
Fault-Tolerant Broadcasts in CAN

Jos�e Ru�no Paulo Ver��ssimo Guilherme Arroz
ruf@digitais.ist.utl.pt pjv@di.fc.ul.pt pcegsa@alfa.ist.utl.pt

IST-UTL� FC/ULy IST-UTL

Carlos Almeida Lu��s Rodrigues
cra@digitais.ist.utl.pt ler@di.fc.ul.pt

IST-UTL FC/UL

Abstract

Fault-tolerant distributed systems based on �eld-buses may take
advantage from reliable and atomic broadcast. There is a current
belief that CAN native mechanisms provide atomic broadcast. In this
paper, we dismiss this misconception, explaining how network errors
may lead to: inconsistent message delivery; generation of message
duplicates. These errors may occur when faults hit the last two bits
of the end of frame delimiter. Although rare, its inuence cannot be
ignored, for highly fault-tolerant systems. Finally, we give a protocol
suite that handles the problem e�ectively.

1 Introduction

Fault-tolerant distributed systems are nowadays a mature technology, used in
a variety of applications and settings, from information repositories to com-
puter control. The latter �eld is an extremely challenging one, since it must
normally combine distribution and fault-tolerance with real-time, and given

�
Instituto Superior T�ecnico - Universidade T�ecnica de Lisboa, Avenida Rovisco Pais - 1096 Lisboa Codex - Portugal.

Tel: +351-1-8418397 - Fax: +351-1-8417499. NavIST Group CAN WWW Page - http://pandora.ist.utl.pt/CAN.
y
Faculdade de Ciências da Universidade de Lisboa, Portugal. Navigators Home Page:

http://www.navigators.di.fc.ul.pt.

1

the decentralized nature of many of its problems, it is a natural application
for distributed systems. Furthermore, distributed computer control systems
have increasingly been based on �eld-bus networks. While there is a reason-
able body of research on LAN-based distributed fault-tolerant systems, we
have not seen a great deal of such systems based on standard �eld-buses,
such as Pro�bus, FIP or CAN.

One reason may be because the e�cient implementation of distributed
fault-tolerance techniques relies on well-known paradigms like state machines
and replication management protocols, and these are hard to implement in
the simple �eld-bus environment. Given the multi-participant nature of the
interactions between replicated entities, the system may bene�t to a great
extent from the availability of reliable communication services, such as those
provided by group communication, membership and failure detection. In
fact, these services may be extremely relevant for the design of distributed
computer control systems, based on �eld-buses: not only do they give replicas
a uniform treatment, but they easily handle constructs speci�cally intended
for real-world interfacing, such as functional groups of sensors and/or actu-
ators.

However, the migration of fault-tolerant communication systems to the
realm of �eld-buses presents non-negligible problems, that we address in this
paper, in the context of CAN, the Controller Area Network. CAN is a multi-
master �eld-bus that has assumed increasing importance and widespread
acceptance in control application areas as diverse as shop-oor or automotive.

Perhaps inuenced by a certain lack of accuracy in the standard CAN
documentation, there have been published works that assume CAN supports
a (totally ordered) atomic broadcast service [12, 13]. The coverage of this as-
sumption is only acceptable under modest requirements on system reliability,
and would lead to the implementation of fault-tolerant systems that would
function incorrectly, with unpredictable consequences for the controlled sys-
tems.

In this paper, we start by dismissing that misconception, explaining how
network errors may lead to: inconsistent data frame transfers; generation of
data frame duplicates. Given their probability of occurrence, that we also
estimate, the inuence of those errors cannot be ignored, for fault-tolerant
systems and applications.

Secondly, since the need remains for fault-tolerant group communication
on �eld-buses, we address the problem in a comprehensive way, reasoning

2

about the reliability of CAN communications and their weaknesses, inte-
grating CAN own properties into a systemic model and showing how a fault-
tolerant broadcast primitive can be e�ciently supported by a simple software
layer built on top of an exposed CAN controller interface.

The following discussion assumes the reader to be fairly familiar with
CAN operation. In any case, we forward the reader to the relevant standard
documents [7, 15], for details about the CAN protocol.

2 Controller Area Network

The Controller Area Network (CAN) is a bus with a multi-master architec-
ture [7, 15]. The transmission medium is usually a twisted pair cable and
the network maximum length depends on the data rate. Typical values are:
40m @ 1 Mbps; 1000m @ 50 kbps. Bus signaling takes one out of two values:
recessive, otherwise the state of an idle bus, occurs when all competing nodes
send recessive bits; dominant, which only needs to be sent by one node to
stand on the bus. This behavior comes from the wired-and nature of the
CAN physical layer.

only exists in CAN 2.0B

1bit 11bit 1bit 1bit 18bit 1bit 1bit 1bit 4bit 15bit 1bit1bit 1bit 7bit

(d) (r) (r) (d) (d) (r) (r) (r...r)

0-64bit...
SOF IDESRR DLCRTR rv1 rv0Base

Identifier
CRC

Sequence
ACK
SlotDel

CRC ACK
Del EOFIdentifier

Extension Data Field...
does not exist in
remote framesControl

Field Arbitration Field
CRC Field ACKField

 rvX - reserved
DLC - Data Length Code

(r) - recessive (d) - dominant

 Del - Delimiter

SOF - Start of Frame
SRR - Substitute Remote Request
IDE - Identifier Extension Indicator

(d) -data frame (r) -remote frame
RTR - Remote Transmission Request

ACK Slot - Acknowledgment Slot
- set to (r) by the sender;
- changed to (d) by recipients in
 the absence of stuff/CRC errors.

