
Comparing Structure and Accesses Monolith
Representations in Mono2Micro

Rodrigo Gonçalves dos Santos

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. Antonio Manuel Ferreira Rito da Silva

Examination Committee

Chairperson: Prof. Andreas Miroslaus Wichert
Supervisor: Prof. Antonio Manuel Ferreira Rito da Silva

Member of the Committee: Prof. António Paulo Teles de Menezes Correia Leitão

October 2024



Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.



Acknowledgments

I would like to begin by expressing my deepest gratitude to my parents and my sister. Their love

and support have been the foundation that allowed me to pursue this education, and without them, this

journey would not have been possible. A heartfelt thanks to my grandparents for all they have done and

continue to do for me, for their comfort and encouragement during challenging moments. To my aunt

Bela, thank you for your invaluable help throughout my entire life.

I am also immensely grateful to my cousins, Cristina and António, for giving me a home during these

past years of university and always making me feel welcome and loved. To all my family, thank you for

being there when I needed you most, your unwavering support has never failed me.

To my girlfriend Léa, I thank you for your immeasurable love and support, for being my shelter through

it all.

A special thanks to my close friends David and Joana, who have been with me since the very begin-

ning of this journey at Técnico. And to Hugo, my friend since forever, thank you for always being by my

side. I truly don’t know where I’d be today without you.

To José, I am deeply grateful not only for reviewing this thesis but for your friendship and support

from day one.

Lastly, to my basketball team, thank you for being a space where I always felt welcome, and for being

there on the tough days when I needed you most.

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) through projects

UIDB/50021/2020 (INESC-ID) and PTDC/CCI-COM/2156/2021 (DACOMICO).

i





Abstract

The growing popularity of microservices architecture has led to interest in migrating monolithic systems

to the microservices model. In this study, we focus on improving an existing tool designed to identify

microservices candidates within monoliths. The primary objective is to extend the tool’s capabilities by

incorporating a novel type of monolith representation, specifically focusing on the structural aspects of

the monolith.

Our work utilizes a collector based on structural analysis. Our objective is to conduct a thorough eval-

uation of this new collector and its similarity measures, by using the extended pipeline, to compare the

microservices candidates produced against expert decompositions and decompositions generated us-

ing previous collectors. The evaluation is done on a set of monoliths used in similar studies of the state

of the art.

This research adds to ongoing work on strategies for migration of monoliths to microservices. Provides

valuable insight into the effectiveness of various monolith representation techniques and their impact on

the identification of candidate microservices. The results of our evaluation shed light on the strengths

and limitations of the extended pipeline, providing valuable information on how different kinds of monolith

representations might affect the results of candidate decompositions.

Keywords

Microservices Architecture, Microservices Identification, Software Architecture, Monolith Decomposition,

Structural Analysis

iii





Resumo

A crescente popularidade da arquitetura de microserviços tem levado ao interesse em migrar sistemas

monolı́ticos para o modelo de microserviços. Neste estudo, focamo-nos em melhorar uma ferramenta

existente projetada para identificar candidatos a microserviços dentro de monólitos. O objetivo principal

é expandir as capacidades da ferramenta, incorporando um novo tipo de representação do monólito,

especificamente com foco nos aspetos estruturais do monólito.

O nosso trabalho utiliza um coletor baseado em análise estrutural. O objetivo é realizar uma avaliação

detalhada deste novo coletor e das suas medidas de similaridade, utilizando a ferramenta estendida,

para comparar os candidatos a microserviços produzidos com decomposições feitas por especialistas e

com as decomposições geradas por coletores anteriores. A avaliação é feita num conjunto de monólitos

utilizados em estudos semelhantes do estado da arte.

Esta investigação contribui para o trabalho em curso sobre estratégias de migração de monólitos para

microserviços. Fornece informações valiosas sobre a eficácia de várias técnicas de representação de

monólitos e o seu impacto na identificação de candidatos a microserviços. Os resultados da nossa

avaliação destacam os pontos fortes e limitações da ferramenta estendida, fornecendo informações

úteis sobre como diferentes tipos de representações de monólitos podem afetar os resultados das

decomposições de candidatos.

Palavras Chave

Arquitetura de Microsserviços, Identificação de Microsserviços, Arquitetura de Software, Decomposição

de Monólitos, Análise Estrutural

v





Contents

1 Introduction 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Work 11

3.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Model-based Information Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Code-Based Information Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.3 Log-Based Information Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.4 Version-Based Information Collection . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Monolith Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Decomposition Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Quality Assessment and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Investigation of Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Solution 27

4.1 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Pipeline Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Strategy for Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Similarity Measures and Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Implementation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Structural Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2 Decomposition Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.3 Graphical Representation of Decompositions . . . . . . . . . . . . . . . . . . . . . 35

4.5.4 Clustering Evaluation: Purity Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



5 Evaluation 39

5.1 Selected Codebases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Spring Petclinic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Expert Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3 Evaluation of Automatic Decompositions . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Cargo Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.2 Evaluation of Automatic Decompositions . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Quizzes Tutor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.1 Entities and Functionalities Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5.2 Evaluation of Automatic Decompositions . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.3 Accesses Decomposition Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.4 Structure Decomposition Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.5 Comparison of Accesses Decomposition with the Expert Decomposition . . . . . . 58

5.5.6 Comparison of Structure Decomposition with the Expert Decomposition . . . . . . 60

5.6 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6.1 Implementation of the Structural Collector . . . . . . . . . . . . . . . . . . . . . . . 63

5.6.2 Effort Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6.3 Complementary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Research Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7.1 Statistical Analysis of Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7.2 Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7.3 Independent T-Test Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7.4 P-Value Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7.5 Results of the T-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 Research Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8.1 Understanding the Decomposition Process . . . . . . . . . . . . . . . . . . . . . . 67

5.8.2 Comparison with Automated Decompositions . . . . . . . . . . . . . . . . . . . . . 68

5.8.3 Impact on the Current Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



6 Conclusion 71

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Reflection on Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 75

A Code for Statistical Analysis 81

A.1 Python Code for Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Explanation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



x



List of Figures

2.1 Pipeline Stages for Identification of Microservices in Monoliths . . . . . . . . . . . . . . . 6

2.2 Domain Model of Mono2Micro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Design Structure of Mono2Micro for Identification of Microservices . . . . . . . . . . . . . 8

4.1 Decomposition Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Dendrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Model Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Choices of representations, including the new one . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Mono2Micro Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Cluster Representation as Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Entity Representation as Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Entities Contained in the Selected Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.10 References Between Entities Across Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.11 References and Inheritance Hierarchy of the Selected Entity . . . . . . . . . . . . . . . . . 36

4.12 Type of Reference Between Selected Entities . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.13 Purity Metric Results Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Expert decomposition of the Spring PetClinic application. . . . . . . . . . . . . . . . . . . 45

5.2 PetClinic Structural Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 PetClinic Accesses Decomposition with Highest Cohesion . . . . . . . . . . . . . . . . . . 47

5.4 PetClinic Accesses Decomposition with Lowest Complexity and Coupling . . . . . . . . . 48

5.5 Expert decomposition of the Cargo Tracking application. . . . . . . . . . . . . . . . . . . . 50

5.6 Cargo Tracking Struture Decomposition with Highest Cohesion . . . . . . . . . . . . . . . 51

5.7 Cargo Tracking Struture Decomposition with Lowest Complexity . . . . . . . . . . . . . . . 52

5.8 Cargo Tracking Struture Decomposition with Lowest Coupling . . . . . . . . . . . . . . . . 53

5.9 Cargo Tracking Accesses Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



5.10 Expert decomposition of the Quizzes Tutor application. Clusters View . . . . . . . . . . . 56

5.11 Expert decomposition of the Quizzes Tutor application. Entities View . . . . . . . . . . . . 56

5.12 Quizzes Tutor Accesses Decomposition with Highest Cohesion and Lowest Coupling . . . 58

5.13 Quizzes Tutor Accesses Decomposition with Lowest Complexity . . . . . . . . . . . . . . 59

5.14 Quizzes Tutor Structure Decomposition with Highest Cohesion . . . . . . . . . . . . . . . 60

5.15 Quizzes Tutor Structure Decomposition with Lowest Coupling . . . . . . . . . . . . . . . . 61

5.16 Quizzes Tutor Structure Decomposition with Lowest Complexity . . . . . . . . . . . . . . . 62

xii



List of Tables

3.1 Advantages and Disadvantages of Different Decomposition Algorithm Categories . . . . . 14

3.2 Collection & Monolith Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Criteria & Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Codebases & Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Comparison of Automatic Decompositions against Expert Decompositions for Spring Pet-

clinic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Comparison of Automatic Decompositions against the Expert Decomposition for Cargo

Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Comparison of Automatic Decompositions against the Expert Decomposition for Quizzes

Tutor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii



xiv



Acronyms

URI Uniform Resource Identifier

DFD Dataflow Diagram

UML Unified Modeling Language

ERD Entity-Relationship Diagrams

MIC Model-based Information Collection

CIC Code-based Information Collection

AST Abstract Syntaxe Tree

LIC Log-based Information Collection

VIC Version-based Information Collection

DDD Domain-Driven Design

TP True Positives

FP False Positives

TN True Negatives

FN False Negatives

1



2



1
Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction

In the dynamic landscape of modern software architecture, the quest for agility, scalability, and main-

tainability has led to a paradigm shift — a departure from monolithic systems towards the embrace of

microservices. As organizations deal with the complexities of migrating from monoliths to microservices,

a fundamental challenge emerges: How can we systematically identify and articulate the boundaries of

microservices within the intricate structures of existing monolithic systems?

Currently, there are many different approaches to identify microservices within a monolith architecture

system. These approaches can vary in many different aspects, for instance, the way they collect data

within a monolith, how this data is processed, or how to come up with the best possible decomposition.

Recent work [1,2] has developed an extensible tool that supports multiple strategies for the different

stages of the microservice identification process in monolith systems. In our work, we are looking to

extend this tool with a new feature. As stated above, the process of identifying microservices can differ

3



in many aspects, from the collection of monolith information to the generation of the decomposition.

We aim to enable a new monolith representation, focusing specifically on its structural aspects. This

representation contains the entities of the monolith and, for each entity, the names and types of its

fields.

Inspired by this goal, a set of research questions emerged, and our aim is to address them compre-

hensively. Research questions are as follows:

• What is the effort necessary to add a new collector to the existing tool, considering that the gener-

ated decomposition is a cluster decomposition of domain entities?

• Are the decompositions obtained using the monolith structural representation statistically different

from the decompositions obtained using the monolith sequences of accesses representation?

• How does an expert evaluate the best decompositions for each of the quality metrics?

To address these inquiries, we plan to carry out a thorough investigation using various codebases to

conduct a comprehensive study. Our approach involves delving into the intricacies of a novel monolith

representation and exploring its impact on the final decomposition. In addition, we will examine carefully

how variations in metrics and similarity measures influence results. By employing statistical methods,

our aim is to gain valuable insights into the dynamics of microservice identification within monolithic

systems.

4



2
Background

Contents

2.1 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Microservices

Microservice architecture [3] in software engineering refers to an architectural design that defines an

application as a set of small, self-sufficient services communicating via lightweight protocols. A mi-

croservice is a compact application capable of independent deployment, scaling, and testing, dedicated

to a single, specific task.

The microservice architecture style has been increasingly adopted over the years. Major companies

such as Netflix and Amazon [4] have migrated their monolith code due to highly desirable advantages

such as:

• Scalability – Since each microservice operates independently, it can be scaled individually without

affecting the rest of the system. This allows for more efficient resource allocation, where only the

5



services experiencing high demand need additional resources, unlike monolithic systems where

the entire application must be scaled.

• Maintainability – The decoupling of services allows teams to work on individual components

without affecting the entire application. This modularity makes it easier to isolate bugs, apply

updates, and introduce new features in a specific service without impacting the broader system.

• Reusability – Microservices can be reused across different projects because they are designed

to perform a single, well-defined task. This modular approach allows for components to be repur-

posed in different contexts, reducing development time and avoiding redundancy.

• Availability – By isolating services, the failure of one microservice does not bring down the en-

tire system. Other services can continue to operate, increasing the overall availability and fault

tolerance of the system.

2.2 Pipeline

Previous work [1, 2] proposes a pipeline for the identification of microservices in monolith systems.

Figure 2.1 describes the various stages that facilitate the identification of microservices.

Monolith
Representations DecompositionsCollection Decomposition

Generation

Quality
Assessment

and Comparison  

Visualization
Editing

and
Modeling

Graphs

Measures

Graphs

Decompositions

Figure 2.1: Pipeline Stages for Identification of Microservices in Monoliths

The identification pipeline begins with a monolith as input. The first stage is the Collection, which in-

volves analyzing the monolith using methods such as static and dynamic analysis. The primary objective

of this stage is to generate the representations of the monolith.

The second stage of the pipeline is the Decomposition Generation. This stage uses the monolith

representations to obtain candidate microservice decompositions by applying an automatic algorithm.

The most common algorithms used in this step are clustering algorithms and community detection al-

gorithms. Several similarity criteria between the elements in the monolith representations need to be

defined to feed the algorithms, such as accesses similarity (associates domain entities that are ac-

cessed by the same functionalities), semantic similarity (connects domain entities based on their textual

similarity), author similarity (links domain entities that are changed by the same developers, and change

similarity (relates domain entities that are changed together, in the same software configuration commit).

6



The generated candidate decompositions are then fed into different pipeline stages. In the Visualiza-

tion stage, the candidate decomposition is represented as a set of graphs. In these graphs, nodes can

represent clusters, classes, domain entities, or methods, while edges represent the dependencies be-

tween them. These dependencies are based on the criteria used during the decomposition generation.

Another provided visualization perspective illustrates the sequence of accesses for a particular func-

tionality within the context of the candidate decomposition, enabling the identification of which accesses

occur in each of the candidate microservices.

In the other stage, we have the Quality Assessment and Comparison. The decomposition is analyzed

to assess its qualities, through metrics such as cohesion, coupling, complexity, number of interfaces

exposed; and to compare it with other decompositions, usually done through observing the differences

between them.

Finally, the Editing and Modeling stage enables the architect to make adjustments in the candidate

decompositions while concurrently recalculating the associated quality metrics. This iterative process

allows for meticulous refinement, ensuring that the resulting architecture aligns closely with the desired

specifications.

2.3 Design

As stated in [1, 2], ”The main design strategy to support the variation points is to decouple the modules

that implement them” inducing that the primary approach chosen to address variation points is to sepa-

rate or reduce the interdependence between the modules responsible for implementing these variations.

The Variation Points are areas in a system where different implementations or variations may occur to

meet specific needs. Decoupling modules allow for greater flexibility and adaptability in handling different

options or variations.

