
W()
Course Execution

Tournament

Event Processing

E(6)

F3-V7

Anonymize

Execution Student

F1-V6

R(2)

Commit

P(6)
E(6)

AddParticipant

F2-V6

R(2)

R(5) W() fail

CommitCommit

R(5) W()

P(7)
X

Merge

X

Transactional Causal Consistent
Microservices Business Logic

Pedro Manuel Lopes Pereira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. António Rito Silva

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. António Rito Silva

Member of the Committee: Prof. Luı́s Eduardo Teixeira Rodrigues

October 2022

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I would like to thank my parents and grandparents for their emotional support and motivation.

I would also like to acknowledge my dissertation supervisor, Prof. António Rito Silva, for his all his

support: for providing useful source material, for discussing core aspects of the implementation, for

helping reviewing code and text and most importantly for his high and constant availability throughout all

these months of development.

I’d like to thank Prof. Luı́s Rodrigues and Rafael Soares for providing very useful insight on TCC.

I would also like to thank the Overleaf team for providing such a valuable and easy to use tool for

free, without which writing this thesis would have been much harder.

Last but not least, I’d like to thank Instituto Superior Técnico and all of my teachers throughout the

years for providing me the technical skills which made developing this thesis possible.

To each and every one of you – Thank you.

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) through projects

UIDB/50021/2020 (INESC-ID) and PTDC/CCI-COM/2156/2021 (DACOMICO).

i

Abstract

Microservices architecture has been widely adopted to develop software systems, but some of its trade-

offs are often ignored. In particular, the introduction of eventual consistency has a huge impact on

the complexity of the application business logic design. Recent proposals to use transactional causal

consistency in serverless computing seem promising, because it reduces the number of possible con-

current execution anomalies than can occur due to the lack of isolation. We propose an extension of

the aggregate concept, the basic building block of microservices design, that is transactional causal

consistent compliant. A simulator for the enriched aggregates is developed to allow the experimentation

of this approach with a business logic rich system. From the experiment we observed a reduction of the

implementation complexity. Additionally, we developed a simulator, a publicly available reusable artifact

that can be used in other experiments.

Keywords

Microservices Architecture; Aggregates; Transactional Causal Consistency; Eventual Consistency; Sim-

ulator

iii

Resumo

A arquitetura de microserviços tem sido bastante utilizada para implementar sistemas de software mas

algumas das suas limitações tendem a ser ignoradas. Em particular, a introdução de consistência

eventual tem um impacto considerável na complexidade no desenho da lógica de negócio. Existem pro-

postas recentes para utilizar consistência causal transacional em sistemas computação serverless que

parecem promissoras, porque reduzem número de anomalias de execução concorrentes que podem

ocorrer devido à falta de isolamento. Propomos uma extensão do conceito de agregado, o principal

elemento do desenho de microserviços, que seja compatı́vel com consistência causal transacional.

Foi desenvolvido um simulador para os agregados enriquecidos para permitir a experimentação desta

estratégia com um sistema com lógica de negócio mais complexa. Da experiência realizada observou-

se uma redução da complexidade de implementação, e produziu-se um simulador que é um artefacto

reutilizável que pode ser usado noutras experiências.

Palavras Chave

Arquitetura de Microserviços; Agregados; Consitência Causal Transacional; Consistência Eventual;

Simulador

v

Contents

1 Introduction 1

1.1 Goals . 4

2 Related Work 5

2.1 Microservices . 7

2.2 Eventual Consistency VS Transactional Causal Consistency 7

2.3 Advanced Domain Driven Design . 8

2.4 Conflict-Free Replicated Data Types . 8

3 Semantics 11

3.1 Aggregate Specification . 13

3.2 Functionalities . 14

3.3 Transactional Causal Consistency . 16

3.4 Eventual Consistency . 19

4 Simulator 23

4.1 Architecture . 25

4.2 Domain Model . 26

4.3 Extension . 29

4.4 Implementation . 37

5 Evaluation 43

5.1 Case Study . 45

5.2 Simulator Correctness . 47

5.3 Experiment Analysis . 56

5.4 Complexity Analysis . 59

5.5 Threats to Validity . 59

6 Conclusion 61

6.1 Results . 63

6.2 Future Work . 63

vii

Bibliography 65

viii

List of Figures

4.1 Simulator: Component-and-Connector View . 26

4.2 Simulator: Component-and-Connector View . 27

4.3 Simulator: Domain Model View . 28

5.1 Quizzes Tutor Inter-Aggregate Context Map . 45

5.2 Sequential: Update, Add, Event . 49

5.3 Sequential: Add, Update, Event . 50

5.4 Concurrent: Update(1), Add, Update(2), Event . 50

5.5 Concurrent: Add(1), Update, Event(1), Add(2), Event(2) 51

5.6 Concurrent complex functionalities . 52

5.7 Concurrent: Update(1), Add(1), Update(2), Event, Add(2) 52

5.8 Concurrent: Update(1), Add(1), Update(2), Event(1), Add(2), Event(2), Event(3) 53

5.9 Concurrent: Update, Add, Event, Add . 54

5.10 Concurrent: Event . 55

5.11 Concurrent: Event . 55

ix

x

List of Tables

5.1 Aggregate invariants and references count . 47

5.2 Quizzes Tutor Experiment . 56

xi

xii

Listings

3.1 Tournament Aggregate . 13

3.2 Tournament Functionalities . 14

3.3 Extend Aggregate with Merge Semantics . 19

3.4 Extend Aggregates with Events . 19

4.1 Tournament Aggregate Implementation . 30

4.2 Tournament Functionalities Implementation . 35

4.3 Tournament Event Detection . 37

4.4 Find Causal Tournament . 38

4.5 Find Most Recent Tournament Version . 39

4.6 Find Concurrent Versions . 39

4.7 Tournament Event Handling . 40

4.8 Commit Serialization . 41

xiii

xiv

Acronyms

CRDT Conflict-free Replicated Data Type

DDD Domain Driven Design

JPA Java Persistance API

TCC Transactional Causal Consistency

xv

xvi

1
Introduction

Contents

1.1 Goals . 4

1

2

Microservices have become increasingly adopted [1] as the architecture of business systems, be-

cause it promotes the split of the domain model into consistent pieces that are owned by small agile

development teams, and facilitates scalability [2,3].

These systems are implemented using the saga pattern [4] to handle the concurrency anomalies,

like lost update and dirty reads, which result on extra complexity to the implementation of the system

business logic [5]. It has been identified a trade-off between the business logic complexity and use of

microservices [6], which is also confirmed by the type of systems where the use of microservices has

been successfully reported, where there is the need for high scalability, but the domain business logic is

less complex, e.g. Netflix.

Recent research has proposed the use of transactional causal consistency to support serverless

computing [7, 8], which reduce the number of anomalies by providing a causal snapshot to support the

distributed execution functionalities. However, as far as we know, there is no experimentation of this

approach with systems that have complex business logic. On the other hand, the two implementations

provide a low level API which is not friendly for the software developer.

Therefore, we intend to answer the following research questions:

1. Does the use of transactional causal consistency simplify the microservices implementation of

business logic rich system?

2. Can the use of a transactional causal consistency simulator ease the experimentation with large

domain models?

To answer the research questions, we extend the domain-driven concept of aggregate [9], which is

the basic building block of microservices systems [4], with causal consistency semantics. Afterwards,

it is designed, and implemented, a simulator for aggregates enriched with transactional causal consis-

tency. Then, a large software system, with rich business logic, is implemented. Finally, the results are

evaluated.

As result of this work, a set of constructs are proposed to enrich aggregates, a transactional causal

consistency simulator is made available, and a classification on how to implement business logic with

transactional causal consistency is defined.

After the introduction in this Chapter, related work is presented in Chapter 2. The constructs for

aggregate definition are presented in Chapter 3, that also defines the semantics of transactional causal

consistency for microservices systems build with aggregates. Chapter 4 describes the simulator design

and implementation. Ch Chapter 5 describes the case study complexity and analyses of the implemen-

tation of the case study using the simulator, as well as the simulator semantics. Finally, Chapter 6 draws

the conclusions.

3

1.1 Goals

We intend to leverage on existing work by enriching the concept of aggregate to support TCC semantics

and to develop our own custom semantics, inspired by CRDT’s and Avanced Domain Driven Design

(DDD) mechanisms, to maintain system consistency. Additionally, develop a TCC simulator that eases

the experiment with the implementation of complex microservices systems, applying TCC semantics to

the functionalities execution.

4

2
Related Work

Contents

2.1 Microservices . 7

2.2 Eventual Consistency VS Transactional Causal Consistency 7

2.3 Advanced Domain Driven Design . 8

2.4 Conflict-Free Replicated Data Types . 8

5

6

2.1 Microservices

Eventual consistency [10] has been adopted in the implementation of microservices, using the sagas [4,

11]. However, writing application business logic in the context of the eventual consistency requires an

extra effort [5] to deal with anomalies like lost updates and dirty reads. This is due to the intermediate

states created by the functionality execution in each one of the microservices. Due to this lack of isola-

tion, the business logic is intertwined with the handling of incomplete states associated with the current

execution with other functionalities. The complexity depends on the number of these intermediate states,

which depend on the number of functionalities [5].

Therefore, implementing a system using microservices is not trivial, depends on the complexity of

the business logic [6] and sometimes is too complex and systems are migrated back to a monolith

architecture [12].

2.2 Eventual Consistency VS Transactional Causal Consistency

Eventual consistency is a model [4] that guarantees that replicas of the same entity can be inconsistent

for a period of time but will eventually converge to the same value. One way to achieve convergence is

by issuing events. These events represent a change that has occurred to the state of the system at a

given node. Other nodes that wish to remain updated with information from other nodes must subscribe

to the respective events. In this model the system may be inconsistent for some time, corresponding to

the interval between a change in the system state and the processing of the generated event by other

nodes.

Transactional Causal Consistency (TCC) [13] has been proposed as a transactional model that han-

dles some of the problems of eventual consistency, by providing to the transaction a consistent causal

snapshot. The entities in the causal snapshot respect the happens-before relation and the writes per-

formed when the transactional are atomically visible, regardless of node in which read or write operation

occurs. This transactional model handles dirty reads, because the reads are consistent, but continues to

allow lost updates, which occur when two concurrent transactions write the same entity, the last to com-

mit overwrites the first one. On the other hand, transactional causal consistency can be implemented

using non-blocking algorithms, overcoming the limitations stated in the CAP theorem.

As far as we know, there are two implementations of TCC for serverless computing [7, 8], but these

implementations use a key-value store and/or offer a low level API that does not facilitate to experiment

the support of complex business logic with TCC. Additionally, they only use toy cases to experiment the

application of transactional causal consistency.

On the other hand, the design of microservices is based on the domain-driven design concept of

aggregate [4, 9], which denotes the transactional unit of consistency in microservices. This concept is

7

not considered by the existing implementations of TCC, which focus on the management of replicas,

instead of the different perspective of the same model in different bounded contexts [9]. However, there

are some synergies between both concepts that are worth exploring, but, as far as we know, are not

addressed by the literature.

2.3 Advanced Domain Driven Design

There is some research on the extension of aggregates to ensure in data-intensive distributed systems,

such as microservices, consistency between replicas of entities [14].

When replicas of a certain bounded context diverge in values it becomes necessary to propagate the

updates and reconcile them. That’s done by creating a reconciliation branch on each replica, copying all

concurrent operations to it, sorting them in a deterministic way that’s the same on all replicas, execute

them from the last state before the replicas diverged and persist the result. Further operations will be

applied to the reconciliation branch which becomes the main branch.

One of the most important factors of the reconciliation process is the sorting of operations. Opera-

tions need to be sorted in a way that their sequential execution results in system state that’s intended.

The authors propose the following classification for operations:

• Incremental Update: updates an object by taking into account its state before the update. Ex:

counter increments and list appends.

• True Blind Update: an update that is completely agnostic of the previous state of the object.

2.4 Conflict-Free Replicated Data Types

Other relevant work that deals with the replica consistency is on conflict-free replicated data types [15,

16] that are another way of ensuring consistency of replicas of objects by guaranteeing every replica

converges independently and deterministically to the same value. Convergence of replicas is achieved

by semantics: for the same set of events, two replicas will reach the same state by processing the events

both according to the same set of rules. For set Conflict-free Replicated Data Type (CRDT)’s can have

the following semantics:

• add-wins: in the case of a concurrent add and remove of the same object to a set, the add opera-

tion wins.

• remove-wins: in the case of a concurrent add and remove of the same object to set, the remove

operation wins

8

• last-writer-wins: in the case of a concurrent add and remove of the same object to a set, the update

that was occurred later, in terms of physical time, wins.

