
AMP: A HIGHLY PARALLEL ATOMIC MULTICASTING DATA

LINK PROTOCOL
�

Paulo Ver��ssimo, Lu��s Rodrigues, M�ario Baptista

Abstract

The present paper deals with the problem of re-
liable group communication for dependable appli-
cations, in the context of the Reliable Broadcast
class of protocols. An atomic multicast protocol
for token passing Lans is presented. The actu-
al implementation is on an 8802/4 Token-bus, al-
though it is applicable to 8802/5 Token-rings and
the FDDI Fibre-Optic network.

Traditional approaches to Byzantine Agree-
ment protocols make no assumptions about the
faulty behaviour of components, being however
very costly in time and tra�c. The simplicity and
e�ciency of reliable broadcast protocols may be
considerably improved, if the system fault model
is restricted or convenient architectures are used.

The principles of using fail-controlled com-
munication components to build e�cient reliable
broadcasting Lan Data Link protocols, discussed
in another paper, are used here to build a reliable
multicast protocol on top of the exposed MAC in-
terface of a VLSI Lan controller. The resulting
MAC provides the user with multicasting primi-
tives, in addition to the standard ones.

The architecture is built on standard Lans, in
view of taking advantage of the availability of com-
munications hardware and of the possibility of co-
existence with standard stations, in the same net-
work. The service o�ered allows restricted group
communication (multicast), which is essential to
give e�cient support for high performance dis-
tributed computing systems.

�A version of this report was published in the Proceed-
ings of the SIGCOM'89 Symposium, Austin (TX), USA,
1989. This work was been supported in part by the EEC,
through ESPRIT Project 1226.

1 Introduction

The present paper deals with the problem of re-
liable group communication for dependable ap-
plications, in the context of the Reliable Broad-
cast class of protocols. An atomic multicast pro-
tocol for token passing Lans is presented. The
actual implementation is on an 8802/4 Token-
bus, although it is applicable to 8802/5 Token-
rings [MCS88]; an FDDI implementation is also
in progress.

Traditional approaches to Byzantine Agree-
ment protocols [Lamport82] make no assumptions
about the faulty behaviour of components. Tak-
ing the whole universe of faults into account avoids
the problem of fault coverage, i.e. the probability
of the system failing di�erently from an assumed
failure mode, which could lead to a catastrophic
failure.

However, since these protocols are very costly
in time and tra�c, it seems reasonable to look for
cheaper solutions, acceptable in all but very high
safety applications.

It has been shown that the simplicity and
e�ciency of reliable broadcast protocols may
be considerably improved, if the system fault
model is restricted [Hadzilacos84, Dolev83,
Schneider84b, Chang84] or if convenient architec-
tures are used [Babaoglu85a].

The principles
of using fail-controlled [Laprie86] communication
components to build e�cient reliable broadcasting
Lan Data Link protocols, are discussed in detail
in [Verissimo87g]. The communication servers ex-
hibit what we call the Fail-Silent property: a kind
of halt-on-failure behaviour, enforced through self-
checking hardware.

1

The architecture is built on standard Lans, in
view of taking advantage of the availability of com-
munications hardware and of the possibility of co-
existence with standard stations, in the same net-
work. The service o�ered allows restricted group
communication (multicast), which is essential to
give e�cient support for high performance dis-
tributed computing systems.

One of the implementation
alternatives [Verissimo87d] consists of embbed-
ing the reliable multicast functionality in the Lan
MAC (Medium Access Control) sublayer, by in-
tervention in its state machines. While requiring
modi�ed MACVLSI, it is by far the most e�cient,
through use of token holding control and low level
synchronization. The machines can be implement-
ed so that an enhanced MAC is obtained, retain-
ing its conformance to the original MAC standard,
plus the additional reliable multicast capability.

This paper addresses an alternative imple-
mentation, which avoids the signi�cant investment
of the �rst approach, while still displaying an in-
teresting performance. It consists of building the
reliable multicast protocol on top of the exposed
MAC interface of a VLSI Lan controller. The par-
ticular implementation is for a Token-bus Lan.

The resulting MAC provides the user with
multicasting primitives, in addition to the stan-
dard ones.

2 Communication System

The communication system is based on the princi-
ple of communication servers (Fig. 1) providing a
reliable multicast communication service, both de-
coupling communications (NAC) from processing
(Host) and presenting an error containment do-
main, due to the Fail-Silent property of the NACs
(Network Attachment Controllers), which restrict-
s their faulty behaviour to stopping and omission
faults.

The Channel must have some provision to
maintain network availability. In the token-bus,
a dual-medium Channel is used. Hardware imple-
mented management procedures and fault treat-
ment operations ensure continued service provi-

Host Host Host

NAC NAC NAC

Figure 1: The communication system

sion and a controlled degree of Channel omissions
(lost frames) [Verissimo88b].

To end with, this architecture allows using
an approach inspired on the centralized two-phase
commit protocol [Gray78], to build a powerful yet
lightweight communication primitive, that we call
Atomic Multicast Protocol (AMp).

3 Atomic Multicasting

The Atomic Multicast Protocol (AMp) present-
ed in this paper provides highly parallel reliable
group communication primitives, which are useful
in a number of applications, such as client/server
or coordinator/cohort interactions, distributed
transactional and database systems, fault-tolerant
mechanisms based on replicated computations.

The facilities of broadcast Lans are used to
improve the performance of the protocol. Name-
ly, location independent multipoint multicasting
is achieved by using MAC logical addressing.

Communication takes place inside groups of
processes, which map onto communication object-
s, called gates [Powell88]. All gates in a multicast
gate group (MGateGroup) are identi�ed by the
same logical address. These groups form restrict-
ed universes of communication objects, and paral-
lelism is achieved, externally by running as many
instantiations of AMp as there are di�erent M-
GateGroups, and internally by letting the group
members transmit competitively.

