
Automatic Detection of Anomalies in the Migration to
Microservices Architectures

Valentim Dias Romão

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Vasco Miguel Gomes Nunes Manquinho
Prof. Luı́s Eduardo Teixeira Rodrigues

Examination Committee

Chairperson: Prof. José Luı́s Brinquete Borbinha
Supervisor: Prof. Vasco Miguel Gomes Nunes Manquinho

Member of the Committee: Prof. Nuno Claudino Pereira Lopes

November 2023

Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

I would like to thank my parents and sister for their friendship, encouragement, and caring over

all these years, for always being there for me through thick and thin and without whom this project

would not be possible. I would also like to thank my grandparents, aunts, uncles, and cousins for their

understanding and support throughout all these years. I would also like to thank my girlfriend and best

friend, Daniela Amaral, for her friendship, help, and motivation during these years.

I would like to acknowledge my dissertation supervisors Prof. Luı́s Eduardo Rodrigues and Prof.

Vasco Miguel Gomes Nunes Manquinho for their insight, support, and sharing of knowledge that has

made this Thesis possible. I would also like to acknowledge Rafael Soares for the fruitful discussions

and comments during the preparation of this Thesis.

Last but not least, to all my friends and colleagues who helped me grow as a person and were always

there for me during the good and bad times in my life.

To each and every one of you – Thank you.

i

Abstract

The microservices architecture allows structuring an application as a set of loosely coupled services.

This architecture has several advantages, such as modularity and scalability, which motivate the mi-

gration of monoliths to microservices, despite the challenges posed by the lack of isolation between

functionalities that require invoking multiple microservices. In a monolithic application, each functionality

is typically executed as a single transaction that accesses a single database with ACID properties. In

a microservices architecture, a functionality may be divided into multiple independent sub-transactions

and each may be executed by a different microservice. The interleaving between these sub-transactions,

when the functionalities execute concurrently, may lead to unexpected results, also called anomalies. In

this work, we present a tool capable of automatically detecting these anomalies, as well as an experi-

mental evaluation of the tool, using microbenchmarks and several real-world applications.

Keywords

Monolith; Microservices; Anomaly Detection; SMT.

iii

Resumo

A arquitetura de microsserviços permite estruturar uma aplicação como um conjunto de serviços fra-

camente acoplados. Esta arquitetura tem várias vantagens, tais como modularidade e capacidade de

escala, que motivam a migração de monólitos para microsserviços, apesar dos desafios colocados pela

falta de isolamento entre funcionalidades que requerem a invocação de vários microsserviços. Numa

aplicação monolı́tica, cada funcionalidade é tipicamente executada como uma única transação que

acede a uma única base de dados com propriedades ACID. Numa arquitetura de microsserviços, uma

funcionalidade pode estar fracionada em múltiplas sub-transações independentes e cada uma pode

ser executada por um microsserviço diferente. O intercalamento destas sub-transações, quando as

funcionalidades se executam concorrentemente, pode levar a resultados inesperados, também chama-

dos de anomalias. Neste trabalho apresentamos uma ferramenta capaz de detetar automaticamente

estas anomalias, assim como uma avaliação experimental da ferramenta, recorrendo a micro-testes de

bancada e a várias aplicações realistas.

Palavras Chave

Monólito; Microsserviços; Deteção de Anomalias; SMT.

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Results . 4

1.4 Research History . 5

1.5 Structure of the Document . 5

2 Related Work 7

2.1 Monolithic and Microservices Architectures . 9

2.2 Transactions and Transactional Properties . 10

2.3 Anomalies . 11

2.4 Concurrency Control . 13

2.5 Transaction Chopping . 14

2.6 Distributed Databases . 16

2.7 Data Replication . 18

2.8 Transactions in Microservices Architectures . 19

2.9 Tools . 20

2.9.1 Heuristics for Anomaly Awareness . 21

2.9.1.A A Complexity Metric for Microservices Architecture Migration 21

2.9.1.B Mono2Micro - From a Monolith to Microservices: MetricsRefinement . . . 22

2.9.2 Anomaly Detection using Black Box Approaches 23

2.9.2.A Cobra . 23

2.9.2.B MonkeyDB . 23

2.9.3 Anomaly Detection using White Box Approaches 24

2.9.3.A Automated Detection of Serializability Violations under Weak Consistency 24

2.9.3.B CLOTHO . 24

2.9.3.C Microservice Decomposition for Transactional Causal Consistent Platforms 26

2.9.4 Comparison . 26

vii

3 MAD 29

3.1 Overview . 31

3.2 Architecture . 32

3.2.1 Input Files . 32

3.2.2 Sub-transactions and Microservices Notions . 32

3.2.2.A Sub-transactions Representation . 34

3.2.2.B Same Original Transaction Edge . 34

3.2.2.C Microservices Assignment . 36

3.2.2.D Anomaly Example Graph . 36

3.2.3 Consistency Models . 37

3.2.4 Search Algorithm . 38

3.2.4.A Original Transactions Combinations . 38

3.2.4.B Original Transactions Assertions Filtering 39

3.2.5 Metrics Extractor . 39

3.2.5.A Number of Anomalies by Type . 39

3.2.5.B Number of Anomalies by Sub-Transactions 40

3.3 CLOTHO Adaptations . 40

3.3.1 Visibility Adaptation to Microservices . 41

3.3.2 Correct Version processing for Database Read Values 41

3.4 Discussion . 43

4 Evaluation 45

4.1 Experimental Setup . 47

4.2 Comparison between MAD and a Heuristic Approach Tool 49

4.3 MAD Results for Real-World Applications . 50

4.3.1 Overall Results . 50

4.3.2 Anomalies Found per Type . 52

4.3.3 TPC-C Anomalies Found per Sub-Transactions . 52

4.3.4 Performance of the Search Algorithm . 54

5 Conclusions and Future Work 57

Bibliography 61

viii

List of Figures

2.1 Anomalies examples. 13

2.2 Example scenario of how the transactions are chopped in a migration from monolith to

microservices. 16

2.3 Example of a possible interleaving that leads to an anomaly. 17

2.4 CLOTHO’s pipeline. 25

3.1 MAD’s pipeline. 31

3.2 MAD’s cyclic graph for the example anomaly. 37

4.1 Microbenchmarks. 48

ix

x

List of Tables

2.1 Characterization of existing tools. 26

4.1 MAD and CMMAM microbenchmarks results. 49

4.2 MAD overall results. 51

4.3 MAD anomalies found per type. 52

4.4 MAD performance comparison without (w/o) and with (w/) the search algorithm (SA). . . . 54

xi

xii

List of Algorithms

3.1 MAD’s Transaction Chopping . 35

xiii

xiv

Listings

3.1 Example of MAD’s input Java file representing the example scenario. 33

3.2 Example of MAD’s input JSON file representing a microservices decomposition. 34

3.3 Number of anomalies by type format. 40

3.4 Number of anomalies by sub-transactions formats. 40

3.5 Example snippet for the version problem. 42

4.1 Number of TPC-C full anomalies by sub-transactions. 53

xv

xvi

Acronyms

AR Abstract Representation

FOL First Order Logic

MAD Microservices Anomaly Detector

SMT Satisfiability Modulo Theories

xvii

xviii

1
Introduction

Contents

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Results . 4

1.4 Research History . 5

1.5 Structure of the Document . 5

1

2

The microservices architecture structures an application as a set of loosely coupled components

(services), contrasting with the traditional monolithic architecture composed of a single centralized com-

ponent. This architecture has several advantages when compared with the monolithic architecture.

Firstly, each microservice only implements the logic related to a small subset of the entities managed

by the application, making the code of each service more cohesive and easier to develop and main-

tain. Secondly, each microservice can be developed independently, allowing the development of the

application as a whole to be more agile. Thirdly, the architecture offers a more flexible management of

the system, since the microservices can be managed independently. Due to these advantages, several

companies are currently adopting the microservices architecture when developing their applications.

In many cases, companies also migrate their pre-existing monolithic applications to the microservices

architecture [1].

In this thesis, we address the problems that can arise when migrating from a monolith to a mi-

croservices composition, in particular, anomalies generated from previously impossible interleavings of

concurrent functionalities. We make an overview of existing tools and techniques aimed at detecting

anomalies and discuss how they can be applied to detect anomalies in microservices. Based on our

findings, we describe the design, implementation, and evaluation of a new tool that manages to detect

the anomalies that arise in a migration from monolith to microservices following a given decomposition.

1.1 Motivation

Although the microservices architecture has many advantages, it also introduces challenges. A mono-

lithic application is traditionally composed of several functionalities, each commonly defined as a trans-

action that executes in a single database. These transactions offer the ACID (Atomicity, Consistency,

Isolation, Durability) properties, therefore guaranteeing the isolation between concurrent executions of

these functionalities. When migrating from a monolithic application to microservices, a functionality may

need to be chopped into several sub-transactions, with each sub-transaction possibly executing in a

different microservice, breaking the isolation of the functionality as a whole.

Typically, the microservices use the database per service [2] design pattern. Although each sub-

transaction is isolated from the remaining sub-transactions that execute in the same microservice, the

concurrent execution of functionalities may lead to interleavings between sub-transactions that execute

in different microservices, something that did not occur in the monolith. This may lead to unexpected

results, also called anomalies, which derive from non-serializable executions of transactions.

The number of anomalies that can arise during the execution of functionalities in microservices de-

pends on how the monolith is decomposed, in particular, the number of microservices that interact with

each other and which entities are managed by each microservice. Finding these anomalies using an

3

accurate analysis technique can be useful, considering that concurrency anomalies are notoriously diffi-

cult to identify via testing [3]. One way of handling this problem is by having a tool capable of generating

all the possible interleavings and comparing the executions that can occur in the monolith with the exe-

cutions that can occur in a given decomposition since these new anomalous executions result from the

migration. To the best of our knowledge, existing tools aimed at doing this sort of analysis do not account

for all the monolith to microservices migration aspects, such as the chopping of a transaction into a se-

quence of independent sub-transactions, as well as the effects of the sub-transactions reading mutually

inconsistent versions of remote objects by accessing their microservice’s local storage. In this thesis, we

describe the design and implementation of a novel tool, named Microservices Anomaly Detector (MAD),

which can generate all the possible interleavings that originated from the decomposition of a monolith

into microservices. The tool works by encoding the problem in a Satisfiability Modulo Theories (SMT)

formula and using Z3 [4] to find the satisfiable assignments. We also performed an experimental evalu-

ation to assess the accuracy and applicability of MAD using microbenchmarks and test cases inspired

by real-world codebases.

1.2 Contributions

This thesis analyzes, implements, and evaluates techniques to detect anomalies that emerge from the

migration of a monolithic application to a composition of microservices. Therefore, the thesis’ main

contributions are the following:

• A set of techniques to encode both a monolith and a microservice decomposition of that monolith

in an SMT formula that can be used with an SMT solver to find satisfiable assignments, which

represent executions that generate anomalies;

• A set of techniques to divide the analysis of a large search space into the analysis of several

smaller search spaces, which are more adequate for combinatorial analyses.

1.3 Results

This thesis produced the following results:

• A tool named MAD capable of automatically detecting anomalies that arise when migrating from

a monolith to microservices. This tool was implemented as a set of extensions and improvements

to a pre-existing tool, named CLOTHO [5], originally designed to find anomalies in distributed

databases;

4

• An experimental evaluation of MAD, focusing on a comparison with another tool with a similar

purpose, MAD’s applicability to real-world codebases, and the impact of our improvements.

1.4 Research History

This work was developed under the DACOMICO (Data Consistency in Microservices Composition)

project, which focuses on addressing the data consistency issues that can arise in microservices com-

positions. Considering the goal of the project, a tool that can automatically detect anomalies when one

migrates from a monolith to microservices is a relevant contribution to the project. Efforts to create such

a tool have been initiated by previous researchers of the DACOMICO project [6].

Early results from this thesis have been published as:

• V. Romão, R. Soares, V. Manquinho and L. Rodrigues. Deteção Automática de Anomalias em

Arquiteturas de Microsserviços. In Actas do décimo quarto Simpósio de Informática (Inforum),

Porto, Portugal, September 2023

This work was supported by FCT - Fundação para a Ciência e a Tecnologia, as part of the projects

with references UIDB/50021/2020 and DACOMICO (financed by the OE with ref. PTDC/CCI-COM-

/2156/2021).

1.5 Structure of the Document

The rest of the thesis is organized as follows: In Chapter 2, we introduce the relevant background

concepts and present related works with similar purposes and techniques; In Chapter 3, we present

our tool, MAD; In Chapter 4, we present the results obtained by our tool in our experimental evaluation;

Finally, Chapter 5 concludes the thesis and mentions the system’s current limitations and ideas for future

works.

5

6

2
Related Work

Contents

2.1 Monolithic and Microservices Architectures . 9

2.2 Transactions and Transactional Properties . 10

2.3 Anomalies . 11

2.4 Concurrency Control . 13

2.5 Transaction Chopping . 14

2.6 Distributed Databases . 16

2.7 Data Replication . 18

2.8 Transactions in Microservices Architectures . 19

2.9 Tools . 20

7

8

In this chapter, we will introduce the background knowledge required to better understand our work.

We also survey existing tools related to our goals. In Section 2.1, we describe the monolithic and mi-

croservices architectures. In Section 2.2, we explain what are transactions and the properties associated

with them. In Section 2.3, we list the anomalies that can occur in a system. In Section 2.4, we present

mechanisms for coordinating transactions. In Section 2.5, we discuss how transactions can be divided.

In Section 2.6, we delve into the topic of having distributed databases. In Section 2.7, we address how

data can be replicated between nodes. In Section 2.8, we explain how transactions are normally im-

plemented in a microservices application. Finally, in Section 2.9, we present and compare tools whose

goals and techniques are similar to ours.