CRC - Cyclic Redundancy Code

EOF - End Of Frame

Bit-Stuffing and CRC Coverage End of Frame Sequence

Figure 1: CAN frame structure

Frame identi�ers are unique, and this feature, together with the wired-
and behavior, is exploited to resolve conicts in the access to the shared bus,
whose access policy is carrier sense multi-access with deterministic collision
resolution (CSMA/DCR) scheme: several nodes may jump on the bus at the
same time, but while transmitting the frame identi�er each node monitors
the bus; for every bit, if the transmitted bit is recessive and a dominant value
is monitored, the node gives up transmitting and starts to receive incoming
data; the node transmitting the frame with the lowest identi�er goes through
and gets the bus. Automatic scheduling of a frame for retransmission is
provided after a loss in an arbitration process.

3

The terminology we will use is explained below. A message is a user-level
piece of information. A frame is a piece of encapsulated information that
travels on the network. It may contain a message: in CAN, a data frame
is used for that purpose. However, it may consist of control information
only, such as a remote frame, which may be used in CAN to request the
transmission of a data frame from one or more remote nodes. We will use
remote frames in support of our protocols, as will be explained in Section 4.

Some details about CAN operation: the same identi�er is used for data
and remote frames, the distinction being made through the remote trans-
mission request (RTR) bit (Figure 1); no data �eld is included in a remote
frame; several nodes may simultaneously transmit the same remote frame1.
Finally, we assume the utilization of the CAN 2.0B extended format: the
identi�er extension (Figure 1) is used to carry protocol control information,
leaving the data �eld free to hold pure data.

2.1 Impairments to dependability

Let us now discuss the impairments of the CAN protocol [7, 15] with regard
the provision of highly-dependable communication services. Those include
shortcomings in fault-con�nement and error detection/signaling mechanisms.
CAN has a comprehensive set of such mechanisms, that make it very resilient.
Due to lack of space, we do not discuss all of them, but the interested reader
is referred to [7, 15, 2, 20] for details. Most failures are handled consistently
by all nodes.

However, we have identi�ed failure scenarios that can lead to undesir-
able symptoms such as inconsistent omission failures and duplicate message
reception. These scenarios occur when faults hit the last two bits of the
seven-bit end of frame delimiter (see Figure 1). However infrequent it may
be, we also show ahead that the probability of occurrence of this scenario is
high enough to be taken into account, at least for highly fault-tolerant ap-
plications of CAN. In fact, a naive atomic multicast protocol based on CAN
properties alone, would fail under such a scenario. So, in this section we start
by discussing the fault con�nement mechanisms, then we discuss inconsistent
failures, and �nally equate the probability of such failures occurring.

1Provided that the DLC �eld (Figure 1) is equal for all nodes. Otherwise, an un-
resolvable collision would prevail. The CAN speci�cation allows any value within the
admissible range [0; 8], to be used in the DLC �eld of remote frames.

4

Fault con�nement aims at restricting the inuence of defective nodes in
bus operation. It is based on two di�erent counters recording, at each node,
transmit and receive errors, that is, omission errors causing frames not to be
received at their destinations. A fully-integrated node is in the error-active
state, the normal operating condition, where it is able to transmit/receive
frames and fully participates in error detection/signaling actions. In the
presence of errors, the error counters are updated, according to rules [7, 15]
that make faulty nodes experience, with a very high probability, the highest
error counter increase. When any error counter exceeds 127, the node enters
an error-passive state where it is still able to transmit and receive frames,
but after transmitting a data or remote frame is obliged to an extra eight-bit
wait period, before it is allowed to start a new transmission. Furthermore, an
error-passive node can only signal errors while transmitting. After behaving
well again for a certain time, a node is allowed to re-assume the error-active
status.

The erratic behavior of error-passive nodes represents a source of incon-
sistency that cannot go uncontrolled. A possible solution is that prior to a
node reaching the error-passive state, it will have given a pre-speci�ed num-
ber of omission errors, after which it will be shut-down, by forcing it to enter
what is called the bus-o� state. Most of existing CAN controllers (e.g. [6])
are able to issue a warning signal, to be used for that purpose, if any error
counter exceeds a given threshold [15]. A node in the bus-o� state does not
participate in any bus activity, being unable to send or receive frames.

In consequence, the �rst problem, concerning the control of omission fail-
ures, is easily solvable, but the failure assumptions must be quanti�ed and
the protocols must take those assumptions into account (see Section 3 ahead).
In absence of failures other than consistent omissions and node failures, the
CAN protocol would assure what is called atomic multicast: a totally or-
dered message delivery either to all nodes or to none. For example, amongst
the several error recovery mechanisms, the sender automatically submits the
same message for retransmission, upon the occurrence of an error. Unfortu-
nately, inconsistency scenarios may occur, that we discuss next.

If the sender detects no error up to the last bit of the end of frame
delimiter, it considers that transmission as successful and no retransmission
is due. However, should a subset of recipients2, tagged � set in Figure 2-

2This subset may have only one element.