The AMp provides a service which in short,
ensures that all correct recipients in a group ac-
cept the same messages in the same order, within
a known bounded time [Verissimo87d]. The pro-

2

tocol is resilient to omission and stopping fault-
s during its execution. A bounded omission de-
gree 1 is tolerated, but any number of nodes may
fail. In case of emitter failure, a termination pro-
tocol [Skeen85] is ran by a monitor, to ensure com-
pletion of the transmission in course.

Node failures and group membership changes
are indicated to the gate users, consistently or-
dered relatively to the information messages.

Message acceptance is atomic: it is either
the message emitted, or a "null" message (rejec-
t) if at least one of the recipients is not accessi-
ble [Verissimo87d].

Accessibility is, to the authors' knowledge, a
novel concept in reliable broadcasting. It express-
es the capability of accessing the communication
facilities to accomplish a broadcast transfer. It is
of paramount importance in non-replicated reli-
able broadcast architectures, once it allows mod-
elling certain temporary impairments, or accessi-
bility constraints, such as bu�er over
ow in re-
mote NACs, or network unaccessibility due to to-
ken loss/recovery.

Each component subject to unaccessibility
has an Accessibility Structure, controlled by the
Layer Management Entity (Lme), where the caus-
es (accessibility constraints) and timing (duration,
rate) are de�ned. For example, a Gate (or the
whole NAC) that gives an over
ow response too
often, or for too long, in order that the conditions
of its accessibility structure are violated, will be
considered failed and fault treatment will be per-
formed by the Lme, so that the Gate is closed, or
the NAC is shutdown.

Accessibility, by de�ning what is an accept-
able temporary degradation, establishes the fron-
tier between temporary fault and failure. It thus
provides a formal basis for de�ning timeliness in
otherwise rather unpredictable single-Lan archi-
tectures. In consequence, an upper time bound
to reach agreement can be de�ned. The proto-
col achieves loosely synchronous agreement, as de-
tailed in section 3.3.1.

1(Omission Degree (Od) is the number of consecutive
omission errors that a correct NAC can do. It is bounded
by design (fail-silent assumption), so that a NAC exceeding
it is forced to shut down.

Message delivery order is maintained consis-
tent inside each group, i.e. partial orderings, as
opposed to global ordering, are ensured for the
several MGateGroups in an implicit way, based
on the sequence of message passing in the net-
work: the Receive Queue order. In subsequent
references in the text, order means partial order
inside an MGateGroup (MGG).

3.1 Multicast Groups

Group communication is balanced multipoint, i.e.
any member may transmit to all, and is inclu-
sive, i.e. the sender receiving itself the message
emitted, ful�lling the order property. As shown in
Fig. 2, any group member may initiate a trans-
mission, and for example m2 will arrive every-
where after m1 and before m3, including in sta-
tion 2. Balanced inclusive atomic multicast eas-
es the programming of replicated and cooperat-
ing applications, like for example distributed state
machines [Schneider88, Powell88].

Time

Data Indication

Data IndicationData Indication

Data Request

Emitter Receptors

Data Confirmation

Data(*)

Resps

Accept or Reject(*)

Resps(3)

ReqDecision(*)

Accept

Wait Decision
Timer

Timeout

Tt

Te

Ti
(2)

DISSEMINATION PHASE

DECISION PHASE

(1) Inclusive Multicast

(2) One of the receptors skipped the Accpet Decision

(3) Only For Reject Decision

(*) Repeated at most k+1 times

Figure 2: Protocol timing

The abstract StationIdenti�er (SI), used by
the AMp, is the unique StationPhysicalAddress
or MAC address, which is the frame source ad-
dress. The destination address is the group ad-
dress. A station may belong to any number of
MGateGroups and the number of MGGs in the
Lan is only bounded by implementation limits.

Multicasting is transparent, in the sense that
only one message is sent and there is not a pre-
vious knowledge by the user, of the whereabouts
or number of destinations. However, group priva-
cy is ensured, by making sending or receiving au-
thorization depend on the knowledge of the group
LogicalId, acquired prior to joining the group.

Processes (mapped on gates) join and leave a

3

group at any station, through local gate opening
or closing operations. Due to the nature of the
communication architecture, we avoid the sophis-
tication of truly dynamic join/leaves such as found
in [Cristian86, Schneider84b]. This is namely be-
cause omission faults may occur, and the protocol
is not tightly synchronous, allowing transient dif-
ferences in the local AMp machine states of group
members. Instead, those actions are performed in
a privileged state, which ensures that the group
views in all MGateGroup members are updated
consistently, in relation to the ordered
ow of in-
formation (section 3.4). The operation is done in
a way such that it is perceived as being dynamic
in most situations. [Joseph88] describes a similar
pseudo-dynamic e�ect in his group join/leave pro-
tocols.

3.2 Multicast Communication Entities

This section gives an overview of the entities, re-
lated to multicast communication, which must be
created whenever a gate is opened in a station
(Fig. 3): the Local Emitter Machine (LEM) and
the Local Receiver Machine (LRM)(together they
form the Local Group Communicator (LGC)), the
Local Group Monitor (LGM), the Group View
(GV) and the Group Receive Queue (GRQ).

GROUP A
Station 1 Station 2 Station 3

m1

m2

m3

m4

Figure 3: balanced and Inclusive Multicast with
Loose synchrony

The LEM and the LRM provide detection of
failed group members, in order that the protocol
may terminate with the remaining correct mem-
bers, or be terminated under monitor control, in
case of emitter failure. Information is provided,
to be used by the Local Group Monitor (LGM) in
deferred error recovery and fault treatment proce-
dures.