If we intend to extend a certain module, we need to be sure of what needs to be changed. It

can involve either extending just the corresponding module or, alternatively, extending the intermediate

artifacts as well. As an example, we have the case addressed by [1,2]. Take into account the first stage

of the microservices identification pipeline, the Collection, where the monolith representation is created

and then consumed in the Decomposition Generation. In this case, we currently have support for limited

types of representation. Extending these representations can mean something like using two already

existing and supported functionalities of the tool (combining both static and dynamic analysis), or it can

be implementing a totally new representation using a different type of collection technique. This will be

discussed in more detail in Chapter 4.

Figure 2.2 presents a comprehensive representation of the database domain model of the Mono2Micro

application. The Codebase entity encapsulates the monolith and is associated with a collection of mono-

7



Codebase

Representation Strategy

Decomposition

1..*1..* Cluster Metrics

Similarity

1

0..*
1..*

1..*

1
1..*

1

0..*

0..*

1

0..*1

1

0..*

1

0..*

Element

Figure 2.2: Domain Model of Mono2Micro

lith representations stored in the database. These representations, along with a set of strategies, serve

as a foundation for creating similarities.

Strategies represent specific microservices identification approaches (e.g., lexical analysis), and uti-

lize similarity measures to implement variations, often with specific weights. For instance, in a lexical

approach, weights may differ based on the nature of monolith elements, such as their persistence or

role as web services. Each Strategy is also characterized by the aggregation algorithm that is used.

The Decomposition entity decouples the initial stages of the Mono2Micro pipeline from subsequent

visualization, modeling, and assessment stages. A Decomposition comprises clusters, each housing a

set of elements. The entities—Decomposition, Cluster, and Element—serve as the building blocks for

different types of decompositions. A Decomposition consists of multiple Clusters, each containing a set

of Elements. These entities can be extended to support variations across different types of decomposi-

tions.

The Representation entity, Figure 2.2 and 2.3, undertakes the transformation of monolith repre-

sentations in the context of a particular decomposition. It corresponds to a refinement of the monolith

Representation in the context of a given decomposition. It also supports the variation points associated

with the metrics calculations.

read
writeExternal

Collectors

read

Representation
(json)

write

Similarity
Generator

Similarity
(json)

read

writeAggregation
Algoritm

write

write

Collection Representations Decomposition
Generation

Decomposition
(json)

Decompositions

Editing and
Modeling

write readOperation

Quality Assessment
and Comparison

read Metrics
Calculator

read Comparison
Tool

writeread View

Visualization

Graph

Graphs

Measures

Metrics

MojoFM

Accuracy, etc...

Figure 2.3: Design Structure of Mono2Micro for Identification of Microservices

8



Figure 2.3 provides a visual representation of the various stages within the microservices identifi-

cation pipeline and illustrates how the modules interact with each other through the use of intermediate

artifacts. These modules are specifically designed to implement variation points and offer hooks and

interfaces to ensure pluggability and adaptability throughout the pipeline.

The initial stage, Collection, incorporates variation points that are facilitated by the External Col-

lectors module. These collectors, implemented as external modules or independent tools, cater to

a diverse range of data collection and execution tracing tools. They operate without a strict interface

requirement, focusing instead on generating a monolith representation that can be processed in subse-

quent stages.

Moving on to the Decomposition Generation stage in Figure 2.3, this stage is implemented by two

modules and an intermediate artifact. The modules address two critical variation points: the Similarity

Generator module, responsible for similarity criteria generation, and the Aggregation Algorithm module,

which offers various algorithms. These modules are effectively decoupled through a Similarity entity,

allowing the introduction of new algorithms while maintaining compatibility with existing similarity crite-

ria. The format of the Similarity entity must be agreed on between these modules. Extending these

modules accommodates the use of various criteria and algorithms. The Similarity Generator module

reads monolith representations to apply its similarity criteria and generates the similarity measures,

while the Aggregation Algorithm module uses the similarity measures to output a Decomposition entity,

representing the generated decomposition.

The Decomposition entity serves as a bridge, decoupling the Decomposition Generation stage

from the downstream stages. It supports variation points within these stages, influencing subsequent

components such as the View, Metric Calculator, Comparison Tool, and Operation modules. These latter

modules play a crucial role in the final stages of the Mono2Micro pipeline, depending on the information

contained in the decomposition, which includes the Representation Information, as illustrated in Figure

2.2.

9



10



3
Related Work

Contents

3.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Monolith Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Decomposition Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Quality Assessment and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Investigation of Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Identification of microservices within monolith systems is a challenging process. Consequently, a

comprehensive analysis of the existing literature provides information on the various decomposition

strategies, clustering methodologies, and associated metrics employed by different researchers.

In alignment with the previously proposed pipeline, our focus is to evaluate how the decomposition

approaches of various authors align with the parameters outlined in Chapter 2.

11



3.1 Collection

The Collection corresponds to the analysis of the monolith and the generation of a Monolith Represen-

tation.

Abgaz et al. [5] describe different data collection techniques that can be classified into distinct

categories based on the methodologies employed to extract information from monoliths. The represen-

tation of monoliths can take various forms, such as Dataflow Diagram (DFD), Unified Modeling Lan-

guage (UML) models, Entity-Relationship Diagrams (ERD), and use cases, all falling under the Model-

based Information Collection (MIC) category. In contrast, the Code-based Information Collection (CIC)

category encompasses representations like source code, Abstract Syntaxe Tree (AST), interfaces, and

stored procedure representations. The Log-based Information Collection (LIC) category includes rep-

resentations of execution traces, runtime frequencies, and logs. Lastly, the Version-based Information

Collection (VIC) category is suited to capture the version history, the contributor history, and related

data.

3.1.1 Model-based Information Collection

MIC involves the extraction of data from monoliths using various graphical representations, such as

DFD, UML models, ERD, and use cases. These models serve as visual representations of the system’s

structure, behavior, and interactions, aiding in the understanding of the monolith’s functionalities. MIC

plays a crucial role in understanding the underlying design and logic of the monolith, facilitating the

analysis and extraction of pertinent information for further processing and interpretation.

3.1.2 Code-Based Information Collection

CIC involves the extraction of data from monoliths through the analysis of source code, AST, interfaces,

and stored procedure representations. This method focuses on delving into the programming logic and

structure of the monolith, aiming to capture essential information embedded within the codebase. By

analyzing the code, developers can gain insight into the implementation details, dependencies, and

system functionalities, which are crucial for comprehending the monolith’s behavior and performance.

3.1.3 Log-Based Information Collection

LIC involves the extraction of data from monoliths through the analysis of execution traces, runtime

frequencies, and log representations. By examining these logs, developers can gain insight into the sys-

tem’s runtime behavior, performance metrics, and error occurrences. LIC serves as a crucial mechanism

for monitoring and diagnosing the operational aspects of the monolith, providing valuable information to

12



identify issues, analyze system performance, and ensure the overall stability and reliability of the mono-

lith system. Understanding the data captured through LIC is essential for effective troubleshooting,

performance optimization, and the overall management of the monolith’s operational environment.

3.1.4 Version-Based Information Collection

VIC involves the extraction of data from monoliths by analyzing the version history, contributor history,

and related data. This method aims to capture the evolution of the monolith over time, including the

changes made to its codebase, the individuals or teams responsible for these modifications, and the

overall progression of the system’s development.

3.2 Monolith Representations

Various techniques of information collection are employed to generate different types of monolith repre-

sentations. These representations serve to capture both the static and dynamic aspects of the system.

For instance, a structure graph represents the static structure of the monolith, highlighting relationships

between classes and their attributes. Meanwhile, a call graph illustrates the dynamic behavior of the

system by depicting the flow of method calls and interactions between different functionalities.

Other representations include sequences of accesses, which document interactions with persistent

entities and classes, and frequencies, which highlight the frequency of use of different functionalities

within the monolith. In addition, lexical elements are examined to identify commonalities between

classes, methods, and interfaces. The relationship between files is considered by analyzing common

commits and contributors, often represented in an information graph that combines static structures

with dynamic behaviors like method calls and attribute accesses.

Business processes are mapped out in the business processes representation, while dependency

graphs illustrate the dependencies between different components of the system. Data flow diagrams

provide a view of the data’s path through the system, from input through processing to output stages.

There are also clusters of Uniform Resource Identifier (URI) partitions, which group URIs based on

similar resource consumption patterns gleaned from historical access logs.

Lastly, the abstract syntax tree offers a hierarchical, tree-like representation of the essential ele-

ments and their relationships within the code, providing a high-level overview of the monolith’s structure.

Note that the representations that use a graph can be weighted/unweighted and direct/indirect.

The collection techniques outlined, like the relations between classes, the flow of interactions, se-

quence of accesses or frequency of certain functionalities all contribute to understanding monolith sys-

tems from various perspectives. The interplay between these techniques, coupled with a thoughtful

13



Algorithm Category Advantages Disadvantages

Clustering Algo-
rithms

Efficient and scalable
Clear, interpretable clusters

Predefined distance mea-
sures may oversimplify rela-

tionships
Some algorithms require predefined

number of clusters

Community Detec-
tion Algorithms

Good at identifying natural
groupings

No need to specify number
of clusters in advance

Computationally expensive
for large systems

May produce overly fine-
grained decompositions

Genetic Algorithms
Can optimize multiple ob-

jectivesEffective for large and com-
plex search spaces

Computationally intensive
Requires careful parameter

tuningSlow convergence, results
may vary

Table 3.1: Advantages and Disadvantages of Different Decomposition Algorithm Categories

choice of monolith representations, can significantly enhance the efficacy of microservices identification

within monolith systems.

3.3 Decomposition Generation

In the Decomposition Generation phase, both criteria and algorithms play a crucial role. Criteria can

involve maximizing or minimizing certain aspects that define good microservices to calculate similarity

measures, such as the distance between monolith classes, methods, and functionalities to derive the

best candidate microservices.

Decomposition algorithms fall into several categories: Clustering Algorithms, Community Detec-

tion Algorithms, and Genetic Algorithms. Clustering algorithms include methods like hierarchical

clustering [6], collaborative clustering [7], affinity propagation [8], CO-GCN [9], K-means [10], SarF

Map [11], and minimum spanning tree with Kruskal’s algorithm [12]. Community detection approaches

feature the Louvain algorithm [13], LDA classifier combined with Louvain [13], network-based commu-

nity detection [14], Girvan-Newman algorithm [15], and fast community detection methods [16]. Genetic

algorithms are represented by techniques like the Non-Dominated Sorting Genetic Algorithm - III [17].

14



3.4 Visualization

Visualization plays a crucial role in providing an overview of the decomposed system, aiding developers

in understanding the entities and their relationships within the microservices architecture. Visualization

methods include cluster graphs, entities graphs, community graphs, call graphs, cluster dendrograms,

and tables of classes. This phase enhances the overall comprehension of the candidate decomposition

during microservices migration.

3.5 Quality Assessment and Comparison

The Quality Assessment and Comparison phase evaluates the effectiveness and quality of the decompo-

sition using various metrics. These include coupling, cohesion, complexity, precision, recall, the number

of interfaces exposed, network overhead, feature modularization, modularity, coverage, CPU utiliza-

tion, memory utilization, and execution times. These metrics provide a quantitative analysis to assess

whether the candidate decomposition results in an optimal system structure.

This comprehensive set of metrics used to evaluate decompositions provides a view of various as-

pects, including structure, performance, and functionality. These metrics collectively contribute to in-

formed decision making during monolith migration. Knowing whether or not the microservice candidates

are highly cohesive and loosely coupled, knowing how the new architecture affects the system in terms

of performance, or even how many exposed interfaces the system ends up with, all this helps the de-

composition process, enabling developers to fine-tune and optimize the architecture.

3.6 Investigation of Existing Approaches

In alignment with the previously proposed pipeline, our focus is on researching how the decomposition

approaches of various authors align with the parameters outlined. In Table 3.2, Table 3.3, and Table

3.4 it is presented the research carried out by a variety of authors in this field of study. In Table 3.2 we

can observe the collection mechanisms and the representation of monoliths adopted by the authors. In

Table 3.3 the criteria and algorithms that will provide the decompositions into microservices adopted by

the authors are presented. Table 3.4 follows the codebases chosen by the authors and the metrics used

to evaluate their proposed decomposition.

However, it is important to note that there is currently no comprehensive study evaluating which

alternatives are objectively better. This gap leaves the question of optimal decomposition approaches

open for further exploration.

15



Table 3.2: Collection & Monolith Representations

Article Date Collection Monolith Representation Article Date Collection Monolith Representation

[18] 2023 Static Code Analysis Information Graph [19] 2020 Dynamic Analysis Package Trace Representation

[8] 2021 Code2Vec Abstract Syntaxe Tree [20] 2020
Mapping between OOP

concepts and the microservices concepts
Not Discussed

[17] 2021
Static Analysis

Dynamic Analysis
Direct Graph [21] 2019

Static Analysis

Dynamic Analysis
Data Flow Diagrams

[7] 2021 Gathering of Business Processes Set of logically related activities [6] 2019 Static Analysis Text Call Graph

[9] 2021 Static Code Analysis Direct Call Graph [22] 2019 Dynamic Analysis Execution Traces

[13] 2021 Static Analysis Abstract Syntaxe Tree [23] 2019 Static Analysis Dependency graph

[10] 2021
Static Code Analysis

Semantic Analysis

Syntatic Analysis

Word Matrix [24] 2019 Every class is a microservice Every class is a microservice

[14] 2021 Concept Analysis Directed Call Graph [25] 2019 URI Space Partitioning Clusters of URI Groups

[26] 2019 Dynamic Analysis Execution Paths [16] 2018 Static and Evolutionary Coupling
Relational Graph

displaying coupling between

classes

[27] 2020
Microservices Miner

Orchestrator and Searcher
Not Discussed [11] 2018 Static Analysis List of Program Groups

[28] 2020 Dynamic Analysis Matrix of Metrics [29] 2018
Static Analysis

Dynamic Analysis
Set of Call Graphs

[15] 2020
Static Analysis

Dynamic Analysis
Global Dependency Graph [30] 2018

Static Analysis

Dynamic Analysis

Dependency Graph

Abstract Syntaxe Tree(AST)

[31] 2020
Extraction of operations

and parameters from the API

Vector representations

of operation names
[12] 2017

Semantic Coupling Strategy

Contributor Coupling Strategy

Weighted Graph: higher weight

value indicates stronger coupling.

