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Abstract

Increasing use of distributed systems, with the corre-

sponding decentralization of activities, stimulates the

need for structuring those activities around group-

s of participants, for reasons of consistency, user-

friendliness, performance and dependability. Two very

diverse �elds illustrate this trend: computer supported

cooperative group working; distributed computer con-

trol.

This paper discusses ways for structuring systems

and de�ning building blocks for group-oriented activi-

ty. It is felt that e�cient abstractions for the design

of highly distributed applications should be structured

around concepts like object groups. Furthermore, the

group concept should pervade the whole architecture,

from network multicasting, to group communication-

s and management, and fundamental synchronisation

paradigms. Emerging technology will help materialize

these concepts.

Introduction

Increasing use of distributed systems, with the corre-
sponding decentralization of activities, stimulates the
need for structuring those activities around group-
s of participants, for reasons of consistency, user-
friendliness, performance and dependability. The con-
cept appears intuitively in all avors of distributed
actions: when participants cooperate in an activity
(eg. management of a partioned database, distribut-
ed document processing or distributed process con-
trol), compete for a given activity (eg. distributed
use of a resource), or execute a replicated activity for
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performance or fault-tolerance reasons (eg. replicated
database server, replicated actuator).
Paradigms, algorithms and technologies to assist

the solution of these distributed problems have been
presented in the recent years (distributed synchro-
nization, replication and concurrency control, reliable
group communication, multicast networking support).
A generic systematics of group orientation in distribut-
ed systems is yet to be developed.

Rationale for Group-orientation

The requirements of heavily distributed activities do
not conform with raw interfaces traditionally sup-
plied as "distribution support", such as \sockets" or
\streams". Building blocks for group activity have
been studied in the past in pioneering projects such
as the V-kernel [7], ISIS at Cornell [5], the Circus
project [8], and also [2,14]. They are currently the sub-
ject of great interest, illustrated by projects as the
PSYNC/x-Kernel work at Univ. of Arizona [21], the
European DELTA-4 project [22], the work on object
groups by ANSA [4], the IBM ight control AAS [11],
the work of Molina [12].
In order for applications with high levels of concur-

rency to be correctly designed, have acceptable perfor-
mance, and remain operational for long enough, what-
ever distribution support environment to be conceived
must combine: encapsulation, modularity and diversi-
ty; fault tolerance and timeliness; distributed algorith-
mics; events and state (i.e. actions and data).
Encapsulation, modularity and diversity may be pro-

vided by the combined notion of object and group. Dif-
ferent object groups in a system maybe concerned with
di�erent activities, have di�erent methods and proper-
ties, solve di�erent problems in a harmonious way, al-
low for several domains of consistency and ordering to
coexist, provide incremental levels of fault-tolerance,
real-time hardness, etc.
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It is hard to admit that there is a system not requir-
ing any form of fault tolerance and timeliness. The
more computations rely on distribution and interac-
tiveness, the more important these attributes become.
Its achievement in an incremental way is eased by the
notion of groups.
An existing reluctance to having services with high

quality (eg. reliable multicast) provided o�-the-shelf in
a system, has been related to the literal interpretation
often made of the end-to-end argument [23]. In fact,
the argument is against providing more functionality
than needed at a given layer of a system, because this
goes against optimizing e�ciency, risks introducing re-
dundant protocol actions like error recovery steps, and
ultimately, goes against good sense. Nevertheless, if
a class of applications requires a certain functionality
(or quality of service), however complex it may be, the
lower layer should provide it. It frees the user from pro-
gramming it, and will probably have been optimized
and widely tested when supplied with a system. In
fact, a number of classes of distributed application-
s can be de�ned whose requirements are solved by a
number of distributed algorithms. Then, supplying a
suite of such protocols, in a way that the users not re-
quiring them are not penalized by their existence, is
in essence a correct interpretation of the end-to-end
argument. This reasoning applies to all levels of the
architecture, from network hardware through commu-
nications to computing.
Event-based [5,26] and state-based[13,16] computa-

tional models are sometimes put in alternative. This
latter form of representing computations is more ma-
ture, based essentially on shared-memory and the han-
dling of data. However, when thinking about the rel-
ative merits of either approach, several issues lead us
into thinking that it is worthwhile to invest more in
paradigms oriented to message-passing and groups of
processes (or active objects):

