
, , 1{48 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

CesiumSpray : a Precise and Accurate Global

Clock Service for Large-scale Systems

PAULO VER��SSIMO, LU��S RODRIGUES, ANT�ONIO CASIMIRO paulov@inesc.pt

Technical Univ. of Lisboa - IST/INESC, Instituto de Engenharia de Sistemas e Computadores.

R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal, Tel.+351-1-3100000. *
Navigators Group, WWW{ http://pandora.inesc.pt/

Abstract. In large-scale systems, such as Internet-based distributed systems, classical clock-
synchronization solutions become impractical or poorly performing, due to the number of nodes
and/or the distance. We present a global time service for world-wide systems, based on an inno-
vative clock synchronization scheme, dubbed CesiumSpray . The service exhibits high precision
and accuracy; it is virtually inde�nitely scaleable; and it is fault-tolerant. It is deterministic for
real-time machinery in the local area, which makes it particularly well-suited for, though not lim-
ited to, large-scale real-time systems.
The clock synchronization scheme is a pseudo-hierarchical mix of external and internal synchro-
nization. The root of the hierarchy are the GPS satellites, which \spray" their reference time
over a set of nodes provided with GPS receivers, one per local network, where the second level of
the hierarchy performs internal synchronization, further \spraying" the external time inside the
local network. The algorithm of the second level is inspired on the high precision a posteriori
agreement synchronization algorithm, modi�ed to follow an external clock, and able to use simple
group communication and membership facilities.

1. Introduction

A global timebase is a requirement of growing importance in distributed systems, to
allow decentralized agreement on the time to trigger actions, or on the time at which
events occurred. It is also a very useful block for building fault-tolerant distributed
algorithms. The common solution for the global timebase problem lies on using the
processor hardware clock to create a virtual clock at each node, which is locally read.
All virtual clocks are internally synchronized by a clock synchronization algorithm.
Surveys of existing clock synchronization algorithms can be found in [26], [21]. In
large-scale systems, e.g. Internet-based distributed systems, such a cooperative
solution becomes impractical or poorly performing, due to the number of nodes,
and the distance among them. Hierarchical or master-based algorithms[4], [17], [18]
are preferred solutions, since they attenuate this problem.

Another facet of interactive applications running on large-scale systems is the
need for coordination in terms of absolute time references, such as TAI or UTC1.
This also requires external synchronization. The service of [17] allows nodes on
the Internet to synchronize their clocks from master nodes possessing access to an
absolute time reference. The achievable quality of the global time reference in these
cases is limited by variations in communication delays between master and other

2

nodes, or by inaccessibility of these masters, due to partitions. Using a probabilistic
approach[4] one can trade determinism for precision.

A large-scale distributed real-time system can reasonably be modeled by a WAN-
of-LANs. It is more di�cult to enforce hard properties with regard to real-time in
the WAN part[32], but the local network part can be made to have such a stricter
behavior[31].

We take advantage of this observation to present a global time service for large-
scale (world-wide) systems, based on an innovative clock synchronization scheme,
that we called CesiumSpray . The service exhibits high precision and accuracy, is
virtually inde�nitely scalable, and is deterministic for real-time machinery in the
local networks.

The underlying clock synchronization scheme is a mix of external and internal
synchronization, which can be seen as pseudo-hierarchical, as depicted in �gure 1.
As the �gure suggests, the root of the hierarchy is the source of absolute time,
the set of cesium TAI clocks in the NavStar GPS[19] (Global Positioning System)
satellites, which \spray" their unique reference time over a set of nodes provided
with GPS receivers (GPS-nodes). This forms the �rst level of the hierarchy, where
the nodes' clocks are set via external synchronization, and thus maintained highly
accurate and precise.

The second level of the hierarchy works in internal synchronization. It is formed
by every local network of the system, with the condition that each be provided with
at least one GPS-node2. Thus, in this level, internal synchronization is performed
in a way such that the external time resident in the GPS-node is further \sprayed"
inside the local network, i.e. used as the reference for the internal synchronization
rounds.

Not all synchronization algorithms are suitable for this latter objective, and for
preserving the high precision and accuracy obtained in the �rst step. We use an
internal synchronization algorithm based in the a posteriori agreement algorithm.
This algorithm is optimized for local networks, and given real-time machinery (net-
work and operating system), may exhibit a precision in the order of the submillisec-
ond, better than that normally found in software-based algorithms. The algorithm
uses properties of broadcast networks to drastically attenuate the traditional limi-
tation imposed by message delivery delay variance on the obtained precision. The
fundamental principles of the original a posteriori agreement algorithm, published
in [30], are followed. However, the algorithm used in CesiumSpray is modi�ed to
follow an external clock when one exists in the set of synchronizing clocks. It also
uses simple group communication and membership facilities, when such facilities
exist.

The protocol works as follows: GPS-node clocks are permanently externally syn-
chronized, in absence of failure, and supply the value of their GPS clock when read
by the protocol; internal synchronization starts with each processor disseminating
a start message at a pre-agreed instant on its clock; after a bounded series of such
broadcasts, each tentatively initiating a new virtual clock, an error-free broadcast|
one getting to all correct processors| is guaranteed to occur; the broadcast recep-

3

Figure 1. The pseudo-hierarchical nature of CesiumSpray

4

tion time is practically the same everywhere in the local network, and is marked by
each processor's clock; each processor synchronizes by the value of the GPS clock
(or one of them, if there exist several), by using the common reference in the time-
line yielded by the broadcast reception instant, to compute the relative deviation
to the GPS-node's clock at that time, and applying it to its clock.

Fault-tolerance of the external synchronization scheme is achieved by replicating
GPS-nodes in the desired local networks. Fault-tolerance of the internal synchro-
nization scheme is achieved by having enough nodes to mask the assumed failures,
as explained in the text. If external synchronization fails, the global time is p-
reserved by the internal synchronization algorithm, which exhibits quasi-optimal
accuracy preservation[30].

The time service described in this paper can readily be materialized for large-scale
systems over global WAN-of-LAN networks, such as the wide-area point-to-point
Internet, with real-time LAN technologies in the edges. The merit of our scheme is
also related to the fact that, for reasons that we will explain later in the text, it is
not technically viable to provide every other node with a GPS receiver.

The paper is organized as follows. The main concepts about clock synchroniza-
tion, needed along the text, are briey introduced in section 2. The approach taken
for the architecture of the system| failure assumptions, local network model, tech-
nology issues, and the principles of internal and external synchronization| is de-
scribed in section 3. Section 4 presents the basic concepts of a posteriori agreement

and describes the synchronization protocol. Section 5 presents the improved algo-
rithm, illustrating how the use of group communication and membership improve
the protocol execution and initialization. Section 6 discusses dynamic adaptation
of fault-tolerance and performance parameters. Section 7 addresses the problem
of accuracy preservation, when external time is lost and the system continues in
internal synchronization. The paper concludes by the evaluation of the service in
section 8, with regard to cost in bandwidth and nodes; quality, in precision and
accuracy; and resilience to uncoverage of assumptions. Derivation of protocol pa-
rameters and bounds, and proofs, are presented in appendix.

2. The clock synchronization problem

The goal of clock synchronization is to establish a global timebase in a distributed
system composed of a set of processors whose processors can interact exclusively
by message exchange. processors can only observe time through a clock. For conve-
nience, a clock is usually represented by a function c(t) that maps (non-observable)
real time3 to clock time (notation generally follows that of [26]).

One commonly used solution to achieve a global timebase is to provide each
processor in the distributed system with an imperfect physical clock pc. A correct
clock at processor k can then be viewed as implementing, in hardware, an increasing,
discrete4 function pck that maps real time t to a clock time pck(t). The physical
clock ticks, advancing a unit at each tick, ttk, which corresponds to a discrete

5

amount of time g, the granularity of the clock. For some positive constants g, �p
and �p, the function satis�es:

PC 1 (Physical Clock Initial value)
0 � pck(0) � �p

PC 2 (Correct Physical Clock Rate)

0 � 1� �p �
pck(ttk+1)� pck(ttk)

g
� 1 + �p for 0 � ttk < ttk+1

Through a clock synchronization algorithm it is possible to derive, from the phys-
ical clock at each node k, a virtual clock vck satisfying the following conditions:

VC 1 (Precision)
jvck(t)� vcl(t)j � �v; for 0 � t

VC 2 (Rate)

1� �v �
vck(ttk+1) � vck(ttk)

g
� 1 + �v for 0 � ttk < ttk+1

VC 3 (Envelope Rate)

1� �� �
vck(t) � vck(0)

t
� 1 + ��; for 0 � t

VC 4 (Accuracy)
jvck(t)� tj � �v; for 0 � t

Precision �v characterizes how closely virtual clocks are synchronized to each
other, �v is the rate drift of virtual clocks, �� is the long term rate drift of virtual
clocks. Applied to a set of clocks, the latter characterizes the envelope of their
rates. �v characterizes the instantaneous rate measurable between any two clock
ticks. Its maintenance calls for continuously adjusted clocks, as discussed later in
the paper.
Accuracy �v characterizes how closely virtual clocks are synchronized to real time

at any moment. An interesting consequence is that in a set of clocks with accuracy
�v, precision is at least as good as �v = 2:�v. Due to the nonzero rate drift of
physical clocks (normally quartz crystal), accuracy cannot be ensured unless some
external source of real time is available, i.e. when there is the possibility of external
synchronization.
In CesiumSpray , external time is injected by GPS-nodes, which have GPS-

clocks, i.e. virtual clocks synchronized by the NavStar system, with the following
property:

6

VC 5 (GPS-clock Accuracy)
jvcgk(t) � tj � �g; for 0 � t

An external source is not always necessary, or available. In the context of internal
synchronization, a good algorithm should maintain virtual clocks as close as possible
to real time, by minimizing5 �v and ��. In that sense, it should preserve accuracy,
by ful�lling conditions VC 2 and VC 3.
As we have seen, physical hardware clocks are permanently drifting from each

other. In consequence, from a precision viewpoint, virtual clocks must be re-
synchronized from time to time, in such a way that condition VC 1 holds. A
clock synchronization algorithm should then be able to generate a periodic re-
synchronization event. The time interval between successive synchronizations is
called the re-synchronization interval, denoted T .
The clock adjustment can be applied instantaneously or spread over a time in-

terval. In both techniques, for the sake of convenience, the adjustment is usually
modeled by the start of a new virtual clock upon each re-synchronization event.
The computation of the adjustment can be modeled by the evaluation of a conver-

gence function [26]. The precision enhancement property speci�es the best precision
guaranteed right after any two clock value evaluations at di�erent processors. The
worst-case clock precision, �v, is obtained by adding the term due to the conver-
gence function, to the imprecision generated by the drift between clocks during
the re-synchronization interval T . However, the drift, �p in PC 2, typically of the
order of 10�6s, will mainly dictate the interval T duration. The precision enhance-
ment property of the convergence function is the relevant quality factor of a clock
synchronization protocol.

3. Time service architecture

Real-time applications in general require accuracy towards some real time reference.
This implies external synchronization. Therefore, it is necessary to disseminate ex-
ternal time to all the nodes. Having in mind that, due to failures, the external syn-
chronization source may not always be available, algorithms that preserve accuracy,
like the one in [28], become an important choice for internal synchronization. Ad-
ditionally, systems oriented to distributed real-time applications require a precision
better than that normally achieved with software-based algorithms. In conclusion,
the internal synchronization algorithm should not deteriorate the excellent quality
of external synchronization.

In fact, a major limitation of all known software clock synchronization algorithms
designed for arbitrary networks, is that precision is limited either by the variance
of the message delivery delay [14], or by its upper bound [28]. This problem may be
attenuated in special architectures, either by implementing clock synchronization
exclusively by hardware [8], [13] or by using hybrid schemes [21], [11] which attempt
at reducing that variance. In large-scale systems, the distance, added to the very

7

large number of nodes, worsens the variance problem. Hierarchical or master-
based algorithms, using probabilistic or statistical techniques to damp the e�ect of
variance have been proposed [4], [2], [17], [18].
An alternative path was followed here, based on two realistic assumptions:

� distributed real-time systems are based on broadcast local networks;

� large-scale systems can be modeled as a point-to-point WAN-of-LANs.

Local area networks are commonly in use today. However, we know of no previous
solution for the clock synchronization problem that fully exploits the intrinsic at-
tributes of these networks: error rate is low, transmission delay is bounded but with
high variance, median transmission delay is close to the minimum, and message re-
ception is tight in absence of errors, meaning that the low-level message reception
signal occurs at approximately the same time in all nodes that receive it. This is
a crucial feature for the mechanism underlying the synchronization algorithm, as
will be shown ahead.
Protocols using the convergence-non-averaging technique [7], [28] are attractive.

