDD-based views that show the model of each candidate microservice.

Likewise, the Editing and Modeling stage does not contain any operations related to the application of

DDD. This is where Context Mapper comes in.

The features of Context Mapper have many similarities with the features of Mono2Micro, which fa-

cilitate creating an integration strategy for both tools. First, the Discovery Library performs a similar

job as the Collectors of Mono2Micro, but more importantly, it provides a way to generate CML from its

input. Second, the Architectural Refactoring (AR) module supports the architect on the edition and mod-

eling of CML models, as the Editing and Modeling stage of Mono2Micro. However, AR operations are

built on DDD concepts. Finally, the Diagram Generators module can provide ways to view a candidate

decomposition from the perspective of DDD, also something missing in Mono2Micro, which presents

decompositions as a graph of clustered domain entities.

4https://plantuml.com

19

https://plantuml.com

20

3
Related Work

Contents

3.1 DDD Modeling Tools . 23

3.2 Microservice Identification Tools . 24

21

22

The previous chapter focused on analyzing both sides of the integration pipeline and the concepts

in Domain-Driven Design (DDD). In this section, the focus is on how DDD is more generally interpreted

and applied in other modeling activities from the industry, by analyzing the state of the art in: tools

that bridge the gap between DDD and other models from different development stages by using concept

translations; and microservice identification tools and their relation (or lack there of) to the DDD approach

to software architecture.

3.1 DDD Modeling Tools

Research on DDD modeling techniques is still sparse, especially in terms of modeling tools that leverage

tactic and strategic DDD patterns [19]. A study on how practitioners implement DDD concepts when

designing microservice APIs [27] shows that DDD, although practiced, is still poorly formulated and

open to interpretation in its applicability.

Most research takes advantage of already developed models and diagram standards in the industry

to convey DDD concepts. The use of annotated constructs is one of the most common approaches,

such as in [28], where an annotation-based DSL was developed to scope objects and attributes within

the concepts of DDD. Another implementation of this is [29], where a mapping from DDD to UML is

presented with the use of annotations inside UML class constructs. The author highlights that DDD itself

is not a formal modeling language and that its presentation in [17] already leverages UML constructs. He

proposes in his paper an enhanced mapping of DDD elements to UML by providing a new UML profile.

Aggregates, Entities and Value Objects are represented as annotated classes and Bounded Contexts as

annotated packages. Integrating DDD in a widely used modeling framework like UML has the advantage

of having a familiar diagram view of the systems modeled with DDD.

However, these approaches do not support all DDD patterns, especially strategic ones such as

Bounded Context relationships, which are useful when modeling microservices from candidate decom-

positions. Nonetheless, this shows that there is common ground for the mapping between DDD concepts

and other diagram based design tools like UML.

In [20] it is also noted how architecture description languages lack full support for all DDD patterns,

and thus defines a meta-model of relevant DDD concepts, applying it through a DSL that emphasizes

DDD strategic patterns, and leveraging the already existent Sculptor tool 1 for mapping tactical patterns.

Other research also explores the extensibility of DDD to better fit other stages of software develop-

ment. In [30] they define Domain Views, which enable different stakeholders to perceive the domain

model with their respective knowledge base. The Context Mapper tool also provides Domain Views

through the definition of types of Bounded Context and Context Maps [20].

1http://sculptorgenerator.org

23

http://sculptorgenerator.org

3.2 Microservice Identification Tools

There has been extensive and recent research on the identification of microservices in monolith sys-

tems [9]. These approaches provide a rich set of decomposition criteria and metrics to assess the

generated decompositions. In particular, Mono2Micro [2] is a modular and extensible tool for those cri-

teria and methods. However, these tools do not provide output that enables DDD-based editing and

modeling, they mostly provide decompositions that are service-oriented and not domain-oriented.

This does not mean DDD is not a good fit for microservice identification processes. In [31], the case

is made for why DDD is part of the solution to identify microservices. DDD and its patterns advocate par-

titioning of the domain and parallelization of development. This design philosophy makes DDD an ideal

tool to apply when working on a microservices architecture, since the distributed nature of microser-

vices is closely related to the modularity of DDD, especially the concept of Aggregate. Aggregates can

be used to cluster related domain objects, like entities and value objects, and are viewed as a whole

when thinking of partitions or transactional contexts. The way in which aggregates reference each other

also has similarities with the relationships between microservices. The fact that aggregates are refer-

enced elsewhere by the ID of their root entity instead of a direct reference to the said entity gives them

a loosely coupled property alike to microservices, since they are conceptual and physically separate.

The only tool that was found to support DDD-based editing and modeling is the Discovery Library

tool [20], which provides a way to reverse engineer domain models from Spring Boot2 service APIs using

discovery strategies. From the analysis of the code, it finds specific Spring Boot annotations and maps

them to the corresponding DDD concepts. It generates Bounded Contexts from @SpringBootApplication

annotated classes and Aggregates from @RequestMapping annotated classes.

2https://spring.io/projects/spring-boot

24

https://spring.io/projects/spring-boot

4
Solution Architecture

Contents

4.1 Architectural Requirements . 27

4.2 Pipeline Extension . 29

25

26

Before moving on to implementation details in the next chapter, it is important to first consider the

architecture of the solution pipeline and what it aims to solve, especially when the scope of the problem

is large enough to involve multiple tools and services developed by separate parties. With that in mind,

the first section of this chapter lays out the practical requirements the solution should have, based on

the overall objectives of this work and the analysis of both tools presented in Chapter 2. This is followed

by a view of the solution architecture that passes through devising an integration strategy between

Mono2Micro and Context Mapper, and includes a description of new modules, their reasoning, how they

integrate within the existing architecture of both tools, and how they communicate with each other.

4.1 Architectural Requirements

As stated beforehand, the main problem this thesis is trying to address is the lack of Domain-Driven

Design (DDD) representations in current microservices identification tools, which is relevant considering

that DDD is extensively used to design microservices from scratch. To solve this problem, the pipeline

of Mono2Micro was extended to incorporate a way to model with DDD using Context Mapper. This left a

more concrete problem to solve: What is the optimal way to integrate Context Mapper in the Mono2Micro

pipeline?

In Chapter 2 some points were already made about why these tools were chosen. From this analysis,

it was concluded that the tools share some similarities not only in some of their modules and processes,

but also in regards to their architectural properties.

At minimum, the solution for integrating both tools must share the same architectural properties

without reducing their value in each tool, so it was decided that these properties should serve as the

base requirements for every architectural decision made in the solution pipeline.

The following three architectural requirements were identified as priority requirements for the solution

architecture:

• Modularity, which deals with how divided a system is into logical modules that encapsulate spe-

cific self-contained functionality, improving separation of concerns and internal cohesion;

• Extensibility, which deals with how open for extension the features of a system are without putting

at risk their core structure, improving the addition of new functionality;

• Interoperability, which deals with how separate systems effectively communicate to share data,

and provide convenient data formats and interfaces to do so, improving system integration.

27

When looking at the practical context of integrating Mono2Micro and Context Mapper, these three

architectural requirements can be used to derive the following:

R1 The solution must not affect the internal cohesion of existing modules in both tools. This

means that modifications to existing modules should respect the module’s internal model and

objectives. An example of this requirement being broken would be to add new syntax to CML that

did not conform with its declarative DDD nature.

R2 The solution must keep modules of different tools loosely coupled. This means that each tool

should continue to work independently of the other, regardless if there exists a connection between

them. A CML syntax change in Context Mapper should not make Mono2Micro stop working, and

a model change in Mono2Micro should not make Context Mapper produce errors.

R3 When possible, the solution should leverage the extensible nature of the tools. This means

that before creating new modules or functionalities from scratch, existing extension points should

be considered if their purposes match the needs of the solution. For example, to add a new CML

diagram representation in the UML format, the available PlantUML abstractions that exist in the

Generators module of Context Mapper should be extended.

R4 The solution should be open for extension. Just like each tool, there should be room to extend

the different parts of the implemented solution for future developments when applicable. For ex-

ample, if a new source code collection strategy is added to Mono2Micro, this strategy should be

implemented with abstractions for extension points.

R5 The solution must define clear interfaces on both sides of the integration. This means that

there should be a concrete way to start data transferring on Mono2Micro, and start the translation

of this data in Context Mapper. Together with R1, these interfaces should be correctly placed within

each tool. If no interfaces are defined, there is no way for the tools to communicate effectively.

R6 The solution must define a format for the data that is transferred between tools. This

means there must exist some type of contract between Mono2Micro and Context Mapper. To-

gether with R2, this also means that this contract should be loose (simple key value pairs in a text

document) rather than strict (using REST or gRPC).

28

4.2 Pipeline Extension

Given these architectural requirements for the solution, the pipeline extension can be defined. Figure 4.1

shows this extension in terms of modules and their input and output artifacts. The top process bar

represents the relevant stages of the Mono2Micro pipeline, and the different colors separate existing

modules from new ones. The following sections, each corresponding to one of the research questions,

explain each module and artifact in more detail.

Figure 4.1: Mono2Micro pipeline extension to support CML representation of candidate decompositions. In blue,
the relevant pipeline steps (top) and modules. In orange, the extension to the pipeline, composed of
the addition of new modules.

4.2.1 Tool Integration

As stated before, Mono2Micro and Context Mapper share an emphasis on modularity and extensibility.