2.1 Monolithic and Microservices Architectures

An application is said to follow a monolithic architecture when it is composed of a set of tightly coupled

modules, organized in a single codebase, and deployed, provisioned, and executed as a single logical

unit. One of the main advantages of a monolithic architecture is that it makes data management easier.

It is often possible to store the application data in a single storage service, typically a database with

support for transactions. This allows the functionalities to be implemented as ACID transactions, reliev-

ing the programmers from the burden of considering the effects that may result from the interleaving

of concurrent executions. However, monolithic applications also have some disadvantages. As the ap-

plication grows, and more functionalities are added, the codebase becomes bigger and more complex.

Also, appropriate resource provisioning becomes harder, because different modules may have different

resource requirements, but the application needs to be provisioned as a whole. Finally, if a component

fails in a monolithic application, then the entire application becomes unavailable.

In contrast, the microservices architecture advocates the design of the application as a set of loosely

coupled modules (or services), organized in multiple codebases, and that can be deployed, provisioned,

and executed independently of each other. This architecture makes it easier to develop and maintain

different services. It is also possible to assign different resources to different services and scale each

service independently of the others. Additionally, if a service becomes unavailable, functionalities that

can be executed using the remaining services continue to be available, allowing the system to suffer

a graceful degradation. On the downside, executing a functionality as an atomic transaction becomes

harder in microservices architectures. This happens because each service will typically use a differ-

ent storage service, making it inefficient, or even impossible, to run a functionality that spans multiple

services as a single transaction. Instead, operations in different services are run as independent trans-

actions, allowing interleavings that would not occur in a monolithic implementation. Also, when a service

needs to access data that is managed by another service, this requires the implementation of mecha-

9

nisms to perform remote data accesses or mechanisms that allow a service to collect and cache updates

performed to remote services. This requirement increases the complexity of the code and also allows

the possibility of a service reading inconsistent data versions.

Many companies believe the advantages of the microservices architecture outweigh its disadvan-

tages, and the adoption of this architecture has been increasing. In fact, some companies even initiated

the process of transforming legacy monolithic applications into microservices compositions [1]. Cur-

rently, there are already some tools that ease the process of the monolith decomposition [7–9], making

the migration more appealing. This trend, however, forces programmers to reason about the effects of

concurrency and data consistency in a distributed setting, to mitigate and compensate for the fact that

ACID transactions are not available for functionalities that span multiple services.

2.2 Transactions and Transactional Properties

A transaction is a sequence of one or more operations that are treated as a unit and whose execution

appears to be indivisible. Transactions are widely used in database systems and are characterized by

a set of properties known as the ACID properties, namely: Atomicity, which ensures that if the effects

of one operation take place, then the effects of all operations take place; Consistency, which guaran-

tees that after applying a transaction to a consistent database state, the database remains consistent;

Isolation, that prevents the execution of a transaction from being affected by the concurrent execution

of the same or other transactions; and Durability, which assures that after a transaction commits, their

changes will be permanent in the database. One specific type of transactions that we will focus on in

this chapter is long-lived transactions, which represent transactions that access many database objects

and take a large amount of time to complete [10].

The use of transactions simplifies the development of an application because it shields the program-

mer from dealing with the effects of concurrency and/or partial failures. For instance, if a transaction

implements a bank transfer, the atomicity property avoids the case where the withdrawal operation is

executed in one account but the corresponding deposit is not performed.

Also, in the same scenario, isolation ensures that multiple transactions cannot withdraw more money

than the funds available, even if they are executed concurrently.

It is possible to define different isolation properties for transactions. The strongest isolation properties

are strict serializability and (the slightly weaker) serializability, which are defined as follows:

Serializability [11] defines that the results of the concurrent execution of a set of transactions should

be the same as if the transactions have been executed in some serial order. This model does not ac-

count for the precedences between transactions in the real-time execution (one transaction starting after

another being committed), it only focuses on guaranteeing that the ordering of the executed transactions

10

is serial. A serial order is an order where a transaction only begins to execute after all the operations of

the previous transaction are done, which means, no interleaving between transactions is allowed.

Strict Serializability [11] is the strongest isolation level, and enforces the same properties as se-

rializability but with an additional constraint. This level does not only guarantee that the effects are

perceived as they would in a serial execution (like serializability), but it also imposes that if a transaction

T2 starts after another transaction T1 has been committed, then T2 is serialized after T1.

Unfortunately, ensuring serializability incurs costs that result from the need to perform concurrency

control. As a result, transactions may experience longer latencies or be forced to abort. The overall

throughput of the system may also be affected. These costs can be reduced if weaker isolation guar-

antees are provided. In practice, there is often a trade-off between the performance of the system and

how strong the isolation is. Thus, in some cases, the systems are configured to offer weaker isolation

guarantees, even if these guarantees allow interleaving among concurrent transactions to become visi-

ble, which may lead to inconsistent results. Examples of weaker isolation levels are read uncommitted,

read committed, and repeatable read.

Read Uncommitted [12] enforces that the writes to a given object should be handled respecting

the total order. However, this model also allows operations to read values that were written by other

transactions but were not yet committed, resulting in a transaction being able to see intermediate values

of other transactions’ executions.

Read Committed [12] only allows operations to read values written by other transactions if they are

already committed. This avoids reads seeing intermediate values of other transactions but does not

enforce that if a transaction contains two reads to the same object, they will both see the same value.

Repeatable Read [12] is identical to Read Committed with the addition that if a transaction contains

two reads to the same object, then those two reads need to see the same value.

2.3 Anomalies

Sometimes, it is easier to understand the limitations of using isolation levels that are weaker than serial-

izability by identifying phenomena that may occur only when serializability or strict serializability are not

enforced, and that may compromise the consistency of the application. These phenomena are typically

called anomalies. In the following list, we present some of the most relevant anomalies based on a

previous research work [13].

Dirty Write is an anomaly generated when the system has two transactions, T1 and T2, each having

two updates and writing on the same two variables, x and y, respectively. Now, consider that T1 modifies

x, then T2 interleaves T1, and writes on x already modified by T1, and on y. This will result in an

inconsistency, because when T1 resumes it will write on y, resulting in the final state being x written by

11

T2 and y written by T1. This anomaly is impossible under every isolation level. Example in Figure 2.1(a).

Dirty Read is an anomaly generated when the system has two transactions, T1 and T2, T1 composed

of two updates and T2 composed of a read, all applied to the same variable in the database, x. Then

the following scenario happens, T1 executes its first update, but before it can execute its second update,

T2 reads that intermediate value from x in the database and uses it for an instruction in its code. This

is an anomaly because T2 will be using an intermediate value that would not be available in a serial-

izable execution of the system. This anomaly is only possible under read uncommitted. Example in

Figure 2.1(b).

Lost Update is an anomaly similar to the dirty write, but, in this case, T1 will not initially write to the

same variable as T2. Now, T1 will read the variable, then T2 reads and updates the variable, and T1

finishes its job by updating the variable. This will result in the value prevailing to be the one written by T1,

nullifying the write made by T2. This is an anomaly because it is not possible to order the two transactions

in a serial manner. If we assume that T1 executed before T2, then T2 should have read the value written

by T1, and vice-versa. Considering the scenario previously described, we cannot assume that one

transaction started before the other, therefore there is no possible serial order of the transactions. This

anomaly is possible under read uncommitted and read committed. Example in Figure 2.1(c).

Read Skew is an anomaly associated with a system having an invariant condition, and caused by

the fact that all the updates of a transaction do not execute atomically. These two factors, together with a

transaction that reads the values to verify if the invariant holds, may give the perception that the invariant

was broken. Considering the scenario where we have a system’s invariant with two variables, x and y, a

transaction T1 with two updates, one for each variable, and a transaction T2 that will read both variables,

x and y. If T2 happens in the exact moment when the first update of T1 has already executed, but the

second one is still to be executed, then the program will act as if the invariant was broken, although T1

was still executing, and would leave the system respecting the invariant when it finished. This anomaly

is possible under read uncommitted, read committed, and repeatable read. Example in Figure 2.1(d).

Write Skew is an anomaly, similar to the read skew, where one needs to account for the delay

between the verification of a variable and the update of another variable. Considering the scenario

where we have a system’s invariant with two variables, x and y, a transaction T1, which reads x and

writes a value on y, if the value read from x and the updated value of y still respect the invariant, and a

transaction T2 with the same purpose as T1 but reads y and writes on x. If T1 starts executing and reads

x, and T2 interleaves the execution reading y. Then, T1 and T2 will decide if they update their respective

invariant variable considering the value that they read from the other variable, not accounting for the

possibility of other transaction(s) having updated its value after it was read. This sequence of events

may break the system’s invariant. This anomaly is possible under read uncommitted, read committed,

and repeatable read. Example in Figure 2.1(e).

12

T1 T2

write x

write x

write y

write y

(a) Dirty Write.

T1 T2

write x

read x

write x

(b) Dirty Read.

T1 T2

read x

read x

write x

write x

(c) Lost Update.

T1 T2

write x

read x

read y

write y

(d) Read Skew.

T1 T2

read x

read y

write x

write y

(e) Write Skew.

Figure 2.1: Anomalies examples.

2.4 Concurrency Control

To assure the serial execution of the transactions, one needs to enforce isolation between transactions.

One way of achieving this is by having concurrency control mechanisms responsible for coordinating the

execution of the transactions. When two transactions are executing concurrently and access the same

object, with at least one of them modifying the object, this is called a conflict. It is possible to ensure that

potential conflicts do not cause anomalies by implementing concurrency control mechanisms. There are

two main approaches to concurrency control, the pessimistic approach and the optimistic approach.

In the pessimistic approach, the goal is to prevent two transactions from accessing the same object

and detect it as soon as it happens. A common way of assuring this is by assigning one or two locks

to each object in the database. To access an object, a transaction needs to first obtain a read or a

write lock on the object. The access mechanism ensures that no more than one transaction can own a

write lock on an object and that, if some transaction owns a write lock, no transaction can own a read

lock on that object and vice versa. A transaction that cannot obtain a lock is blocked until the lock(s)

owner(s) releases the lock(s). Therefore, the correct use of locks can ensure serializability, since a

13

transaction only releases the lock(s) when it commits or aborts. However, this mechanism is prone to

deadlocks. Also, one issue with this approach is that long-lived transactions may hold locks for large

periods, preventing other transactions from making progress or leading to deadlocks, since they tend to

access a wide variety of objects.

In the optimistic approach, it is assumed that conflicts are rare, so transactions are executed without

checking for conflicts until the commit time (typically in this approach updates are also not made visible

until the commit time). Conflicts are only checked when a transaction attempts to commit by executing

a certification procedure. The certification of different transactions needs to be executed in total order

and verifies if the objects read and written by the transaction have not been subsequently updated

by other transactions that have been committed after the operations were performed. If a transaction

passes certification, the updates are applied atomically. Otherwise, the transaction is forced to abort

and the resources used to execute the transaction are wasted. As stated before, long-lived transactions

tend to access a wide variety of objects, which increases the risk of conflicts and makes them more

prone to abort than other transactions. As a result of this, the system is punished by having long-lived

transactions, since they are more likely to abort and, when it happens, it results in a significant waste of

the system’s resources.

2.5 Transaction Chopping

As noted previously, long-lived transactions may affect negatively the system’s performance. This hap-

pens because long-lived transactions can either block the execution of other transactions for a long

period (pessimistic approach) or have long executions that may need to be aborted and re-executed

(optimistic approach). The concept of chopping transactions proposed by Shasha et al. [14] was in-

troduced as a technique to avoid long-lived transactions. This method consists of dividing the large

transactions into smaller transactions (sub-transactions). We define a sub-transaction as a transaction

composed of a sub-sequence of operations from one transaction. The chopping method consists of

identifying sub-sequences of operations from a transaction, considering the objects they access and the

type of access, and based on that creating new sub-transactions. This results in an improvement of the

system’s performance, since the amount of time that other transactions that access the same resources

will be blocked and the amount of work that may be wasted, and subsequently have to be repeated, are

both decreased.

Associated with transaction chopping, a couple of aspects need to be considered. Suppose a trans-

action T1 is chopped into k smaller transactions, T 1
1 , T 2

1 , ..., T k
1 . Although all these transactions are

independent, T i
1 still needs to be executed before T i+1

1 , for all i between 1 and k−1, to provide the same

logic as in the original transaction T1. Moreover, the sub-transactions will act as the original transaction,

14

but without providing isolation when they are executing, allowing for other transactions to execute in be-

tween sub-transactions. Another problem is that if a transaction has rollback statements, then they need

to be placed in the first sub-transaction, otherwise, if one sub-transaction fails mid-execution, it might

not be capable of undoing the work done by the previous sub-transactions, since they are independent

of each other. When the chopping is performed on a transaction that either has no rollback statements,

or all the rollback statements are in the first sub-transaction, the chopping algorithm considers that

chopping to be rollback-safe.

In their work, Shasha et al [14] also delve into the topic of verifying if a chopping is correct. Their

work states that for a chopping to be considered correct, all of its executions need to be equivalent

to a serial execution of the original transactions. To accomplish this, they use an undirected graph

to represent the executions, where the vertices are the transactions and the edges are the relations

between transactions. The edges can be one of two types, S, between sub-transactions of the same

original transaction, and C, between transactions that have conflicts with each other by accessing the

same object. In the paper, this graph is called the chopping graph. After representing the execution as

a chopping graph, the next step is to look for cycles that contain at least one S edge and at least one C

edge. Each cycle with this format is an execution that would not preserve the serializable behaviour of the

original transaction set, since it would denote that there is no possible serial ordering of the transactions

executed that would respect the relations between them. Another requirement for a chopping to be

correct is that the chopping is rollback-safe, to guarantee that the rollback behaviour is the same as

the one in a serial execution. To summarize, a chopping is only correct if all of its executions can be

represented as an acyclic chopping graph and the chopping is rollback-safe.