Since they are based on disseminating the event that \a node believes it is now a
pre-agreed time" rather than on direct read-clock requests, they are inherently re-
silient to failures, requiring less messages and synchronization cycles than averaging
algorithms[14], [16], [3].
The algorithm of Srikanth & Toueg among the former is appealing for its sim-

plicity, ease of implementation, and optimal accuracy preservation. The reader is
referred to [28] for a detailed description. However, in order to achieve su�cient
evidence that a synchronization round is starting, processors relay messages, which
allows the di�erence between two synchronization actions at di�erent nodes to be
as large as the maximummessage delivery delay.
In this paper, we show how we developed a convergence-non-averaging technique

with optimal precision on local networks. Furthermore, we present our method for
scaling to the hierarchical two-tier network, using the GPS as the link between local
networks.

3.1. Assumptions

Before proceeding, we present our assumptions about the system:

� clocks may have arbitrary failures (eg. provide erroneous or conicting values
when read);

� clock server processors (the ones running the synchronization protocol) may
have failures from crash to uncontrolled omission or timing failures;

� the maximum number of clock-processor pairs with failures during a protocol
execution is fp.

8

� the maximum number of GPS-nodes with failures during a protocol execution
is fg.

In the system, each network node holds a clock processor, so we will use both words
interchangeably. The reader will note that the combined assumption of arbitrary-
failure clocks and `omissive'-failure processors is realistic and not constraining, by
allowing faulty processors to be arbitrarily delayed or even omit their participa-
tion in the algorithm in an uncontrolled manner, whereas their `assertive' failed
behavior is limited to sending wrong clock values, thus avoiding impersonation, col-
lusion, etc. This removes the di�culty of handling genuinely arbitrary-failure (eg.
Byzantine) processors. However, we believe that: (i) this processor failure model
closely matches the behavior of real-life processors in a distributed system; (ii) it is
weaker and easier to implement with high coverage, than a fail-silent one; (iii) the
results presented here can be extended to arbitrary failures, by using signatures [28]
and redundant broadcast channels.
The network is a single-channel broadcast local network, as detailed ahead, with

the following failure semantics:

� the network components: (i) are weak-fail-silent[29], con�ned to crash if they
exceed a given number of omission failures (otherwise behaving correctly); (ii)
have a bound fo on the number of omission failures they can produce during a
protocol execution.

It is possible to put a bound on the time to send a message, to process a received
message and read a clock value, etc.:

� the network and the clock server sub-systems are synchronous, in the sense
of exhibiting known and bounded processing and communication delays.

3.2. Broadcast local network model

This section shows that broadcast local area networks have a number of properties
on which clock synchronization may be built, namely the ability to deterministically
generate a \simultaneous" event at all correct processors in the system.
A study on the inuence of network timing properties on clock synchronization

presented in [12] will help explaining our method. It decomposes a message delivery
delay in the following terms: Send Time, �send, to assemble the message and
issue the send request; Access Time, �access, for the sender to access the channel;
Propagation Time, �prp, for the channel to copy the message to all recipient links6;
and Receive time, �rec, to process the message at the receiver. These contributions
are illustrated in �gure 2. The precision of an algorithm is a�ected by the error
components introduced by the variances of these terms, ��xxx, which together
make up the message delivery delay variance. For example, we call the send time
variance, ��send, the send error.

9

Node a Node bSend time

Access Time

Propagation time

Receive time
send error

access error

propagation error

receive error

Figure 2. Network timing properties

In order not to depend on a particular network, the best approach is to de�ne an
abstract broadcast network, such that standard local area networks or their variants
are represented [9], [10], [6], [15]. The network model of [29] is followed, though
modi�ed to be more generic. The abstract network components are: the chan-

nel, which comprises the passive medium and the interfacing electronics; and the
adapter, comprising the low-level network protocols, implemented partly in VLSI
partly in �rmware. The abstract broadcast network appears to the user proces-
sors/protocols (namely the clock processors) as a low-level service with a set of
properties and an interface 7.

Properties

BNP 1 (Broadcast) Nodes receiving an uncorrupted message transmission, re-

ceive the same message 8.

BNP 2 (Error detection) Nodes detect any corruption done by the network in

a locally received message and discard it.

The network is thus prevented from altering messages, impersonating other
senders or delivering conicting information to di�erent processors on the same
broadcast. Existing broadcast networks usually implement cyclic redundancy
checks for this purpose.

BNP 3 (Bounded Omissions) In a network with N nodes, in a known interval,

corresponding to a series of M unordered message transmissions, omission failures

may occur in at most fo transmissions.

10

This assumption yields a very simple solution to the membership problem as ex-
plained in the next section. It is equivalent to expecting that in fo+1 transmissions,
at least one is heard by all nodes. It has a very high coverage in local networks, pro-
vided that fo is well-chosen. Note that under this assumption, an omission failure
may be perceived inconsistently, i.e. a transmission that is not seen by only some
(or one) of the recipients. On the other hand, omission count is per transmission,
independent of the number of recipients that do receive omission failures for that
transmission.

BNP 4 (Bounded Transmission Delay) The time between any broadcast send

request and the relevant delivery at those nodes that receive the message, is bounded

by two known constants �min < �max.

The variance in the message delivery delay, ��, is then:

�� = �max � �min

Securing property BNP 4 depends on network type and on additional assump-
tions about its operation, namely that rate and inter-arrival time of message trans-
mission requests are bounded. The reader should note that this assumptionmust ac-
commodate the load generated by the protocol itself at the synchronization points,
which is known a priori. Existence of the bounds just mentioned allows estimating
individual transmission delays in the presence of bounded background loads and
queue lengths. In these conditions, �max holds for every one of several concurrent
transmission requests. For details about enforcing reliable real-time operation on a
local network, the reader is referred to [31].
Also worthwhile noting | it will become clearer later on | that the time spent

in queue by a clock-reading message does not inuence precision, unlike any oth-
er software-based protocol we know of, apart from the second-order e�ect of the
physical clock rate drift �p.

BNP 5 (Tightness) Nodes receiving an uncorrupted message transmission, re-

ceive it at real time values that di�er, at most, by a known small constant ��tight.

It is important to understand the timing properties of local broadcast networks.
The propagation error is very small: in a Token-bus or Ethernet, for example, the
maximum di�erence between the times of physical reception of a message is less
than 20 �s. The receive error, ��rec, cannot be disregarded: however, it remains
more or less constant and may be improved as discussed ahead in the text. On
the contrary, the access error, ��access, is hardly controlled and it can have a
signi�cant range, strongly depending on variations of the network load and other
operating factors (eg. collisions in Ethernet, token rotation time in a Token-passing
LAN). It is the dominant term in the total message delivery delay variance, ��,
and given that:

��tight = ��prp +��rec

11

a relevant timing property of architectures based on local broadcast networks is
formulated the following way:

��tight � ��

In the scope of the abovementioned properties, we make the following de�nitions:

Tight Broadcast (TB) - a single broadcast transmission, that is received
by all correct nodes within ��tight.

Detected Tight Broadcast (dTB) - a tight broadcast known to be such
by at least one node.

3.3. Technology issues

If every processor had access to a common reference of time, it could use it as
the global timebase. One way to grant such an access is through a long-wave radio
receiver, capturing an international time standard like Universal Time Coordinated,

UTC, or a GPS satellite signal, carrying the Temps Atomic International, TAI ,
from its atomic cesium clock.
However, having a radio receiver at each processor is economically very expensive:

one would like to have only one of these | or a few, for fault-tolerance | per
system. Furthermore, the availability of radio time may be insu�cient for some
applications [12].
The NavStar Global Positioning System, GPS[19], is a network of 21 satellites

covering the earth surface in a very complete way, so that normally at least 4 of
them are above the horizon. Although used mainly for positioning and navigation,
the feature of interest for this paper is that they provide an extremely good source
of absolute time| a chronoscopic reference of the TAI kind| from their cesium
atomic clocks, with a stability in the order of �g ' 10�14, that is, 1 s in 3 000
000 years. Satellite clocks are monitored and corrected periodically, in conditions
which, given �g and other errors deriving from propagation, ensure an accuracy on
ground of �g � 100ns [19], for the GPS-clocks installed in the GPS-nodes.
GPS receivers, on the other hand, have drastically been going down in price.

Additionally, the availability of signal reception is higher than for the radio markers.
The system only degrades its positioning ability in case of war, by control of U.S.
authorities. However, the GPS receiver antenna must be under the light cone of
the satellites it is receiving from during a 24h period[19], that is, external. As such,
there are obvious restrictions to the number and location of GPS receivers in a
distributed computer system and, neatly, one GPS receiver per node is impractical,
even if prices continue to go down.
CesiumSpray picks the most appropriate reception technology for external time

(GPS), and presents an e�ective solution to reduce the number of receivers to one
per local network. With this: cost is kept acceptably low; the system management

12

hindrance of having a GPS unit attached to every other node is avoided; the re-
quirement for external mounting of an antenna out of a relatively short cable, is
put on a per-local-network basis, which is acceptable.
With regard to network technologies, the applicability of the scheme is very wide,

since it is appropriate for local networks with real-time behavior. This includes
technologies such as token-bus, token-ring, FDDI or deterministic Ethernet [9], [10],
[6], [15]. The system will also work on plain Ethernet. However, the quality of
synchronization will be subject to the coverage of the assumption of time-bounded
Ethernet operation, known to be probabilistic. The reader may refer to section 8,
where a discussion about resilience to assumption violations is made.
Observe that the scope of `local network' may also be extended, to include, for

example, ATM-based networks with multicast ability, since they can readily be
made to secure the BNP properties. The propagation error through an ATM
fabric of `local' dimension is rather small.
CesiumSpray can be materialized on large-scale systems structured as a WAN-

of-LANs. This includes virtually any large-scale distributed computing infrastruc-
ture as we see them today| such as the wide-area point-to-point Internet. Given
its pseudo-hierarchical nature, it has virtually unlimited scalability. Since that it
supposes real-time behavior of the local networks, it is particularly well-suited for
large-scale real-time systems.
Current Internet-based synchronization schemes, such as NTP[17], e�ective as

they may be today, cannot reach the e�ectiveness of CesiumSpray , because they
do not relate the synchronization architecture to the network architecture. The
location of external time masters in NTP is not related to the existence of local
networks with BNP properties, such as in CesiumSpray : reading a master clock
may mean crossing several Internet gateways.

3.4. The approach taken

The architecture of CesiumSpray is shown in �gure 3. As said in the introduc-
tion, the clock synchronization scheme is a pseudo-hierarchical mix of external and
internal synchronization. The root of the hierarchy is the source of absolute time,
the NavStar GPS, which \sprays" its time over the set of GPS-nodes. The second
level of the hierarchy is formed by every local network of the system (anywhere in
the world), with the condition that each be provided with at least one GPS-node.
The external time resident in the GPS-node is further \sprayed" inside the local
network through an internal synchronization algorithm.
From the accuracy viewpoint, all GPS-clocks are �g accurate to real time. The

internal synchronization algorithm is such that it imposes the GPS-node time on
the other nodes, and guarantees a precision of the local set of clocks of �l . That
is, accuracy of the latter to the GPS-node absolute reference is bounded by �l. In
consequence, the global accuracy of CesiumSpray comes:

�CS = �g + �l

13

���
����

���
����

���
����

���
����

���
����

���
����

� l

� g � g

������ gg

� l

Figure 3. The architecture of CesiumSpray

14

On the other hand, it is easy to see that the worst-case precision of Cesium-
Spray world-wide, between any two nodes, is just inuenced by three terms: preci-
sion of GPS-clocks amongst themselves, which is twice their accuracy (cf.x 2); two
times the internal precision in a local network. The contribution of these terms is
illustrated in �gure 3. Proofs are given in appendix. Precision ofCesiumSpray can
thus be easily derived:

�CS = 2�g + 2 �l = 2(�g + �l)

Not surprisingly, �CS = 2�CS. We know that �g is extremely small. Internal
precision �l will be dictated by the a posteriori agreement technique. Its aim is to
improve precision by making it depend on ��tight (instead of �� or �max). ��tight
is very small: as we show in section 8, we have measured values below 100�s.
This being the case, CesiumSpraywill have excellent precision and accuracy, as
promised in the introduction.
To understand how, let us consider the operation of broadcasting a read command

S to all clocks in a local network and getting all replies in a bounded time, despite
errors. In a real-time local network it is possible to de�ne a bound on the number of
tries and the amount of time needed to execute the operation above 9. The reader
will note four attributes of such a fault-less broadcast which are crucial for the
understanding of the algorithm proposed:

� (i) send and access errors, meaningful in competing unicast transmissions, do
not count in a single fault-less broadcast;

� (ii) the message S transmitted arrives virtually at the same time on all nodes,
the di�erence corresponding to the propagation error;

� (iii) processing times of S reception at any two nodes vary at most by the
receive error;

� (iv) all replies to S get back to the transmitter.

If message S, addressed to all including the sending node, meant: \Let us syn-
chronize! I think the time is H. What time is it on your clocks?", one concludes
the following:

� precision enhancement: in response to S, a new virtual clock is tentatively
initiated everywhere with H, at the same physical time more or less an error
equal to the propagation plus receive errors;

� accuracy preservation: also at that time, the clock of each recipient is read and
delivered back to the sender; the sender selects the best clock in terms of rate or
accuracy (eg. the median of the clocks, with purely internal synchronization, or
one of those that have an external time reference, with external synchronization)
and computes its di�erence to H, to adjust accuracy of the tentative clocks.