� real-time | or responsive | systems deal with
the environment, thus the event-to-state transfor-
mation is inevitable. On this matter, the real d-
i�erence between state- and event-based systems
is that the former transformation is performed in
the periphery of the system in state-based system-
s, whereas in event-driven systems, events "trav-
el" further inside the system before being trans-
formed; this said, there is a wealth of such appli-
cations being better addressed in the domain of
events [26];

� in highly concurrent interactive systems (eg. C-
SCW or DCCS as discussed ahead) message-
passing (generally connected with events) is a very
useful and natural paradigm, and should at least

be used in combination with shared-memory (gen-
erally connected with state);

� in those systems, remote procedure call, being
blocking, unilateral and asymmetric (client-to-
server), has some shortcomings; it should be com-
plemented with paradigms where groups of enti-
ties maintain multilateral, non-blocking and peer-
to-peer interactions, according to well-de�ned sets
of rules (such as conversations or casts) 1.

Practically all works cited earlier in the text have ad-
dressed a part of the problem, a few of them have tried
to systematize solutions. We present next our macro-
scopic view of how to structure groups in distributed
systems. This perspective was largely inuenced by
the work in DELTA-4, a project started in 1986 and
ended in 1991, where the authors in cooperation with
other research teams, addressed the problem of groups
in the context of distributed fault-tolerance and real-
time [22]. It has also bene�ted from the interaction
the authors have maintained with some of the research
teams cited.

Structuring Group Support in

Distributed Systems

The necessary building blocks for group-oriented sys-
tem structuring and programming are represented in
�gure 1.

The notion of group pervades all layers of a distribut-
ed architecture, from multicasting communication in-
frastructures and group communication protocols with
diverse order, agreement and synchronism properties,
to group management services, such as membership,
replication and cooperation management. Measures of
the passage of time are also paramount, taking several
avors from timers to global time services built on top
of approximately synchronized local clocks.

System Architecture Issues

Looking at �gure 1, one may wonder how do those
blocks map into a real architecture. There is no gener-
al solution, but it is intuitive that such an organization
is highly related with requirements such as:

� layer-lessness or layer transparency;

� interface recursivity (up- and down-calls);

1Engineering-wise, some of these problems have of course
been solved long ago one way or the other (replicated RPC,
"asynchronous" RPC or RSR, calling process fork, etc.). How-
ever, they should be properly addressed at the model level, if
possible.
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Figure 1: Group Support Building Blocks

� encapsulation using "large" objects;

� operating system support providing threads, ef-
�cient IPC, timer and bu�er management, fast
user-network information path, user-de�nable
scheduling, easy embedding of external protocols.

Two alternative models for operating system sup-
port are: (a) top-level opaque interface (eg. Unix)
provided by a monolithic operating system; (b) layer-
transparent interface (top interface possibly Unix as
well), provided by several layers on top of a micro-
kernel , allowing visibility of the inner-most layers from
user space, and the addition of extra functionality, like
the group support protocols. The second is clearly the
preferred environment for a group-oriented architec-
ture. It is based on the micro-kernel approach, receiv-
ing large support lately.
In this paper we go as far as suggesting that the large

building blocks (group management, group communi-
cations + time, network) should have a well-de�ned en-
capsulation and interface. However, inside these blocks
a closer interaction may be desirable.
Certain clock synchronization protocols rely on

clock-less reliable group communication. On the other
hand, certain reliable group communication protocol-
s (such as the �-type protocols [9]) are clock-driven:
they rely on the existence of the global clock provid-
ed by the time service and make heavy use of it. The
group communications and time service should share
context. The time service should be implemented at
low level, as close to the network as possible. This re-

duces the errors in clock synchronization and in times-
tamping.
Group management is concerned with membership,

replication and cooperation activities. These are broad
designations which illustrate the basic activities con-
cerned with supporting any avor of distributed com-
putation, in combination with, and making use of,
group communication. However, practical algorithm-
s and protocols will often combine processing step-
s having to do with more than one of these action-
s. Take the example of the controlling protocol of a
replicated database: it will make use of membership
management to control whether all the necessary mod-
ules are present or to know what is the majority cri-
terium, whereas replication management will assist in
maintaining consistency of the replicate set (eg. ac-
tive or passive replication). In consequence, the group
membership, replication and cooperation management
should share context.
Nothing prevents group management and group

communications from being in the same process. This
may ultimately improve e�ciency of their mutual inter-
face, but they should remain as separate entities. Pro-
gramming these facilities as kernel extensions is largely
advisable.