It is easy to conclude that adding and removing an element from a set are not commutative opera-

tions, i.e. the order in which they are applied matters. If two operations are commutative they can both

be applied in any order ad the final result will be the same on both replicas.

9

10

3
Semantics

Contents

3.1 Aggregate Specification . 13

3.2 Functionalities . 14

3.3 Transactional Causal Consistency . 16

3.4 Eventual Consistency . 19

11

12

3.1 Aggregate Specification

Aggregates are considered the basic building blocks of microservices applications [4]. The concept

was imported from domain-driven design [9] and defines a unit of consistency between the aggregate

entities, which is defined as the aggregate invariants. An aggregate has a root entity that controls its

accesses to guarantee atomicity and aggregate internal entities are not visible from outside. In the

context of microservices, aggregate accesses occur in the context of ACID transactions.

When splitting a domain model into aggregates it is necessary to consider the consistency between

aggregates. In domain-driven design the consistency between aggregates can be relaxed. To distin-

guish these two types of consistency, we define intra-invariants and inter-invariants. The former de-

fines a rule on the aggregate entities while the latter between different aggregates. We also consider

a upstream-downstream relation between aggregates, which is similar to the same relation between

bounded contexts in domain-driven design. An inter-variant is defined in the downstream aggregate,

because it is aware of the upstream aggregate model, while the opposite does not occur.

Listing 3.1: Tournament Aggregate

1 Aggregate Tournament

2 I n t ege r i d

3 LocalDateTime s ta r tT ime, endTime

4 L i s t<P a r t i c i p a n t> p a r t i c i p a n t s

5 Creator c rea to r

6 . . .

7 P a r t i c i p a n t i s s : CourseExecution . s tudents

8 i d from s . i d

9 name from s . name

10 Creator i s c : CourseExectuion . s tudents

11 i d from s . i d

12 name from s . name

13 . . .

14 I n t r a - I n v a r i a n t s

15 START BEFORE END

16 t h i s . s ta r tT ime < t h i s . endTime

17 CREATOR PARTICIPANT CONSISTENCY

18 f o r a l l p : t h i s . p a r t i c i p a n t s | p . i d == t h i s . c rea to r . i d =>

19 p . name == t h i s . c rea to r . name

20 . . .

21 I n t e r - I n v a r i a n t s

22 PARTICIPANT EXISTS

23 f o r a l l p : t h i s . p a r t i c i p a n t s | p . s t a te != INACTIVE =>

24 e x i s t s s = CourseExecution . s tudents (p . i d)

13

25 p . name == s . name

26 CREATOR EXISTS

27 t h i s . c rea to r . s t a t e != INACTIVE =>

28 e x i s t s s = CourseExecution . s tudents (t h i s . c rea to r . i d)

29 t h i s . c rea to r . name = s . name

30

31 . . .

Listing 3.1 contains the representation of an excerpt of a tournament aggregate. The root entity is

the tournament, which has a unique identifier. Attributes startTime and endTime represent the period

the tournament is open. There are two internal entities: participants which represents users partici-

pating in the tournament and creator which represents a user which created the tournament. Both the

Participant and Creator entities are associated with a student enrolled in a course exectuion, which

is an element of the upstream aggregate (CourseExecution), and contains the student identification

and name. Therefore, a consistency issue may occur between these two aggregates, which is de-

clared by the PARTICIPANT EXISTS inter-invariant and the CREATOR EXISTS inter-invariant. Finally,

START BEFORE END and CREATOR PARTICIPANT CONSISTENCY declare intra-aggregate invari-

ants, which should be preserved whenever the aggregate is changed.

Listing 3.2: Tournament Functionalities

1 F u n c t i o n a l i t y updateTimes

2 update t h i s . s ta r tT ime

3 update t h i s . endTime

4

5 F u n c t i o n a l i t y anonymizeExecutionStudent (p)

6 update t h i s . p a r t i c i p a n t s (p . i d) . name

7 p . i d == t h i s . c rea to r . i d => update t h i s . c rea to r . name

Aggregates have functionalities. In listing 3.2 declares two tournaments functionalities: update-

Dates that updates the tournament open period; and anonymizeExecutionStudent that anonymizes a

participant or a creator. The latter is related with the PARTICIPANT EXISTS and CREATOR EXISTS

inter-invariants.

3.2 Functionalities

To define the aggregates semantics in a microservices architecture, when the functionalities are exe-

cuted using transactional causal consistency, it is necessary to classify the types of functionalities that

exist. A functionality is associated with an aggregate, referred as the functionality aggregate or the main

14

aggregate, where it preforms reads and/or writes. A functionality can perform reads and writes on other

aggregates, besides the main aggregate, they are referred as the functionality secondary aggregates.

Finally, due to architectural upstream-downstream relationship between aggregates, a functionality can

directly perform reads and writes on the upstream aggregates of its main aggregate, but cannot do any

type of access to the downstream aggregates. Therefore, the secondary aggregates of a functionality

have to be upstream aggregates of its main aggregate. Nevertheless, a functionality can publish events

that may be subscribed by downstream aggregates, which correspond to a kind of indirect write, if the

downstream aggregate uses the event to change its state, but the initiative to perform the change is

on the downstream aggregate, which is aware of the semantics of its upstream aggregates. Note that,

a functionality cannot perform a read on a downstream aggregate, because publishing events is asyn-

chronous, and, from an architectural perspective, the upstream aggregate is unaware of downstream

aggregates.

Therefore, considering these concepts, the functionalities can be classified in the following types:

• Query : this type of functionality only contains read operations to aggregates, and is distinguished

by the number of aggregates it reads:

– Single Aggregate - all reads belong to the same aggregate, the main aggregate;

– Multiple Aggregates - the reads are done in several aggregates, the main aggregate and one

or more secondary aggregates.

• Simple Functionality : characterizes the functionalities that write in a single aggregate, the main ag-

gregate, though they may read different aggregates, and so, it is also distinguishes by the number

of aggregates it reads:

– Single Aggregate - all reads belong to the same aggregate, the main aggregate, where the

write also occurs;

– Multiple Aggregates - the reads are done in several aggregates, the main aggregate, and one

or more secondary aggregates.

The write on the main aggregate may trigger events to be subscribed by downstream aggregates;

• Complex Functionality : writes in multiple aggregates, the main aggregate and one or more sec-

ondary upstream aggregates. Like in the previous type, it can read aggregates, either a single

one or multiple. Additionally, the writes on the aggregates may trigger events to be subscribed by

downstream aggregates.

15

3.3 Transactional Causal Consistency

To define functionalities execution semantics in the context of transactional causal consistency, we in-

troduce the concept of version number. Each aggregate has several versions, where A is the set of

all aggregate version, and each version has a unique number, denoted by a.version, where a ∈ A.

The version numbers form a total order, i.e. it is possible to compare any two version numbers,

∀ai,aj∈Aai.version ≤ aj .version ∨ aj .version < ai.version. Given an aggregate version, a ∈ A,

a.aggregate denotes its aggregate, and a.versions denotes all the aggregates versions of aggregate

a.aggregate. Additionally, there is a version number for each functionality f , denoted by f.version, that

is assigned when the functionality starts with the number of the last successfully finished functionality

incremented by one. This number may be subsequently changed, as it will be described, and assigned

as the version number of all the aggregates written by the functionality. F is the set of all executed

functionalities, and F.success ⊆ F is the subset of functionality executions that finished successfully. A

causal snapshot of an executing functionality is a set of aggregates which are causality consistent given

the functionality version number. Therefore, a functionality f causal snapshot, denoted by f.snapshot,

is a set of aggregate versions, f.snapshot ⊆ A, such that there is a single version for each aggregate,

∄ai,aj∈f.snapshotai.aggregate = aj .aggregate, and the following condition holds:

∀ai∈f.snapshot : ai.version < f.version ∧

∀aj∈ai.versions : aj .version < ai.version

The first condition guarantees that the version was not created by a functionality that finished after f

started, and the second condition guarantees that it is the most recent version, considering the first

condition. As an example, consider an aggregate version a which as version number 5, it was written by

functionality with version number 5. Also consider two functionalities, fi and fj , that start concurrently,

when the last successfully finished functionality have 7 as its version number. So, the version number of

fi and fj is 8. Suppose the fi finishes first and writes a version of a, which will have version number 8.

If fj reads a to its snapshot after fi finishes, it finds versions 5 and 8, but it will add version 5 because it

is the most recent version smaller than 8, which is the fj executing version number. The execution of a

functionality f in a transactional causal consistent context follows the following steps:

1. When the functionality f starts, f.version = max(F.success.version)+1, where F.success.version

is the set of version numbers of all the functionalities executions that finished successfully;

2. Whenever an aggregate is read, it is selected a version according to do the functionality snapshot

conditions, and added to it, if not already there;

3. Whenever an aggregate is written, it is selected a version according to do the functionality snapshot

conditions, and added to it, if not already there. In case the aggregate is being created, it is

16

assigned the functionality version number. f.written denotes the subset of f.snapshot of the

written aggregates;

4. When the functionality finishes execution it proceeds to commit, and if the process succeeds the

functionality finishes successfully, otherwise it aborts. It does the following actions:

(a) The written aggregates preserve the intra-invariants, i.e. ∀a∈f.written, irv∈a.intraInva.irv, where

a.intraInv denotes the aggregate intra invariants, and a.irv denotes evaluation of the invari-

ant in the a version;

(b) For each aggregate versions to be written get, if exists, the most recent version of the same

aggregate that was created by a concurrent functionality, i.e. ∀ai∈f.written ai.toMerge =

maxa.version{aj ∈ ai.versions : aj .version ≥ ai.version};

(c) For each aggregate that has a version to merge, merge it. merge(ai, ai.toMerge) denotes the

merged version;

(d) Update the functionality version number to the most recent successfully finished functionality

version number plus one (f.version = max(F.success.version) + 1), and commit the written

aggregates using the new functionality version number, f.version.

Transactional causal consistency has the lost update anomaly, which occurs when there are several

concurrently executing functionalities updating the same aggregates. The merge tries to handle this

anomaly by verifying if it is possible to merge concurrent aggregate versions, while preserving the ag-

gregate semantics and the intentions of the functionalities that changed them. The merge occurs in

two versions of an aggregate, merge(ai, aj), where ai is the version of the functionality to commit and

aj the version already committed. To do the merge, it is necessary to find the version that is the com-

mon ancestor of both versions, in order to identify the differences. Since the version to commit evolved

from a committed version, this version is the common ancestor and is denoted by ai.prev. Note that

between ai.prev and aj can be several other committed versions, if several concurrent functionalities

have committed. Nevertheless, it is possible to identify which attributes were changed when com-

pared with the common ancestor, which is denoted, respectively, by diff(ai.prev, ai) ⊆ a.attributes

and diff(ai.prev, aj) ⊆ a.attributes, where a.attributes denotes the attributes of a.aggregate. Consider

the example above, where, instead of two, there are three concurrent functionalities executing with ver-

sion number 8, fi, fj and fk, and all writing aggregate a. Suppose that fi finishes first with version

number 8, and then fj with version number 9, when fk tries to finish will find aggregate a with version

9. The common ancestor will be version 5, and so the differences will be between version 5 and 9 and

version 5 and the version fk is trying to write.

The aggregate designer has to define the semantics of consistent merges, which depends on the

aggregate semantics. The idea is that the merge should preserve the intention of each one of the func-

17

tionalities. For instance, suppose a functionality that changes the start and end dates of a tournament,

and one user invokes the functionality to change the start date while keeping the end date, and another

user, concurrently change the end date while preserving the start date. In this case it does not make

sense to merge the two versions, because it would dismiss the intention of each one of the users, they

change one of the dates while observing the value of the other one. So, the merge can only occur if the

merge does violate the intention of each one of the functionalities. Note that the intention semantics is

not an intra-invariant, it has to do with TCC semantics. Additionally, if both functionalities changes all the

attributes of an intention, we cannot say that a functionality violates the intention of the other.