15

This happens every time a processor broadcasts S with success. There will be
a number of tentative virtual clocks launched, and an election protocol is run (a
posteriori) to agree on one of them, together with the adjustment.
At this point, it is important to signal that this protocol has new qualities vis-

a-vis the averaging and non-averaging families of protocols. Averaging protocols,
namely agreement-based ones, exchange the values of their clocks and calculate a
convergence function, either in a centralized or decentralized manner. Precision
directly depends on the variance of the delay in computing the adjustment or in
disseminating it. Non-averaging protocols emit a timemarker which, upon received,
can trivially set the local clock to a preset value. Clock values are neither read nor
transmitted. Precision directly depends on the reception instants of the marker.
A posteriori agreement allies the time marker principle of non-averaging protocols

to the clock reading and agreement principle of averaging ones. Precision is achieved
solely at the cost of \simultaneity" of reception of the time marker: it depends on
the receive and propagation errors. Should all clocks be initialized with some value
H at that moment, they would be fairly precise. Should H be chosen as the value
of a selected accurate clock at the marker time, they would also be accurate. This
is obtained a posteriori (thence the name): the values of all clocks at the marker
time are read, the selected clock is agreed upon, clocks are corrected by adding an
adjustment.
Unlike genuine agreement-based averaging protocols, precision of the a posteriori

agreement protocol only has a second order dependence on the delays in agreement
and computation of adjustment, caused by the rate drift, �p, during that peri-
od. However, this e�ect is negligible, given that �p is very small, as discussed in
section 2.

4. Basic a posteriori agreement protocol

The principles of using the Tightness property (BNP 5) to allow very precise and
accurate clock synchronization were already discussed. In the presence of failures
though, incorrect processors/clocks may participate, and broadcasts may be on-
ly received by a subset (possibly empty) of the nodes in the system. The clock
synchronization algorithm should then be able to:

� ensure that at least one tight broadcast is generated and detected;

� ensure that, when several tight broadcasts are generated, all correct processors
choose the same broadcast and adjustment to synchronize their clocks;

� ensure that a tight broadcast is generated often enough to prevent virtual clocks
to drift apart more that the desired precision;

� ensure that a new clock, when it starts to be used, has a value that preserves
the desired envelope rate 10.

16

First, it is described how a tight broadcast can be generated and detected. Then,
the achievement of precision and preservation and achievement of accuracy are
discussed.

4.1. Generating, detecting and agreeing on a tight broadcast

The protocol is based on having every processor perform the same two basic actions:
broadcast once a \start synchronization" message; and reply (in broadcast) to such
messages coming from other processors. This way, modi�cation of failure assump-
tions only inuences the number of processors required to run synchronizations
successfully.
With the present assumptions, the presence of fo+fp+1 processors in the system

is required to generate at least one tight broadcast, given that: each node tries only
once; fp processors may not transmit (eg. processor omissions or crashes); and fo
network omissions may occur (BNP 3).
Detecting the generation of a tight broadcast is more delicate: it requires feedback

from the recipients of the broadcast. Let us assume that each correct recipient
broadcasts an acknowledgment message hackbi in response to a given broadcast hbi.
For the sake of simplicity, and without loss of generality, it is assumed that the
time required to create the acknowledgment message is included in �.
Since we do not have a powerful tool such as a group membership management

protocol, we use a very simple scheme based on three facts11:

� the set of processors P is known by all processors and is static;

� as per BNP 4, in absence of failures a correct processor, after the reception of a broad-
cast, should receive an acknowledgment message from every other correct processor
by �max +��tight (real) time (cf. x 3.2);

� with the help of BNP 3, which accounts for actual network omissions, faulty proces-
sors can be detected, if they appear to do more than fo omission failures12 .

The procedure for detection of a tight broadcast is depicted in �gure 4 for a better
understanding, although it is embedded in the algorithm of �gure 5. Let P be the
set of processors in the system, known a priori by all. Let Pb

q be the set of correct
processors in the execution of broadcast b, from processor's q point of view (initially
Pb
q = P) (line 10). For each processor q and for each broadcast message hbi, let Ab

q

include all processors from which an hackbi message was received (l.30), and let Fb
q

include those processors from which no acknowledgment has been received within
the expected time interval (l.40). Let also Dq be the set of tight broadcasts detected
by q (l.60).
A given processor p can be considered faulty by a processor q if p appears to q

as having done more than fo omissions, i.e. appearing in more than fo Fbk
q sets.

In that case, q withdraws it from its view (line 50). When| because all expected
replies did eventually arrive, or because some faulty processors were meanwhile

17

withdrawn from Pb
q| the sets Pb

q and Ab
q match (l.60), q detects broadcast hbi as

a tight broadcast, and inserts it in Dq.

For processor q

10 Dq = ;;
20 when message hbi is received do

Ab
q = Fb

q = ;;
Pb
q = P od

30 when hackbi message is received from processor p do
insert p in Ab

q od
40 when q's clock reads �max after reception of hbi do

Fb
q = Pb

q �Ab
q od

50 when 9p; n > fo : 8k; 1 � k � n; p 2 Fbk
q do

remove p from Pb
q od

60 when Ab
q = Pb

q do
insert b in Dq od

Figure 4. Detecting a tight broadcast

The mechanism just described does not prevent the generation of several simulta-
neous clock synchronization events. An election protocol must be run afterwards,
to select only one broadcast. No particular protocol is required, as long as election
is reached in a known bounded time. Fault-tolerant agreement protocols are well-
known and can be easily found in the literature, although existing reliable broadcast
protocols for broadcast networks are recommended [29], [5]. The reader should note
that the simplest form of election that ful�lls all the requirements of synchronization
put forward in this paper is: `select the �rst tight broadcast detected by all'.

4.2. Achieving precision

The �rst phase of the algorithm (�gure 5) is very similar to the algorithm of [28].
Let us further de�ne: T , resynchronization period; rq, next synchronization round,
from q's perspective| a round rq starts when the local clock reads rqT ; vc

rq
q (t),

the value of processor's q virtual clock after synchronization round rq, at real time
t; cci;pq (t), the value of candidate clock launched at real time t at processor q, in

response to processor p broadcast starting synchronization round i; Vl
q , the vector

of clock readings obtained by q from the network, in response to the tight broadcast
started by l: Vl

q = vc1(tl1); : : : ; vcn(t
l
n), for n = #Pl

q.

The former set Ab
q of �gure 4| the acknowledging processors to a broadcast b

by l| is now unfolded in: Al
q, the set of processors responding with hnotsurei, and

Clq , the set of processors responding with hcandidatei.

18

When vc
rq�1
q (t) = rqT , processor q decides to start the synchronization activity

for round rq, sending a hstart, rq, qi message (lines 10-11). Note that we postpone
the discussion of round 0, until the section about initialization. Since faulty clock-
s/processors can send hstarti messages out of time, the \achievement of su�cient
evidence" [26] is desirable, before a message is eligible for a new virtual clock. The
criterion of [28] is used: given that fp clock/processor pairs may fail in an untimely
manner, a hstarti message can be considered correct if it has been received at least
from fp + 1 distinct processors, out of at least 2fp + 1.

Note that our protocol can withstand occasional early start messages, since the
new clock value, unlike [28], does not depend on the time they are issued, but on
the clock-readings vector. However, also note that the clock-readings vector, for
a fault-tolerant select function, and thus clock synchronization, must have at least
2fp + 1 elements.

The number of processors required to achieve and detect su�cient evidence of a
correct synchronization point, is (fp + 1)(fo + 1) + fp (cf. appendix). This bound
is always dominant over the 2fp + 1 bound. It is thus the number required to
correctly execute the complete synchronization protocol. An informal discussion of
this bound is as follows: fp correct processors may broadcast before it is detected as
a correct synchronization point; fp processors may fail to broadcast; the broadcasts
of fo processors may su�er transmit omissions done by the network, not getting to
anyone; adding to these are the uncontrolled omissions in acknowledgments, that
failed processors may do| in order to detect them, we need to have previously
observed at least fo such omissions per processor in worst case| which yields
fp:fo. This is the worst-case failure scenario, so we �nally need one more processor
to successfully execute the protocol.

A tentative virtual clock is started upon the reception of every hstart, i, pi mes-
sage (lines 20-21). It is kept running in a candidate state. The local clock value
at the same time is returned to vcq , by the readClock function, whose detailed
functionality we skip for the moment being. All hstarti messages are acknowledged
by correct processors. Before the achievement of su�cient evidence, start mes-
sages are acknowledged by a hnotsurei (l.26). After, they are acknowledged with
a hcandidatei message (l.25). Su�cient evidence is achieved when the number of
broadcasts for round i exceeds fp. This is controlled by the sets Starti and Start0,
updated and tested upon each broadcast received (lines 23-24). Start0 is formed
by joining processors invoking round 0, and let us concede for now that they also
count for the number of processors of any other round, we will get back to this issue
in section 4.5.

Each processor q monitors all responses to each start message from a processor
l that it receives. Depending on the type of response, hnotsurei or hcandidatei, it
updates Al

q or C
l
q . It also logs the reading of the clock of the responding processor

when it received l's start message, vcp(t
l
p), in the clock-readings vector V

l
q (lines 30-

42).

The procedure to update F l
q and P

l
q is similar to that discussed in the preceding

section (lines 50-61). Note that �max can be measured locally, assuming a worst-

19

case rate for the local physical clock, by waiting (1 + �p)�
max on the local clock

(l.50).
A candidate clock launched everywhere in response to a hstarti message by a

processor e, is eligible from the moment when one processor q recognizes it as such
(l.70). For that purpose two things must occur with e's broadcast. Firstly, at least
one processor (not necessarily q) must validate it as candidate (lines 30-31), so that
q perceives it (line 70, Ceq 6= ;). Secondly, q must detect e's broadcast as a tight
broadcast, i.e. q must have seen all correct processors reply to e's start message
(line 70, Ceq + Ae

q = Pe
q). The �rst processor q detecting the eligibility of e invokes

the election protocol, proposing e's as the synchronizing broadcast (l.73) 13.
Recapitulating, each tight broadcast starts a candidate clock at every correct

processor. Due to the Tightness property of the network, instantiations of the
same candidate clock are no further than ��tight apart from each other. At the
end of the election procedure, whichever candidate clock is chosen, a new virtual
clock satisfying precision can start being used. The re-synchronization interval
should be chosen long enough to allow a tight broadcast to be generated, detected
and agreed but short enough to ensure that virtual clocks do not drift apart more
that the desired worst-case precision. The inequalities required to parameterize the
protocol are in the appendix.

4.3. Preserving accuracy

The candidate clocks are initialized with iT (�gure 5, l.21), the value of the sender's
virtual clock at the sending time of hstarti. Clearly, while this satis�es precision, it
does not preserve accuracy.
One could set the candidate clocks to cci;pq (tpq) = iT + �i;p, however, � can only

be estimated. Instead, note that by reading the clocks in response to a tight
broadcast| which is also the time at which the candidate clocks are set to iT
(l.21)| we do so at approximately the same time, since 8j; k; jtpj � tpkj � ��tight.
Then, from the clock-readings vector, the di�erences between each clock and iT
at the reading time can be obtained. So the candidate clocks can be started with
a dummy initial value| we chose it to be iT| which will be corrected by an
appropriate adjustment, J i;l, applied at a (short) later time.
Srikanth and Toueg have shown [28] than no clock synchronization algorithm can

achieve a rate drift better than that of the underlying physical clocks. Thus, optimal
rate is approached by adjusting J i;l by the physical clock of one of the correct
processors. For internal synchronization, to ensure that a value in the correct
envelope of time is chosen, the median clock value should be selected. To understand
why this is so, remember that there must be at least 2fp+1 processors, for fp faulty
clock-processor pairs. In consequence, the select function in line 71, giving in result
the median of the clock values in (Ve

q), returns a correct value.
The adjustment depends on the chosen candidate l, and is applied after the elec-

tion procedure. We have seen that the �rst processor q detecting the eligibility of a
candidate clock e, invokes the election protocol. It extracts, from the clock-readings

20

For every processor q

/* rq � 0 is next local synchronization round at q */
05 rq = 0; 8i, Starti = ;;
06 bcast (hstart, 0, qi) od
: : : : : :

10 when (vc
rq�1
q (t) = rqT ^ rq 6= 0) do

11 bcast (hstart, rq , qi) od
20 when message hstart, i, pi received from processor p at real time tpq do
21 cci;pq (tpq) = iT ; vcq = readClock(tpq);
22 Cpq = Ap

q = Fp
q = Vp

q = ;; Pp
q = P; rp = i;