[32] 2020
Domain Analysis

Static Analysis

Dynamic Analysis

Runtime Behaviour Visualization [33] 2017
Manual Construction of a DFD

Condense the DFD into

a decomposable DFD

Data Flow Diagram

[34] 2020 Dynamic analysis Not Discussed [35] 2017
Lexical Analysis

Algorithm 1:

Decomposition Algorithm

Not Discussed

[36] 2020
Static Analysis

Structural Analysis
Not Discussed [37] 2016

Machine-readable

representation artifacts

describing intermidiate stages

of analysis and design

Weighted unidrected graph

16



Table 3.3: Criteria & Algorithms

Article Date Criteria Algorithm

[18] 2023 Maximizes a modularity score
Louvain Algorithm on complete information graph

Louvain Algorithm on subgraph

[8] 2021
Generate attention weights for:

- Method vectorization (aggregation function of abstract syntaxe tree paths)

- Class vectorization (aggregation functions of method vectors)

Affinity Propagation Algorithm:

Clustering method on class vectors

[17] 2021
Usage of fitness function to maximize/minimize

coupling, cohesion, network overhead, feature modularization

Non-dominated Sorting Genetic Algorithm

NSGA-III

[7] 2021 Foster both cohesion and loose-coupling Colaborative Clustering - Algorithm 4, 5

[9] 2021
Derive vector representations of the nodes

Minimize the effect of outlier nodes

Obtain communities in the graph

CO-GCN

[13] 2021
Use the extracted information to fit a topic modelling

technique allowing to identify topics and their distributions

LDA classifier - Latent Dirichlet Allocation

Louvain Algorithm

[10] 2021 Syntatic and Semantic relationships K-means

[14] 2021
Based on the inferred representative business logic

programs/classes for each business functionality,

referred to as ”seeds”

Network-based community detection algorithm

[26] 2019 Metric Based Ranking Matric Based Ranking Algorithm

[27] 2020 Not Discussed AST to text

[28] 2020
Identification of controller and subordinate objects.

Each pair, CO SO is evaluated by a relation matrix based on the frequency

and Invocation Strengh of the calls between CO and SO

Not Discussed

[15] 2020 Analysis of the strenght of the dependencies between components Girvan-Newman

[31] 2020 Clustering the vector representations Affinity Propagation

[38] 2020
Identification Based on the Entire Set of Gravity Centers

Identification Based on the Exact Number of Microservices

Algorithm 1

Algorithm 2

[32] 2020
Analysis of the behaviour to identify microservice

candidates
Not Discussed

17



Table 3.3 continued from previous page

Article Date Criteria Algorithm

[34] 2020

Clustering the URI taking into consideration

two clustering parameters

(i) mean request response time and

(ii) frequency of invocation of each request

K-means clustering algorithm to identify the clusters

[36] 2020
Clustering based on the euclidian distance

to the centroid

Algorithm 1 - Discovery of BO and class relationships

K-means clustering

[19] 2020 Extensive set of rules defined and explained in their research 6-Rule Approach Application

[20] 2020

Fitness Function based on the values:

Functionality(Coarse-Grained)

Composability(Composable)

Self-Containment(Loose-Coupled)

Usage(Discoverable)

Clustering algorithm

[21] 2019
Frequency of communication among processes

and the execution time of processes to determine the clustering
Clustering algorithm

[6] 2019 Weighted entities Hierarchical Clustering Algorithm

[22] 2019

Maximizing structural intra-connectivity

Maximizing structural inter-connectivity

Maximizing conceptual intra-connectivity

Maximizing conceptual interconnectivity

Functional Atom Grouping

[23] 2019
Document collection

Preprocessing

Latent Dirichlet Allocation

Latent Dirichlet Allocation

Seeded Latent Dirichlet Allocation

[24] 2019
Maximize Cohesion

Minimize Coupling
NSGA-II

[25] 2019
Identify a k discrete number of URI groups with similar resource requirements

deploys the identified URI partitions as separate microservices without any human intervention.

dynamically scaling the resources allocated for each microservice.

Scale Weighted K-means

[16] 2018 Maximizing the modularity function Fast Community

[11] 2018 Dedication Score SArF Map

18



Table 3.3 continued from previous page

Article Date Criteria Algorithm

[29] 2018
Similarity Value of subgraphs - Algorithm 1

Create set Z - set composed of all the functions that operate on a single business object
Algorithm 1 and 2

[30] 2018
Degree of coupling expressed by cosine distance

Sum of Squared Errors -¿ Evaluate the accuracy of clustering results

K-means hierarchical clustering

Algorithm 1

[12] 2017
Analysis of weight between classes

High weight will cluster them in the same microservice

or make them connected components

Kruskal Algorithm - calculates minimum spanning tree

Algorithm 1

[33] 2017 Individual modules of operation represent potential microservices Algorithm 1

[35] 2017 Computes the best mappings between the specifications and the reference vocabulary Algorithm 1, 2

[37] 2016 Coupling Criteria Catalog
Girvan-Newman

Epidemic Label Propagation

19



Table 3.4: Codebases & Metrics

Article Date Codebases Metrics

[18] 2023

JPetStore - https://github.com/mybatis/jpetstore-6

Spring Petclinic - https://github.com/spring-projects/spring-petclinic

SpringBlog - https://github.com/Raysmond/SpringBlog

Cargo Tracking - https://github.com/citerus/dddsample-core

AverageCoupling

AverageCohesion

IFN - Average number of interfaces

exposed by a microservice

[8] 2021

JPetStore - https://github.com/mybatis/jpetstore-6

SpringBlog - https://github.com/Raysmond/SpringBlog

JForum - https://sourceforge.net/projects/jforum2/

Roller - https://github.com/apache/roller

Spring Petclinic - https://github.com/spring-projects/spring-petclinic

Spring Petclinic Microservices -

https://github.com/spring-petclinic/spring-petclinic-microservices

Cohesion at Message Level (CHM)

Cohesion at Domain Level (CHD)

[17] 2021 Tecgraph Institute codebase

Coupling

Cohesion

Network Overhead

Feature Modularization

[7] 2021 Not Discussed

Afferent Coupling

Efferent Coupling

Instability

Relational Cohesion

[9] 2021

DayTrader - https://github.com/WASdev/sample.daytrader7

PBW - https://github.com/WASdev/sample.plantsbywebsphere

Acme-Air - https://github.com/acmeair/acmeair

DietApp - https://github.com/SebastianBienert/DietApp/

Modularity

Structural Modularity

Non-Extreme Distribution (NED)

Interface Number (IFN)

20

https://github.com/mybatis/jpetstore-6
https://github.com/spring-projects/spring-petclinic
https://github.com/Raysmond/SpringBlog
https://github.com/citerus/dddsample-core
https://github.com/mybatis/jpetstore-6
https://github.com/Raysmond/SpringBlog
https://sourceforge.net/projects/jforum2/
https://github.com/apache/roller
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/WASdev/sample.daytrader7
https://github.com/WASdev/sample.plantsbywebsphere
https://github.com/acmeair/acmeair
https://github.com/SebastianBienert/DietApp/


Table 3.4 continued from previous page

Article Date Codebases Metrics

[13] 2021 JPetStore - https://github.com/mybatis/jpetstore-6

Interface Number - IFN

Cohesion at Message Level - CHM

Cohesion at Domain Level - CHD

Interaction Number - IRN

Strucural Modularity Quality - SMQ

Conceptual Modularity Quality - CMQ

[10] 2021
Dolibarr open-source enterprise management system -

https://github.com/Dolibarr/dolibarr

Scalability

Availability

Execution Efficiency

CPU Utilisation

[14] 2021

DayTrader - https://github.com/WASdev/sample.daytrader7

Acme-Air - https://github.com/blueperf/acmeair-monolithic-java

TNTConcept - https://github.com/autentia/TNTConcept

Spring Petclinic - https://github.com/spring-projects/spring-petclinic

Number of Clusters

Coverage

Modularity

Cohesion

Non-extreme distribution (NED)

Average microservice size (AMS)

[26] 2019 Not Discussed

Scalability

Availability

Execution Efficiency

CPU Utilisation

[28] 2020
JPetStore - https://github.com/mybatis/jpetstore-6

Prodruction SSM - https://github.com/megagao/production_ssm

Non-Functional Metrics:

Invocation Strengh

Invocation Frequency

Functional Metrics:

Functional Metrics related to object(FO)

CPU related Objective (CO)

Memory Related Objective (MO)

[31] 2020 Not Discussed
Lack of Cohesion

Number of Operations (Complexity)

21

https://github.com/mybatis/jpetstore-6
https://github.com/Dolibarr/dolibarr
https://github.com/WASdev/sample.daytrader7
https://github.com/blueperf/acmeair-monolithic-java
https://github.com/autentia/TNTConcept
https://github.com/spring-projects/spring-petclinic
https://github.com/mybatis/jpetstore-6
https://github.com/megagao/production_ssm


Table 3.4 continued from previous page

Article Date Codebases Metrics

[38] 2020

FindSportMates - https://github.com/chihweil5/FindSportMates

Springblog - https://github.com/Raysmond/SpringBlog

InventoryManagmentSystem -

https://github.com/gtiwari333/java-inventory-management-system-swing-hibernate

Number of excellent, good and bad microservices

[32] 2020 in—FOCUS - sales and management software solution for lottery providers Not Discussed

[34] 2020 Teachers Feedback Web Application (TFWA) Not Discussed

[36] 2020
SugarCRM - https://github.com/sugarcrm

ChurchCRM - https://github.com/ChurchCRM/CRM

Lack of Cohesion (LOC)

Structural Coupling (StrC)

Scalability [CPU]

Scalability [DB CPU]

Scalability network

Availability

Efficiency

[19] 2020 eShopOnWeb - https://github.com/dotnet-architecture/eShopOnWeb
Percentage of calls made between packages

Percentage of calls made to a package from other packages

Percentage of calls made by a package to other packages

[20] 2020 Sample Project

Fitness Function based on the values:

Functionality(Coarse-Grained)

Composability(Composable)

Self-Containment(Loose-Coupled)

Usage(Discoverable)

[21] 2019 DDD Sample Core - https://github.com/citerus/dddsample-core

Afferent Coupling

Efferent Coupling

Instability

Relational Cohesion

22

https://github.com/chihweil5/FindSportMates
https://github.com/Raysmond/SpringBlog
https://github.com/gtiwari333/java-inventory-management-system-swing-hibernate
https://github.com/sugarcrm
https://github.com/ChurchCRM/CRM
https://github.com/dotnet-architecture/eShopOnWeb
https://github.com/citerus/dddsample-core


Table 3.4 continued from previous page

Article Date Codebases Metrics

[6] 2019
LdoD - https://github.com/socialsoftware/edition

Blended Workflow - https://github.com/socialsoftware/blended-workflow

Number of Singleton Clusters

Maximum Cluster Size

Silhouette Score

Precision

Recall

F-score

[22] 2019

JPetStore - https://github.com/mybatis/jpetstore-6

SpringBlog - https://github.com/Raysmond/SpringBlog

Solo - https://github.com/lzyzsd/b3log-solo

JForum - https://sourceforge.net/projects/jforum2/

Apache Roller - https://roller.apache.org/

Agilefant - https://sourceforge.net/projects/agilefant/

Xwiki-platform - https://www.xwiki.org/xwiki/bin/view/Documentation/

Interface Number

Cohesion at Message Level

Cohesion at Domain Level

Structural Modularity Quality

Conceptual Modularity Quality

Internal Co-Change Frequency

External Co-Change Frequency

Ratio of ICF to ECF

[23] 2019 Daytrader - https://github.com/davemulley/daytrader-ee6.git
Precision

Recall

F- measure

[24] 2019
JPetStore - https://github.com/mybatis/jpetstore-6

SpringBlog - https://github.com/Raysmond/SpringBlog

Cohesion at Message Level

Cohesion at Domain Level

Operation Number

Interaction Number

[25] 2019 Acme-Air - https://github.com/blueperf/acmeair-monolithic-java

Residual Error

Response Time

Throughput

Average CPU utilization

Allocated VMS

[16] 2018
eQuality

Academics
MoJoSim Similarity Metric

[11] 2018 Spring Petclinic - https://github.com/spring-projects/spring-petclinic Low Coupling

23

https://github.com/socialsoftware/edition
https://github.com/socialsoftware/blended-workflow
https://github.com/mybatis/jpetstore-6
https://github.com/Raysmond/SpringBlog
https://github.com/lzyzsd/b3log-solo
https://sourceforge.net/projects/jforum2/
https://roller.apache.org/
https://sourceforge.net/projects/agilefant/
https://www.xwiki.org/xwiki/bin/view/Documentation/
https://github.com/davemulley/daytrader-ee6.git
https://github.com/mybatis/jpetstore-6
https://github.com/Raysmond/SpringBlog
https://github.com/blueperf/acmeair-monolithic-java
https://github.com/spring-projects/spring-petclinic


Table 3.4 continued from previous page

Article Date Codebases Metrics

[29] 2018
SugarCRM - https://github.com/sugarcrm

ChurchCRM - https://github.com/ChurchCRM/CRM

Number of Requests

Execution Time

Average Memory

Average Disk

Scalability

Availability

Efficiency

Cohesion

Coupling

[30] 2018

DayTrader - https://github.com/WASdev/sample.daytrader7

JPetStore - https://github.com/mybatis/jpetstore-6

TCP-W

RUBiS

Average Throughput

Maximum Load

Steady Load

[12] 2017 Not Discussed
Execution Times

Team size reduction ratio metric

Average domain redundancy metric

[33] 2017 Not Discussed
Fine grain and focus

High cohesion and loose coupling

Neutral development technology

[35] 2017 Cargo Tracking - https://github.com/citerus/dddsample-core
Compare with expert decompositions

Compare with original microservices architecture

[37] 2016
Cargo Tracking - https://github.com/citerus/dddsample-core

A fictitious Trading System

Cohesiveness Criteria

Compatibility Criteria

Constraints Criteria

24

https://github.com/sugarcrm
https://github.com/ChurchCRM/CRM
https://github.com/WASdev/sample.daytrader7
https://github.com/mybatis/jpetstore-6


As can be observed, there is high variability in the current approaches and a lack of comparison

between them. In this work, we aim to address this gap by directly comparing some of the different

collection techniques to evaluate their impact on decomposition quality. Therefore, returning to our

research questions, Table 3.2 highlights the numerous collection methods utilized to extract information

from monoliths. In particular, there is no singularly predominant method favored by the community,

although static or dynamic analysis is utilized in 62.5% of the papers analyzed. We recognize that

enhancing support for diverse collection techniques contributes to the tool’s versatility, enabling it to

accommodate a broader spectrum of studies in the future. Examining Table 3.3, we observe a variety

of criteria employed by different authors to generate candidate decompositions. Although clustering

and community detection algorithms are a common choice, the specific criteria applied vary among

researchers. In the context of validation, presented in Table 3.4, we will utilize some codebases present

in the table to test our own solution. Notably, the metrics column reveals a multitude of evaluation

criteria for decompositions. However, there is a predominant emphasis on metrics related to coupling

and cohesion, and their various derivatives, as at least one of them is present in 47% of the papers.

