
A Fault-Tolerant Secure CORBA Store using

Fragmentation-Redundancy-Scattering

Cristina Silva

FC/UL

(csilva@navigators.di.fc.ul.pt)

Lu��s Rodrigues

FC/UL

(ler@di.fc.ul.pt)

Abstract

This paper presents the design of a secure and fault-tolerant CORBA datastore
based on the Fragmentation-Redundancy-Scattering (FRS) technique. This technique
consists in fragmenting the con�dential data and scattering the resulting fragments
across several archives. The FRS-Datastore service interacts with the other CORBA
services, in particular with the Persistence, Security and Trading services. One of
our goals is to gain a better understanding how the FRS technique can be applied to
an open environment prone to crashes and network partitions and using exclusively
standard invocations.

1 Introduction

The Fragmentation-Redundancy-Scattering (FRS) is a technique that can be used to
achieve security and fault-tolerance [1]. It consists in fragmenting the con�dential data
and scattering the resulting fragments across several archive sites of the distributed sys-
tem. Fragmentation is performed so that any isolated fragment contains no signi�cant
information. Scattering is performed in such a way that each archive contains just a
subset of (unrelated) fragments and that each fragment is stored in more than one site.
The technique provides intrusion-tolerance: if a node is compromised, the intruder has no
access to relevant information (and if compromised fragments are deleted or altered, they
can be recovered from other nodes).

This paper presents the design of a secure and fault-tolerant CORBA [2] datastore
based on the FRS technique. Our aim is to implement a datastore that can be used by
a Persistent Data Service [3] to securely store the state of Persistent CORBA objects.
The FRS-Datastore design is based on the composition of CORBA objects which interact
exclusively using standard object invocations. Thus, the FRS-Datastore can be deployed
across di�erent ORBs.

2 Fragmentation-Redundancy-Scattering

For self-containment we present a brief description of how the FRS technique can be
applied to implement a secure and fault-tolerant store. This description is based on the
implementation of the secure data archive of the Delta-4 system [4]. We will later highlight
the main di�erences between our design and the design used in the Delta-4 system.

The basis of the technique is to cut the data in several fragments. The fragmenta-
tion operation must ensure that, once the fragments are isolated, no information can be



Figure 1: FRS steps

obtained from them. Thus, the fragment size must not depend on the size of the original
data. The idea is to split the data to be archived into pages of �xed size (adding some
padding to the last page if necessary). Each page is ciphered and signed. The data of each
page is then scattered among a �xed number of fragments. This procedure is illustrated in
Figure 1. Fragments are named using a one-way cryptographic function and are derived
from the object's persistent identi�er, the fragmentation key, the page number, and the
fragment number.

Once all fragments are produced, these are sent in random order to the archive nodes.
The distribution policy must ensure that the fragments are distributed among the di�erent
archive nodes and that R copies of the same fragment are stored (for fault-tolerance). It
should also promote some sort of load-balancing (i.e., to take into account the available
space at each node). The service requires the availability of a security server where the
fragmentation key for each object is securely stored (the implementation of the security
server lies outside the scope of the paper).

The FRS technique complements the security provided by ciphering by making the
store less prone to cryptanalysis: an intruder attacking an individual archive has no access
to all fragments. Even if he/she gets access to all N fragments, N !=2 cryptanalysis have
to be performed to re-constitute the clear page.

3 Design overview

The design of CORBA FRS-Datastore uses two types of objects: Mediators and Fragment
Archives. The Mediators are responsible for the fragmentation and scattering of data,
and are accessed through a Persistent Data Service (PDS). The Archives are responsible
for storing individual fragments, and export a private interface to the Mediators. In some
cases, the Archives will issue call-backs to the Mediators, thus Mediators and Archives
assume both the role of clients and servers with regard to each other.

Several Mediators can and will coexist in the system. We assume that the communi-
cation between the PDS and the Mediator is secure in order to avoid ciphering invocations
from the PDS to the Mediator. Typically, a Mediator will be instantiated in the machine
that hosts the PDS although this is not strictly required (if a part of the network can
be assumed to be secure). It is also possible to instantiate a di�erent Mediator for each



Figure 2: FRS-Datastore

user process or even for each persistent object. This is a con�guration level policy that
is outside the scope of this paper. For clarity, in the following text we just discuss the
operation for a single persistent object bound to a given mediator.

In order to implement a store operation, the data is provided by the Persistent Data
Service to the Mediator. The Mediator performs the fragmentation and establishes the
scattering map, i.e., it selects which archives will store each fragment. Individual fragments
are then sent randomly from the Mediator to the Fragment Stores in background. The
fragmentation key is securely store in an Security Server.

In order to perform a restore operation, the Mediator recovers the fragmentation key
from the Security Server and rebuilds the scattering map. It then issues \request for frag-
ments" to the relevant Archives in order to obtain one copy of each fragment. Fragments
are sent to the Mediator by call-backs. For additional security, the dissemination can also
be scattered in the time domain (i.e., each Archive delays the call-back by a random time).
The Mediator waits until all call-backs are received and reconstructs the object state. If
one or more fragments are detected to be corrupted (or if one of the Archive sites fails
during the process), the Mediator will issue additional \request for fragments" in order to
obtain additional copies of the damaged fragments.