23 insert p in Starti;
24 if # Starti+ # Start0 > fp

/* Start0 is formed by joining processors */
25 then bcast (hcandidate, i, p; vcqi)
26 else bcast (hnotsure, i, p; vcqi) �
27 od
30 when message hcandidate, i, l; vcpi received from processor p do
31 insert p in Clq ;
32 insert vcp in V

l
q od

40 when message hnotsure, i, l; vcpi received from processor p do
41 insert p in Al

q;
42 insert vcp in Vl

q od

50 when vc
rq�1
q (t) = vc

rq�1
q (tlq) + (1 + �p)�

max do

51 F l
q = Pl

q � Clq �Al
q od

60 when 9p; n > fo : 8k; 1 � k � n; p 2 Fbk
q do

61 8u, remove p from Pu
q od

70 when 9e : Ceq 6= ; ^ Ceq +Ae
q = Pe

q do
71 vc = select (Ve

q);
72 Jre;e = vc� reT ;
73 bcast (helection, re; e; J

re;ei) od
/* start election protocol */

80 when election result is (i; l; J i;l) do
81 if 9cci;lq then

82 vciq = cci;lq + J i;l �

/* it is assumed it had launched cci;lq */
83 8j; k, terminate candidate clocks ccj;kq ;
84 8j Startj = ;;
85 rq � 1 =int(vciq=T);
86 if vcq:type =init then vcq:type =int

87 od

Figure 5. Basic clock synchronization algorithm

21

vector corresponding to e's broadcast for round j, the clock value chosen by the
select function, and computes the adjustment Jre;e.
Let us observe function select for a moment (�gure 7), for the steady-state internal

synchronization case| that is, the system is already initialized| and with all clocks
internal (type=int). The function selects the median vc of the clock-readings vector
V| let us suppose, the reading of the clock of processor x. That value is used
to compute the adjustment, which is sent along with e's proposal (lines 71-73).
Applying the adjustment obviously consists of subtracting the value with which
the candidate clock was initialized in consequence of a tight broadcast, reT , and
adding the chosen clock value vc| that is, vcx(t

e
x), read upon the same broadcast

by x.
Whichever candidate is chosen, when the election is over there will be agreement

on the candidate clock l for round i, and on the adjustment J i;l (line 80). The
adjustment is applied to the instantiations of candidate clock l at each processor
(l.82) and the resulting clock, vci, takes e�ect as the new virtual clock at each
processor. The local round variable is updated (l.85) from the value of vciq . The
condition that there is a candidate clock launched (l.81) is a safeguard for initial-
ization, that we will discuss later in the text, in steady-state operation it is always
true. It should be noted that the same adjustment must be applied to all clocks,
otherwise precision will be a�ected. At this time, the synchronization is over, all
candidate clocks are terminated and Starti is cleared (l.83-84).
During the re-synchronization interval, all correct virtual clocks drift from real

time at the rate of their underlying physical clocks (thus, following the optimal
rate). At each re-synchronization, virtual clocks are adjusted by one of the correct
virtual clocks. However, there is a window of uncertainty equal to the Tightness
interval, which is at most ��tight. In consequence, virtual clocks can deviate from
the optimal real time envelope at every re-synchronization interval, by ��tight.
Considering that ��tight is much smaller than the re-synchronization interval, this
does not represent in relative terms a signi�cant deviation from the \optimal accu-
racy" featured by Srikanth's algorithm. A precise formulation of how much clocks
deviate from the optimal real time envelope (essentially ��tight) is presented in
appendix. We also show how to transform a succession of virtual clocks in a contin-
uously adjusted clock, and achieve a bounded instantaneous rate, thus preserving
monotonicity.

4.4. Achieving accuracy

We have just discussed internal synchronization with the a posteriori agreement
protocol. In the context of CesiumSpray , this is the fallback situation when no
external clock is available due to failures, and shows that the algorithm preserves
accuracy during that period.
However, CesiumSpray is speci�ed in a way that there should always be a correct

external clock available per local network, to achieve accuracy towards an absolute
reference. Referring to �gure 3, that role is played by the GPS-nodes, which must

22

Function readClock at processor q

/* Consider that the clock-reading variable, vcx, as per the algorithm in �gure 5,
is indeed a pair hvalue,typei, where value is the clock value,
type is one of ext or int or init, external or internal or initial clock.
vcx with the extension omitted means its value. */

00 function readClock(tpq) begin
01 if vcq:type =ext

02 then vcq:value = vcgq(t
p
q)

03 else vcq:value = vc
rq�1
q (tpq)

04 �
05 return vcq:value;
06 end

Figure 6. Code of the readClock function

be provided with fault-tolerance. We have considered two situations: arbitrary
failure external clock; weak-fail-silent external clock.

Arbitrary-failure external clock

This situation maintains exactly the same failure modes hypothesized in section 3
for the architecture: that is, clocks may do arbitrary failures. As such, given fg
external clock failures, there must be at least 2fg + 1 external clocks| that is, as
many nodes with GPS receivers| per local network, so that a correct reading is
always obtained.

Weak-fail-silent external clock

The arbitrary clock assumption is nevertheless demanding on the number of GPS-
nodes. The intrinsic quality of GPS receiver clocks is normally high. Other works
based on external clocks have considered the master nodes, i.e. the clock-processor
pairs with external clocks, as being fail-silent or crash-on-failure [4], [17].

In consequence, we also study the situation where GPS-nodes (as clock-processor
pairs) exhibit weak-fail-silent behavior. Each can do at most fo omission failures,
before being considered faulty, but it always supplies a correct and timely value. As
such, given fg external clock failures, there must be at least fg + 1 external clocks.
Remember that the algorithm (cf.x 4.2) withstands fo omissions from each of the
failed processors, before eliminating it. So a GPS-node doing at most fo omissions
will still be read and included in the clock-readings vector.

23

Spraying external time

It is now the time to explain an important technicality. We assume that the GPS
receiver clock is yet another virtual clock, vcgq , besides the GPS-node's physical
(pcq) and virtual software (vcq) clocks. The virtual GPS-clock (that we call just
GPS-clock from now on) is \adjusted" by the NavStar system, and only read by
the synchronization protocol. The virtual clock proper, is adjusted by the latter
protocol, and is the user clock.

Normal node's clocks, represented by variable vcq, are of type=int . GPS-nodes,
on the other hand are, in principle, permanently externally synchronized: their
vcq clocks are of type=ext . However, when a GPS-node is not receiving from the
NavStar satellites, due to failure or any other reason, we say that the local clock
becomes of type=int . The toggle between types is represented in lines 90-93 of
�gure 8.

Now we can explain how the readClock function works, as coded in �gure 6. Its
purpose is to log the time at which a start message arrived, tpq (see lines 20-21 of
�gure 5), using one of two clocks: if clock type=ext , then the value of vcgq is put
in the local clock-reading variable, vcq (lines 01-02); otherwise, the value of the

running virtual clock, vcq:value = vc
rq�1
q (tpq), is put instead (l.03).

The select function presented in �gure 7 is now studied in detail. It will operate
on the clock-readings vector supplied by the readClock functions in all processors.
First, it tries to locate external clocks (l.01). If a�rmative, it selects their values
(i.e. of type=ext) in the clock-readings vector and picks the median (l.02) which,
given the fault assumptions made above, is certainly a correct time \sprayed" from
the GPS satellites. External time is then further sprayed into the other nodes,
by forcing them to follow the selected GPS-clock in the adjustment they must
apply, as discussed in section 4.3. If no external clocks exist, the select function
picks the median of the internal clocks, with the protocol proceeding in internal
synchronization.

The reason why we separate the GPS-clock from the physical or virtual clock of
a GPS-node may be obscure at �rst sight. However, note that if we did not, the
re-entering GPS-clock would make the local physical| and thus the virtual| clock
jump, introducing continuity and/or monotonicity violations in the time service of
the local machine. The virtual clock at a GPS-node is adjusted just as any other
clock. By coincidence, the adjustment may come from its own GPS-clock, but it
may also come from another one of the fault-tolerant set of GPS-nodes.

An interesting side e�ect of this mechanism as embedded in the a posteriori agree-
ment protocol, is that it provides a good mechanism for a system administrator to
force a manual setting of the global clock in a local network, when working exclusive-
ly in internal synchronization. Using administrator privileges, he/she \promotes"
the clock of the machine he/she is working on to type=ext , and forces a value on-
to the clock. That value will be used to synchronize the global clock in the next
synchronization round, since the rest of the clocks are internal.

24

Function select at processor q

/* Remember that the clock-reading variable, vcx, is a pair hvalue,typei.
Consider V as an array of such pairs. */

00 function select(V) begin
01 if 9k 2 V : k:type =ext

02 then vc = median (fk:valuej(k 2 V ^ k:type = ext)g)
03 else if #fkj(k 2 V ^ k:type 6= init)g � 2fp + 1
04 then vc = median (fk:valuej(k 2 V ^ k:type 6= init)g)
05 else vc = median (fk:valuejk 2 Vg)
06 �
07 �
08 return vc;
09 end

Figure 7. Code of the select function

4.5. Initialization and integration

For clarity, we have postponed the problems associated with the border conditions
until this section: initializing the system, integrating new or recovered processors.
Initialization is performed without changing the algorithm as presented in �gure 5.
A few lines of code, presented in �gure 8, are appended. We have chosen the line
numbers so that the code in both �gures can be merged into the �nal algorithm.
So, in mentioning the line numbers we refer to either �gure.

A processor initializing itself starts an initial virtual clock, vc�1q (t) = 0 (l.00),
and sets the current round to rq = 0 (line 05). Depending on whether it has GPS
connectivity or not, it sets the type of the local clock-reading variable (lines 01-03).
Internal clock nodes will always have GpsRx = nok. However, note that if they
are initial clocks, they are denoted of type=init , instead of type=int. Initialization
concludes by sending a hstart, 0, qi message (l.06).

If it is a system start-up, there will be several hstart, 0, qi messages being sent.
The synchronization procedure, though for round 0, is the same as laid down in
�gure 5. When there are enough processors to initialize the system, the �rst
virtual clock is launched. Needless to say, if there are no external clocks in the
clock-readings vector, the computed adjustment J i;q will follow the median of the
initialized clocks, which started from 0.

Integration concerns the case where a new or recovered processor is joining the
system when the latter is in operation. However, the joining processor does not
know it, so it executes its initializing steps as just described in the last paragraphs.
Notice that the algorithm is resilient to the situation where a running processor is
requested to launch a candidate clock for a round di�erent than its own. The round
per se does not inuence the �nal value of the clock, and on the other hand, this may

25

For every processor q

/* Let GpsRx be the state of GPS reception, either ok or nok */
00 vc�1q :value = 0;
01 if GpsRx = ok
02 then vcq:type = ext
03 else vcq:type = init
04 �
: : : : : :
: : : : : :
90 when GpsRx! nok do
91 vcq:type = int od
92 when GpsRx! ok do
93 vcq:type = ext od

Figure 8. Clock initialization and control

happen in a legitimate situation of system operation: (i) the system has stopped in
round i, since there are not enough processors; (ii) a number of processors re-enter
simultaneously, enough to bring their total number over 2fp + 1 again, and they
start from round 0.

However, most of the times the joining processor will be isolated and will not suc-
ceed at generating a synchronization event. The joining processor sends response
messages as speci�ed by the algorithm, when the next round starts. If prior to
integration the virtual clock of the joining processor has diverged from the others,
its value is naturally discarded during the computation of the adjustment. Never-
theless, it will adjust its clock correctly in response to the election protocol.

Since a processor may join the system during a re-synchronization round i, it may
not be able to collect enough information to do a correct election, or an election at
all. Whatever the election protocol used, the only condition is that: the newcomer

should only install a clock of which it followed the complete election procedure. In
this case, it only installs the virtual clock resulting from the election if it had started
the corresponding candidate clock (cf.�g.5, line 81). Otherwise, it remains in round
0 until the next round.

Absolute time at initialization

If a valid GPS-node clock is present during initialization, it will reply to start
messages with the value of its GPS-clock. Following the selection function depicted
in �gure 7, it will force the adjustment to take the value of the GPS-clock. The
same will happen if, for some reason, a local network had been left without external
time for while: when its GPS-node is re-integrated, it will again force the clock set
to follow external time.

26

A �nal aspect of absolute time at initialization is that, once in steady-state, the
clock system should not be disturbed by the entry of new clocks (exception made
to external clocks). A massive entry of new processors, in the absence of external
clocks, might provoke the selection of initial clocks, instead of running clocks 14.
This is the reason why initial clocks are denoted of type=init : the selection function
ignores them if there are enough clocks in the system (cf.�g.7, lines 03-04).

