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Abstract

Totally ordered multicast protocols have proved to be extremely useful
in supporting fault-tolerant distributed applications. This paper compares
the performance of the two main classes of protocols providing total order
in large-scale systems (token-site and symmetric protocols) and proposes
a new dynamic hybrid protocol that, when applied to systems where the
topology/traffic patterns are not known a priori, offers a much lower latency
than any of the previous classes of protocols in isolation.

Keywords: Network Protocols, Multicast Communication, Total Order, Large-
Scale Systems.

1 Introduction

Totally ordered multicast protocols have proved to be extremely useful in sup-

porting many fault-tolerant distributed applications. For instance, total delivery

order is a requirement for the implementation of replicated state-machines [22],

�This work was partially supported by the CEC, through Esprit Project BR 6360 (Broadcast).
Selected sections of this report were published in the proceedings of the 16th International Con-
ference on Distributed Computing Systems, Hong Kong, May, 1996.
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which is a general paradigm for implementing fault-tolerant distributed applica-

tions. Although several protocols have been described in the literature [2, 3, 4, 5, 7,

11, 12, 13, 15, 16, 18], few were specifically targeted to operate in (geographically)

large-scale systems.

In a large scale network processes’ traffic patterns are usually heterogeneous.

The same applies to the network links: some processes will be located within the

same local area network whereas others will be connected through slow links,

and thus subject to long delays. In such an environment, none of the previous

approaches can provide optimal performance. A new dynamic hybrid protocol for

implementing total ordering in large-scale systems is proposed. In this protocol,

some processes order messages using a symmetric approach and others use a

token-site approach in order to minimize overall message latency. So as to adapt to

variations in client throughput or in network delay, the protocol allows processes

to dynamically switch between passive and active modes. This paper shows

that the dynamic hybrid protocol can be successfully applied to systems where

topology/traffic patterns are not known a priori. Simulation results illustrate the

merits of dynamic protocol.

The paper is organized as follows. Section 2 surveys related work and briefly

introduces the problem of providing a totally ordered multicast. Section 3 states

the assumptions about the communication system and describes the simulation

tool. The hybrid protocol is presented in Section 4 for static topologies. Section 5

presents the switching protocol and Section 6 shows how it is used with dynamic

topologies. Concluding remarks appear in Section 7.

2 Related work

Among the several algorithms for implementing total ordering, the token-site [5,

12] and symmetric [18, 7] are the most used approaches1.Both methods have ad-

1Other solutions exist but will not be considered in this paper due to their performance lim-
itation in large-scale environments. The class of algorithms known as Replica-Generated Identi-
fiers [3, 22] computes total order in two phases. This scheme does not scale well since it requires
the collection of an acknowledgment from each recipient for every message transfer. Total order-
ing algorithms based on the passage of time (also known as� protocols [6]) also do not scale well
because they may exhibit a latency that depends on the worst case network delay.
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vantages and disadvantages.

In the token-site approach one (or more) sites is responsible for ordering

messages on behalf of the other processes in the system. This process works as a

sequencer of all messages and is often called the token site. A number of algorithms

based on this principle have been published providing different degrees of fault-

tolerance. The protocol family of Chang and Maxemchuk [5] rotates the token-site

among the set of processes (that are both senders and recipients). The Amoeba

protocol [12] is similar without the fault-tolerance mechanisms. Isis [4] also uses

a token-site approach but migrates the token to the process which has a higher

transmission rate. The Totem [2] protocol organizes processes in a logical ring

and circulates a token that is used for ordering messages (messages are ordered

accordingly to their “insertion” in the token) and for flow control. Other protocols,

like xAMp [24, 20], use the physical order of transmission in a local-area network

to establish ordering. Token protocols are appealing because they are relatively

simple and provide good performance when message transit delays are small

(they are particularly well suited for local area networks). However, in a token

protocol, a message sent by a process that does not hold the token experiences a

delivery latency close to 2D, where D is the message transit delay between two

system processes (i.e., the time to disseminate the message plus the time to obtain

either the token or an order number from the token holder). Thus, token-site

approaches are inefficient in face of large network delays.