The Local Group Monitor is the entity that
ensures coherence of the Group Views among the
several group members, executing the procedures
of insertion and removal of group members and
the recovery from error situations. The LGM will
be the subject of section 3.4.

3.2.1 Group View

Error detection is done on a transfer-by-transfer
basis, and relies on consistency of the group view
by each member. The minimum information need-
ed is the ConciseGroupView (CGV), which con-
tains only the number of group members.

The CGV is used by the Local Group Com-
municator or by the Local Group Monitor to de-
tect station failures or undelivered frames (omis-
sion errors): for instance, if an emitter requests
acknowledgement to a frame, it can compare the
number of acks received with the CGV in order to
detect the presence of an error.

However, while the Concise Group View is e-
nough for station failure detection, recovery and
thus maintenance of group views, requires the i-
denti�cation of the failed stations, through an in-
vestigation procedure.

An appealing method to allow fast identi�-
cation of failed stations is the permanent main-
tenance of a complete list of member identi�ers:
we call it ExtendedGroupView (EGV). This ap-
proach, being very e�cient, may also be very ex-
pensive in terms of storage since a station identi�-
er uses six bytes and many MGateGroups, having
several members, may coexist in the same station.
In consequence, a compaction technique must be
used in order to make e�ective use of the Extend-
edGroupView 2.

3.3 The Protocol

The AMp relies on an atomic commitment philos-
ophy [Gray78]. The Two-phase Accept principle
relies on the Fail-Silent property of the attachmen-
t controllers: the halt-on-failure attribute allows

2A description of the actual implementation can be
found in [Verissimo88d]

4

centralizing protocol execution, taking advantage
of the e�ciency of commit protocols compared to
byzantine agreement protocols.

The protocol, sketched in Fig.4, starts with
the emitter sending an information frame, implic-
itly querying the recipients if they can accept it
(DISSEMINATION phase). This phase is imple-
mented with transmission- with-response rounds
(TxwResp), and ends after reception of all expect-
ed responses. In worst case, it may take as many
rounds as the allowed omission degree plus one
(w+1).

Upon analyses of the responses, the emitter
issues its decision, either ACCEPT or REJECT
(DECISION phase). Accept is only issued when
unanimity can be reached. For example, when one
of the NACs is unaccessible, the frame is rejected
(by all). Worst case duration of accept decision is
w+1 rounds.

3.3.1 Termination

In a previous paper [Verissimo87d] where a VLSI
oriented protocol was presented, TxwResp was al-
so used for the Decision phase. This version how-
ever, can use some optimization, to lighten up the
software cost of each transfer.

Using the convenient assumptions, we can
build a robust quasi-synchronous 3 atomic mul-
ticast protocol, optimized for no-fault operation,
using explicit Decision, with acknowledged Reject,
and negatively acknowledged Accept (Fig.4).

3The protocol displays loosely-synchronous termination:
Ti may be non-zero (Fig.5), but worst case Te is known
and bounded. We term quasi-synchronous, a group proto-
col that terminates simultaneously at all sites, with a high
probability (i.e. in absence of faults). The di�erence to
tightly-synchronous protocols is that the notion of lock-step
is not embedded in the communication system, and so glob-
al clock synchronization is not required. Quasi-synchrony
is enforced with a low granularity in single segment Lan-
s (that of the round-trip delay), by timer based during-
transfer synchronization. The di�erence in granularity be-
tween the MAC and user level timings makes the simultane-
ity assumption reasonable. The user processes themselves
may run in lock-steps using this primitive, provided they
synchronize themselves to a global clock, and progress in
worst case Te increments. Quasi-synchronous protocols are
however more e�cient for applications using asynchronous
or bursty invocations, but requiring fast group response.

In absence of faults, the protocol terminates
in two rounds. If faults occur, the execution time
grows accordingly to their number and severity,
up to the worst case �gures. The protocol perfor-
mance is evaluated by the following times:

� Transmission Cycle Time (Tt): The time the
emitter spends sending a frame.

� Execution Time (Te): The time between the
SEND DATA.req primitive and the issue of
the last DATA REC.ind for that frame.

� Inconsistency Time (Ti): The time between
the �rst and the last DATA REC.ind for the
same data frame at any two di�erent receiver-
s.

These times vary for di�erent station failure
and omission error scenarios. A detailed study of
best and worst Tt, Te and Ti times is omitted for
space reasons 4.

3.3.2 Assumptions

We will present below the set of fundamental
assumptions that guarantee safety of operation
of our two-phase-accept protocol implementation,
namely the optimized termination approach.

� ASSUMPTION 1: At any time, at most one
AMp LocalEmitterMachine (LEM) is running
at each node.

A LocalEmitterMachine, once started, exe-
cutes atomically, i.e. it is not preempted by other
emitting actions, for example, from the Active-
Monitor.

� ASSUMPTION 2: Each node runs as many
AMp LocalReceiverMachines (LRM) as the
currently active atomic multicast transmis-
sions it takes part in, managing the state of
the relevant GroupReceiveQueues.

4This study is presented in [Verissimo88d]

5

Assumption 2 is the source of external par-
allelism in AMp: unlike other approaches prov-
ing global order [Chang84, Cristian85], AMp en-
forces partial orderings inside groups of users, like
in [Birman87], and in consequence several par-
allel executions for di�erent groups run simulta-
neously. On the other hand, internal parallelis-
m, meaning "inside the group", is ensured in a
light way: group members just run their LEM-
s competitively, in a fully decentralized fashion.
Several transmissions from di�erent LEMs may
be initiated simultaneously; order and agreement
are achieved by implicit network passing sequenc-
ing and frame numbering, based on Assumption
4 below. This results simpler and more reliable
than other approaches, like the publishing ap-
proach strategy in [Chang84], where requests pass
through a central token holder, or causal order-
ing [Lamport78a, Birman87], envolving signi�can-
t context exchange to enforce logical ordering of
messages.