5. Improved a posteriori agreement protocol

In what follows, we present a particular materialization of our algorithm, with
the support of a generic set of group communication tools. Group protocols and
subsystems are gaining progressive acceptance for distributed systems builders and
users. The tools used are speci�ed in a way independent of any particular group-
oriented system. They are amongst the simplest, and can be found in practically
any `groups' package.
To show the feasibility of this approach, we have implemented the a posteriori

agreement algorithm as support of the time service of the xAMp group communi-
cations system[22]. The algorithm was implemented using some of the primitives
o�ered by xAMp, which simpli�ed the work and improved its e�ciency. For the
interested reader, the work is described with detail in [23]. The use of group tools
to support the implementation of the a posteriori agreement algorithm has several
advantages:

� processors that are participating in clock synchronization are transparently
managed by group membership, addressing and communication; thus, to par-
take in the algorithm they just join the clock synchronization group; from then
on, they are addressed by the communication protocol; failure detection and
recovery are performed by the membership protocol;

� communication primitives can be used to generate and detect tight broadcasts;
to mask omission failures; and to implement the election of the candidate clock.

We begin by presenting a general model of the group services needed, so that
the reader be able to �gure how to implement the protocol over any group support
environment.

5.1. Group communication service model

There are a number of preferred qualities of the group communication system to
be selected or implemented: synchronous; timer-driven; designed to be used over
broadcast local networks; and portable.
The �rst two deserve some discussion. Synchronism is necessary to guarantee

time bounded communication delay. Most synchronous group protocols are clock-
driven [5]: they rely on the existence of a clock , in the sense of a global time-base.

27

To avoid having to deal with the recursivity or mutual dependence of the communi-
cation and clock synchronization protocols at initialization time, timer-driven| or
(global-) clock-less| protocols are preferred. These are normally acknowledgement-
based protocols, that rely on local timers [1], [22]. Their synchronism is achievable
by relying upon real-time behavior (BNP4) and restrictive failure assumptions
(BNP3) of the underlying network. The interested reader can �nd a more detailed
discussion in [31].
The basic services needed are: membership management and multicast commu-

nication. The membership service supports the dynamic creation and modi�cation
of groups, providing the primitives that allow processors to join or leave a group.
Furthermore, when a group member fails, the event is detected and indicated to
the remaining group members. The multicast service allows a message to be deliv-
ered transparently to a group of processors, following pre-speci�ed attributes (e.g.
order, fault-tolerance).
To implement the a posteriori agreement algorithm, we need an atomic multicast

service, and a reliable transmit-with-response service. We also need a basic group
membership service to maintain the group of processors involved in synchronization.
We detail their properties below.

Properties

GCP 1 (Group Membership) Service providing: interfaces for processors to

join or leave the clock synchronization group, Gclk; an address for transparently

communicating with all currently correct Gclk members; a failure detection mech-

anism which automatically updates the membership of Gclk, based on the violation

of the weak-fail-silent fo-omissions assumption.

In all primitives and protocol steps discussed hereon, messages are assumed to be
addressed to Gclk, unless noted otherwise.

GCP 2 (Group View Change Indication) Service ensuring that: the group

membership is registered in a View, the current set of non-faulty elements; all View

changes are indicated to all correct member processors in total order with sets of

messages delivered by the communication service.

Regardless of the type of communication ordering being used, change indication-
s are signaled in the same order everywhere, relative to the stream of delivered
messages. That is, before delivering a new View, it is ensured that all processors
received the same messages since the last View. This way, processors have a con-
sistent view of the group. In consequence, if total order is being used (see atomic
multicast below), Views will be totally ordered with every other message.
For simplicity, in the protocol description of �gure 9, the group is assumed to be

already formed. Likewise, failed processors are assumed to be removed from the
View as detected. This has implications in communication, as detailed below.

28

GCP 3 (Reliable Transmit-with-Response) Service that ensures that a mes-

sage is delivered to all surviving group member processors and responses from them

are received in a single round: if the sender does not fail; despite the occurrence of

fo omission failures; despite the occurrence of recipient failures.

The tr-w-resp service can be seen as an interface to the underlying unreliable
multicast (network-level) service, with automatic collection of responses, message
retransmission when omissions occur, and membership maintenance. In particular,
by retransmitting more than fo times, it is able of masking the network omission
degree| alleviating the user from explicit concern with omission failures| and
of providing failure detection information to the membership service, since by the
weak-fail-silence assumption, a network adapter which does not reply more than fo
times is failed.
The service has a send interface (denoted tr-w-resp), and a reply interface (de-

noted response). For simplicity, the number of tries is not speci�ed, but assumed
to be greater than fo.
The particular aspect of tr-w-resp as we de�ne it, is that it seeks a successful

round of: one transmission and all responses to it. That is, the message should be
delivered by a tight broadcast. When failures occur, it discards previous responses,
and retries until it gets a round with all responses from the surviving processors.
In systems where a tr-w-resp is not implemented, it can easily be built on top of
the local network datagram service. For the interested reader, we give a sketch of
the tr-w-resp protocol in appendix.

GCP 4 (Atomic Multicast) Service that ensures a message is delivered to al-

l or none of the surviving group member processors: in total order; even if the

sender fails; despite the occurrence of fo omission failures; despite the occurrence

of recipient failures.

The atomic multicast is used to execute the election protocol.
Clock synchronization can be implemented using the group package as follows

(see �gure 9). To avoid unnecessary repetition, we will focus essentially on the way
groups help in the implementation of the algorithm.

5.2. Generating, detecting and agreeing on a tight broadcast

At each re-synchronization instant, the members of the synchronization group try
to start a new candidate clock by sending a hstarti message using the tr-w-resp

service (lines 20-21). By de�nition of tr-w-resp| namely the way it recovers from
failures| the generation of a tight broadcast is assured if the sender does not fail.
Furthermore, its detection is straightforward, since after execution of tr-w-resp the
bag Rq has the responses of all correct processors| failed ones are excluded. This
is the innovative part: with group support, the sender is able to detect its own
broadcast with the group communication primitives, and have the failed processors
automatically excluded by the group membership. It represents a simpli�cation in

29

sender part (for each member q)

/*Let P be the set of correct processors, all in membership of group Gclk.
Let Gclk be the group used for clock synchronization.
P is automatically updated by the group support, in case of join, leave, failure, recovery.
Let Rq be a bag of responses collected by q, of the form h nature,value i (e.g. see line 44).
rq � 0 is next local synchronization round at q */

20 when vc
rq�1
q (t) = rqT do

21 tr-w-resp (h start, rq; qi;Rq);
22 if (9resp 2 Rq : resp.nature =candidate) ^ (vc

rq
q = none) then

23 vc = select (Rq:value);
24 Jrq ;q = vc;
25 atomic (h install, rq; q; J

rq;qi) �
26 od

receiver part (for each member p)

30 Starti = ;; vcip = none;
40 when h start, i; qi message received from processor q at real time tqp do
41 cci;qp (tqp) = 0; vcp = readClock(tqp);
42 insert q in Starti; /* insertion is idempotent in case of repetitions */
43 if # Starti > fp
44 then response (h candidate, vcp i) to q
45 else response (h notsure, vcp i) to q �
46 od
50 when h install, i; q; J i;qi message received from processor q ^ vcip = none do
51 if 9cci;qp then
52 vcip = cci;qp + J i;q � /* only installs when it had launched cci;qp */
53 8j; k, terminate candidate clocks ccj;kp ;
54 8j, Startj = ;
55 rp � 1 =int(vcip=T);
56 if vcp:type =init then vcp:type =int �
57 od
60 when h install, i; q; J i;qi message received from processor q and vcip 6= none do
61 nop od /* reception is just acknowledged via group protocol */

Figure 9. Improved clock synchronization algorithm

the protocol, which also contributes for the reduction in the number of processors
needed to do fault-tolerant synchronization.

30

5.3. Achieving precision

Remember that at least fp+1 hstarti messages must be issued, to validate a correct
synchronization point. Each recipient, when it receives a hstarti message, includes
the sender in Starti and tests its cardinal (lines 42-43). The hstarti messages re-
ceived from the �rst fp processors are considered not safe, thus, a hnotsurei response
is returned (l.45). The remaining messages are acknowledged with hcandidatei,
meaning that start messages from at least fp other processors have been previously
received (l.43-44).

In any case, a candidate clock is started for each hstarti message received (l.41).
Note that with the group-oriented implementation, responses are sent only to the
sender of the hstarti message, since detection of a tight broadcast is performed by
the sender of tr-w-resp. Note also that if a hstarti message is retransmitted, the
associated clock is just started again (l.41), but the start-message count (l.42) is
not incremented, since the sender is the same.

The sender waits for the termination of the tr-w-resp procedure. If at least one
processor responds with hcandidatei, the sender can safely assume that it started
a timely candidate clock (line 22). Upon computing an appropriate adjustment, it
multicasts an install instruction using the atomic communication protocol (l.25).
Usually, several candidate clocks will be started and, in consequence, several install
messages may be received by every member. Since install messages are sent in total
order, the �rst install message delivered selects the candidate clock to be used by
all, during the next synchronization interval (lines 50,52).

This is a simple way of performing the election of the candidate clock, yielded by
the `groups' package. All other candidate clocks are simply discarded, and Starti

initialized (l.53-54). Note that if a processor crashes before sending an install,
its candidate clock will be discarded as soon as an install arrives from a correct
processor.

5.4. Preserving and achieving accuracy

Preserving and achieving accuracy is done much in the same way as for the basic
a posteriori protocol depicted in �gure 5. Note that this time we chose candidate
clocks to be initialized with zero (line 41), in order to exemplify, as we had previously
explained, that the value of the candidate clock does not matter until it is installed
(it only changes the computation of the adjustment). Once the sender detects its
own candidate to be eligible (l.22), it picks the clock to adjust from, with the select
function (�g. 7), from the clock-values part of the bag of responses, (Rq:value),
which is nothing else than the clock-readings vector of the basic algorithm. The
sender computes the adjustment, and tries to install its candidate clock, using that
adjustment (lines 24-25). After successful delivery of the �rst atomic multicast,
each processor (including the sender) will have installed the associated candidate
clock| with the relevant adjustment| as the new virtual clock (line 52).

31

It is possible that other hinstallimessages arrive afterwards (l.60): they are simply
ignored, although acknowledged by the lower-level group support. Likewise, if a
sender has already installed a clock for the next round (i.e. vc

rq
q 6= none), it does

not try to install its own candidate (line 22), refraining from doing a useless atomic
broadcast.

5.5. Initialization and integration

The membership information provided by the `groups' package is extremely useful
for initialization and integration. Namely, the property that joins and leaves are
totally ordered with respect to atomic messages, allows processors to have a mutu-
ally consistent view of the group. This drastically improves on the basic algorithm,
in two ways:

� the set of processors P no longer needs to be known a priori and static|
processors enter and leave the group as they come up or fail;

� processors initializing or reintegrating can do it in a more disciplined way than
in the basic algorithm, saving network resources| they rely on membership
information for measuring the fault-tolerance threshold, instead of going blindly
into the network as they initialize.

Every time a processor joins clock synchronization a new membership view is
provided to all members, including to the new member. From the membership
information, the newcomer may infer the state of the group. Let N = #P be the
number of group members after a join: if N < 2fp + 1, there is still no quorum to
start the synchronization service and all members simply keep awaiting for other
processors to join. If N = 2fp + 1, the newcomer has just formed the required
quorum, thus all members start the clock service by broadcasting hstarti messages
for the �rst synchronization round.
Finally, if N > 2fp + 1, the clock synchronization service is already running and

the newcomer just waits for the next re-synchronization round to catch up with the
running members. However, the newcomer may enter in the middle of a round. In
that case, the condition laid down in the previous section must hold: the newcomer

should only install a clock of which it followed the complete election procedure.
Given the election method followed in the protocol of �gure 9, the easiest safe way
is the following:

� always participate in the algorithm, replying to start messages;

� wait to see an install for one round, and then only install the next round's clock.

The clock initialization and control code in �gure 8 also applies to the improved
algorithm code in �gure 9.
Some membership services have a property that can be used to speed-up inte-

gration of processors: group-dependent state information can be transferred to the

32

joining processor during the join operation [1], [22]. This feature can, if desired, be
used to inform the newcomer of the state of synchronization activity, and reduce
the worst-case delay in processor integration| which is approximately 2T| with
small modi�cations of the protocol.