If the monoliths were decomposed using this technique, the existence of anomalies could be pre-

vented since it is possible to ensure the correctness of the chopping. However, in the migration from

monolith to microservices, the transactions are divided based on a different criteria. This criteria consists

of the distribution of the entities by the microservices, which differs from only considering the operations

and the transactions. In fact, in the migration case the chopping is enforced by the decomposition cho-

sen, therefore not following the chopping algorithm and not assuring the correctness of the transactions’

chopping.

To better illustrate how transactions are divided in a migration from monolith to microservices, we

present an example scenario. In this example, we consider two entities with two attributes each, Member

and Item, two transactions, Txn1 and Txn2, and a decomposition where Member goes to microservice

M1 and Item goes to microservice M2. Both transactions, Txn1 and Txn2, are composed of three

operations. Txn1’s operations are reading an instance of Member, reading an instance of Item and

updating the Member ’s instance that was read. Txn2’s operations are reading an instance of Member,

updating the Member ’s instance that was read and updating an instance of Item. Considering that

15

Txn1
Read

Member

Read
Item

Txn2

Write
Member

Read
Member

Txn1_0
Read

Member

Read
Item

Txn2_0

Write
Item

Read
Member

Txn1_1

Txn2_1

Txn1 Txn2

Write
Member

Write
Item

Member: M1
Item: M2

Write
Member

Txn1_2

Write
Member

M1

M2

M1

M1

M1

M2

Monolith Microservices

Figure 2.2: Example scenario of how the transactions are chopped in a migration from monolith to microservices.

Member and Item will be in different microservices, the transactions Txn1 and Txn2 need to be divided

into several sub-transactions, each of which executes in the microservice associated with the entity they

are accessing. In Figure 2.2, we present how the transactions would be divided in this scenario.

As we stated before since in the monolith to microservices migration the chopping is enforced based

on the distribution of the entities between microservices, this chopping of the transactions is not guar-

anteed to be correct, and in this example scenario is in fact incorrect. This division of the transactions

allows for multiple executions where the sub-transactions interleave with each other, something that was

not possible in the monolithic version and can lead to unexpected results (anomalies). One example

of a new possible interleaving that leads to an anomaly can be seen in Figure 2.3. In this case, the

execution of Txn2 interleaves with the execution of Txn1, which leads to a non-serializable execution of

the system, since Txn1 sees an older value for Member1, assuming that it executed before Txn2, but at

the same time it sees the new value for Item1 that was written by Txn2, assuming that it executed after

Txn2, which is contradictory.

2.6 Distributed Databases

Software developers sometimes opt to have more than one database in their system, since by doing this

they can guarantee properties such as data separation, scalability, and fault tolerance, among others.

These databases tend to run on different machines, distributing the load between them, which may also

benefit performance. When the storage system is composed of several databases in different machines,

it is possible to coordinate them, such that they execute as a single database. This type of storage

16

Txn1
Read

Member1

Write
Member1

Txn2

Write
Item1

Read
Item1

Figure 2.3: Example of a possible interleaving that leads to an anomaly.

system is called a distributed database. Coordination is needed to ensure both atomicity and isolation.

For atomicity, one needs to ensure that if a transaction is aborted in one database, it is aborted in all

databases. For isolation, one needs to ensure that all databases serialize concurrent transactions in the

same order.

To ensure atomicity, it is necessary to execute an atomic commitment protocol among all participants

in the transaction, to agree on the outcome of the transaction. A widely adopted atomic commitment

protocol is the Two-Phase Commit Protocol, where one of the participants acts as a coordinator. This

protocol initiates with a setup phase where the participants send a message to the coordinator, to inform

it that they will participate in the execution of a transaction. After that, each participant executes the

received transaction. The coordinator will verify with each participant if they want to commit or not. A

participant will say “yes” if it successfully executed the transaction, and “no” if it aborted. The coordinator

will collect all the responses, including its own, and decide the outcome of the transaction. If all the

responses are “yes”, then the coordinator will send a message to all the participants telling them to

commit. Otherwise, the coordinator will send a message to all the participants that answered with “yes”,

to tell them to abort [15]. As one can tell, this protocol assures the atomicity of a transaction even in a

distributed scenario, by having all database nodes either commit or abort the transaction.

The concurrency control will be done by using the techniques from Section 2.4 adapted to the con-

text of distributed databases. In this context, the pessimistic approach will continue to hold locks for

each object in the databases. In the distributed setting, this approach introduces a new problem, the

distributed deadlock. This problem may occur because each database may execute the transactions in a

different order. For example, consider we have two transactions T1 and T2 that will execute concurrently

and two nodes N1 and N2, that will choose different orders to execute the transactions. Assume that in

N1 the order is T1, T2, and in N2 the order is T2, T1. Considering this scenario, N1 will begin by obtaining

the locks of the database objects of T1, and N2 will do the same for the database objects of T2. If this

17

happens, then both nodes will be blocked, since they will not be capable of accessing the database

objects of the transaction that they still need to execute. In the optimistic approach, the certification is

done in parallel by an independent set of servers, each of them validating the transactions that access

their respective objects. However, one needs to ensure that all participants validate transactions in the

same order. A transaction only commits if it passes the certification at all databases.

2.7 Data Replication

To guarantee that the data of the system is available most of the time, one can resort to data replication.

The way this method works is by creating copies of the original data and distributing them between

different nodes of the system. By doing this, the system becomes tolerant to faults, since one node

failing would not result in the loss of data, because there would be another node with the same data

(replica). Another advantage is that, by distributing the copies between nodes that can be in distinct

geographical places, one can decide to read from a local, or at least closer, replica to the origin of the

request, decreasing the latency time and providing a faster response.

However, keeping all the replicas consistent with each other represents a hindrance of using this

process. Ideally, one would want the replicated system to be 1-copy-equivalent, which means that the

replicated system behaves the same way as a non-replicated system [16]. One naı̈ve way of achieving

this is to apply each update to all the replicas, and only proceed after all the replicas were updated.

As one might expect, assuring 1-copy-equivalence is costly, and requires mechanisms that are strict

regarding how data is managed. These mechanisms either slow down the execution or block it until a

certain event occurs, resulting in the system offering a poorer performance, as well as a decrease in its

availability.

Therefore, programmers tend to avoid these costs by adopting weaker consistency models and ac-

cepting the fact that data may not always be consistent in all replicas. A consistency model reflects the

consistency guarantees offered by the system to the user when executing its functionalities. Depending

on the model, only certain sequences of operations can be perceived. The weaker the consistency

model, the more permissive the system is regarding its valid executions, implying more concurrency

between transactions, which ultimately benefits performance. However, this can also lead to anoma-

lous behaviours, if not handled correctly. These behaviours may occur because now operations from

different transactions can interleave with each other and modify or read objects that will still be modified

or read by mid-execution transactions. On the opposite side, we have stronger consistency models,

which are stricter on how transactions interleave with each other. The stronger consistency models

lead to safer and less anomalous executions, but neglect performance, since the system will offer less

concurrency [13].

18

There are several consistency models that a programmer can use. The following list presents several

consistency guarantees:

Eventual Consistency [12] guarantees that if several nodes are working with the same object, then,

after some time without seeing new updates, every copy of that object will converge to the same value

for all the nodes.

Causal Visibility [17] is a property that affects one specific object, and is derived from the concept of

visibility and Lamport’s Happens-Before relationships [18]. This property represents a causality relation

between two operations (one operation needs to happen before the other operation), making all threads

respect this order, and forcing the write effect of the first operation to be visible for the second operation.

For example, if we have an operation o1 and an operation o2, and we establish a causal visibility relation

between o1 and o2 (o1 → o2), then we are expressing that o1 happens before o2 and that o2 sees the

effect of the write made by o1.

Causal Consistency [17] enforces an ordering of the operations that respects their causal relations.

We establish a causal relation (Happens-Before) between two operations when the operations execute

one after the other in the same thread, or when they execute in different threads but one of them reads

a value written by the other one. As an example, consider an operation, o1, that reads from a variable x,

and an operation, o2, that writes on a variable y. If one thread executes o1, reading a version i of x, and

after executes o2, creating a new version of y, j. Based on this example, the model will guarantee that

all the threads that read version j of y cannot read a version of x that is older than version i.

Linearizability [11] is a property that affects one specific object and consists of all the operations

applied to that object being seen as atomic, preserving the object’s single-threaded semantics. For

example, if an object is updated, then all the subsequent reads will see the updated version of that

object.

2.8 Transactions in Microservices Architectures

When implementing a microservices application, software developers opt to use some of the techniques

and mechanisms previously presented. Two aspects need to be considered regarding the microservices

architecture. First, microservices are inherently distributed, since different services run in different ma-

chines, and manage different data. Second, we may have cases where a given service needs to access

data from a different service, which may lead to consistency issues.

One way of assuring strong consistency is to run distributed transactions using an atomic com-

mitment protocol. Although this type of protocol fixes the consistency issue, it worsens the system’s

performance, since, as we saw before, atomic commitment protocols are expensive procedures. The

costs of using them come from the communication between the coordinator and the participants to run

19

the protocol, as well as the time they need to wait for other participants to respond to proceed. For this

reason, distributed transactions tend to be avoided in a microservices architecture.

Since distributed transactions are not a feasible option, developers opt for alternatives. These alter-

natives consist of chopping transactions and using weaker consistency models. The chopping alterna-

tive aims for each service to only have transactions that they can execute by accessing their local data.

Note that by doing this, the operations of a transaction will be divided between several independent sub-

transactions, and can no longer provide properties such as atomicity and isolation by themselves. Also,

guaranteeing that one can chop transactions to be fully executed by running only on one service, may

not always be possible, and we might have cases where one service still needs to access the objects

of another service. When opting for the weaker consistency model alternative, one is aiming for the

system to provide a better performance, by accepting the fact that the replicas of the system may not be

consistent with each other all the time. To implement this alternative, the first requirement is that each

service has a replica of the contents of all the other services that it needs to access. After that, when an

update is made on a given service, for example, S1, then the update will be propagated to all the other

services that have a replica of the contents of S1. Although this assures that each service has the ob-

jects it requires to execute, one needs to account for the fact that when an update is made on a service,

the propagation to the remaining services is asynchronous and not instantaneous, which may lead to

inconsistencies. These inconsistencies occur because there is a time window when the replicated data

on a service is not consistent with the data on the original service. One example of a consistency model

oriented towards the execution of transactions is Transactional Causal Consistency, which is defined as

follows:

Transactional Causal Consistency [19] is a model similar to Causal Consistency, where transac-

tions read from a causally consistent snapshot, which includes all causal dependencies of the objects

read. This model extends Causal Consistency by adding the notion of causal relations between transac-

tions based on the objects they access. Another feature it provides is that the updates of a transaction

can be seen as if they are executed atomically (all of them are executed or none of them are executed).

2.9 Tools

In this section, we will present several tools with implementations and objectives similar to the ones

of our tool. In Section 2.9.1, we describe tools whose goal is to give an estimate of how complex the

decomposition of a monolith will be, considering patterns that may raise anomalies after the migration.

In Section 2.9.2, we cover tools that use a black box approach (do not require information on how the

system is built) to detect anomalies. In Section 2.9.3, we cover tools that use a white box approach

(need to know how the system is implemented) to detect anomalies. In Section 2.9.4, we present a table

20

comparing all the tools presented and ours (MAD).

2.9.1 Heuristics for Anomaly Awareness

2.9.1.A A Complexity Metric for Microservices Architecture Migration

“A Complexity Metric for Microservices Architecture Migration” (CMMAM) [20] is a work with two contri-

butions. These are an estimate of the effort required to migrate from a monolith to microservices and

the impact of the similarity measure chosen for the decomposition of the monolith. In this work, a mi-

croservice is defined as a group of entities called a cluster, and to aggregate the entities into clusters,

a similarity measure is used. The paper defines a similarity measure as a criterion that quantifies how

coupled two entities are and presents several similarity measures, each accounting for how frequently a

certain event is common to both entities and the obtained frequency represents how related the entities

are. The complexity metric takes into account certain patterns in the code, which are likely to raise

anomalies after the migration to microservices.

For the first contribution, the paper defines the complexity of the decomposition as the average of

the functionalities’ complexities. The complexity of a functionality is the sum of the complexities of the

clusters accessed by a sequence of operations. The complexity of accessing a cluster is the number

of elements in the union of the complexities of the accessed entities inside the cluster. Finally, the

complexity of accessed entities depends on the access mode. The complexity of an entity read is the

number of other functionalities that access more than one cluster and write to the same entity, and the

complexity of an entity written is the number of other functionalities that access more than one cluster

and read the same entity.

For the second contribution, four different similarity measures are used to aggregate the entities into

clusters. The first similarity measure is given by the number of functionalities that access both entities

divided by the number of functionalities that access the first entity. The second similarity measure is

given by the number of functionalities that read both entities divided by the number of functionalities

that read the first entity. The third similarity measure is given by the number of functionalities that

write on both entities divided by the number of functionalities that write on the first entity. The last

similarity measure is given by the number of times that both entities are accessed consecutively in all

functionalities divided by the maximum number of consecutive accesses.

The first contribution is more related to our work since their complexity estimate is based on the

occurrences of certain patterns in a monolith that can possibly lead to anomalies after a decomposition.