This makes it viable for Context Mapper to integrate into the Mono2Micro pipeline. However, it is still

important to respect the models of each tool to avoid compromising their internal cohesion. In practice,

this meant pursuing a low-coupling solution when connecting the tools. This solution was achieved by

leveraging on the Discovery Library (DL) module of Context Mapper.

As described in Chapter 2, the DL is a standalone tool capable of generating CML code. This is

done using discovery strategies that translate input into CML. Since the DL was designed to be highly

extensible, it also provides an API for the creation of these discovery strategies. Using this API, the

Mono2Micro pipeline was extended with a module that defines new discovery strategies capable of

translating candidate decompositions into CML. This module is represented by the CML Translator in

Figure 4.1.

The CML Translator has two stages. In the first, the internal representations of a decomposition in the

Mono2Micro model are used to create a JSON contract that contains all the information needed to map

29

a candidate decomposition in CML. This contract serves as input for the new discovery strategies and

adds a layer of decoupling between the Mono2Micro model and the DL model, ensuring that changes

made to the former do not inadvertently propagate to the latter. In the second stage, the new discovery

strategies translate the contract to an internal representation of CML in the DL model. This model is, in

turn, automatically converted to actual CML code.

Figure 4.2 shows how the DL is used in the integration process from the perspective of DDD. On the

right, the DL acts as an Anti-Corruption Layer (ACL), protecting its internal model from the Mono2Micro

model present in the inbound contract. On the left, the DL model aligns closely with the CML model to

facilitate the generation of CML, represented by the use of the Conformist pattern (CF). In both cases,

the DL is the downstream (D) context, meaning it is dependent on the upstream (U) contexts and their

Published Languages (PL). CML is the Published Language of the CML Core context, and the JSON

Contract is the Published Language of the Mono2Micro context.

Figure 4.2: Generated Context Map diagram of the integration between Mono2Micro and Context Mapper. PL
stands for Published Language, ACL stands for Anti-Corruption Layer, and CF stands for the Conformist
pattern. U and D represent upstream and downstream modules respectively.

4.2.2 DDD Mapping

For the new discovery strategies to perform the translation to CML, the concepts that form a candidate

decomposition must be mapped to the DDD concepts first. Since DDD and its concepts are structural in

nature [17], a candidate decomposition was also structurally defined, based on its internal representation

in Mono2Micro.

A candidate decomposition is composed of three key concepts: entities, which represent domain

classes in the monolith; clusters, which represent a set of entities grouped by similarity criteria through a

clustering algorithm; and functionalities, which represent sequences of read/write accesses to entities

in one or more clusters.

30

Mapping a candidate decomposition to DDD corresponds to mapping these three concepts and un-

derstanding what information is needed from Mono2Micro once a DDD concept is chosen. The particu-

lars of this mapping is discussed in the next chapter. In this section, only the architectural consequences

of implementing the mapping are explored.

When mapping a concept from Mono2Micro to a concept in CML, three possible scenarios can occur:

There is a direct mapping between concepts; there is an indirect mapping between concepts; and there

is no mapping between concepts.

The first case occurs when a concept in Mono2Micro is also considered and represented in CML.

An example of this is the Entity concept, which is present on both tools. It is a direct mapping because

both tools base their respective concept of Entity on the DDD definition of an Entity.

The second case occurs when a concept in Mono2Micro does not have a direct correspondent in

CML, but can still be adapted to an existing construct without losing context to preserve R1. An example

of this case is the cluster concept in Mono2Micro. CML does not define clusters, but the definition closely

matches the definition of an Aggregate, or a Bounded Context, so an indirect mapping could be possible.

The third case occurs when a concept in Mono2Micro does not match any available construct in CML,

or the match results in a noticeable distortion of the concept after translation. An example of this would

be the concept of functionality in Mono2Micro. There is no CML syntax for this term, and the available

candidates, such as Use Cases and Flows, both fundamentally change the concept of a Mono2Micro

functionality, as described in the next chapter.

The consequences of this last case involve the extension of the syntax of CML with new constructs

to map the incoming Mono2Micro concepts. Like other additions to the solution, this extension must

take into account the requirements of the previous section. The most relevant one here is R1: Any

additions made to the CML syntax must be in accordance with the internal model of the language. If this

is the case, the additions are implemented in Context Mapper and architects can use the new concept

along side the others with the same objectives. Otherwise, the additions must be implemented in a new

separate module that still extends CML, but allows representation of concepts that are exclusively from

the Mono2Micro model, using R2 and R3 as guidelines. In this last case, the architect is assumed to be

working with migrations from the Mono2Micro tool.

4.2.3 CML Representation and Interaction

When using Mono2Micro, architects now have the option to convert candidate decompositions to CML

using the translation strategy mentioned so far.

Like all CML discovery strategies, the initial representation of the candidate decomposition in CML

is not final. Further refactoring is expected. However, an effort was made to automatically create a

good starting point. The names of entities, clusters, and functionalities from the initial decomposition are

31

maintained and used for naming Entities, Aggregates, Bounded Contexts, and Coordinations in CML.

The conversion of the format of functionalities to Sagas also creates additional constructs, in the form

of Service operation calls, which correspond to Coordination steps in CML. These operations make up

the interface of each Bounded Context in CML, but there is no straightforward name that can be used

to name each operation. As such, several access-based naming heuristics were implemented in the

translation strategy. Names are formatted with the names of entities, which are prefixed by the type

of access and separated by a dash. For example, assuming that the sequence of accesses of the

Coordination in Figure 5.7 is: Tournament read for step 0; Quiz read/write and Question read/write for

step 1; and Tournament write for step 2. Each service call name would be generated as rTournament,

rwQuiz rwQuestion and wTournament, respectively. The architect can further customize the level of

detail they want the name to have regarding access information:

• Full Access Trace: Transcribe the entire ordered entity access sequence that happens within an

operation into the name of that operation;

• Ignore Access Types: Omit the type of access to entities in operation names, i.e. read/write,

replacing it with a ”ac” prefix;

• Ignore Access Order: Omit the type and order of access to entities in the operation names.

Each heuristic used reduces the number of generated operations, at the cost of entity access details.

In its most reduced form, each operation name shows which entities are accessed in that step. Access

information is also added to each translated entity in the form of a comment, showing metrics related to

the percentage of external and local accesses to the entity in comparison with the total external and local

accesses to the Bounded Context. In contrast to these heuristics, there is also the option to generate

generic names for operations that are not access-based. These names are composed of the name of

the functionality and the step number in the corresponding Coordination, meaning each step of each

Coordination will call a unique operation.

In terms of interaction, by opening this CML artifact in Context Mapper, architects have at their dis-

posal a DDD-based view of the candidate decomposition, and several features to further refine, refactor,

and visualize it. Table 4.1 shows some of these new features compared to what was previously available

in Mono2Micro. Architects can refactor decompositions at a more structural level in CML. They can also

use the additional DDD patterns present in CML to add to the initial translation, especially strategic ones,

to define, for example, what type of relationships exist between the translated Bounded Contexts.

32

Table 4.1: Operations in Mono2Micro and Context Mapper.

Mono2Micro Context Mapper

Expand / Collapse cluster views Merge / Split Bounded Contexts

Merge / Split clusters Merge / Split Aggregates

Transfer entities between clusters Design Bounded Context Relationships

Rename clusters Redesign Coordinations

Redesign functionalities Redesign Entities

Analyse access-based measures Generate UML / BPMN representations

33

34

5
Implementation

Contents

5.1 Structure Collector . 37

5.2 Mono2Micro Contract . 41

5.3 Translation to CML . 43

5.4 Discovery Strategies . 47

35

36

The previous chapter identified the modules and mappings required for the integration of Mono2Micro

with Context Mapper. In this chapter, the implementation of these modules and mappings is described

in detail.

5.1 Structure Collector

The objective of this new Mono2Micro collector is to recover static structural information on domain

entities from the monolith source code, so that richer entity constructs can be written in CML. Figure 5.1

shows the steps taken by the collector to perform this task.

Figure 5.1: Steps of the collector when retrieving structural information from source code.

To perform a static analysis, the collector uses the Spoon Framework tool [23]. Spoon is capable of

building an Abstract Syntax Tree (AST) of all source code elements, i.e types, methods, expressions,

etc. It also provides an Application Programming Interface (API) to not only reference each element, but

also perform analysis and transformations on them.

For the work at hand, the elements of interest are domain entity types in the source code. The defini-

tion of a domain entity follows the same definition of the DDD Entity pattern presented in Section 2.1.4:

Objects that have identity and a life cycle that spans different states. Finding these statically will depend

on the ORM the source code is using. In Spring Data JPA, a domain entity is a class annotated with the

@Entity annotation, while in Fenix Framework a domain entity is a class whose superclass name ends

in Base.

When a domain entity is found while processing the AST, this element is translated into the collector

internal model and then cached. After the AST has been completely traversed, the cached data is

serialized and printed on the tool output.

5.1.1 Design

In Figure 5.2, the collector design is shown in a class diagram. Classes in yellow are part of the collector

code, and classes in orange are part of the Spoon tool API. This image can also be broken down into

three main sections: on the left, a processing section; in the middle, a collection section; and on the

right, the domain model. Each section will be described in the following paragraphs, starting with the

processing section.

