
Using atomic broadcast to implement

a posteriori agreement for clock synchronization�

L. Rodrigues P. Ver��ssimo A. Casimiro

ler@inesc.pt paulov@inesc.pt casim@inesc.pt

Technical University of Lisboa - IST - INESC y

Abstract

In a recent paper we presented a new clock synchro-
nization algorithm, dubbed a posteriori agreement, a
variant of the convergence non-averaging technique.
By exploiting the characteristics of broadcast network-
s, the e�ect of message delivery delay variance is large-
ly reduced. In consequence, the precision achieved by
the algorithm is drastically improved. Accuracy p-
reservation is near to optimal.

In this paper we present a particular materializa-
tion of this algorithm, implemented as a time service
of the xAMp group communications system. The al-
gorithm was implemented using some of the primi-
tives o�ered by xAMp, which simpli�ed the work and
stressed its advantages. The paper also presents per-
formance results for this implementation obtained on
two di�erent infrastructures. Timings validate the de-
sign choices and clearly show that our algorithm is able
to provide improved precision without compromising
accuracy and reliability.

1 Introduction

A solution to the problem of maintaining a global
timebase consists of creating a virtual clock in each
node of the distributed system, which is synchronized
with all other virtual clocks using a clock synchro-
nization algorithm. Usually, each node must read re-
mote virtual clocks regularly or send a message at
a previously agreed instant. When using software

�A version of this report will be published in the Proceedings
of the 12th Symposium On Reliable Distributed Systems, Oct.
6-8, 1993, Princeton, New Jersey, c 1993 IEEE

yInstituto de Engenharia de Sistemas e Computadores, R.
Alves Redol, 9 - 6o - 1000 Lisboa - Portugal, Tel.+351-1-
3100000. This work was partially supported by the CEC,
through Esprit Projects 1226 (DELTA-4) and BR 6360 (Broad-
cast), and by JNICT through project Codicom.

based algorithms[9,14] message delivery times cannot
be computed with exactitude due to the variability of
network message delivery delays, thus a�ecting virtual
clocks precision. When using hardware [4,7] or hybrid
schemes[5,11] the variability of network access delays
is minimal but these solutions are expensive and hard
to implement. Probabilistic or statistical solutions to
damp the e�ect of the variance have also been pro-
posed [3,2]. In fact, a major limitation of all known
software clock synchronization algorithms designed for
arbitrary networks, is that precision is limited either
by the variance of the message delivery delay [8], or by
its upper bound [14].

In a recent paper [15], we presented an algorithm,
named a posteriori agreement, which uses broadcast
facilities inherent to local area networks to avoid the
inuence of the network access delay variability on the
precision of virtual clocks. The general algorithm is
communication and agreement protocol independent,
i.e., the choice of di�erent communication infrastruc-
tures and agreement protocols would lead to di�erent
implementations of the algorithm. We now present
an implementation of the a posteriori agreement al-
gorithm as a time service, provided together with a
group communications package: the xAMp [12]. The
paper demonstrates that it is possible to e�ciently
take advantage of the primitives provided by a group
oriented communications service. In particular, us-
ing the xAMp membership services, the integration
of new processes becomes very simple and transpar-
ent to the user: there is only one primitive both to
initiate the synchronization algorithm and join its ex-
ecution. Another advantage of using xAMp is the dy-
namic adaptation of the algorithm's fault tolerance
degree accordingly to process membership changes.

The paper is organized as follows: For self contain-
ment, an introduction to clock synchronization is giv-
en in section 2 and an overview of the a posteriori
agreement algorithm is presented in section 3. The

1

xAMp implementation of the algorithm is presented
in section 4. Next, initialization and integration are
presented in section 5, along with the dynamic proto-
col adaptation to membership changes. An optimized
version of the synchronization algorithm using a spe-
cialized atomic multicast synchronization protocol is
described in section 6. Performance results are pre-
sented in section 7 and �nal concluding remarks ap-
pear on section 8.

2 The clock synchronization problem

The goal of clock synchronization is to establish a
global timebase in a distributed system composed of
a set of processes, P, which can interact exclusive-
ly by message passing. Processes can only observe
time through a clock. One commonly used solution to
achieve this goal is to provide each processor, k, in the
distributed system (k 2 P) with an imperfect physical
clock pck (notation closely follows that of [13]). The
clock at a correct processor k can then be viewed as
implementing, in hardware, an increasing, continuous1

function pck that maps (non-observable) real time2 t

to a clock time pck(t). Through a clock synchroniza-
tion algorithm it is possible to derive, from the physi-
cal clock at each node k, a virtual clock vck satisfying
precision, rate, envelope rate, and accuracy. These
properties are formally presented in table 1.

Precision �v characterizes how closely virtual clocks
are synchronized to each other, �v is the drift rate of
virtual clocks, �� is the long term drift rate of virtual
clocks. Accuracy, �v characterizes how closely virtu-
al clocks are synchronized to real time. Due to the
nonzero drift rate of physical clocks, accuracy cannot
be ensured without some external source of real time.
In the context of internal synchronization, a good al-
gorithm should maintain clocks as close as possible
to the best real time source available, which may be
one of the correct clocks in the system. In that sense,
minimizing3 �v and ��, should preserve accuracy, and
that term will be used in this paper when informally
discussing these attributes.

