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Abstract

Increasing use of distributed systems, with the cor-
responding decentralisation, stimulates the need for
structuring activities around groups of participants,
for reasons of consistency, user-friendliness, perfor-
mance and dependability. Although there is a signifi-
cant number of group communication protocols in the
literature, they are penetrating too slowly in operating
systems technology. Two important reasons are: the
literal interpretation generally made of the end-to-end
argument, and the lack of a layer mapping end-user
needs (management of replication, competition, coop-
eration and group membership) into what is generally
provided by the communication layer: agreement and
order properties.

The paper discusses both problems, proposing ways
for structuring systems and defining building blocks
for group-oriented activity, using concepts like objec-
t groups. It suggests that the group concept should
pervade the whole architecture, from network multi-
casting, to group communications and management.
Emerging technology will help materialise these con-
ceptis.

Introduction

The increasing use of distributed systems is in part
due to the requirements of inherently decentralised
activities, such as computer supported collaborative
working, or distributed computer control. It becomes
then natural for a number of such computations to be
structured around groups of participants, for reasons
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of consistency, user-friendliness, performance and de-
pendability.

When looking at the several classes of distributed
activities that may take place in a distributed system,
the group concept appears intuitively: when a group
of participants cooperate in an activity (e.g. manage-
ment of a fragmented database, distributed document
processing or distributed process control), compete in
an activity (e.g. to share a given resource), or execute
a replicated activity for performance or fault-tolerance
reasons (e.g. replicated database server, replicated ac-
tuator).

Group-orientation, as a general rule, does not imply
group-oriented programming for the end user. That
is, group tools can help the programmer build appli-
cations where groups are wvisible, because they are part
of the problem specification. However, they may al-
so be useful to implement system support function-
s used transparently by the programmer, that is, in
an nvisible way. In fact, the utility of groups per-
vades all layers of a distributed architecture, from
multicasting network infrastructures, through group
communication and membership, to the group activi-
ty management services. They may be at the core of
efficient implementations at several levels of abstrac-
tion: operating system (e.g. microkernel port group
management), internetworking (e.g. routing and state
dissemination and management of groups of router-
8), distribution support (e.g. replication management,
distributed locks), applications (e.g. cooperative edi-
tors, teleconferencing, manufacturing cells). In some
applications, the end user will not see groups at al-
1, reasoning in terms of object invocations, RPCs,
and so forth. However, underlying that users’s pro-
gramming environment, groups may be fulfilling their
role in transparently supporting a distributed shared
memory mechanism, a replicated object mapper, a dis-
tributed lock manager, etc.

Regardless of the current preponderance of other
paradigms, other than group-orientation, for program-
ming distributed applications, a few observations are



in order:

e Real-time — or responsive — systems deal with
the environment, thus handling of events is in-
evitable. In event-driven systems, events “travel”
inside the (distributed) system in the form of mes-
sages, or message-interrupts, before being trans-
formed. There is a number of applications being
better addressed in the domain of events [40];

e in highly concurrent and/or interactive system-
s (e.g. collaborative group work or distributed
computer control) message-passing paradigms are
necessary;

e remote procedure call, being blocking, unilater-
al and asymmetric (client-to-server), has some
shortcomings, more evident in the kind of systems
just mentioned; it should be complemented with
paradigms supporting multilateral, non-blocking

and peer-to-peer interactions!.

These observations lead us to the conclusion that a
distributed computing platform can only benefit from
the coexistence of remote-operation based paradigms,
such as RPCs, with message-passing, diffusion-based
ones, such as group protocols. This, without denying
the validity and usefulness of either one.

The requirements of highly distributed activities
are not adequately satisfied by the basic interfaces
traditionally supplied as“distribution support”, such
as “sockets” or “streams”: these are semantically too
poor, and most of them are not multi-participant.
Building blocks for group activity have been studied
in the past in pioneering projects such as the V-kernel
[11], TSIS at Cornell [5], the Circus project[12], and
also[1,19]. They are currently the subject of great in-
terest, illustrated by projects as the PSYNC/x-Kernel
work at Univ. of Arizona[29], the work on objec-
t groups by ANSA [3], the work of Molina[27], the
IBM flight control AAS[17], the European DELTA-4
project [30], the work about groups in Arjuna[23], the
current work on Isis/Horus [31].