As a matter of fact, causal broadcasts in the
sense of [Birman87] are virtually ordered with our
method, at no cost. We will use Fig.2 to demon-
strate this fact. By Assumption 1, m1 will always
arrive everywhere before m2. On the other hand,
supposing that delivery of m1 at node 2 would
trigger the send request for m2, they are causally
related (m1 ! m2), so m2 must arrive everywhere
after m1. It is easy to see that by Assumption 4
below, messages are ordered by their passing in the
network. So the only order that may be subverted
in delivery is the order of sending by di�erent n-
odes to the same group, if omissions occur. If m2

is sent as a result of delivery of m1 at some node,
m1 must have been in that node's GroupReceive-
Queue before m2. Thence, the same is true for all
the group receive queues, because the two-phase-
accept protocol ensures that the emitter only pro-
ceeds to an accept decision after all the (remain-
ing) correct recipients have the message in their
queues. Messages m1 and m3 are also causally re-
lated, because they come from the same emitter
(m1 ! m3). As a consequence of Assumption 1
5 , they are delivered everywhere in the order of

5In fact, Assumption 1 is stronger than necessary to
achieve this. It is enough that LEMs run atomically. The
actual phrasing of A.1 re
ects our restrictive approach to
parallelism, discussed in this section.

sending.

Speaking of parallelism, please note that there
is a subtle restriction to it, materialized by As-
sumption 1. As a matter of fact, Assumption 1
implies that if a number of requests to di�erent M-
GateGroups are issued simultaneously (or almost)
at one node, they will e�ectively be sequenced, re-
quest i+1 being served only after request i trans-
mission completion (Fig.6a). This is opposed to
letting one node run several transmissions to d-
i�erent MGateGroups (Fig.6b). The restriction
is only imposed by implementation reasons; as a
matter of fact, if we wish to impose no restric-
tion to the number of groups a node may belong
to, signi�cant context must kept to support ful-
l parallelism, meaning both space and processing
overhead. But conceptually, the protocol funda-
mentals remain unchanged in either approach.

� ASSUMPTION 3: If Decision=Reject, the
emitter positively con�rms that it is received
by all nodes belonging to its GroupView.

Assumption 3 together with Assumption 1, al-
low safe use of an error recovery algorithm detailed
later in the text, which uses no context about
previous transmissions. In consequence, we avoid
maintenance of histories, or lists, etc. like it is
found in other approaches.

� ASSUMPTION 4: Messages are delivered
to a Gate(i) user in the order they are in
GroupReceiveQueue(i).

In absence of faults, Assumption 4 alone
would ensure consistent order of delivery in al-
l recipients. Section 3.3.5 details the procedure
for assisting Assumption 4 to maintain order, in
the presence of omission faults. This order is the
order of sending, only for the frames coming from
the same emitter.

3.3.3 Multicast Frames

This section introduces most of the basic function-
ality of the protocol, while presenting the format
of the frames used. Details about the protocol
mechanisms will be given in the next section.

6

All multicast frames possess the basic struc-
ture:

MFC DATA

MFC is the Multicast Frame Control Field,
containing relevant information for protocol exe-
cution. The data �eld may contain either informa-
tion or control data depending on the frame type.
The structure of the MFC is :

GI SA FT AT MTN SL MDN

Where :

GI the group identi�cation, is a destination ad-
dress. All the stations belonging to the group
will receive the frame.

SA is the station physical address of the emitter
(source address). The emitter must also be-
long to the destination MGG (an exception,
as will be seen in section 4, occurs during the
insertion of new members in the MGG).

FT is the Frame Type �eld. The frame type spec-
i�es the function of the frame and indirectly,
the structure of the frame-s data �eld.

MTN is the Multicast Transmit Number. Each
emitter numbers its outgoing frames with in-
creasing values of MTN. The pair SA/MTN
is then a unique identi�er of a frame and is
called the Multicast Frame Identi�er (MFI).

MDN is the Multicast Data Number and is on-
ly present in frames carrying the Order at-
tribute (see Attribute List). As the MTN,
it always assumes increasing values, however,
retransmissions of the same data frame have
the same MDN. The MDN is used to identi-
fy di�erent retransmissions of a frame so the
pair SA/MDN is called Multicast Data Frame
Identi�er (MDI).

SL is the suspension level and is only present in
frames which carry the Suspension attribute
(see Attribute List and 3.4.3).

AT is an Attribute List. Each attribute speci-
�es a certain action to be performed by the
frame recipient. Attributes may be combined
to produce high level behavior patterns which
make protocol implementation versatile and

evolvable, if compared to �xed type frames,
found in 802.x protocols. For example a frame
may use Acknowledge to implement a trans-
mission with response round, or be combined
with Flush, to inhibit transmission pipelining.

The available attributes are:

Acknowledge (Ack) The
acknowledge attribute, or simply Ack, states
when responses to the frame are expected or
not. If this attribute is used, a number of re-
sponses given by the emitter Concise Group
View will be expected after the frame emis-
sion. Frames that do not carry this attribute
are not acknowledged by their recipients.

SuspendTra�c The SuspendTra�c attribute is
used to stop the group multicast tra�c. This
attribute is always associated with a Suspen-
sion Level. The emitter of the frame with
this attribute is called Active Monitor. After
the reception of a frame with this attribute
the recipient memorizes the identi�cation of
the active monitor and the frame Suspension
Level. No further frames are accepted un-
less emitted by the current Active Monitor,
or having a higher Suspension Level. In the
latter situation, the emitter of the new frame
becomes the new Active Monitor.