Therefore, given an aggregate a, the subsets of attributes that cannot be simultaneously changed

in different versions are denoted by a.intentions ⊆ P(a.attributes). The following condition defines the

cases where the merge cannot occur, the lost update anomaly cannot be handled, and the functionality

has to abort:

∃ati∈diff(ai.prev,ai),atj∈diff(ai.prev,aj),ati ̸=atj∃i∈ai.intentions :

{ati, atj} ⊆ i ∧

¬(i ⊆ diff(ai.prev, ai) ∧ i ⊆ diff(ai.prev, aj))

The second step of the merge process is to merge any changed attributes, which is done using pre-

defined merge methods defined by the developer. Note that, it may not be possible to merge attributes,

in which case the merge fails, which is similar to the of non-incremental operations concept defined in

the conflict-free data types literature. Therefore, the merge is defined using developer defined merge

methods per attribute:

at ∈ diff(ai.prev, ai) ∩ diff(ai.prev, aj)

=⇒ merge(ai, aj , at)

Overall, the process of merging two aggregate versions follows the steps:

1. Verify intention conditions;

2. Merge changed attributes;

3. Run intra-invariants in the merged version.

18

Listing 3.3: Extend Aggregate with Merge Semantics

1 Tournament Causal Consistency

2 Merge

3 I n t e n t i o n s Tournament t1 , t2 :

4 (t1 . s tar tT ime , t2 . endTime)

5 . . .

6 Methods Tournament tN , tC :

7 s ta r tT ime

8 t h i s . s ta r tT ime = tN . s ta r tT ime

9 . . .

The specification in Listing 3.3 illustrates the extension of the Tournament aggregate for transactional

causal consistency, where the merge method for the start date uses the most recent update (tN is the

new version whereas tC is the committed). If the intention is not violated, overwrite is allowed, the last

functionality to commit overwrites the start date.

3.4 Eventual Consistency

The transactional model for aggregates has an additional level of complexity due to the upstream-

downstream relation between aggregates. A functionality cannot directly interact with aggregates that

are downstream of its main aggregate. So, if the execution of the functionality has some impact on

downstream aggregates it cannot occur in the context of the causal consistent transaction executing

the functionality. Instead, an event is published and eventually processed by the interested subscribing

downstream aggregates. These events are inferred from the downstream inter-invariants.

Listing 3.4: Extend Aggregates with Events

1 CourseExecution Causal Consistency

2 Events

3 Publ ish

4 ANONYMIZE STUDENT

5

6 Tournament Causal Consistency

7 Events

8 Subscribe

9 ANONYMIZE STUDENT: PARTICIPANT EXISTS , CREATOR EXISTS, . . .

19

Therefore, it is necessary to extend the aggregate specification to accomodate this situation. List-

ing 3.4 shows the transactional causal consistency extension due to the tournament PARTICIPANT EXISTS

inter-invariant. The processing of the event triggers the execution of functionality anonymizeParticipant

in Listing 3.2. As a consequence, the set of events an aggregate version subscribes to is dynamically

calculated. In the example, a version of tournament subscribe to the ANONYMIZE STUDENT events

emitted by the course execution version inferred from the Participant is declaration, where participant id

from s.id, see Listing 3.1. The set of events an aggregate version subscribes to is dynamically calcu-

lated, because it depends on the aggregate version state. In the example, a tournament subscribes the

anonymize events that refer to its participants, which can change dynamically through, for instance, the

add participant functionality.

Due to the occurrence of these events, it is necessary to reassess the causal consistency associated

to the functionality execution. The causal snapshot associated with functionality execution should also

guarantee that all the aggregates subscribing to an event are consistent when involved in a causal

transaction, i.e. they have processed all the events in common.

As an example, consider three different aggregate versions ai, aj and ak, where the last two sub-

scribe events of the first one. In a causal snapshot two cases can occur: (1) aj and ak belong to the

snapshot but ai does not; (2) ai and aj belong to the snapshot. Other cases are similar or combinations

of these two cases. In the first case, considering the previous condition for causal snapshot consistency,

the versions of the aggregates can have different values, smaller than functionality version number, but

it may be the case that one of the versions has processed an event from ai while the other does not.

So they are not consistent. Therefore, it is necessary to guarantee that both versions process the same

events they are subscribed to. In the second case, it is necessary to guarantee that all the events emitted

by ai have been processed by aj , if it subscribe them.

Given an event e ∈ E, where E is the set of all events, where e.type denotes the type of event,

e.aggregate the aggregate that emits the event, and e.version denotes the version of the aggregate

emitting the event. Given an aggregate version a, a.subsEvs ⊆ E denotes the events it subscribes to,

and a.emitEvs ⊆ E the set of events it has emitted.

An aggregate event subscription is a condition that uses the event sender aggregate version and the

event type to identify the subscribed events. The sender aggregate version indicates the last version

of the aggregate sender the aggregate subscriber depends on. Therefore, after an aggregate pro-

cesses an event it updates the event sender aggregate version. For instance, tournament subscribes

the anonymize event of course execution, it contains the course execution version it subscribes to. Note

that, it is not necessarily the most recent version of course execution, because the course execution may

have evolved without sending events relevant for the tournament. Of course, it can also be the case that

the course execution emitted an event the course execution subscribed to but has not processed it yet.

20

Therefore, the subscriber can process events sent by aggregates that have a higher version number than

the version it subscribes to. This is evaluated by the subscription condition. We are also considering

that the publish-subscribe channel is causal order.

Therefore, to handle the impact of eventual consistency in the system, two additional conditions have

to be added to to the functionality causal snapshot.

For the first condition, if two aggregates subscribe to an event of an upstream aggregate and they

are in causal snapshot, they should be consistent according to the processing of the event, even if the

upstream aggregate is not part of the causal snapshot.

∀aj ,ak∈f.snapshot,ai∈A∀e∈ai.emitEvs

e ∈ aj .subsEvs ∩ ak.subsEvs ∨

e /∈ aj .subsEvs ∪ ak.subsEvs

Note that aj and ak can subscribe to different versions of the aggregate ai.aggregate, because the

aggregate can evolve in aspects that they do not subscribe. Therefore, the condition guarantees that it

only applies for the changes that matter. In the example, the condition forbids ai to emit an event that is

processed by ak but not for aj , or, ai emits the event, aj does not process it and ak is created already

using ai, which corresponds to the ≤ case.

The second condition specifies that if upstream and downstream aggregates are in the snapshot, all

the events emitted by the former have to be processed by the latter.

∀ai,aj∈f.snapshot∀e∈ai.emitEvs

e /∈ aj .subsEvs

In this case it is necessary to guarantee that there is no version of the aggregate, with version number

between the version aj subscribes to and the version ai added to the causal snapshot, that emits and

event subscribed by aj .

Events are emitted at functionality commit time, to guarantee atomicity of the creation of the new

aggregate version and the emission of the event. The event version is equal to the functionality version

that did the change in the aggregate, which is the aggregate version as well. Similarly, an event is

considered processed when the functionality it triggered commits. An event may be associated with

more than one inter-invariant, if it depends on the same change of the upstream aggregate, which

corresponds, actually, to the first case above.

21

22

4
Simulator

Contents

4.1 Architecture . 25

4.2 Domain Model . 26

4.3 Extension . 29

4.4 Implementation . 37

23

24

To experiment the design and behaviour of functionalities business logic execution, using transac-

tional causal consistency, on a microservice system implemented as a set of upstream-downstream

aggregates, we developed a simulator that replicates the relevant aspects of aggregate executing under

TCC.

The simulator is implemented as a Java Spring Boot1 web application, where the aggregate func-

tionalities are published as web services, and aggregates are accessed through Spring transactional

services. The aggregates are stored in a PostgreSQL2 database accessed using Hibernate3. The emit-

ted events are also stored in the database.

4.1 Architecture

The simulator uses an architecture where each functionality is available as a web-service, the interac-

tions with the main and upstream aggregates is done using transactional invocations and the interac-

tions with downstream aggregates is done writing events in a database that is periodically queried by a

scheduler. When the event is detected by the scheduler it is also processed using transactional causal

consistency. The Unit of Work pattern [17, Chapter 11] is used for implementation of transactional causal

consistency.

Figure 4.1 presents a component-and-connector view [18] of the simulator architecture. It has three

component types, Aggregate, Event Manager and Data Store, and four connector types. The request/re-

ply connector implements the upstream-downstream relations between aggregate components, where

the invoker is the downstream aggregate. The publish-subscribe connector implements the event chan-

nels, which are managed by the Event Manager component, and have publish and subscribe roles, for

instance aggregate b is both a publisher and subscriber because it emits events that are consumed by

its downstream aggregate component c and subcribes events from its upstream aggregate a. Aggre-

gate components use data access connectors to manage their aggregates persistence, whereas the

event manager component used the data access connector to persist the events. Finally, the aggregate

components have a HTTP interface connector that it is used to start its functionalities, the functionalities

that have the component aggregate as main aggregate.

Figure 4.2 depicts the interactions associated with the execution of a simple functionality of aggregate

b, which reads aggregate c. The execution, which occurs in the component of the main aggregate, starts

by creating a unit of work, that is responsible to manage the causal transaction. The read of aggregates

is intercepted by the unit of work, that adds the version to the causal snapshot. The changes done on

the b aggregate are registered in the unit of work. On commit, the unit of work does the verifications

1https://spring.io/projects/spring-boot
2https://www.postgresql.org/
3https://hibernate.org/

25

https://spring.io/projects/spring-boot
https://www.postgresql.org/
https://hibernate.org/

: Data
Store

a: Aggregate

b: Aggregate

c: Aggregate

: Event Manager

Request

/Reply

Data

Access

Publish

/Subscribe

P S

P

PS

S

HTTP

Interface

Figure 4.1: Simulator: Component-and-Connector View

and required merges, finishing by writing the new version of the aggregate and the events to emit, and

processed, in the data store.

The simulator exercises the causal transactional behavior of the functionality. Each aggregate invo-

cation is done in a transaction, which allows the interleaving with other executing functionalities. The

commit is a serializable transaction, which guarantees the atomic write of all versions, where each ver-

sion is written with the unit of work version number. On the other hand, the events are also written in the

commit, which guarantees that their emission is atomic with the aggregates changes.

The processing of events is periodically triggered by the event manager, that checks the events in the

data store and start their processing in their own functionality, which executes in a causal transaction.

Therefore, during a functionality execution it is possible that one of its aggregates to update is changed

in the consequence of the processing of an event, which will be detected during the commit and trigger

a merge.

4.2 Domain Model

Figure 4.3 presents the simulator domain model, which is the core of the simulator and it is encapsulated

by services. Version is a persistent singleton entity that contains the number of most recent committed

causal transaction. Event contains the id and version of the aggregate that emits the event. Events

26

c: Aggregate

query()

addSnapshot()

uow: Unit of Work

write()

b: Aggregate

bDto = getAggregate(uow)

uow =

create()

functionality()

query()

addSnapshot()

updateDto(uow, bDto)

commit()

registerChanged()

: Data Sore

cDto = getAggregate(uow)

Figure 4.2: Simulator: Component-and-Connector View

27

Aggregate

-aggregateId: Integer

-version: Integer

-aggregateType: enum

+ verifyInvariants(): void

+ merge(other: Aggregate): Aggregate

+ getEventSubscriptions(): Set<EventSubscription>

<<enumeration>>

AggregateState

ACTIVE
INACTIVE
DELETED

1

aggregateState

UnitOfWork

- version: Integer

- causalSnapshot: Map<Integer, Integer>

+ addToCausalSnpashot(aggregate: Aggregate): void

+ registerChanged(aggregate: Aggregate): void

Event

- aggregateId: Integer

- aggregateVersion: Integer

aggregatesToCommit0..*

0..*

eventsToEmit

Version

- versionNumber: Integer

+ incrementVersion(): void

emittedEvents 0..*

prev aggregatesToCommit0..*

Figure 4.3: Simulator: Domain Model View

28

are stored in a database and are periodically checked by event handlers, which trigger the handling.

The Aggregate contains its id, version, and aggregateType. Aggregate type refers to the type of aggre-

gate, which is set in subclasses. Aggregates can be in one of three states: ACTIVE, INACTIVE, and

DELETED. ACTIVE is the normal state, where the aggregate behaves to support the business logic.

INACTIVE is a state where the aggregate reached an inconsistent state and cannot change anymore,

although end users can observe it. Finally, an aggregate is in a DELETED state after being removed,

which is a relevant information for internal system management, but not visible from outside. Aggregates

are implemented as a group of embedded elements such that can be read and written to the database

as a whole. Additionally, although all aggregates are implemented in the same database, they are com-

pletely independent, not having any referential dependency. Having all aggregates in the same database

simplifies the unit of work atomic commit. The aggregate refers to its previous version, that is used by the

merge method. On the other hand, each aggregate version has the set of events it emitted. The three

aggregate methods in Figure 4.3 are extended in the subclasses with aggregate-specific business logic.

The Unit of Work is a non persistent entity that contains the version of the causal transaction executing

the functionality and the causal snapshot. While being changed in unit of work, attribute aggegatesTo-

Commit, the aggregates are detached from the database, which creates a version whose changes are

local to the functionality execution. When committing, the Unit Of Work creates new aggregate versions

with its version number and store them in the database. Additionally, the commit stores the emittedE-

vents in the database, which corresponds to its emission and processing. The Unit Of Work commit is

implemented in the service, not in the domain entity, because Spring provides transactional behavior at

the service level.