In order for applications with high levels of concur-
rency to be correctly designed, have acceptable perfor-
mance, and remain operational for long enough, what-
ever distribution support environment to be conceived
must combine: encapsulation, modularity and diversi-
ty; fault tolerance and timeliness; distributed algorith-
mics; support for actions and data (events and state).

1Engineering-wise, some of these problems have of course
been solved long ago one way or the other (replicated RPC,
”asynchronous” RPC or RSR, calling process fork, etc.). How-
ever, they should be properly addressed at the model level, if
possible.

The combined notion of object and group may provide
designers and programmers with a suitable framework
to achieve those objectives. Practically all works cited
above have addressed a part of the problem, and a few
of them have tried to systematise solutions.

In this paper, we discuss how to structure groups
in distributed systems, from networking to application
support. We start by dissecting two main arguments
against using groups: the end-to-end argument and
group visibility. We continue by presenting an overall
picture of the necessary building blocks of a group-
oriented system, then detailing each of the blocks. Fi-
nally, we do a discussion about programming over a
group-oriented system, either with group visibility or
not.

The arguments against groups

An existing reluctance to having services with high
quality (e.g. reliable multicast) provided off-the-shelf
in a system, has been related to the literal interpreta-
tion often made of the end-to-end argument[35]. In
fact, the argument is against providing more func-
tionality than needed at a given layer of a system,
because this goes against optimising efficiency, risks
introducing redundant protocol actions like error re-
covery steps, and ultimately, goes against good sense.
Nevertheless, if a class of applications requires a cer-
tain functionality (or quality of service), however com-
plex it may be, the lower layer or more generally the
operating system support, should provide 1t. It frees
the user from programming it, and will probably have
been optimised and widely tested when supplied with
a system.

In fact, a number of classes of distributed activities
can be defined whose requirements are solved by a
set of distributed algorithms. In that case, supplying
a suite of the corresponding protocols is in essence a
correct interpretation of the end-to-end argument, if
done in a way such that the users not requiring them
are not penalised by their existence. This reasoning
applies to all levels of the architecture, from network
hardware through communications to computing.

One such “semantically-loaded” class of protocol-
s is that of group communication. Though there is
a significant body of research in this area, they have
had a slow penetration in operating system technolo-
gy. We are convinced that there is a major reason for
this fact, beyond the end-to-end argument one: wis-
whility of the group communication protocols is often
awkward for the applications programmer. It is nec-
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Figure 1: Group Support Building Blocks

essary for the services mentioned above to be system-
atised and mapped into the programmer’s universe.
A convincing suggestion is hiding them under an R-
PC environment. This solves only part of the prob-
lem, namely when one wishes to replicate, maintain-
ing a client-server relationship. It does not contribute
greatly when that relation does not apply or is contra
natura — we have cited some examples in the introduc-
tion. For these cases, paradigms which adjust to the
event-driven and peer-to-peer nature of autonomous
processes apply. They should however be encapsulat-
ed in a way as to avoid the inconvenients of directly
programming with message-passing.

We believe what 1s missing in a group-oriented sys-
tem structure, is what might be called in group jar-
gon, a group activity management layer. In essence,
a building block that controls how groups of partici-
pants interact, in a number of well-defined classes of
distributed activities. This layer should address prob-
lems such as: concurrency control, mutual exclusion,
distributed parallel processing, replicated processing,
replicated data, etc. Though there are a large num-
ber of specific solutions for these problems published,
some of them group-based, a systematics for these ser-
vices is not clear yet. We risk saying that it should
consist of a combination of protocols for controlling
basic group activities: membership, replication, shar-

ing and cooperation.

Structuring Group Support in Dis-
tributed Systems

The necessary building blocks for group-oriented
system structuring and programming are represent-
ed in figure 1. The notion of group pervades all layers
of a distributed architecture, from multicasting com-
munication infrastructures, group communication and
time services, to the group activity management ser-
vices just mentioned.

Let us call participant to the end-user of the system
support. On the other hand, let us call site to the ma-
chine as seen from the perspective of the network: no
matter how many participants it hosts, messages di-
rected to them are funneled through this single attach-
ment, the machine’s network adapter. In consequence,
given that group tools are fundamentally protocols, 1t
1s useful to structure them depending on among what
they run: inter-participant protocols run among pro-
cesses, inter-site protocols run among processors (even
if on behalf of processes) [38]. Figure 1 makes explicit
which are the site- and the participant-level modules.