A fundamental aspect of our design is that the Mediator and the Archives interact
through standard CORBA invocations. Thus, the FRS-Datastore is independent of ORB-
speci�c functionalities. For increased intrusion tolerance, it is possible to con�gure the
system such that the Mediator uses a di�erent inter-ORB protocol to communicate with
each individual Archive as illustrated in Figure 2 (this would require additional complexity
for successful communication eavesdropping).

4 Interaction with the Persistence Service

The FRS-Datastore, as the name implies, is implemented at the datastore level of the
CORBA Persistent Object Service Speci�cation. In its simplest form, the datastore will
o�er an interface to save the state of the object in bulk (i.e., the complete raw state in a
single store/restore invocation).



For performance reasons, it would be interesting to be able to update just a portion of
the persistent state without performing a complete fragmentation and scattering operation.
Since the object is paged, it should be possible to reconstruct and restore just the a�ected
pages. However, since fragment names are obtained using a one-way function from the
object identi�er, and there is no explicit \fragment index" stored in the system, it is not
obvious how such operation can be implemented e�ciently without changing the naming
algorithm (see also section 6).

5 Interaction with the Security service

Our goal is to use the mechanisms de�ned in the standard CORBA Security Service
Speci�cation to perform identi�cation, authentication, authorization, access control and
other security functions. The security service is responsible for authenticating the users
and to store authorization information (service and �le access rights).

Access control policies can be enforced to prevent unauthorized access to the FRS-
Datastore. Access control policies can be enforced at di�erent levels: principals not allowed
to use the service at all, would be prevented from accessing a Mediator; the Mediator
must check if an authenticated user is authorized to perform the requested operation
(read/write/delete); additionally, each Archive site can impose site-speci�c restrictions on
which principals are allowed to store fragments in the archive (we will return to this issue
later). Privilege delegation is used to propagate the user rights through the object chain
(PDS, Mediator, Archives and Security Server).

In terms of communication security the FRS-Datastore requires authentication func-
tions (to mutually authenticate Mediators and Archives), integrity protection (this simpli-
�es the design) but it does not requires con�dentiality protection: this last issue is covered
by the ciphering and scattering operation inherent to the FRS approach.

6 Open issues

In the Delta-4 architecture, each fragment is multicast to all archives which decide whether
to store the fragment or not (reliable multicast was supported by the run-time system).
During the retrieve operation, the list of fragments is broadcasted and each archive sends
the fragments it owns. This implementation also assumes that the archives are either
operational or failed. Basically, the implementation described in [1] heavily dependent on
the availability of e�cient reliable multicast primitives [5].

In our design, we are targeting a more open environment, where all interactions are
based on standard point-to-point invocations. Also, we would like to make the service
tolerant to network-partitions and to temporary disconnections of some of the Archives.
We see two possible alternatives to extend this work into such direction, that we would
eventually be pleased to discuss during the workshop.

The �rst alternative, that we call static scattering, consists in having the Mediators
to make the scattering plan based on a static, pre-de�ned set of Archive sites, regardless
of the availability at run-time. Temporary disconnections would be treated as failures for
the matter of storing/retrieving fragments. The scattering replication degree would be
con�gured such that the system, in run-time, has a high probability of storing/accessing
at least one copy of each fragment.



The second alternative, that we call dynamic scattering, consists in having the Medi-
ators to plan the scattering map according to the available Archives at the time the store
operation is performed. This would also make easier to implement access control policies
to each individual Archive site: before establishing the scattering map, the Mediator would
inquire the Archives about their availability/authorization to store information on behalf
of the principal. However, dynamic scattering requires the scattering map (or the list of
Archives used) to be securely stored in the Security Service, along with the fragmentation
key (such that the map can be later recovered for data retrieval).

Taking into account temporary disconnections introduces also another level of com-
plexity. Since the fragment names should not disclosure any information about the data,
there is no way to distinguish di�erent \versions" of the same fragment. The only way
to make such distinction is to create \new" fragments and to make the version number
(or timestamp) a parameter of the one-way function used to name such fragments. Thus,
some sort of \garbage collection" mechanism needs to be implemented to delete obsolete
fragments from the Archives (note that not all the Archives that store an old \version"
may be reachable when the new \version" is created). This same feature makes also dif-
�cult to perform updates to a small portion of the persistent state of an object without
changing the whole persistent state.

7 Conclusions and future work

We have presented the design of a highly secure and fault-tolerant distributed datastore
based on the CORBA model. The FRS-datastore has many con�guration parameters
that impact the quality-of-service in the security, fault-tolerance and performance domains
(page size, ciphering method, replication level, scattering in the time domain, etc). We
intend to gather experimental data from the prototype that we are currently building to
get a better understanding of the tradeo�s in this framework.

References

[1] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in distributed systems. In
IEEE Symposium on Research in Security and Privacy, pages 110{121, Oakland (CA),
USA, 1991.

[2] OMG. The Common Object Request Broker: Architecture and Speci�cation, 1997.

[3] OMG. CORBAservices: Common Object Services Speci�cation, 1997.

[4] D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed Com-

puting. ESPRIT Research Reports. Springer Verlag, November 1991.

[5] L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-primitive Group Communications
Service. In Proceedings of the 11th Symposium on Reliable Distributed Systems, pages
112{121, Houston, Texas, October 1992. IEEE.