4.3 Extension

To simulate a microservice system using transactional causal consistency, the developer has to extend

from the implementation abstract classes.

Listing 4.1 shows the implementation of the tournament aggregate excerpt previously specified. At-

tribute creator, line 7, is an embedded object which represents the tournament creator and participants,

line 10, is an embedded collection, which is loaded with the aggregate. The following elements in the

listing are elements which are strictly necessary to be implemented in order for this aggregate to be

used in TCC functionalities.

Lines 13-69 implement the inter-invariants through event subscriptions. The getEventSubscriptions

method is an implementation of an abstract method in the Aggregate superclass, returns all the event

subscriptions, as a set if the aggregate is in ACTIVE state. Method interinvariantCreatorExists, line 23,

implements the inter-invariant CREATOR EXISTS by subscribing to events coming from the course exe-

29

cution aggregate, which allows to establish an equality between the creator and the corresponding exe-

cution student fields. The same process is followed for the tournament participants in method interinvari-

antParticipantExists, line 47, which verifies the inter-invariant PARTICIPANT EXISTS. The getEventSub-

scriptions method is used by the Unit Of Work to make verifications for the causal snapshot and, in the

event detection, to determine which events have been processed by the aggregate and which must still

have to be processed.

Lines 72-95 implement the intra-invariant verifications that maintain the consistency within the aggre-

gate. The invariantStartTimeBeforeEndtime verifies the START BEFORE END invariant, by checking

that the tournament start time is before the tournament end time. The invariantCreatorParicipantConsis-

tency verifies the CREATOR PARTICIPANT CONSISTENCY by verifying that if the creator and some

participant reference the same execution student they must have the same information about it. The

verifyInvariants is an implementation of an abstract method in the Aggregate superclass, that compiles

all intra-invariants for the current aggregate. It is used several times during the commit, one as standard

verification on the aggregate and the remaining after every merge.

Lines 99-180 implement extensions that allows the generic merge method, in the Aggregate super-

class to run. The getFieldsChangedByFunctionalities method, line 99, provides the merge with the name

of the fields that it should look for when computing the changed fields on two concurrent versions. The

getIntentions method, line 105, provides the intentions of the aggregate, i.e. pairs of fields which cannot

be updated independently on two different versions. This specific implementation instructs the merge

that the start time and end time fields cannot be updated individually on two different concurrent ver-

sions. The mergeFields method, line 112, returns a merged version of the current aggregate, this with

another, committedVersion, requested by the merge. The following methods represent the merges of

each field. The method mergeStartTime, line 134, merges the start time by returning the lastest updated

start time. That corresponds to the start time of the current aggregate, this, if it was updated. Otherwise,

it corresponds to star time of the committedVersion. The mergeParticipants method, line 143, is slightly

more complex. It combines the initial participants before both updated, the removed and added partici-

pants on each update into a set of participants. The method call in line 153 is used to synchronize the

participant version in case there are participants with different versions on the aggregate versions.

Listing 4.1: Tournament Aggregate Implementation

1 @Entity

2 p u b l i c c lass Tournament extends Aggregate {

3 p r i v a t e LocalDateTime s ta r tT ime ;

4 p r i v a t e LocalDateTime endTime ;

5

6 @Embedded

30

7 p r i v a t e f i n a l TournamentCreator c rea to r ;

8

9 @ElementCollect ion

10 p r i v a t e Set<TournamentPart ic ipant> p a r t i c i p a n t s ;

11

12 @Override

13 p u b l i c Set<EventSubscr ip t ion> getEventSubscr ip t ions () {

14 Set<EventSubscr ip t ion> eventSubscr ip t ions = new HashSet<>();

15 i f (t h i s . ge tSta te () == ACTIVE) {

16 i n t e r I n v a r i a n t C r e a t o r E x i s t s (even tSubscr ip t ions) ;

17 i n t e r I n v a r i a n t P a r t i c i p a n t E x i s t s (even tSubscr ip t ions) ;

18 . . .

19 }

20 r e t u r n even tSubscr ip t ions ;

21 }

22

23 p r i v a t e vo id i n t e r I n v a r i a n t C r e a t o r E x i s t s (Set<EventSubscr ip t ion> eventSubscr ip t ions) {

24 eventSubscr ip t ions . add (

25 new EventSubscr ip t ion (

26 t h i s . courseExecut ion . getAggregateId () ,

27 t h i s . courseExecut ion . getVers ion () ,

28 UNENROLL STUDENT, t h i s

29)

30) ;

31 eventSubscr ip t ions . add (

32 new EventSubscr ip t ion (

33 t h i s . courseExecut ion . getAggregateId () ,

34 t h i s . courseExecut ion . getVers ion () ,

35 ANONYMIZE EXECUTION STUDENT, t h i s

36)

37) ;

38 eventSubscr ip t ions . add (

39 new EventSubscr ip t ion (

40 t h i s . courseExecut ion . getAggregateId () ,

41 t h i s . courseExecut ion . getVers ion () ,

42 UPDATE EXECUTION STUDENT NAME, t h i s

43)

44) ;

45 }

46

47 p r i v a t e vo id i n t e r I n v a r i a n t P a r t i c i p a n t E x i s t s (Set<EventSubscr ip t ion> eventSubscr ip t ions) {

48 eventSubscr ip t ions . add (

49 new EventSubscr ip t ion (

50 t h i s . courseExecut ion . getAggregateId () ,

51 t h i s . courseExecut ion . getVers ion () ,

31

52 UNENROLL STUDENT, t h i s

53)

54) ;

55 eventSubscr ip t ions . add (

56 new EventSubscr ip t ion (

57 t h i s . courseExecut ion . getAggregateId () ,

58 t h i s . courseExecut ion . getVers ion () ,

59 ANONYMIZE EXECUTION STUDENT, t h i s

60)

61) ;

62 eventSubscr ip t ions . add (

63 new EventSubscr ip t ion (

64 t h i s . courseExecut ion . getAggregateId () ,

65 t h i s . courseExecut ion . getVers ion () ,

66 UPDATE EXECUTION STUDENT NAME, t h i s

67)

68) ;

69 }

70

71 @Override

72 p u b l i c vo id v e r i f y I n v a r i a n t s () {

73 i f (! (i nva r ian tAnswerBe fo reSta r t () &&

74 i n v a r i a n t C r e a t o r P a r t i c i p a n t C o n s i s t e n c y && . . .)) {

75

76 throw new TutorExcept ion (INVARIANT BREAK , getAggregateId ()) ;

77 }

78 }

79

80 p u b l i c boolean invar iantStar tT imeBeforeEndTime () {

81 r e t u r n t h i s . s ta r tT ime . i sBe fo re (t h i s . endTime) ;

82 }

83

84 p r i v a t e boolean i n v a r i a n t C r e a t o r P a r t i c i p a n t C o n s i s t e n c y () {

85 f o r (TournamentPar t ic ipant p a r t i c i p a n t : t h i s . p a r t i c i p a n t s) {

86 i f (p a r t i c i p a n t . getAggregateId () . equals (t h i s . c rea to r . getAggregateId ())) {

87 i f (! p a r t i c i p a n t . getVers ion () . equals (t h i s . c rea to r . getVers ion ())

88 | | ! p a r t i c i p a n t . getName () . equals (t h i s . c rea to r . getName ())

89 | | ! p a r t i c i p a n t . getUsername () . equals (t h i s . c rea to r . getUsername ())) {

90

91 r e t u r n f a l s e ;

92 }

93 }

94 }

95 r e t u r n t rue ;

96 }

32

97

98 @Override

99 p u b l i c Set<St r ing> getF ie ldsChangedByFunc t iona l i t ies () {

100 r e t u r n Set . o f (” s ta r tT ime ” , ” endTime ” ,

101 ” p a r t i c i p a n t s ” , . . .) ;

102 }

103

104 @Override

105 p u b l i c Set<S t r i n g []> g e t I n t e n t i o n s () {

106 r e t u r n Set . o f (

107 new S t r i n g [] { ” s ta r tT ime ” , ” endTime ” } ,

108 . . .) ;

109 }

110

111 @Override

112 p u b l i c Aggregate mergeFields (Set<St r ing> toCommitVersionChangedFields ,

113 Aggregate committedVersion , Set<St r ing> committedVersionChangedFields){

114 i f (! (committedVersion ins tanceo f Tournament)) {

115 throw new TutorExcept ion (AGGREGATE MERGE FAILURE, getAggregateId ()) ;

116 }

117

118 Tournament committedTournament = (Tournament) committedVersion ;

119 Tournament mergedTournament = new Tournament (t h i s) ;

120

121 mergeCreator (committedTournament , mergedTournament) ;

122

123 mergeStartTime (toCommitVersionChangedFields , committedTournament ,

124 mergedTournament) ;

125 . . .

126 mergePar t ic ipants ((Tournament) getPrev () , t h i s , committedTournament ,

127 mergedTournament) ;

128

129 . . .

130

131 r e t u r n mergedTournament ;

132 }

133

134 p r i v a t e vo id mergeStartTime (Set<St r ing> toCommitVersionChangedFields ,

135 Tournament committedTournament , Tournament mergedTournament) {

136 i f (toCommitVersionChangedFields . conta ins (” s ta r tT ime ”)) {

137 mergedTournament . se tStar tT ime (getStar tT ime ()) ;

138 } else {

139 mergedTournament . se tStar tT ime (committedTournament . getStar tT ime ()) ;

140 }

141 }

33

142 . . .

143 p r i v a t e vo id mergePar t ic ipants (Tournament prev , Tournament v1 , Tournament v2 ,

144 Tournament mergedTournament) {

145

146 Set<TournamentPart ic ipant> p revPar t i c i pan tsP re =

147 new HashSet<>(prev . g e t P a r t i c i p a n t s ()) ;

148 Set<TournamentPart ic ipant> v1Par t i c i pan tsPre =

149 new HashSet<>(v1 . g e t P a r t i c i p a n t s ()) ;

150 Set<TournamentPart ic ipant> v2Par t i c i pan tsPre =

151 new HashSet<>(v2 . g e t P a r t i c i p a n t s ()) ;

152

153 TournamentPar t ic ipant . syncPar t i c i pan tsVers ions (p revPar t i c ipan tsPre ,

154 v1Par t i c ipan tsPre , v2Par t i c i pan tsPre) ;

155

156 Set<TournamentPart ic ipant> p r e v P a r t i c i p a n t s =

157 new HashSet<>(p revPar t i c i pan tsPre) ;

158 Set<TournamentPart ic ipant> v 1 P a r t i c i p a n t s =

159 new HashSet<>(v1Par t i c i pan tsPre) ;

160 Set<TournamentPart ic ipant> v 2 P a r t i c i p a n t s =

161 new HashSet<>(v2Par t i c i pan tsPre) ;

162

163

164 Set<TournamentPart ic ipant> addedPar t i c ipan ts = S e t U t i l s . union (

165 S e t U t i l s . d i f f e r e n c e (v1Par t i c i pan ts , p r e v P a r t i c i p a n t s) ,

166 S e t U t i l s . d i f f e r e n c e (v2Par t i c i pan ts , p r e v P a r t i c i p a n t s)

167) ;

168

169 Set<TournamentPart ic ipant> removedPar t ic ipants = S e t U t i l s . union (

170 S e t U t i l s . d i f f e r e n c e (p revPar t i c i pan ts , v 1 P a r t i c i p a n t s) ,

171 S e t U t i l s . d i f f e r e n c e (p revPar t i c i pan ts , v 2 P a r t i c i p a n t s)

172) ;

173

174 Set<TournamentPart ic ipant> mergedPar t ic ipants = S e t U t i l s . union (

175 S e t U t i l s . d i f f e r e n c e (p revPar t i c i pan t s , removedPar t ic ipants) , addedPar t i c ipan ts) ;

176 mergedTournament . s e t P a r t i c i p a n t s (mergedPar t ic ipants) ;

177

178 }

179 . . .

180 }

Listing 4.2 illustrates the functionality for updating a tournament. How it creates the unit of work,

pass it in the invocations of transactional services, and finishes committing it. The update service uses

the unit of work to create the causal snapshot and register the updated aggregates. The method get-

CausalTournamentLocal does the query to obtain the correct tournament version and add it to causal

34

snapshot.

Listing 4.2: Tournament Functionalities Implementation

1 p u b l i c c lass TournamentFunc t iona l i t i es {

2 p u b l i c vo id updateTournament (TournamentDto tournamentDto , . . .) {

3 UnitOfWork unitOfWork = uni tOfWorkService . createUnitOfWork () ;

4 . . .