Network Infrastructure

A number of distributed protocols in the re-
cent years have been designed to be network-
independent [21,5,27]. However, in trying to be generic
and scalable, they do not take advantage of the exis-
tence and the emergence of network technologies such
as LANs and MANs. In consequence, while these will
perform well either in local or wide areas, synchronous
or asynchronous environments, etc., users will be less
and less prepared to pay the cost of technology inde-
pendence when technology is there. Most local enter-
prise, institution or factory settings run over LANs.
The near future will see organisation-wide distribut-
ed systems over metropolitan-area networks. These
are reliable both in terms of error rate and availabil-
ity, display from high to very high speed and band-
width, have broadcasting/multicasting facilities, and
some are capable of real-time operation and have rea-
sonably low delivery delays. More remotely, meshes of
ATM switches will provide very high interconnectivity
and speed down to the workstation, in a fairly large
geographical scope.

We suggest that protocols be prepared to take the
best advantage of the technology they have available.
In the model we follow, there are a few key rules: ab-
stract from particular networks but recognise a few



network classes (ex. LAN, INTERNET, MAN, ATM,
etc.); define a set of properties for each class; admit
different abstract networks at different layers of the
infrastructure 2; run parts of the protocol at different
abstract network layers, by delegation[?].

For the sake of example, a reliable multicast proto-
col running over a large-scale network like the Internet,
would begin its execution by seeing an INTERNET
class network with its weak properties, but might del-
egate part of its execution on protocols running local
to the destination LANSs, seeing a LAN-type abstract
network, and obviously taking advantage of that.

We find this is a satisfactory compromise for the
long-lasting contradiction between the low-level ap-
proach (not-scalable) and the high-level one (not ef-
ficient). We may now present a set of requirements of
the network infrastructure in order to efficiently sup-
port groups. In view of the above, some of these fea-
tures may be provided by only a part of the infrastruc-
ture, but still play their role in group communications
efficiency:

e logical group addressing for recipient number and
location transparency;

e hardware multicast and selective addressing for
group and sub-group addressing;

e address resolution: handling a large number of
addresses efficiently;

e topology should ease multipoint communication;

e reliability and availability become more importan-
t: there are more players involved than in tradi-
tional point-to-point.

Group Communication

The modules in the communication support sys-
tem are concerned with site-level protocols. It may
sometimes be relevant to include a sub-layer of low-
level protocols which the group communication proto-
cols may rely on. This occurs for example as a set of
“super-services” of the network infrastructure which
one does not wish to include in the latter. As an exam-
ple, one may have a basic service of efficient large-scale
multi-destination dissemination, with varying reliabil-
iy,

Group communications services rely on the low-
level network services. They ensure that a group
of participants exchange messages following a set of

2There is an analogy with the ISO layering here, though
using different criteria.

rules, without worrying about how they are secured.
The semantics of group communications services can
be characterised by combinations of agreement, order
and synchronism properties. These elementary prop-
erties have been characterised in the literature in the
recent years. Surveys can be found in[8,30,28].

For example, the strongest form of agreement is
unanimity, where any message delivered to a recipi-
ent, is delivered to all correct recipients. Unanimity
may be unnecessary in some situations. For instance,
queries to a replica group need only reach one of repli-
cas, or a quorum of them, it does not matter exactly
which. Relaxed forms of agreement apply then, like
ensuring delivery to a number of recipients N (N = 0
is the well-known datagram semantics).

In a distributed system, participants must perceive
the order in which actions and events take place. The
cause-effect relation is the natural ordering of events
in a system. It is called a causal order. This order may
be relaxed in some cases, for example to a FIFO (first-
in-first-out) order, if senders are not causally related.
For example, when requests from different clients to a
server are commutative. On the other hand, if a par-
ticipant is actively replicated, messages to the replicas
should be sent in the same order. This is called a total
order.

Synchronism of a group protocol can be measured
by its steadiness, the greatest difference between de-
livery times observed at one site, and its tightness, the
greatest difference between delivery times observed in
one execution. According to this, there is a spec-
trum from tightly-synchronous[14], through loosely-
synchronous [37], to asynchronous protocols [29,5], de-
pending on whether those differences are large or smal-
1, compared to the execution time, or even not bound-
ed at all. From the degree of synchronism depend not
only real-time but also ordering capabilities [40].

In conclusion, a group communication subsystem

should:

e be prepared to accommodate grades of agreement,
order and synchronism,

e supply a range of services each formed by a com-
bination of some of the properties above;

e select those services to fulfill user needs, i.e. mak-
ing a good use of the end-to-end argument.