Control frames, such as response and deci-
sion frames, are exceptions to the previous
rule and are always accepted regardless of the
suspension state.

Flush The
ush attribute states that the frame
should only be analyzed when it gets to the
head of the GRQ. After its arrival to the re-
ceive queue the frame waits until all the pre-
vious frames are either accepted or rejected.
If the frame also carries the Ack attribute this
implies that the acknowledge is not sent im-
mediately after its reception but only when it
reaches the head of the queue.

WaitDecision This attribute speci�es that the
frame will be followed by a Decision frame,
which will condition its delivery. A Decision
frame is either accept, in which case the frame
is delivered, or reject, implying that the frame

7

be discarded. The recipient triggers a timer
(WaitDecisionTimer), and on its eventual ex-
piry, the occurrence of an omission error is
assumed.

Resume This attribute is used to restart a sus-
pended tra�c. The emitter of the frame sus-
pending the multicast tra�c can send any
number of frames, before resuming the traf-
�c with a frame carrying this attribute. For
instance, the emitter may want to win the ex-
clusive control of group communication, then
send one or more multicast frames, the �rst
of which carries the suspension attribute, and
�nally resuming it with the correspondent de-
cision carrying the resume attribute. This is
a useful feature to privilege tra�c in real-time
communication.

Order This attribute speci�es that the frame
must be ordered relatively to other frames
carrying this attribute. The order is that
of arrival to the GroupReceiveQueue. This
means that a deliverable (accepted) frame
may stay in the queue if a previous frame is
still waiting for a decision.

3.3.4 Multicast Machine

We have already seen that communication is per-
formed inside an MGateGroup(i) in a balanced
way, in that everyone may send to all, including
itself, with consistent order of delivery inside the
group.

Each station creates an instantiation of AMp
for each new locally open gate, whose components
were detailed in section 3.2 (Fig.3). These instan-
tiations run in parallel, sharing the medium, and
the very little synchronization that exists is con-
cerned by enforcing the assumptions made in sec-
tion 3.3.2.

Only one LocalEmitterMachine can be send-
ing at a time. So atomic multicast transfer re-
quests queue at the AMp SAP. As we explained
earlier in the text, we believe that this does not
present a major drawback, being instead a natu-
ral source based
ow control mechanism, fed back
by current network occupation and destinations
processing capability.

A GroupReceiveQueue (GRQ) may have sev-
eral pending frames, though at most one frame
from each group member. This means that all
members of a group may be sending simultane-
ously (internal parallelism) which represents an
e�cient support for replicated client/server and
competitive clients communication.

Note that there are two mechanisms by which
an emitter machine can be activated. The �rst
is the arrival of a send request, at the AMp S-
AP, performed by a service user. The second is
the detection, by a Local ReceiverMachine, of the
failure of an emitter, which activates a prioritary
recovery procedure, at group level.

To ensure that only one LocalEmitterMachine
is active at a time, it is then necessary the presence
of a scheduler which queues all requests, activating
the EmitterMachines sequencialy, giving priority
to the activation of GroupMonitors (Fig.7).

3.3.5 Multicast Transfer

From the last sections, it became evident that at-
tributes of the transmitted frames are combined in
order to obtain the desired protocol response. A
multicast transfer is initiated by the protocol co-
ordinator, the Emitter(E), by sending a multicast
frame, with Ack and WaitDecision attributes, and
if order is desired, with Order attribute.

The Dissemination phase then proceeds as fol-
lows:

After transmission, E will expect a number of
responses indicated by its Group View, with a pre-
de�ned response time (RespT). When all respons-
es arrive or RespT has expired, they are analysed
and if some recipient is not accessible (cannot ac-
cept the frame), a Decision= Reject is propagated.

If all received responses are of "can accept"
type and (only) if all recipients responded, accord-
ing to the sender GroupView, a Decision= Accep-
t is propagated. If there are responses missing,
the data frame is retransmitted. The retransmis-
sion will carry the same MDN of the original da-
ta frame, but a higher MTN. Then, Assumption
4 needs to be complemented, so that the ordered
delivery property is still ful�lled. A distributed al-

8

gorithm is used, to recover from omissions in the
Dissemination phase:

a) A recipient must discard any old data frame
pending in its GroupReceiveQueue which has the
same MDN of a freshly received data frame.

b) Retransmission restarts the protocol, in
terms of response control: the dissemination phase
is ended when either there is a TxwResp round
where all responses are received, or a retry limit
is exceeded. The method respects ordering insid-
e the group, due to Assumption 4, because on-
ly frames which were totally disseminated are re-
tained.

This procedure is called recursively until a
retry limit is reached. If any station does not an-
swer within the retry mechanism it is considered
failed. This allows timely termination: an accept
Decision may be sent if all the remaining station-
s are accessible. After the Decision phase, fault
treatment is done: the Local Group Monitor is
invoked to reestablish group coherence. Stations
considered as failed are removed from the Group
View.

The Decision phase is implemented in the fol-
lowing way:

Reject frames always carry the Ack attribute
(Assumption 3). So, the Emitter ensures that Re-
ject is received by all group members, retransmit-
ting it when omission errors occur. As above, a
station that does not answer within the retry lim-
it, is considered failed.

The Accept frame is sent without attributes,
only once, in the present imqplementation. A
timeout mechanism, at the recipients, covers the
omission faults : after the reception of a multicast
frame carrying theWaitDecision attribute, a timer
is started with a prede�ned WaitDecisionTime.