Since physical hardware clocks can be permanently
drifting from each other, virtual clocks must be re-
synchronized from time to time. A clock synchroniza-

1It is known that digital clocks have a �nite granularity and
increase by ticks. This notion is of utmost relevance to derive
ordering and synchronism properties of real-time systems[6],
i.e. in using clocks. However, for sake of clarity, we chose to
simplify our expressions in this matter.

2In an assumed Newtonian time frame.
3In any case, limited to �p [14].

PC - Physical clocks; VC - Virtual clocks
(for some positive constants �p and �p, 8k;l 2 P)

PC1- Initial value, pck(0):
0 � pck(0) � �p

PC2- Rate, �p:

0 � 1� �p �
pck(t2)�pck(t1)

t2�t1
� 1 + �pfor 0 � t1 < t2

VC1 - Precision, �v:

jvck(t)� vcl(t)j � �v, for 0 � t

VC2 -Rate, �v:

1� �v �
vck(t2)�vck(t1)

t2�t1
� 1 + �v for 0 � t1 < t2

VC3 - Envelope Rate, ��:

1� �� �
vck(t)�vck(0)

t
� 1 + �� for 0 � t

VC4 - Accuracy, �v:

jvck(t)� tj � �v for 0 � t

Table 1: Summary of Clock Properties.

tion algorithm should then be able to: (i) generate
a periodic re-synchronization event. The time inter-
val between successive synchronizations is called the
re-synchronization interval, denoted T . (ii) provide
each correct processor with a value to adjust the vir-
tual clocks in such a way that precision and rate hold.
The clock adjustment can be applied instantaneously
or spread over a time interval. In both techniques,
for the sake of convenience, the adjustment is usually
modeled by the start of a new virtual clock upon each
re-synchronization event.

The computation of the adjustment can be mod-
eled by the evaluation of a convergence function [13].
The precision enhancement property speci�es the best
precision guaranteed after any two clock value eval-
uations at di�erent processors. The worst-case clock
precision, �v, is obtained by adding the term due to the
convergence function to the imprecision generated by
the drift between clocks during the re-synchronization
interval T . However, since the drift, �p, is typically of
the order of 10�6s, the precision enhancement prop-
erty of the convergence function is the relevant factor.
Next section describes how the a posteriori agreement
algorithm uses the properties of broadcast networks to
implement a highly precise convergence function.

2

� Broadcast: Nodes receiving an uncorrupt-
ed message transmission, receive the same
message.

� Error detection: Nodes detect any corrup-
tion done by the network in a locally re-
ceived message and discard it.

� Bounded Omissions: In a network with N

nodes, in a known interval, corresponding
to a series of M unordered message trans-
missions, omission failures may occur in at
most fo transmissions.

� Bounded Transmission Delay: The time
between any broadcast send request and
the delivery at those nodes that receive
the message, is bounded by two known
constants [�min;�max]. The variance in
the message delivery delay, ��, is then:
�� = �max � �min.

� Tightness: Nodes receiving an uncorrupt-
ed message transmission, receive it at real
time values that di�er, at most, by a known
small constant ��tight.

Table 2: Summary of Network Properties.

3 The a posteriori agreement algorithm

The a posteriori agreement algorithm is a new
variant of the convergence non-averaging technique.
The algorithm is highly precise and preserves close-
to-optimal rate drift without the need for hardware
support. The properties of broadcast networks are
used to drastically attenuate the traditional limita-
tion imposed by message delivery delay variance on
the obtained precision. The algorithm was formally
presented in [15]. This section intends to give an in-
formal overview of its basic principles.

To start with, we present our assumptions about
the system: (i) clocks may have arbitrary failures (eg.
provide erroneous or conicting values when read); (ii)
clock server processes (the ones running the protocol
over the network) exhibit failures from crash to uncon-
trolled omission or timing failures; (iii) the maximum
number of clock-process pairs with failures during a
protocol execution is fp.

Fundamental to our technique, is the use of broad-
cast network properties to improve the precision of
clock synchronization. In particular, we are target-
ing networks with the properties presented in table 2.
A study on the inuence of network timing proper-
ties on clock synchronization presented in [6] will help
explaining our method. It decomposes a message de-

Node a Node bSend time

Access Time

Propagation time

Receive time
send error

access error

propagation error

receive error

Figure 1: Network timing properties.

livery delay in the following terms: send time, �send,
to assemble the message and issue the send request;
access time, �access, for the sender to access the chan-
nel; propagation time, �prp, for the channel to copy
the message to all recipient links4; and receive time,
�rec, to process the message at the receiver. These
contributions are illustrated in �gure 1. The precision
of an algorithm is inuenced by the variances, which
together make up the message delivery delay variance.
We dubbed the inuence on the clock precision of the
send time variance, ��send, the send error. A simi-
lar terminology is used for the inuence on the clock
precision of the remaining terms.