Rationale for this exercise can be found in [21,5,30,

26].



Site membership

The problem of membership i1s the problem of
knowing who or what belongs to a system or group,
or is present in an activity. At this point, it is im-
portant to draw a distinction not taken into account
by most group-oriented systems we know of: the dif-
ference between the site and participant membership
problems.

In a distributed application, there are several par-
ticipants, sometimes more than one at each site. Hav-
ing rules to assess, and sometimes control, their ar-
rival or departure, is most of the times useful if not
mandatory[32]. This kind of activity is participan-
t membership management. However, for each set of
participants engaged in a distributed activity, there is
another important set: the set of sites hosting those
participants, smaller than or equal to the participant
set. The management of this set has different require-
ments from the management of participants, so call it
site membership management [34].

We believe it is of extreme importance to recog-
nise these membership levels, so to speak. Firstly, it
may simplify the construction of protocols and of the
participant group management protocols. As an ex-
ample, consider a site with 500 groups. When it fails,
a system without 2-level membership will trigger 500
executions of the group membership protocol in par-
allel. In a system with 2-level membership, the site
membership protocol may handle the site failure and
intelligently propagate that information to the partic-
ipant membership protocols.

Additionally, it separates processor and communi-
cation (site) failure detection from process (partici-
pant) failure detection. While improving the accura-
cy and fairness of such detection, this separation has
an 1mportant consequence in asynchronous systems.
For these systems there is a well-known result stating
that it is impossible to guarantee consensus [18], exact-
ly due to the impossibility of telling a slow participant
from a failed one. Theoretically, by separating site and
participant failure detection, one narrows the domain
under the reach of the FLP result. Site failure de-
tection remains unreliable, whereas participant failure
detection, performed locally, can be made reliable.

Incidentally, in the field of global-clock-less,
acknowledgement-based protocols[9,4,29,37], the site
and participant membership functions have often been
aggregated. This separation makes it clear that the re-
quirements of these protocols, to do correct inter-site
communication, pertain to site membership manage-
ment (e.g. if the protocol uses acknowledges, it is nec-
essary to have a coherent view of the group of sites

from which replies are expected).
Time and Timing

The importance of time in distributed systems has
been largely underestimated. Real-time systems re-
quire the ability to control duration of activities, re-
sponse time, etc. A global reliable time-base accessible
by all nodes 1s thus mandatory for distributed real-
time systems. However, since systems are becoming
more interactive (multimedia, CSCW| etc.), real-time
tends to be a necessary attribute of systems in general.

On the other hand, a number of distributed algo-
rithms are based on the existence of a global time no-
tion. Even non-real-time or soft real-time applications
can benefit from these algorithms and thus we claim
that a reliable, precise and accurate time-base is a very
useful building block in any distributed system. With
regard to the way “time” is shipped in most existing
distributed operating systems, this involves more at-
tention to:

e precise clock synchronisation algorithms, i.e.
maintaining clocks together;

e fault-tolerance, i.e. maintaining the time correct,
reliable and available;

o external synchronisation 3, i.e. accuracy vis-a-vis
absolute time references (TAI, GMT, UTC).

Group Activity Management

Whilst group communication is concerned with al-
lowing participants of a group to exchange messages
and establish rules for that exchange, group activity
management is concerned with defining and control-
ling the group objectives.

Distributed activities can be reduced to combina-
tions of three fundamental operations, sharing, repli-
cation, and cooperation*. So in the making of a dis-
tributed application we can conceptually visualise pro-
tocols falling in one or more of these activity classes,
complemented with membership management:

e sharing is the activity concerned with a number
of participants commonly accessing an entity or
resource;

3GPS systems are decreasing impressively in price. The time
is coming when it will be feasible to have at least one GPS recep-
tor per system, injecting highly accurate absolute time which is
then distributed via internal clock synchronisation algorithms.

4With slightly different designations, the three-fold charac-
terisation of distributed activities was established by LeLan-
n[22].



e replication is the activity where a number of par-
ticipants execute replicas of the same action, or
hold replicas of the same data;

e cooperation 1s the activity where a number of par-
ticipants execute fragments of an action, or hold
fragments of a data entity;

An example of cooperation management is a proto-
col to control a task to be performed in parallel by a
group of processors, or a protocol to control the simul-
taneous editing of a document in CSCW [2]. An exam-
ple of replication management are protocols to control
a set of replicated processes, in order that they per-
form fault-tolerant computations, ensuring whatever
actions needed, like voting, collating, ete. [30].