If no decision is received within this time, the
recipient requests a decision to the emitter (Fig.5).
Note that in case of Reject, an emitter only start-
s a new transmission after assuring that all the
group members received the Reject (Assumption
3). So, when an emitter receives such a decision
request it can answer with an Accept without any
knowledge of the past, or proceed, if it was still
transmitting the frame. The recipients will re-

transmit the decision request, until the retry limit
is exceeded. When that happens, the emitter is
considered failed and the Group Monitor is called
upon, to reestablish group coherence.

The Accept Decision being the most frequent
completion of the protocol, we chose to make it
negatively acknowledged, which optimizes trans-
mission rate, due to the pipelining e�ect, in ab-
sence of faults. However, the detection of omission
faults in a negatively acknowledged transmission
is slower than its positively acknowledged coun-
terpart, since a recipient must wait a worst case
transmission time, before issuing a decision re-
quest frame. However, a performance improving
consequence of Assumptions 1 and 3 is that a re-
cipient may accept a pending frame if it receives a
new frame from the same emitter. This is expect-
ed to avoid the transmission of decision request
frames, in situations of fair to high tra�c, main-
taining the pipelining e�ect. In consequence, e�-
ciency, in the presence of Decision omission faults,
will be kept very near the no-fault situation.

To end with, it is worthwhile mentioning that
with the underlying philosophy of the AMp, of
specifying a transfer by transfer quality of ser-
vice based on attributes, a modi�ed primitive may
readily be created, requesting fully acknowledged
Decision, by sending both Accept and Reject with
the Ack attribute. Conversely, relaxed forms of
the primitive can be readily obtained, by not us-
ing certain attributes, as a tradeo� for better per-
formance.

3.4 Distributed Group Monitor

The Distributed Group Monitor (DGM) is an en-
tity which executes, under a privileged state, crit-
ical activities relevant to correct operation of the
protocol. Namely, it maintains consistency of the
Group View, recovering from station failures. Ad-
ditionally, it runs the termination protocol in case
of emitter failure.

The DGM is composed of several Local Group
Monitors (LGM), executing locally at every group
member, which closely cooperate. Each MGate-
Group possesses is own distributed group moni-
tor, which executes with total independency of the

9

monitors of the other groups. Within the context
of a MGG all the LGM are usually in the Standby
state. When an LMG wants to actively interact
with the other LGMs of the same group it tries
to assume the Active State (see 3.4.2). In a MGG
only one LGM can be, at a given time, in the Ac-
tive State, all the others must be in the Standby
state.

When an LGM is in the active state, it is ex-
ecuting an Active Monitor Action (AMA). Since
during the AMA the coherence of the group view
cannot be ensured, the multicast tra�c is sus-
pended in the group by the DGM, being resumed
at the end of an AMA when the group coherence
is reestablished. If an Active Monitor fails, it is be
replaced by another LGM who transits, after the
detection of the failure, from Standby to Active
state.

The DGMalso controls the group membership
: joins and leaves from the Multicast Gate Group
require activation of the Distributed Group Mon-
itor so that all Group Views change consistently.

3.4.1 Group Monitor Activation

The DGM is activated whenever an incoherence
is detected or when an action which may intro-
duce incoherences in the group view is to be per-
formed. Incoherences are detected by the Local
Group Communicator, (for ex., a station failure
). Opening and closing of gates, which may intro-
duce temporary incoherences in the Group View,
are requested by the Layer Management.

The active monitor procedures to open and
close gates will be explained in detail in section 4.
The active monitor actions which are executed in
order to recover from failures will be detailed in
the following paragraphs.

Note that if the failure is detected by the Local
Emitter Machine, the monitor is activated imme-
diately after the detection of the failure. However,
if the failure is detected by a Local Receive Ma-
chine, the activation of the group monitor may be
delayed since other Local Emitter Machine may be
active at the time, as explained in section 3.3.4.

3.4.2 Active Monitor Election

The need for the DGM intervention can be detect-
ed simultaneously at two or more group members
so it is expected that several Local Group Moni-
tors (LGM) will compete for the activity. To en-
sure that only one monitor will become active, the
�rst frame sent by a candidate carries the Suspen-
sion attribute. The �rst active monitor will then
suspend the multicast tra�c on the MGateGroup.
Other LGMs will �nd the tra�c suspended and
will return to the Standby State.

However, this simple solution must be en-
hanced to avoid deadlock and contention. Dead-
lock occurs when an Active Monitor fails, leaving
the tra�c suspended. Contention can occur in the
presence of an omission fault during the competi-
tion for the activity if two di�erent monitors lock
di�erent subsets of the recipients.

These two problems are solved with a mecha-
nism based on the association of an integer value,
the Suspension Level, to the suspension attribute.
When a receiver is suspended it stores the Suspen-
sion Level associated with the suspending frame,
this value is the Current Suspension Level. If an-
other frame, with the Suspension Attribute, is re-
ceived during the suspended state, this frame is
rejected unless it carries a suspension level high-
er than the current, in which case its emitter will
become the new Active Monitor (and the current
suspension level is actualized). With this mech-
anism, a faulty Active Monitor cannot suspend
inde�nitlly the tra�c since it can be preempted
by a correct monitor.

To solve the deadlock problem a timer is s-
tarted when the tra�c is suspended. Whenever
the Active Monitor sends a new frame the timer is
restarted. If the AM remains silent for a long time,
the timer will expire and the failure of the AM
is assumed. The Standby Monitor who �rst de-
tects the failure becomes active incrementing the
Suspension Level. The contention problem is al-
so easily bypassed, when one monitor detects the
presence of a contention (receiving some respons-
es reporting the tra�c suspension and others ac-
knowledging its frame) it retransmits the frame
incrementing the SL. In both situations, the new
frame with a higher suspension level than the cur-

10

rent SL will be accepted by all the suspended re-
cipients establishing a new Group Monitor.