21

2.9.1.B Mono2Micro - From a Monolith to Microservices: MetricsRefinement

“Mono2Micro - From a Monolith to Microservices: MetricsRefinement” [21] is a research work with the

intent of improving the accuracy of the metric presented in “A Complexity Metric for Microservices Ar-

chitecture Migration” [20] by providing the user a set of operations to manipulate a monolith’s decompo-

sition. The paper’s goal is to offer a more realistic scenario of a migration to microservices considering

the Saga Pattern [10], local transactions, which are transactions that can commit only by executing on

one machine, and semantic locks, application-level locks that indicate when the local transaction of a

saga already wrote on a given entity.

The first operation is Sequence Change, which receives a pair of transactions, representing a local

transaction remotely invoking another transaction, and changes the invoking transaction to a different

transaction that happens before the invoked transaction. The second operation is Local Transaction

Merge, which given two local transactions that either execute sequentially or execute both after a com-

mon local transaction, allows the user to merge these two local transactions. The third operation is Add

Compensating, which, inspired by Sagas [10], allows the user to create a local transaction that will act

as a compensating transaction. The last operation is Define Coarse-Grained Interactions, which is com-

posed of Sequence Change and Local Transaction Merge. This operation considers as input two remote

invocations with four different local transactions, T1, T2, T3, T4. T1 and T2 are in the same cluster. T3 and

T4 are in the same cluster, but a cluster different than the one from T1 and T2. T1 happens before T2,

and T3 happens before T4. The remote invocations are (T1, T3) and (T2, T4), meaning that T1 calls T3

and T2 calls T4, respectively. Based on this information, the operation allows the user to simultaneously

reorder the two remote invocations to generate remote invocations that can be merged, (T1, T2) and (T3,

T4), finally resulting in one remote invocation with the two merged local transactions (T12, T34).

This paper also introduces three complexity metrics. First, the Functionality Redesign Complexity,

which is the sum of the complexities of the local transactions in the functionality. The complexity of a local

transaction is given by the number of semantic locks in the entities accessed by the local transaction

added to the number of other functionalities that write, or have semantic locks, in the same entities that

the local transaction accesses. Second, the System Added Complexity, which is given by the number

of functionalities that read from at least two clusters that are modified by another functionality. Third,

the Query Inconsistency Complexity, which is only briefly mentioned and consists of the complexity of a

query (transaction with only reads) being given by the number of other functionalities that write to one or

more clusters read by the query.

22

2.9.2 Anomaly Detection using Black Box Approaches

2.9.2.A Cobra

Cobra [22] is a tool designed to test if a transactional key-value store in the cloud respects serializability.

This tool focuses on the constraints of serializability, to encode the problem in a way that it can be solved

by an SMT solver. It uses a black box testing approach, since it suits the tool’s target environment, due

to, most of the time, applications running in the cloud being considered black boxes.

The tool is composed of three components, the Clients, the History Collectors, and the Verifier. The

Clients are meant to mimic the actions of real clients by randomly sending requests to the database

under test and receiving the respective responses. The History Collectors are responsible for logging

all the operations made and the responses received in the interaction between the Clients and the

database. Each History Collector logs the operations made and responses received by a specific Client

and creates a fragment of history, which is a sequence of the operations and responses it saw. All

the fragments together result in a history, which is a sequence of all the operations and responses that

occurred in the system. The Verifier assembles the fragments of history to create the history and verifies

if it is serializable.

Focusing on the verification, the Verifier creates a serialization graph from the history, where the

transactions are the vertices and the dependencies are the edges. The tool also considers constraints,

which the paper defines as a set of possible dependencies, represented as a pair of edges. For the tool

to provide a faster response, the paper also defines three techniques to reduce the solution space. First,

Combining Writes, which consists in only considering one of the writes to create an outwards edge, if

there are two or more consecutive transactions with writes to the same object. Second, Coalescing

Constraints, this is done by considering all the reads after the same write as one read. Third, Pruning

Constraints, this technique consists in decreasing the number of possible combinations by discarding

the edges of a constraint that generate cycles in the graph, as these executions are impossible to reach

by the constraint definition. After applying all these techniques, Cobra uses the resultant graph, the

constraints, encoded using logic notation, and the SMT solver (in this case MonoSAT [23]), to verify if

the graph is acyclic since this would mean that the execution is serializable.

2.9.2.B MonkeyDB

MonkeyDB [24] is a system designed for users to test their program against multiple consistency levels

of a database by simulating the behaviour of a normal storage system.

This tool provides APIs for SQL and key-value store applications, both commonly used by developers

to interact with their storage system. One of the components of this system is the history, which aggre-

gates the dependency relations between operations, as well as all the operations that are executed.

23

Another component is the consistency checker, which uses logical constraints (axioms) to represent the

properties of the consistency models and is responsible for verifying if the execution is valid under the

consistency model chosen by the user.

To use the tool, first, the user needs to define a program to test. This program will consist of two

or more sessions, which the paper defines as sets of transactions that can be executed in parallel.

After that, MonkeyDB will simulate the executions of these sessions running in parallel and will log each

operation executed in the history. If the operation is a read, it will compute the possible returned values,

based on the history and the consistency model used in the consistency checker, randomly returning

one of the possible values. Note that, by using this procedure, the user can never be sure that the

system does not have an anomaly. They can only be more or less confident depending on how many

times they run the tool with the test program and the outputs they observe.

2.9.3 Anomaly Detection using White Box Approaches

2.9.3.A Automated Detection of Serializability Violations under Weak Consistency

“Automated Detection of Serializability Violations under Weak Consistency” (ANODE) [25] presents a

tool that statically analyses SQL-like programs, to check if they contain serializability anomalies under

bounded abstract executions and different weak consistency models.

As the first step to use this tool, the user gives as input their SQL program with some small adapta-

tions to fit the syntax of the tool. Then, the tool generates abstract executions of the program by creating

instances of the transactions in the program and simulating how they would execute. The next step is

converting each abstract execution to a dependency graph. To replicate the behaviour of consistency

models, ANODE uses logical constraints (axioms) so that the abstract execution is compliant with the

chosen consistency model properties. The tool also assumes that each dependency graph will have a

cycle. After that, the tool creates a First Order Logic (FOL) formula with three clauses, encoding the

program characteristics and the consistency model, the dependencies between transactions, and the

length of the cycle that is assumed to exist. Finally, the tool uses an SMT solver (Z3 [4]) to check if the

FOL formula is unsatisfiable (there is no possible assignment that would respect all the constraints). In

this case, unsatisfiability means that the cycle assumed, or any cycle of a smaller length, cannot exist in

the dependency graphs. Therefore, all the executions are serializable, unless they have a dependencies

cycle of a bigger length.

2.9.3.B CLOTHO

CLOTHO [5] is based on the work of Nagar and Jagannathan [25] and is also a tool designed to analyse

the transactions of a storage system that provides weak consistency semantics, to detect if there are

24

AR Compiler Formula
Construction SMT Solver Replayer

AR
Program

Java
Program

FOL
Formula

Satisfiable
Assignments

Figure 2.4: CLOTHO’s pipeline.

any serializability anomalies. The tool receives as input a Java program with a single class, containing a

set of methods representing the system’s transactions, and returns as output the number of anomalies

found, as well as concrete tests to reproduce the anomalous executions. Regarding the architecture, it is

composed of two main components, the analyzer and the replayer. The former is responsible for doing

the analysis of the program and detecting anomalies, and the latter is used to generate an environment

that allows the user to run concrete executions that will lead to the anomalies detected.

The way CLOTHO’s analysis works consists of creating FOL formulas where the satisfiable assign-

ments correspond to cyclic graphs, whose vertices are the operations and the edges are the relations

between the operations. The types of edges considered are: ST (same transaction); RW (read followed

by a write); WR (write followed by a read); and WW (write followed by a write). The cyclic anomalous

graphs are defined as having at least one ST edge and at least two dependency edges (RW, WR,

WW). These graphs represent non-serializable executions of the transactions, therefore anomalies [26].

CLOTHO’s pipeline can be split into three steps for the analysis and one last step for the anomaly

concrete execution, as illustrated in Figure 2.4.

First, CLOTHO converts the Java program to an Abstract Representation (AR), which resembles an

SQL-like language and is described in CLOTHO’s paper. This step eases the extraction of information

from the input program, such as the edges between operations that can access the same object.

Second, using the program in the AR, the goal is to construct a FOL formula. This formula is the

conjunction of five sets of constraints. The objective of these sets of constraints is to represent as accu-

rately as possible the environment where the transactions will run, the relationship between them, and

the characteristics of the anomalies the user is looking for. The paper represents the sets of constraints

using φcontext, φdb, φdep→, φ→dep and φanomaly. φcontext represents the values that are plausible to be

in the database. φdb represents the consistency and isolation guarantees provided by the database.

φdep→ represents the dependency arrows between operations that belong to the dependency cycle.

φ→dep represents the dependency arrows between operations that do not belong to the dependency cy-

cle. φanomaly bounds the possible anomaly structures to a maximum number of transactions in a serial

execution, a maximum number of transactions in a concurrent execution, and a maximum length for a

dependency cycle.

Third, after having the FOL formula built, the tool uses an SMT solver (in CLOTHO’s case Z3 [4]),

to compute the assignments that satisfy the formula, each of them representing an abstract execution

that contains an anomaly. In the cases where the formula is unsatisfiable, this means that no anomalies

25

Table 2.1: Characterization of existing tools.

Properties Techniques
Analysis Consistency Microservices Method SMT Executions

Model Oriented Solver Analysed
CMMAM Heuristic Eventual Yes Static Analysis No -

Consistency
Metrics Heuristic Eventual Yes Static Analysis No Abstract
Refinement Consistency
Cobra Black Box Serializability No Testing Yes Abstract
MonkeyDB Black Box Any No Testing No Concrete
ANODE White Box Any No Static Analysis Yes Abstract
CLOTHO White Box Any No Static Analysis Yes Abstract/

Concrete
CLOTHO+ White Box Any Partial Static Analysis Yes Abstract
MAD White Box Any Yes Static Analysis Yes Abstract

were detected within the bounds defined for the formula construction.

Finally, one can opt to use the replayer to simulate a concrete execution that will make the anomaly

emerge, however, this aspect falls outside the scope of our work.

2.9.3.C Microservice Decomposition for Transactional Causal Consistent Platforms

“Microservice Decomposition for Transactional Causal Consistent Platforms” (CLOTHO+) [6] is a work

strongly related to ours since it also focuses on the microservices architecture.

Besides providing relevant insights regarding the decomposition into microservices, it also addressed

how prepared CLOTHO is to face microservices architectures and introduced useful features to the tool.

The first addition was the implementation of other consistency models in CLOTHO, since, although they

were formalized in CLOTHO’s paper [5], CLOTHO only had eventual consistency implemented. The

second addition was a label to differentiate the transactions that were running in one microservice from

the transactions running in another microservice. This is used to simulate microservices running on

different machines and prevent false positives in cases where the two conflicting transactions would be

running on the same machine. The last addition was a relation to represent that two operations belong

to the same class/type of transaction.

2.9.4 Comparison

Table 2.1 presents a comparison of the tools. We split the table into two sections. The first section

(Properties) refers to the characteristics of the tools. We divided this section into three columns which

capture, respectively, the approach used by the tool to analyse a system (Analysis), the consistency

guarantees that the tool is expecting the system under test to respect, considering the ones the tool

can be extended to support (Consistency Model), and if the tool is oriented to analyse microservices

architectures (Microservices Oriented). The second section (Techniques) refers to the mechanisms

26

used by the tools to fulfil their purpose. We divided this section also in three columns which capture,

respectively, how the tool identifies the existence of anomalies (Method), if the tool uses an SMT solver

(SMT Solver), and which type of executions the tool analyses (Executions Analysed) (“-” means that

the tool does not consider different executions of the system). Note that our tool, MAD, offers a white

box analysis applicable to any consistency model and that takes into account all the aspects of the

microservices architecture, which is something none of the other tools do.

Summary

In this chapter, we introduced background concepts associated with our work. In particular, the mono-

lithic and microservices architectures, what are transactions and their properties, what are anoma-

lies, how concurrency control mechanisms work, how one can divide transactions into several sub-

transactions, how distributed databases and data replication can be achieved, and how transactions

operate in a microservices architecture. We have also surveyed other tools with similar purposes and

that use adequate techniques for our goals. In the end, we explained how our tool (MAD) differs from

the remaining tools by offering an analysis that cannot be done by any of the other tools.

27

28

3
MAD

Contents

3.1 Overview . 31

3.2 Architecture . 32

3.3 CLOTHO Adaptations . 40

3.4 Discussion . 43

29

30

AR Compiler Formula
Construction SMT Solver Metrics

Extractor

Monolith AR
Program

Java
Program

SMT
Formula

Satisfiable
Assignments

Decomposition
File

Divide and
Conquer

Functionalities
Subsets

Another
Subset?

Transaction
Chopping

Microservices
AR Program

Figure 3.1: MAD’s pipeline.

In this chapter, we describe the design and implementation of the Microservices Anomaly Detector

(MAD) tool, which automatically detects anomalies that may occur when applying a given decomposition

from monolith to microservices. We focused our efforts on developing a precise tool that avoided false

negatives and false positives while considering all the aspects related to the migration from monolith

to microservices. In Section 3.1, we present an overview of MAD’s design. In Section 3.2, we explain

the implementation of MAD. Section 3.3 presents the adaptations that we had to make to the analysis

previously made by CLOTHO. Finally, in Section 3.4, we discuss more details about MAD’s development.

3.1 Overview

MAD takes as input the source code of a monolithic implementation of an application and a high-level

description of how the monolith is decomposed into multiple microservices. In the current version, the

source code must be a Java program written using the JDBC syntax (uses SQL queries to access the

entities, which are maintained by the application in a database), although it is possible to extend the tool

to support other additional programming languages in the future. The decomposition of the monolith

is expressed as the clustering of the domain entities into aggregates [7] (entities grouped in the same

cluster are assumed to be managed by the same microservice) and is represented by a JSON file

(Decomposition File). Using this input, MAD executes the pipeline presented in Figure 3.1. We will now

explain each of the steps of the pipeline.