We now analyze the relative importance of each of
these terms when local broadcast networks are used.
The propagation error is very small: in an Ether-
net, for example, the maximumdi�erence between the
times of physical reception of a message is less than
20 �s. The receive error, ��rec, cannot be disregarded
but it is usually small and may be improved. On the
contrary, the variance of the access time, ��access,
is hardly controlled and strongly depends on varia-
tions of the network load and other operating fac-
tors (eg. collisions in Ethernet, token rotation time
in a token-passing LAN). It is the dominant term in
message delivery delay variance, ��, and given that,
��tight = ��prp +��rec, a relevant timing property
of architectures based on local broadcast networks is
formulated the following way:

��tight � ��

The reader will now note three attributes of a fault-
less broadcast which are crucial for understanding our
algorithm: (i) a successfully transmitted message hmi
arrives virtually at the same time on all nodes, the
di�erence corresponding to the propagation error; (ii)
processing times of hmi reception at any two nodes

4This is the physical propagation time, dependent on the
variable distance between nodes.

3

For every processorm.

00 starti = 0 ;

01 when vc
i�1
m (t) = iT do

02 bcast hstart, i, mi ;
03 when message hstart, i, ni received from processor n

04 t
i;n
m = reception (real) time of hstart, i, ni

05 cc
i;n
m (t

i;n
m) = iT ; ; starti =starti + 1 ;

06 if (starti > fp) then bcast hvalid, i, n; vci�1
m (ti;nm)i

07 else bcast hnotsure, i, n; vci�1
m (ti;nm)i ;

08 // acknowledges must be collected and an agreement must
09 // be reached to select an unique and associated adjustment

10 when cci;n and �i;n
cc agreed :

11 vcim = cc
i;n
m +�i;n

cc ;

Figure 2: The a posteriori agreement (sketch)

vary at most by the receive error; (iii) thus, in response
to a successful broadcast, all nodes are able to take an
action within ��tight of each other.

An aim of the a posteriori agreement technique is
to improve precision by making the clock synchroniza-
tion algorithm depend on ��tight (instead of �� or
�max). To achieve this, the protocol exploits the list-
ed attributes of a fault-less broadcast as follows (see
�gure 2): synchronization starts with each processor
disseminating a hstartimessage at a pre-agreed instan-
t on its clock (line 1); after a series of broadcast ex-
changes, each tentatively initiating a new virtual clock
(line 5), an agreement is obtained both on a broadcast
yielding high precision, and on the clock to synchro-
nize from in order to yield the best accuracy possible
(line 11). It was thus dubbed a posteriori agreement.

More speci�cally, if message hstarti, addressed to
all including the sending node, meant: \Let us syn-
chronize! I think the time is iT . What time is it on
your clocks?", one can obtain the following:

� precision enhance-
ment: in response to hstart; i;mi, a new virtual
clock is tentatively initiated everywhere with iT ,
at the same physical time more or less an error
equal to ��tight (line 5);

� accuracy preservation: also at that time, the clock
of each recipient can be read and disseminated,
in an acknowledgment message (line 6); thus, it
is possible to agree on the best clock in terms of
accuracy (eg. the median) and to compute its
di�erence to iT (�cc), to adjust accuracy of the
tentative clocks.

This happens every time a process broadcasts
hstarti with success. There will be a number of ten-
tative virtual clocks launched, and an agreement pro-
tocol is run (a posteriori) to disseminate the chosen

one, together with the adjustment, through the clock
processes. To avoid starting a re-synchronization in
response to a faulty processor, at least fp + 1 hstarti
messages must be received by a majority of members
to reach agreement. Thus, at least 2fp + 1 processors
are required to tolerate fp clock/processors failures.

The algorithmbecomes more clear with an example
(see �gure 3): at the beginning of the synchronizations
virtual clocks exhibit a '0:04' precision and '0:03' ac-
curacy (units are abstract) as vci�1

2
('5:01') = '5:02'

and vci�1
3

('5:01') = '4:58' (left hand values); pro-
cessor 1 sends a hstarti message when its clock is at
'5:00', which is received by all with a ��tight = '0:01';
the candidate clocks are started with a dummy value
of '5:00' (right hand values); the virtual clocks of all
processors are read and, during the agreement the me-
dian value ('5:10') is chosen to adjust candidate clocks:
the computed adjustment is �cc = +'0:10'; when a-
greement is reached candidate clocks are adjusted; at
the end of the agreement processors exhibit a precision
of '0:01' (introduced by ��tight) and an accuracy of
'0:02'; �nally, continuous synchronization is used to
spread the di�erence between vci�1 and vci 5.

For clarity, in the example we have disregarded the
clock drift during protocol execution. However, the
precision obtained at the end of execution will also de-
pend on the clock rate drift, as with other agreement-
based synchronization protocols. The time required to
run the agreement protocol inuences precision by a
factor of �p but its e�ect can be neglected, given that
�p is very small. The receive error may be practically
canceled with co-processors and interrupt treatmen-
t, provided that there is an upper bound for message
reception interrupt service latency and that bound is
small. Then it may be intuitively said that precision
is optimal, in the sense that it cannot be better than
the di�erence between physical reception times of a
message at any two nodes (propagation error).