6. Dynamic fault-tolerance and performance adaptation

In the practical use of the a posteriori agreement protocol in CesiumSpray , two
problems arise in the following situations: (i) when the number of processors is or
goes below the threshold number needed for fault-tolerant operation of the protocol,
to a given set of failure assumptions; (ii) when too many nodes exist in the local
network, risking loading it unnecessarily during synchronization.
An important advantage of using group support services is that the membership

information provided can be used to verify if the system maintains the required
fault-tolerance degree. When desired, the clock synchronization service can be
requested to dynamically adapt to membership changes.
What we have discussed so far is a static mode of operation. The user speci�es

at design time a desired fault-tolerance degree, i.e., the number of clock and/or
processor faults that need to be tolerated. As stated in section 4, the minimum
number of nodes to tolerate fp faults is 2fp+1. The service ensures that the virtual
clocks are only synchronized while the minimum number of nodes are available in
the system. Secondly, regardless of their number, all processors participate in
synchronization, generating start messages at the appropriate moments.
Alternatively, one could think of a dynamic mode, where continuity of service

would be provided for any number of clocks in the system. Upon membership
changes, in particular if some nodes are lost, the protocol would dynamically adapt
and the synchronization service would report to the user the new (lower) fault-
tolerance degree at which the service would be running. On the other hand, for
any number of processors, the algorithm would only run with the minimumnumber
necessary for fault-tolerant operation: above that threshold, additional processors
would not issue start messages.
These cases can be represented by a generic parameterization, with the help of

the group support package. When the clock service is started, the desired tolerated
faults are speci�ed as an interval [fmin; fmax]. The equivalent in the static mode,
is fmin = fmax > 0. Upon system initialization, the clock synchronization service
is only started when at least 2fmin + 1 nodes are present (in the dynamic mode, if
fmin = 0 the service can be started as soon as the �rst node joins the algorithm).
If during system evolution the number of processors becomes lower than fmin, the
service is halted and an exception is generated. The parameter fmax is used to save
system resources. If more than 2fmax + 1 nodes are present, the extra members of
the clock-synchronization group do not need to generate redundant start messages
(although they still have to acknowledge incoming start requests). Identifying these
extra processors is extremely easy with property GCP1 (group membership), and
GCP2 (group change indiction).

33

When the number of processors in the system, N , lies within the fault-tolerance
interval, i.e., N 2 [2fmin+1; 2fmax+1], the protocol runs in adaptive mode. When
the number of processors is in the range, [2fmin+1; 2(fmin+1)+1[, the algorithm
tolerates fmin faults, in the range [2(fmin + 1) + 1; 2(fmin + 2) + 1[, it tolerates
fmin + 1 faults, and so on. Whenever the interval changes, the user is informed of
the new fault-tolerance degree.

7. Accuracy preservation in internal synchronization

The weak-fail-silent clock model discussed in section4.4 allows the correct behavior
of CesiumSpraywith only one GPS-node per local network, in absence of failures.
This hypothesis| illustrated in �gure 3| is of economical interest, for applica-
tions with moderate fault-tolerance requirements. Moreover, CesiumSpray local
networks can work with di�erent fault-tolerance levels, with no impact on the func-
tionality of each other.
However, the fault coverage is minimal: upon the GPS-node failure| or it-

s clock| the system loses external time. In consequence, the objective of this
section is to show how the system behaves in that abnormal situation. As a matter
of fact, it can also occur in the operation of the fully-edged CesiumSpray , if for
some reason it loses all the GPS-nodes of a local network (e.g. reception problems).
The protocol is designed to be resilient to that situation. In each round, the select

procedure tries to �nd external clocks (l.01-02). If no external clock exists, internal
synchronization is performed in that round (l.03-05), along the lines discussed in
section 4.3. This approach is not as fragile as it may seem. Given a desired accu-
racy of the time service, the system can withstand a speci�ed duration of external
clock unavailability. This bound is derived in section A.2.5 of the appendix, and
the e�ectiveness of accuracy preservation of internal synchronization is discussed in
section 8. The system will also gracefully re-integrate the GPS-node upon recovery,
and re-inject external time, as seen in section 4.5. However, there is no guaran-
tee that the normal bound on accuracy is secured, which may imply larger than
expected adjustments when external time is recovered, with impact on the other
bounds (precision and rate).
In consequence, this study should be understood as a discussion of resilience to

assumption uncoverage, since the normal operation of CesiumSpray , and all the
derivations made in appendix, assume that the correct clocks always remain within
the speci�ed precision and accuracy bounds. Extending the work to other situations
is a matter of further study.

8. Evaluation

The merits and demerits of CesiumSpray are analized in this section, under sev-
eral viewpoints: cost| in processors; quality of the synchronization parameters|
precision, rate and accuracy; and resilience to uncoverage of assumptions.

34

Scenario Basic Algorithm Improved Algor.

correct synch. point and clock reading 2fp + 1 2fp + 1

achieve/detect suff. evidence (fo + 1)(fp + 1) + fp 2fp + 1
(uncontrolled-omission processors)

achieve/detect suff. evidence fo + fp + 1 +max(fo; fp) 2fp + 1
(fail-silent processors)

Figure 10. Bounds on number of processors| basic and improved algorithm

8.1. Cost

The cost of our algorithm can be assessed in terms of bandwidth and number of
processors. The bandwidth used depends on the period of re-synchronization and
in the number of processors. The broadcast nature of the network, the use of group
(multicast) communication, and the possible use of the adaptive mode, reducing the
number of processors involved in starting each round, render the cost in bandwidth
low.

More important is the number of processors required. We recall that the minimum
number of processors needed to run every round successfully in the basic algorithm
is (fo+1)(fp+1)+fp. The bounds can be reduced for stronger failure assumptions.
These bounds are listed in �gure 10. A proof is given in appendix. It is easy to
see that the generic bounds are dominant over the 2fp + 1 bound| needed for
fault-tolerant operation of the select function on the clock-readings vector. That is,
if the former hold, the latter always holds, for any value of fp and fo.

With the improved algorithm, new bounds occur. They are also listed in �gure 10:
the 2fp+1 bound still holds to guarantee a correct synchronization point and clock
reading; given that the group protocols recover from omissions, 2fp + 1 is also the
bound for achieving and detecting su�cient evidence.

8.2. Quality

The consolidated �gures of merit for the algorithm are given in the table of �g-
ure 11. They are more detailed in the appendix, namely in what concerns the
de�nition of variables. Rate drift, �ap, is given by �v in lemma 10. Local precision
of the system, �l, is given by �v in lemma 6. Values for accuracy preservation in
internal synchronization are given in the table of �gure 12, for several scenarios,

35

Prot. Parameter Expression Value [�s]

AP Convergence �ap � (1 + �p)��tight + 2�p�
max
agreem + g 101

AP Rate drift �ap � �p +
�vc

�spread
4:4=s

AP Local Precision �l � �ap + [(1 + �p)��tight]+ 500
+2�p[(1� �p)�1(T + Jmax) + �max

start + �max
agreem]

with period T = 150s

CS Global Precision �CS � 2:�CS 1000
CS Global Accuracy �CS � �g + �l 500

Figure 11. Typical �gures of merit of the CesiumSprayprotocol: AP- a posteriori internal syn-
chronization; CS- CesiumSpray global external synchronization

whose expression is derived from lemma 13. We are considering, for system �gures,
continuously adjusted clocks. We recall that �g = 100ns. The granularity of the
clocks is g = 1�s.
We now analyze the expressions, and discuss how the results can be improved.

We also give experimental �gures: the values in the rightmost column are derived
from performance measurements and from estimates, made to provide some insight
on the possibilities of CesiumSpray in real systems.
From the table, it is obvious that the quality of the a posteriori agreement protocol

is practically dictated by ��tight, whose components (cf.x3.2) are:

��tight = ��prp +��rec

The receive error, in a real-time kernel, may be practically canceled with local
network co-processors and interrupt treatment, provided that there is an upper
bound for message reception interrupt service latency and that the bound is small15.
In the limit, it may be intuitively said that precision is optimal, in the sense that it
cannot be better than the di�erence between physical reception times of a message
at any two nodes (propagation error).
Compared to the receive error, the propagation error is normally negligible. How-

ever, in architectures where programming inside the real-time kernel allows bringing
the receive error down to the order of magnitude of the propagation error, the lat-
ter can be further reduced by using network mapping techniques [24], which allow
to compute individual inter-node propagation times and use them to correct the
message delay expression.
Accuracy preservation, which means the capability of maintaining accuracy to

real time, by following a correct hardware clock in internal synchronization| i.e.

36

verifying an envelope rate (cf. x2)| cannot be optimal in the terminology of S-
rikanth & Toueg[28], but is very close to it. The worst possible correct clock will
form a bound of the rate drift envelope. The algorithm will, in worst-case, syn-
chronize by that clock and deviate to the outside of the envelope at most by the
measure of ��tight which, as just discussed, can be made very small. Due to the
good accuracy preservation of the a posteriori algorithm, CesiumSpray is capa-
ble of operating during periods of shortage of external time. This happens when
the last GPS-node of a local network| or just the GPS reception| fails for some
reason.

We base the values of �gure 11 on measured performance, in a real scenario, of
the implementation of the a posteriori agreement internal clock synchronization al-
gorithm provided by the group support protocol suite xAMp [23]. The results were
collected on a real-time distributed system formed of communication boards devel-
oped for the DELTA-4 project [20]. The protocol ran on a real-time executive (the
SPART 16 kernel), over Motorola 68020 CPUs and accessing a token-bus network.
We concentrated on measuring ��tight, which is the limiting factor of the precision
achieved by our protocol. We have obtained values of ��tight = [40 : : :100�s]. The
time to run the agreement was �agreem = [2 : : :100ms]. We consider a conservative
value of �max

start = 20ms, and we estimated Jmax = 400�s.

We have loaded our network with background tra�c. Unlike �max, the value of
��tight su�ered no inuence from the network load. This is an important advantage
of our algorithm in comparison with algorithms that depend on ��. The precision
is also a�ected by the drift of the clock during the time required to reach agreement.
With the drift rate considered for the physical clocks, �p = 10�6, even a conservative
value of 100ms for the agreement time adds just 1�s to the algorithm precision.

In consequence, from the table of �gure 11 we can deduce excellent �gures of merit
for CesiumSpray . We targeted a local precision of �l = 500�s, which yielded a
synchronization period of T = 150s. For a synchronization period of T = 30min:,
we would have had �l = 4ms. Better can be done, with faster kernels/CPUs, which
spend less time within system calls| and the respective uninterruptible critical
sections. The SPART platform's average primitive execution time was of the order
of 100�s. Current platforms can easily be faster by one order of magnitude, with
the expected impact in the receive error, and thence in ��tight.

As for accuracy preservation, �gure 12 shows the allowed period of external time
outage, Tout, before a speci�ed accuracy is lost, for several scenarios. We considered
two starting situations: (a) the worst case, when the clock has already deviated from
real time as much as �CS , and will continue to be fast17; (b) the average case, when
the clock is synchronized with real time. For each situation, we evaluated the outage
duration for two target accuracies: the standard, �CS ; and a degraded-mode one,
ten times the standard. The standard accuracy cannot be guaranteed for situation
(a). The derivation of the expression of Tout is in appendix. For situation (b),
we substituted 0 for �CS in the expression. The results in the table con�rm the
good behavior of CesiumSpray in the presence of temporary external time failure.

37

Initial Target Allowed
Accuracy Accuracy Outage
[vck(t0)] [�s] Duration [s]

t0 + �CS �CS |
10:�CS 1034

t0 �CS 115
10:�CS 1150

Figure 12. Accuracy preservation of CesiumSpray in internal synchronization

This is especially useful for the weak-fail-silent external clock model, with only one
GPS-node per local network (cf. x 4.4).

8.3. Resilience to assumption uncoverage

Assumptions about the operational environment of a system allow designers to build
a protocol and reason about its correctness, fault-tolerance degree, and so forth.
In consequence, practically all reasoning is directed to demonstrate that: (i) the
assumptions are realistic; (ii) the protocol operates correctly to those assumptions.
However, it is reassuring to analyze what happens should things go very wrong, if
one is intending to build a real system.
That analysis has been informally made for the a posteriori agreement protocol.

We have not gone through all possible violations, but chose instead the few cases
that are more likely to occur. The analysis focused on the situations where a single
class of faults occurs, and the assumptions about that class are violated. It showed
the protocol to be reasonably resilient to those cases:

1. maximum communication delays, �max
start or �

max
agreem, exceeded;

2. ��tight exceeded;

3. maximum number of failed processors, fp, exceeded;

4. maximum number of network omission failures, fo, exceeded.

In situation 1, the algorithm executes correctly, but precision and rate may be
violated. The deviation is itself very small, maximum in the order of [�(�max

xxx)��p].
Fault-tolerant execution of the select function| that is, the guarantee that a correct

38

clock is selected| may be compromised: in result of the violation of �max
start, an

election may be started (and won) before all readings come, so that the clock-
readings vector does not have enough processors (2fp+1). The protocol is resilient
to this violation, as long as the number of una�ected processors is greater than 2fp.

In situation 2, precision may be violated in the direct proportion of [�(��tight)].
The necessary and su�cient condition is that it occurs in the broadcast winning
the election. The e�ect of this violation is important, so care should be taken in
measuring/assessing ��tight.

In situation 3, given the single fault class assumption, the protocol only blocks if
the number of processors failed in excess leaves the system with less than fp + 1
processors. The fault-tolerant execution of the select function is also secured, while
the number of surviving processors is above 2fp + 1. For fo 6= 0, this is trivial
for the basic algorithm. If the improved algorithm is working with only 2fp + 1
processors, select may not be resilient to this violation. Its e�ect is also important,
one safeguard is to have more processors than the minimum bounds.

In situation 4, such a violation can lead to unjustful failure detection, if the
violations a�ect a processor in manner that it looks like having done more than fo
omissions. The consequences are similar as underlined for situation 3, although this
is a di�cult pattern to occur| only probable if the network is in bad conditions.