25



26



4
Solution

Contents

4.1 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Pipeline Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Strategy for Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Similarity Measures and Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Implementation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Solution Overview

The goal is to extend the framework by incorporating support for a new monolith representation derived

from a structural collector. This extension provides structural data that will be processed throughout the

entire microservice identification pipeline, allowing us to assess its impact from data collection to final

decomposition.. We will then experiment with various codebases to analyze and compare the results.

The primary objective of this project is to enhance the existing framework by introducing support

for a new type of collector. This extension introduces a new monolith representation into the pipeline,

27



allowing us to investigate its impact on the microservices identification process. By enriching the infor-

mation gathered during the collection stage, we aim to improve the accuracy and effectiveness of the

decomposition process. The study will provide a detailed analysis of how these new collectors influence

various stages of the pipeline.

To measure the effectiveness of these enhancements, we will thoroughly test their impact on the

pipeline. Specifically, we will incorporate support for a novel structural representation of monoliths. We

expect that these enhancements will lead to decompositions characterized by loose coupling and high

cohesion. This expectation comes from the fact that the structural representation captures important

relationships between monolith entities, improving the identification of natural microservice boundaries.

This extension of collection techniques is intended to provide an enriched understanding of the re-

sults of the automatic identification of microservices in monoliths, by comparing with the results achieved

when other collection techniques are used.

Therefore, we plan to conduct rigorous experiments using various codebases, comparing the results

obtained with the extended framework against those achieved with the original setup, as well as results

from other authors and against expert decompositions. This comparative analysis will reveal the potential

advantages and disadvantages of each of the collectors and representations, offering insights into their

practical applicability.

In summary, our solution focuses on extending the framework, conducting a detailed study of its

impact on the microservices identification pipeline, and performing experiments with diverse codebases

to validate the applicability of the identification pipeline.

4.2 Pipeline Extension

The stages in the pipeline that were extended include the Decomposition Generation, where support for

a new type of monolith representation was added. This involved integrating a new structural represen-

tation in the pipeline, allowing for a detailed analysis and decomposition generation.

In the Visualization, enhancements were made to display information related to the new represen-

tation, such as the entities each cluster references and the inheritance hierarchies within the system.

This information is associated with the representation information associated with the generated decom-

position. Visual enhancement helps to better understand and analyze the structural relationships and

dependencies within the proposed decomposition.

Additionally, in the Quality Assessment and Comparison a new metric is introduced to evaluate the

decomposition groups, known as the Purity metric. This metric allows for a more nuanced evaluation of

the generated decompositions, comparing them against expert-defined clusters, and providing insight

into the structural quality of the decompositions.

28



4.3 Strategy for Implementation

The development process began with an analysis of the existing codebase, focusing on understanding

the implementation of the Sequence of Accesses representation. This initial exploration was crucial for

identifying the core structures and processes that would guide the development of new features and

fixes.

Development Steps

1. Initial Implementation: The first commit included a basic implementation that generated a manual

decomposition. This initial step focused on establishing a working foundation, even though with

many components hard-coded. The primary goal was to create a proof-of-concept that could be

incrementally refined.

2. Frontend Enhancements: Subsequent efforts improved the frontend, enabling interaction with all

graph elements. This included fixing bugs related to distance calculations and edge generation in

the visualization of clusters and entities.

3. Structural Recommendations: The next significant milestone was making the recommendation

feature 4.5.2 functional for structure representations. This involved integrating and debugging the

logic that underpins the recommendation system.

4. Inheritance Relationships: The codebase was extended to include inheritance relationships be-

tween entities, allowing for a more nuanced representation of data structures. This included ad-

dressing issues in the visualization and interaction between clusters and entities, particularly in the

context of inheritance.

5. Metric Addition: A notable feature addition was the Purity metric, designed to analyze proposed

clusters against expert-defined clusters. This feature was crucial for evaluating the effectiveness

of the clustering algorithm. However, detailed information regarding the Purity metric are deferred

to Section 5.2.

6. Data Expansion: Further refinements included expanding the data available for Purity analysis,

particularly in mapping clusters and identifying common entities. This enhancement aimed to

provide deeper insights into the clustering process and its outcomes.

Throughout the development process, the focus remained on iterative improvement and refinement.

The approach was characterized by initial broad implementations followed by targeted debugging and

feature enhancement, ensuring a robust and functional result.

29



4.4 Similarity Measures and Decomposition

Figure 4.1: Decomposition Generation

Considering the challenges of extending modules, let us revisit the example mentioned earlier. In

the initial stages of the microservice identification pipeline, specifically during the Collection phase, the

creation and consumption of the monolith representation lay the foundation for subsequent processes,

notably the Decomposition Generation.

The outcome of this structural collector is a JSON file containing comprehensive information about

all entities within the monolith. For each entity, the file includes details of its interactions and covers the

names and types of entities involved. These interactions can take the form of one-to-one connections

or one-to-many relationships. For example, an entity may be linked to another entity in a one-to-one

manner or to an entire list of entities in a one-to-many configuration. In addition, we consider inheritance

relationships between classes, assigning a specific weight to represent the value of these relationships

in the monolith structure.

After this analysis, various similarity measures are generated which are then utilized by the clus-

tering algorithm responsible for generating dendrograms 4.2. These similarity measures indicate the

closeness of two entities, reflecting the number of references between them and the presence of inheri-

tance relationships.

The set of all references of a given entity e is given by

ref(e) = {att in e : att.target is Entity}

so a set of references of e is composed of all attributes of e that refer an Entity.

Similarly, the set of references of an entity e1 that refer an entity e2 is given by

30



ref(e1, e2) = {att ∈ ref(e1) : att.target is e2}

where a reference is considered from e1 to e2 if the attribute of e1 is a reference contained in e1 and

refers to e2.

Relationship Weights:

To calculate the similarity measure, we also need a notion of weight, which we define as follows:

weight(att) =

{
o2o if att.target.multiplicity = 1

o2m if att.target.multiplicity > 1

Here, o2o and o2m are parameters that represent the weights assigned to one-to-one and one-to-

many relationships, respectively. These weights are configured by the developer based on the specific

needs and context of the application.

Inheritance Weight:

In addition to the relationship weights, we introduce an inheritance weight inher, which accounts for

the significance of inheritance relationships between classes. This weight is applied when a class e1 is

either a subclass or superclass of another class e2. The inheritance weight inher is configurable by the

developer and can be set based on how much importance is given to the inheritance in the system’s

architecture.

The inheritance weight between two classes e1 and e2, denoted as inher(e1, e2), is defined as follows:

inher(e1, e2) =

{
inher, if e1 is a superclass of e2 or e2 is a superclass of e1,
0, otherwise.

Here, inher(e1, e2) represents the inheritance weight between classes e1 and e2, and inher is the

predefined weight value set by the developer.

Developer Configuration

The weights o2o, o2m, and inher are configurable by the developer, such that their sum is 100. For

instance, if one-to-one relationships are considered more significant than one-to-many relationships and

inheritance, the developer might set:

o2o = 70, o2m = 20, inher = 10

Alternatively, if inheritance is deemed more critical, the weights might be configured differently:

o2o = 30, o2m = 30, inher = 40

31



This flexibility allows the developer to fine-tune the similarity measure calculation according to the

specific requirements and priorities of the application.

Entity Similarity Distance

The distance between two entities is represented by a value between 0 and 1 and is calculated as

follows:

d(e1, e2) =

∑
att∈ref(e1,e2) weight(att) + inher(e1, e2)∑

att∈ref(e1) weight(att) + inher(e1)

provided that
∑

att∈ref(e1)

weight(att) + inher(e1) ̸= 0.

where e1 and e2 are two entities, and the distance is given by the sum of the weights of the references

from e1 to e2 (including the inheritance weight inher(e1, e2)) divided by the sum of the weights of all

references in e1 (plus the inheritance weight inher(e1, e2)).

This measure accounts for both direct relationships and inheritance hierarchies, providing a compre-

hensive similarity metric for the entities in the system.

Dendrogram

Figure 4.2: Dendrogram

After calculations, the tool generates a dendrogram, like the one depicted in Figure 4.2. It serves

as a visual representation of the dependencies between all classes, which aids the class allocation

process to microservices. To illustrate, in Figure 4.2 on the horizontal axis we have the classes that the

monolith is composed of, while as we go up vertically we can see the relations between the classes. If

our objective is to create a decomposition with four microservices, the dendrogram is segmented at a

specific height, which groups the classes into four clusters. This height-based segmentation facilitates

the identification of microservices.

32



4.5 Implementation Design

Figure 4.3: Model Decomposition

4.5.1 Structural Representation

The first part of our implementation involved creating a new type of representation, called the Structural

Representation. This new representation, along with the extensions made to the system, depicted in

the red rectangles of Figure 4.3, also includes support for a new type of file generated by the structural

collector, depicted in Figure 4.4. This structure file contains most of the information needed to execute

the decompositions. To implement these changes, several new classes were developed, while existent

classes were extended to handle the new representation.

• Extended Classes:

– Backend: StructureInformation, StructureInformationDto, StructureRepresentation,

StructureRepresentationDto

– Frontend: SimilarityMatrixScipyStructureForm, StructureRepresentation

• Customized Classes:

– Backend: Representation, RepresentationFactory, RepresentationInformationFactory,

RepresentationInformationDtoFactory, RepresentationDtoFactory

– Frontend: Decompositions, Similarities, Representation, RepresentationFactory

33



Figure 4.4: Choices of representations, including the new one

Figure 4.5: Mono2Micro Tools Figure 4.6: Extensions

4.5.2 Decomposition Generation

The next step in the implementation focuses on the decomposition generation, where we compute all

similarity measures to create candidate decompositions. During this process, users can define the

weights necessary to compute the similarity measures, as described in Section 4.4.

Decomposition generation can be carried out in two ways:

• Manual: Users manually set up the weights required for computing the similarity measures.

Fig. 4.6

• Automatic: The Mono2Micro tool generates multiple recommendations by automatically assigning

values to the weights. These recommendations are presented alongside the evaluation metrics,

allowing the user to select the most suitable ones. Fig. 4.5

To support these two approaches, the framework includes extensions and customizations of key

classes in both the frontend and backend. The following outline the relevant extended and customized

classes:

34



• Extended Classes:

– Backend: SimilarityScipyStructure, StructureWeights, SimilarityScipyStructureDto,

SimilarityStructureIterator

– Frontend: SimilarityScipyStructure, StructureWeights

• Customized Classes:

– Backend: Weights, WeightsFactory, SimilarityDto, SimilarityDtoFactory, Strategy,

StrategyService, RecommendationFactory, RecommendationsType, RecommendMatrixSciPy,

RecommendationDto, RecommendationDtoFactory

– Frontend: SimilarityFactory, StrategyTypes, WeightsFactory, Recommendations, Recom-

mendationFactory, RecommendationTypes

4.5.3 Graphical Representation of Decompositions

After generating the decompositions, the system presents two visualizations of the decomposition re-

sults. One view represents clusters as nodes (Figure 4.7), while the other view represents entities as

nodes (Figure 4.8).

In the Cluster as Nodes view, clicking a node reveals all entities within that cluster (Figure 4.9),

while clicking an edge shows references between entities across clusters (Figure 4.10). This view also

identifies relationships such as inheritance or extension between entities in different clusters.

In the Entity as Nodes view, clicking on an entity node shows its references and inheritance hierar-

chy (Figure 4.11 ), while clicking an edge between two entities reveals the type of reference, such as an

instance, list, or set (Figure 4.12).

• Extended Classes:

– Frontend: StructureView, StructureViewModal

• Costumized Classes:

– Backend: StructureInformation, StructureInfoDto, StructureWeights

– Frontend: ClusterView, PartitionsDecomposition

35



Figure 4.7: Cluster Representation as Nodes Figure 4.8: Entity Representation as Nodes

Figure 4.9: Entities Contained in the Selected Clus-
ter

Figure 4.10: References Between Entities Across
Clusters

Figure 4.11: References and Inheritance Hierarchy
of the Selected Entity

Figure 4.12: Type of Reference Between Selected
Entities

4.5.4 Clustering Evaluation: Purity Metric

To evaluate the success of our decompositions, we implemented the Purity metric, with the results shown

in Figure 4.13 in our comparison tool. Along with the purity value, the tool displays detailed information

for each cluster, including expert cluster mapping and shared entities between the proposed and expert

clusters. The backend class Purity handles this calculation, while the frontend class PurityResults

presents the results. We can see this integration in the context of the application in Fig. 4.5.

• Extended Classes:

36



– Backend: Purity

– Frontend: PurityResults

• Costumized Classes:

– Backend: DefaultComparisonToolResponse

– Frontend: ComparisonTool

Figure 4.13: Purity Metric Results Display

37



38



5
Evaluation

Contents

5.1 Selected Codebases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Spring Petclinic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Cargo Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Quizzes Tutor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Research Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8 Research Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The primary objective of the evaluation is to determine the effectiveness of our newly implemented

collector in generating a decomposed system that adheres to the key principles of microservices archi-

tectures, such as ensuring each candidate microservice adheres to the single responsibility principle

and operates independently, without reliance on other services. To achieve this, we make use of cohe-

sion, coupling, and complexity metrics, quantifying the extent to which design principles are observed,

and evaluating the structure of the decomposition. Our assessment involves a comparative analysis

over several codebases, benchmarking our results against other state-of-the-art approaches, our own

39



implementation using a different collection technique, and an expert analysis.

5.1 Selected Codebases

Throughout our evaluation, we will utilize a diverse range of codebases to conduct a comprehensive

analysis of the capabilities and performance of our microservices identification framework. We will

particularly focus on a selection of codebases:

1. Spring Petclinic 1 - Spring Petclinic is an open-source sample application that demonstrates the

usage of the Spring Framework in the context of a veterinary clinic management system. This

codebase comprises 9 entities and 13 functionalities

2. Cargo Tracking 2 - The Cargo Tracking project is a sample application that serves as an im-

plementation of Domain-Driven Design (DDD) principles. It is often used as a reference in the

software development community to showcase how DDD concepts can be applied in practice.