In the symmetric approach, ordering is established by all processes in a decen-

tralized way, using information about message stability. This approach usually

relies on logical clocks [14] or vector clocks [3, 18, 13]: messages are delivered accord-

ing to their partial order and concurrent messages are totally ordered using some

deterministic algorithm. Symmetric protocols have the potential for providing

low latency in message delivery when all processes are producing messages. In

fact, using a technique called rate-synchronization [19], symmetric protocols can

exhibit a latency close to D + t, where t is the largest inter-message transmission

time. Unfortunately, this also means that all processes must send messages at a

high rate to achieve low protocol latency. The ToTo [7, 16] protocol minimizes

this effect through the use of a stability test that requires messages with larger

timestamps only from a majority of the machines in the system, thus providing

3



early delivery. However, message latency is still limited by the rate of the slowest

process in the majority.

A hybrid approach is used by the Newtop protocol [8] which provides total

order across different groups, and where some groups can operate using a sym-

metric protocol and others using a token-site protocol. This approach is extended

in this paper, by allowing both protocol types within the same group.

3 Assumptions

This paper is exclusively concerned with mechanisms for providing total order

delivery. Thus, for the sake of clarity, availability of a reliable (unordered) multi-

cast mechanism and its associated membership service is assumed2. We further

assume that the multicast mechanism follows the virtually-synchronous model

as defined in [21] and, informally, guarantees that all messages are received by

all group members. The only assumption about the order in which messages are

received is that all logical point-to-point channels between any pair of processes

are FIFO (this can be easily enforced using sequence numbers). The membership

service is responsible for giving each process information, called views, about

the operational processes in the system. It is assumed that views are linearly or-

dered (V i; V i+1; :::), i.e., that in case of network partitions only a majority partition

remains active and continues to receive views.

In order to measure protocol performance we resorted to simulation. For that

purpose, MIT LCS Advanced Network Architecture group’s network simulator

(NETSIM [9]) was used. Values presented here were obtained by performing a

weighted average of each message’s maximum delivery time. Simulation param-

eters are described below.

Messages are delivered by the multicast layer with a delay that is a function of

network delay D(s;r) between the sender s and the recipient r. Network delay is

represented by a probability distribution function, with a mean value of �(s;r), and

a variance of �2(s;r). Thus, if a given process s multicasts a message at real-time t,

2A number of recent systems[4, 17, 23] also implement total order on top of reliable multicast
services.
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process m will receive it, on average, at real-time t+ �(s;m), process n, at real-time

t+�(s;n), and so on. A process receives its own messages immediately. Usually, the

distribution function depends on the type of network being used to interconnect

each sender-recipient pair. Two different networks are considered: a local area

network, with small values of � and �2 (20ms and 0:05, respectively) and a wide

area network, with large values of � and �2 (500ms and 0.3-0.5, respectively). A

shifted �2 distribution function was used to model both networks. Additionally,

it is assumed that each process is subject to a different traffic load. The traffic load

of each process is also described by a distribution function. Present results were

obtained using a Quasi-Periodic and a Poisson message source3.

4 Static hybrid protocol

We now present a hybrid protocol for static topologies, i.e., topologies where traffic

patterns, rates and communication delays are known a priori and do not change

over time. The protocol is extended later to dynamic topologies. The hybrid

protocol allows some processes to operate in symmetric mode (these processes

are said to be active), or also called sequencers), and other processes to operate in

token-site mode (these processes are said to be passive). At a given instant, each

passive process is associated with a single active process which issues tickets on

its behalf.

4.1 Protocol operation

The protocol works as follows. Each process has a unique identifier pi and keeps

an increasing sent message counter ci. Thus, each message is uniquely identi-

fied by the pair (pi; ci). Messages are multicasted, using a virtually-synchronous

primitive, directly to all processes of the group. Active processes keep an extra

counter: the ticket number ti. Ticket numbers are updated as according to the

rate-synchronized symmetric protocol referred to in Section 4.2. A ticket is a

3Using a Quasi-Periodic message source, the interval between each message is described by
a random variable with a very narrow normal distribution. Using Poisson message source, the
interval between each message transmission is described by a random variable with an exponential
distribution.
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Figure 1: Latency of symmetric and token-site protocols in isolation.

triplet (pi; ti; (pj; cj)). An active process issues tickets for its own messages and

for messages from its associated passive processes. At a given time, each passive

process is associated with a single active process, called the passive process se-

quencer (an active process can be a sequencer of more than one passive process).