5

A

no error (error flag seen as overload condition)

setRecipients - r r d
set obliged to accept (despite format violation)

overload flag

Sender r r r

setRecipients -
EOF
r r r

set obliged to accept

setRecipients - r d
set rejects the frame

error flag

setRecipients -
EOF
r r d

sender detects the error-schedules retransmission

Sender r r
r->d transition

error flag

B

set receives a frame duplicate

if successful retransmission
all nodes receive the frame

SOF

overload flag

setRecipients -
EOF
r r d

set obliged to accept

Sender r r
r->d transition

sender detects the error-schedules retransmission

error flag

setRecipients - r d
set rejects the frame

error flag C

sender fails before retransmission

set has the frame

set has not the frame

overload flag

Figure 2: Inconsistency in CAN error handling

A, detect an incorrect dominant value in the last bit of the end of frame
delimiter3, the protocol speci�es that they must accept the frame in order to
preserve consistency with the complementary set of recipients, tagged � set
in Figure 2-A, where a correct recessive value was detected.

This opens room for inconsistent frame omissions, that occur in the fol-
lowing case: a disturbance corrupts the last but one bit of the end of frame
delimiter in the � set of recipients (Figure 2-B); signaling of the error begins
at the bit following the corrupted one; no node in the � set accepts the frame.
The sender also detects an error and schedules the frame for retransmission,
after having performed its own error signaling actions. On the other hand, as
explained in the previous paragraph, the recipients in the � set must accept
the frame because the error is only signaled in the last bit of the end of frame
delimiter.

At this point, we have a problem: an exact duplicate of the message will
be accepted by the recipients in the � set of Figure 2-B, once retransmission
is accomplished. This happens because the CAN protocol automatic message
retransmission does not modify any frame �eld.

The problem gets worse if the sender fails after the �rst transmission
and before the retransmission. This last scenario is depicted in Figure 2-C,
which shows that inconsistent message omissions take place, a�ecting only

3Examples of causes for inconsistent detection are: electromagnetic interference or
de�cient receiver circuitry.

6

the � set.

2.2 Probability of inconsistent errors

In order to establish the importance of inconsistent error scenarios we have
evaluated the probability of their occurrence. Other types of errors are not
addressed: consistent errors are correctly processed by the CAN controllers;
the residual probability of errors undetected by built-in CAN error-detection
is negligible[2].

Inconsistent frame omissions

pifo = (1� ber)Tdata�2 : ber

Node crash failures

pfail = 1� exp��:�t

IMD - Inconsistent Message Duplicates

pifo : (1� pfail)

IMO - Inconsistent Message Omissions

pifo : pfail

Table 1: Probabilities of inconsistent errors

The results of our evaluation are summarized in Table 1. The CAN in-
consistent error probabilities are established as a function of a fundamental
communication channel parameter - the bit error rate (ber). The model fur-
ther considers an exponential distribution for node crashes (� is the failure
rate) and those events are regarded as independent from frame omissions.
The probability of having an error in a particular bit of a frame obeys a geo-
metric distribution, because the sender stops transmitting after the signaling
of the �rst error. In addition, it is assumed that the probability for the same
bit error being perceived simultaneously by all the nodes in the system is
much lower than having it perceived only by a subset of the nodes. Thus, in
this slightly simpli�ed model the probability of inconsistent frame omissions
only accounts for a temporal distribution of errors, occuring in the last but
one bit of a frame with an overall length of Tdata bits. Given a �t period,

7

corresponding to the interval between the end of a transmission and the end
of the last retransmission, if the sender crashes within �t after the �rst er-
ror, with probability (1�exp��:�t), an inconsistent message omission (IMO)
occurs. Otherwise, the sender retransmits the message, but this recovery
action generates inconsistent message duplicates (IMD).

Bit Error Node failures IMD/hour IMO/hour

Rate (ber) per hour (�) �t = 5ms

10�4 10�3 2:84 � 103 3:94 � 10�6

10�4 2:84 � 103 3:94 � 10�7

10�5 10�3 2:86 � 102 3:98 � 10�7

10�4 2:86 � 102 3:98 � 10�8

10�6 10�3 2:87 � 101 3:98 � 10�8

10�4 2:87 � 101 3:98 � 10�9

Table 2: CAN inconsistent errors per hour

To �nalize, we estimate the error probabilities in failures per hour, for
several scenarios, in the reference period of one hour, for a 32 node CAN
�eld-bus at 1 Mbps. A network overall load of 90% and an average frame
length of Tdata = 110 bits are assumed. Bit error rates are presented both for
benign and aggressive environments, such as noisy industries and automotive.
Node crash failure rates are compliant with the values in [19, 9]. A latency of
5 ms is used as �t, a time interval roughly corresponding to the time required
for the transmission of one frame from each node in the network. The results
from this evaluation, presented in Table 2, should be compared with the
reference value of 10�9 incidents per hour, the well-known safety number
from the aerospace industry [14], which is today also a goal for automotive
applications [8]. The number of inconsistency incidents per hour goes down
proportionally with a decrement in the network data rate, overall o�ered load
or number of nodes.

8

3 System Model

In this section, we explain our fault assumptions, and discuss the CAN prop-
erties that underpins our system model.

Assumptions

We enumerate our assumptions for the system, formalizing the discussion
made in Section 2.1. The model addresses a set of communicating processes
sitting on a message passing subsystem implemented by CAN. Each process
is attached to the network through a CAN controller. Together, they form a
node. We assume that the processes are fail-silent and blame all temporary
failures on the CAN network components. However, when a process crashes,
the whole node crashes. In consequence, we may refer to process and node
interchangeably.

We introduce the following de�nition: a component is weak-fail-silent if
it behaves correctly or crashes if it does more than a given number of omission
failures in an interval of reference, called the component's omission degree.
This assumption can be enforced by the error con�nement mechanisms dis-
cussed in Section 2.1, and is important to parameterize our protocols.