5 TournamentDto newTournamentDto =

6 tournamentService . updateTournament (tournamentDto , . . . , unitOfWork) ;

7 . . .

8 uni tOfWorkService . commit (unitOfWork) ;

9 }

10 . . .

11 p u b l i c vo id addPar t i c i pan t (I n tege r tournamentAggregateId ,

12 I n t ege r userAggregateId) {

13

14 UnitOfWork unitOfWork = uni tOfWorkService . createUnitOfWork () ;

15

16 TournamentDto tournamentDto = tournamentService

17 . getCausalTournamentRemote (tournamentAggregateId , unitOfWork) ;

18

19 UserDto userDto =

20 courseExecut ionServ ice . getStudentByExecut ionIdAndUserId (

21 tournamentDto . getCourseExecut ion () . getAggregateId () ,

22 userAggregateId , unitOfWork) ;

23

24 TournamentPar t ic ipant p a r t i c i p a n t = new TournamentPar t ic ipant (userDto) ;

25

26 tournamentService . addPar t i c i pan t (tournamentAggregateId , p a r t i c i p a n t ,

27 userDto . getRole () , unitOfWork) ;

28

29 uni tOfWorkService . commit (unitOfWork) ;

30 }

31 }

32

33 @Service

34 p u b l i c c lass TournamentService {

35 @Transactional

36 p u b l i c TournamentDto updateTournament (TournamentDto tournamentDto ,

37 . . . , UnitOfWork unitOfWork) {

38 Tournament oldTournament =

39 getCausalTournamentLocal (tournamentDto . getAggregateId () , unitOfWork) ;

40 Tournament newTournament = new Tournament (oldTournament) ;

35

41

42 i f (tournamentDto . getStar tT ime () != n u l l) {

43 newTournament . se tStar tT ime (

44 LocalDateTime . parse (tournamentDto . getStar tT ime ())) ;

45 unitOfWork . registerChanged (newTournament) ;

46 }

47

48 i f (tournamentDto . getEndTime () != n u l l) {

49 newTournament . setEndTime (

50 LocalDateTime . parse (tournamentDto . getEndTime ())) ;

51 unitOfWork . registerChanged (newTournament) ;

52 }

53 . . .

54 r e t u r n new TournamentDto (newTournament) ;

55 }

56 . . .

57

58 @Transactional

59 p u b l i c vo id addPar t i c i pan t (I n tege r tournamentAggregateId ,

60 TournamentPar t ic ipant tournamentPar t i c ipan t , S t r i n g userRole ,

61 UnitOfWork unitOfWork) {

62

63 i f (t ou rnamentPar t i c ipan t . getName () . equals (”ANONYMOUS”) | |

64 t ou rnamentPar t i c ipan t . getUsername () . equals (”ANONYMOUS”)) {

65

66 throw new TutorExcept ion (ErrorMessage .USER IS ANONYMOUS,

67 t ou rnamentPar t i c ipan t . getAggregateId ()) ;

68 }

69

70 Tournament oldTournament =

71 getCausalTournamentLocal (tournamentAggregateId , unitOfWork) ;

72

73 i f (LocalDateTime . now () . i s A f t e r (oldTournament . getStar tT ime ())) {

74 throw new TutorExcept ion (CANNOT ADD PARTICIPANT,

75 tournamentAggregateId) ;

76 }

77

78 Tournament newTournament = new Tournament (oldTournament) ;

79 newTournament . addPar t i c i pan t (tou rnamentPar t i c ipan t) ;

80 unitOfWork . registerChanged (newTournament) ;

81 }

82 . . .

83 }

Finally, Listing 4.3 illustrates the event detection, where for each subscribed event it triggers the

36

transactional causal execution of the event handler functionality, processAnonymousStudentEvent. The

detector is launched every second, after the previous detection, and, for each tournament aggregate,

detects if any event for the subscribed type, ANONYMIZE STUDENT, was emitted, eventsToProcess.

Listing 4.3: Tournament Event Detection

1 p u b l i c c lass TournamentEventDetection {

2 @Scheduled (f i xedDelay = 1000)

3 p u b l i c vo id detectAnonymizeStudentEvents () {

4 Set<In teger> tournamentAggregateIds = getAct iveAggregate Ids (” Tournament ”) ;

5 f o r (I n tege r aggregateId : tournamentAggregateIds) {

6 Tournament tournament = tournamentReposi tory .

7 f indLastTournamentVersion (aggregateId) . get () ;

8 Set<EventSubscr ip t ion> eventSubs =

9 tournament . getEventSubscr ipt ionsByEventType (ANONYMIZE STUDENT) ;

10 f o r (EventSubscr ip t ion eventSub : eventSubs) {

11 L i s t<Event> eventsToProcess = eventReposi tory . f i n d A l l ()

12 . stream ()

13 . f i l t e r (even tSubscr ip t ion : : subscr ibesEvent)

14 . sor ted (Comparator . comparing (Event : : getTs) . reversed ())

15 . c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

16 f o r (Event eventToProcess : eventsToProcess) {

17 t ou rnamen tFunc t i ona l i t i e s . processAnonymizeStudentEvent (

18 aggregateId , eventToProcess) ;

19 }

20 }

21 }

22 }

23 . . .

24 }

4.4 Implementation

The aggregate id is what identifies an aggregate. The system holds several versions of an aggregate,

where each version corresponds to a tuple in the database. Therefore, the identification cannot be sup-

ported by unique id automatically generated by the RDBMS. The identification of an aggregate version

is done by the aggregate id plus the version id. The aggregate id is manually generated and attributed

to the aggregate when the first version is created. The version id is given by the functionality version

number. However, we have decided to also use the RDBMS generated id as the declared primary

because, because it’s easier to maintain a single numerical value as a primary key than a composed

37

primary key. The aggregate id is generated by a class called AggregateIdGenerator. Every time a new

aggregate id is requested, a service creates new instance of the AggregateIdGenerator, persists it with

Java Persistance API (JPA) and returns the generated id which is unique.

The version number is part of the identification of an aggregate and is used by functionalities to deter-

mine which aggregate versions they are allowed to read. Therefore it is very important that aggregates

written in different functionalities have different version numbers. The version number is global across

all aggregate types and it is maintained by a counter. The counter is managed by two services: one

that just returns the current counter value and other which increments the counter value and returns

the incremented value. The former service is used when the functionality starts, whereas the later is

used when the service commits. Both service run in SERIALIZABLE isolation so that two functionalities

cannot commit using the same version number.

In the simulator, an aggregate is stored in the database as a set of tuples in a set of tables. Each

aggregate type uses the same set of tables. For instance, even though every tournament aggregate

shares the tournament creator table, each aggregate references a different tuple in the table and no

two aggregates reference the same tuple, even if the creator of two aggregates represents the same

student. Therefore, there are no foreign keys among tuples belonging to different aggregates, there are

not constraints between them at database level. Aggregates can only interact with each other through

API invocations done in the context of their business logic, to comply with the concept of aggregate.

There are two aspects which allow the simulation of TCC semantics: version queries and causal

snapshot building. For each aggregate type there is a query that retrieves the most recent version of

an aggregate, given its aggregate and a version number provided by the functionality which calls it.

This is important because it prevents functionalities from reading writes performed by other concurrent

functionalities. Listing 4.4 shows the query used to retrieve the most recent version of tournament

:aggregateId, whose version is inferior to :maxVersion. For the remaining aggregate types, the query is

the same except it accesses the aggregate type’s respective table. Note that deleted aggregates are not

retrieved.

Listing 4.4: Find Causal Tournament

1 s e l e c t *
2 from tournaments t

3 where

4 t . aggregate id = : aggregateId AND

5 t . ve rs ion < : maxVersion AND

6 t . s t a t e != 'DELETED ' AND

7 t . ve rs ion >= (

8 s e l e c t max(vers ion)

38

9 from tournaments

10 where aggregate id = : aggregateId AND

11 vers ion < : maxVersion

12)

However, not all queries respect the causal snapshot, because they are part of management mecha-

nisms instead of being a part of standard functionality execution. There are two cases where this occurs:

in event detection and search of concurrent versions during the commit. During event detection, when it

is necessary to know which events need to be processed for an aggregate, a query is issued to get the

most recent version of aggregate :aggregateId. An example of this query is showed in listing 4.5.

Listing 4.5: Find Most Recent Tournament Version

1 s e l e c t *
2 from tournaments t

3 where

4 t . aggregate id = : aggregateId AND

5 s ta te = 'ACTIVE ' AND

6 t . ve rs ion >= (

7 s e l e c t max(vers ion)

8 from tournaments

9)

The reason to select the last version of the aggregate is due to the fact that event detection occurs

outside the context of a functionality. It makes sense to choose the most recent version, because it is

most likely the version that is going to be read in the event handling functionality, which means events

are more likely to be successfully processed. Note that events not processed by previous versions can

be processed, if not yet, in the most recent version.

During commit we query for concurrent versions, if any, because it is not possible to use causal

snapshot queries. We want to obtain the most recent committed version of the aggregate we want to

commit. It is enough to get the most recent, because it integrates the changes done by all previous

ones. The implementation, actually, uses the prev aggregate attribute. Listing 4.6 shows the query that

searches all aggregate versions, of aggregate :aggregateId, higher :prevVersion, and selects the one

that have the highest version number.

Listing 4.6: Find Concurrent Versions

1 s e l e c t *
2 from tournaments

3 where i d =

39

4 (

5 s e l e c t max(i d)

6 from tournaments

7 where

8 aggregate id = : aggregateId AND

9 vers ion > : prevVers ion

10)

Each microservice implements the detection of each one of the event types it subscribes. When the

simulator starts, the periodic event detection occurs simultaneously for all events, but, as shown in line 2

of listing 4.3, after the first processing the periodic detection will be desynchronized for each event. This

occurs because the next detection for each particular detection will happen 1 second (1000 ms) after

the previous one finishes.

During event detection it can occur that a version that subscribes the event is updated before event

handling. Suppose that in line 17 of listing 4.3, before the event handling starts, another functionality

creates a new version of the tournament where the participant, which the event is going to anonymize, is

removed. In this case the event handling is going to find a new version of the tournament which, actually,

does not subscribe the event anymore. This is not a problem because a redundant verification is done

inside the event handling as can be seen in lines 9 and 22 of the event handling in listing 4.7.

Listing 4.7: Tournament Event Handling

1 @Transactional (i s o l a t i o n = I s o l a t i o n .READ COMMITTED)

2 p u b l i c Tournament anonymizeUser (I n tege r tournamentAggregateId , I n tege r execut ionAggregateId ,

3 I n t ege r userAggregateId , S t r i n g name, S t r i n g username , In tege r eventVersion ,

4 UnitOfWork unitOfWork) {

5

6 Tournament oldTournament = getCausalTournamentLocal (tournamentAggregateId , unitOfWork) ;

7 Tournament newTournament = new Tournament (oldTournament) ;

8

9 i f (! newTournament . getCourseExecution () . getAggregateId () . equals (execut ionAggregateId)) {

10 r e t u r n n u l l ;

11 }

12

13 i f (newTournament . getCreator () . getAggregateId () . equals (userAggregateId)) {

14 newTournament . getCreator () . setName (name) ;

15 newTournament . getCreator () . setUsername (username) ;

16 newTournament . getCourseExecut ion () . se tVers ion (eventVers ion) ;

17 newTournament . se tS ta te (INACTIVE) ;

18 unitOfWork . registerChanged (newTournament) ;

19 }

20

40

21 f o r (TournamentPar t ic ipant tp : newTournament . g e t P a r t i c i p a n t s ()) {

22 i f (tp . getAggregateId () . equals (userAggregateId)) {

23 tp . setName (name) ;

24 tp . setUsername (username) ;

25 newTournament . getCourseExecut ion () . se tVers ion (eventVers ion) ;

26 unitOfWork . registerChanged (newTournament) ;

27 }

28 }

29

30 r e t u r n newTournament ;

31 }

We have decided to run the commit code with SERIALIZABLE isolation, as shown in listing 4.8, so no

other aggregate versions are committed concurrently, which could influence this commit. This ensures

that the set of aggregate versions that can be concurrent with one that is trying to be committed remains

the same throughout the entire commit execution. It prevents a given commit from starving and being

stuck always finding new concurrent versions, and as soon as the concurrent aggregate event detection

ends the commit can safely persist the aggregate versions without risk.

Listing 4.8: Commit Serialization

1 @Retryable (

2 value = { SQLException . c lass } ,

3 backo f f = @Backoff (delay = 5000))

4 @Transactional (i s o l a t i o n = I s o l a t i o n . SERIALIZABLE)

5 p u b l i c vo id commit (UnitOfWork unitOfWork) {

6 . . .