Passive processes multicast their messages to all group processes which then wait

for a ticket stating the total order of each message. The ticket is sent by each

passive process’s sequencer. In order to be disseminated to all processes, tickets

are piggy-backed in messages sent by active processes. Tickets are ordered as in

a symmetric protocol i.e., by increasing order of their ticket numbers, and tickets

with the same ticket number are ordered according to the total order of ticket

issuers. Finally, messages are delivered by the order of their associated tickets.

4.2 Criteria for mode assignment

In order to illustrate the behavior of both protocols in isolation we have selected the

rate-synchronized symmetric protocol of [19] and the non fault-tolerant version

of [12] (where a single site issues tickets on behalf of all other processes in the

group). The measured latency of these protocols for different network delays

is depicted in Figure 1, corresponding to a scenario where 30 processes send

messages at a rate of 10 msg/s. It can be seen that, as noted before, the latency

of the token-site protocol follows the 2D line and the latency of the symmetric

protocol follows the D + t line. The figure clearly shows that token-site protocols
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forall process n set n mode to passive
let a be the process with highest rate; set a mode to active; set changed to true
while (changed is true) do // iteration

set changed to false
forall j such that j mode is passive do

let a be the active process closest to j

if (D(j;a) + tj < 2D(j;a)) then do
set j mode to active; set changed to true

else do
set sequencer of j to a

fi;
od // forall;

od //while

Figure 2: Mode assignment heuristic

are more favorable when 2D < D + t � D < t, and that symmetric protocols are

more favorable otherwise. The next section shows how this observation can be

used to assign operational modes in the hybrid protocol.

4.3 Mode assignment heuristic

The critical part of the hybrid approach is to assign roles to each process. The

decision must take into account the rate at which each process is producing mes-

sages and network delays between processes. In order to configure the system,

a heuristic that analyses each pair of processes in isolation is used. Consider a

process n, subject to a load characterized by a mean inter-message transmission

time tn. Consider that the delay to the nearest (in terms of network delay) active

process a is D(n;a). The condition that must be satisfied for process n to assume a

passive role is D(n;a) + tn > 2D(n;a). In this case, inter-message transmission time

is longer than the active process’ round-trip delay and p can request and obtain

a ticket from a before there is a new message to be sent. On the other hand, if

D(n;a) + tn � 2D(n;a) since it is sending messages faster than the time required to

obtain a ticket from the token-site, n should assume an active role (this not only

offers lower latency but provides better load distribution).

The complete algorithm to assign roles can be obtained by applying the pre-

vious rule recursively, as described in Figure 2. Initially, all processes are made

passive. Since at least one active process must exist in the system, the process
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Figure 3: Static hybrid protocol

(or one of the processes, if more than one exist) with smaller inter-message trans-

mission time is selected as the initial active process. Then, the rule is applied

to all other processes of the system to check if some of the processes should be

promoted to active. This procedure is executed recursively until no change is

made to the network.

4.4 Performance with static topologies

In order to test the effectiveness of our approach, the performance of the hybrid

protocol is compared with that of the protocols selected in Section 4.2. The re-

sults are shown in Figure 3. They were obtained with a system of five processes,

connected by a network as shown (grey nodes are network relays): processes

A, B and C (and processes D and E) are within D1 of each other; however, the

distance between a process in the first group and a process in the second group is

2D1+D2. Each process can be subjected to two different traffic loads, designated

respectively by high(H) and low(L). Nine different scenarios were simulated, dif-

fering in relative traffic load of each process. The load of each process in each

scenario is shown in the table (for instance, in scenario 1, process A has high load,

process D has low load, and so on). In this simulation, the following parameters

were used: D1 = 20ms, D2 = 500ms, a high rate of 100msg=s and a low rate of

1msg=s (both using a Quasi-Periodic source). Figure 3 depicts the performance of

the three protocols for each scenario (in the token-site protocol, process A holds

the token in all scenarios). For the hybrid case, heavily loaded processes are active

and lightly loaded processes are passive in all scenarios. The token-site protocol
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offers the lowest latency when all high-load processes are close to the sequencer

and clearly degrades when the load shifts to distant processes. The symmetric

protocol offers the lowest latency in scenario 9, when all processes have high load.