3.4.3 Active Monitor and Failed Stations

Whenever a station fails, the DGM is called to
reestablish the group coherence. The LGM which
wins the activity must, if needed, �nish the trans-
mission interrupted by the failure and disseminate
a new group view. In order to accomplish this ob-
jective the monitor must execute two rounds.

These rounds include the identi�cation of
failed stations, to search for the presence of pend-
ing frames from the failed emitters, the decision to
accept or reject those frames and �nally dissemi-
nate the new group view.

The decision process for the frames pending
from failed emitters is the most di�cult step of all
monitor actions. The Active Monitor must ensure
that the pending transmissions are �nished cor-
rectly. This means that the AM must investigate
if the frame had been accepted by any member of
the MGG and, if so, all the other members must
also accept the frame. If none of the MGG mem-
bers had accepted the frame, it can be rejected.
This information can be only collected if the re-
cipients keep some knowledge of the past trans-
missions since many other accepts/ rejects can be
received (from other emitters) prior to the detec-
tion of the failure.

Each station keeps a table with the MDNs of
the last frames accepted, one for each emitter in
the LAN. The active monitor reads the contents
of the MDNs List (called StationMdnTable), on
all group members, collecting information about
the entries corresponding to the failed station. Af-
ter this information is received, the active monitor
chooses the highest value and disseminates it dur-
ing the next phase.

The value of the highest MDN collected in
the previous phase is disseminated trough all the
MGG members. These search for the presence
of a frame in the receive queue emitted by one of
the failed stations listed in the Exception Decision
Frame. If such frame exists its MDN (rxMdn) is
compared with the received MDN (decisionMdn)
and a decision is taken using the following func-

tion:

Exception decision : if (decisionMdn � rxMd-
n) then Accept else Reject.

The �rst round covers the identi�cation of the
failed stations, the search for pending frames and,
�nally, the investigation of the group StationMd-
nTables. The investigation frame carries the i-
denti�cation of the failed stations. The responses
will carry a list of triplets containing the id of the
failed station, the content of the GroupMdnTable
for that station and a bit stating if there is any
pending frame in the receive queue sent by that
station.

After this a second round is performed in-
cluding the dissemination of the decision for the
pending frames and the dissemination of the group
view. The active monitor sends a frame where
the new group view is disseminated and if needed,
a list of exception decisions is included. An ex-
ception decision is simply a pair stationId/ Mdn
where the Mdn is the highest Mdn received in the
�rst round. The recipients will use this value to
�nish the pending transmissions.

The �rst frame sent always carries the sus-
pend attribute and the remaining round is on-
ly performed if the monitor wins the activity.
The last frame carries the resume attribute. If
more stations fail during this procedure it must
be restarted increasing the number of frames be-
tween the tra�c suspension and resumption.

4 Joining And Leaving The

Group

The gate pdus are frames sent to change the group
membership, inserting or removing a station from
the MGG. These frames called respectively Open-
Gate and CloseGate are sent by request of the
Layer management entity.

Since these two frames change the Group
View they interfere with the other transmissions
on course the tra�c is
ushed and suspended pri-
or the processing of the gate pdus. This ensures
that no frame is a�ected by the gate pdus.

Note that the Flush of the multicast tra�c is

11

only possible in the absence of failures. If an emit-
ter fails, the decision will never be sent and the
frame rests in the receive queue until an exception
decision is sent by an Active Monitor. Due to this
fact, if a recipient detects a failure while the tra�c
is being
ushed it informs the sender of the
ush-
ing frame, who must solve the incoherence. This
means that the recovering phases described in the
previous chapter can be performed by a monitor
who became active to perform a gate pdu transfer.

The CloseGate action is very simple. A frame
with the identi�cation of the station to be removed
is sent with the Flush and Suspend attributes. If
the tra�c is not already suspended by another
group member, the end of the current transmis-
sions is waited before an Accept frame, resuming
the tra�c is sent. When the Accept frame is re-
ceived all the group members change their group
views and restart the multicast tra�c.

The OpenGate action needs a extra step since
the station who desires to enter the MGG must,
prior to the emission of the gate pdu, obtain a
view of the group. The OpenGate is then started
with an GetView investigation which is sent with
the Suspend and Flush attributes as above. This
ensures the correctness of the View obtained.

If no response is received to the GetView in-
vestigation, the frame is retransmitted. If the si-
lence persists after the maximum number of re-
tries, the new station assumes to be the �rst mem-
ber of the MGG and initializes the group view.

Note that the local group receive machine is
activated at the reception of the own GetView
frame. This means that if another GetView frame
is emitted during the OpenGate procedure, it will
be rejected by the new suspended receive queue,
and the late station will give up. This assures that
only one station can initialize the group, even if
more than one station start the open procedure at
the same time.

If the GetView investigation obtains response
it is followed by the pdu which is retransmitted
if needed. When the pdu is acknowledged by all
the group members an Accept is sent, changing
the Group View, inserting the new station in the
MGG and the tra�c is resumed 6.

6The cost of these actions is presented in [Verissimo88d]

5 Conclusions

We have presented a protocol which provides
atomic multicasting at the Data Link layer. The
interest of this low level approach, from an archi-
tectural point of view, is that it takes advantage
from the inherent facilities of the underlying Lans,
from which we name broadcast capability, multi-
cast addressing, token-based access control, prior-
ity scheduling, low-level synchronization.

Either by using a software shell on top
of the exposed interface of VLSI controllers,
or/and hardware implementations [Verissimo87d,
MCS88], one of our aims was e�ciency at the low
cost of a non-replicated Lan.