This codebase comprises 11 entities and 10 functionalities

3. Quizzes Tutor 3 - Quizzes Tutor is an educational platform designed to manage and deliver

quizzes to students. It is a more complex codebase when compared to the others, demonstrat-

ing a larger number of functionalities and entities. This codebase comprises 46 entities and 125

functionalities.

While exploring the contributions of other authors, such as Filippone, Brito and Al-Debagy [8,13,18],

and others, we observed the frequent utilization of these specific codebases. In alignment with this

trend, we chose to employ these codebases in our study, allowing comparisons not only against our

own results but also against findings from other researchers. These codebases also present diverse

characteristics that encompass various application domains.

5.2 Evaluation Metrics

In order to conduct a statistical analysis we will use metrics that evaluate different aspects of the decom-

position, such metrics are Complexity, Cohesion, Coupling [39] and Purity [40].

1https://github.com/spring-projects/spring-petclinic
2https://github.com/citerus/dddsample-core
3https://github.com/socialsoftware/quizzes-tutor

40

https://github.com/spring-projects/spring-petclinic
https://github.com/citerus/dddsample-core
https://github.com/socialsoftware/quizzes-tutor


Complexity

Complexity measures the difficulty of implementing monolith functionalities as distributed transactions. It

evaluates how challenging it is to break down a functionality into local transactions. Specifically, it looks

at the number of interactions between a local transaction and other distributed functionalities based on

domain entities. Higher complexity indicates more intricate coordination and integration across different

parts of the system.

Cohesion

Cohesion assesses whether the functionalities within a cluster adhere to the principle of single respon-

sibility, meaning that all domain entities accessed by a cluster are related and accessed together. It

measures how well the functionalities in a cluster are aligned with each other in terms of the domain

entities they interact with. High cohesion indicates that a cluster is well-organized, with domain entities

involved together in the same functionalities, leading to a more cohesive and coherent cluster.

Coupling

Coupling evaluates the extent to which different clusters interact with each other. It measures how many

domain entities a cluster exposes to other clusters through its interfaces. High coupling means that

a cluster exposes most of its entities when other cluster interact with it. Reducing coupling is often

desirable to minimize dependencies and improve modularity.

Purity

Purity is a metric used to evaluate the quality of clusters by measuring the extent to which each cluster

contains elements from a single, pre defined, expert cluster. It is particularly useful in scenarios where

the goal is to categorize data into distinct, meaningful groups. The Purity of a clustering solution is

defined as follows:

Purity(DE , DP ) =
1

N

∑
i

max
j

|Ci ∩ Lj |

where:

• DE represents the expert decomposition,

• DP represents the proposed decomposition,

• Ci represents the set of elements in cluster i from the proposed decomposition DP ,

41



• Lj represents the set of elements in cluster j from the expert decomposition DE ,

• N is the total number of elements across all clusters,

• |Ci ∩ Lj | is the cardinality (number of elements) of the intersection between cluster Ci and cluster

Lj .

Purity essentially measures how well the proposed clustering DP aligns with the expert clustering DE

by considering the maximum overlap between each cluster in the proposed clustering and any cluster in

the expert clustering.

This metric is valuable for assessing clustering quality because it provides insight into how well the

clustering process has segregated the data according to the true underlying categories. However, it

should be noted that high Purity does not necessarily indicate a perfect clustering solution, as it can be

trivially maximized by creating a large number of clusters with a single element each. Therefore, Purity

is often used in conjunction with other metrics.

Definition of True Positives, False Positives, True Negatives, and False Negatives

In the context of comparing a proposed decomposition with an expert decomposition, we define the

concepts of true positives, false positives, true negatives, and false negatives as follows:

True Positives (TP): A true positive occurs when two entities are clustered together in both the

proposed decomposition and the expert decomposition. This indicates that the proposed decomposition

has correctly identified the relationship between these two entities.

False Positives (FP): A false positive occurs when two entities are clustered together in the pro-

posed decomposition, but they are not clustered together in the expert decomposition. This means the

proposed decomposition incorrectly grouped two entities that should have been separated according to

the expert.

False Negatives (FN): A false negative occurs when two entities are clustered together in the expert

decomposition, but they are not clustered together in the proposed decomposition. This indicates that

the proposed decomposition has failed to identify a correct relationship between the two entities.

True Negatives (TN): A true negative occurs when two entities are not clustered together in both the

proposed decomposition and the expert decomposition. This shows that the proposed decomposition

has correctly recognized that these two entities do not belong in the same cluster.

By using these definitions, we can calculate various metrics such as Accuracy, Precision, Recall,

Specificity, and F-score to evaluate how well the proposed decomposition aligns with the expert decom-

position. These metrics provide insights into the performance of the decomposition in terms of correctly

identifying relationships between entities and avoiding incorrect groupings.

42



Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy evaluates how well the proposed decompositions perform overall. By measuring the pro-

portion of correctly identified elements or classifications out of the total number of elements, we can

determine how effectively each approach generalizes across different cases. Higher accuracy indicates

that the decomposition or algorithm is performing well across the board, but it may not fully capture

performance nuances.

Precision

Precision =
TP

TP + FP

Precision reflects the proportion of true positives among the instances classified as positive, which

is particularly important when false positives have significant implications. For example, in the context

of functional decomposition, high precision ensures that each identified entity is correctly categorized,

minimizing the risk of incorrectly grouping entities and ensuring precise results.

Recall

Recall =
TP

TP + FN

Recall is essential for evaluating how effectively our decompositions or algorithms capture all relevant

instances. It measures the proportion of actual positives that are correctly identified, which is crucial for

ensuring that no important functionalities or elements are missed. In our thesis, high recall indicates

that the decomposition or algorithm is thorough in identifying all necessary components, which is vital

for comprehensive and effective analysis.

Specificity

Specificity =
TN

TN + FP

Specificity complements recall by assessing how well the decompositions or algorithms avoid false

positives. It measures the proportion of true negatives among the actual negatives, helping to ensure

that non-relevant instances are correctly excluded. In the context of functional decomposition, high

specificity means that the decomposition or algorithm effectively distinguishes between relevant and

non-relevant functionalities, which helps in refining and validating the analysis.

43



F-score

F-score = 2× Precision × Recall
Precision + Recall

The F-score provides a balanced view of our decompositions performance by combining Precision

and Recall. This metric is particularly useful in our thesis for evaluating the overall effectiveness of

the decompositions, as it reflects both the accuracy of positive predictions and the completeness in

identifying all relevant instances. A higher F-score indicates a well-balanced approach that achieves a

good trade-off between precision and recall, ensuring that both the accuracy and completeness of the

decomposition or algorithm are considered in our analysis.

5.3 Spring Petclinic

Spring Petclinic is a sample application for the spring framework. It shows how to build a Spring-based

enterprise application to manage information about pet, pet owners, visits and veterinarians to a veteri-

narian clinic.

5.3.1 Entities

Following the pipeline collection stage, our collector identified several entities in the Spring Petclinic

codebase: BaseEntity, NamedEntity, Pet, PetType, Vet, Specialty, Person, Owner, and Visit.

Mono2Micro generates multiple decompositions for each selected collection technique. The number

of decompositions depends on the number of adjustable weights configured by the developer - the more

weights involved, the more decompositions are suggested. Despite the large number of possible decom-

positions for each technique, our focus is on those that maximize cohesion while minimizing complexity

and coupling. Given the simplicity of the application, one structural decomposition stands out, offering

the lowest complexity and coupling, along with the highest cohesion amongst all recommendations.

5.3.2 Expert Decomposition

The expert-driven decomposition of the Spring Petclinic 4 application organizes the system into three

distinct clusters. This decomposition reflects the domain knowledge of experienced developers, ensuring

a meaningful grouping of entities based on functionality and structure. The expert decomposition is

illustrated in Figure 5.1.

4https://github.com/spring-projects/spring-petclinic

44

https://github.com/spring-projects/spring-petclinic


Figure 5.1: Expert decomposition of the Spring PetClinic application.

Since the expert decomposition consists of three clusters, we will limit our analysis to the proposed

decompositions that also contain three clusters. This alignment ensures a consistent basis for compari-

son between the expert’s understanding of the system and the automatically generated decompositions

from Mono2Micro.

5.3.3 Evaluation of Automatic Decompositions

Decomposition Accuracy Precision Recall Specificity F-Score Purity

Structure 0.53 0.23 0 0.62 0.26 0.56

Accesses

Highest Cohesion
0.53 0.23 0.3 0.62 0.26 0.56

Accesses

Lowest Coupling & Complexity
0.56 0.31 0.5 0.58 0.38 0.67

Table 5.1: Comparison of Automatic Decompositions against Expert Decompositions for Spring Petclinic

45



Comparing Structural decomposition against the Expert

Figure 5.2: PetClinic Structural Decomposition

The evaluation of the Spring Petclinic codebase, using the decomposition generated by the tool which

optimizes for lowest coupling, lowest complexity, and highest cohesion, reveals several important insights

when compared to the expert-driven decomposition. The metrics obtained from the comparison can be

observed in Table 5.1

The structural decomposition shows a moderate accuracy of 0.53, but it suffers from low precision

(0.23) and recall (0.00). This suggests that the generated clusters contain significant false positives,

with no true positives identified, reflecting a misalignment with the expert decomposition.

The evaluation of the Spring Petclinic decomposition reveals that the generated decomposition, while

optimized for lowest coupling, lowest complexity, and highest cohesion, does not align closely with the

expert decomposition. The expert decomposition, on the other hand, does not specifically aim to op-

timize these metrics. Instead, it focuses on grouping entities based on a domain-driven perspective,

prioritizing maintainability and logical separation of concerns.

46



Comparing Access-Based Decompositions against the Expert

The evaluation of the Spring Petclinic codebase, using the decomposition generated by the tool that

optimizes for the highest cohesion and the lowest complexity and coupling, reveals several key insights

compared to expert-driven decomposition. The metrics obtained from this comparison can be observed

in Table 5.1.

Highest Cohesion Decomposition

Figure 5.3: PetClinic Accesses Decomposition with Highest Cohesion

By analyzing Figure 5.3, we observe that certain entities, such as PetType, Vet, Person, Specialty,

NamedEntity, and BaseEntity, appear isolated. This suggests that there are no transactional relation-

ships linking these entities to others. This indicates potential issues in the dataset, where the example

does not fully capture the relationships that typically guide decomposition. Consequently, the metrics

can be calculated on incomplete or incorrect values, reducing the reliability of the results.

Although this decomposition optimizes for cohesion, the metrics are similar to the structural decom-

position, with no significant improvements in accuracy (0.53) or precision (0.23). However, it shows a

moderate recall improvement (0.30), indicating that some correct relationships between entities were

captured.

The evaluation of the highest cohesion decomposition reveals that, despite being optimized for inter-

nal coherence within clusters, it shares many of the same shortcomings as the structural decomposition.

47



Accuracy and purity are moderate, but precision remains low and recall, although improved, is still in-

sufficient. This suggests that while optimizing for cohesion does capture some of the expert’s clustering

logic, it does not do so comprehensively.

Lowest Complexity and Coupling Decomposition

Figure 5.4: PetClinic Accesses Decomposition with Lowest Complexity and Coupling

This decomposition produces the best overall results, with the highest accuracy (0.56), precision (0.31),

and recall (0.50). The improvement in F-score (0.38) and purity (0.67) suggests that minimizing com-

plexity and coupling leads to better alignment with the expert-driven decomposition.

The evaluation of the lowest complexity and coupling decomposition shows that this approach re-

sults in the best overall alignment with the expert decomposition, as indicated by its higher accuracy,

precision, recall, F-Score, and purity. These results suggest that focusing on minimizing complexity

and coupling produces a decomposition that more accurately reflects the expert’s understanding of how

entities should be grouped.

Overall Comparison and Conclusion

The comparison between access-based and structural decompositions against the expert decompo-

sition reveals that the access-based approach—especially when optimized for lowest complexity and

coupling—yields better results across most metrics. However, both approaches fail to fully replicate the

logic used by domain experts in clustering entities. The expert decomposition’s adherence to domain-

48



driven design principles likely explains why it performs poorly on metrics designed to assess technical

characteristics, such as coupling and complexity. This highlights the importance of considering both

technical and domain-specific perspectives in decomposition generation.

Interestingly, the structural decomposition aligns better with the expert’s logic in some areas, par-

ticularly where Owner, Pet, and Visit are clustered together in both the structural and expert decom-

positions. The structural decomposition’s stronger alignment could be explained by the fact that many

entities in the access-based decomposition have no associated transactions. The incomplete implemen-

tation of transactions within the codebase affects the clustering results, with only Pet, Visit, and Owner

having actual interactions among them. This lack of transactional data may limit the effectiveness of the

access-based decomposition.

5.4 Cargo Tracking

The Cargo Tracking Codebase is a part of the DDDSample project, which is a sample application that

demonstrates the principles of DDD in action. It provides a reference implementation of a cargo shipping

system, including various bounded contexts, entities, value objects, repositories, and services that focus

on the core domain logic related to tracking cargo shipments.

5.4.1 Entities

The entities that compose this codebase are Cargo, Location, Handling Event, Leg, Carrier Move-

ment, Voyage, Delivery, Handling Activity, and Route Specification.

Expert Decomposition

The expert-driven decomposition of the Cargo Tracking 5 application organizes the system into four

distinct clusters. The expert decomposition is illustrated in Figure 5.5.

5https://github.com/citerus/dddsample-core

49

https://github.com/citerus/dddsample-core


Figure 5.5: Expert decomposition of the Cargo Tracking application.

Since the expert decomposition consists of four clusters, we will limit our analysis to the proposed

decompositions that also contain four clusters. This alignment ensures a consistent basis for comparison

between the expert’s understanding of the system and the automatically generated decompositions from

Mono2Micro.

5.4.2 Evaluation of Automatic Decompositions

Decomposition Accuracy Precision Recall Specificity F-Score Purity

Highest Cohesion (Structure) 0.42 0.25 0.39 0.43 0.30 0.64

Lowest Complexity (Structure) 0.49 0.22 0.22 0.62 0.22 0.64

Lowest Coupling (Structure) 0.56 0.29 0.22 0.73 0.25 0.64

Access-Based 0.42 0.25 0.39 0.43 0.30 0.64

Table 5.2: Comparison of Automatic Decompositions against the Expert Decomposition for Cargo Tracking

Evaluation of the Cargo Tracking Decomposition With Structure Decomposition

This section evaluates the DDD Sample Core Cargo Tracking application by comparing three different

decompositions generated by Mono2Micro (Highest Cohesion, Lowest Complexity, and Lowest Cou-

pling) against the expert-driven decomposition. The evaluation is based on several key metrics: Accu-

racy, Precision, Recall, Specificity, F-Score, and Purity.