The CAN bus is a single-channel broadcast local network with the fol-
lowing failure semantics for the network components (anything between two
processes, including network adapters and medium):

� individual components are weak-fail-silent with omission degree fo;

� failure bursts never a�ect more than fo transmissions in an interval of
reference 4;

� omission failures may be inconsistent (i.e., not observed by all recipi-
ents);

� there is no permanent failure of shared network components (e.g. medium
partition).

4For instance the duration of a broadcast round. Note that this assumption is concerned
with the total number of failures of possibly di�erent components.

9

CAN MAC-level properties

We can look at CAN as having a basic medium access control (MAC) sub-
layer, that behaves basically like a LAN MAC sub-layer| as do most other
�eld-buses| and as such, exhibits the same kind of properties that have been
identi�ed in previous works on LANs. See for example [18] for a description
of abstract properties of a LAN. Figure 3 enumerates the set of MAC-level
CAN properties relevant for this paper. MCAN4 maps the failure semantics
introduced earlier onto the operational assumptions of CAN, being k � fo.

MCAN1 - Broadcast: correct nodes re-
ceiving an uncorrupted frame transmission,
receive the same frame.

MCAN2 - Error Detection: correct
nodes detect any corruption done by the net-
work in a locally received frame.

MCAN3 - Network Order: any two
frames received at any two correct nodes, are
received in the same order at both nodes.

MCAN4 - Bounded Omission Degree:
in a known time interval Trd, omission fail-
ures may occur in at most k transmissions.

Figure 3: CAN MAC-level properties

CAN LLC-level properties

However, CAN has error-recovery mechanisms on top of this basic function-
ality, that yield interesting message properties. Again, this has the avor
of the logical link control (LLC) sub-layer in LANs. Such properties have
substantiated the claim that CAN exhibits atomic broadcast capability. Let
us start by analyzing the de�nition of such a broadcast, in order that we may

10

understand why this is not so under all circumstances. We use an adaptation
of the de�nition of atomic broadcast used by several authors [4, 16]:

AB1 - Validity: if a correct node broadcasts a message, then the message is
eventually delivered to a correct node.

AB2 - Agreement: if a message is delivered to a correct node, then the
message is eventually delivered to all correct nodes.

AB3 - At-most-once Delivery: any message delivered to a correct node is
delivered at most once.

AB4 - Non-triviality: any message delivered to a correct node was broad-
cast by a node.

AB5 - Total Order: any two messages delivered to any two correct nodes,
are delivered in the same order to both nodes.

However, the failure modes that we have identi�ed cause the message-level
properties of CAN to be somewhat di�erent. Namely, while the omission
failures speci�ed by MCAN4 are masked in general at the LLC level by the
retry mechanism of CAN, the existence of inconsistent omissions as discussed
in Section 2.1 postulates two things:

� that there may be message duplicates when they are recovered;

� that some j of the k omissions will show at the LLC interface as incon-
sistent omissions.

Figure 4 enumerates the LLC-level properties of CAN. LCAN6 speci�es
the probability of inconsistent omission failures j, where j is normally several
orders of magnitude smaller than k (cf.x2.1). The other �ve properties ex-
plain why CAN does not ensure atomic broadcast alone. LCAN1 and LCAN4
are in conformity with the AB speci�cation. However, LCAN2 is conditioned
to the sender not failing, and LCAN3 postulates that a message can be de-
livered in duplicate. LCAN5 is not even ensured. This clearly violates the
atomic broadcast speci�cation. In fact, it does not even guarantee reliable
broadcast, since a reliable broadcast speci�cation is equivalent to properties
AB1 to AB4.

11

LCAN1 - Validity: if a correct node
broadcasts a message, then the message is
eventually delivered to a correct node.

LCAN2 - Best-e�ort Agreement: if a
message is delivered to a correct node, then
the message is eventually delivered to all cor-
rect nodes, if the sender remains correct.

LCAN3 - At-least-once Delivery: any
message delivered to a correct node is deliv-
ered at least once.

LCAN4 - Non-triviality: any message
delivered to a correct node was broadcast by
a node.

LCAN5 - Total Order: not ensured.

LCAN6 - Bounded Inconsistent Omis-

sion Degree: in a known time interval Trd,
inconsistent omission failures may occur in at
most j transmissions.

Figure 4: Basic CAN LLC-level properties

In consequence, the objective of the paper is to devise a set of mechanisms
to be inserted between the exposed interface provided by the CAN layer and
the user processes, in order to transform the LCAN properties provided by
the former, into the AB properties expected by the latter. This will be
addressed in the next section.

4 Fault-Tolerant Broadcasts in CAN

We now present a set of fault-tolerant broadcast protocols that make use of
the unique CAN properties. We depart from an eager di�usion-based pro-

12

tocol, called EDCAN. This protocol exploits the properties of CAN remote
frames to optimize the di�usion of messages with an empty data �eld. Useful
for the dissemination of control information, EDCAN is less e�cient in dis-
seminating messages with a non-empty data �eld. So, we have improved the
basic protocol to provide an unordered reliable broadcast primitive, called
RELCAN, and a totally ordered primitive, called TOTCAN. The protocol
suite, which is illustrated in Figure 5, executes on top of the CAN layer.
Each protocol provides a request primitive (used to invoke the protocol), a
con�rm primitive (used to inform the sender of protocol local completion),
and an indication primitive (used to deliver the message to the upper layer).