Participant membership (we discussed site mem-
bership in a previous section) has been addressed in
different contexts [15,32,25,36]. In the measure that
distributed applications are decentralised, dynamic,
unreliable, reconfigurable, and sometimes large-scale,
membership assumes an essential role in distributed
systems. Membership protocols know who is in and
who is out, and control joins and leaves according to
predefined rules. For example, detecting failure and
re-establish the level of replication of a group, ensur-
ing that the necessary “skills” for a cooperative activ-
ity are present in a group, preventing partitioned data
divergence by allowing progress only in the majority
partition.

Take the example of a fragmented and replicated
database: (i) there should be membership manage-
ment to control whether all the necessary modules
are present — the parts of each replica, the necessary
number of replicas, the majority criterion; (ii) repli-
cation management will assist in maintaining consis-
tency of the replica set (e.g. active or passive repli-
cation); (iii) since the database is fragmented among
several sites; management of cooperation between the
servers controlling the parts of each replica is neces-
sary; (iv) sharing of access to the database is handled
by concurrency control, which may be implemented
in a decentralised way via atomic or causal multicast
protocols.

System Architecture Issues

Looking at figure 1, one may wonder how do those
blocks map into a real architecture. There is no gener-
al solution, but it is intuitive that such an organisation
is highly related with some versatility in programming
over and within the operating system. In consequence,
it might be useful to see attributes such as:

e layer compaction, layer transparency or even
layer-lessness;

e interface recursivity (up- and down-calls);
e encapsulation using “large” objects;

e operating system support providing threads, ef-
ficient IPC, timer and buffer management, fast
user-network information path, user-definable
scheduling, easy embedding of external protocol-
s,

Two alternative models for operating system sup-
port are: (a) top-level opaque interface (e.g. Unix)
provided by a monolithic operating system; (b) layer-
transparent interface (one of top interfaces possibly U-
nix), provided by several layers and modules on top of
and alongside a micro-kernel, allowing visibility of the
inner-most layers from user space, and the addition of
extra functionality like the group support protocols.
The second is clearly the preferred environment for a
group-oriented architecture. It is based on the micro-
kernel approach, receiving large support lately.

In this paper we go as far as suggesting, for the main
building blocks (group management, group communi-
cations + time, network infrastructure):

e they should have a well-defined encapsulation and
interface;

e inside these blocks a closer interaction between
protocols may be desirable for performance rea-
sons;

e they should be visible to each other and to any us-
er program at any level, up to the top-level users.

As an example, certain clock synchronisation pro-
tocols rely on clock-less reliable group communication.
On the other hand, certain reliable group communica-
tion protocols (such as the A-type protocols[14]) are
clock-driven: they rely on the existence of the global
clock provided by the time service and make heavy
use of it. The group communications and time service
should thus share context. The time service should be
implemented at low level, as close to the network as
possible. This reduces the errors in clock synchroni-
sation and in time-stamping.

Another example concerns the group managemen-
t layer. Group membership, replication, cooperation
and sharing are broad designations which illustrate the
basic activities concerned with supporting any flavour

5Network requirements have been discussed in a previous
section.



of distributed computation, in combination with, and
making use of, group communication. However, prac-
tical algorithms and protocols will often combine pro-
cessing steps having to do with more than one of these
actions. In the example already given, of the control-
ling protocols of a fragmented and replicated database,
the user (the application builder) will probably see a
“Data Partitioning/Replication ToolBox”, where the
elementary membership, cooperation and replication
management protocols will make use of each other
to perform the desired functionality. In consequence,
they should share context.

As a matter of fact, nothing prevents group man-
agement and group communications from being in the
same process. This may ultimately improve efficien-
cy of their mutual interface, but they should remain
as separate entities. Programming these facilities as
kernel extensions is largely advisable.