Accuracy preservation | which for internal syn-
chronization means following a correct hardware clock,
i.e. respecting an envelope rate | on the other hand,
cannot be optimal in the terminology of Srikanth &
Toueg [14], but is very close to it. In fact, the al-
gorithm collects the values of all clocks at the time
the candidate clock was started, and chooses a value
assured to be correct by discarding all possibly erro-
neous clocks (for instance, by using the median) in or-
der to adjust the selected candidate clock. The worst
of the correct clocks forms a bound of the optimal rate

5Although the new instantaneous clock may lag the previous
clock, continous synchronizationguarantees the monotonicity of
the virtual clocks.

4

Real-Time P1 P2 P3

vc(i-1) vc(i) vc(i-1) vc(i) vc(i-1) vc(i)

5:01

5:11

5:00 5:00

5:00

5:00

5:12

5:10

5:02 4:58

5:13 5:09

5:13 5:10 5:09

 = +0:10

5:21 5:20 5:10
5:20

5:48 5:47

5:28 5:25 5:16

5:26

5:23 5:24 5:11

5:21

5:46 5:46

continuous clocks

Final: 0:01 precision,
 0:02 accuracy (p2,p3)

d 0:01 error

different
processors
can reach
agreement
at
different
points
in time.

CC

Initial:
 0:04 precision,
 0:03 accuracy (p3)

Figure 3: a posteriori agreement execution.

drift envelope. Our algorithm will, in worst-case, syn-
chronize by that clock, deviating to the outside of the
envelope at most by the measure of ��tight, which,
as just discussed, can be made very small (see [15] for
details).

Our algorithm, like consistency based algorithm-
s [8], requires the execution of an agreement protocol.
However, the algorithm does not require any particu-
lar agreement protocol (as long as it exhibits bound-
ed termination). Since most fault-tolerant distributed
systems are LAN-based and implement some form of
agreement protocol, our algorithm can be easily in-
tegrated in such architectures. This paper presents
a case-study of this approach, by describing the inte-
gration of a posteriori clock synchronization in xAMp
communications service.

4 xAMp support

The xAMp [12] is a highly versatile group communi-
cations service aimed at supporting the developmen-
t of distributed applications, with di�erent depend-
ability, functionality, and performance requirements.

These range from unreliable and non-ordered to atom-
ic multicast, and are enhanced by e�cient group ad-
dressing and management support. The basic pro-
tocols are synchronous, clock-less and designed to be
used over broadcast local-area networks, and portable
to a number of them. The functionality provided
yields a reasonably complete solution to the problem
of reliable group communication. The use of xAMp to
support the implementation of the a posteriori agree-
ment algorithm has many advantages:

� Using xAMp, the implementation can bene�t
from the support to manage processor groups in
order to maintain information about the proces-
sors that are participating in clock synchroniza-
tion.

� Additionally, xAMp communication primitives
can be used to generate simultaneous broadcasts
and to implement the agreement algorithm nec-
essary to select the most precise clock.

The membership service supports the dynamic
modi�cation of groups, providing the primitives that
allow processors to join or leave a group. Furthermore,

5

when a group member fails, the event is detected and
indicated to the remaining group members. Naturally,
we have created a group dedicated to clock synchro-
nization. To participate in the clock synchronization,
one processor has simply to join the synchronization
group. The multicast service allows a message to be
delivered transparently to a group of processes. In par-
ticular, xAMp is able to mask the network omission
degree, alleviating the user of explicit concern with
omission faults (fo). Several qualities of service (QOS)
are available in xAMp making possible to choose the
ones that are more suitable to the selected application.

To implement the a posteriori agreement algorithm,
we have used the atomic QOS and the xAMp's reliable
datagram service, dubbed transmit-with-response (or
simply tr-w-resp). The tr-w-resp service can be seen
as an interface to the underlying unreliable multicast
(network-level) service but with automatic collection
of responses, message retransmission when omission-
s occur, and membership maintenance. The atomic
QOS is more complex and assures unanimity and to-
tal order respecting causality. An important property
of all qualities of service provided by xAMp is syn-
chronism, i.e. xAMp guarantees that the service is
provided within known time bounds. This last prop-
erty is essential to us, since the precision of virtual
clocks also depends on the time necessary to execute
the agreement protocol.

Clock synchronization can be implemented using
xAMp as follows (see �gure 4). At each re-synchro-
nization instant, the members of the synchronization
group try to start a new candidate clock by sending
a hstarti message using the tr-w-resp service (line 25).
Since tr-w-resp implements automatic retransmission,
the generation of a simultaneous broadcast is assured
if the sender does not fail. Two types of acknowledg-
ments are expected for the start message (line 34). At
each member, the �rst fp hstartimessages received are
considered not safe, as they may have been generated
by faulty senders. Thus, a hnotsurei acknowledgment
is returned to the sender. The remaining messages are
acknowledged with a response of type hvalidi, mean-
ing that at least fp other messages have already been
received. In any case, a candidate clock is started for
each hstarti message received (line 33). Note that in
this implementation, acknowledgments are sent only
to the sender of the hstarti message, who will verify
whether it created a valid candidate clock. Note also
that if a hstarti message is retransmitted, the associ-
ated clock is just started again.