(atomic) (reliable,eager) (reliable,lazy)

Upper Layers

TOTCAN EDCAN RELCAN

CAN Layer

Primitive Protocol
Type EDCAN RELCAN TOTCAN

Request edcan.req relcan.req totcan.req

Con�rm edcan.cnf relcan.cnf totcan.cnf

Indication edcan.ind relcan.ind totcan.ind

Figure 5: CAN fault-tolerant broadcast protocol suite

None of the protocols is based on the exchange of acknowledgments [10,
16]: such an approach is not an interesting solution in CAN, because it
consumes too much bandwidth (a scarce resource in CAN) and makes no use
of the built-in error detection properties.

4.1 CAN layer

The CAN layer is made from a CAN controller (e.g. [6]) and the correspond-
ing software driver, that includes primitives for: request the transmission
(.req) of data or control messages5, supporting arbitration of requests by ur-

5Control messages are encapsulated in remote frames.

13

gency level on both local and global basis; con�rm to the user a successful
message transmission (.cnf), guaranteeing that property LCAN1 is secured;
indication of a message arrival (.ind). The semantics of each particular prim-
itive is summarized in Figure 6. Most of the attributes are de�ned in the
standard document [7] and have an appropriate support from the CAN con-
troller. However, a few exceptions exist: i) local arbitration by urgency level
may require speci�c management actions [6]; ii) reception of own transmis-
sions is not assured in all controllers [6], so low-level engineering may be
required; iii) the local execution environment must process frame arrivals
with a latency low enough to guarantee that no receive bu�er overrun inci-
dents will ever occur6.

.req .cnf .ind .req .cnf .ind

can-abortcan-data can-rtr

.req

CAN controller

CAN Layer

CAN Communication Channel

Primitives Semantics summary

Data Remote

can-data.req Only a node is allowed to
transmit, at a time.

can-rtr.req Several nodes may simul-
taneously transmit the
same remote frame.

can-data.cnf can-rtr.cnf Signals the successful
transmission of a frame.

can-data.ind can-rtr.ind Signals the arrival of
a frame, including own
transmissions.

can-abort.req Aborts a frame trans-
mission request. Has
e�ect only on pending
requests.

Figure 6: CAN layer structure and interface

The protocols above the CAN layer use the message format illustrated in
Figure 7. The �elds relevant for protocol operation include: a type reference,
the sender identi�er and a sequence number. The type reference merges
urgency class and control data information. The remaining �elds only matter

6This kind of omission failures have not been included in our model.

14

Sequence number (sn)

1bit 8bit 6bit 6bit 2bit 6bit

 Sender
identifier

 Source
identifier

Scheduling
Information

Control
 data

(cdata)

mid<type<u, cdata>, sid, sn>
Protocol Control Information

(sid)
Urgency Class (u)

- high
- low

Base CRC ACKCRC ACKIdentifier

CAN 2.0B frame format

SOF IDESRR DLCRTR rv1 rv0Identifier Sequence SlotDel Del EOF
Extension Data Field

Figure 7: Information in CAN frame identi�ers

to communication channel access arbitration. In data frames, the source
identi�er references the node actually sending the frame; in remote (control)
frames it is identical to the sender identi�er. The scheduling information
speci�es message urgency, given tra�c patterns, latency classes and overall
o�ered load [17, 21].

4.2 Message di�usion

The �rst protocol that we discuss is a di�usion-based protocol [3, 1] with
some optimizations to save channel bandwidth. In this protocol, the recip-
ients are responsible for retransmitting the message. Retransmissions are
issued as soon as the original message is received; thus we have called this
protocol \Eager Di�usion", or simply EDCAN. If enough nodes retransmit
the message, one of these nodes will be a non-faulty sender and CAN prop-
erties will ensure the reliability of message delivery. The protocol is sketched
in Figure 8. The protocol is invoked by the upper layer providing two param-
eters: a unique message identi�er and an optional data �eld. As discussed
in Section 4.1, the control information in the message identi�er includes a
message type, source identi�er, and sequence number.

The protocol works as follows. The sender requests the transmission
of the message to the CAN layer. For messages with data �eld the can-data

primitive is used. For messages with an empty data �eld, remote frames (can-
rtr) are used. If the sender does not fail the original message is delivered. To
tolerate the failure of the original sender, recipients deliver the �rst copy of
the message and eagerly retransmit it.

For messages with a data �eld, retransmissions ow on the channel one
at a time. This may be too costly in terms of network load. The bounded
inconsistent omission degree property (LCAN6) is exploited to optimize net-
work bandwidth consumption: as soon as a node receives (j + 1) copies of

15

Eager Di�usion-based Protocol (EDCAN)

Initialization
i01 ndup(mid) := 0; // number of duplicates, kept for each message

Sender
s10 when edcan.req(midhtype,p,ni, mess) invoked at p do

s11 if mess = NULL then

s12 can-rtr.req(mid);
s13 else

s14 can-data.req(mid, mess);
s15 od;
s16 when can-rtr.cnf(mid)
s17 or can-data.cnf(mid, mess) con�rmed do

s18 deliver edcan.cnf (mid,mess);
s19 od;

Recipient

r00 when can-data.ind(mid, mess) received at q

r01 or can-rtr.ind(mid, mess=NULL) received at q do

r02 ndup(mid) := ndup(mid) + 1;
r03 if ndup(mid)= 1 then // new message
r04 edcan.ind (mid, mess);
r05 if mess = NULL then

r06 can-rtr.req(mid); // clustered
r07 else

r08 can-data.req(mid, mess);
r09 �;
r10 elif ndup(mid) > j then
r11 can-abort.req(mid);
r12 �;
r13 od;

Figure 8: Eager di�usion-based protocol

the same message it tries to abort the corresponding send request. However:
only pending requests can be aborted (cf.x 4.1); protocol execution delays
may prevent a non-negligible number of requests to be timely aborted. As
a result, a number of transmissions greater than (j + 1) should be expected.
Although we do not advocate the straight utilization of EDCAN to broad-
cast messages with a data �eld, it may be useful to other protocols. For
example, ahead we will use EDCAN for error recovering upon sender failure,
in a reliable broadcast protocol.