37

Figure 5.2: Class diagram of the structure collector. The Spoon API is represented in orange, and the implemented
packages and classes are represented in yellow.

To filter out domain entities in the AST, the Processor API of Spoon is used. This module provides

several utility classes to traverse the AST and act on its elements. Figure 5.2 shows the implementation

of this section in the packages spoon.processing and collector.processors.

The DomainEntityProcessor class extends the AbstractProcessor<E> class from the Spoon tool

to process elements E of the type CtClass. Here, CtClass corresponds to the Spoon tool representation

of class types in the source code. To check if a certain CtClass element is a domain entity, the method

isToBeProcessed is overridden, but kept abstract in the DomainEntityProcessor class. This is because

the way domain entities are represented in the source code depends on the source code ORM, so a

subclass was created for each of the ORMs supported. Each of these subclasses knows how to identify

domain entities in its respective ORM. In the case of this collector, the two implemented strategies are

for the Fenix Framework and Spring Data JPA.

To build and process the AST in the first place, the Launcher class from the Spoon API is used. This

Launcher receives the path to the source code and also instances of the Processor classes. When the

Launcher runs, it will build the AST, and then process it with each of these provided processors, which

are implementations of the Visitor design pattern. When a processor finds a domain entity, it performs

two tasks: process the element by converting it into an object from the domain; and cache it using a

Collector.

A Collector corresponds to a cache for the collected data. This data is represented with elements

from the domain. In the case of the DomainEntityCollector class, DomainEntity instances will be

stored. A DomainEntity is composed of a list of fields, represented by the Field class, and a superclass.

The data types of these in the source code are represented with the DataType class.

When the Launcher finishes processing the AST, the data collected is serialized into JSON using

the Jackson library. The objects are then printed into a JSON file by converting the objects themselves

into JSON object tags. The JSON output has the same structure as the active cached domain of the

38

collector.

The class responsible for coordinating all these steps is the CollectorLauncher class. It creates the

Launcher instance and builds the Collector and processors needed based on user input.

The decision on what type of processing to do depends on knowing two things: What is the ORM

being used in the source code; and what data collection strategy to use on the source. Considering

the R4 requirement, these are also the two extension points that the collector provides. Figure 5.2

shows these extension points by means of abstractions present in the design of the collector. In the

collector.processors package, new strategies can be implemented to identify domain entities in dif-

ferent ORMs. If structural data need to be collected outside the scope of domain entities, a new collector

strategy can also be implemented in the collector.collectors package, accompanied by a new pro-

cessor created for it. The collector.domain can also be expanded with other elements as needed,

such as Method or Controller, for example.

As mentioned in the previous chapter, a way to check if a domain entity references others by us-

ing them in methods would be based on collecting information on domain entity methods, including

analyzing the parameters, body, and return type of methods. With the current extension points, the

implementation of this task in the collector is facilitated.

5.1.2 Usage

Figure 5.3 shows the GUI presented to the user when the collector is running.

Figure 5.3: GUI for the structure collector.

Four fields must be provided by the user. With respect to the source code being analyzed, the name

of the project and the location of its sources are requested. Additionally, the ORM framework used in

the project should also be chosen from the available options. As of the writing of this thesis, the only

39

strategies implemented are for the Fenix Framework and Spring Data JPA. In the side of what data to

collect, the only strategy currently implemented is for domain entity data, which includes the names of

domain entities, their field names and types, and the type of their super-classes when they exist.

When the tool finishes collecting and serializing the relevant data, it outputs into a local data/collection

folder. An example of how this output looks can be seen in the code snippet represented in Listing 5.1.

This output can then be used as input in Mono2Micro to represent a code base, as described in the next

section.

Listing 5.1: Example output for the structure collector.

1 {
2 "entities" : [
3 {
4 "name" : "Question",
5 "fields" : [{
6 "name" : "id",
7 "type" : {
8 "name" : "Integer"
9 }

10 }, {
11 "name" : "title",
12 "type" : {
13 "name" : "String"
14 }
15 }, {
16 "name" : "creationDate",
17 "type" : {
18 "name" : "LocalDateTime"
19 }
20 }, {
21 "name" : "options",
22 "type" : {
23 "name" : "List",
24 "parameters" : [{
25 "name" : "Option"
26 }]
27 }
28 }],
29 "superclass" : null
30 }
31]
32 }

40

5.2 Mono2Micro Contract

In Mono2Micro, decompositions are represented and stored in the form of MongoDB1 documents. As

they are, these documents are not suitable for export directly into Context Mapper as they are prone to

change and thus could break the translation process in Context Mapper. They also contain unnecessary

data that is not used for mapping. To avoid these problems and further decouple the tools, the previous

chapter defined the characteristics of a contract between tools, independent of the structure of the

database document inside Mono2Micro, and containing only the necessary information to send.

Three sources of information were identified to generate the Mono2Micro contract. The first one is

the structural data, which includes information on entity field names, types and superclass if it exists.

The second one is the decomposition, which includes information on clusters and their entities. The third

is the refactored functionalities, which include information on the sequences of accesses to entities per

functionality. The first step to writing the contract is to retrieve these sources of information from within

Mono2Micro.

In the case of structural data, since it constitutes as output from an outer collector, it can be persisted

in Mono2Micro by using representations. A Representation is the result of a collector output and it is a

form of monolith representation valuable for the downstream pipeline stages. Extending this abstraction

with a StructureRepresentation is enough to ensure that the structural data is persisted when a user

inputs it into the tool. Figure 5.4(a) shows the screen to add this new StructureRepresentation, along

with information on accesses also needed for decomposition.

(a) Screen for adding a code base representation. (b) Button to export a de-
composition.

Figure 5.4: Mono2Micro interface additions to support contract generation.

The other two sources of information become available once a decomposition is generated, and

functionality refactoring is applied to it.

The next step is to compose and export this data in the form of a JSON contract. This step is initiated

1https://www.mongodb.com/docs/manual/

41

https://www.mongodb.com/docs/manual/

by the user when they decide to export a decomposition as seen in Figure 5.4(b).

The contract will be composed of three root elements, one for each of the information sources re-

spectively, entities, clusters and functionalities. The internal format for entities was already

shown in Listing 5.1. For clusters and functionalities, the format can be seen in Listing 5.2.

Listing 5.2: Segment of the Mono2Micro contract.

1 {
2 "name": "Quizzes Tutor",
3 "entities": [],
4 "clusters": [
5 {
6 "name": "Cluster1",
7 "elements": [
8 {"name": "Quiz"},
9 {"name": "QuizQuestion"},

10 {"name": "QuizAnswer"}
11 {"name": "Question"},
12 {"name": "QuestionOption"},
13]
14 }
15],
16 "functionalities: [
17 {
18 "name": "AnswerController.concludeQuiz",
19 "orchestrator": "Cluster1",
20 "steps": [
21 {
22 "cluster": "Cluster1"
23 "accesses": [
24 {
25 "entity": "QuizQuestion",
26 "type": "R"
27 },
28 {
29 "entity": "Quiz",
30 "type": "R"
31 },
32 {
33 "entity": "QuizAnswer",
34 "type": "RW"
35 }
36]
37 }
38]
39 }
40]
41 }

Taking into account the architectural requirements presented in the previous chapter, the functionality

for the generation of the contract was designed and implemented in an extensible way, by providing

abstractions for the contract definitions, ensuring that the current fields of the contract can be updated

and new fields can be created, if needed.

42

5.3 Translation to CML

This section presents the concept mappings between Mono2Micro and Context Mapper based on the

three mapping scenarios described in Section 4.2.2. Figure 5.5 shows a summary of the achieved

mappings, which are discussed in the next paragraphs.

Figure 5.5: Mapping strategy of candidate decomposition concepts from Mono2Micro (M2M) to DDD and CML.

5.3.1 Entity Mapping

The entities of a candidate decomposition, by definition, are already based on the concept of Entity

from DDD, which facilitates this mapping. The main difference is that Mono2Micro does not require the

internal structure of entities to generate candidate decompositions, while in DDD and CML the internal

state and relationships with other entities are relevant information to model an Entity.

To guarantee a more complete translation of candidate decomposition entities into CML, a new

source code collector module was added to the Mono2Micro Collection stage, aptly named Structure

Collector as shown in Figure 4.1. This module uses the Spoon Framework library [23] to analyze

and collect structural information from entities in the monolith domain, including entity names, entity

attributes, and relationships between entities, i.e. composition or inheritance.

5.3.2 Cluster Mapping

The main criteria that dictate how entities are clustered in the Mono2Micro Decomposition stage are

based on transactional similarity. This means entities commonly accessed together (i.e. read/write)

during the same transactions are more likely to belong in the same cluster. Similarly, a DDD Aggregate

43

is defined as a group of tightly coupled domain objects that can be seen as a unit for the purpose of data

changes during transactions, which makes it a good fit to represent a cluster.

However, the concept of cluster also fits the concept of a DDD Bounded Context. This is because

clusters define physical boundaries between microservices in a candidate decomposition and can be

evaluated based on coupling with other clusters in the same decomposition. This dual mapping of

the cluster concept could be achieved with different variations in the number of generated Bounded

Contexts and Aggregates, but in the end the chosen mapping was to take each cluster and generate a

corresponding Bounded Context and single Aggregate inside it, which in turn contains all the entities in

the cluster.