50



Highest Cohesion Decomposition

Figure 5.6: Cargo Tracking Struture Decomposition with Highest Cohesion

The Highest Cohesion decomposition prioritizes the grouping of entities to maximize internal coherence.

The metrics for this decomposition are shown in Table 5.2. The Highest Cohesion decomposition pro-

vides moderate purity and recall, but it falls short in terms of accuracy, precision, and specificity. While it

effectively groups entities into cohesive clusters, it does not align closely with the expert’s understanding,

leading to a significant number of incorrect groupings.

51



Lowest Complexity Decomposition

Figure 5.7: Cargo Tracking Struture Decomposition with Lowest Complexity

The Lowest Complexity decomposition focuses on simplifying the overall structure by minimizing the

number of clusters and their interactions. The metrics for this decomposition are in Table 5.2..

The Lowest Complexity decomposition achieves moderate accuracy and specificity, indicating a bal-

ance between simplification and correctness. However, the low precision, recall, and F-Score highlight

the trade-offs involved in minimizing complexity, leading to a decomposition that, while simpler, does not

closely align with the expert’s logic.

52



Lowest Coupling Decomposition

Figure 5.8: Cargo Tracking Struture Decomposition with Lowest Coupling

The Lowest Coupling decomposition prioritizes reducing the dependencies between clusters. The eval-

uation metrics for this decomposition can be observed in Table 5.2.

The Lowest Coupling decomposition achieves the highest accuracy and specificity among the three

structural approaches, suggesting it is more effective at aligning with the expert’s clustering while reduc-

ing dependencies. However, its precision, recall, and F-Score still indicate significant room for improve-

ment in fully capturing the expert’s understanding.

Access-Based Decomposition

Figure 5.9: Cargo Tracking Accesses Decomposition

53



The access-based decomposition considers the sequences of accesses to optimize the decomposition

process. The metrics for this decomposition are in Table 5.2.

The access-based decomposition performs similarly to the Highest Cohesion decomposition, with

identical metrics across all categories. This suggests that focusing on access patterns produces a

decomposition that is both cohesive and somewhat aligned with the expert’s understanding, but still has

notable shortcomings in precision, recall, and specificity.

Overall Summary

The evaluation of the structural decomposition shows a lack of consistent groupings, likely due to the ap-

proach of optimizing each metric individually. This fragmentation might also be influenced by limitations

in the codebase, where certain entities like Schedule and TrackingID have no structural connections

with other entities. These gaps may indicate incomplete implementation within the codebase, preventing

these entities from being fully incorporated into meaningful clusters.

In contrast, the access-based decomposition presents different results. Since this decomposition

optimizes all metrics collectively, it demonstrates a closer alignment with the expert’s logic, albeit not

perfectly. A key observation is that four entities—Cargo, RouteSpecification, Leg, and Itinerary—are

clustered together in both the expert and access-based decompositions. Additionally, Schedule and

CarrierMovement are grouped together in both cases. While the expert decomposition places Voyage

in a small cluster, the access-based decomposition isolates it in its own cluster, which still shows some

resemblance to the expert’s grouping.

These results suggest that the access-based approach, by considering a holistic optimization of

metrics, is better at capturing the relationships between entities as envisioned by the expert. However,

neither decomposition fully aligns with the expert’s clustering, highlighting the inherent challenges in

creating an automatic decomposition that satisfies multiple criteria simultaneously.

5.5 Quizzes Tutor

Quizzes Tutor is an online tool that allows teachers to create and reuse multiple-choice questions with

images and topics which can be inserted in assessments and quizzes. It is currently integrated with

IST authentication so that it can be used for any course. Students can then answer those questions in

generated or sugested quizzes (pseudo-random) providing them with a useful self-assessment tool to

improve their learning.

54



5.5.1 Entities and Functionalities Overview

The Quizzes Tutor application is composed of a substantial number of entities and functionalities, which

together form the backbone of its comprehensive system. In total, the application comprises 46 distinct

entities. These entities represent the various objects, concepts, and resources that the application needs

to manage and interact with, ranging from users and quizzes to specific topics and questions.

In addition to the entities, the application implements a broad range of functionalities, totaling 108

distinct functionalities. These functionalities are distributed across 18 different controllers, each respon-

sible for managing a particular aspect of the application’s operation. Controllers act as intermediaries

between the application’s data layer and user interface, handling requests, processing data, and ensur-

ing that the system’s operations run smoothly.

This wide array of entities and functionalities enables the Quizzes Tutor application to offer a rich

set of features and capabilities, supporting its goal of providing a versatile and effective tool for both

teachers and students in the creation, management, and completion of quizzes.

Expert Decomposition

To evaluate the modularization of the Quizzes Tutor 6 application, an expert-driven decomposition was

also considered. This decomposition was manually crafted by a domain expert who has a deep under-

standing of the functionality and structure of the application. The expert decomposition aims to reflect

an ideal partitioning based on practical experience and knowledge of the system’s architecture, rather

than relying solely on automated tools.

The expert-driven decomposition has two possible views: one focusing on the accesses and the

other on the structure of the Quizzes Tutor application. These decompositions are intended to serve as

a benchmark for evaluating the effectiveness of the automated strategies generated earlier.

The expert-driven decomposition of the Quizzes Tutor application organizes the system into ten

distinct clusters. Both views of the expert decomposition are illustrated in Figures 5.10 and 5.11.

6https://github.com/socialsoftware/quizzes-tutor

55

https://github.com/socialsoftware/quizzes-tutor


Figure 5.10: Expert decomposition of the Quizzes Tutor application. Clusters View

Figure 5.11: Expert decomposition of the Quizzes Tutor application. Entities View

Since the expert decomposition consists of ten clusters, we will limit our analysis to the proposed

decompositions that also contain ten clusters. This alignment ensures a consistent basis for comparison

between the expert’s understanding of the system and the automatically generated decompositions from

56



Mono2Micro.

5.5.2 Evaluation of Automatic Decompositions

Decomposition Strategy Accuracy Precision Recall Specificity F-Score Purity

Highest Cohesion

& Lowest Coupling

(Accesses)

0.73 0.27 0.47 0.77 0.34 0.63

Lowest Complexity (Accesses) 0.73 0.25 0.40 0.79 0.31 0.61

Highest Cohesion (Structure) 0.62 0.15 0.34 0.67 0.21 0.57

Lowest Coupling (Structure) 0.63 0.15 0.31 0.69 0.20 0.57

Lowest Complexity (Structure) 0.63 0.14 0.28 0.69 0.19 0.54

Table 5.3: Comparison of Automatic Decompositions against the Expert Decomposition for Quizzes Tutor

5.5.3 Accesses Decomposition Results

To evaluate the modularization of the Quizzes Tutor application, two decomposition strategies were

generated using the Mono2Micro tool. These decompositions aimed to optimize different architectural

qualities such as cohesion, coupling, and complexity, resulting in two distinct partitioning strategies.

The first decomposition strategy was focused on achieving the highest cohesion and lowest coupling.

The second decomposition strategy, on the other hand, was designed to minimize the overall complexity

of the system.

5.5.4 Structure Decomposition Results

In addition to the accesses decomposition, a structure decomposition of the Quizzes Tutor application

was performed. This approach also aimed to optimize each of the key architectural metrics. As a result,

three distinct decomposition strategies were generated, each focusing on a specific metric.

57



5.5.5 Comparison of Accesses Decomposition with the Expert Decomposition

Figure 5.12: Quizzes Tutor Accesses Decomposition with Highest Cohesion and Lowest Coupling

Comparing Highest Cohesion and Lowest Coupling against Expert decompositions

The Mojo metrics (Accuracy, Precision, Recall, Specificity, F-Score, and Purity) provide a quantitative

evaluation of how well the decomposition strategy with the highest cohesion and the lowest coupling

aligns with the expert-driven decomposition. These metrics presented in Table 5.3 are crucial to un-

derstanding the effectiveness and quality of the automated partitioning strategy compared to expert

intuition.

These metrics provide a more nuanced understanding of the clustering success. Although the au-

tomated decomposition has a moderate level of purity, the relatively low precision and F-score indicate

that there are still notable discrepancies between the automated and expert-driven decompositions. This

suggests that while the automated strategy is somewhat effective in grouping related entities, it may still

benefit from refinement to better align with expert knowledge.

58



Figure 5.13: Quizzes Tutor Accesses Decomposition with Lowest Complexity

Comparing the Lowest Complexity against the Expert decompositions

We compare the Lowest Complexity decomposition of the Quizzes Tutor application with the Expert

decomposition. The respective metrics are available in Table 5.3.

The comparison reveals that while the Lowest Complexity decomposition strategy maintains a rea-

sonable accuracy and high specificity, it has low precision, recall, and F-score. This indicates that while

the strategy effectively minimizes complexity, it may not always align closely with the expert’s under-

standing of how entities should be clustered. The moderate cluster purity further supports this, showing

that while some clusters are well-formed, others could benefit from refinement.

In conclusion, the Lowest Complexity strategy is effective for simplifying the system’s architecture but

might not always align with the expert’s detailed clustering, potentially missing some important groupings

that the expert suggested.

59



5.5.6 Comparison of Structure Decomposition with the Expert Decomposition

Figure 5.14: Quizzes Tutor Structure Decomposition with Highest Cohesion

Comparing Highest Cohesion against Expert decomposition

In this section, we compare the Highest Cohesion decomposition on the structure side of the Quizzes

Tutor application against the Expert decomposition. The decomposition metrics can be consulted in

Table 5.3.

The comparison reveals that the Highest Cohesion decomposition on the structure side achieves

moderate accuracy and specificity, but suffers from low precision and recall, leading to a low F-score.

This suggests that while the decomposition effectively creates cohesive clusters, it does not align well

with the expert’s understanding of entity relationships. The moderate cluster purity indicates some

degree of success in forming homogeneous clusters, but there is significant room for improvement.

60



Figure 5.15: Quizzes Tutor Structure Decomposition with Lowest Coupling

Comparing Lowest Coupling against Expert decompositon

Considering the Lowest Coupling decomposition based on the structure information of the Quizzes Tutor

application while comparing it with the Expert decomposition. The metrics resulting from this decompo-

sition are in Table 5.3.

The comparison highlights that while the Lowest Coupling decomposition achieves moderate accu-

racy and specificity, it suffers from low precision and recall, leading to a low F-score and moderate cluster

purity. This indicates that the strategy effectively reduces coupling but at the expense of clustering ac-

curacy and homogeneity when compared to the expert decomposition.

61



Figure 5.16: Quizzes Tutor Structure Decomposition with Lowest Complexity

Comparing Lowest Complexity against Expert decomposition

Lastly, we compare the Lowest Complexity decomposition on the structure side of the Quizzes Tutor

application against the Expert decomposition. Metrics available in Table 5.3.

The comparison highlights that while the Lowest Complexity decomposition achieves moderate ac-

curacy and specificity, it suffers from low precision and recall, leading to a low F-score and moderate

cluster purity. This indicates that the strategy reduces complexity but at the expense of clustering accu-

racy when compared to the expert decomposition.

Overall Summary

The evaluation of the Quizzes Tutor decompositions reveals varying levels of alignment with the expert-

driven approach, depending on the strategy employed. The access-based decomposition, particularly

when optimizing for the highest cohesion and lowest coupling, shows moderate alignment with the expert

decomposition. However, the relatively low precision and F-score suggest that the automated strategy

still struggles to fully replicate the expert’s clustering logic. This is especially true in cases where more

intricate relationships between entities need to be captured, such as interactions across different con-

trollers.

On the other hand, the lowest complexity decompositions, while effective at simplifying the system’s

62



architecture, tend to sacrifice accuracy in clustering, leading to lower precision and recall. This shows

that while the decomposition reduces complexity, it doesn’t fully capture the expert’s understanding of

how entities should be grouped, as seen in the lower F-scores and moderate cluster purity.

The structure-based decompositions, similar to the access-based ones, also show moderate align-

ment with the expert’s decomposition, but the lack of high precision and recall indicates room for im-

provement. Both strategies (accesses and structure) succeed in forming cohesive clusters but struggle

to fully reflect the expert’s domain knowledge, highlighting the difficulty of balancing technical optimiza-

tions with the practical domain-driven decomposition strategies employed by experts.

Given the insights from our evaluation of the decompositions, it is essential to delve deeper into spe-

cific aspects that will enhance our understanding of the framework. We need to consider the challenges

associated with integrating new collectors, as well as the implications of using different representations

for decompositions. Additionally, understanding expert evaluations will provide valuable perspectives on

the quality of our results. These considerations lead us to several key research questions that will guide

our investigation moving forward.

5.6 Research Question 1

What is the effort necessary to add a new collector to the existing pipeline, considering that the

generated decomposition is a cluster decomposition of domain entities?

By revisiting our initial question, we aim to evaluate the effort required to add a new collector to

our existing pipeline. Specifically, this question seeks to uncover the challenges and resources needed

to integrate a new collector into a system where the outcome is a cluster decomposition of domain

entities. This evaluation provides insights into the scalability and adaptability of our framework in real-

world scenarios, particularly in the context of extending the pipeline with additional collectors.

5.6.1 Implementation of the Structural Collector

To address this research question, we enhanced our tool by incorporating support for structural anal-

ysis. This enhancement involved integrating the output of a structural collector, which provides the

derived monolith representation, into our existing framework. The subsequent steps involved using this

representation to generate the cluster decomposition.

5.6.2 Effort Analysis

The following metrics were considered to assess the effort required for this enhancement:

63



• Classes Updated: A total of 34 existing classes were updated to integrate the new collector.

This represents approximately 20% of the project’s 175 classes, with 15 classes on the front-end

and 19 classes on the back-end.

• Extended Classes: 16 classes were extended to support the structural collector functionality,

including 5 front-end classes and 11 back-end classes.

• Lines of Code Added: A total of 2324 lines of code were introduced during the implementation.

• Lines of Code Removed: 54 lines of existing code were removed or refactored as part of the

integration process.

5.6.3 Complementary Analysis

In addition to the raw metrics, it is important to consider several qualitative aspects that contribute to the

overall assessment of effort:

• Complexity of Integration: The complexity of extending existing classes and implementing new

ones can vary significantly based on the cohesion of the current system and the design of the

pipeline. In this case, 34 existing classes were updated, with 16 classes extended specifically to

support the new structural collector. Despite this, the integration process was not overly complex,

as the updated and extended classes accounted for only 20% of the total project. This suggests

that the system was designed with enough modularity to accommodate such extensions without

significant refactoring.