During the compilation to the AR, MAD performs two steps. First, the AR Compiler, which extracts the

monolith’s transactions (designated by us as original transactions), parameters, and expressions, orig-

inating the Monolith AR Program. Second, the Transaction Chopping where the representations of the

sub-transactions are generated based on the original transactions and the decomposition considered,

originating the Microservices AR Program.

Often, the AR program is too complex to be represented in a single encoding that can be easily

analysed. Employing a divide and conquer strategy, MAD generates subsets of the original transactions

(Functionalities Subsets). Analysing these subsets independently allows for the analysis of the whole

problem to be simpler and done in a reasonable time. Therefore, instead of creating a single SMT

formula with all the assertions, MAD creates several formulas, one for each subset, with each formula

only having the assertions related to the original transactions of their given subset.

31

When constructing the formulas, MAD uses already existing assertions to encode the basic be-

haviour of a distributed system and the logic to detect cyclic graphs (executions with anomalies). How-

ever, since those were not enough to model the context of our problem, we had to add and adapt

assertions of the formula. To illustrate that in a graph there is a relation between two operations of the

same original transaction that are in different sub-transactions, we consider a new edge type, SOT. To

model where each operation would execute and the operations’ visibility effects, we add the notion of

microservices together with the usage of consistency models assertions.

After the SMT solver (Z3 [4]) finishes its analysis, we obtain the Satisfiable Assignments, which

represent the anomalies found. To present more metrics, MAD has a Metrics Extractor, which applies a

pattern-matching technique to enumerate the number of anomalies of each type, groups the anomalies

by sets of sub-transactions considering the sub-transactions involved in each anomaly, and counts the

number of occurrences of each sub-transaction in the anomalies.

3.2 Architecture

In this section, we address how each of the different aspects of MAD’s design are implemented in the

tool. More specifically, the input files, the notions of sub-transactions and microservices, the consistency

models, the search algorithm, and the metrics extractor.

3.2.1 Input Files

MAD receives as input a Java file with all the original transactions and their respective operations using

JDBC and SQL queries to access the entities, and a JSON file that represents the decomposition and

indicates the existent microservices and the entities assigned to each microservice. Considering the

example from Figure 2.2, its respective Java and JSON files can be seen in Listing 3.1 and Listing 3.2,

respectively.

3.2.2 Sub-transactions and Microservices Notions

To represent the migration, two essential aspects need to be considered. These aspects are: (1) sub-

transactions, transactions that originated from the division of a transaction, and (2) microservices, the

nodes where the sub-transactions will execute. We divided the task of modeling these aspects into three

steps: 1) representing the sub-transactions; 2) introducing a feature to indicate that two sub-transactions

are related since they will be executed under the same functionality (original transaction); 3) introducing

the concept of microservice and associating it with the operations.

32

Listing 3.1: Example of MAD’s input Java file representing the example scenario.
1 p u b l i c c lass exampleScenario {
2 p r i v a t e Connection connect = n u l l ;
3 p r i v a t e i n t ISOLATION = Connection .TRANSACTION READ COMMITTED;
4 p r i v a t e i n t i d ;
5 Proper t i es p ;
6

7 p u b l i c exampleScenario (i n t i d) {
8 t h i s . i d = i d ;
9 p = new Proper t i es () ;

10 p . se tProper ty (” i d ” , S t r i n g . valueOf (t h i s . i d)) ;
11 Object o ;
12 t r y {
13 o = Class . forName (” MyDriver ”) . newInstance () ;
14 DriverManager . r e g i s t e r D r i v e r ((D r i ve r) o) ;
15 Dr i ve r d r i v e r = DriverManager . ge tD r i ve r (” jdbc : mydr iver : / / ”) ;
16 connect = d r i v e r . connect (” ” , p) ;
17 } catch (I n s t a n t i a t i o n E x c e p t i o n | I l l ega lAccessExcep t ion |
18 ClassNotFoundException | SQLException e) {
19 e . p r in tS tackTrace () ;
20 }
21 }
22

23 p u b l i c vo id Txn1 (i n t memberId , i n t i temId , i n t newStatus) throws SQLException {
24 PreparedStatement stmt1 = connect . prepareStatement (”SELECT s ta tus ” + ”FROM ” +
25 ”MEMBER” + ” WHERE i d = ? ”) ;
26 stmt1 . s e t I n t (1 , memberId) ;
27 Resul tSet rs = stmt1 . executeQuery () ;
28 rs . next () ;
29 i n t read s ta tus = rs . g e t I n t (” s ta tus ”) ;
30

31 PreparedStatement stmt2 = connect . prepareStatement (”SELECT pr i ce ” + ”FROM ” +
32 ” ITEM” + ” WHERE i d = ? ”) ;
33 stmt2 . s e t I n t (1 , i temId) ;
34 Resul tSet rs2 = stmt2 . executeQuery () ;
35 rs2 . next () ;
36 i n t r ead p r i ce = rs2 . g e t I n t (” p r i ce ”) ;
37

38 PreparedStatement stmt3 = connect . prepareStatement (”UPDATE MEMBER SET s ta tus = ? ” +
39 ” WHERE i d = ? ”) ;
40 stmt3 . s e t I n t (1 , newStatus) ;
41 stmt3 . s e t I n t (2 , memberId) ;
42 stmt3 . executeUpdate () ;
43 }
44

45 p u b l i c vo id Txn2 (i n t memberId , i n t newStatus , i n t i temId , i n t newPrice) throws SQLException {
46 PreparedStatement stmt1 = connect . prepareStatement (”SELECT s ta tus ” + ”FROM ” +
47 ”MEMBER” + ” WHERE i d = ? ”) ;
48 stmt1 . s e t I n t (1 , memberId) ;
49 Resul tSet rs = stmt1 . executeQuery () ;
50 rs . next () ;
51 i n t r ead p r i ce = rs . g e t I n t (” s ta tus ”) ;
52

53 PreparedStatement stmt2 = connect . prepareStatement (”UPDATE MEMBER SET s ta tus = ? ” +
54 ” WHERE i d = ? ”) ;
55 stmt2 . s e t I n t (1 , newStatus) ;
56 stmt2 . s e t I n t (2 , memberId) ;
57 stmt2 . executeUpdate () ;
58

59 PreparedStatement stmt3 = connect . prepareStatement (”UPDATE ITEM SET pr i ce = ? ” +
60 ” WHERE i d = ? ”) ;
61 stmt3 . s e t I n t (1 , newPrice) ;
62 stmt3 . s e t I n t (2 , i temId) ;
63 stmt3 . executeUpdate () ;
64 }
65 }

33

Listing 3.2: Example of MAD’s input JSON file representing a microservices decomposition.

1 {
2 "M1": [
3 "Member"
4],
5 "M2": [
6 "Item"
7]
8 }

3.2.2.A Sub-transactions Representation

Upon compiling the Java program to the Monolith AR Program, MAD proceeds to generate the rep-

resentation of the sub-transactions considering the assignments between entities and microservices

from the Decomposition File. For each original transaction, MAD applies the procedure described in

Algorithm 3.1.

The rationale behind Algorithm 3.1 is to iterate over the operations of an original transaction (for loop

in Line 9) and generate sub-transactions based on the entities that are accessed by the operations. In

each iteration, a verification is performed (if else in Lines 11 and 19) to assess if the entity accessed by

the iteration’s operation (entityName) belongs to a different microservice from the previous operation’s

entity (currentMicroservice), or not. If the entity belongs to a different microservice (Line 11), then the

current microservice is updated and a new sub-transaction is created with the seen operation since it

would execute in a different microservice. Else (Line 19), the operation is added to the most recent

sub-transaction created (subTxns.get(currentSubTransactionIdx)) since it would execute in the same

microservice. The output from applying this algorithm to the original transactions from the example in

Figure 2.2 originates a representation equivalent to the right side of the figure (Microservices side).

3.2.2.B Same Original Transaction Edge

In the migration to microservices, some transactions may need to be chopped, which originates sub-

transactions. Although these sub-transactions can be seen as independent transactions, they are still

related to each other in the sense that they are part of the same functionality (original transaction)

and they need to be executed sequentially, to provide the same behaviour as the original transaction.

Therefore, to represent the relation between operations from different sub-transactions that belong to

the same original transaction, we introduce an edge type, SOT (same original transaction).

To accomplish this, we add to the SMT formula a sort (OT), a data type (OTType), two formula

functions (ottype, which receives an instance of an original transaction and returns its type, OTType;

34

Algorithm 3.1: MAD’s Transaction Chopping
Input: body: decompiled Java body of the original transaction function, entitiesMicrosMap:

mapping between entities and microservices, tables: list of input program’s tables
Output: origTxn: representation of the original transaction

1 Function MADTransactionChopping(body, entitiesMicrosMap, tables)
2 name← body.getMethod().getName()
3 origTxn← OriginalTransaction(name)
4 unitHandler← UnitHandler(body, tables)
5 unitHandler.extractParams()
6 currentSubTransactionIdx← -1
7 currentMicroservice← “”
8 subTxns← ∅

// Iterate over all the statements (operations)

9 foreach s in unitHandler.data.getStmts() do
10 entityName← ((InvokeStmt) s).getQuery().getTable().getName()

/* Create a new sub-transaction when the microservice of the operation’s

entity is different from the current sub-transaction’s microservice */

11 if currentMicroservice ̸= entitiesMicrosMap.get(entityName) then
12 currentMicroservice← entitiesMicrosMap.get(entityName)
13 currentSubTransactionIdx← currentSubTransactionIdx + 1
14 newSubTxn← Transaction(name + “ ” + currentSubTransactionIdx)
15 newSubTxn.setOriginalTransaction(name)
16 newSubTxn.setMicroservice(currentMicroservice)
17 newSubTxn.addStmt(s)
18 subTxns← subTxns ∪ newSubTxn

/* Add the operation to the current sub-transaction when the microservice

of the operation’s entity is the same */

19 else
20 subTxns.get(currentSubTransactionIdx).addStmt(s)

21 origTxn.addStmt(s)

and original transaction, which receives an instance of an operation and returns the instance of original

transaction where it belongs, OT) and one predicate (step sibling, which receives two instances of

operations and returns true if they are related as operations of different sub-transactions but the same

instance of an original transaction). The ottype function values are initialized at the beginning of the

formula by expressing that for all the operations of a given operation type (OType), the instance of original

transaction they belong to has to be of a specific OTType. The assertion can be found in Equation (3.1)

with otype being a function that receives an instance of an operation and returns its type, OType. The

original transaction function is involved in the establishment of dependency edges and has its values

assigned during the analysis when the SMT solver is looking for satisfiable assignments.

∀o1((otype(o1) = op1)⇒ (ottype(original transaction(o1)) = orig txn1)) (3.1)

35

When the SOT edge is established between two operations, it indicates that the operations are in

different sub-transactions but belong to the same original transaction, which allows MAD to understand

that the operations will always follow a specific order and that an interleaving between the two operations

may lead to an anomaly.

Considering this new edge type, our definition of a cyclic anomalous graph is a cycle with at least

one ST or SOT edge and at least two dependency edges (RW, WR, WW). In Equation (3.2) and

Equation (3.3), we present the anomalous cycles definition for lengths three and four, respectively. For

these definitions, we use two predicates besides the edge types: D, which receives two instances of

operations and returns true if there is any dependency relation between them (RW, WR or WW); and

Any, which also receives two instances of operations and returns true if there is any relation between

them (ST, SOT, RW, WR or WW).

∀o1, o2, o3((ST (o1, o2) ∨ SOT (o1, o2)) ∧D(o2, o3) ∧D(o3, o1)) (3.2)

∀o1, o2, o3, o4((ST (o1, o2) ∨ SOT (o1, o2)) ∧D(o2, o3) ∧Any(o3, o4) ∧D(o4, o1)) (3.3)

3.2.2.C Microservices Assignment

Regarding the microservices notion, we defined a new data type (MType) and a new formula function

(mtype, which receives an instance of an operation and returns the microservice it executes on, MType)

in the SMT formula. These are used to associate the operations with the microservice where they will

be executed. The mtype function values, similar to the ottype function, are initialized at the beginning of

the formula by expressing that for all the operations of a given operation type (OType), their microservice

has to be of a specific MType. The assertion can be found in Equation (3.4).

∀o1((otype(o1) = op1)⇒ (mtype(o1) = M1)) (3.4)

These new features are then used to restrict the consistency models and to control the visibility

between operations, as we will later discuss in Sections 3.2.3 and 3.3.1.

3.2.2.D Anomaly Example Graph

Consider the example anomaly presented in Figure 2.3. MAD detects this anomaly by finding the cyclic

graph that can be seen in Figure 3.2. The cycle contains two SOT edges and two dependency edges,

more concretely, one RW edge and one WR edge, and represents the interleaving of the original trans-

actions Txn1 and Txn2.

36

Read
Member1

Write
Member1

RW

M1

Write
Item1

SOTSOT

M2

Read
Item1 WR

Txn1 Txn2

Figure 3.2: MAD’s cyclic graph for the example anomaly.

3.2.3 Consistency Models

To make an analysis faithful to the environment where the microservice systems will execute, we as-

sume two consistency models: Serializability and Eventual Consistency. Between operations of the

same sub-transaction and other operations of the same microservice, we assume that they will respect

Serializability. Between operations of different sub-transactions or that execute on different microser-

vices, we assume Eventual Consistency 1. By default, MAD enforces Eventual Consistency between

the visibility effects of the operations. However, to enforce Serializability, we use the consistency mod-

els’ assertions defined in CLOTHO’s paper [5] and implemented in CLOTHO+ [6] with some adjustments

so that Serializability is only applicable between operations that execute in the same microservice.