Compared to other mapping combinations, this solution has several advantages. To start with, it

satisfies all the given definitions of a cluster in Mono2Micro. In contrast, solutions such as mapping

each cluster to an Aggregate and adding all Aggregates to a single Bounded Context (which would

represent the whole decomposition) would remove the distributed nature on which the decomposition

is based on; and mapping each cluster to a single Bounded Context while defining one Aggregate per

Entity would completely ignore the transactional similarity that exists between entities on a cluster. This

does not mean that the end product is to have one Aggregate per Bounded Context. It is important to

remember that the generated CML code is by no means final and that further refactoring is expected

by the architect doing the modeling. Starting from this initial mapping that satisfies the definition of a

cluster, architects have the ability to further refine the model by partitioning the generated Aggregate of

each Bounded Context using not only entity access information, but also the new structural context of

entities that is not available in Mono2Micro.

On the subject of this structural context, there is also a caveat to take into account in this mapping.

Entities that share explicit structural relationships in the monolith code are likely to end up in different

clusters after decomposition. In the Mono2Micro graph representations, this is not a problem, since

structural information is neither collected nor used. However, in the structure-driven environment of

Context Mapper, it is necessary to ensure that the generated CML code does not contain Entities directly

referencing other Entities in outer Bounded Contexts.

This problem is solved in two ways. First, when an Entity references an outer Entity, i.e. from an

outer Bounded Context, the Context Map is updated with a relationship between Bounded Contexts

in the direction of the referenced Entity. Second, this reference is replaced with a reference to a newly

created local Entity, which represents the outer Entity locally. This is done so that the architect can better

visualize which references in Entities need to be refactored, facilitating the modeling work. Figure 5.6

shows an example of an outer reference being resolved. A comment is also automatically generated to

make these references stand out.

44

Figure 5.6: Generated CML example, representing an Aggregate that contains 2 Entities. Since Topic referenced
an Entity in its fields not present in the Aggregate, Question Reference was generated locally to re-
place this reference.

5.3.3 Functionality Mapping

Functionalities are more challenging to represent in DDD since each functionality is composed of a se-

quence of read and write accesses to entities, which is a concept very particular to Mono2Micro and

without apparent DDD equivalent concept. Additionally, the sequence of accesses that represents a

functionality can be quite extensive. The reason for this is the fine-grained nature of the accesses col-

lected from monolith code, due to their object-oriented design. This contrasts with the coarse-grained

communication that is expected between microservices to avoid distribution communication costs. With-

out resolving this granularity issue, it becomes very impractical to represent functionalities compactly.

Fortunately, Mono2Micro provides a Functionality Refactoring tool that rewrites the functionalities of

a candidate decomposition as Sagas [24,25]. The tool converts several fine-grained microservice invo-

cations into some coarse-grained ones, incorporating the Remote Façade pattern in the decomposition.

Refactoring the functionalities using this tool has an extreme positive effect on the granularity of the ac-

cess sequences, so the Functionality Refactoring module is represented in Figure 4.1 as a crucial step

in the extended pipeline.

Refactoring functionalities as Sagas also makes a possible map to DDD more adequate. Although

the Saga pattern is not a DDD pattern, in practice it can be used in conjunction with DDD to model dis-

tributed transactions [32]. Similarly, Context Mapper also supports constructs in addition to the original

DDD patterns that enrich the modeling capabilities of the tool. For the case of functionality representa-

tion, the definitions of Use Case and Event Flows are the two most obvious constructs to use. However,

they have some drawbacks. Use Case definitions would imply reverse engineering of the functionalities

to a previous stage of the development cycle, losing in the process the information of the entity accesses

and their Saga format. Event Flows seem more plausible to model Sagas, but they would lock the archi-

tect into using Event-Driven Design for all functionalities, which should be left for the architect to decide

later case by case instead of enforcing it through the automatic translation to CML.

45

To supply a construct for the representation of Sagas meeting the current requirements, an expansion

to the CML syntax was proposed and implemented in Context Mapper, which allows for the definition

of distributed workflows without specifying the communication model of the process. For the current

functionality mapping, this new concept can be used to simply state the steps of the Saga, without any

implementing technology commitments.

This construct is called Coordination, and is based on the coordination property of Sagas that speci-

fies whether the steps of a Saga are orchestrated or choreographed [32], and nothing more.

In CML, Coordinations can be used to coordinate defined Service operations, the same way a Saga

coordinates steps. Figure 5.7 shows an example of the syntax in CML. Functionalities that do not

access other Bounded Contexts are simply mapped to a Service, also defined in the Application layer of

the Bounded Context where they are defined.

Figure 5.7: Coordination construct in CML. The steps of the Coordination (4-6) represent ordered calls to Service
operations (10,20,11).

To adhere to R1, it is important to place this construct in the correct place inside the CML syntax.

Since Coordinations define a process, and assume communication between bounded contexts, placing

this construct inside the domain goes against DDD, and thus breaks the cohesion of the language.

Instead, Coordinations are defined within the Application layer of a Bounded Context. Other process-

defining constructs such as Flows and Events are also defined within this construct, so it adheres to R1.

An additional implication of this placement is that the operations mentioned within Coordinations must

also be defined inside Applications, by using the available Service constructs.

46

Alongside the keyword, a Coordination must also have a name that refers to the process or func-

tionality it represents. Regarding the body, a Coordination is composed of a set of ordered steps,

where each step represents an invocation to a service operation in a bounded context. These steps

are referred to in the syntax as CoordinationSteps, and are composed of references to operations de-

fined within Services. These Services can belong to the current bounded context, or other ones. To

reference a Service operation, a coordination step is divided into three segments, separated by the ::

symbol: The name of the Bounded Context where the operation is defined; the name of the application

Service where the operation is defined; and the name of the operation.

Since a CoordinationStep is composed of references to other constructs, the following verification

is done to avoid ambiguity when pinpointing the operation referenced in the step:

• All references within a step must refer to existing rules in the written CML code;

• A reference to an outer bounded context must be reachable by Context Map relationships;

• A reference to a service must originate from an Application Layer Service;

• A reference to an operation should be unique within the service.

These validation rules were enforced by extending the available validation package present in Con-

text Mapper with new syntax checks for Coordinations.

In addition to this, the Generators module of Context Mapper was also extended to provide the new

Coordination rule with a mapping to BPMN, that can be opened and edited using Sketch Miner2 in a

browser if the architect deems it necessary. This is achieved by leveraging the abstractions of the Sketch

Miner tool that are present in Context Mapper.

By implementing this functionality in Context Mapper, every written Coordination can now be open

in Sketch Miner. Figure 5.8 shows the steps required to do this.

5.4 Discovery Strategies

Some points were already made in Section 4.2.1 in regards to how the Discovery Library (DL) uses

an intermediate model to facilitate translations to CML. This means that the implementation of new

discovery strategies should focus on translating the Mono2Micro contract to the internal DL model.

To do so, the module provides a set of extension points for translating to this internal model. These

are implemented as class abstractions and can be used to create new discovery strategies.

Two new Mono2Micro discovery strategies were implemented to realize the mappings defined in the

previous section: One to discover Bounded Contexts and everything contained in them; and one to

2https://www.bpmn-sketch-miner.ai

47

https://www.bpmn-sketch-miner.ai

(a) Tool-tip in the Eclipse IDE. (b) BPMN representation of a Coordination.

Figure 5.8: Opening a Coordination in Sketch Miner.

discover relationships between Bounded Contexts. Figure 5.9(a) shows these two strategies in yellow,

while the rest of the class diagram in orange represents the available API of the DL.

(a) Discovery Library strategy extension. (b) Discovery Library model ex-
tension.

Figure 5.9: Class diagrams of the Discovery Library extensions.

The new strategies receive the contract as input. The elements on the contract are then converted

into Java objects so that they can be more easily mapped to the internal DL model.

Figure 5.9(b) shows the relevant domain classes that make up this model. Like before, yellow

classes represent extensions added to represent all the new mappings, and orange classes represent

the already existing model. Since this model conforms to CML, all additions also directly represent CML

48

constructs, respecting R1.

It is also worth noting that, before the extension, the CML constructs represented in the internal

model were the minimum necessary to support the already existing discovery strategies. For example,

the Application construct had no prior representation in the internal model because up to now no

discovery strategy provided a mapping of it.

The Mono2MicroBoundedContextDiscoveryStrategy works in three stages. It starts by discov-

ering BoundedContexts from clusters, also adding to each BoundedContext an Aggregate and an

Application. When creating aggregates, it also discovers and creates DomainObjects from the entities

of each cluster.

Once all BoundedContexts and DomainObjects have been created, the strategy enters stage two and

starts to discover the Coordinations of each BoundedContext based on the contract functionalities.

Each functionality maps to a Coordination, and each of the steps of a functionality maps to a

CoordinationStep. Since a CoordinationStep references a BoundedContext, Service and Method, all

these need to be previously created.

The final step is to update the created DomainObjects with the structural information of the contract

entities tag. If during this process a type reference to a DomainObject that is in another Bounded

Context is found, the strategy creates a new DomainObject in the current Bounded Context, and re-

places the outer type reference with a reference to this new DomainObject. At this stage, a comment is

also generated informing the architect of this translation decision.