The sender waits for the termination of the tr-w-
resp procedure. Under our failure assumptions, if the

sender part (for each member m)

20 // let P be the set of correct processors
21 (P is automatically updated by xAMp)
22 // let R be a bag of acknowledgments
23

24 when vc
i�1
m (t) = iT do

25 tr-w-resp (h start, i, m i, R);
26 if (9r 2 R : r is of type hvalidi) then

27 select �i;m
cc from R;

28 send h accept, i, m, �
i;m
cc i using atomic QOS ;

receiver part (for each member n)

30 starti := 0; vcin := none;
31 when h start, i, p i message received from

32 processorm at real time ti;mn do

33 start candidate clock cc
i;m
n ; starti :=starti + 1;

34 if (starti � fp) then send h notsure, vci�1
n (ti;mn) i to m

35 else send h valid, vci�1
n (ti;mn) i to m ;

36 when h accept, i, p, �
i;p
cc i message received from

37 processor p and vcin = none do

38 vcin = cc
i;p
n +�i;p

cc ; send h ok i to p ;

39 when h accept, i, q, �i;q
cc i message received from

40 processor q and vcin 6= none do
41 send h ok i to q; //just acknowledge reception

Figure 4: a posteriori agreement using xAMp

sender does not fail before tr-w-resp completes it will
receive an acknowledgment from every correct member
of the group. The incorrect members are automatical-
ly excluded by xAMp. If at least a process responds
with hvalidi, the sender can safely assume that it start-
ed a timely candidate clock (line 26). It then uses the
information provided in the acknowledgments to com-
pute an appropriate adjustment for its candidate clock
such that accuracy is preserved (using the algorithm
summarized in the previous section) and broadcasts
an accept instruction using the atomic QOS (simul-
taneously it disseminates the appropriate adjustment
for that candidate clock). Usually, several candidate
clocks will be started and several accept messages will
be received by every member. Since accept messages
are sent through atomic QOS (line 28), they will be
received by all members in the same order. The �rst
accept message delivered selects the candidate clock to
be used during the next synchronization interval (line
36); all other candidate clocks are simply discarded.
Note that if a process crashes before sending an ac-
cept, its candidate clock will simply be discarded as
soon as an accept arrives from a correct process.

6

5 Dynamic fault-tolerance adapta-
tion, initialization and integration

An important advantage of using xAMp services
is that the membership information provided can be
used to verify if the system maintains the required
fault-tolerance degree. When desired, the clock syn-
chronization service can be requested to dynamically
adapt to membership changes. Thus, the user may s-
elect one of two clock synchronization modes, namely
the hard-clock mode and the soft-clock mode:

� In the hard-clock mode, the user speci�es a desired
fault-tolerance degree, i.e., the number of clock
and/or processor faults that need to be tolerated.
As stated in section 3, the minimum number of
nodes to tolerate fp faults is 2fp+ 1. The service
ensures that the virtual clocks are only running
while the minimum number of nodes is available
in the system.

� In the soft-clock mode, continuity of service is pro-
vided for any number of clocks in the system.
When the membership changes, in particular if
some nodes are lost, the protocol dynamically
adapts and the synchronization service reports to
the user that the service is running with a lower
fault-tolerance degree.

Both modes are particular cases of a more generic
parameterization supported by the xAMp clock ser-
vice. When the clock service is started, the desired tol-
erated faults are speci�ed as an interval [fmin; fmax].
In the hard-clock mode, we have fmin > 0. In the soft-
clock case, we simply have fmin = 0 . Upon system
initialization, the clock synchronization service is only
started when at least 2fmin + 1 nodes are present (in
the soft-clock mode the service can be started as soon
as the �rst node joins the algorithm). If during sys-
tem evolution the number of processors becomes low-
er than fmin, the service is halted and an exception is
generated. The parameter fmax is used to save system
resources. If more than 2fmax + 1 nodes are present,
the extra members of the clock-synchronization group
do not need to generate redundant start messages (al-
though they still have to acknowledge incoming start
requests).

When the number of processors in the system, N ,
lies within fault-tolerance interval, i.e., N 2 [2fmin +
1; 2fmax + 1], the protocol runs in adaptative mod-
e. When the number of processors is in the range,
[2fmin+1; 2(fmin+1)+1[, the algorithm tolerates fmin

faults, in the range [2(fmin + 1) + 1; 2(fmin + 2) + 1[,

it tolerates fmin + 1 faults, and so on. Whenever the
interval changes, the user is informed of the new fault-
tolerance degree.

The membership information is also extremely use-
ful for system initialization. Every time a process joins
the clock synchronization the new membership is pro-
vided to all members, including to the new member.
From the membership information, the newcomer may
infer the state of the group. Let N be the number of
group members after a join; If N < 2fmin+1, there is
still no quorum6 to start the synchronization service
and the newcomer simply awaits for other processors
to join the service. If N = 2fmin + 1, the newcomer
has just formed the required quorum, thus all mem-
bers will start the clock service by broadcasting hstarti
messages for the �rst synchronization round.