A more e�cient optimization of network bandwidth utilization can be im-
plemented when EDCAN is requested to broadcast a message with no data

16

�eld. It exploits an interesting property exhibited by remote frames: if two
or more nodes transmit simultaneously identical remote frames, these trans-
missions can be \clustered" in a single physical frame, due to the wired-and
nature of the physical layer. For the same reason, all recipients receive the
original message at approximately the same time. However, slight variations
on the corresponding processing delays prevent the di�erent retransmission
requests to be issued \exactly" at the same time.

Node 2

Node n

Node 1
Sending <m1>

Forwarding <m1>

simultaneous transmissions

(sub-optimum clustering)

Forwarding <m1>

Sending <m1>

Sending <m2>

Forwarding <m1>

(perfect clustering)

simultaneous transmissions

Node k

Figure 9: CAN remote frame clustering

In a lightly loaded network, one may expect the fastest node to start
remote frame retransmission in advance, as shown in Figure 9. However,
for acceptably short processing delay variances, other nodes will \cluster"
their remote frame retransmissions, in a bounded number of physical chan-
nel packets7. Conversely, for a heavy loaded network it is reasonable to
expect pending transmissions to have started in the meantime. The delays
in network access, introduced by these transmissions, balance processing de-
lays variance and thus it is reasonable to expect all retransmissions following
the original dissemination of a remote frame to be clustered in a single phys-
ical layer transmission. In any case, for a network with a moderate number
of nodes, this allows signi�cant savings in network bandwidth. The upper
layer should use remote frame features as much as possible, relying on control
frames that do not require a data �eld. We will later present an (unordered)
reliable protocol and an atomic broadcast protocol that use this approach.

7For example, in a system with a processing delay variance lower than 64�s (the du-
ration of a 2.0B remote frame at 1 Mbps), these remaining transmissions will cluster in a
single frame.

17

4.3 Lazy message di�usion

Despite the optimization we have introduced, the "Eager Di�usion" ap-
proach is not cost-e�ective for broadcast of data messages due its high band-
width consumption. We now present a protocol that exploits CAN validity
(LCAN1) and best-e�ort agreement (LCAN2) properties. The protocol, illus-
trated in Figure 10, was called RELCAN as it provides an unordered reliable
broadcast service for data messages. Message retransmission by the protocol
is only due in the event of sender failure.

The protocol works as follows. The sender assigns a unique identi�er
to the data message based on the node unique identi�er and on a local
sequence number. The control information is carried within the message
identi�er (type is set to R-DATA). Then, the sender calls an auxiliary \send-
an-con�rm" function, that initiates a two-phase protocol.

In the �rst phase, send-and-con�rm requests message transmission and
awaits the corresponding con�rmation from the CAN controller. When this
con�rmation is obtained, the sender is sure that the message has been re-
ceived by all correct recipients and initiates the second phase, disseminating
a CONFIRM message. The reception of the CONFIRM message indicates to
all recipients that the associated data message has been received and that no
retransmission is required. Recipients deliver the �rst copy of the message
and prepare themselves to retransmit the message. However, and in oppo-
sition to the eager protocol, retransmissions are not initiated immediately.
Instead, recipients wait �rst for the CONFIRM message. Only in the case
the CONFIRM message is not received, receivers retransmit the message by
invoking the EDCAN protocol.

In the best case, the RELCAN protocol sends once the data message
and once the CONFIRM control message. In the event of sender failure,
the performance of RELCAN approaches the one observed in the EDCAN
protocol. At this stage, we have succeeded in making properties LCAN2 and
LCAN3 equivalent to properties AB2 and AB3.

4.4 Totally ordered protocol

The previous protocol makes no e�ort to enforce a total order on message
delivery. In this section we propose a new protocol, called TOTCAN, that
uses the CAN network order property (MCAN3) to provide a totally ordered

18

reliable broadcast service. The basic idea of the protocol is to have the
messages delivered in the same order by which the encapsulating frames cross
the communication channel. If due to omissions, the same message is forced
to cross the channel more than once, only the order of the last retransmission
(the successful one) is considered (previous duplicates are discarded).

The protocol is illustrated in Figure 11. As RELCAN, the protocol is
also a two-phase protocol. In the �rst phase, called the dissemination phase,
the sender tags the data message with its identi�cation and a sequence num-
ber. As before, control information is carried in the identi�er �eld (type is
set to T-DATA). Then, the sender broadcasts the message using the bare
CAN interface. When the message is received, instead of being immediately
delivered to the application, it is held in a receive queue marked as UN-
STABLE. In the presence of inconsistent omissions, the same message can
be received more than once. To preserve network order, an UNSTABLE
message is moved to the tail of the queue each time a message duplicate is
received. The data message is never retransmitted by the recipients; should
the sender fail before the message becomes stable, it is simply discarded by
all recipients.