The consistency models’ assertions rely on two relevant predicates, vis and ar. vis receives two

instances of operations and returns true if the effects of the left operation are visible to the right operation.

ar also receives two instances of operations and returns true if the left operation is executed before the

right operation. The assertions are implemented as follows (our adjustments are highlighted in blue):

1https://martinfowler.com/articles/microservice-trade-offs.html

37

https://martinfowler.com/articles/microservice-trade-offs.html

Read Committed = ∀o1, o2, o3(ST (o1, o2) ∧ vis(o1, o3) ∧ (mtype(o1) = mtype(o3))⇒ vis(o2, o3))
(3.5)

Repeatable Read = ∀o1, o2, o3(ST (o1, o2) ∧ vis(o3, o1) ∧ (mtype(o1) = mtype(o3))⇒ vis(o3, o2))
(3.6)

Linearizability = ∀o1, o2(ar(o1, o2) ∧ (mtype(o1) = mtype(o2))⇒ vis(o1, o2)) (3.7)

Serializability = Read Committed ∧Repeatable Read ∧ Linearizability (3.8)

3.2.4 Search Algorithm

MAD’s search algorithm follows a Divide and Conquer principle. Instead of taking into account all the

original transactions of the system at the same time, MAD restricts the search for cycles to only consider

a subset of the original transactions per iteration. By using this method, we can divide a large problem

into several smaller problems, which can be solved in a much shorter period of time. This search

algorithm can also be applied to other cases, such as CLOTHO’s analysis, by adapting the algorithm to

use the transactions (in MAD designated as sub-transactions), instead of the original transactions.

3.2.4.A Original Transactions Combinations

The first step of the search algorithm is to generate all the combinations of size smaller than the maxi-

mum cycle length (in our case four, as we will later justify in Section 4.1). The number of combinations

that will be generated when there are at least three original transactions can be obtained by replacing

the value of n in
∑3

x=1
nCx with the number of original transactions.

After generating the combinations, we proceed to restrict the original transactions of the opera-

tions that we are considering for the cycle in the SMT formula to be from the combination that is

being assumed at that iteration. The anomalies can have at most the current cycle length minus 1

(current cycle length−1) original transactions involved because they must have at least one ST or SOT

edge, which implies that at least two operations share the same original transaction. Therefore, MAD

only iterates over the combinations of size current cycle length − 1 in each cycle length analysis. As

an example, if we have five original transactions, order, sell, buy, look and update, assume that the cur-

rent cycle length is 3 and the combination [order, sell], then, complementing the cycle assertions from

Equation (3.2), we would have the assertions defined in Equation (3.9) (for simplicity, we only present

the assertions related with o1, since for o2 and o3 they would be the same only changing the operation

instance used as argument).

38

∀o1, o2, o3(((ottype(original transaction(o1)) = order) ∨ (ottype(original transaction(o1)) = sell))∧

(¬(ottype(original transaction(o1)) = buy)) ∧ (¬(ottype(original transaction(o1)) = look))∧

(¬(ottype(original transaction(o1)) = update)) ∧ ...) (3.9)

3.2.4.B Original Transactions Assertions Filtering

Besides restricting each of the cycle’s operations to belong to one of the original transactions of the

combination considered, we also restricted the assertions that are added to the formula, so that it only

includes the assertions related to the original transactions of the combination. This procedure minimizes

the overall complexity of the SMT formula since it will only have the essential assertions for the analysis.

By doing this, the search space is reduced and subsequently, the analysis of each combination is done

faster, allowing MAD to analyse a system in a shorter period of time.

3.2.5 Metrics Extractor

Besides presenting the total number of anomalies found, MAD also displays two additional metrics.

These metrics are the number of anomalies by type of anomaly and the number of anomalies considering

the sub-transactions that are involved in each anomaly.

3.2.5.A Number of Anomalies by Type

The first additional metric is the number of anomalies by type of anomaly (dirty read, dirty write, lost

update, write skew, and read skew). The technique we use consists of having a set of patterns only

considering the types of edges between operations and, when an anomaly is detected, checking if the

anomaly cycle matches any of the patterns. In the cases where the anomaly execution is more complex

than our anomaly types’ patterns and the cycle found does not match any of the patterns, then the

anomaly is not classified and is considered “Unclassified”.

The output format for this metric can be seen in Listing 3.3. The Write Skews are together with the

Lost Updates since the write skew pattern also corresponds to one of the lost update patterns. The

only way to distinguish them would be to also consider the tables and rows accessed. If the same row

was being accessed, then it would be a Lost Update, otherwise, it would be a Write Skew. However,

the patterns we use in our approach only consider the graph cycle edges, therefore not having enough

information to make this distinction. To do so, we had to add the notion of row accessed to our patterns,

which would also require the additional task of extracting the row that each of the anomaly’s operations

accessed to do the pattern-matching.

39

Listing 3.3: Number of anomalies by type format.

+++ Dirty Reads found: <#dirty read anmls>

+++ Dirty Writes found: <#dirty write anmls>

+++ Lost Updates found: <#lost update1 anmls>

+++ Lost Updates/Write Skews found: <#lost update2/write skew anmls>

+++ Read Skews found: <#read skews anmls>

+++ Unclassified found: <#unclassified anmls>

3.2.5.B Number of Anomalies by Sub-Transactions

Regarding the second additional metric, it focuses on presenting two aspects. First, the number of

anomalies that occur when the exact same set of sub-transactions is involved. This is used to capture

the impact caused by the interaction between certain sub-transactions towards the number of anomalies.

Second, the number of occurrences of each sub-transaction in the anomalies. This aspect helps to

understand how relevant each sub-transaction is regarding the existence of anomalies in the system.

These results are returned as output following two formats, which are, respectively, presented in

Listing 3.4.

Listing 3.4: Number of anomalies by sub-transactions formats.

[sub 0, sub 1, sub 2]: <#[sub 0, sub 1, sub 2] anmls>/<#total anmls>

...

<orig txn> (sub 0): <#sub 0 anmls>/<#total anmls>

...

3.3 CLOTHO Adaptations

Besides the contributions described in the previous sections, we also had to adapt/fix a few assertions

that we are using and were developed in CLOTHO, since they were not assuming the semantics that

suited our context and were incorrectly representing some elements in the SMT formula. There are two

adaptations worth mentioning. First, we assume a more fine-grained representation of the operations’

visibility, considering the microservices where the operations execute, besides the network partitions.

Second, we fixed the formula representation of values read from the database when they are used in

instructions of the Java program.

40

3.3.1 Visibility Adaptation to Microservices

This first adaptation was required due to the fact that we had to restrict an assertion regarding indirect

visibility of the operations’ effects, whose goal was to enforce that if a write operation happens before

a read operation and both happen inside the same partition, then the write operation would always be

visible to the read operation. Our change makes this assertion only applicable in the cases where both

operations belong to the same microservice. The adapted assertion can be found in Equation (3.10)

with our change highlighted in blue. It uses two formula functions and one predicate, besides the ones

already mentioned. The two formula functions are partition, which receives an instance of an operation

and returns the partition where it executes, and otime, which also receives an instance of an operation

and returns the time when the operation is executed. The predicate is is update, which receives an

instance of an operation and returns true if that operation is an update operation (update, insert or

delete).

∀o1, o2((partition(o1) = partition(o2)) ∧ (otime(o2) > otime(o1))

∧ (is update(o1)) ∧ (¬(is update(o2)))

∧ (mtype(o1) = mtype(o2))⇒ (vis(o1, o2)))

(3.10)

3.3.2 Correct Version processing for Database Read Values

The second relevant adaptation is a fix regarding the version considered when representing values read

from the database that are used in instructions of the Java program. Note that the next method that

will be mentioned is a Java method that in each call sequentially returns a row from the set of rows that

matched the query of a read operation. To better explain the problem, three formula functions need to

be introduced:

• <orig txn> r<index>-next<index2> (origTxn), which receives an instance of an original trans-

action, and returns the row read in that instance of <orig txn> in the <index>th read operation of

the program considering the <index2>th call to the next method;

• <table> VERSION (row, operation), which receives a row and an instance of an operation, and

returns the version of the row from table <table> seen by the operation;

• <table> PROJ <column> (row, version), which receives a row and a version, and returns the

value of <column> from table <table> that is expected in that row considering the given version.

Now, we present the snippet in Listing 3.5 as an example scenario to highlight the version problem.

In this scenario, there are three operations, o1, o2, and o3, in lines 1, 5, and 7, respectively. The snippet

execution consists of reading the price of a row in table “Item” and incrementing it by 1 if it is below 50

or decrementing it by 1 if it is above or equal to 50.

41

Listing 3.5: Example snippet for the version problem.

1 rs = executeQuery('Select price from Item where id = 1');

2 q = rs.next();

3 int p = q.get('price');

4 if (p < 50)

5 executeUpdate('Update Item set price = ' + (p + 1) + ' where id = 1');

6 else

7 executeUpdate('Update Item set price = ' + (p - 1) + ' where id = 1');

Having this example in mind, the problem is related to how variable “p” will be represented in opera-

tions o2 and o3. Assuming that the snippet is from an original transaction named “order” and there is an

instance of that original transaction represented by “ot!1”, “p” representation for o2 and o3 can be seen

in Equations 3.11 and 3.12, respectively.

Item PROJ price (order r1-next1 (ot!1), Item V ERSION (order r1-next1 (ot!1), o2)) (3.11)

Item PROJ price (order r1-next1 (ot!1), Item V ERSION (order r1-next1 (ot!1), o3)) (3.12)

As we can see, the representation of “p”, the price read from the database, in o2 is different from

the one in o3. This occurs since the table’s row version considered is obtained by using the operation

instance where the value read from the database is being used, instead of using the table’s row version

seen by the read operation. This leads to two problems. First, the analysis considers that both paths can

be executed at the same time since the path condition depends on “p”, whose representation is different

depending on the operation. Second, by considering the operation instance where the read value is

being used to obtain its version, then this leads to a scenario where the updates’ representation uses

the same value for the left-hand side and the right-hand side of the update expression. For example,

considering o2, the update targets the same row’s value that was previously read, therefore the update

operation (price = p + 1) would be translated to “the row’s price in o2’s version equals the row’s price in

o2’s version plus 1” (price(r, o2) == price(r, o2) + 1), which is always impossible.

To fix this problem, we introduce a formula function:

• <orig txn> r<index>-next<index2> READ VERSION (origTxn), which receives an instance

of an original transaction, and returns the version that was seen in that instance of <orig txn> in

the <index>th read operation of the program considering the <index2>th call to the next method.

42

With this new formula function, we can guarantee that the representation of a value read from the

database does not vary depending on the operation where it is being used, as well as achieve a correct

representation when updating a database row column using a value previously read from the database.

For example, “p” representation for both operations now would be the one presented in Equation (3.13).

Item PROJ price (order r1-next1 (ot!1), order r1-next1 READ V ERSION (ot!1)) (3.13)

3.4 Discussion

To develop MAD, we used as a starting point CLOTHO [5] with several consistency models [6]. We

chose CLOTHO due to its advantages when compared with the other tools and the fact that having

access to the source code proves useful for objectives complementary to this work, such as choosing

the best decomposition. None of the other tools is capable of doing the analysis we intend, since they

do not capture all the aspects related to the migration to microservices. For example, understanding

that the monolith’s functionality that executes in a single transaction may correspond to the sequential

execution of several sub-transactions when executing in a microservices composition. Besides that, the

capability to represent that different sub-transactions may execute in different microservices is required,

to simulate the visibility of the operations’ effects considering the microservices where the operations

execute. Note that how the decomposition is generated is orthogonal to our work and there are already

tools in the literature to help with this step [7–9].

Summary

In this chapter, we presented MAD, the tool we developed to achieve our goal of automatically detect-

ing anomalies when migrating from a monolith to microservices following a given decomposition. We

started by presenting an overview of MAD, and then described how each of the aspects considered for

the analysis was implemented. We concluded by addressing some adaptations that were needed and

discussed MAD’s development.

43

44

4
Evaluation

Contents

4.1 Experimental Setup . 47

4.2 Comparison between MAD and a Heuristic Approach Tool 49

4.3 MAD Results for Real-World Applications . 50

45

46

In this chapter, we present the evaluation that we performed to assess MAD capabilities. In Sec-

tion 4.1, we describe all the benchmarks that we use and the conditions under which the evaluation is

performed. Section 4.2 presents a comparison between MAD and a heuristic approach tool oriented

to microservices, “A Complexity Metric for Microservices Architectures Migration” (CMMAM) [20], also

displayed in Table 2.1. At last, in Section 4.3, we present the results obtained by MAD when applied to

real-world codebases.

4.1 Experimental Setup

For this experimental evaluation, we use two types of benchmarks: (1) handcrafted benchmarks that we

name microbenchmarks; (2) real-world codebases that can be found on GitHub.

Regarding the microbenchmarks, we created three instances, each with a different set of transac-

tions, however, all assuming the same context. The context consists of an application that has two

entities, Member and Item, with Member having three attributes, id, status and money, and Item also

having three attributes, id, price and stock. All the microbenchmarks assume the same decomposi-

tion, Member executing on microservice M1 and Item executing on microservice M2. The purpose of

these microbenchmarks is to illustrate the differences between MAD and CMMAM. The microbench-

marks descriptions can be found in Figure 4.1. Microbenchmark1 (Figure 4.1(a)) targets dependencies

between writes (WW) and is composed of two functionalities, UpdateMI that updates a member’s status

and an item’s price, and ResetMI that resets a member’s status and an item’s price (writes 0 on both).