Finally, if N > 2fmin+1, the clock synchronization
service is already running and the newcomer just waits
for the next re-synchronization round to catch up with
the running members. However, there is still a prob-
lem to be solved in this case: the new process may join
the synchronization group during a re-synchronization
round and thus miss some of the start or accept mes-
sages. The membership change service has two impor-
tant properties that we use in this case: (i) joins and
leaves are totally ordered with respect to atomic mes-
sages; (ii) group dependent data can be transferred to
the joining process during the join operation. Using
these two mechanisms, integration of joining processes
is performed in the following way: when a processor
joins the synchronization group it obtains the current
round, i. It then waits for an accept for round i+1. If
there is no local matching candidate clock for the �rst
round i + 1 accept, this means that the process has
joined between the transmission of the start message
and of the corresponding accept: it must then wait for
a round i + 2 accept. Otherwise it can synchronize
immediately on round i+ 1.

6 A specialized protocol

In section 4, we have described an implementa-
tion of the a posteriori clock synchronization using the
xAMp user interface. In this section we show how an
even simpler and more e�cient implementation of our
algorithm can be obtained by developing a specialized
atomic multicast synchronization protocol. This spe-
cialized protocol was designed using the experience ob-
tained by developing xAMp. In particular, it closely
follows the implementation of xAMp atomic QOS.

6In the hard-clock mode.

7

sender part

50 when user request to send hmi do
51 tr-w-resp (hmi;R);
52 if (8r 2 R; r is hokm) then tr-w-resp (haccmi;R);
53 else tr-w-resp (hrejmi;R);

receiver part

60 when message hmi received from processor p do
61 remove hmi from Q;
62 add hmi to Q; start wdTimerhmi;
63 if (I am accessible for hmi) then send (hokmi);
64 else send (hnokmi);
65 when message haccmi received from processor p do
66 stop wdTimerhmi; send (hokacci); acceptedhmi := true;
67 when message hrejmi received from processor p do
68 stop wdTimerhmi; send (hokreji); remove hmi from Q;
69 when wdTimerhmi expires do
70 call recovery function (accept or reject will be received)
71 when hmi is on top of Q and acceptedhmi do
72 deliver hmi;

Figure 5: two-phase accept (used in atomic QOS)

The implementation described in section 4 runs in
two phases: in the �rst phase, messages are broadcast
to generate a simultaneous event; in the second phase,
an agreement is run by atomically broadcasting vali-
dation messages (the accept decision). The reason to
use an ordered broadcast quality of service in the sec-
ond phase is that the message ordering is exploited to
implement the agreement. Since all accept messages
are received in the same order by all members, the
�rst message can be used to unanimously select the
candidate clock. However, the careful reader will no-
tice that the �rst protocol phase can be immediately
used to order hstarti messages, making possible to im-
plement a cheaper agreement protocol. In fact, the
underlying broadcast medium is a natural sequencer
of messages: if message hai crosses the network before
message hbi, hai will be received before hbi everywhere.
Not surprisingly, this technique is already used in the
xAMp to implement the atomic QOS! Thus, before
developing a new protocol, we will take a closer look
at xAMp to see how the atomic QOS works.

The operation of the atomic protocol is depicted
in �gure 5. It consists of a two-phase accept protocol
that resembles a commit protocol where the sender co-
ordinates the protocol: it sends a message, implicitly
querying about the possibility of its acceptance (line
51), to which recipients reply (dissemination phase).
When messages are received, they are inserted in a
receive queue by the order they have crossed the net-
work (line 62). If a message is retransmitted, it is
removed and inserted again, to respect its new order
(line 61). In the second phase (decision phase), the

sender checks whether responses are all a�rmative, in
which case it issues an accept (line 52) { or reject (line
53), otherwise. To ensure the reception of the deci-
sion, by all correct recipients, the accept and reject
frames are also sent using the tr-w-resp procedure. If
the sender fails before successfully disseminating the
accept or reject message, this is detected by the recip-
ients through the wait-decision timer (wdTimer, line
69). In this case, a dedicated recovery function is run
to terminate the protocol (line 70). The function en-
sures that the same decision (an accept or a reject) is
delivered to all recipients. The recovery algorithmwas
described in detail in [16] and formally validated [1].

The reader will notice the similarities between this
protocol and that of section 4. The main di�erence is
that order is established immediately in the �rst phase
of the protocol, by inserting messages in a queue by the
order they have crossed the network. However, note
that a message can only be considered safely ordered
when a decision arrives. Before that point, there is the
possibility of message retransmission, and the conse-
quent re-ordering of the message in the queue. A con-
sequence of this strategy is that now every message
must be explicitly accepted or rejected (that is dis-
carded). Due to their similarities, it's almost trivial to
modify the two-phase accept algorithm to implement
a specialized atomic multicast synchronization proto-
col. The specialized protocol is presented in �gure 6.
It is almost a line-by-line copy of the two-phase accept
used for atomic QOS, with minor changes such as the
start of candidate clocks and the exchange of times-
tamps and clock adjustments (lines 86, 87, 83 and 99).
The techniques for initialization, integration and dy-
namic adaptation to faults described in the previous
section are still valid for this version of the algorithm.