7 }

41

42

5
Evaluation

Contents

5.1 Case Study . 45

5.2 Simulator Correctness . 47

5.3 Experiment Analysis . 56

5.4 Complexity Analysis . 59

5.5 Threats to Validity . 59

43

44

5.1 Case Study

QuizzesTutor1 is a large monolith application for teachers to prepare different types of questions and

propose quizzes to students. Students can answers quizzes, generate quizzes for self-assessment, se-

lecting the questions topics, and organized quizzes tournaments, among other features. It is a business

logic rich system implemented as a web application.

Course
U

D

Course
Execution

D

U

D
U

Question

U
D

Topic

U

D

User

D

U
D

U

D

U

Answer

D

U

D

U
D

U

D

U

Tournament

D

U

D

U

Quiz

Figure 5.1: Quizzes Tutor Inter-Aggregate Context Map

To experiment the design of business logic using transactional causal consistent aggregates, a set of

aggregates and their upstream-downstream relations where identified in a subset of the Quizzes Tutor

system, see Figure 5.1. We now describe each aggregate in the context of the domain logic.

A User represents a person using the system and can be of one of the following 3 types: STUDENT,

TEACHER and ADMIN. It it composed of a name and a username. An STUDENT can be enrolled

in several course executions which allows him to answer quizzes and participate in tournaments. A

TEACHER is responsible for managing the quizzes and questions. An ADMIN manages the creation

and deletion of courses and course executions. Additionally, if our implementation of this domain model

had authentication, the user can also contain other information, such as email or password.

A Course is a course in a teaching institution. It is composed of a name and a type. Type can

be either TECNICO or EXTERNAL. The reason of this distinction is that the application was designed

at first for courses only and was later extended to accommodate courses from other institutions. The

1https://quizzes-tutor.tecnico.ulisboa.pt/

45

https://quizzes-tutor.tecnico.ulisboa.pt/

Course functions as a blueprint for course executions.

A Course Execution is an instance of a course in a specific year. It’s composed by an acronym an

academic term and an end date. It contains a list of execution students, which represents the enrolled

users in the current course execution and has a reference to a course.

A Topic is an information topic within a course. For instance, in the context of the Software Engineer-

ing course, we can have topics such as ”Agile” or ”Test Driven Development”. A topic is composed of a

name and has a reference to a course.

A Question represents a question about certain topics. It contains a title a content and a list of

options. We implemented only multiple choice questions although there are more types of questions.

A question also contains a list of topics which are related to the question. The question exists within a

course, meaning all course executions of that course can use the question for their quizzes.

A Quiz is set of questions that can be answered within a certain time frame by students of the

course execution the quiz belongs to. It’s a common evaluation method used by teachers of course

executions. It contains a title and creation, available, conclusion and results dates. It also contains the

course execution it belongs to, the questions it has and it’s type, which in the current implementation can

IN CLASS, when it created directly or GENERATED when it is generated with random questions.

An Answer is the answer of student to a quiz. It contains information about whether it has been

answered and when it was answered. It references also the quiz this answers refers to, the student

which answered it and the course execution of the quiz. Additionally it contains a reference to the

questions that compose the quiz and the specific answers the user gave to that question.

A Tournament is a quiz created by students for students to answer in the context of a competition. It

exists within a certain course execution, has a set of topics, a student as a creator and set of students

as participants. Contains a set of dates, start time and end time and the number of questions. It also

references a quiz, which is generated automatically with questions associated to the tournament topics

and the tournament number of questions. Additionally it references the answer of each participant to the

quiz.

Table 5.1 shows the implemented aggregates, the number of upstream-downstream relations be-

tween them, and the number of implemented intra and inter invariants.

The upstream-downstream relations show the dependencies between aggregates. In particular, a

downstream aggregate can have the identification of the root elements of its upstream aggregates. For

instance, the Course Execution aggregate contains the identification of the Course root element, and

the the identification of User that is a student of the course execution.

Overall, the upstream-downstream relations reduce the dependencies in the system, increasing its

modularity. For instance, the software team developing the Course aggregate do not need to be aware

of its downstream aggregates. On the other hand, the upstream-downstream relations define a layered

46

Table 5.1: Aggregate invariants and references count

Aggregates Intra-
Invariants

Inter-
Invariants

Upstream
References

Course 2 0 0
User 2 0 0
Topic 0 1 1
Question 0 3 2
CourseExecution 4 2 2
Quiz 7 3 2
Answer 5 8 3
Tournament 13 19 4

architectural style, where the upstream aggregates are in lower layers in relation to their downstream

aggregates.

Therefore, the Tournament aggregate is in the top layer, since it is built on the services provided by

other aggregates. As usual of the layered architectural style, the communication from the lower layers

to their upper layers should be done using callbacks, which in our case are events.

5.2 Simulator Correctness

To verify the correctness of the solution and the simulator correct implementation, we designed scenarios

that exercise the interleaved execution of functionalities and event handling. For each of the scenarios,

JMeter2 tests were also written.

In the scenarios, R, W, P and E, denote, respectively, the read of a version, write in a version, write a

new version (persistent), and emit an event associated with a new version. The functionality and event

processing versions correspond to their initial version number. Commits and merges are operations that

can span several aggregates and are represented with a vertical line to represent their atomicity.

JMeter provides a set of constructs that are used to implement the tests:

• Thread Group: a construct that aggregates a set of web requests. Within it, the web requests

are executed sequentially in a specified order. The thread groups of a test can either execute

sequentially in a specified order or concurrently;

• Setup Thread Group: a special thread group which executes before all other thread groups in the

test.

• Assertion: construct used to verify the information in request response, be it in the response

header or response body;

• Constant Timer : stops the current thread execution for a specified amount of time in milliseconds;
2https://jmeter.apache.org/

47

https://jmeter.apache.org/

• Database Access API: allows to do queries and updates on database tables, besides the web

requests.

Using these constructs the simulator tests follow a similar structure:

• Setup: a setup thread group which sets the system to a desired state before performing the actual

test. It has the following steps:

– Creation of a course and a course execution associated to the course;

– Creation of a user, respective activation and enrollment in the course execution. This step

can be repeated twice if more than one student is needed;

– Creation of topic associated with the course. This step can be repeated several times;

– Creation of a question associated with a topic. There are as many questions as topics, and

each one is associated to a different topic. This allows to more easily perform verifications on

quizzes and tournaments;

– Creation of a tournament associated to the course execution, with a creator and participant

as execution students, and associated to the tournament topics.

• Scenario: the core part of the test. This part is different for every test because each one tests a

specific behaviour;

• Assertions: validates a certain criteria. This can be either an assertion on a value of an entity

by performing web request to the entity and analysing the JSON response or an assertion of a

response code. Most of the times the test expects the request to succeed which corresponds to

the JMeter default behaviour. However, there are special cases in which the test expects a certain

request to fail and an additional assertion must be added. Assertions can be used in the middle of

the scenario or at the end of the test or both, depending on the test.

JMeter allows for the execution of thread groups concurrently. However it is not possible to control

how they interleave. In order to have better control over concurrent execution of functionalities, we have

decided to run all threads groups sequentially and simulate concurrency by manipulating the version

number of the system. A functionality which writes an aggregate finishes and commits with version

number n. When another functionality starts, it has version number n + 1, which means if it reads the

aggregate version created by first functionality. This is a standard sequential execution. If we want

to simulate a concurrent execution of these two functionalities, we can decrement the system version

number by 1, between their executions. This results in the second functionality also starting with a

version number of n like the first, instead of n + 1. This ensures that the second functionality reads

the same aggregate version read by the first functionality. If the second functionality also performs a

48

write on the same aggregate, upon committing it detects the version written by the first functionality as

concurrent, initiating a merge operation between the two. We can decide which functionality initiates

the merge by running it after the version decrement. After the concurrent functionalities are executed,

the system version number is incremented by the previously decremented amount to guarantee that

further actions observe the state set my the first functionality. The system version number increment

and decrement is done by a SQL update on the respective table, through the JMeter API.

Another technique was used to handle event detection. Event detection and processing runs peri-

odically on a predetermined interval. Sometimes it is useful to trigger the event detection at a precise

moment in the test, for instance when trying to test the concurrent execution with a functionality. To

achieve it, we created web services that trigger the detection and processing of a specific event type for

an aggregate. On the other hand, to also test the periodic event detection, if the test behavior allows

it, we add a constant timer that stops the test for a few milliseconds, waiting for the event processing to

occur.

There are situations where the periodic event detection, which occurs every second, can compromise

the expected test behavior. Therefore, a request is implemented, to be used by the JMeter tests, that

disable and enable the period event detection.

Figures from 5.2 to 5.11 show the different interleaving associated with the execution of update

student and add participant functionalities, where the former emits an event that can be subscribed by

the latter.

W()
Course Execution

Tournament

Event Processing

E(6)

F4-V8

Update Execution

 Student Name

F1-V6

R(2)

Commit

P(6)
E(6)

AddParticipant

F3-V7

R(6)

R(8) W()

P(7)

Commit

Figure 5.2: Sequential: Update, Add, Event

In Figure 5.2 add participant succeeds when it adds the tournament to the causal snapshot, because

the updated student in the course execution is not, yet, a tournament participant. Then, afterwards, the

event is not detected by the tournament aggregate, because it already contains the updated participant.

A JMeter test3 simulates the described behaviour. Two sequential group threads execute, respec-

tively, update execution student name and add participant functionality. Before functionalities execution,

35a-updateStudentName-addParticipant-processUpdateNameEvent.jmx

49

https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/5a-updateStudentName-addParticipant-processUpdateNameEvent.jmx

the periodic event detection is disabled to avoid events to be processed before add participant finishes.

After the add participant finishes the event periodic event detection is enabled. Then, a after a few

miliseconds wait, the assertions are executed to verify that the tournament has the participant with the

updated name.

W()
Course Execution

Tournament

Event Processing

E(7)

F3-V8

Update Execution

Student Name

F2-V7

R(2)

Commit

P(7)
E(7)

AddParticipant

F1-V6

R(2)

R(4) W()

P(6)

Commit
Commit

R(6) W()

P(8)

Figure 5.3: Sequential: Add, Update, Event

In figure 5.3 the add participant commits first and the event processing after both functionalities

commit. The event processing changes the participant with the new information, because the add

participant committed first.

A JMeter test4 simulates the described behaviour. Two sequential thread groups execute the func-

tionalities. Then, the test waits for the event to be processed and does a request to verify that the

tournament participant has been updated.

W()
Course Execution

Tournament

Event Processing

E(7)

F3-V8

Update Execution

 Student Name

F1-V6

R(2)

Commit

P(7)
E(7)

AddParticipant

F2-V6

R(5)

R(2)

W()

P(6)

Commit

R(7) W()

P(9)

Commit

Figure 5.4: Concurrent: Update(1), Add, Update(2), Event

Figure 5.4 illustrates the case when both functionalities execute concurrently and add participant

finishes first. In this case the event processing updates the participant with the new information.

A JMeter test5 simulates the described behaviour. A thread group executes the add participant. Then

45b-addParticipant-updateStudentName-processUpdateNameEvent.jmx
55c-updateStudentName1-addParticipant-updateStudentName2-processUpdateNameEvent.jmx

50

https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/5b-addParticipant-updateStudentName-processUpdateNameEvent.jmx
https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/5c-updateStudentName1-addParticipant-updateStudentName2-processUpdateNameEvent.jmx

it decrements the system version number by 1 and starts update student. This represents a concurrent

execution of both functionalities in which the add participant finishes first. Finally, the test waits for the

periodic event processing, before performing a request to the tournament to assert that it contains the

updated name on the participant.

W()
Course Execution

Tournament

Event Processing

E(6)

F3-V7

Update Execution

Student Name

F2-V6

R(2)

Commit

P(6)
E(6)

AddParticipant

F1-V6

R(2)

R(4) W()
P(7)

Commit

Event Processing

E(6)

F3-V8

R(7) W()

Commit

P(8)

Figure 5.5: Concurrent: Add(1), Update, Event(1), Add(2), Event(2)

Figure 5.5 illustrates the other concurrent case, but the update student finishes first. In the scenario

the event detection occurs twice. First, before add participant commits, where there is no version sub-

scribing it, and a second time after add participant commits, where the event is processed and updates

the participant information.