The second phase is initiated as soon as the sender receives, from the
local CAN controller, a con�rmation of success in the broadcast of the data
message. At this point, the sender can be sure that all correct recipients have
received the message. To make this information available to all recipients, the
sender transmits an ACCEPT message. Because the ACCEPT message must
be reliably broadcast to all recipients, the EDCAN protocol is used. Since
the control �eld is able to hold all the information required, the ACCEPT
message has no data �eld. When the ACCEPT is received, the associated
message is marked as STABLE and can be delivered as soon as it reaches
the head of the queue. The use of EDCAN in the second phase ensures that
all recipients receive ACCEPT (or none does). In the case of sender failure
before it is able to issue the ACCEPT to at least one correct destination,
deadlock is prevented by timeout. This approach is possible due to the
synchronous nature of the system.

In the best-case, TOTCAN requires the transmission of the data message
plus the bandwidth corresponding to a pair of remote frames, required by
the EDCAN protocol, in the reliable broadcast of the ACCEPT message. At
this point, we also have secured property LCAN5 (equivalent to AB5), �nally
reaching our original goal of ensuring that CAN satis�es atomic broadcast.

19

4.5 Bounded sequence numbers

For sake of clarity, we describe the protocols using unbounded sequence num-
bers. The synchronous properties of the system allows to bound the sequence
numbers: just two bits in the CAN message identi�er are required to ensure
correct protocol operation.

Due to space limitations CAN timeliness and synchronism properties were
not included in the system model of Section 3. All these aspects will be
addressed in a future paper.

5 Related Work

A number of authors have studied the problem of implementing fault-tolerant
broadcasts. Some authors consider an asynchronous communication model,
where no known bound is explicitly placed on message transaction delays
[10]. In our system, the existence of bounded and known message trans-
mission delays is assumed, as in other synchronous communication models
[1, 3, 16]. Matching the application area of distributed control, a synchronous
communication protocol is described in [9] that integrates a comprehensive
set of services relevant for the implementation of fault-tolerant systems (e.g.
group communication, membership and clock synchronization).

The use of group communications is not very common, in the so-called
�eld-bus arena where most standards rely on OSI-like point-to-point com-
munications. One of the few exceptions is the Controller Area Network
[7, 15]. A set of CAN high layer protocols (SDS [5], J1939, OSEK [11])
specify the use of group communications, but lack to provide a clear de�ni-
tion of the corresponding system fault-model. An accurate de�nition of the
system fault-model is essential to evaluate whether or not CAN weakness
with regard fault-tolerant broadcast have been taken into account. Perhaps
mislead by some lack of accuracy in CAN standards, some researchers ne-
glect those aspects and claim that CAN supports (totally ordered) atomic
broadcasts [12, 13].

20

6 Conclusions

There is a growing importance of fault-tolerant distributed systems based
on �eld-buses. Given the utility of reliable and atomic broadcast for im-
plementing applications on those systems, we studied the reliability of these
protocols as provided by CAN native mechanisms. We discovered that under
infrequent but plausible fault scenarios, CAN provides neither reliable nor
atomic broadcast. Fault-tolerant systems using those primitives would func-
tion incorrectly, with unpredictable consequences for the controlled systems.
In consequence, we formalized the properties actually secured by CAN, and
we gave a suite of protocols that complement CAN's functionality in order
to achieve reliable and atomic broadcast. As future work, we plan on doing
a thorough study of the performance of our protocols.

References

[1] O. Babao~glu and R. Drummond. Streets of Byzantium: Network Archi-
tectures for Fast Reliable Broadcasts. IEEE Transactions on Software
Engineering, SE-11(6), June 1985.

[2] J. Charzinski. Performance of the error detection mechanisms in CAN.
In Proceedings of the 1st International CAN Conference, pages 1.20{
1.29, Mainz, Germany, September 1994. CiA.

[3] F. Cristian. Synchronous atomic broadcast for redundant broadcast
channels. Technical report, IBM Almaden Research Center, San Jose,
California, USA, 1990.

[4] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related prob-
lems. In S.J. Mullender, editor, Distributed Systems, ACM-Press, chap-
ter 5, pages 97{145. Addison-Wesley, 2nd edition, 1993.

[5] Honeywell Inc - MICRO SWITCH Division, Freeport, IL, USA. Smart
Distributed System - Application Layer Protocol (version 2.0), November
1996.

[6] Intel. 82527 - Serial Communications CAN Protocol Controller, Decem-
ber 1995.

21

[7] ISO. ISO International Standard 11898 - Road vehicles - Interchange
of digital information - Controller Area Network (CAN) for high-speed
communication, November 1993.

[8] H. Kopetz. Automotive electronics - present state and future prospects.
In Digest of Papers of the 25th International Symposium on Fault-
Tolerant Computing Systems - Special Issue, pages 66{75, Pasadena,
California-USA, June 1995. IEEE.

[9] H. Kopetz and G. Grunsteidl. TTP - a protocol for fault-tolerant real-
time systems. IEEE Computer, 27(1):14{23, January 1994.

[10] P.M. Melliar-Smith and L.E. Moser. Fault-Tolerant Distributed Systems
Based on Broadcast Communication. In Proceedings of the 9th Inter-
nacional Conference on Distributed Computing systems, pages 129{133.
IEEE, June 1989.

[11] OSEK/VDX Working Group. OSEK/VDX Communications - Open
Systems and the corresponding interfaces for automotive electronics
(version 2.0A), October 1997.

[12] M. Peraldi and J. Decotignie. Combining real-time features of local area
networks FIP and CAN. In Proceedings of the 2nd International CAN
Conference, pages 8.11{8.21, London, England, October 1995. CiA.