The Mono2MicroRelationshipDiscoveryStrategy is much simpler in that it only serves the purpose

of populating the relationships between the found BoundedContext constructs. This is done by looking at

the functionalities tag in the contract, and finding references to other BoundedContexts in the steps

of each functionality. These references are then translated to a Relationship construct.

After the mappings to the internal model are complete, the ContextMapperSerializer will call the

ContextMapToCMLConverter class, where all the functionality for translating the DL model to CML model

is placed. This will result in the output of valid CML code, that can then make use of the rest of the

features available in Context Mapper. Listing 5.3 shows the client code that needs to be run to translate

the contract to CML.

Listing 5.3: Client code to translate a Mono2Micro contract in the Discovery Library.
1 ContextMapDiscoverer discoverer = new ContextMapDiscoverer()
2 .usingBoundedContextDiscoveryStrategies(
3 new Mono2MicroBoundedContextDiscoveryStrategy(new File(sourcesPath), namingMode)
4).usingRelationshipDiscoveryStrategies(
5 new Mono2MicroRelationshipDiscoveryStrategy(new File(sourcesPath))
6);
7
8 ContextMap contextmap = discoverer.discoverContextMap();

It is also in these strategies that the naming heuristics are implemented. Each heuristic is imple-

mented as a strategy class. The Strategy pattern was used to provide abstraction and extensibility to

49

the code for the development of new naming heuristics.

50

6
Evaluation

Contents

6.1 Architectural Evaluation . 53

6.2 Case Study . 58

6.3 Discussion . 60

51

52

The evaluation of the work is divided into two sections. In the first section, an evaluation based on the

defined architectural requirements is performed, which includes measuring the modularity, extensibility,

and interoperability of the implemented solution pipeline. In the second section, the solution is applied

to a case study, and the results are discussed.

6.1 Architectural Evaluation

6.1.1 Modularity

In the context of the solution pipeline, modularity will be measured by looking at the level of cohesion

inside each module and the level of coupling between modules. This corresponds to evaluating the

presence of R1 and R2 in the solution, respectively.

Starting with module cohesion, this measure dictates whether a module is compromised or not by

additions that do not conform to its responsibility.

Unlike other modules, the structure collector is built from scratch and has the sole purpose of collect-

ing structural information on source code domain entities. This means that the internal model was also

defined from the ground up, so the only clash the model can have is with its dependent tool, the Spoon

Framework. This is also not the case, since the internal model of the structure collector was designed

taking into account that it would extend the functionalities of the Spoon Framework.

The contract generation module in Mono2Micro is made up of the new Representation for struc-

tural information, and a new feature in the decomposition API to export a decomposition. The new

Representation is implemented with the same rules and conventions as the other existing Representations,

so it keeps its own responsibility while confirming with the more generic responsibility associated with

the Representation concept. As for the export decomposition feature, it was placed in the context of a

decomposition, according to the pipeline separation of responsibilities. Only parsing utilities were placed

in their own utility class as to not muddy the internal cohesion of the decomposition.

Next, in the Discovery Library, two new discovery strategies were implemented. Both these strategies

also follow the module responsibilities by translating the Mono2Micro contract to the internal model, and

then calling the provided API to serialize the model into CML.

Finally, in regards to the CML extension for the Coordination construct, cohesion was also pre-

served. In addition to following implementation conventions, the concept itself also fits the internal

model of CML, since it can represent generic processes in the application layer.

Moving on to coupling, the evaluation here will be based on understanding the level of coupling each

module has to outer modules, be it modules from the pipeline or other dependencies.

The structure collector, like the other collectors in the Collection Stage of Mono2Micro, is decoupled

from the main processes of the tool due to the variety of collection strategies that exist. To join the

53

collectors with Mono2Micro, each collector has a contract in the form of a Representation class in the

main tool. This is a coupling point, but one that is very loose and also necessary. More particularly to

the structure collector, this module has a very high coupling with the Spoon framework it uses, but since

the Spoon model is part of the collectors model, this coupling is healthy and shows that internally the

module has cohesion.

Since Representations were used to implement the contractor generator, extra coupling was intro-

duced in this section of the pipeline. However, the export functionality needs to access three separate

data sources to build the contract, with the possibility of adding more in the future. This makes the

functionality more volatile, since a change in the data model has a higher likelihood of breaking the

data source retrieval and translation to the contract. Fortunately, the contract ensures that this volatility,

which had already been mentioned as a characteristic of Mono2Micro, stays in Mono2Micro and does

not propagate to Context Mapper.

The strategies implemented in the Discovery Library are only coupled to the contract format that

they are responsible for translating. This is an example of the Strategy Design Pattern being used to

decouple the code. Each strategy has its own translation code.

6.1.2 Extensibility

Extensibility will be measured on the basis of the ability to extend the implemented modules with new

functionality and how well they adhere to the Open-Closed Principle. R3 and R4 are within the scope of

this evaluation.

Starting with the Structure Collector, this module design takes into account future plans to support

the collection of new types of structural information from the monolith. With that in mind, and looking

back at Figure 5.2, two main extension points were provided in the form of abstractions.

The first is related to the Processor strategies. If a new type of ORM needs to be supported in

the future, one can simply subclass the existing DomainEntityProcessor abstract class and define the

ORM specific concept mapping.

The second extension point refers to the collection strategy. As it stands, the only implemented

collection strategy uses only domain entity classes to inform its collection. However, if the information is

not strictly in domain entity classes, the tool design supports the addition of new collector strategies by

sub-classing the AbstractCollector and the AbstractProcessor classes.

These extensions also adhere with the Open-Closed Principle, since the explained strategies are

open for extension, but closed for modification.

Moving on to contract generation, this module used the Representation abstraction to extend the

existing tool, maintaining the extensibility of this portion of the code. In terms of contract generation, the

fact that the contract is loose makes it easier for extensions to be added if needed, as long as they do

54

Table 6.1: Mono2MicroBoundedContextDiscoveryStrategy tests.

Test Name Outcome Coverage

canDiscoverBoundedContextsFromClusters Success 100%

canDiscoverAggregatesFromClusters Success 100%

canDiscoverDomainObjectsFromClusterElements Success 100%

canDiscoverCoordinations Success 100%

emptyResultIfM2MContractHasInvalidFormat Success 100%

not break interoperability between tools.

6.1.3 Interoperability

To measure interoperability, several integration tests were written for the various sections of the pipeline

that require inter-module communication. This includes the translation of the Mono2Micro contract into

CML and the translation of CML into other diagram formats. The results of this evaluation will show how

the solution pipeline followed R5 and R6.

Starting with the communication between Mono2Micro and Context Mapper, this communication

is defined by the JSON contract that exists between tools. This contract is interpreted in the DL of

Context Mapper, so several integration tests were written in this module to evaluate how well both tools

inter-operate, i.e. the capacity of the discovery strategies to understand the incoming information from

Mono2Micro.

Based on the internal test structure of the DL, the tests were divided into the following groups: dis-

covery tests and serialization tests. Discovery tests measure the capacity of the strategies implemented

to translate the incoming information into the internal model of the DL. Serialization tests measure the

ability of this internal model to be translated into valid CML. This separation of tests also adds a level of

maintainability to them.

For both groups, the Junit1 Java library was used to write the tests, and a contract was used with the

results of a decomposition of the Quizzes-Tutor2 application. This contract has more than 5000 lines of

data, including 7 clusters, 42 entities, 22 functionalities, and 198 sequences of accesses.

The discovery tests for the two strategies were implemented in respective test classes, one for each

strategy. Table 6.1 and Table 6.2 show these tests by name, outcome, and the overall strategy code

coverage. In terms of serialization tests, Table 6.3 shows the implemented test.

1https://junit.org/junit5/
2https://github.com/socialsoftware/quizzes-tutor

55

https://junit.org/junit5/
https://github.com/socialsoftware/quizzes-tutor

Table 6.2: Mono2MicroelationshipDiscoveryStrategy tests.

Test Name Outcome Coverage

canDiscoverRelationship Success 100%

throwExceptionIfFileDoesNotExist Success 100%

Table 6.3: Serialization tests of contract-based internal model.

Test Name Outcome Coverage

canSaveDiscoveredModelAsCMLFileM2M Success 100%

Table 6.4: SketchMinerCoordinationModelCreatorTest class tests.

Test Name Outcome Coverage

canGenerateSimpleSequenceWithTwoActors Success 100%

canGenerateSimpleSequenceWithThreeActors Success 100%

Table 6.5: SketchMinerGeneratorTest class tests.

Test Name Outcome Coverage

canGenerateFilesForBoundedContextCoordinations Success 100%

cannotGenerateFileIfNoCoordinationExists Success 100%

56

Table 6.6: SketchMinerLinkCreatorTest class tests.

Test Name Outcome Coverage

canCreateSketchMinerLinkForCoordinationModelUnixSuccess 100%

canCreateSketchMinerLinkWithCoordinationEObjectUnixSuccess 100%

Table 6.7: ApplicationLayerValidationTest class tests.

Test Name Outcome Coverage

canOfferSketchMinerLinkInCoordination Success 100%

Moving on to the interoperability between the CML Core module and the Generators module, several

tests were written for the Sketch Miner3 generator. This generator is used to create BPMN diagrams

of CML constructs that are structurally similar to processes, as is the case of the new Coordination

rule. Contrary to other generators, the implementation of Sketch Miner also allows an architect to open

process-like CML constructs in a web browser, meaning that interoperability of this process also needs

to be tested.