Network Infrastructure

A lot of distributed protocols in the recent years have
been designed to be network-independent [17,5,12,1].
However, in trying to be generic and scalable, they
do not take advantage of the existence and the e-
mergence of network technologies such as LANs and
MANs. In consequence, while these will perform well
either in local or wide areas, synchronous or asyn-
chronous environments, etc., users will be less and less
prepared to pay the cost of technology independence
when technology is there. Most local enterprise, insti-
tution or factory settings run over LANs. The near
future will see organization-wide distributed system-
s over metropolitan-area networks. These are reliable
both in terms of error rate and availability, display
from high to very high speed and bandwidth, have
broadcasting/multicasting facilities, some are capable
of real-time operation and have reasonably low delivery
delays, etc.
We propose that protocols are prepared to take the

best advantage of the technology they have available.
In the model we follow, there are a few key rules: ab-
stract from particular networks but recognize a few
network classes (ex. LAN, IP, MAN, etc.); de�ne a set
of properties for each class; admit di�erent abstract
networks at di�erent layers of the infrastructure 2; run

2There is an analogywith the ISO layering here, though using
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parts of the protocol at di�erent abstract network lay-
ers, by delegation [27].
This way, a distributed protocol like a reliable mul-

ticast protocol running over an internetwork, which it
sees as a set of abstract properties (representing the
internet class), may delegate part of its execution on
protocols running local to the LANs, seeing a LAN-
type abstract network, and obviously taking advantage
of that.
We have proposed a solution to this long-lasting

contradiction between the low-level approach (not-
scalable) and the high-level one (not e�cient). We
may now go further in the requirements of the network
infrastructure in order to e�ciently support groups,
knowing that these features may be provided by a part
of the infrastructure and still play their role in group
communications e�ciency:

� logical group addressing means recipient number
and location transparency, and e�cient name-
address translation when addressing a named
group. It simpli�es naming and migration of ser-
vices and processes.

� hardware selective or multicast addressing on
LANs is a powerful means of supporting address-
ing of logical groups and when desired, of selecting
a sub-set of recipients in a group, i.e. the founda-
tion for sub-group addressing;

� logical addressing combined with selec-
tive addressing yields e�cient "to-whom-it-may-
concern" communication, saving controller power
and network bandwidth: messages are sent once,
and only received by the concerned group or sub-
group members3

� address resolution is another key issue: working
with groups requires the capability to handle a
large number of addresses e�ciently. It should
when possible take advantage of hardware address
�ltering capability, provided in some VLSI con-
trollers.

� topology should ease multipoint communica-
tion; broadcast channels are best, but emerging
metropolitan networks will also provide multi-
point;

di�erent criteria.
3Take the example of a replicated server set, accessed by sev-

eral clients. Maintenance of causal order is desired, so clients
and server replicas are in a group for requests. For managing
replication and preserving consistency, the reply (provided on-
ly by the coordinator) must go atomically to the client and to
the other replicas. Normally this would entail the creation of a
possibly large number of groups containing each client and the
replicas. With selective addressing and sub-groups, that can be
done by selecting inside the �rst and only group.

� reliability and availability become more important
for very simple reasons: there are more player-
s involved than in point-to-point, communication
is more intensive, work is essentially interactive.
In consequence, for the same individual network
component reliability the probability of failure as
perceived by the user is larger than in traditional
applications.