8.4. Related Algorithms

The a posteriori agreement is e�ective even under non-negligible loads, provided
that the conditions for BNP 4 still hold. However, it only presents signi�cant
advantages when ��prp, ��rec are small. ��rec depends on the underlying oper-
ating system and hardware machinery: some systems may not allow a small and
predictable preemption time for reception interrupts. The use of LAN bridges may
originate high ��prp values. In the context of internal synchronization only, a
posteriori agreement can be used to improve synchronization of nodes in the same
segment while global synchronization could be ensured, for instance, by a hier-
archical algorithm, such as studied in [27]. However, combination with external
synchronization in CesiumSpray obviously yields improved quality.

Our algorithm requires the execution of an election protocol. However, the time
required to reach election has only a second order e�ect on the achieved precision.
We consider the cost in tra�c negligible, in face of the usually available local net-
work bandwidths and given the bene�t in precision and determinism, with regard
to other approaches [4], [7]. Furthermore, our algorithm does not require any par-
ticular agreement protocol (as long as it exhibits bounded termination). Since most
fault-tolerant distributed systems are local-network-based and implement some for-
m of agreement protocol, that can be used to perform the election, our algorithm
can be easily integrated in such architectures.

The hardware-assisted algorithm of Kopetz removes practically all components
of the message delay variance, except the propagation error[11]. Our algorithm,

39

without hardware support other than interrupts, only leaves an attenuated receive
error besides the propagation error.
The work in [25] is similar to ours, emphasizing the same pseudo-hierarchical

structure, and is also based on GPS time for external synchronization. However, it is
more related to smaller-scale factory-level real-time networks. Unlike our approach,
they exploit hierarchical synchronization, with arbitrary network topologies. They
perform a form of internal clock synchronization called clock validation, whereby
there may be sets of clocks with high and low accuracy in the network. Unlike ours,
when external time is lost, the system is re-initialized.

9. Conclusions

A precise and accurate global time service for large-scale distributed systems was
presented in this paper. The system is a mix of external and internal synchroniza-
tion, laid down in a pseudo-hierarchical way. It uses the highly precise and accurate
GPS time reference to inject external time in each local network. It then progresses
further down, inside the local networks, with an algorithm with excellent precision
enhancement and accuracy preservation qualities.
This architecture has several advantages. Using GPS, it is superior in price and

reachability to radio-receiver-based schemes. Using a symmetrical protocol, it has
better fault-tolerance characteristics, and a better determinism�quality product
than master-based protocols. Using the a posteriori agreement approach in inter-
nal synchronization, it captures the best of non-averaging and averaging families of
protocols, by allying the time marker principle of the former to the clock-reading
and agreement principle of the latter. In absence of external time, the a poste-
riori agreement protocol performs better in accuracy preservation and precision
enhancement than known external-time-based protocols.
A posteriori agreement behaves best in networks with physical multicast capabil-

ity, such as LANs and prevailing ATM technologies. Given that the architecture
of large-scale computer networks seems to be very well represented by a WAN-of-
LANs model, CesiumSpray achieves a proper balance between price, quality, and
fault-tolerance, by requiring at least one GPS receiver per local network. Allied to
this, the fact that the �rst level of the synchronization hierarchy short-circuits the
computer communication infrastructure where it most compromises scalability|
the WAN | is responsible for the good precision and accuracy in large-scale ex-
hibited by CesiumSpray . Notice that these parameters are not inuenced by the
size of the WAN (neither geographical nor in number of nodes), and only very re-
motely by the size of LANs| by the almost negligible increase of ��tight due to
the increase in the propagation error with distance, and the agreement time with
increased load| which gives CesiumSpray virtually unlimited scalability.
As future work, we plan to extend this system to work with arbitrary duration

of external time outages, using adaptive bi-modal accuracy, whereby the system
switches automatically from normal accuracy to a degraded accuracy when external
time is lost, and back, with a mechanism ensuring smooth recovery.

40

Appendix

A.1. Transmit-with-response protocol

We present a sketch of a tr-w-resp protocol able of tolerating fo = nrTries � 1 omission
failures, and seeking for delivery in a tight broadcast. The protocol is given in [31]. It
returns a bag Resp of expected nrResponses responses, either when it is full or when
it performed nrTries tries. In the latter case, given the bounded omissions and weak-
fail-silent assumptions, it will have all the responses from non-failed members. Inserted
in the clock synchronization protocol, nrTries will be given by the fo assumption, and
nrResponses will be given by the Gclk View. Notice that line 52 empties the bag at each
try, which ensures that the bag only contains responses of the same try, satisfying the
tight broadcast condition when all are received.

||||||||||||||||||||||||{
transmit-with-response (h data, nrResponses, nrTries, Resp i)

50 tries := 0; Resp := empty;
51 do tries < nrTries ^ Resp 6= full !
52 Resp := empty;
53 Tx(data,idtries);
54 waitRepliesPutInBag(TwaitReply, Resp);
55 tries := tries +1
56 od
57 return Resp;

A.2. Protocol Parameters

In this appendix we show the results relevant to parametrize the protocol. The proofs are
inspired in those in [28]. For brevity, we only present the crucial proofs. Since clocks have
a granularity g, all clock-value-related �gures are multiples of g.

A.2.1. Assumptions

Assumption 1 There is a known upper bound, �max
start, on the time required for a hstarti

message to be prepared by a correct processor and sent to all correct processors and pro-

cessed by the recipients of the message.

Assumption 2 There is a known upper bound, �max
agreem, on the time required to elect a

candidate clock, after the start of the �rst candidate clock. For the sake of convenience,

the time required to detect the tight broadcast is also included in �max
agreem.

Assumption 3 The di�erence, in real time, between the starting time of the same can-

didate clock, cci;n, in two di�erent processors, is bounded by ��tight.

41

A.2.2. Internal a posteriori agreement algorithm

A.2.2.1. Instantaneous clocks: precision

Lemma 1 At the end of the ith resynchronization period, virtual clocks di�er by at most

(1 + �p)��tight + 2�p�
max
agreem + g. That is, for i � 1 and for all correct processors n and

m, 9�ap : jvc
i
n(end

i)� vcim(end
i)j � (1 + �p)��tight + 2�p�

max
agreem + g � �ap.

Proof: �ap is the precision enhancement measure of the algorithm. By de�nition 1
and assumption 3 the value of a candidate clock, at the moment it is started at any
processor, di�ers from the value of the same clock at any other correct processor by
at most (1 + �p)��tight. By Assumption 2, endi� electedi � �max

agreem. Given clock
granularity, there may be a quanti�cation error of g. Thus, by de�nition PC 2, jvcin(end

i)�
vcim(end

i)j � (1 + �p)��tight + 2�p�
max
agreem + g � �ap. 2

Lemma 2 Given �iv, all correct processors start the elected candidate clock soon after a

correct processor is ready to do so. Speci�cally, electedi� readyi � (1��p)�1�iv+�max
start.

Lemma 3 The correction�i
ck to virtual clocks is bounded by a know constant, �max

ck , that

is �max
ck � j�i

ckj 8i. Speci�cally, �max
ck � (1 + �p)[�

max
start + (1 � �p)

�1�iv] � j�i
ckj 8i.

Assume the following two relations:

Assumption 4
(T ��max

ck) > (1 + �p)�
max
agreem

Assumption 5
�iv > �ap + 2�p[(1� �p)

�1(T +�max
ck) + �max

start +�max
agreem]

| {z }

�drift

Assumptions 4 and 5 specify the minimum and maximum values for the re-
synchronization period, T , for a given desired precision, �iv. The term �ap corresponds
to the result of the convergence function, that is, the real time di�erence between virtu-
al clocks at the end of the synchronization round. The term �drift corresponds to the
worst-case drift during the longest possible re-synchronization interval.

Lemma 4 The instantaneous clocks obtained through the algorithm in �gure 5 verify the

precision property, that is, 9�iv such that:

jvck(t)� vcl(t)j � �iv; for 0 � t

42

A.2.2.2. Instantaneous clocks: envelope rate

In this section we give a measure of how much the clocks in internal synchronization
deviate from the real time envelope.

Lemma 5 For any execution of the algorithm, there exists a constant �i�, such that the

instantaneous clocks of the algorithm in �gure 5 verify the envelope rate property, that is

9�i� such that:

1� �i� � 1�
(1��p)��tight��pT

T+(1��p)��tight
�

�
vci

k
(t)�vc0

k
(0)

t
�

� 1 +
�pT+(1+�p)��tight
T�(1+�p)��tight

� 1 + �i�

Proof: The complete proof is omitted for brevity. We prove the upper bound. Let E(t0)
be the set of executions of the algorithm in which ready1 = t0. Consider an execution
e 2 E(t0) in which 8k�1, elected

i = readyi, and let the correction for the elected clock
be �fastest

ck . In the execution e the physical clock of processor n runs at the maximum
possible rate, that is, 1+�p with respect to real time. It is clear that execution e is possible.
It can be shown that, for processor n, the interval of real time between consecutive re-
synchronizations is (T ��fastest

ck)(1+�p)
�1. In this period its virtual time increases by T .

It can also be shown that, for the same processor, the maximum correction, �fastest
ck , will

be given by �fastest

ck = (1+�p)��tight. The lower bound proof follows similar arguments.
�i� should be chosen in order to satisfy both bounds. It is easy to see that this is achieved
by having �i� follow the upper bound expression. 2

A.2.3. Maintaining continuous clocks

Let ta;in be the real time when processor n accepts the ith virtual clock. Instantaneous
virtual clocks exhibit discontinuities at each re-synchronization since there is usually a
nonnull di�erence between two consecutive clocks, given by: vcin(t

a;i
n)� vci�1n (ta;in). Con-

tinuous clocks can be obtained if this di�erence is spread over a real time interval �spread.
We leave to the reader the proof that with this transformation, clocks continue to verify
the precision and envelope rate properties. We prove the rate property.

De�nition. A continuous virtual clock can be obtained from the instantaneous virtual
clocks, using the following function:

vcm(t) = vc0m for t < t
a;1
k

: (i)

vcm(t) = vci�1m +
(vc1m(ta;im)� vc

i�1
m (ta;im))(t� t

a;i
m)

�spread

for t
a;i
m < t < t

a;i
m +�spread: (ii)

vcm(t) = vcim for t
a;i
m +�spread < t < t

a;(i+1)
m : (iii)

43

A.2.3.1. Continuous clocks: Precision

Lemma 6 The continuous clocks obtained by de�nition A.2.3 based on instantaneous

clocks resulting from algorithm in �gure 5 verify the precision property. More precise-

ly: jvcn(t)� vcm(t)j � �iv + (1 + �p)��tight � �v.

A.2.3.2. Continuous clocks: Envelope rate

Lemma 7 Assume �� � �i�. The continuous clocks obtained by de�nition A.2.3 based on

instantaneous clocks resulting from algorithm in �gure 5 verify the envelope rate property,

that is 9�� such that:

1� �� �
vcm(t)� vcm(0)

t
� 1 + ��; for 0 � t

A.2.3.3. Continuous clocks: Rate

Lemma 8 The di�erence,�vc, between two consecutive instantaneous virtual clocks, 8i;n,
is majored by:

�iv + 2�p[(1� �p)
�1�iv +�max

start + �max
agree] + (1 + �p)��tight

Proof: By assumption, virtual clocks are no more than �iv apart at ready
i. By Lemma 2

the elected candidate clock will be started no later than (1��p)
�1�v+�max

start after ready
i.

Virtual clocks will drift at most 2�p[(1��p)
�1�v+�max

start] during this interval. By assump-
tion 3 elected clocks are started within (1 + �p)�tight of each other. By assumption 2 it
will take at most �max

agree to agree on the virtual clock. The maximum di�erence between
virtual clocks will then be the sum of these factors. 2

Lemma 9 The maximum interval over which the di�erence between consecutive instanta-

neous clocks can be spread, �spread, is given by: �spread � (T ��max
ck)(1 + �)�1.

Proof: The spreading interval must not be larger than the minimum real time interval
between any two consecutive re-synchronizations. In the proof of Lemma 5 we have shown
that this interval is given by (T ��max

ck)(1+�)�1, thus proving the Lemma. This imposes
a bound for the rate of continuous virtual clocks. 2

Lemma 10 The continuous clocks obtained by de�nition A.2.3 based on instantaneous

clocks resulting from algorithm in �gure 5 verify the rate property, that is 9�v such that:

1� �v � 1� �p �
�vc

�spread

�
vcm(ttk+1)� vcm(ttk)

g
� 1 + �p +

�vc

�spread

� 1 + �v for 0 � ttk < ttk+1

44

A.2.4. Global CesiumSpray variables

Let �g be the accuracy of the set of correct GPS-clocks, as postulated by the NavStar sys-
tem speci�cations. Consider fully correct operation of the system, that is, local networks
always have at least one correct GPS-node. Let �l be the precision of the set of node
clocks of a local network, achieved by the a posteriori agreement algorithm, equivalent to
�v as per the derivation of lemma 6.