Several tests were written for the different stages of generating BPMN diagrams to ensure the trans-

lation process is stable. These are shown in Table 6.4, Table 6.5, Table 6.6 and Table 6.7, and are

divided as follows respectively: Tests for the translation of CML to the Sketch Miner model; tests for the

generation of local BPMN files; tests for generating the URL to open Sketch Miner in a browser; and

tests for confirming that a URL is available for the architect to see.

3https://www.bpmn-sketch-miner.ai

57

https://www.bpmn-sketch-miner.ai

Table 6.8: Candidate decomposition measures for the QT case study.

Cluster Entities Functionalities Cohesion Coupling Complexity

Cluster0 6 7 0.81 0.185 787.571
Cluster1 27 107 0.212 0.657 106.832
Cluster2 4 11 0.727 0.179 431.091
Cluster3 9 35 0.654 0.753 322.486

6.2 Case Study

Quizzes-Tutor (QT)4 is an online quizzes management application developed for educational institutions.

It can be used to create, manage, and evaluate quizzes composed of varying types of question formats.

Teachers can add questions related to topics of the courses they preside over, while students can answer

these questions within quizzes. Other functionalities include the creation of quiz tournaments between

students, question proposals from students, and ways to discuss question answers. This real-world

monolith, composed of 46 domain entities and 107 functionalities, was used as a case study to validate

the Mono2Micro pipeline extension, which provides DDD modeling capabilities.

Since QT is actively extended with new modules, it is easy to introduce ad hoc dependencies, and

changes to some functionalities start to more easily break other unrelated parts of the application. This

modular incremental development is the ideal context for microservices because it will enforce a bor-

der between the modules. It is more difficult to break modularity due to the distributed context of the

module interfaces. Besides introducing modularity, performance is also an aspect to consider. Parts of

the system would benefit from independent scaling, like answer submission during live quiz sessions.

Microservice architecture would help in this regard.

6.2.1 Decomposition Generation

To start the validation, a candidate decomposition for the QT application must be generated and chosen.

To this end, around 2000 candidate decompositions were generated with different values of similarity cri-

teria and the number of clusters. Candidate decompositions were then filtered on the basis of the values

of their measures. The heuristic used was to order decompositions based on their coupling value in

ascending order, and then based on their cohesion value in descending order, to prioritize decomposi-

tions with low coupling and high cohesion. Of the top 100 results, the candidate decomposition with the

lowest complexity value was chosen. Data for this candidate decomposition can be seen in Table 6.8.

Figure 6.1 also shows the clusters view of the decomposition shown in Mono2Micro.

Table 6.8 shows two noteworthy pieces of information. To start with, the complexity of each cluster

is very high. The complexity measure represents the migration cost of the functionalities in a cluster.

This migration cost is measured as the cost of re-designing from an ACID context to a distributed one.

4https://quizzes-tutor.tecnico.ulisboa.pt/

58

https://quizzes-tutor.tecnico.ulisboa.pt/

Figure 6.1: Mono2Micro decomposition visualization with fine-grained interaction between clusters. Edges repre-
sent functionalities shared between clusters.

Table 6.9: Refactored functionalities for QT case study. CGI stands for Coarse-Grained Interaction, and FGI stands
for Fine-Grained Interactions.

Name #Clusters CGI FGI Reduction%

concludeQuiz 3 4 73 94.52
getQuizByCode 3 4 33 87.88
getQuizAnswers 4 8 84 90.48
exportCourseExecutionInfo 4 9 110 91.82
importAll 3 5 119 95.8
createQuestion 2 3 24 87.5
getQuizAnswers 4 8 92 91.30

Of the initial 107 functionalities, 31 involve distributed calls composed of several hops between clusters

that drive the complexity high. This is because functionalities are still represented by the fine-grained

monolith interactions between entities that can now be in different clusters. To reduce this complexity,

the Functionality Refactoring tool represented in Figure 4.1 is used to create coarse-grained interactions

between clusters. Table 6.9 shows the reduction of invocations for some of the QT functionalities. Ap-

plying this complexity reduction also makes it viable for functionalities to be represented in a structural

language such as CML. Otherwise, any translation strategy would culminate in thousands of operation

definitions for just a subset of the functionalities, as the FGI values show in Table 6.9.

The other noteworthy piece of information is the high number of entities inside Cluster1 compared to

the other clusters, which means that the entities inside this cluster are more entangled when it comes to

the functionalities that use them, and are more difficult to separate without creating an overly complex

decomposition. It is also the reason for the non-optimal levels of cohesion and coupling in this cluster.

At this stage, when some manual refactoring of functionalities is needed, modeling using DDD can help.

The candidate decomposition is translated into CML by the discovery strategies, which outputs a

.cml file with a representation of the candidate decomposition. Figure 6.2 shows a modified snippet

of the generated CML, related to the ConcludeQuiz functionality of a decomposition. Without any opti-

59

Table 6.10: Generated CML constructs. The number of services is represented by four values: No heuristics used;
Full Access Trace used; Ignore Access Types used; and Ignore Access Order used. The number of
entities is represented by two values: original entities and reference entities. The most accessed entity
is based on external accesses to the Bounded Context.

Cluster #Services #Entities Most Accessed Entity

Cluster0 15/7/6/4 6/4 QuizAnswerItem (35.14%)
Cluster1 59/53/52/34 27/3 Quiz (12.2%)
Cluster2 11/5/5/2 4/0 QuestionAnswerItem (30.0%)
Cluster3 36/22/21/8 9/4 QuestionDetails/Image (16.46%)

mization, the translation generates a total of 121 operations, used by 31 Coordinations that represent

the distributed functionalities. With naming heuristics, the number of service calls can be reduced to 87

using Full Access Trace, to 84 using the Ignore Access Types, and to 48 using the Ignore Access Order.

Table 6.10 shows the reduction of generated services according to which heuristics are used per cluster.

Regarding entity generation, a total of 11 reference entities were generated to signal structural de-

pendencies between entities, also shown in Table 6.10, and every entity is generated with information on

the number of accesses to it, from the total Bounded Context accesses (external and local), as shown

in Figure 6.2. This information can help to refactor the decomposition further. For example, in Clus-

ter3, there are 2 dominant entities out of 9 in terms of external accesses: QuestionDetails and Image.

These make them good possible candidates to serve as Aggregate Roots to the Bounded Context. A

look at their structural relationships reveals that QuestionDetails also contains 3 subclass entities in

the same cluster: MultipleChoiceQuestion, CodeOrderQuestion and

CodeFillInQuestion; which in turn are structurally related to: Option, CodeOrderSlot, CodeFillInSlot

and CodeFillInOption. Image is not structurally related to these, but its presence in this Bounded Con-

text means its commonly accessed together with the other entities. A possible first refactoring of this

cluster could then be the separation of the Cluster3 Aggregate into 2 Aggregates, which is an automatic

architectural refactor supported by CML. The first Aggregate would control question types, formats, and

related invariants with QuestionDetails as its Aggregate Root. The second Aggregate would represent

a repository of images and be controlled through its Image Aggregate Root.

6.3 Discussion

This section discusses the findings of applying the DDD-based extension to the operational pipeline of

Mono2Micro by analyzing how the implemented solution and the results of its application in the case

study answer the research questions raised in the introduction of this paper.

60

6.3.1 Results Validation

Starting with the first research question (RQ1), to understand whether the Mono2Micro operational

pipeline can be extended to integrate DDD, through the use of CML, the first step taken was to compare

the architectural characteristics of each tool.

Mono2Micro follows a pipe-and-filter architecture with its stages, and provides extension points in

the form of abstractions for each stage; while Context Mapper follows a hub-and-spoke architecture,

and also provides extension points in its core, the CML language, and each of its spoke modules,

including the Discovery Library (DL). As described in the solution, these characteristics show that the

tools emphasize modularity and extensibility, which made the development of an integration strategy

that follows the same requirements possible. By measuring the level of modularity and extensibility of

the solution, RQ1 can be evaluated.

First, modularity deals with how divided a system is into logical modules that encapsulate specific

self-contained functionality, improving separation of concerns and internal cohesion. The solution is

composed of two new modules in Mono2Micro, the Structure Collector and CML Translator. In terms

of cohesion, both modules respect the pipeline architecture of Mono2Micro, and are placed accordingly

inside it based on their responsibilities. Regarding coupling, Figure 4.1 also shows the dependencies

of each model. The Structure Collector is highly decoupled, depending only on the monolith source

code. It does not know about the subsequent stages of the pipeline. The CML Translator has a contract

between it and the Mono2Micro model, ensuring that it is only coupled to one source.

Second, extensibility deals with how open for extension the features of a system are without putting

at risk their core structure, improving the addition of new functionality. The Structure Collector was

designed from scratch. It provides abstractions for the collection of data from new frameworks and

the collection of other types of structural data. The CML Translator is an extension of the DL API,

so it follows that the discovery strategies implemented follow the same design and are also open to

extension by providing abstractions. Additionally, the contract generation is also built with abstractions if

new information is needed for future discovery strategies.