Group Communications

Group communications services rely on the low-level
network services. They ensure that a group of partici-
pants exchange messages following a set rules, without
worrying about how they are secured. The semantics
of group communications services can be characterized
by combinations of agreement, order and synchronism
properties.
These elementary properties have been characterized

in the literature in the recent years. Surveys can be
found in [6,22].
For example, the strongest form of agreement is u-

nanimity, where any message delivered to a recipient,
is delivered to all correct recipients. Unanimitymay be
unnecessary in some situations. For instance, queries
to a replicate group need only reach one of replicas, or
a quorum of them, it does not matter exactly which.
Relaxed forms of agreement apply then, like ensuring
delivery to a number of recipients N (N = 0 is the
well-known datagram semantics).
In a distributed system, participants must perceive

the order in which actions and events take place. The
cause-e�ect relation is the natural ordering of events in
a system. It is called a causal order. This order may
be relaxed in some cases, for example to a FIFO (�rst-
in-�rst-out) order, if senders are not causally related.
For example, when requests from di�erent clients to a
server are commutative. On the other hand, if a partic-
ipant is actively replicated, messages to the replicates
should be sent in the same order. This is called a total
order.
Synchronism of a group protocol can be de�ned by

its tightness, or the maximum di�erence between in-
stants of reception of a message at any two recipients,
and its steadiness, or the the maximum di�erence be-
tween the duration of any two protocol executions [25].
According to this, protocols are loosely- or tightly-
synchronous, depending on whether those di�erences
are large or small, compared to the execution time,
or even asynchronous, if they are not bounded at al-
l. Theoretical lock-step protocols represent one end of
the spectrum, being completely tight and steady [18].
Practical instantiations of clock-driven � protocols [9]
will be tight and steady in the measure of the clock pre-

4



cision, which is normally a very low �gure compared
with the delivery time. The other end of the spec-
trum of synchronous protocols is represented by clock-
less protocols which though not using clocks, display a
bounded and known message delivery time[24]. Prac-
tically all known clock-less protocols are asynchronous
(eg. [21,5]).
A group communications subsystem should have a

number of services, each formed by a combination of
some of the properties enumerated. For example, the
combination of total order with unanimity yields what
is called an atomic multicast protocol. The choice of
properties by the system architect must rely on a good
use of the end-to-end argument as discussed earlier in
this paper. Rationale for this exercise can be found
in [17,5,22,21].

Time and Timing

The importance of time in distributed systems has
been largely underestimated. Real-time systems re-
quire the ability to control duration of activities, re-
sponse time, etc. This requires measuring durations
and the position of an event relative to the environ-
ment. In distributed systems, the duration to measure
often concerns events which have been observed by t-
wo di�erent nodes. Scheduling of actions to occur at
a given absolute time may concern several places in
the system. A global timebase accessible by all nodes
is thus mandatory for distributed real-time systems.
It is normally achieved by each node having a local
clock, and having local clocks synchronized periodi-
cally, because they naturally deviate from each other.
Since systems in general are becoming more interac-
tive (multimedia, CSCW, etc.), real-time is becoming
a necessary attribute.
On the other hand, a number of distributed algo-

rithms are based on the existence of a global time no-
tion. We claim that even non-real-time or soft real-
time applications could bene�t from these algorithms
and thus from the existence of a reliable timebase in
the system. So, global time is a very useful building
block in any distributed system.

Group Management

Whilst group communication is concerned with allow-
ing participants of a group to interact and establish
rules for that interaction, group management is con-
cerned with de�ning and controlling the group objec-
tives.
Distributed activities can be reduced to combina-

tions of three fundamental operations: replication,

competition, cooperation4. Competition concerns ac-
tivity directed to a group of recipients, so its rules,
namely concerning ordering (eg. causal), may be
implemented by the group communications services
alone, whereas replication and cooperation concern ac-
tivities performed by groups, so requiring managemen-
t. Also requiring to be managed is the membership of
the group, i.e. who are the participants, and if needed,
what they do.
In consequence, all necessary group managemen-

t protocols to control a distributed group activity lie
in one of three classes: membership, cooperation and
replication management protocols, and most applica-
tion support protocols will use combinations of these.
An example of cooperation management is a proto-