• Time Investment: Although the number of classes and lines of code provide a quantitative mea-

sure, the time required to design, implement, and test the new collector is also a critical factor

in assessing effort. This includes the time spent understanding existing code, implementing new

features, and debugging. Since the beginning of the project it has taken around 14 months of work

to achieve this final stage.

• Impact on System Stability: The number of lines of code removed or refactored might indicate

an effort to maintain or enhance the stability of the system during integration. Ensuring that new

additions do not introduce regressions is a key consideration in evaluating the overall effort.

5.6.4 Conclusion

In summary, the effort to add a new collector to the existing pipeline resulted in a significant enhancement

of the system’s capabilities. With 34 classes updated, 16 classes extended, 2324 lines of code

added, and 54 lines of code removed, the integration expanded the system without altering its core

64



structure. This reflects the adaptability of the framework and its ability to accommodate new functionality

while maintaining its original design.

5.7 Research Question 2

Are the Decompositions Obtained Using the Monolith Structural Representation Statistically Dif-

ferent from the Decompositions Obtained Using the Monolith Sequences of Accesses Represen-

tation?

5.7.1 Statistical Analysis of Decompositions

To determine if there are statistically significant differences between the decompositions obtained using

the monolith structural representation and those obtained using the monolith sequences of accesses

representation, we conducted independent t-tests for each of the metrics: Accuracy, Precision, Recall,

Specificity, F-Score, and Purity.

5.7.2 Data Summary

The values for each metric are summarized below:

• Structural Representation:

– Accuracy: 0.53, 0.42, 0.49, 0.56, 0.62, 0.63, 0.63

– Precision: 0.23, 0.25, 0.22, 0.29, 0.15, 0.15, 0.14

– Recall: 0.00, 0.39, 0.22, 0.22, 0.34, 0.31, 0.28

– Specificity: 0.62, 0.43, 0.62, 0.73, 0.67, 0.69, 0.69

– F-Score: 0.26, 0.30, 0.22, 0.25, 0.21, 0.20, 0.19

– Purity: 0.56, 0.64, 0.64, 0.64, 0.57, 0.57, 0.54

• Sequences of Accesses Representation:

– Accuracy: 0.73, 0.73, 0.53, 0.56, 0.42

– Precision: 0.27, 0.25, 0.23, 0.31, 0.25

– Recall: 0.47, 0.40, 0.30, 0.50, 0.39

– Specificity: 0.77, 0.79, 0.62, 0.58, 0.43

– F-Score: 0.34, 0.31, 0.26, 0.38, 0.30

– Purity: 0.63, 0.61, 0.56, 0.67, 0.64

65



5.7.3 Independent T-Test Calculations

Given that the number of observations for the structural representation and sequences of accesses

representation differ in some metrics, we performed an independent t-test rather than a paired t-test.

This test compares the means of two independent samples to determine if they are significantly different.

The t-test statistic is calculated as follows:

t =
X̄struct − X̄access√

σ2
struct

nstruct
+ σ2

access
naccess

where:

• X̄struct and X̄access are the means of the structural and access representations, respectively.

• σstruct and σaccess are the standard deviations of the structural and access representations, respec-

tively.

• nstruct and naccess are the sample sizes for the structural and access representations, respectively.

5.7.4 P-Value Calculation

To determine the significance of the t-test results, we calculated the p-values corresponding to the

computed t-values. The p-value represents the probability of obtaining a t-value at least as extreme

as the one observed, assuming the null hypothesis is true. We used the cumulative distribution function

of the t-distribution to calculate these p-values.

The Python code used for these calculations is provided in Appendix A.

5.7.5 Results of the T-Tests

The independent t-tests yielded the following t-values and p-values for each metric:

• Accuracy: t ≈ −0.64, p ≈ 0.53

• Precision: t ≈ −2.01, p ≈ 0.07

• Recall: t ≈ −2.50, p ≈ 0.03

• Specificity: t ≈ −0.03, p ≈ 0.97

• F-Score: t ≈ −3.50, p ≈ 0.01

• Purity: t ≈ −1.11, p ≈ 0.29

66



5.7.6 Conclusion

Based on the statistical analysis, we draw the following conclusions:

• Recall: The t-value is approximately −2.50 with a p-value of 0.03. Since the p-value is less than

0.05, this indicates that the difference in Recall between the monolith structural representation

and the sequences of accesses representation is statistically significant. The negative t-value

suggests that the sequences of accesses representation has a higher mean Recall compared to

the structural representation, meaning it performs better in identifying relevant instances.

• F-Score: The t-value is approximately −3.50 with a p-value of 0.01. The p-value is below 0.05,

indicating a statistically significant difference in F-Score. The negative t-value indicates that the

sequences of accesses representation achieves a higher mean F-Score than the structural repre-

sentation, suggesting it provides a better balance between precision and recall.

The remaining metrics—Accuracy, Precision, Specificity, and Purity—did not show statistically signif-

icant differences (p-values greater than 0.05). Therefore, we do not discuss them further in this context,

as the differences observed in these metrics are not statistically significant, indicating that the perfor-

mances in these aspects are similar between the two representations.

In summary, the sequences of accesses representation outperforms the structural representation in

terms of Recall and F-Score. For other metrics, no significant performance differences were observed.

5.8 Research Question 3

How does an expert evaluate the best decompositions for each of the quality metrics?

This research question explores the expert’s insights on the decomposition process used during the

development of the Quizzes Tutor application. The objective of the interview was to understand the

rationale behind key design decisions, compare the expert’s approach with automated decomposition

methods, and gather reflections on the future of the system decomposition.

5.8.1 Understanding the Decomposition Process

The main goal when developing the Quizzes Tutor application, according to the expert, was primarily

to provide a platform for both experience and investigation. The expert, a university professor, revealed

that most of the modules in the application were developed by his students as part of their Software

Engineering course. Each academic year, a new module was built, adding to the microservices ar-

chitecture. Besides these modules, additional microservices were developed based on dependency

67



relations, where core entities like questions and answers were separated into their own microservices,

forming the backbone of the application.

5.8.2 Comparison with Automated Decompositions

Accesses Decompositions

Considering the automatic decompositions, the expert evaluated the accesses decomposition, which

had the highest cohesion and lowest coupling. One observation made was that, despite not focusing on

the color-coded clusters, the relative distances between entities allowed a clear visual understanding of

the clusters. A notable point was that the expert’s decomposition grouped the dashboard functionality

with WeeklyScores, FailedAnswers, and DifficultQuestions—entities accessible within the dashboard.

However, in the automatic decomposition, these were all separated into distinct microservices. This

raised questions about the transactions that led to this separation.

As shown in Fig 5.12, the green cluster, corresponding to the authentication part of the system,

was consistent with expectations. The expert also emphasized the advantage of the entity visualization

over cluster visualization, noting that the entity view offered a clearer understanding of relative distances

between entities. Traces of microservices could be identified, such as a question microservice in the red

cluster and an answer microservice in the yellow and purple clusters, while the blue cluster somewhat

represented a tournament microservice. The expert noted that transactional context does not always

align with modularity in real systems, as optimizing all metrics is not always feasible. The decomposition

appeared to show a tendency for retaining a monolith while extracting distinct functionalities such as

authentication, questions, and answers.

The lowest complexity accesses decomposition closely resembled the highest complexity and lowest

coupling decomposition, but appeared marginally better. The expert pointed out that kernel classes in

the automated decompositions tend to attract other classes due to their centrality and numerous func-

tionalities. This led to the conclusion that further exploration and interaction with the decomposition were

necessary to understand the relationships and patterns, aligning with the goal of the Mono2Micro tool.

The expert concluded that the differences between the two decompositions were minor and essentially

similar in overall structure.

Structure Decompositions

When comparing the structure decompositions for each metric, the expert noted similarities between

them, though from a visualization perspective, it was harder to discern clusters by entity distances

compared to the accesses decomposition. From a modularity perspective, the structure decomposition

68



was less effective. The largest cluster contained a mix of entities, though the authentication cluster

remained correctly identified.

From a metric standpoint, the purity of the clusters was not substantially different from the accesses

decomposition, although the expert emphasized that, from an architectural point of view, the difference

was significant. This suggests that purity, as a standalone metric, is not the most reliable indicator

and should be considered alongside other metrics. While the accesses decomposition revealed hints

of microservices, the structure decomposition made this more difficult. The conclusion drawn was that

behavioral and access-based decompositions offer better modularity than structure-based ones.

5.8.3 Impact on the Current Project

When asked if any changes would be made following the review of the automated decompositions, the

expert responded in the negative. Although the accesses decomposition favored metric optimization at

the expense of some modularity, it was not enough to warrant changes to the original expert-designed

decomposition. The original design still held up well, considering the trade-offs involved.

5.8.4 Conclusion

In summary, the interview provided key insights into the decomposition process, highlighting the chal-

lenges and trade-offs involved in balancing cohesion, coupling, and modularity. The expert valued the

ability to interact with and analyze the decomposition to understand its underlying structure, and while

some compromises were made for metric optimization, the original decomposition remained the pre-

ferred choice. Future directions may involve refining tools like Mono2Micro to enhance the interaction

and exploration of decompositions, helping architects make more informed decisions.

69



70



6
Conclusion

Contents

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Reflection on Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

This thesis explored the challenges and benefits involved in the decomposition of monolithic systems

for microservices identification, focusing on the integration of a new structural collector into an existing

pipeline. The primary objectives were to evaluate the effort required for this integration, analyze the re-

sulting decompositions compared to expert-driven decompositions, and assess the practical implications

of such integrations in real-world applications.

6.1 Summary of Contributions

The main contributions of this thesis are as follows:

• Pipeline Extension: We successfully extended the microservice identification pipeline by incor-

porating a structural collector. This collector generated a representation of the monolith based on

structural data, offering a new representation of monoliths in the pipeline.

71



• Effort and Complexity Analysis: Through the analysis of the code changes, including class ex-

tensions and the lines of code refactored, we evaluated the development effort required to integrate

the new collector. The results indicated that while adding a new collector required significant mod-

ifications, the complexity of integration was manageable due to the modular design of the pipeline.

• Decomposition Evaluation: We conducted a thorough evaluation of the structural decomposi-

tions generated by the pipeline, comparing them with expert decompositions. Using key metrics

such as Accuracy, Precision, Recall, Specificity, and F-score, we found that while structural decom-

positions showed moderate alignment with expert decompositions, there were clear limitations,

particularly in precision and recall.

• Comparative Study: We compared structural and access-based decompositions, highlighting the

advantages and shortcomings of both approaches. The access-based decompositions generally

produced better results, especially when minimizing complexity and coupling, though they did not

fully align with expert knowledge.

6.2 Reflection on Research Questions

Research Question 1: Effort Required for Integration

The integration of a structural collector into the existing pipeline required updating approximately 20% of

the project’s classes and adding over 2,300 lines of code. Despite the extensive changes, the modularity

of the pipeline design helped mitigate integration complexity, demonstrating that the pipeline can be

extended without compromising system stability.

Research Question 2: Comparison of Decomposition Results

The decompositions generated using the structural collector were compared with those generated by

the access-based collectors. While the structural approach produced moderate accuracy, it often fell

short in precision and recall. On the other hand, the access-based decompositions, particularly those

optimized for low complexity and coupling, showed better alignment with expert decompositions. This

suggests that a hybrid approach may yield the best results for future decomposition strategies.

Research Question 3: Expert Evaluation of Decompositions

In the interview conducted with the expert behind the Quizzes Tutor application, several important in-

sights were gathered regarding the decomposition process. The expert emphasized that the primary

goal of the application’s decomposition was to balance modularity with the flexibility to scale the system

72



over time. The development process, involving incremental additions by students, resulted in microser-

vices structured around core domain entities like questions and answers.

When comparing automated decompositions with the expert’s original design, the access-based

decomposition generally provided better modularity, with clusters that aligned more closely to the mi-

croservices in the expert’s decomposition. The expert also highlighted that one advantage of using

access-based decompositions was that it allowed for more intuitive insights based on the relative dis-

tances between entities.

The structural decompositions, while offering a different perspective, were seen as less effective

for identifying clear boundaries between microservices. The metrics used by automated tools, such

as cohesion and coupling, were not always aligned with the modularity needed for real-world systems,

which often require trade-offs in performance, scalability, and maintainability.

Ultimately, the expert concluded that while the automated decompositions provided interesting in-

sights, they were not sufficient to replace expert-driven decompositions entirely. However, they could

still serve as a valuable tool for refining system designs, provided there was the ability to interact and

explore the decompositions more deeply.

6.3 Future Work

The evaluation of the structural and access-based collectors provides a solid foundation for future re-

search. Several opportunities for future work have been identified:

• Improving Decomposition Alignment: Future work could explore methods to better align au-

tomated decompositions with expert-driven insights, possibly through Artificial Intelligence-based

approaches.

• Hybrid Collectors: Investigating a hybrid decomposition strategy that combines structural and

access-based data could provide better decompositions by leveraging the strengths of both ap-

proaches.

• Refinement of Metrics: While the purity metric and other traditional metrics provided valuable

insights, further refinement or development of new metrics may improve decomposition evaluation.

• Improved Similarity Measures for Structural Decompositions: Developing new and more ef-

fective similarity measures for structural decompositions could result in more accurate decomposi-

tions that better align with expert-driven designs. By improving the way structural relationships are

quantified, automated methods could potentially capture the nuances of expert intuition and pro-

duce decompositions that are closer to the optimal modularity and cohesion required in real-world

systems.

73



In conclusion, this research demonstrates the feasibility of integrating new collectors into microser-

vice identification pipeline and provides valuable insights into the performance of structural versus

access-based decompositions. While challenges remain, particularly in fully capturing expert intuition,

the findings of this thesis increase the groundwork for future advancements in monolith decomposition

and microservice identification.

74



Bibliography

[1] T. Lopes, “Monolith microservices identification: An extensible multiple strategy tool,” Master’s the-

sis, Instituto Superior Técnico, University of Lisbon, 2022.

[2] T. Lopes and A. R. Silva, “Monolith microservices identification: Towards an extensible multiple

strategy tool,” in 2023 IEEE 20th International Conference on Software Architecture Companion

(ICSA-C), 2023, pp. 111–115.

[3] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, 2015.

[4] C. O’Hanlon, “A conversation with werner vogels: Learning from the amazon technology platform:

Many think of amazon as ’that hugely successful online bookstore.’ you would expect amazon cto

werner vogels to embrace this distinction, but in fact it causes him some concern.” Queue, vol. 4,

no. 4, p. 14–22, may 2006. [Online]. Available: https://doi.org/10.1145/1142055.1142065

[5] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. Lapuz, M. Bivol, G. Jackson, M. Yilmaz, J. Buckley,

and P. Clarke, “Decomposition of monolith applications into microservices architectures: A system-

atic review,” IEEE Transactions on Software Engineering, vol. 49, no. 8, pp. 4213–4242, 2023.