A JMeter test6 simulates the described behaviour. The test executes the update execution student

functionality first, followed by a triggering of the event processing in the tournament. The event process-

ing doesn’t perform any changes because when the event detection the tournament is not yet subscribed

to the event. Then a get request is made on the tournament and it is asserted that no change has been

made to its participants, i.e. it is still empty. Then the periodic event detection is disabled, the system

version number is decremented by 1 and the add participant functionality is executed. This simulates

a concurrent execution between the update execution student and the event processing with the add

participant. The decrement by 1 is sufficient because the event processing doesn’t write any aggregate.

Finally the test enables the periodic event detection, and waits for the event handling, after which makes

a get request to the tournament and asserts that it contains the updated name on the participant.

Figure 5.6 represents the concurrent execution of two complex functionalities, the update of tour-

nament. The first commits without any problems. When the second tries to commit it encounters a

concurrent tournament and a concurrent quiz. Both have to be merged. In this case, the merge meth-

ods override the previous versions with the last versions, such that topics and quiz are consistent.

A JMeter test7 simulates the described behaviour. The test executes an update to the tournament

65d-addParticipant1-updateStudentName-processUpdateNameEvent1-addParticipant2-processUpdateNameEvent2.jmx
78-5-update-tournament-concurrent-intention-pass.jmx

51

https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/5d-addParticipant1-updateStudentName-processUpdateNameEvent1-addParticipant2-processUpdateNameEvent2.jmx
https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/8-5-update-tournament-concurrent-intention-pass.jmx

Tournament

Quiz

Topic 1

Update Tournament

F1-V10

Update Tournament

F2-V10

R(2)

R(3)

R(9) W()

Commit

P(10)

R(9)

P(10)

R(3)

R(4)

Commit

X
fail

W()R(9)

R(9) W()

fail

Merge

P(11)

P(11)

X

Topic 2

Topic 3

W()

Figure 5.6: Concurrent complex functionalities

which changes the topics, decreases the system version number and executes another update to the

tournament, that does a different change of the topics. This simulates a concurrent execution of two

tournament update functionalities. The second update, when trying to commit detects both written

aggregates, the tournament version and quiz version, updated by the other functionality, and performs

the merge. Finally the test does a get request to the tournament, retrieving the merged version, and it is

asserted that it has the correct set of topics. A get request is also done to the quiz, retrieving the merged

version, and it is asserted that it contains the correct set of questions. This last assertion is possible due

to the one-to-one question topic relation, we defined in the setup.

W()
Course Execution

Tournament

Event Processing

E(6)

F3-V7

Update Execution

Student Name

F1-V6

R(2)

Commit

P(6)
E(6)

AddParticipant

F2-V6

R(2)

R(5) W() fail

CommitCommit

R(5) W()

P(7)
X

Merge

X

Figure 5.7: Concurrent: Update(1), Add(1), Update(2), Event, Add(2)

52

Figure 5.7 represents the concurrent execution of add participant and update student, where the

event is processed before add participant commits. An added complexity is that the participant being

added is the tournament creator, which means that the event is actually processed in the tournament

before the participant is added. When the add participant tries to commit it finds a concurrent version

of the tournament. It then tries to merge but it is not able to and the functionality aborts. The abort

occurs because in the version 7 of the tournament the creator has the name updated, but in the added

participant has the old name. Upon the intra-invariants verification, done at the end of the merge, the

CREATOR PARTICIPANT CONSISTENCY intra-invariant does not hold and the functionality aborts.

A JMeter test8 simulates the described behaviour. The test executes the update student functionality,

and then waits for the event detection and its processing on the tournament. Afterwards, the version

counter is decremented by 2, and the add participant execution started. The version number decrement

is 2, because besides simulating concurrency between the add participant and the event processing

it is also necessary to simulate it between the add participant and the update student. If the version

number had been decremented only by 1, the add participant would read the updated version of the

course execution and not the older one, which would eliminate the need for event processing. When

the add participant functionality tries to commit it will find the tournament version written by the event

processing as concurrent, triggering the merge process which will lead to the invariant break. Therefore,

we assert that the response code of the add participant functionality is not 200, which means it was not

successful. Then the version number is incremented by 1, because of the add participant fails and does

not increment the version number after commit. If the test does not increment the version number the

next read won’t read the most recent version of the tournament. Finally, is done a get request to the

tournament to assert that it does not contain the participant added.

W()
Course Execution

Tournament

Event Processing

E(6)

F3-V7

Update Execution

Student Name

F1-V6

R(2)

Commit

P(6)
E(6)

AddParticipant

F2-V6

R(2)

R(5) W()

Commit
Commit Merge

P(7)

R(5) W() X Xfail fail

Event Processing

E(6)

F4-V8

Commit

R(7) W()

P(8)

Figure 5.8: Concurrent: Update(1), Add(1), Update(2), Event(1), Add(2), Event(2), Event(3)

Figure 5.8 represents a similar example to the one in figure 5.7 in which the event processing

finishes after the add participant functionality. Here, there is also an abort because of the CRE-

88-6-add-participant-concurrent-update-execution-student-name-processing-ends-first.jmx

53

https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/8-6-add-participant-concurrent-update-execution-student-name-processing-ends-first.jmx

ATOR PARTICIPANT CONSISTENCY intra-invariant: the event processing when it started was only

able to read a version of the tournament which only contained the creator and therefore it can only

update the creator name. When the merge is attempted it is verified that the participant, for the same

execution student as the creator, has the old name which causes the invariant to break. The event can

still be processed later, after the participant is added, updating both the participant and creator together.

A JMeter test9 simulates the behaviour in figure 5.8. This test starts by disabling the periodic event

detection and then update student executes. Next, the system version number is decremented by one

and add participant executed. Then, the system version number is decremented by one, and the event

detection triggered, to simulate the concurrent event handling with the add participant, where the add

participant finishes first. Finally, the system version number is incremented by one and the event detec-

tion triggered again. Several required verifications are done, like that the first event processing returns

a code different from 200.

W()
Course Execution

Tournament

Update Execution

 Student Name

F1-V6

R(2)

Commit

P(6)
E(6)

AddParticipant

F2-V7

R(6)

AddParticipant

F3-V8

R(6)

R(7) W()

P(8)

Commit

X

Event Processing

E(6)

F3-V7

R(5)

Commit

R(5) W()

P(7)

Figure 5.9: Concurrent: Update, Add, Event, Add

Figure 5.9 represents a scenario where the creator is being added as participant. The add participant

fails because the tournament aggregate did not processed the update student event, and it cannot have

the new version of course execution and the current version of tournament in the same causal snapshot.

Afterwards, the event is processed and when the add participant execution is tried a second time, it

finally succeeds.

A JMeter test10 simulates this behaviour. The test implementation follows the same rules. In this

case, it is necessary to disable the periodic event detection, and execute the functionalities and event

processing in the scenario order.

Figure 5.10 represents a situation where a student is anonymized in a course execution, which is

the tournament creator, whereas, concurrently, the creator is added as a participant. Additionally, the

anonymize event is processed before the add participant finishes. Therefore, the event processing

98-7-add-participant-concurrent-anonymize-event-processing-processing-ends-last.jmx
108-8-update-execution-student-add-participant-process-event-add-participant.jmx

54

https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/8-7-add-participant-concurrent-anonymize-event-processing-processing-ends-last.jmx
https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/8-8-update-execution-student-add-participant-process-event-add-participant.jmx

W()
Course Execution

Tournament

Event Processing

E(6)

F3-V7

Anonymize

Execution Student

F1-V6

R(2)

Commit

P(6)
E(6)

AddParticipant

F2-V6

R(2)

R(5) W() fail

CommitCommit

R(5) W()

P(7)
X

Merge

X

Figure 5.10: Concurrent: Event

makes the tournament INACTIVE, because its creator has been anonymized. Meanwhile, when the

addition of the participant tries to commit, it requires a merge and it fails because it is done with an

INACTIVE version of the tournament.

A JMeter test11 simulates the described behaviour. The anonymize occurs first, then the event pro-

cessing. The add participant is executed after the decrement of the system version number by 2. After

the add participant fails, the system version number is incremented by 2, and get request to the tourna-

ment is issued, to verify that the tournament is INACTIVE.

Course Execution

Tournament

Delete Tournament

F2-V6

AddParticipant

F1-V6

R(2)

R(5) W() fail

CommitCommit

R(5) W()

P(6)
X

Merge

X

Figure 5.11: Concurrent: Event

Figure 5.11 represents a scenario where a tournament is deleted while a participant is being added.

The participant addition will fail when it tries to commit because it tries to perform merge with a DELETED

aggregate.

A JMeter test12 simulates the described behaviour. The same techniques are applied. The add

participant is executed after delete tournament, and with a decrement of the system version number by

one. At the end, the system version number is incremented by one, and the test asserts that the add

118-9-add-participant-concurrent-anonymize-event-processing-processing-ends-first.jmx
128-10-concurrent-delete-tournament-add-participant.jmx

55

https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/8-9-add-participant-concurrent-anonymize-event-processing-processing-ends-first.jmx
https://github.com/socialsoftware/business-logic-consistency-models/blob/Pedro-Pereira-Thesis/backend/jmeter/tournament/thesis-cases/8-10-concurrent-delete-tournament-add-participant.jmx

Table 5.2: Quizzes Tutor Experiment

Aggregates Entities Queries Simple Complex Intentions Merge
Methods

Course 1 0 0 0 0 0
User 1 3 3 0 0 0
Topic 2 1 3 0 0 1
Question 3 2 4 0 3 4
CourseExecution 3 2 4 1 0 1
Quiz 3 2 2 0 3 5
Answer 4 1 3 0 0 4
Tournament 5 3 5 3 4 9

participant functionality fails, by verifying that the response code is not 200 because during the merge

it finds the deleted tournament as a concurrent version and tries a merge with it. A get request to the

tournament is also made, whose response code should be different than 200 because the tournament

is no longer accessible.

5.3 Experiment Analysis

In the experiment we implemented the business logic of 42 functionalities: 14 queries; 24 simple func-

tionalities; and 4 complex functionalities. Table 5.2 details the number of involved elements. The exper-

iment allowed us to identify common rules for the business logic implementation and some particular

cases, which provide useful insights.

Overall, the implementation of the functionalities business logic is quiet uniform over all types of

functionalities because of the use of transactional causal consistency. In what concerns simple and

complex functionalities, it is necessary to be more careful, in order to handle the lost update anomaly,

which requires the definition of intentions and operation merge methods. Anyway, and as it will be

discussed in the complexity analysis subsection, the definition of the consistency can be done at the

aggregate granularity level.

However, three aggregate states, not explicitly associated to the semantics aggregates would have in

a ACID transactional system, have to be added: ACTIVE, INACTIVE, DELETED. The normal state of an

aggregate is ACTIVE. Aggregates can be INACTIVE due to the upstream-downstream relationship be-

tween aggregates. This occurs when the execution of the functionality in the upstream aggregate emits

an event that informs the downstream aggregate of a fact that makes the aggregate inconsistent. For in-

stance, anonymizing the tournament creator in the course execution makes the tournament INACTIVE,

but does not delete it. Note that, in an implementation using ACID transactional behavior, it would be

possible to write the business logic such that if the student is the creator of a tournament, they cannot be

anonymized. This is not possible in this case, because the course execution business logic is not aware

56

of tournaments, and so an event is emitted and has to be handled. INACTIVE aggregates can be part of

the causal snapshot and used in queries to show users the impact on business logic resulting that only

intra-invariants have ACID transactional behavior. For instance, students can see that a tournament they

have enrolled in is INACTIVE. However, a functionality should abort if it tries to write in an INACTIVE

aggregate, INACTIVE is a final version. On the other hand, aggregates can be DELETED, a delete

request is issue during a functionality execution. Functionalities cannot access DELETED aggregates,

so it would make sense to just remove the aggregate entries from the database. However, a concurrent

execution of a functionality that deletes an aggregate with another that updates one of its field can result

in anomalous behaviour. If the update finishes later, when it tries to find concurrent version to merge, it

will not find any, and will simply commit with no restrictions. With the DELETED state, in this situation

the update would be able to find a concurrent aggregate version and verify that it is in DELETED state

and abort its commit, thus preserving the consistency of the system. Overall, the INACTIVE state is

used to reflect a violation of an inter-invariant, and may be visible to the end user, while the DELETE

state is an internal state to manage versions, and it is not visible to the end user. It is up to the business

logic designer to decide when to apply each one of the states.