The almost flat lower line represents the performance of the hybrid protocol.

Since in the limit scenarios, the hybrid approach resembles a token or a sym-

metric protocol, the performance of the hybrid protocol matches these best cases.

Furthermore, in all intermediate cases where symmetric or token-site protocols

suffer performance degradation, the hybrid protocol continues to offer good per-

formance.

5 Mode switching protocol

In order to apply the hybrid protocol to dynamic topologies, a protocol that allows

a process to dynamically switch between active and passive mode is needed. This

section describes such a protocol.

There are three types of transitions that can occur in a dynamic hybrid protocol,

namely: (i) a passive process can change sequencer; (ii) a passive process can

switch to active; (iii) and, an active process can switch to passive. Transitions can

occur due to two main reasons: changes in the operational envelope and failures.

Transitions due to failures happen when active processes, which are acting as

sequencers of other processes, crash. In this case, passive processes associated

with the failed sequencer must either select a new sequencer or become active.

Transitions due to changes in the operational envelope happen when a process

decides to adapt to new load or network delay conditions.

To guarantee correct operation, all active processes in the system must see

the same sequence of configurations. Thus, the order in which transitions are

executed, with regard to message flow and membership indications, must be

agreed before transitions actually take place. In order to reach agreement about the

(i+ 1)th configuration, the properties of the underlying view-synchronous layer

(vs-layer) and the total order of messages, established by the ith configuration,

are used. For self containment, the vs-multicast definition [21] is included:

vs-multicast: Consider a set of processes g, a view V i(g), and a message m multicast to
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the members of group V i(g). The multicast m is vs-multicast in view Vi(g) iff: if
9p 2 V i(g) which has delivered m in view V i(g) and has installed view V i+1(g),
then all processes q 2 V i(g) which have installed V i+1(g) have delivered m before
installing V i+1(g).

The vs-layer advantage is the guarantee that, in case of failures, all surviving

processes receive the same set of messages before a new view is installed. This

means that each view change is a synchronization point where all processes are

guaranteed to have received the same messages. These properties greatly simplify

switching protocols. However, no assumptions are made about the consistency of

rates and network delay evaluations (i.e., no process can assume that some other

process will change state just because such a transition is plausible according to its

own local information): all transitions which are not directly triggered by failures

must be initiated and disseminated by the switching process.

In order to describe the switching protocol some definitions are needed. Each

process j is described by a triplet, called the process descriptor, denoted Dj =

(pj; rj; rnj), where pj is the process identifier, rj is a role (one of active or passive),

and rnj is a role-number (role-numbers start with zero and are incremented every

time a process changes roles). A system configuration, C = fV i;
S
j2V i Djg, is

defined as a system view plus the process descriptors of all processes in the view.

It is also assumed that each process j keeps a record of the last of its own messages

that has been delivered, lj . Finally, it is assumed that a passive process p keeps

the process descriptor of its sequencer in a variable called S(p).

A protocol pseudo-code description opresented in Figure 4. The following

text presents an informal description of the protocol’s functionality.

5.1 Initial configuration

When the hybrid protocol starts, all processes must agree on some initial con-

figuration. The exact configuration is not important since the system is able to

reconfigure itself (as long as there is at least one active process in the initial con-

figuration). An initial configuration was used where all processes are are active

and remain in that state until they have received enough messages to evaluate

traffic load and network delays.

10



5.2 Operation in steady-state

In the dynamic hybrid protocol, a process operating in passive mode is not stat-

ically assigned to a given sequencer process. Instead, a passive process can

instruct any active process to order messages on its behalf, on a message-by-

message basis (usually, a passive process only changes sequencer as a result of

a configuration change). This confers flexibility to the system and provides fast

adaptability to changes in the operational envelope. To allow dynamic binding,

data messages are encapsulated in a protocol message with the following format:

htype; pi; ci; Si;user-datai, where pi is the source, ci is the message’s sequence

number and Ds is the process descriptor of the assigned sequencer for that mes-

sage (the assigned sequencer will only issue a ticket if it still has the role-number

specified in Si when it receives the message).