[6] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a microservices architecture: An

approach based on transactional contexts,” in Software Architecture, T. Bures, L. Duchien, and

P. Inverardi, Eds. Cham: Springer International Publishing, 2019, pp. 37–52.

[7] M. Daoud, A. El Mezouari, N. Faci, D. Benslimane, Z. Maamar, and A. El Fazziki, “A multi-model

based microservices identification approach,” Journal of Systems Architecture, vol. 118, p. 102200,

2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1383762121001442

[8] O. Al-Debagy, “A microservice decomposition method through using distributed representation

of source code,” Scalable Comput. Pract. Exp., vol. 22, pp. 39–52, 2021. [Online]. Available:

https://api.semanticscholar.org/CorpusID:231878837

[9] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, “Graph neural network to dilute outliers for refac-

toring monolith application,” 2021.

75

https://doi.org/10.1145/1142055.1142065
https://www.sciencedirect.com/science/article/pii/S1383762121001442
https://api.semanticscholar.org/CorpusID:231878837


[10] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, “Microservice remodularisation of mono-

lithic enterprise systems for embedding in industrial iot networks,” in Advanced Information Systems

Engineering, M. La Rosa, S. Sadiq, and E. Teniente, Eds. Cham: Springer International Publish-

ing, 2021, pp. 432–448.

[11] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, “Extracting candidates of microservices from

monolithic application code,” in 2018 25th Asia-Pacific Software Engineering Conference (APSEC),

2018, pp. 571–580.

[12] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from monolithic software architec-

tures,” in 2017 IEEE International Conference on Web Services (ICWS), 2017, pp. 524–531.

[13] M. Brito, J. Cunha, and J. a. Saraiva, “Identification of microservices from monolithic applications

through topic modelling,” in Proceedings of the 36th Annual ACM Symposium on Applied

Computing, ser. SAC ’21. New York, NY, USA: Association for Computing Machinery, 2021, p.

1409–1418. [Online]. Available: https://doi.org/10.1145/3412841.3442016

[14] S. Agarwal, R. Sinha, G. Sridhara, P. Das, U. Desai, S. Tamilselvam, A. Singhee, and H. Naka-

muro, “Monolith to microservice candidates using business functionality inference,” in 2021 IEEE

International Conference on Web Services (ICWS), 2021, pp. 758–763.

[15] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira, and A. Restivo, “Determining microser-

vice boundaries: A case study using static and dynamic software analysis,” 2020.

[16] S. Eski and F. Buzluca, “An automatic extraction approach: Transition to microservices architecture

from monolithic application,” in Proceedings of the 19th International Conference on Agile

Software Development: Companion, ser. XP ’18. New York, NY, USA: Association for Computing

Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3234152.3234195

[17] W. K. G. Assunção, T. E. Colanzi, L. Carvalho, J. A. Pereira, A. Garcia, M. J. de Lima, and C. Lu-

cena, “A multi-criteria strategy for redesigning legacy features as microservices: An industrial case

study,” in 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering

(SANER), 2021, pp. 377–387.

[18] G. Filippone, N. Qaisar Mehmood, M. Autili, F. Rossi, and M. Tivoli, “From monolithic to microservice

architecture: an automated approach based on graph clustering and combinatorial optimization,” in

2023 IEEE 20th International Conference on Software Architecture (ICSA), 2023, pp. 47–57.

[19] F.-D. Eyitemi and S. Reiff-Marganiec, “System decomposition to optimize functionality distribution

in microservices with rule based approach,” in 2020 IEEE International Conference on Service

Oriented Systems Engineering (SOSE), 2020, pp. 65–71.

76

https://doi.org/10.1145/3412841.3442016
https://doi.org/10.1145/3234152.3234195


[20] C. Bandara and I. Perera, “Transforming monolithic systems to microservices - an analysis toolkit

for legacy code evaluation,” in 2020 20th International Conference on Advances in ICT for Emerging

Regions (ICTer), 2020, pp. 95–100.

[21] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan, “A dataflow-driven

approach to identifying microservices from monolithic applications,” Journal of Systems and

Software, vol. 157, p. 110380, 2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0164121219301475

[22] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service candidate identification from mono-

lithic systems based on execution traces,” IEEE Transactions on Software Engineering, vol. 47,

no. 5, pp. 987–1007, 2021.

[23] I. Pigazzini, F. Arcelli Fontana, and A. Maggioni, “Tool support for the migration to microservice ar-

chitecture: An industrial case study,” in Software Architecture, T. Bures, L. Duchien, and P. Inverardi,

Eds. Cham: Springer International Publishing, 2019, pp. 247–263.

[24] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, “Towards automated microservices extraction

using muti-objective evolutionary search,” in Service-Oriented Computing, S. Yangui, I. Bouas-

sida Rodriguez, K. Drira, and Z. Tari, Eds. Cham: Springer International Publishing, 2019, pp.

58–63.

[25] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised learning approach for web application

auto-decomposition into microservices,” Journal of Systems and Software, vol. 151, pp. 243–257,

2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0164121219300408

[26] D. Taibi and K. Systä, “A decomposition and metric-based evaluation framework for microservices,”

2019.

[27] A. Bucchiarone, K. Soysal, and C. Guidi, “A model-driven approach towards automatic migration to

microservices,” in Software Engineering Aspects of Continuous Development and New Paradigms

of Software Production and Deployment, J.-M. Bruel, M. Mazzara, and B. Meyer, Eds. Cham:

Springer International Publishing, 2020, pp. 15–36.

[28] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, “Automated microservice identification in legacy

systems with functional and non-functional metrics,” in 2020 IEEE International Conference on

Software Architecture (ICSA), 2020, pp. 135–145.

[29] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge, “Function-splitting heuristics for discovery

of microservices in enterprise systems,” in Service-Oriented Computing, C. Pahl, M. Vukovic, J. Yin,

and Q. Yu, Eds. Cham: Springer International Publishing, 2018, pp. 37–53.

77

https://www.sciencedirect.com/science/article/pii/S0164121219301475
https://www.sciencedirect.com/science/article/pii/S0164121219301475
https://www.sciencedirect.com/science/article/pii/S0164121219300408


[30] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, and T. Huang, “Migrating web applications

from monolithic structure to microservices architecture,” in Proceedings of the 10th Asia-Pacific

Symposium on Internetware, ser. Internetware ’18. New York, NY, USA: Association for

Computing Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3275219.3275230

[31] O. Al-Debagy and P. Martinek, “Extracting microservices’ candidates from monolithic applications:

Interface analysis and evaluation metrics approach,” in 2020 IEEE 15th International Conference of

System of Systems Engineering (SoSE), 2020, pp. 289–294.

[32] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kröger, “Microservice decomposition

via static and dynamic analysis of the monolith,” 2020.

[33] R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-driven approach,” in 2017

24th Asia-Pacific Software Engineering Conference (APSEC), 2017, pp. 466–475.

[34] D. Bajaj, U. Bharti, A. Goel, and S. C. Gupta, “Partial migration for re-architecting a cloud native

monolithic application into microservices and faas,” in Information, Communication and Computing

Technology, C. Badica, P. Liatsis, L. Kharb, and D. Chahal, Eds. Singapore: Springer Singapore,

2020, pp. 111–124.

[35] L. Baresi, M. Garriga, and A. De Renzis, “Microservices identification through interface analysis,”

in Service-Oriented and Cloud Computing, F. De Paoli, S. Schulte, and E. Broch Johnsen, Eds.

Cham: Springer International Publishing, 2017, pp. 19–33.

[36] A. A. C. De Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, “Remodularization analysis for microser-

vice discovery using syntactic and semantic clustering,” in Advanced Information Systems Engi-

neering, S. Dustdar, E. Yu, C. Salinesi, D. Rieu, and V. Pant, Eds. Cham: Springer International

Publishing, 2020, pp. 3–19.

[37] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter: A systematic approach

to service decomposition,” in Service-Oriented and Cloud Computing, M. Aiello, E. B. Johnsen,

S. Dustdar, and I. Georgievski, Eds. Cham: Springer International Publishing, 2016, pp. 185–200.

[38] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P. Zaragoza, and C. Dony,

“From monolithic architecture style to microservice one based on a semi-automatic approach,” in

2020 IEEE International Conference on Software Architecture (ICSA), 2020, pp. 157–168.

[39] S. Santos and A. R. Silva, “Microservices identification in monolith systems: Functionality redesign

complexity and evaluation of similarity measures,” Journal of Web Engineering, vol. 21, no. 05,

p. 1543–1582, Aug. 2022. [Online]. Available: https://journals.riverpublishers.com/index.php/JWE/

article/view/11745

78

https://doi.org/10.1145/3275219.3275230
https://journals.riverpublishers.com/index.php/JWE/article/view/11745
https://journals.riverpublishers.com/index.php/JWE/article/view/11745


[40] E. Amigo, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of extrinsic clustering evaluation

metrics based on formal constraints,” Information retrieval, vol. 12, pp. 461–486, 2009.

79



80



A
Code for Statistical Analysis

This appendix includes the Python code used for performing the independent t-tests to compare the

performance metrics of the two decomposition representations: the monolith structural representation

and the monolith sequences of accesses representation.

A.1 Python Code for Statistical Analysis

The following Python code was used to calculate t-values and p-values for each metric:

Listing A.1: Python Code for T-Test Analysis

1 import scipy.stats as stats

2

3 # Sample data

4 structural = {

5 'accuracy': [0.53, 0.42, 0.49, 0.56, 0.62, 0.63, 0.63],

6 'precision': [0.23, 0.25, 0.22, 0.29, 0.15, 0.15, 0.14],

7 'recall': [0.00, 0.39, 0.22, 0.22, 0.34, 0.31, 0.28],

8 'specificity': [0.62, 0.43, 0.62, 0.73, 0.67, 0.69, 0.69],

81



9 'fscore': [0.26, 0.30, 0.22, 0.25, 0.21, 0.20, 0.19],

10 'purity': [0.56, 0.64, 0.64, 0.64, 0.57, 0.57, 0.54]

11 }

12

13 accesses = {

14 'accuracy': [0.73, 0.73, 0.53, 0.56, 0.42],

15 'precision': [0.27, 0.25, 0.23, 0.31, 0.25],

16 'recall': [0.47, 0.40, 0.30, 0.50, 0.39],

17 'specificity': [0.77, 0.79, 0.62, 0.58, 0.43],

18 'fscore': [0.34, 0.31, 0.26, 0.38, 0.30],

19 'purity': [0.63, 0.61, 0.56, 0.67, 0.64]

20 }

21

22 # Function to perform t-test and calculate p-value

23 def calculate t p values(metric name):

24 # Perform an independent t-test

25 t statistic, p value = stats.ttest ind(structural[metric name],

26 accesses[metric name], equal var=False)

27 return t statistic, p value

28

29 # Calculate and print t-values and p-values for each metric

30 metrics = ['accuracy', 'precision', 'recall', 'specificity', 'fscore', 'purity']

31

32 for metric in metrics:

33 t stat, p val = calculate t p values(metric)

34 print(f"Metric: {metric.capitalize()}\n t-value: {t stat:.2f},

35 p-value: {p val:.2f}\n")

The provided code calculates the t-values and p-values for the metrics of Accuracy, Precision, Recall,

Specificity, F-Score, and Purity by comparing the results from the two different representations.

A.2 Explanation of Results

In the context of statistical significance, the t-values and p-values help determine whether the differences

observed in the metrics between the two representations are statistically significant. A p-value less than

0.05 indicates that the difference is statistically significant. Specifically:

• For metrics where the p-value is less than 0.05, such as Recall and F-Score, the differences are

considered statistically significant. This suggests that one representation performs better than the

82



other on these metrics.

• For metrics where the p-value is greater than 0.05, such as Accuracy, Precision, Specificity, and

Purity, the differences are not statistically significant, indicating no clear performance advantage

between the two representations for these metrics.

83



84



85


	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Introduction

	2 Background
	2.1 Microservices
	2.2 Pipeline
	2.3 Design

	3 Related Work
	3.1 Collection
	3.1.1 Model-based Information Collection
	3.1.2 Code-Based Information Collection
	3.1.3 Log-Based Information Collection
	3.1.4 Version-Based Information Collection

	3.2 Monolith Representations
	3.3 Decomposition Generation
	3.4 Visualization
	3.5 Quality Assessment and Comparison
	3.6 Investigation of Existing Approaches

	4 Solution
	4.1 Solution Overview
	4.2 Pipeline Extension
	4.3 Strategy for Implementation
	4.4 Similarity Measures and Decomposition
	4.5 Implementation Design
	4.5.1 Structural Representation
	4.5.2 Decomposition Generation
	4.5.3 Graphical Representation of Decompositions
	4.5.4 Clustering Evaluation: Purity Metric


	5 Evaluation
	5.1 Selected Codebases
	5.2 Evaluation Metrics
	5.3 Spring Petclinic
	5.3.1 Entities
	5.3.2 Expert Decomposition
	5.3.3 Evaluation of Automatic Decompositions

	5.4 Cargo Tracking
	5.4.1 Entities
	5.4.2 Evaluation of Automatic Decompositions

	5.5 Quizzes Tutor
	5.5.1 Entities and Functionalities Overview
	5.5.2 Evaluation of Automatic Decompositions
	5.5.3 Accesses Decomposition Results
	5.5.4 Structure Decomposition Results
	5.5.5 Comparison of Accesses Decomposition with the Expert Decomposition
	5.5.6 Comparison of Structure Decomposition with the Expert Decomposition

	5.6 Research Question 1
	5.6.1 Implementation of the Structural Collector
	5.6.2 Effort Analysis
	5.6.3 Complementary Analysis
	5.6.4 Conclusion

	5.7 Research Question 2
	5.7.1 Statistical Analysis of Decompositions
	5.7.2 Data Summary
	5.7.3 Independent T-Test Calculations
	5.7.4 P-Value Calculation
	5.7.5 Results of the T-Tests
	5.7.6 Conclusion

	5.8 Research Question 3
	5.8.1 Understanding the Decomposition Process
	5.8.2 Comparison with Automated Decompositions
	5.8.3 Impact on the Current Project
	5.8.4 Conclusion


	6 Conclusion
	6.1 Summary of Contributions
	6.2 Reflection on Research Questions
	6.3 Future Work

	Bibliography
	Bibliography
	A Code for Statistical Analysis
	A.1 Python Code for Statistical Analysis
	A.2 Explanation of Results