Although most of the implementations of inter-invariants result in business logic where the down-

stream aggregate has to handle the upstream aggregate events, this is not always the case. We have

identified a situation where the downstream aggregates owns the upstream aggregate. The upstream

aggregate is mostly updated by downstream aggregate functionalities. Therefore, the change in the

upstream aggregate does not need to be propagated to the downstream aggregate. It is up to the down-

stream functionality to guarantee the consistency, and this occurs in the context of transactional causal

consistency functionality. In particular, the tournament creates a quiz, and, even though, the quiz is a

upstream aggregate it is mostly changed by tournament functionalities. Therefore, the tournament does

not have to subscribe to the quiz events, which simplifies the business logic. The only case where the

tournament have to subscribe to its quiz events, occurs when a question of the quiz is deleted, the quiz

is set to the invalid state INVALID and informs the tournament by sending an event. Then, the tourna-

ment can try to generate a new quiz. Overall, the owns relation between aggregates may simplify the

business logic, and the weight of the relation is business logic dependent. In the case of the relation

between tournament and its quiz, a single event was identified where the tournament does not control

the quiz behavior.

Merges are a mechanism used to enforce system consistency by preventing the lost update anomaly

while making an effort for the functionality not to abort. Programmer defined intentions are what makes

the merge capable of achieving the described behaviour. Intentions provide some semantic insight, by

specifying which pairs of fields cause a lost update when updated independently by two different func-

tionalities. Intentions are crucial aspect of merges because, if merges were implemented blindly the

57

system would still be vulnerable to these anomalies. The merge mechanism offers a compromise be-

tween system consistency and functionality execution success rate. On the other hand, the fields merge

operations allow additional levels of freedom for successfully merge concurrent versions. For instance,

when two participants are concurrently added to a tournament it is possible to have a participants merge

operation that accepts both adds. This behavior is similar to the incremental operations describe in the

literature for conflict free data types.

The merge between aggregates during commit is specified at the aggregate granularity. However, if

the merge occurs in a complex functionality it is necessary to guarantee that all merges are consistent.

Therefore, it may be necessary to consistently define the intentions and merge operations of the different

aggregates. The functionality that updates a tournament may also update the quiz. This is the case for

the updateTournament functionality in which the quiz may also need to be updated, according to the

tournament state. If two updateTournament execution occur concurrently, both the tournament and quiz

versions need to be consistently merged, where the merged tournament version is consistent with the

quiz merged version. For instance quiz and tournament must start at the same time. Therefore, the

intentions of the tournament and quiz must be consistently designed, as should their merge operations.

For instance, the tournament cannot allow the startTime and endTime to be updated separately in the

same way the quiz does not allow the availableDate and conclusionDate to be updated separately, and

their merge operations should be similar.

Although the merge operation for list of participants can follow the incremental strategy, this decision

is business logic dependent. The tournament has a list of topics, which can be changed, and the

questions in the quiz are chosen based on this set of topics. Therefore, when two concurrent versions

of a tournament have, both, their topics changed, an incremental merge operation cannot be applied,

because it would not be consistent with the merge of the questions in the quizzes versions, due to

the lack of information on the quiz side. Therefore, the decision was that the semantics for the merge

operations for topics and quiz questions, was an overwrite, where the last to commit prevails.

Usually aggregates only have one element of an upstream aggregate replicated once. However,

there are cases where the element can be replicated more than once. For instance, the tournament

creator and participants are students and it is possible for the creator to participate in the tournament. In

the context of a tournament, these are two different elements referring the same student. This case need

the definition of an intra-invariant, CREATOR PARTICIPANT CONSISTENCY, as already described by

some of the test scenarios.

58

5.4 Complexity Analysis

In terms of the solution complexity, we compare with a microservices system implemented with eventual

consistency and the Saga pattern [4]. While the complexity of implementing the business logic using

sagas depends on the number of distributed transactions and semantic locks [5], the complexity using

transactional causal consistency depends on the number of aggregate elements, intentions, and merge

operations. The number of aggregates is usually smaller than the number of functionalities, and, in TCC,

the propagation impact of adding a new aggregate is confined to the aggregate and its inter-invariants,

while, in sagas, the impact of adding a new functionality may impact all other functionalities. However,

more research and experimentation is required.

Field merges and intentions are static, they don’t depend on the functionality which called or the

context in which they are executed or defined. For instance, when a quiz needs to be merged as a result

of two concurrent quiz updates, it follows a set of defined intentions and it’s field merges are performed in

a certain way. If a quiz needs to be merged, in the context of a tournament update, it will follow the same

exact intentions and will merge the fields in the exact same way. The same occurs for the tournament.

But the tournament’s intentions and field merge operations need to comply with those of the quiz. And

they are always compliant even if the functionality executed on the tournament does not affect the quiz.

This is another instance on which we can that a downstream aggregate, the tournament, depends on

the upstream aggregate, the quiz.

Anyway, further research needs to be done on the complexity analysis.

5.5 Threats to Validity

The model does not consider that two aggregates can have a bidirectional relationship, but it may be

considered that in this case each aggregate is downstream/upstream of the other, and the functionalities

of any of the aggregates use the other as a downstream aggregate.

To simplify the explanation of transactional causal consistency, we used version numbers to select the

aggregates that belong to a causal snapshot. However, in a distributed implementation the generation

of a total order of version numbers is not possible, or at least it does not scale. Nevertheless, existing

TCC [7, 8] implementations can support a similar semantics in the construction of causal snapshots

using timestamp intervals. Additionally, the causal snapshot we defined is a best effort snapshot, which

in the distributed context may be harder to achieve. Anyway, the transactional semantics and how it

impacts on the business logic design is the same.

The simulator does not implement distributed communication in the invocations between the different

services implementing a functionality. This simplifies the simulator and it does not impact the business

logic, because each service invocation occurs in a different transaction. Even though they are not

59

distributed, the interleaving between service invocations can occur. On the other hand, it does not

simulate distributed faults but this is not a concern of the simulation.

We are not addressing the replication of aggregates. This problem is usually understood as a low

level data issue, associated with performance. However we look at it as a higher level of abstraction by

defining the inter-invariants, which define consistency rules for the information replicated between two

aggregates. This is, in our opinion, the correct way to look at it, from a business logic perspective.

Commits in the simulator are divided into two parts: verification and write. During verification it is

done the concurrent version detection and the versions merge. The commit only progresses to write ver-

ifying that there are no more concurrent versions. However, it is possible that new concurrent aggregate

versions are added to the system after verification, because another commit is done concurrently. To

avoid this situation the commit should be have serializability isolation. The TCC distributed implementa-

tions support commit serializability.

The techniques used to implement the scenarios tests in 5.2 do not correspond to a real concurrent

execution of the scenarios. However, they allowed to precisely simulated the relevant interactions.

60

6
Conclusion

Contents

6.1 Results . 63

6.2 Future Work . 63

61

62

6.1 Results

Microservices architectures have to handle the burden of eventual consistency. The Saga pattern has

been used to implement the microservices functionalities, but it is well known that there is a trade-off

between the amount of application business logic and its implementation effort using a microservices

architecture.

We leverage on previous work, that proposes the use of transactional causal consistency (TCC) in

serverless computing, to define an approach for the use of TCC on the implementation of microservices

business logic, which reduces its implementation complexity.

The approach proposes new aggregate constructs, which specify the intra and inter aggregate busi-

ness logic, and their extension for transactional causal consistency. Additionally, due to the low level

of existing TCC implementations, we designed and implemented a TCC simulator, which supports the

new aggregate constructs. Finally, the constructs and their implementation using the simulator were

experimented in a business logic rich application. Therefore, we have positively answered both research

questions.

The simulator code and the case study implementation are publicly available at https://github.

com/socialsoftware/business-logic-consistency-models.

6.2 Future Work

One possible extension for our work could be the annotating the existing code with Java annotations

and implement code generation associated to them to simplify the implementation of functionality and

extensions. For instance, annotating methods with the @TCCFunctionality annotation, indicating that

they implement a TCC functionality, which means that the unit of work would have to be instnatiated and

a commit would have to be called at the end. Or annotating certain methods with @Intrainvariant to

denote that the method represents an invariant definition so the Aggregate superclass can know more

easily which methods of a specific aggregate type define invariants.

Other possible extension for our work could be creating a formal declarative language for the defi-

nition of aggregates. This language would describe the aggregate fields, composing entities and cor-

responding mappings to upstream aggregates, functionality outlines, intra-invariants, inter-invariants,

fields that can be changed by functionalities, intentions and event subscriptions. The objective is to have

a way of defining an aggregate abstracted from the programming language.

Then from the declarative definition of the aggregate a processor could be developed that would

generate code in Java that implements the described aggregate using the annotations described in the

first extension.

63

https://github.com/socialsoftware/business-logic-consistency-models
https://github.com/socialsoftware/business-logic-consistency-models

A further improvement could also be extending the simulator to work in a distributive environment

with a more complete TCC implementation.

64

Bibliography

[1] C. O’Hanlon, “A conversation with werner vogels,” Queue, vol. 4, no. 4, p. 14–22, May 2006.

[2] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, 2015.

[3] M. Fowler, “Microservices,” Web page: http://martinfowler.com/articles/microservices.html.

[4] C. Richardson, Microservices Patterns. Manning Publications Co., 2019.

[5] N. Santos and A. Rito Silva, “A complexity metric for microservices architecture migration,” in 2020

IEEE International Conference on Software Architecture (ICSA), 2020, pp. 169–178.

[6] D. Haywood, “In defense of the monolith,” Microservices vs. Monoliths - The Reality Beyond the

Hype, 2017. [Online]. Available: https://www.infoq.com/minibooks/emag-microservices-monoliths/

[7] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Transactional causal consistency for serverless

computing,” in Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data, ser. SIGMOD ’20. New York, NY, USA: Association for Computing Machinery, 2020, p.

83–97. [Online]. Available: https://doi.org/10.1145/3318464.3389710

[8] T. Lykhenko, R. Soares, and L. Rodrigues, “Faastcc: Efficient transactional causal consistency

for serverless computing,” in Proceedings of the 22nd International Middleware Conference, ser.

Middleware ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 159–171.

[Online]. Available: https://doi.org/10.1145/3464298.3493392

[9] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison Wesley,

2003.

[10] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, extensions, and beyond,” Com-

munications of the ACM, vol. 56, no. 5, pp. 55–63, 2013.

[11] H. Garcia-Molina and K. Salem, “Sagas,” in Proceedings of the 1987 ACM SIGMOD International

Conference on Management of Data, ser. SIGMOD ’87. New York, NY, USA: Association for

Computing Machinery, 1987, p. 249–259.

65

http://martinfowler.com/articles/microservices.html
https://www.infoq.com/minibooks/emag-microservices-monoliths/
https://doi.org/10.1145/3318464.3389710
https://doi.org/10.1145/3464298.3493392

[12] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan, “The monolith strikes back: Why istio migrated

from microservices to a monolithic architecture,” IEEE Software, vol. 38, no. 5, pp. 17–22, 2021.

[13] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro,

“Cure: Strong semantics meets high availability and low latency,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), 2016, pp. 405–414.

[14] S. Braun, A. Bieniusa, and F. Elberzhager, “Advanced domain-driven design for consistency

in distributed data-intensive systems,” in Proceedings of the 8th Workshop on Principles and

Practice of Consistency for Distributed Data, ser. PaPoC ’21. New York, NY, USA: Association for

Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3447865.3457969

[15] N. Preguiça, J. M. Marques, M. Shapiro, and M. Letia, “A commutative replicated data type for

cooperative editing,” in 29th IEEE International Conference on Distributed Computing Systems,

ser. ICDCS 2009. IEEE, 2009, pp. 395–403.

[16] W. Yu and C.-L. Ignat, “Conflict-Free Replicated Relations for Multi-Synchronous Database

Management at Edge,” in IEEE International Conference on Smart Data Services, 2020

IEEE World Congress on Services, Beijing, China, Oct. 2020. [Online]. Available: https:

//hal.inria.fr/hal-02983557

[17] M. Fowler, Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.

[18] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and J. Stafford,

Documenting Software Architectures: Views and Beyond 2nd Edition. Addison-Wesley, 2011.

66

https://doi.org/10.1145/3447865.3457969
https://hal.inria.fr/hal-02983557
https://hal.inria.fr/hal-02983557

67

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Goals

	2 Related Work
	2.1 Microservices
	2.2 Eventual Consistency VS Transactional Causal Consistency
	2.3 Advanced Domain Driven Design
	2.4 Conflict-Free Replicated Data Types

	3 Semantics
	3.1 Aggregate Specification
	3.2 Functionalities
	3.3 Transactional Causal Consistency
	3.4 Eventual Consistency

	4 Simulator
	4.1 Architecture
	4.2 Domain Model
	4.3 Extension
	4.4 Implementation

	5 Evaluation
	5.1 Case Study
	5.2 Simulator Correctness
	5.3 Experiment Analysis
	5.4 Complexity Analysis
	5.5 Threats to Validity

	6 Conclusion
	6.1 Results
	6.2 Future Work

	Bibliography
	Bibliography