7 Performance

This section presents performance results of the im-
plementation of the a posteriori clock synchronization
algorithm provided by the xAMp protocol suite. We
have collected results from two di�erent infrastruc-
tures: (i) using the specialized communications board
developed in the DELTA-4 project [10] with the pro-
tocol running on a real-time executive (the SPART 7

kernel) and accessing a token-bus network; (ii) using
SUN-4 workstations, with the protocol running in the
kernel and accessing an Ethernet network.

The precision of the convergence function exe-
cuted by the a posteriori agreement algorithm was

7SPART is a registered trademark of Bull S.A.

8

sender part

80 when cc
i�1
m = kT do

81 tr-w-resp (hstart; i;mi;R);
82 if (9r 2 R : r is hvalidi) then

83 choose �i;m
cc ; tr-w-resp (hacci;m;�i;m

cc i;R);
84 else tr-w-resp (hreji;mi;R);

receiver part

85 when message hstart; i; ni received from processor n do

86 t
i;n
m = reception (real) time of hstart, i, ni

87 start cci;nm (ti;nm) = iT ; starti := starti + 1;
88 remove hi; ni from Q; add hi; ni to Q; start wdTimerhi;ni;

89 if (starti � fp) then send h notsure, cci�1
m (ti;nm) i to n

90 else send h valid, cci�1
m (t

i;n
m) i to n

91 when message hacci;p;�
i;p
cc i received from processor p do

92 stop wdTimerhi;pi; send hokacci to p;

93 acceptedhi;pi:=true; cc
i;p
m = cc

i;p
m +�i;p

cc
94 when message hreji;qi received from processor q do
95 stop wdTimerhi;qi ; send hokreji to q; remove hi; qi from Q;
96 when wdTimerhi;qi expires do
97 call recovery function (accept or reject will be received)
98 when hi; ri is on top of Q and acceptedhi;ri do

99 if (ccim 6= none) then ccim := cc
i;r
m ;

Figure 6: Specialized protocol.

proven [15] to be limited by:

�v � (1 + �p)��tight + 2�p�
max
agreem

Thus, we have concentrated on measuring ��tight,
which is the limiting factor of the precision achieved
by our protocol. The value of �� = �max � �min, is
not relevant for our algorithm and strongly depends
on the network access method, network con�guration
and | particularly | network load. However, for
comparison of a posteriori agreement with other algo-
rithms we can use as reference values, �min < 1ms,
�max 2 [10ms; 50ms] (with load), and a typical value
for � within the range of [1ms; 1:5ms].

Due to the characteristics of ��tight, the set-up for
making the measurements is an interesting issue on its
own. Since �tight is the real time di�erence between
two distributed events, we had to resort to some ex-
ternal measurement tool. Thus, we have instrumented
the clock-synchronization code to, upon reception of
synchronization messages, activate some externally ac-
cessible pins of the hardware infrastructure. On SUN
workstations, we have used one of the RS232 serial
port control signals. These signals were collected by
a data-analyzer, allowing us to measure the real time
interval between the associated events. It is interest-
ing to notice that, since we were measuring very low
values (usually, far less than 1ms), we had to enforce

Scenario typical worst-case

��tight
SUN (C) 200�s 500�s
SUN (B) 100�s 200�s
SUN (A) - -

in SPART 40�s 100�s

�agreem
SUN (x10�6) 2ms(< 0:5�s) < 100ms(< 1�s)

Table 3: ��tight and �agreem

the direct activation of external pins. For instance, in
the SUN workstations we had to access directly the
port controller (in our machines, the Zilog 8530 SCC)
since the access through a kernel service introduced
a variance as large as the intervals we were trying to
capture.

The measurements are summarized in table 3. In
the SUN infrastructure, we have collected values from
two di�erent software layers. In fact, although in both
cases the protocol executes in the kernel, the values
clearly show that a better precision is obtained in the
lower layers of the architecture (this is also demon-
strated by the results of Kopetz [6]). The software
executing in the SUN kernel can be viewed as hav-
ing three layers: (A) the proprietary Ethernet device-
driver; (B) the abstract network layer, that gives to
the xAMp an abstraction of a generic local-area net-
work, and; (C) the xAMp layer, where the protocol
runs. The bu�ering time between the abstract net-
work and the xAMp software (and its variance) is e-
nough to raise ��tight from 200�s to 500�s. We have
not changed the SUN's Ethernet driver but we can
assume that if the sources were available, we could
reach values similar to those obtained in the DELTA-
4 boards, where ��tight is less than 100�s. We have
made our measurements under di�erent network load-
s, by arti�cially loading the network with background
tra�c. Unlike, �max, the value of ��tight su�ered no
inuence from the network load. This is an impor-
tant advantage of our algorithm in comparison with
algorithms that depend on ��.

The precision is also a�ected by the drift of the
clock during the time required to reach agreement.
However, since physical clocks have a drift rate in the
order of the 10�6, even a conservative value of 100ms

for the agreement time (typical values are in the or-
der of 2 � 6ms, depending on the number of group
members) adds just a 1�s to the algorithm precision.