Since messages can be transmitted concurrently with events that generate con-

figuration changes, it is possible for the assigned sequencer to fail or increment its

role-number before it has the opportunity to issue tickets for a group of messages.

In order to cope with these cases, the protocol uses another special message, called

a reassign message, with the following format: hreassign; pi; ]li; ci]; Snewi, where

pi is the source, ]li; ci] is a range of message sequence numbers (the specification of

this range will be described later on in this section) andSnew is the new sequencer

for those messages. As will be seen, reassign messages are only sent when the

selected sequencer fails or becomes passive.

If a passive process fails, all of its messages, delivered by the vs-layer before

the view change but not yet ordered by its sequencer, are silently discarded by all

processes. This procedure is safe, because the properties of the vs-layer guarantee

that tickets for those messages are also totally ordered with respect to the view

change.

Both active and passive processes store all received messages in a pending

queue. Active processes issue tickets for their own messages and for all messages

assigned to them in the pending queue (i.e., if the process descriptor in the message

matches the process descriptor of that active process). Tickets are ordered as they

are received (piggy-backed in the messages of the active processes). Finally,

messages are removed from the pending queue and delivered by the order of
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their tickets. Although only active processes issue tickets, all processes (including

passive processes) keep their ticket numbers synchronized according the protocol

in [19]: a passive process may need to become active and the protocol exhibits

better performance if these numbers are up to date.

Some messages are reserved for protocol usage and are not delivered to

the user. The use of such messages will be clarified below. Also, message

hreassign; pi; ]li; ci]; Sii is never delivered: it is only used to update the sequencer

field of all specified messages in the pending queue.

5.3 System reconfiguration

Process mode transitions and process crashes induce a sequence of system con-

figurations. In order to voluntarily change their modes, processes broadcast

special messages, namely hgoingToActive; pi; ci; Sii and hgoingToPassive; pi; ci; Sii

messages. Such messages are sent in total order as any other data message, and

their delivery triggers installation of a new system configuration. Processes may

also be forced to change their mode due to failure of other processes thus, view

changes also trigger installation of a new system configuration. Finally, passive

processes may react to configuration changes by selecting a new sequencer. These

situations will be addressed in the following paragraphs.

5.3.1 View changes

Assume that the system is in configuration Cn = fV i;
S
j2V i Djg and V i+1 is

delivered by the vs-layer. A new configuration Cn+1 = fV i+1;
S
j2V i+1 Djg is

created. If there is no active process in such configuration (i.e, all active processes

have failed) process m having the highest process unique identifier in Vi+1, is

automatically switched to active mode (by setting rm = active and incrementing

rnm); then, Cn+1 is installed. If there is a passive process such that S(p) 62 Cn+1,

this process selects a new sequencerm and setsS(p) = (pm; rm; rnm). Additionally,

it sends message hreassign; pp; ]lp; cp]; S(p)i.
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code for process i

Declare Types
Role oneof (active, passive);
State oneof (active, chgseq, topassive, passive, toactive);

Declare Variables
ProcessIdentifier pi;
Integer ci ; // the message count
Integer li; // last delivered
Role ri;
Integer rni ; // role number
State statei;
Integer ti; // ticket counter
ProcessDescriptor Si ; // my sequencer
Configuration Ci ; // current configuration
MessageQueue Qi; // pending messages
ListOfTickets UTi; // list of unordered tickets
ListOfTickets OTi; // list of ordered tickets
ListOfTickets LTi; // list of issued tickets
// T (M) denotes the ticket issued for message M

declare function issueTickets
forall message M = hmtype; pj; cj ; DM ; bitsi 2 Qi do
if (DM = (pi; ri; rni) ^ T (M) 62 LTi) then

issue a ticket T (M) for M (update ti);
LTi := LTi [ fT (M)g;

fi;
od; // forall

declare function deliverMessage (Message M)
ifM = hdata; pj; cj ; S;Museri) then // data message

deliver Muser;
if (pj = pi) then

li := cj ;
if (statei = chgseq ^li = ci) then

Si := selectNewSequencer();
state := passive; // re-start sending

fi;
fi;