[13] S. Poledna. Fault tolerance in safety critical automotive applications:
Cost of agreement as a limiting factor. In Digest of Papers of the 25th
International Symposium on Fault-Tolerant Computing Systems, pages
73{82, Pasadena, California-USA, June 1995. IEEE.

[14] D. Powell. Failure mode assumptions and assumption coverage. In
Digest of Papers, The 22nd International Symposium on Fault-Tolerant
Computing Systems, pages 386{395, Boston, Massachusetts-USA, July
1992. IEEE.

[15] Robert Bosch GmbH. CAN Speci�cation Version 2.0, September 1991.

[16] L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-primitive Group Com-
munications Service. In Proceedings of the 11th Symposium on Reli-
able Distributed Systems, pages 112{121, Houston, Texas, October 1992.
IEEE.

22

[17] K. Tindell and A. Burns. Guaranteeing message latencies on Controler
Area Network. In Proceedings of the 1st International CAN Conference,
pages 1.2{1.11, Mainz, Germany, September 1994. CiA.

[18] P. Ver��ssimo. Real-time Communication. In S.J. Mullender, editor,
Distributed Systems, ACM-Press, chapter 17, pages 447{490. Addison-
Wesley, 2nd edition, 1993.

[19] P. Ver��ssimo and H. Kopetz. Design of distributed real-time systems.
In S.J. Mullender, editor, Distributed Systems, ACM-Press, chapter 19,
pages 511{530. Addison-Wesley, 2nd edition, 1993.

[20] P. Ver��ssimo, J. Ru�no, and L. Ming. How hard is hard real-time com-
munication on �eld-buses? In Digest of Papers, The 27th International
Symposium on Fault-Tolerant Computing Systems, Washington - USA,
June 1997. IEEE.

[21] K. Zuberi and K. Shin. Non-preemptive scheduling of messages on Con-
troller Area Networks for real-time control applications. In Proceed-
ings of the IEEE Real-Time Technology and Application Symposium,
Chicago, Illinois-USA, May 1995. IEEE.

23

Lazy Di�usion-based Protocol (RELCAN)

i01 rel sn := 0; // local sequence number
i02 ndup(mid) := 0; // number of duplicates, kept for each message
i03 data(mid) := NULL; // data part of the message

send-and-con�rm (auxiliary function)

a01 when send-and-con�rm(midhR-DATA,s,ni, mess) invoked at p do

a02 can-data.req(midhR-DATA,s,ni, mess);
a03 od;
a04 when can-data.cnf(midhR-DATA,s,ni, mess) received do

a05 can-rtr.req (midhCONFIRM,s,ni);
a06 od;

Sender
s01 when relcan.req(mess) invoked at p do

s02 rel sn := rel sn + 1;
s03 send-and-con�rm (midhR-DATA,p,rel sni, mess);
s04 relcan.cnf (mess);
s05 od;

Recipient

r00 when can-data.ind(midhR-DATA,p,ni, mess) received at q do

r01 ndup(mid) := ndup(mid) + 1;
r02 data(mid) := mess;
r03 start alarm (mid);
r04 if ndup(mid)= 1 then // new message
r05 relcan.ind (mess);
r06 �;
r07 od;
r08 when can-rtr.ind(midhCONFIRM,s,ni) received at q do

r09 data(mid) := NULL;
r10 cancel alarm(mid);
r11 od;
r12 when alarm(mid) expires at q do

r13 edcan.req (mid, data(mid));
r14 od;
r15 when edcan.ind(midhR-DATA,p,ni, mess) received at q do

r16 ndup(mid) := ndup(mid) + 1;
r17 if ndup(mid)= 1 then // new message
r18 relcan.ind (mess);
r19 �;
r20 od;

Figure 10: Reliable broadcast protocol

24

Totally Ordered Protocol (TOTCAN)

i00 tot sn := 0; // local sequence number
i01 tot queue := empty // queue of received messages
i02 // enqueue(tot queue,mid,mess)

inserts the message at the end of the queue as UNSTABLE
i03 // mess := dequeue(tot queue, mid)

removes a message from the queue
i04 // stable(tot queue,mid) marks a message as STABLE

deliver-in-order(tot queue) // auxiliary function

a00 deliver-in-order(tot queue) do
a01 while message mid at the head of tot queue is STABLE do

a02 mess = dequeue (mid);
a03 totcan.ind (mess);
a04 od;
a05 od;

Sender
s10 when totcan.req(mess) invoked at p do

s11 tot sn := tot sn +1;
s12 can-data.req(midh T-DATA, p, tot sn i, mess);
s13 od;
s14 when can-data.req(midh T-DATA, p, tot sn i, mess) con�rmed do

s15 edcan.req(midhACCEPT, p, tot sn i, NULL);
s16 od;
s16 when edcan.conf(midhACCEPT, p, tot sn i, NULL) received do

s17 totcan.cnf(mess);
s18 od;

Recipient

r00 when can-data.ind(midhT-DATA,p,tot sn i,mess) received at q do

r01 // preserve network order
r01 dequeue(tot queue, mid);
r02 enqueue(tot queue, mid, mess);
r03 start alarm (mid);
r04 od;
r05 when edcan.ind (midh ACCEPT, p, tot sni, NULL) received do

r06 stable(tot queue, mid);
r07 deliver-in-order (tot queue);
r08 od;
r09 when alarm (mid) expires do
r10 dequeue(tot queue, mid); // discard the message
r11 deliver-in-order (tot queue);
r12 od;

Figure 11: Totally ordered protocol

25