The present software implementation has
been thoroughly veri�ed, and performance tests
are now being run. The protocol was optimized
for the no-fault situation, i.e. by using negative-
ly acknowledged accept and implicit accept. The
implementation tried to restrict as little as possi-
ble the high parallelism achievable with the inde-
pendent AMp(GateGroup) instantiation concept.
The protocol is easily evolvable: this versatility is
given, among other factors, by the attribute based
quality of service and GroupView type choices at
service invocation time.

The communication primitive provided was
proven to be of great help in assisting the imple-
mentation of distributed computations. A report
soon to be issued describes the programming of
the Amaze game [Berglund84] as a replicated s-
tate machine [Schneider88]. The state machine
uses directly the AMp, with no further "glue", for
its interactions. In the Delta-4 system [Powell88],
AMp is used as the low-level primitive in an OSI-
like stack, which has fault-tolerance mechanisms
based on replication and voting, implemented at
the Session layer. The resulting communication
architecture provides support for a state-machine
based computation system.

Acknowledgements

� The authors wish to thank Jos�e Alves Mar-
ques for his suggestions throughout the elab-
oration of this work. Jerome Hammel (Bull)

12

contributed the compaction technique for s-
toring Extended Group Views, which allowed
us to currently use EGVs, at a very low space
cost.

References

[Babaoglu85a] O.Babaoglu,
R.Drummond, Streets of Byzan-
tium: Network Architectures for
fast Reliable Broadcasts, IEEE
Transactions on Software Engi-
neeering, nr 6, June 1985

[Berglund84] E.J.Berglund,
D.Cheriton, Amaze: A Distributed
Multi-Player Game Program using
the Distributed V Kernel

[Birman87] K.Birman, T.Joseph, Reliable
Communication in the Presence of
Failures, ACM Tran. on Comput-
er Systems, Vol. 5, nr 1, February
1987

[Chang84] J.Chang, N.Maxemchuk, Reliable
Broadcast Protocols, ACM Trans-
actions on Computing Systems,
Vol12, nr 3, August 1984

[Cheriton85a] D.Cherinton, W.Zwaenepoel, Dis-
tributed Process Groups in the V-
Kernel, ACM tran. on Computer
Systems, V.3, nr 2, May 1985

[Cristian85] F.Cristian, H.Aghili,
R.Strong, D.Dolev, Atomic Broad-
cast: From Simple message d-
i�usion to Byzantine Agreement,
procs. FTCS15, Ann Arbor-USA,
June 1985

[Cristian86] F.Cristian, H.Aghili, R.Strong,
Clock Synchronization in the P-
resence of Omission and Perfor-
mance Faults, and Processor Join-
s, proc. FTCS16, Viena-Austria,
July 1986

[Dolev83] D.Dolev, R.Strong, Authenticated
Algorithms for Byzantine Agree-

ment, SIAM J. on Comput. 12,
November 83

[Gray78] J.Gray, Notes On Database Oper-
ating Systems, in Lectures Notes
in Cumputer Science, Springer
Verlac, 1978

[Hadzilacos84] V.Hadzilacos, Issues of Fault-
Tolerance in Concurrent Compu-
tations, Ph. D. Thesis - TR11-84,
Harvard Univ., June 84

[Joseph88] T.Joseph, k.Birman, Reli-
able Broadcast Protocols, Artic88,
An Advanced Course on Operant-
ing Systems, Tr�omso, Norway, Ju-
ly 1988

[Lamport78a] L.Lamport, Time, Clocks, and the
Ordering of Events in a Distribut-
ed System, Comm. of the ACM,
Vol. 21, nr 7, July 1978

[Lamport82] L.Lamport, R.Shostak, M.Pease,
The Byzantine Generals Problem,
ACM Transactions on Prog. Lang.
and Systems, Vol. 4, nr. 3, July
1982

[Laprie86] J.C.Laprie, Dependability: A Uni-
fying Concept for Reliable Com-
puting and Fault-Tolerance,
LAAS-France, TR 86357, Decem-
ber 1986

[MCS88] , MCS Functional Speci�cations
- Token Ring Access Method and
Physical Layer, DELTA-4 Tech.
Rep, BULL, August 1988

[Powell88] D.Powell, D.Seaton, G.Bonn,
P.Ver��ssimo, F.Waeselynk, The
Delta-4 Approach to Dependabili-
ty in Open Distributed Computing
Systems, Delta4 Proj., procs. of
18th FTCS, June88, Tokyo-Japan

[Schneider84b] F.Schneider, D.Gries,
R.Schlichting,
Fault-Tolerant Broadcasts, North-
Holland, science Computing Pro-
gramming 4, 1984

13

[Schneider88] F.Schneider, The State machine
Approach: A Tutorial, Springer
Verlac, Proc of workshop on Fault-
Tolerant Distributed Computing,
New York USA, 1988 (to appear)

[Skeen85] D.Skeen, Dtermining the Last
Process to Fail, ACM Trans. on
Computer Systems, V.3, nr 1,
February 1985

[Verissimo87d] P.Ver��ssimo,
L.Rodrigues, J.Marques, Atom-
ic Multicast Extensions for 802.4
Token-Bus, proc. FOC/LAN 87
Conference, Anaheim-USA, Octo-
ber 1987

[Verissimo87g] P.Ver��ssimo, J.Marques, Reliable
Broadcast on Standard Lans, IN-
ESC Tech. Report, Nov. 1987, rev.
Sep. 1988

[Verissimo88b] P.Ver��ssimo, Redundant Media
Mechanisms for Dependable Com-
munication in Token-Bus Lans,
proc. 13th Local Computer Net-
work Confer., Minneapolis-USA,
October88

[Verissimo88d] P.Ver��ssimo,
L.Rodrigues, M.Baptista, Atom-
ic Multicast Communication on a
Token-Bus Lan, INESC Tech. Re-
port, Sept. 1988

14