A.2.4.1. Accuracy

Lemma 11 The clock of any correct CesiumSpray node veri�es the accuracy property,

that is, 9�CS such that:

jvck(t)� tj � �g + �l � �CS; for 0 � t

Proof: There is at least one external GPS-node clock in each local network which follows
the NavStar GPS time. By lemma 6, every clock is within �v � �l of that GPS-clock.
Correct GPS-node clocks are at most �g away from real time. 2

A.2.4.2. Precision

Lemma 12 The clock of any correct CesiumSpray node veri�es the precision property,

that is, 9�CS such that:

jvck(t)� vcl(t)j � 2:�CS � �CS; for 0 � t

Proof: It is a known result that the precision of a set of clocks with accuracy � is at
least as good as 2:�. 2

A.2.5. Accuracy preservation

All proofs until now have been based on a correctly operating CesiumSpray system, i.e.,
one with enough processors (cf. xA.3), and with an external time source per local network.
The main consequence is that normal node clocks are closely following GPS-clocks.
However, it is important to consider the consequences of a temporary outage of external

time| that is, a local network which is left without any correct GPS-node| even if
the reentry conditions after standard accuracy �CS is lost are not formally studied in
this paper. The accuracy preservation achieved by the a posteriori agreement algorithm
during a period Tout is given below.

Lemma 13 Given the temporary absence of external time at t = t0, the maximum interval

that the clock of any correct CesiumSpray clock is guaranteed to withstand without losing

accuracy �out, is given by:

Tout �
�out � �CS

�v

45

Proof: We are going to prove for a fast clock, i.e. one where vc(t0) = t0 + �CS. The
bound for slow clocks is symmetrical. From lemma 10, we obtain �v. So, for Tout = t1�t0:

vc(t1)� vc(to) � (1 + �v) Tout

On the other hand, given �nal accuracy �out, and worst-case starting accuracy �CS:

vc(t1)� vc(to) = Tout + �out � �CS

Finally,

Tout + �out � �CS � (1 + �v) Tout

Tout �
�out � �CS

�v

2

A.3. Proof of bounds on number of processors

Theorem 1 In order to generate and detect a tight broadcast, (fp+1)(fo+1) processors
are required.

Proof of necessity: Assume that only fo + fofp+ fp processors are used. Let P
f be the

set of failed processors and Pc be the set of correct processors. Consider an execution
where fp processors are failed and do not generate any broadcast. In this execution, only
fo + fofp messages are generated. Consider also that these messages can be grouped in
disjoint sets M0, M1, : : :, Mfp such that:

8b2M0
9po2Pc s:t po 62 A

b
pc8pc2Pc (A.1)

8b2Mi9pi2Pf s:t pi 62 A
b
pc8pc2Pc (A.2)

8i;j ; 1 � i � fp; 1 � j � fp pi 6= pj (A.3)

8i; o � i � fp;#Mi = fo (A.4)

In this execution, messages in M0 cannot be detected as tight broadcasts due to omis-
sions during the acknowledgment phases. Messages in each set Mi cannot be detected as
tight broadcasts due to lack of acknowledgments from one of the failed processors. Each
failed processor, pi a�ects a di�erent set of messages, Mi. This is execution is clearly
possible. Since failed processors a�ect disjoint subsets of messages of size fo they cannot
be detected as failed, thus, they are not removed from Pc

m by any correct processor. It is
easy to see that, in this execution, we never have Ab

m = Pc
m 8m2Pc ;8b2M. 2

Proof of su�ciency: LetMo be the set of messages a�ected by omissions. By de�nition
#Mo � fo. Let Mi be the set of messages a�ected by missing acknowledgments from
failed processor pi. If #Mi > fo, processor pi will be removed from Pc. Thus, in order
to contribute to prevent a message from being detected as tight broadcast, #Mi � fo.
There are at most fp failed processors, thus:

46

#fMo;M1; : : : ;Mfpg � #Mo +#Mi + : : :+#Mfp � fo + fpfo

That is, at most fo + fpfo messages can be disturbed by omissions or failed processors.
Thus, its su�cient to generate fo + fpfo + 1 messages to detect a tight broadcast. Since
failed processors may never generate any broadcast, at most fo + fpfo + 1 + fp = (fo +
1)(fp+1) processors are required in the system to generate and detect a tight broadcast. 2

Theorem 2 In order to achieve and detect su�cient evidence, (fp + 1)(fo + 1) + fp
processors are required.

Proof: The previous result establishes the number of processors required to generate
and detect a single tight broadcast (even if processors crash or are too late). To prevent
a resynchronization from being triggered by a faulty process that initiates a broadcast
too early, our protocol requires the generation of at least fp + 1 tight broadcasts (this is
known as waiting for su�cient evidence [28]). Thus, the new bound is the former, plus fp:
(fp + 1)(fo + 1) + fp. 2

Theorem 3 If processor behavior is strengthened to crash failure, in order to achieve and

detect su�cient evidence, only fo + fp + 1 +max (fp; fo) processors are required.

Proof: If the assumption about processor behavior is strengthened to crash failure,
maintaining the others (arbitrary clocks, controlled network omissions), the number of
processors needed is much smaller. The main reason for the improvement is that when
processors start doing omissions, they do not recover. This result can be informally
justi�ed this way: fo messages may be lost due to omissions; fp process may crash and
never send messages; another fo + 1 messages are needed to detect them as crashed;
if fo > fp, the messages required for crash detection are enough to achieve su�cient
evidence, otherwise fp messages need to be sent. 2

Theorem 4 The bounds of theorems 2 and 3 are always greater than or equal to 2fp+1.

The bounds on number of processors presented by these theorems always verify the
bound on the number of processors needed for fault-tolerant execution of the select function
(2fp + 1), so it is enough to rely on the former alone. We leave the proof to the reader.

Notes

1. Temps Atomique International, Universal Time Coordinated.

2. Fault-tolerance is achieved by replicating the GPS-nodes.

3. In an assumed Newtonian time frame.

4. It is known that digital clocks have a �nite granularity and increase by ticks. This notion is of
utmost relevance to derive ordering relations in distributed real-time systems[12].

5. In any case, limited to �p [28].

6. This is the physical propagation time, dependent on the variable distance between nodes.

7. This model �ts practically any LAN attachment one may think of, from workstation type
on-board VLSI controller to separate controller on multiboard computer. The little added
functionality may be achieved by modifying the LAN driver or writing a shell on top of it.

8. A message is a generic name for a piece of encapsulated information that circulates on the
network. It may contain a user-level message.

9. See [31] for details.

47

10.Continuous adjustment will then ensure it also preserves instantaneous rate (cf. appendix).

11. In section 5, we show the potential of such kind of tools.

12.Hence the utility of BNP 3 as a \failure detection" property, without which detection of faulty
processors would be impossible in a non-space-redundant network.

13.Di
q , used in the explanation of �gure 4, is no longer necessary, since any| e.g. the �rst|

detected broadcast will do.

14.Suppose there are 2fp + 1 running clocks, and 2fp + 2 more enter.

15.A note about engineering: the longest non-preemptable CPU execution is a crucial �gure to
compose this bound.

16.SPART is a registered trademark of Bull S.A.

17.The case for a slow clock is symmetrical.

References

1. Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight Causal and Atomic
Group Multicast. ACM Transactions on Computer Systems, 9(3), August 1991.

2. D. Couvet, G. Florin, and S. Natkin. A Statistical Clock Synchronization Algorithm for
Anisotropic Networks. In Proceedings of the Tenth Symposium on Reliable Distributed Sys-
tems, pages 41{51. IEEE, 1991.

3. F. Cristian, Aghili. H., and R. Strong. Clock Synchronization in the Presence of Omission
and Performance Faults. In Digest of Papers, The 16th International Symposium on Fault-
Tolerant Computing, pages 218{223, Viena - Austria, July 1986. IEEE.

4. Flaviu Cristian. Probabilistic Clock Synchronization. Distributed Computing, Springer Ver-
lag, 1989(3), 1989.

5. Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast channels. The
Journal of Real-Time Systems, 2(1):195{212, 1990.

6. FDDI. FDDI Token-Ring Media Access Control (MAC). ANSI X3.139, 1987.
7. Joseph Y. Halpern, Barbara Simons, Ray Strong, and Danny Dolev. Fault-Tolerant Clock

Synchronization. In Proceedings of the 3Rd ACM Symp. on Principles of Distributed Com-
puting, pages 89{102, Vancouver Canada, August 1984.

8. A.L. Hopkins, T.B. Smith, and J.H. Lala. FTMP - A Highly Reliable Fault-Tolerant Mul-
tiprocessor for Aircraft. Proceedings IEEE, 66(10):1221{1240, October 1978.

9. ISO DIS 8802/4-85, Token Passing Bus Access Method, 1985.
10. ISO DP 8802/5-85, Token Ring Access Method, 1985.
11. Hermann Kopetz and Wilhelm Ochsenreiter. Clock Syncronization in Distributed Real-Time

Systems. IEEE Transactions on Computers, C-36(8):933{940, August 1987.
12. Hermann Kopetz and Wolfgang Schwabl. Global time in distributed real-time systems.

Technical Report 15/89, Technische Universitat Wien, Wien Austria, October 1989.
13. C.M Krishna, K.G. Shin, and R.W. Butler. Ensuring Fault Tolerance of Phase-Locked

Clocks. IEEE Transac. Computers, C-43(8):752{756, August 1985.
14. L. Lamport and P. Melliar-Smith. Synchronizing Clocks in the Presence of Faults. Journal

of the ACM, 32(1):52{78, January 1985.
15. Gerard Le Lann and Nicholas Riviere. Real-time communications over broadcast networks:

the CSMA-DCR and the DOD-CSMA-CD protocols. Technical Report 1863, INRIA, March
1993.

16. Jennifer Lundelius and Nancy Lynch. A New Fault-TolerantAlgorithm for Clock Syncroniza-
tion. In Proceedings of the 3rd ACM SIGACT-SIGOPS Symp. on Principles of Distrib.
Computing, pages 75{88, Vancouver-Canada, August 1984.

17. David Mills. Network time protocol (version 2): Speci�cation and implementation. Technical
Report RFC 1119, DARPA Network Working Group, September 1989.

18. Alan Olson and Kang G. Shin. Probabilistic clock synchronization in large distributed sys-
tems. In Proceedings of the 11th International Conference on Distributed Computing Sys-
tems, pages 290{297, Arlington, Texas, USA, May 1991. IEEE.

48

19. B. Parkinson and S. Gilbert. Navstar: Global positioning system| ten years later. Proceed-
ings of the IEEE, 71(10):1177{1186, October 1983.

20. D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed Computing.
ESPRIT Research Reports. Springer Verlag, November 1991.

21. Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-Tolerant Clock
Synchronization in Distributed Systems. IEEE, Computer, pages 33{42, October 1990.

22. L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-primitive Group Communications Service.
In Proceedings of the 11th Symposium on Reliable Distributed Systems, Houston, Texas,
October 1992. IEEE.

23. L. Rodrigues, P. Ver��ssimo, and A. Casimiro. Using atomic broadcast to implement a poste-
riori agreement for clock synchronization. In Proceedings of the 12th Symposium on Reliable
Distributed Systems, pages 115{124, Princeton, New Jersey, October 1993. IEEE. Also as
INESC AR/29-93.

24. R. Rom. Ordering subscribers on cable networks. ACM Transactions on Computer Systems,
2(4), November 1984.

25. U. Schmid. Synchronized universal time coordinated for distributed real-time systems. Con-
trol Engineering Practice, to appear 1995.

26. Fred B. Schneider. Understanding Protocols for Byzantine Clock Synchronization. Technical
report, Cornell University, Ithaca, New York, August 1987.

27. Kang G. Shin and P. Ramanathan. Synchronizationof a Large Clock Network in the Presence
of Malicious Faults. IEEE, pages 13{24, 1985.

28. T. K. Srikanth and Sam Toueg. Optimal Clock Synchronization. Journal of the Association
for Computing Machinery, 34(3):627{645, July 1987.

29. P. Ver��ssimo and Jos�e A. Marques. Reliable broadcast for fault-tolerance on local com-
puter networks. In Proceedings of the Ninth Symposium on Reliable Distributed Systems,
Huntsville, Alabama-USA, October 1990. IEEE. Also as INESC AR/24-90.

30. P. Ver��ssimo and L. Rodrigues. A posteriori Agreement for Fault-tolerant Clock Synchro-
nization on Broadcast Networks. In Digest of Papers, The 22nd International Symposium
on Fault-Tolerant Computing, Boston - USA, July 1992. IEEE. INESC AR/65-92.

31. Paulo Ver��ssimo. Real-time Communication. In S.J. Mullender, editor, Distributed Systems,
2nd Edition, ACM-Press, pages 447{490. Addison-Wesley, 1993.

32. Q. Zheng and K. G. Shin. Fault-tolerant real-time communication in distributed comput-
ing systems. In Digest of Papers, The 22nd International Symposium on Fault-Tolerant
Computing Systems, pages 86{93. IEEE, 1992.