Moving on to the second research question (RQ2), the mappings of the cluster, entity, and func-

tionality concepts to DDD demonstrate how a candidate decomposition based on entity accesses can

be represented with DDD concepts. Mono2Micro entities are already based on the concept of DDD

Entities, so the mapping is consistent in this regard. Further more, to improve usability, structural infor-

mation about entities is collected for a more complete representation in CML. In the case of clusters,

consistency was maintained by mapping each of them to a Bounded Context and an Aggregate. The

structural context of the CML was also considered. To avoid having the cluster entities break the bounds

of outer Bounded Contexts with direct references, reference entities were added. This improves usability

by highlighting where refactoring needs to be applied to entity relationships. For the mapping of function-

61

alities, the sequence of accesses to entities that composed them was first converted into a structured

Saga. This significantly reduced the complexity of the sequence in terms of size and hops between

clusters, and made it simpler to represent with DDD, since Saga is a well-known pattern in distributed

systems. Sagas were mapped to Coordinations in CML, which encode an ordered sequence of service

calls, just as Sagas encode a sequence of steps. To improve the usability of this mapping, hints to which

entities are accessed in each service call were generated in the names of each service call.

Finally, in regard to the third research question (RQ3), analyzing and comparing the decomposition

artifacts represented in each tool, as demonstrated in the case study, can show how an architect can

benefit from the use of this extension.

In the case of entity representation, structural information is now available in the CML representation.

This information is novel in regard to the old pipeline, as Mono2Micro representations can at most show

the names of entities within each cluster, not its internal state or structural connections, as illustrated in

the QT decomposition in Figure 6.1. With the CML representation of entities, it is possible to observe

the attributes of each entity and also the structural refactorings that must be made in existing entities

based on reference entities to other Bounded Contexts, demonstrated in Figure 6.2.

In the case of clusters, Aggregates can now be defined and used to further partition a cluster and

its entities based on access patterns, access percentages, and the structural information provided at

generation time in the form of commented constructs.

In the case of functionalities, the architect now has the option of editing their Saga representation

in CML, by editing the generated Coordinations. Mono2Micro only allowed for the visualization of fine-

grained functionality traces in a graph representation, and the Functionality Refactoring module of the

tool only produced the data for the Sagas, without any way to edit or visualize them in a graphical

representation. Using CML, these functionalities can be modeled as Coordinations and edited in the

language with the added context of the internal structure of the Bounded Contexts they interact with.

Furthermore, Coordinations can be visualized in BPMN using a prompt to generate the diagram in

BPMN Sketch Miner5. Figures 6.3 and 6.4 show the comparison of the views of a functionality that

interacts with three of the four clusters before and after integration with CML.

Additionally, the service naming heuristics allow the architect to reduce the number of generated

service calls that exist in each cluster. This does not reduce the number of functionality steps but

increases the level of reuse of services.

5https://www.bpmn-sketch-miner.ai

62

Figure 6.2: Snippet of the generated CML related to the functionality ConcludeQuiz. Triple dots (...) represent
omitted constructs for the purpose of the example. Service operation names were also truncated.

63

Figure 6.3: Graph representation of the ConcludeQuiz functionality in Mono2Micro, and the clusters that participate
in it. Edge numbers represent the number of accessed entities in the clusters they point to.

Figure 6.4: BPMN representation of the ConcludeQuiz Coordination in Context Mapper, generated using BPMN
Sketch Miner. The tasks in the diagram represent the steps of the Coordination, and each participant
(lane) represents the Bounded Context where the step is defined.

64

7
Conclusion

Contents

7.1 Threats to Validity . 67

7.2 Future Work . 67

7.3 Conclusions . 69

65

66

7.1 Threats to Validity

With respect to internal validity, there are two points worth considering. First, the functionalities used in

the decomposition and CML mapping process are all linear in nature. This is due to the existent static

entity access collection tool in Mono2Micro, which flattens code branches into a single access sequence

in a depth-first fashion. However, previous research that used the same sequences to develop the Saga

representation of functionalities as showed this has little impact on the final results [25], and support

for multiple traces per functionality is being developed. By extension, the current implementation of

Coordinations in CML is also based on linear Sagas. However, Coordinations can be opened in BPMN

Sketch Miner, where they can be further edited with more complex workflow logic. Context Mapper also

supports branching processes in its Event Flows, so the concept could be expanded to Coordinations

as well in the future.

Second, the provided solution for resolving service operation names with access traces can some-

times generate verbose names, but these are meant to be temporary and only inform on what a certain

step is doing, which is more appropriate and informative than the alternative of generating incremental

”step” names. Future work could expand on the level of collected information to create heuristics based

on method names to reduced verbosity.

In terms of external validity, the current implementation assumes the use of Java and the Spring Boot

JPA Framework to collect entity access and structure information, but the process is general enough

to be applicable to other programming languages and frameworks. The modules that assume these

limitations are also built with abstractions for the implementation of other technologies.

The implementation of the solution is also realized by using Mono2Micro and Context Mapper, but

this does not mean that a more general solution cannot be derived for other tools. Mono2Micro itself

is designed as a generalization of the state of the art in microservice identification [2]. As for Context

Mapper, the tool is built on top of the concepts and patterns of tactical and strategic DDD. If other tools

follow representations of the same patterns, they can be used by the same mapping strategies applied

to Context Mapper.

7.2 Future Work

The process of developing this solution pipeline and viewing the final results of it left many possible

improvements in the air that could be tackled in future work. These can be broken down into improve-

ments to the CML representations and improvements to the Mono2Micro tool itself. Before explaining

each one, a short enumeration of these identified points of interest for future work follows. Regarding

CML improvements:

67

• The addition of other decomposition representations in the mapping to CML;

• The refactoring of Mono2Micro to represent entity accesses using create/read/update/delete types

instead of the current read/write representation;

• The expansion of the concept of Coordination in CML to include additional information on the

nature of its steps, such as their synchronicity or consistency;

Regarding Mono2Micro improvements:

• The addition of a structure-based decomposition strategy to Mono2Micro based on the new struc-

tural representation of the monolith;

• Investigating whether duplicating certain entities, such that they are present in more than one

cluster, can reduce the overall complexity of the migration and its distributed transactions.

Starting with the CML improvements, and as mentioned in the previous sections, the addition of more

Mono2Micro decomposition representations could lead to the identification of new ways to improve both

tools, as was the case in the work done here. Due to the process of trying to map functionalities in CML,

a lack of a construct for representing simple inter-context processes was identified since the available

mappings were either Use Case constructs, which were not fit to represent SAGAs without sacrificing

information, or Flows, which would enforce the definition of an Event and Command pair for each func-

tionality step, making the mapping much more verbose and coupling it with event-driven design.

An example of the next representation to support is the code authorship and commit history repre-

sentation. Context Mapper provides different ways to interpret its Bounded Contexts, and one of them

is team-based, with the addition of a type = TEAM field in the Bounded Context definition. This means

that decompositions whose clusters are based on team size reduction could be mapped to team-based

Bounded Context.

Using CRUD accesses in another way to improve the value of the information provided to CML

without adding size complexity to the contract. Together with the naming heuristic, it would give the

architect even more information on what certain steps of functionalities are doing.

Next, this suggestion for future work is the continuous development of the new Coordination rule of

in CML. This may include an addition to it to specify in more detail properties of each of the steps. As

it is now, it constitutes a minimum viable product, so there is potential here to transform the rule further.

An example of this would be to provide three fields inside Coordinations that specify if the construct is:

Orchestrated or choreographed; atomic or eventually consistent; and synchronous or asynchronous.

Moving on to improvements specific to Mono2Micro, since a consequence of implementing this

pipeline is the addition of structural representations of a code base in Mono2Micro, there is future work

here to expand decomposition strategies to take into account structural data. Just like other strategies,

68

the new structural-based representation could be mixed with other representation, and new weights such

as afferent and efferent coupling between entities could be defined in Mono2Micro.

Finally, as discussed in the previous section, multiple references to the same entity in different clus-

ters give the impression that the entity in question could be a central part of all the processes of the

system. Since the context is distributed, there is a tendency for duplication to be preferable to code

re-usability to avoid congesting the network unnecessarily [32]. One conclusion taken from the eval-

uation of this occurrence was that the more fine-grained the clusters, the less likely any entity would

be referenced in multiple clusters. Therefore, whether Mono2Micro can gain anything from considering

duplication is left to future work.

7.3 Conclusions

A significant amount of research has been done on the migration of monoliths into a microservice ar-

chitecture, but almost no tools incorporate mappings to DDD concepts in their migration processes.

Research showed a trend for developing DSLs to represent DDD concepts and adapting the concepts

to work in other diagramming tools to develop microservices, but to our knowledge never directly in a

migration tool.

Practitioners and software architects who need to migrate their current monolith architectures due

to economic reasons, scalability, or more autonomous development teams would benefit from a solu-

tion that not only proposes candidate decompositions, but also automatically generated design-level

DDD artifacts from that decomposition, as a starting point to facilitate the refactoring process towards a

microservice architecture.

This paper proposes a solution pipeline for this problem composed of the integration of Context

Mapper, a modeling framework that provides a DSL to represent DDD patterns, into the Mono2Micro

decomposition pipeline, a robust microservice identification tool.