fi
ifM = hgoingToActive; pj; cj; Si then

Ci := new configuration;
if (pj = pi) then

rni := rni + 1; li := cj ;
statei := active; Si := (pi; ri; rni);
call issueTickets; // re-start sending

fi;
fi;
ifM = hgoingToPassive; pj ; cj ; Si then

Ctemp := new configuration;
if (no active process in Ctemp) then // abort
if (pj = pi) then

li := cj ; statei := active; Si := (pi; ri; rni);
call issueTickets; // re-start sending

fi;
else

Ci := Ctemp;
if (pj = pi) then

rni := rni + 1; li := cj ;
statei := passive; // re-start sending

fi;
if (statei 6= active) then

li := cj ;
set Si to Descriptor of closest active process;
vs-multicast([]hreassign; pi; ]li; ci]; Sii);

fi;
fi;

fi;

declare function deliverInOrder
while ( T (M) = queueHead (OTi) ^M 2 Qi ) do

remove T (M) from OTi;
remove M from Qi;
call deliverMessage (M);

od;

main loop: wait event
when [tickets]hMi received from process j do
if ([tickets] 6= ;) then

UTi := UTi [ [tickets];
move tickets in order from UTi to OTi;

fi;
update ti using rate-synchronization;
ifM = hreassign; pj; ]f; t];Dnewi then
forall c 2]f; t] do

Mc := hanytype; pj; c;DMc; bitsi 2 Qi;
change DMc to Dnew in Mc;

od;
else

Qi := Qi [ fhMig;
fi;
call deliverInOrder;
if ( statei = active) then call issueTickets; fi;

od;

when there is a message Muser to send and statei = passive do
ci =: ci + 1;
vs-multicast ([]hdata; pi; ci; Si;Museri);

od;

when there is a message Muser to send and statei = active do
ci =: ci + 1;
M := hdata; pi; ci;Di;Museri;
issue ticket T (M) for M (update ti);
LTi := LTi [ fT (M)g;
vs-multicast ([LTi]hMi);
LTi := ;;

od;

when statei = active and time to go to passive do
ci := ci + 1;
M := hgoingToPassive; pi; ci; Sii;
issue ticket T (M) for M (update ti);
LTi := LTi [ fT (M)g;
statei := topassive; // stop sending
vs-multicast ([LTi]hMi);
LTi := ;;

od;

when statei = passive and time to change sequencer do
statei := chgseq; // stop sending

od;

when statei = passive and time to go to active do
ci := ci + 1;
M := hgoingToActive; pi; ci; Sii;
statei := toactive; // stop sending
vs-multicast ([]hMi);

od;

when view V i is delivered do

Ctemp := V i;
S
j2V i Dj 2 Ci;

if (Si 62 Ctemp ^ 9
j2C

temp : rj = active)then

Si := process descriptor of closest active process;
vs-multicast([]hreassign; pi; ]li; ci]; Sii);

fi;
if (6 9

j2C
temp : rj = active) then

select active process m;
rm := active;
rnm := rnm + 1; // update Ctemp

if (m = i) then
// I’m my own sequencer now
statei := active; Si := (pi; ri; rni);
vs-multicast([]hreassign; pi; ]li; ci]; Sii)
call issueTickets;

fi;
Ci := Ctemp;

fi;
forever; // main loop

Figure 4: Pseudo-code description of the hybrid protocol.
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5.3.2 Transition from active to passive

In the dynamic hybrid protocol there are two reasons for a process to change

from active to passive: (a) its traffic load has decreased to a rate where it is more

advantageous to request a ticket from another process; (b) or a nearby process

has become active and transmitting at a much faster rate, so that there is no

need to continue being an active process. In order to switch to passive mode,

process pi sends a special message hgoingToPassive; pi; ci; Sii, stops transmitting

and stops issuing tickets, even for messages assigned to itself (these messages will

eventually be assigned to another sequencer). It then waits for its own message

to be delivered.

When the hgoingToPassivei message is delivered, before creating a new con-

figuration, it should be checked if the sender is the last active process in the group.