9

8 Conclusions

Convergence-non-averaging algorithms are attrac-
tive because they use a convergence function both to
generate the re-synchronization event and to adjust
virtual clocks. However, the precision achieved by
previous algorithms in this class was limited by the
maximum message transit delay in the system. We
showed that the properties of broadcast networks can
be used to overcome this disadvantage. The a pos-
teriori agreement approach removes the dependency
of precision on message delay variance or maximum,
and shifts it to the dependency of ��tight, a value
drastically smaller in most existing LANs.

In this paper we have shown that a reliable broad-
cast protocol suite, with accompanying group mem-
bership services, can simplify the implementations of
our protocol. The xAMp communications package was
specially designed to make full pro�t of the proper-
ties of broadcast networks, thus it is a perfect match
for the a posteriori agreement requirements. Funda-
mental to the a posteriori agreement technique is the
generation of \simultaneous" events to start precise
candidate clocks and the subsequent execution of an
agreement protocol to select the appropriate candi-
date clock to be used during the next synchronization
period. The xAMp provides the qualities of service
required to achieve both goals. A specialized atom-
ic multicast synchronization protocol, obtained as a
variant of the atomic QOS, was also presented.

Finally, the paper presents performance results ob-
tained on two di�erent infrastructures. Timings vali-
date the design choices and clearly show that our al-
gorithm is able to provide improved precision without
compromising accuracy and reliability.

Acknowledgments

The authors are grateful to W. Wogels who helped to set-up

the performance measurement tools. We are also grateful to F.

Cosquer, J. Ru�no, and to the anonymous reviewers for their

comments on earlier versions of this paper.

References

[1] M. Baptista, L. Rodrigues, P. Ver��ssimo, S. Graf, J.L.
Richier, C. Rodriguez, and J. Voiron. Formal speci�cation
and veri�cation of a network independent atomic multi-
cast protocol. In J. Quemada, J. Ma~nas, and E. Vazques,
editors, FORMAL DESCRIPTION TECHNIQUES, III,
IFIP, pages 345{352. North-Holland, 1991.

[2] D. Couvet, G. Florin, and S. Natkin. A Statistical Clock
Synchronization Algorithm for Anisotropic Networks. In
Proceedings of the Tenth Symposium on Reliable Distribut-

ed Systems, pages 41{51. IEEE, 1991.

[3] Flaviu Cristian. Probabilistic Clock Synchronization. Dis-
tributed Computing, Springer Verlag, 1989(3), 1989.

[4] A.L. Hopkins, T.B. Smith, and J.H. Lala. FTMP - A
Highly Reliable Fault-TolerantMultiprocessor for Aircraft.
Proceedings IEEE, 66(10):1221{1240, October 1978.

[5] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Syn-
cronization in Distributed Real-Time Systems. IEEE

Transactions on Computers, C-36(8):933{940, August
1987.

[6] Hermann Kopetz and Wolfgang Schwabl. Global time in
distributed real-time systems. Technical Report 15/89,
Technische UniversitatWien, Wien Austria, October 1989.

[7] C.M Krishna, K.G. Shin, and R.W. Butler. Ensuring Fault
Tolerance of Phase-Locked Clocks. IEEE Transac. Com-

puters, C-43(8):752{756, August 1985.

[8] L. Lamport and P. Melliar-Smith. Synchronizing Clocks in
the Presence of Faults. Journal of the ACM, 32(1):52{78,
January 1985.

[9] Stephen R. Mahaney and Fred Schneider. Inexact agree-
ment: Accuracy, precision, and graceful degradation. In
Proceedings of the Proceedings 4th Symposium Princ. Dis-

tributed Computing, pages 237{249,Montreal-Canada,Au-
gust 1985.

[10] D. Powell, editor. Delta-4 - A Generic Architecture for

Dependable Distributed Computing. ESPRIT Research Re-
ports. Springer Verlag, November 1991.

[11] Parameswaran Ramanathan, Kang G. Shin, and Ricky W.
Butler. Fault-TolerantClock Synchronization in Distribut-
ed Systems. IEEE,Computer, pages 33{42, October 1990.

[12] L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-primitive
Group Communications Service. In Proceedings of the

11th Symposium on Reliable Distributed Systems, Hous-
ton, Texas, October 1992. INESC AR/66-92.

[13] Fred B. Schneider. Understanding Protocols for Byzantine
Clock Synchronization. Technical report, Cornell Univer-
sity, Ithaca, New York, August 1987.

[14] T. K. Srikanth and Sam Toueg. Optimal Clock Synchro-
nization. Journal of the Association for Computing Ma-

chinery, 34(3):627{645, July 1987.

[15] P. Ver��ssimo and L. Rodrigues. A posteriori Agreemen-
t for Fault-tolerant Clock Synchronization on Broadcast
Networks. In Digest of Papers, The 22th International

Symposium on Fault-Tolerant Computing, Boston - USA,
July 1992. INESC AR/65-92.

[16] P. Ver��ssimo, L. Rodrigues, and M. Baptista. AMp: A
highly parallel atomic multicast protocol. In Proceedings

of the SIGCOM'89 Symposium, Austin-USA, September
1989. ACM.

10