The proposed solution achieves the integration of both tools by defining a mapping of concepts

between tools, whilst respecting each of the tool models. To support this mapping, the solution includes

several new modules and modifications to the tools, including a new static collector of entity structural

information, a contract for effective communication between the tools, a translation strategy to generate

CML from Mono2Micro decompositions, i.e. entities, clusters, and functionalities, an extension to the

CML syntax to support concepts from decomposition in the form of Coordinations, and new diagram

generators from CML based on translated decompositions.

The artifacts developed in the project are publicly1 available together with the description of the

procedures necessary to use them.

1https://github.com/socialsoftware/mono2micro/tree/master/tools/cml-converter

69

https://github.com/socialsoftware/mono2micro/tree/master/tools/cml-converter

70

Bibliography

[1] “Research project PTDC/CCI-COM/2156/2021: Data consistency in microservices compositions.”

[Online]. Available: https://doi.org/10.54499/PTDC/CCI-COM/2156/2021

[2] T. Lopes and A. R. Silva, “Monolith microservices identification: Towards an extensible multiple

strategy tool,” in 2023 IEEE 20th International Conference on Software Architecture Companion

(ICSA-C), 2023, pp. 111–115.

[3] S. Kapferer, “Architectural refactorings,” https://contextmapper.org/docs/architectural-refactorings/,

2020, accessed: 2023-01-04.

[4] C. O’Hanlon, “A conversation with werner vogels,” Queue, vol. 4, no. 4, p. 14–22, May 2006.

[5] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microservice architectures: An in-

dustrial survey,” in 2018 IEEE International Conference on Software Architecture (ICSA), 2018, pp.

29–2909.

[6] M. Fowler, “Monolith first,” 2015. [Online]. Available: https://martinfowler.com/bliki/MonolithFirst.html

[7] D. Haywood, “In defence of the monolith,” 2017. [Online]. Available: https://www.infoq.com/

minibooks/emag-microservices-monoliths/

[8] F. Ponce, G. Márquez, and H. Astudillo, “Migrating from monolithic architecture to microservices:

A rapid review,” in 2019 38th International Conference of the Chilean Computer Science Society

(SCCC), 2019, pp. 1–7.

[9] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E. Boussaidi, G. Hecht, J. Privat, and Y.-G.

Guéhéneuc, “A taxonomy of service identification approaches for legacy software systems

modernization,” Journal of Systems and Software, vol. 173, p. 110868, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121220302582

[10] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol, G. Jackson, M. Yilmaz, J. Buckley,

and P. Clarke, “Decomposition of monolith applications into microservices architectures: A system-

atic review,” IEEE Transactions on Software Engineering, vol. 49, no. 8, pp. 4213–4242, 2023.

71

https://doi.org/10.54499/PTDC/CCI-COM/2156/2021
https://contextmapper.org/docs/architectural-refactorings/
https://martinfowler.com/bliki/MonolithFirst.html
https://www.infoq.com/minibooks/emag-microservices-monoliths/
https://www.infoq.com/minibooks/emag-microservices-monoliths/
https://www.sciencedirect.com/science/article/pii/S0164121220302582

[11] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a microservices architecture: An

approach based on transactional contexts,” in Software Architecture: 13th European Conference,

ECSA 2019, Paris, France, September 9–13, 2019, Proceedings, 2019, pp. 37–52.

[12] S. Santos and A. R. Silva, “Microservices identification in monolith systems: Functionality redesign

complexity and evaluation of similarity measures,” Journal of Web Engineering, 2022.

[13] B. Andrade, S. Santos, and A. R. Silva, “A comparison of static and dynamic analysis to iden-

tify microservices in monolith systems,” in Software Architecture, B. Tekinerdogan, C. Trubiani,

C. Tibermacine, P. Scandurra, and C. E. Cuesta, Eds. Cham: Springer Nature Switzerland, 2023,

pp. 354–361.

[14] V. Faria and A. R. Silva, “Code vectorization and sequence of accesses strategies for monolith

microservices identification,” in Web Engineering, I. Garrigós, J. M. Murillo Rodrı́guez, and M. Wim-

mer, Eds. Cham: Springer Nature Switzerland, 2023, pp. 19–33.

[15] J. Lourenço and A. R. Silva, “Monolith development history for microservices identification: a com-

parative analysis,” in 2023 IEEE International Conference on Web Services (ICWS), 2023, pp.

50–56.

[16] N. Santos and A. Rito Silva, “A complexity metric for microservices architecture migration,” in 2020

IEEE International Conference on Software Architecture (ICSA), 2020, pp. 169–178.

[17] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison Wesley,

2003.

[18] H. Vural and M. Koyuncu, “Does domain-driven design lead to finding the optimal modularity of a

microservice?” IEEE Access, vol. 9, pp. 32 721–32 733, 2021.

[19] O. Özkan, Önder Babur, and M. van den Brand, “Domain-driven design in software development:

A systematic literature review on implementation, challenges, and effectiveness,” 2023.

[20] S. Kapferer. and O. Zimmermann., “Domain-specific language and tools for strategic domain-driven

design, context mapping and bounded context modeling,” in Proceedings of the 8th International

Conference on Model-Driven Engineering and Software Development - MODELSWARD,, INSTICC.

SciTePress, 2020, pp. 299–306.

[21] S. Kapferer, “Context map discovery,” https://contextmapper.org/docs/reverse-engineering/, 2021,

accessed: 2023-01-04.

[22] V. Vernon, Implementing Domain-Driven Design. Addison Wesley, 2013.

72

https://contextmapper.org/docs/reverse-engineering/

[23] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, “Spoon: A

Library for Implementing Analyses and Transformations of Java Source Code,” Software:

Practice and Experience, vol. 46, pp. 1155–1179, 2015. [Online]. Available: https:

//hal.archives-ouvertes.fr/hal-01078532/document

[24] J. F. Almeida and A. R. Silva, “Monolith migration complexity tuning through the application of

microservices patterns,” in Software Architecture, 2020, pp. 39–54.

[25] J. Correia and A. Rito Silva, “Identification of monolith functionality refactorings for microservices

migration,” Software: Practice and Experience, vol. 52, no. 12, pp. 2664–2683, 2022.

[26] S. Kapferer, “A modeling framework for strategic domain-driven design and service decomposition,”

Master’s thesis, University of Applied Sciences of Eastern Switzerland, 2020.

[27] A. Singjai, U. Zdun, and O. Zimmermann, “Practitioner views on the interrelation of microservice

apis and domain-driven design: A grey literature study based on grounded theory,” in 2021 IEEE

18th International Conference on Software Architecture (ICSA), 2021, pp. 25–35.

[28] D. M. Le, D.-H. Dang, and V.-H. Nguyen, “On domain driven design using annotation-based domain

specific language,” Computer Languages, Systems and Structures, vol. 54, pp. 199–235, 2018.

[29] F. Rademacher, S. Sachweh, and A. Zündorf, “Towards a uml profile for domain-driven design of

microservice architectures,” in Software Engineering and Formal Methods, 2018, pp. 230–245.

[30] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck, “Designing microservice-

based applications by using a domain-driven design approach,” International Journal on Advances

in Software (1942-2628), vol. 10, pp. 432 – 445, 12 2017.

[31] C. Richardson, “Developing transactional microservices using aggregates, event sourcing and

cqrs,” 2017. [Online]. Available: https://www.infoq.com/minibooks/emag-microservices-monoliths/

[32] N. Ford, M. Richards, P. Sadalage, and Z. Dehghani, Software Architecture: The Hard Parts.

O’Reilly Media, Inc., 2021.

73

https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://www.infoq.com/minibooks/emag-microservices-monoliths/

74

75

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Approach
	1.4 Contributions
	1.5 Document Structure

	2 Background
	2.1 Domain-Driven Design
	2.1.1 Domain and Model
	2.1.2 Bounded Context and Context Map
	2.1.3 Bounded Context Relationships
	2.1.4 Entity, Value Object and Service
	2.1.5 Aggregate
	2.1.6 Domain Event

	2.2 Mono2Micro
	2.2.1 Collection Stage
	2.2.2 Decomposition Stage
	2.2.3 Quality Assessment Stage
	2.2.4 Visualization Stage
	2.2.5 Editing and Modeling Stage

	2.3 Context Mapper
	2.3.1 Discovery Library
	2.3.2 Architectural Refactorings
	2.3.3 Generators

	2.4 Tool Analysis

	3 Related Work
	3.1 DDD Modeling Tools
	3.2 Microservice Identification Tools

	4 Solution Architecture
	4.1 Architectural Requirements
	4.2 Pipeline Extension
	4.2.1 Tool Integration
	4.2.2 DDD Mapping
	4.2.3 CML Representation and Interaction

	5 Implementation
	5.1 Structure Collector
	5.1.1 Design
	5.1.2 Usage

	5.2 Mono2Micro Contract
	5.3 Translation to CML
	5.3.1 Entity Mapping
	5.3.2 Cluster Mapping
	5.3.3 Functionality Mapping

	5.4 Discovery Strategies

	6 Evaluation
	6.1 Architectural Evaluation
	6.1.1 Modularity
	6.1.2 Extensibility
	6.1.3 Interoperability

	6.2 Case Study
	6.2.1 Decomposition Generation

	6.3 Discussion
	6.3.1 Results Validation

	7 Conclusion
	7.1 Threats to Validity
	7.2 Future Work
	7.3 Conclusions

	Bibliography