Microbenchmark2 (Figure 4.1(b)) targets accessing different instances of the same entity and is com-

posed of two functionalities, UItem1 that reads the status of a specific instance of Member (Member1)

and updates the price of a specific instance of Item (Item1), and UMember2 that reads the price of a

specific instance of Item (Item2) and updates the status of a specific instance of Member (Member2).

At last, Microbenchmark3 (Figure 4.1(c)) targets accessing different attributes of the same entity and is

composed of two functionalities, UItem that reads a member’s status and updates an item’s stock, and

UMember that reads an item’s price and updates a member’s money.

To evaluate MAD’s applicability to real-world scenarios, we gathered several software applications

that can be found on GitHub. The list of applications and their respective description is the following:

• TPC-C 1 is defined in the OLTP-Bench [27] project and simulates the behaviour of a delivery and

warehouse management system;

• jpabook 2 simulates a shop where members can order items and track the delivery process;
1https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/tpcc
2https://github.com/holyeye/jpabook/tree/master/ch12-springdata-shop

47

https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/tpcc
https://github.com/holyeye/jpabook/tree/master/ch12-springdata-shop

UpdateMI
Write

Member.status

Write
Item.price

ResetMI

Write
Item.price

Write
Member.status

UpdateMI_0
Write

Member.status

Write
Item.price

UpdateMI_1

UpdateMI

Member: M1
Item: M2

M1

M2

ResetMI_0
Write

Member.status

Write
Item.price

ResetMI_1

ResetMI

M1

M2

Monolith Microservices

(a) Microbenchmark1 (WW dependencies).

UItem1
Read

Member1.status

Write
Item1.price

UMember2

Write
Member2.status

Read
Item2.price

UItem1_0
Read

Member1.status

Write
Item1.price

UItem1_1

UItem1

Member: M1
Item: M2

M1

M2

UMember2_0
Read

Item2.price

Write
Member2.status

UMember2_1

UMember2

M2

M1

(b) Microbenchmark2 (different instances).

UItem
Read

Member.status

Write
Item.stock

UMember

Write
Member.money

Read
Item.price

UItem_0
Read

Member.status

Write
Item.stock

UItem_1

UItem

Member: M1
Item: M2

M1

M2

UMember_0
Read

Item.price

Write
Member.money

UMember_1

UMember

M2

M1

(c) Microbenchmark3 (different attributes).

Figure 4.1: Microbenchmarks.

48

Table 4.1: MAD and CMMAM microbenchmarks results.

MAD CMMAM
#Anomalies Complexity

Microbenchmark1 3 0
Microbenchmark2 0 4
Microbenchmark3 0 4

• spring-framework-petclinic (petclinic) 3 simulates how a pet clinic operates regarding the inter-

actions between owners, pets, and veterinarians, as well as the visits to the pet clinic;

• myweb 4 is an application that simulates the behaviour of the web allowing users to have roles

and perform operations to interact with resources. The operations are create, read, update, and

delete (CRUD);

• spring-mvc-react (react) 5 is a platform where users can post questions and answers with tags

associated with them. Besides that, the system also allows users to upvote or downvote publica-

tions, which has an impact on the users’ popularity.

For both types of benchmarks, we use MAD considering four as the maximum cycle length. The

process to choose this value consisted of starting with value three since it is the minimum number of

edges required to detect a cycle with an anomaly, and incrementing it until MAD detected a significant

number of anomalies but still within a reasonable period of time. The evaluation was performed in a

virtual machine with 32 CPUs and 128GB of RAM using Ubuntu 18.04.4 LTS, Java 8, and version 4.12.3

of Z3.

4.2 Comparison between MAD and a Heuristic Approach Tool

The comparison between MAD and CMMAM consists of the analysis of the results that can be obtained

when applying each of the tools to the three microbenchmarks. The results can be found in Table 4.1.

First, in Microbenchmark1, the migration leads to anomalies when instances of the UpdateMI and

ResetMI functionalities execute concurrently, since their interleaving results in an inconsistent database

state at the end of the execution. MAD detects three anomalies, whereas CMMAM returns that the given

decomposition leads to no problems. The anomalies MAD detects are the interleaving between different

instances of UpdateMI, and instances of UpdateMI with instances of ResetMI. CMMAM does not alert

this type of situations, since it only accounts for observable states of the application.

Second, in Microbenchmark2, there are no anomalies, because functionalities UItem1 and UMem-

ber2 always access different instances of the entities, Member1 and Item1, and Member2 and Item2,
3https://github.com/spring-petclinic/spring-framework-petclinic
4https://github.com/Jdoing/myweb
5https://github.com/noveogroup-amorgunov/spring-mvc-react

49

https://github.com/spring-petclinic/spring-framework-petclinic
https://github.com/Jdoing/myweb
https://github.com/noveogroup-amorgunov/spring-mvc-react

respectively. Since MAD considers the instances that are being accessed in each operation, it returns

that there are zero anomalies. On the other hand, CMMAM returns that the migration has complexity

four, due to the fact that it only considers the entity that is being accessed and not the instance.

Third, in Microbenchmark3, similar to Microbenchmark2, there are no anomalies. However, in this

case, both functionalities, UItem and UMember, can access the same instances of the entities. The

difference is that the operations are accessing different attributes. Therefore, there are no conflicts

between the values that are read and the values that are written. MAD considers the columns/attributes

accessed and returns zero anomalies, whereas CMMAM, by not considering those aspects, returns

complexity four for this migration.

4.3 MAD Results for Real-World Applications

To evaluate MAD’s applicability to real-world scenarios, our process can be divided into four steps: 1)

gathering five monolithic applications that can be found on GitHub; 2) adapting them to the syntax pro-

cessed by MAD (adjusted some queries and used JDBC instead of JPA considering each controller

method as a transaction); 3) generating two decompositions of each application with the help of a mi-

gration tool [7] that supports programmers on the task of grouping the entities by the microservices; 4)

using MAD on each decomposition. We assume that the monolithic version of each application is cor-

rect and contains no anomalies. Therefore, any anomaly that arises in the microservices versions must

have resulted from the migration. Besides the overall results, we also showcase MAD’s ability to display

the number of anomalies found in each decomposition by anomaly type and set of sub-transactions,

together with the number of occurrences of each sub-transaction in the anomalies. We are only con-

sidering the analysis of the sub-transactions metrics for one decomposition, but it could be done for the

other decompositions as well. At last, we discuss the improvement provided by the search algorithm by

comparing MAD’s performance without and with it when applied to the same decompositions.

4.3.1 Overall Results

As we previously stated, for this part of the evaluation, we use five monolithic applications (mono)

with two decompositions to microservices for each application. The microservices decompositions are:

“best”, which is the decomposition with the highest Silhouette Score (a metric used to assess how well

the clustering of the entities is done) calculated by the migration tool [7]; and full, which is a decompo-

sition where each entity is managed by a different microservice, resulting in the largest functionalities’

division possible in a microservices migration, illustrating the worst case scenario in terms of anomalies.

In Table 4.2, we present the results from applying MAD to each of the decompositions.

By analysing Table 4.2, we can observe several relevant aspects associated with MAD’s analysis of

50

Table 4.2: MAD overall results.

Application #Entities #Functionalities Decomposition #Microservices #Sub-Transactions #Anomalies Execution
Time [s]

mono 1 5 0 13
TPC-C 9 5 “best” 2 6 0 13

full 9 22 98 994
mono 1 10 0 33

jpabook 5 10 “best” 2 15 70 356
full 5 21 79 465

mono 1 14 0 77
petclinic 6 14 “best” 2 14 0 79

full 6 27 0 119
mono 1 20 0 259

myweb 5 20 “best” 2 22 0 265
full 5 32 7 400

mono 1 23 0 571
react 5 23 “best” 2 28 45 1677

full 5 39 58 1951

the decompositions. As expected, the number of anomalies found in the full decompositions is bigger

than in the “best” decompositions since they originate more sub-transactions. By looking at the number

of anomalies found in each application’s decompositions, MAD allows programmers to assess how prob-

lematic each decomposition will be, therefore enabling them to make a more informed decision when

migrating to microservices. For instance, in jpabook and react, even though their “best” decompositions

have the highest Silhouette Scores out of their possible decompositions, they still have anomalies. Note

that in the petclinic application no decomposition led to anomalies. After analysing the application, we

noticed that this occurred because the application’s operations are mostly reads and the functionalities

tend to be short and access few entities.

Although MAD can provide these results with precision, in some cases, it may take a relatively long

period of time to perform its analysis, as can be seen from the results in column “Execution Time [s]”.

This problem is less common in simple applications or when the microservices version of the application

does not originate many sub-transactions. However, in complex applications with a high number of

functionalities and/or sub-transactions, MAD will tend to take a larger amount of time.

Another aspect one can notice is that all the “best” decompositions have two microservices. From

our understanding, this phenomenon may be related to Martin Fowler’s Strangler Fig pattern 6, where

the migration to microservices is done incrementally by extracting a few services at a time, considering

the coupling between entities. The Silhouette Score might indirectly take this into account, resulting in

its value suggesting that from the monolithic implementation, the most appropriate decomposition to mi-

croservices is to migrate to two microservices. Moreover, in most cases, the “best” decompositions lead

to a migration where no anomalies emerge. However, in two applications (jpabook and react), this does

not occur since the “best” decompositions for these cases required the functionalities to be more divided,

therefore generating more sub-transactions and allowing more interleaving between functionalities.

6https://martinfowler.com/bliki/StranglerFigApplication.html

51

https://martinfowler.com/bliki/StranglerFigApplication.html

Table 4.3: MAD anomalies found per type.

Application Decomposition #Dirty #Dirty #Lost #Lost Updates/ #Read #Unclassified #Total
Reads Writes Updates Write Skews Skews

mono 0
TPC-C “best” 0

full 13 27 58 98
mono 0

jpabook “best” 3 6 10 51 70
full 3 7 15 54 79

mono 0
petclinic “best” 0

full 0
mono 0

myweb “best” 0
full 2 4 1 7

mono 0
react “best” 12 33 45

full 12 46 58

4.3.2 Anomalies Found per Type

In Table 4.3, we present the number of anomalies found for each decomposition by type of anomaly.

These results may be helpful to the programmers since they allow them to anticipate unexpected be-

haviours that the application might have after the migration to microservices following a given decom-

position. Another aspect to point out is the relatively high number of anomalies in the column “#Un-

classified”. This happens due to the fact that the types’ counters are not incremented when there is an

execution with two or more anomalies and our patterns only consider the minimum number of operations

to describe each type of anomaly. For example, in a dirty read, it is only required two writes in one func-

tionality but in different sub-transactions and one read in a different functionality, so that it is possible to

have an execution where an intermediate value is read. However, if there is any extra operation in the

execution considered, then that execution will not be identical to the one of our dirty read pattern, and,

therefore, will be considered “Unclassified”.

4.3.3 TPC-C Anomalies Found per Sub-Transactions

To illustrate the anomalies found grouped by sets of sub-transactions and the number of occurrences of

each sub-transaction in the anomalies, we will focus only on one of the decompositions (TPC-C full).

However, we could perform the same analysis for the other decompositions.

In Listing 4.1, we present the number of anomalies found by sets of sub-transactions and the number

of occurrences of each sub-transaction in the anomalies of the TPC-C full decomposition. By analysing

these results, one can notice that two functionalities alone cause most of the anomalies. These func-

tionalities are “payment” and “delivery”, which are responsible for 44 (4+20+20) and 24 (4+4+4+4+4+4)

anomalies, respectively, out of the 98 anomalies found. As expected, the sub-transactions of these

52

functionalities (“payment 0”, “payment 1”, “payment 2”, and “delivery 0”, “delivery 1”, “delivery 2”, “de-

livery 3”) occur in a large number of anomalies. Based on these results, one possible approach to

mitigate this issue is to analyse the entities involved in those functionalities, and either reorder the op-

erations, so that the operations that access the same entity are sequential, or design a decomposition

where the entities managed by each of these functionalities are in the same microservice.

Listing 4.1: Number of TPC-C full anomalies by sub-transactions.

[newOrder 3 , newOrder 7 , orderSta tus 1 , o rderSta tus 2] : 2/98

[de l i ve r y 0 , de l i ve r y 2 , newOrder 4 , newOrder 7] : 8/98

[de l i ve r y 1 , de l i ve r y 2 , newOrder 3 , newOrder 7] : 8/98

[de l i ve r y 0 , de l i ve r y 1 , newOrder 3 , newOrder 4] : 4/98

[newOrder 6 , newOrder 7 , s tockLevel 1 , s tockLeve l 2] : 1/98

[newOrder 2 , newOrder 7 , s tockLevel 0 , s tockLeve l 1] : 1/98

[newOrder 1 , newOrder 2 , payment 0 , payment 1] : 2/98

[payment 0 , payment 1] : 4/98

[payment 1 , payment 2] : 20/98

[payment 0 , payment 2] : 20/98

[de l i ve r y 0 , d e l i v e r y 3] : 4/98

[de l i ve r y 1 , d e l i v e r y 3] : 4/98

[de l i ve r y 0 , d e l i v e r y 2] : 4/98

[de l i ve r y 0 , d e l i v e r y 1] : 4/98

[de l i ve r y 1 , d e l i v e r y 2] : 4/98

[de l i ve r y 2 , d e l i v e r y 3] : 4/98

[newOrder 2 , newOrder 6] : 4/98

d e l i v e r y (d e l i v e r y 0) : 24/98

d e l i v e r y (d e l i v e r y 1) : 24/98

d e l i v e r y (d e l i v e r y 2) : 28/98

d e l i v e r y (d e l i v e r y 3) : 12/98

newOrder (newOrder 1) : 2/98

newOrder (newOrder 2) : 7/98

newOrder (newOrder 3) : 14/98

newOrder (newOrder 4) : 12/98

newOrder (newOrder 6) : 5/98

newOrder (newOrder 7) : 20/98

orderSta tus (o rderSta tus 1) : 2/98

orderSta tus (o rderSta tus 2) : 2/98

payment (payment 0) : 26/98

payment (payment 1) : 26/98

payment (payment 2) : 40/98

stockLeve l (s tockLeve l 0) : 1/98

stockLeve l (s tockLeve l 1) : 2/98

stockLeve l (s tockLeve l 2) : 1/98

53

Table 4.4: MAD performance comparison without (w/o) and with (w/) the search algorithm (SA).