col to control a task to be performed in parallel by a
group of processors, or a protocol to control the simul-
taneous editing of a document in CSCW[3]. An exam-
ple of replication management are protocols to man-
age replicated components, in order that they perform
fault-tolerant computations, ensuring whatever actions
needed, like voting, collating, etc. [22].
Membership protocols [10,15,20] know who is in and

who is out, and control joins and leaves according to
prede�ned rules. For example, detect failure and re-
establish the level of replication of a group, or ensure
the necessary "skills" for a partitioned cooperative ac-
tivity are present in a group.
In the working �eld of clock-less protocols, the group

membership problem is sometimes aggregated to the
group monitoring problem. In short, group monitor-
ing is concerned with assisting the correct execution
of the protocol (eg. if the protocol uses acknowledges,
it is necessary to have a view of the group from whom
replies are expected). Group membership is on the oth-
er hand independent from group communication, and
concerns the group users. While in group monitoring a
totally ordered and explicit view of the protocol enti-
ties executing the communication protocol is normally
necessary, in group membership the order of propaga-
tion of view changes depends on the very requirements
of the users and may not be total [20]. Similarly, the
users may even not need to know that there is a group
(replication transparency) [22].

Group-Oriented Programming

The concepts of group-oriented cooperation and infor-
mation sharing are extremely relevant, from a number
of user viewpoints. Two very diverse application �elds
illustrate that relevance: computer supported collabo-

4Although with di�erent designations, this was established
by LeLann[19].
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rative group working (CSCGW); distributed computer
control.

Computer Supported Collaborative Group

Work

Rules and means for collaborative group working are a
necessary requirement of practically any collective ac-
tivity, more so when assisted by the e�ciency and cost-
e�ectiveness of computer support. Computer support-
ed collaborative group working (CSCGW) has been a
discipline of growing interest, in the measure where
widespread, ever-increasing use of communications and
distributed systems make possible its application in
a large number of activities, both in local and geo-
graphically broad areas. Applications for collaborative
work introduce particular requirements in the under-
lying systems.
A major requirement for the progress of CSCGW

is the existence of fundamental supporting concept-
s, like replicated data types or group methods, which
must be merged both with user interface concepts like
multiple views and dialogue encapsulation, and with
the adequate architectural support (e.g. reliable and
real-time group communications), to provide a unify-
ing approach to the task of application construction in
a distributed environment.

Distributed Computer Control

Distributed computer control systems are a very chal-
lenging �eld which is evolving fast. The target system-
s encountered in the process control area are an ideal
�eld to explore the notions of direct distribution, con-
currency and groups. However, performance require-
ments and the importance attached to these problems,
mostly money-critical, if not life-critical, deter the fast
introduction of new concepts.
Distribution in computerized control has so far been

almost exclusively limited to networking facilities, to
down-load and up-load information (e.g. shop-oor
data or CNC control programs), or to replace point-
to-point cabling (e.g. centralized polling �eld-buses).
Decentralized approaches where some node autonomy
is conferred are normally specialized application-level
solutions.
For an evolution to take place here, such new gen-

eration distributed computer control systems must be
able to provide assurances about: correctness; depend-
ability and real-time behavior; performance; testabil-
ity. Recent architectural work (MARS [16], DELTA-
4 [26]) has shown some paths to the combination of
distribution, fault-tolerance and real-time, in what one
could call responsive systems. The notion of groups is
of paramount importance, to break with the need for

reasoning in terms of the global system. The glob-
al approach compromises scalability and performance,
and renders assertions about correctness, dependabili-
ty and timeliness in a dynamic context more di�cult.

Conclusions

Issues of scale, algorithmics, development support and
sheer technology barriers (bandwidth, speed, reliabil-
ity) have prevented distributed computing from ad-
vancing as fast as would be desirable. The situation
is changing, and it is believed that e�cient abstrac-
tions for the design of distributed applications can
be created if: (i) structured around concepts like ob-
ject groups, group communications and management,
and fundamental synchronization paradigms; (ii) tak-
ing advantage of technology, e.g. hardware multicas-
ting and logical addressing, multimedia, high-speed,
high-bandwidth, high-reliability networks.
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