Group-Oriented Programming

We will now discuss how groups can assist program-
ming, using an object-oriented framework for refer-
ence. As noted in the beginning, groups may be per-
ceived in two fundamental ways by users. One of them
is as support for genuinely group-oriented activities,
that is, ones where groups appear in the problem spec-
ification, such as in collaborative applications, where
many often it 1s required that the participants have
collaboration awareness. In that sense, the way to set-
up the model in figure 1, is as depicted in figure 2a:
user objects dialog between themselves through a pub-
lic object interface which is much of a “group agent”

r “group manager”. The user objects merely con-
tain their specific functionality, and they use the group
manager to handle all the aspects related with their
work as a group. Distribution is, so to speak, direc-
t[7,41]. The other interaction style concerns problems
where groups, not being part of the specification, may
be part of the solution. That is, they may materialise
the support for coordinating the sharing of an objec-
t, managing a replicated or fragmented object, and
so forth. For clients of such a support environment,
groups are indeed transparent [33,24,23]. This is de-
picted in figure 2b. Note that objects in this model
have their own methods, plus the methods to enforce
the group management policies.

It is perhaps relevant to specify a little better what
we mean by genuinely group-oriented programming.
One may find examples of its relevance in two very
diverse application fields: computer supported collab-
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Figure 2: (a) group visibility; (b) group invisibility

orative (group) work (CSCW); distributed (computer)
control systems (DCS).

Rules and means for collaborative group working
are a necessary requirement of practically any collec-
tive activity, more so when assisted by the efficiency
and cost-effectiveness of computer support. CSCW
has been a discipline of growing interest, in the mea-
sure where widespread, ever-increasing use of commu-
nications and distributed systems make possible its
application in a large number of activities, both in
local and geographically broad areas.

Applications for collaborative work introduce par-
ticular requirements on the underlying system. A ma-
jor requirement for the progress of CSCW is the ex-
istence of fundamental supporting mechanisms, like
replicated data types, distributed locks with varying
semantics, group negotiation methods, which must be
merged both with user interface concepts like multi-
ple views and dialogue encapsulation, and with the
adequate architectural support (e.g. reliable and real-
time group communication). Group-orientation is ex-
pected to provide a unifying approach to the task of
constructing cooperative applications in a distributed
environment [13].

Distributed computer control systems (DCS) are a
very challenging and fast evolving field. The target
systems encountered in the process control area are
an ideal field to explore the notions of direct distribu-
tion, concurrency and groups. However, performance
requirements and the importance attached to these
problems, mostly money-critical, if not life-critical, de-
ter the fast introduction of new concepts.

Distribution in computerised control has so far been
almost exclusively limited to networking facilities, to
down-load and up-load information (e.g. shop-floor
data or CNC control programs), or to replace point-
to-point cabling (e.g. centralised polling field-buses).



Decentralised approaches where some node autonomy
1s conferred are normally specialised application-level
solutions.

For an evolution to take place in DCSs, such new
generation distributed computer control systems must
be able to provide assurances about: correctness;
dependability and real-time behaviour; performance;
testability. Recent architectural work (MARS [20],
AAS[16], DELTA4-XPA [41]) has shown some path-
s to the combination of distribution, fault-tolerance
and real-time, in what one could call responsive sys-
tems. The notion of groups is of paramount impor-
tance in these settings, given the natural division of
these (sometimes large) systems in small replicated
or cooperative modules, with highly concurrent oper-
ation. Groups obviate the need to reason in terms
of the global system when making and proving asser-
tions about correctness, dependability and timeliness.
Group tools assist the programmer to reason about
correctness of the interactions among group members.

Conclusions

The concepts advanced in this paper need not
be taken as whole, or in rupture with traditional
paradigms. Firstly, they are valid at different levels
of abstraction: the user depicted in figurel may ei-
ther be a programmer or an operating system nucle-
us. Secondly, there is a migration path which start-
s in the lower layers of the system. A lot may be
done in improving the way distributed systems work
at low level, while preserving the traditional shared-
memory and/or RPC-based models to the applications
programmer. Micro-kernels can take advantage of the
group networking support mechanisms mentioned, or
of low-level site membership management (e.g. for
managing port sets). TLow-level group communica-
tion protocols may assist in implementing distribut-
ed shared-memory approximations, or in performing
consistent table updates.

Though the role of low-level group mechanisms
to support high-level group-oriented programming is
probably not controversial, we argue that a system
structured in this way may be as effective in support-
ing group-oriented programs as in supporting tradi-
tional ones.

Still, a lot has to be done in what regards implemen-
tation of these concepts. A recent controversy [10,6]
shows that there are no general solutions. Implemen-
tations conceived to support group-oriented program-
ming may present shortcomings when evaluated as

support of alternative paradigms, such shared mem-
ory or transactions. Still, this does not invalidate the
concept, and in our opinion the solution may lie in
taking problem-oriented approaches that prove to give
correct and satisfactory solutions to those alternative
paradigms.
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