Application Decomposition w/o SA [s] w/ SA [s]
mono 7 13

TPC-C “best” 6 13
full 2767 994

mono 6 33
jpabook “best” 5996 356

full 7133 465
mono 9 77

petclinic “best” 7 79
full 13 119

mono 11 259
myweb “best” 11 265

full 248 400
mono 114 571

react “best” (timeout) 1677
full (timeout) 1951

4.3.4 Performance of the Search Algorithm

To conclude MAD’s evaluation, we address the impact that our divide and conquer search algorithm has

regarding MAD’s performance, as well as its capability to mitigate the existence of applications/decom-

positions that are too complex for MAD to analyse in a reasonable period of time. Table 4.4 presents

MAD’s execution time to analyse each of the decompositions without and with the usage of the search

algorithm that we described in Section 3.2.4.

From the analysis of Table 4.4, we can observe that the divide and conquer search algorithm does

not always provide a performance improvement. However, for long analyses, it can significantly shorten

their analysis time. The reason behind this is that the search algorithm was developed to mitigate the

time and space complexities of MAD for large applications/decompositions, unintentionally neglecting

the performance for simpler cases. This occurs because the search algorithm originates an overhead

to MAD’s analysis by requiring that MAD unnecessarily iterates over combinations with no anomalies.

Without the search algorithm, MAD would not need to do that since if after a search iteration it did not

find any anomalies, it would increment the cycle length considered or end the analysis if it reached

the maximum cycle length assumed. For complex cases, the search algorithm presents a significant

performance improvement since it manages to simplify the SMT formula and mitigate the time and space

complexities by not having to find anomalies while considering all the original transactions at the same

time. Another positive aspect of the search algorithm is that it enables the analysis of complex cases

to be performed under a timeout period (4 hours = 14400 seconds) that we defined as the reasonable

amount of time a programmer would wait for the analysis to be complete. Without the search algorithm,

MAD exceeds the timeout limit when analysing decompositions “best” and full of the react application,

only finding 6 anomalies out of 45 and 6 anomalies out of 58, respectively, during that period of time.

54

Summary

In this chapter, we presented the experimental evaluation of MAD. We started by describing all the

benchmarks we used, microbenchmarks and real-world applications, and the conditions under which

we performed the evaluation. We compared MAD’s analysis capabilities with the ones of a heuristic

approach tool, “A Complexity Metric for Microservices Architectures Migration” which we designated as

CMMAM. We applied MAD to real-world codebases and analysed the obtained results from an overall

perspective, as well as using MAD’s additional metrics. At last, we assessed the impact of our search

algorithm regarding MAD’s performance.

55

56

5
Conclusions and Future Work

57

58

In this thesis, we proposed an approach to automatically detect the anomalies that may appear when

one migrates from a monolith to microservices following a given decomposition. We developed MAD,

a tool that implements the proposed approach. The thesis described MAD’s design and implementa-

tion, which includes several strategies to improve its performance and scalability. We performed an

experimental evaluation of MAD, aiming to compare the results with alternative tools and assess its per-

formance when used with real-world applications. The results highlighted not only how MAD’s analysis

can be more accurate than a heuristic approach, but also that it can be applied to existing applica-

tions, providing insights regarding how one can migrate their monolithic application to a microservices

architecture.

Although we have incorporated in MAD techniques to process realistic use cases with reasonable

performance, MAD still has some limitations. First, even though our search algorithm reduced the time

and space complexities of the analysis, it can still be a problem for more complex cases. Second,

our pattern-matching technique to determine the anomaly type is simple, lacking the notions that would

allow it to assign the anomalies to each type better. Third, MAD only considers one replica of each node,

therefore not being able to reproduce scenarios where there is replication of the nodes, and where the

impact of the consistency model enforced between replicas would also have to be taken into account. At

last, MAD lacks the notion of association between entities when they are in different microservices, such

as JPA relationships, foreign keys, and semantic invariants that the system must respect. For future

work, we consider that addressing these limitations may represent a significant improvement to MAD

since it would allow the tool to be faster, more accurate, and able to target a wider range of scenarios.

59

60

Bibliography

[1] J. Thones, “Microservices,” IEEE Software, vol. 32, no. 1, p. 116, January 2015. [Online]. Available:

https://doi.org/10.1109/MS.2015.11

[2] C. Richardson, Microservices Patterns: With examples in Java, November 2018.

[3] C. Papadimitriou, “The serializability of concurrent database updates,” Journal of the ACM, vol. 26,

no. 4, p. 631–653, October 1979. [Online]. Available: https://doi.org/10.1145/322154.322158

[4] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of the Theory and practice

of software, 14th international conference on Tools and algorithms for the construction and analysis

of systems (TACAS), ser. TACAS’08, Budapest, Hungary, April 2008.

[5] K. Rahmani, K. Nagar, B. Delaware, and S. Jagannathan, “Clotho: Directed test generation

for weakly consistent database systems,” Proceedings of the ACM on Programming Languages,

vol. 3, no. OOPSLA, October 2019. [Online]. Available: https://doi.org/10.1145/3360543

[6] M. Santos, “Microservice decomposition for transactional causal consistent platforms,” Master’s

thesis, Instituto Superior Técnico, Universidade de Lisboa, June 2022.

[7] L. Nunes, N. Santos, and A. Silva, “From a monolith to a microservices architecture: An approach

based on transactional contexts,” in Proceedings of the 13th European Conference on Software

Architecture (ECSA). Paris, France: Springer-Verlag, September 2019, p. 37–52. [Online].

Available: https://doi.org/10.1007/978-3-030-29983-5 3

[8] A. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee, “Mono2micro: A

practical and effective tool for decomposing monolithic java applications to microservices,” in

Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE). Athens, Greece:

Association for Computing Machinery, August 2021, p. 1214–1224. [Online]. Available:

https://doi.org/10.1145/3468264.3473915

61

https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/3360543
https://doi.org/10.1007/978-3-030-29983-5_3
https://doi.org/10.1145/3468264.3473915

[9] M. Brito, J. Cunha, and J. Saraiva, “Identification of microservices from monolithic applications

through topic modelling,” in Proceedings of the 36th Annual ACM Symposium on Applied

Computing, ser. SAC ’21. New York, NY, USA: Association for Computing Machinery, March

2021, p. 1409–1418. [Online]. Available: https://doi.org/10.1145/3412841.3442016

[10] H. Garcia-Molina and K. Salem, “Sagas,” in Proceedings of the 1987 ACM SIGMOD International

Conference on Management of Data. San Francisco (CA), USA: Association for Computing

Machinery, December 1987, p. 249–259. [Online]. Available: https://doi.org/10.1145/38713.38742

[11] Jepsen consistency models. https://jepsen.io/consistency. Accessed: 24/12/2022.

[12] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. Hellerstein, and I. Stoica, “Highly available

transactions: Virtues and limitations,” Proceedings of the VLDB Endowment, vol. 7, no. 3, p.

181–192, November 2013. [Online]. Available: https://doi.org/10.14778/2732232.2732237

[13] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A critique of ansi

sql isolation levels,” in Proceedings of the 1995 ACM SIGMOD International Conference on

Management of Data, ser. SIGMOD ’95. San Jose, California, USA: Association for Computing

Machinery, May 1995, p. 1–10. [Online]. Available: https://doi.org/10.1145/223784.223785

[14] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez, “Transaction chopping: Algorithms and

performance studies,” ACM Transactions on Database Systems, vol. 20, no. 3, p. 325–363,

September 1995. [Online]. Available: https://doi.org/10.1145/211414.211427

[15] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concepts and Design,

5th ed. USA: Addison-Wesley Publishing Company, 2011.

[16] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database

Systems. USA: Addison-Wesley Longman Publishing Co., Inc., 1987.

[17] P. Viotti and M. Vukolić, “Consistency in non-transactional distributed storage systems,” ACM

Computing Surveys, vol. 49, no. 1, June 2016. [Online]. Available: https://doi.org/10.1145/2926965

[18] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications of

the ACM, vol. 21, no. 7, p. 558–565, July 1978. [Online]. Available: https://doi.org/10.1145/359545.

359563

[19] D. Akkoorath, A. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça, and

M. Shapiro, “Cure: Strong semantics meets high availability and low latency,” in Proceedings

of the 36th IEEE International Conference on Distributed Computing Systems, (ICDCS).

Nara, Japan: IEEE Computer Society, June 2016, pp. 405–414. [Online]. Available:

https://doi.org/10.1109/ICDCS.2016.98

62

https://doi.org/10.1145/3412841.3442016
https://doi.org/10.1145/38713.38742
https://jepsen.io/consistency
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/2926965
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/ICDCS.2016.98

[20] N. Santos and A. Silva, “A complexity metric for microservices architecture migration,” in

Proceedings of the 17th IEEE International Conference on Software Architecture (ICSA), Salvador,

Brazil, March 2020. [Online]. Available: https://doi.org/10.1109/ICSA47634.2020.00024

[21] J. Almeida and A. Silva, “Monolith migration complexity tuning through the application

of microservices patterns,” in Proceedings of the 14th European Conference on Software

Architecture (ECSA), L’Aquila, Italy, September 2020. [Online]. Available: https://doi.org/10.1007/

978-3-030-58923-3 3

[22] C. Tan, C. Zhao, S. Mu, and M. Walfish, “Cobra: Making transactional key-value stores verifiably

serializable,” in Proceedings of the 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), Virtual Event, November 2020.

[23] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu, “SAT modulo monotonic theories,” in Proceedings

of the 25th AAAI Conference on Artificial Intelligence (AAAI). Austin (TX), USA: AAAI Press,

January 2015, p. 3702–3709.

[24] R. Biswas, D. Kakwani, J. Vedurada, C. Enea, and A. Lal, “Monkeydb: Effectively testing

correctness under weak isolation levels,” Proceedings of the ACM on Programming Languages,

vol. 5, no. OOPSLA, October 2021. [Online]. Available: https://doi.org/10.1145/3485546

[25] K. Nagar and S. Jagannathan, “Automated detection of serializability violations under weak

consistency,” in Proceedings of the 29th International Conference on Concurrency Theory

(CONCUR), S. Schewe and L. Zhang, Eds., Beijing, China, September 2018. [Online]. Available:

https://doi.org/10.4230/LIPIcs.CONCUR.2018.41

[26] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level definitions,” in Proceedings of the 16th

International Conference on Data Engineering (ICDE). San Diego (CA), USA: IEEE Computer

Society, February 2000.

[27] D. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-bench: An extensible testbed for

benchmarking relational databases,” Proceedings of the VLDB Endowment, vol. 7, no. 4, p.

277–288, December 2013. [Online]. Available: https://doi.org/10.14778/2732240.2732246

63

https://doi.org/10.1109/ICSA47634.2020.00024
https://doi.org/10.1007/978-3-030-58923-3_3
https://doi.org/10.1007/978-3-030-58923-3_3
https://doi.org/10.1145/3485546
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.14778/2732240.2732246

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms
	Glossary

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Results
	1.4 Research History
	1.5 Structure of the Document

	2 Related Work
	2.1 Monolithic and Microservices Architectures
	2.2 Transactions and Transactional Properties
	2.3 Anomalies
	2.4 Concurrency Control
	2.5 Transaction Chopping
	2.6 Distributed Databases
	2.7 Data Replication
	2.8 Transactions in Microservices Architectures
	2.9 Tools
	2.9.1 Heuristics for Anomaly Awareness
	2.9.1.A A Complexity Metric for Microservices Architecture Migration
	2.9.1.B Mono2Micro - From a Monolith to Microservices: MetricsRefinement

	2.9.2 Anomaly Detection using Black Box Approaches
	2.9.2.A Cobra
	2.9.2.B MonkeyDB

	2.9.3 Anomaly Detection using White Box Approaches
	2.9.3.A Automated Detection of Serializability Violations under Weak Consistency
	2.9.3.B CLOTHO
	2.9.3.C Microservice Decomposition for Transactional Causal Consistent Platforms

	2.9.4 Comparison

	3 MAD
	3.1 Overview
	3.2 Architecture
	3.2.1 Input Files
	3.2.2 Sub-transactions and Microservices Notions
	3.2.2.A Sub-transactions Representation
	3.2.2.B Same Original Transaction Edge
	3.2.2.C Microservices Assignment
	3.2.2.D Anomaly Example Graph

	3.2.3 Consistency Models
	3.2.4 Search Algorithm
	3.2.4.A Original Transactions Combinations
	3.2.4.B Original Transactions Assertions Filtering

	3.2.5 Metrics Extractor
	3.2.5.A Number of Anomalies by Type
	3.2.5.B Number of Anomalies by Sub-Transactions

	3.3 CLOTHO Adaptations
	3.3.1 Visibility Adaptation to Microservices
	3.3.2 Correct Version processing for Database Read Values

	3.4 Discussion

	4 Evaluation
	4.1 Experimental Setup
	4.2 Comparison between MAD and a Heuristic Approach Tool
	4.3 MAD Results for Real-World Applications
	4.3.1 Overall Results
	4.3.2 Anomalies Found per Type
	4.3.3 TPC-C Anomalies Found per Sub-Transactions
	4.3.4 Performance of the Search Algorithm

	5 Conclusions and Future Work
	Bibliography