Note that since several processes can decide to become passive concurrently, all

active processes might try to become passive but, since at least one active process

must exist, the last one will fail. In the case the message is associated with the last

active process, the transition is aborted (and the sender restarts sending messages

and issuing tickets). Otherwise, a new configuration Cn+1 is created by setting ri

= passive, and incrementing rni. Then, Cn+1 is installed.

5.3.3 Transition from passive to active

A transition from passive to active mode can happen either because a process

becomes subject to higher traffic load, making the active mode a better choice, or

because all active processes have failed and it is the process with highest identifier.

In the first case, passive process ibroadcasts a special hgoingToActive; pi; ci; Sii

and stops sending messages. Then it waits until the special message is ordered by

its sequencer and delivered. When the message is delivered, a new configuration

Cn+1 is created (by setting ri = active and incrementing rni). Then,Cn+1 is installed.

All messages sent by i after this new configuration are ordered by process i itself.

In case of failure of the only active process, the passive process with highest

identifier becomes active as soon as it receives failure indication from the vs-layer.

Upon this transition, new active process i issues tickets for all messages it has sent
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but that were not ordered in previous configurations, i.e., for all messages with

sequence numbers in the interval ]li; ci].

5.3.4 Change of sequencer

A passive process can change its sequencer if some other process becomes active

and the round-trip delay to that process is lower than to the previous sequencer.

Since data messages specify the desired sequencer, sequencer switching is very

simple. To avoid disturbances in FIFO ordering, passive process p stops trans-

mitting temporarily and waits until all its previous messages have been delivered

(i.e., it waits until lp = cp). It then sets its sequencer S(p) to the new desired

process descriptor and resumes message transmission.

A passive process p can also switch sequencer if its previous sequencer

changes to passive mode. As before, the passive process sets its sequencer

S(p) to the new desired process descriptor. Additionally, knowing which mes-

sage li was last ordered by the previous sequencer, it sends a reassign message

hreassign; pp; ]lp; cp]; S(p)i instructing the new sequencer to order unordered mes-

sages.

6 Dynamic hybrid protocol

Traffic patterns are likely to change over time in most interactive applications.

Components usually react to incoming events by switching between idle periods

and high activity periods. Networks delays are also subject to variations, due to

load changes (office and night hours, for instance) or link failures (faster routes can

become temporarily unavailable). Using the algorithms presented in the previous

section, the dynamic hybrid protocol automatically adapts the operational mode

of each process to changes both in traffic patterns and in communication links.

6.1 Evaluation of system parameters

To allow on-line reconfiguration, processes must be able to evaluate system pa-

rameters as traffic load and network delays. The following approach is used:
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each process timestamps every message with its own local clock at the time of

transmission; based on the message’s timestamp, all processes can determine

the average transmission rate of the sender process. To determine delays in inter-

process links, a simple round-trip delay method is used. At every pre-determined

fixed interval of time4, all receiving processes of a given data message respond

immediately with a point-to-point null message to the originator process of the

first message. This process can then calculate the delay between itself and all

recipients5.

In order to evaluate system parameters based on sample measurements, a

simple mean-shift detector was used: an initial mean value of rate and delay is

calculated using the first k samples from each process6;whenever a run of k or

more samples fall either all above the mean value or all below it, that mean

value is recalculated and used in the next iteration. As the symmetric protocol

relies on the fact that all processes must be constantly sending messages, system

parameters can be evaluated after a short period of operation. This and other

mean-shift detectors are described in detail in [10] and, as a future work, we plan

to experiment with other detectors to evaluate their performance.

6.2 Switching heuristic

Section 4 showed how an external observer assign roles to each process in an

hybrid configuration. Since an external observer can only be approximated, and

to avoid centralized solutions, a heuristic that allows each process to make a

local switching decision based on its own evaluation of the system state is now

presented.

The heuristic is as follows: each process keeps track of its own message rate

and of the network delay between itself and all other active processes. If its

inter-message transmission rate is smaller than the delay to the closest active, it

should switch to active mode, as shown previously. If, on the other hand, its

inter-message transmission rate is higher than the delay to the closest active, it

4In our simulations, an interval of a few seconds was used.
5Usually, evaluation of link delays is also required by other components (for instance, for

fault-detection), and can be implemented using low-level acknowledgments.
6In our simulations, we have k = 7.
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Figure 5: Dynamic hybrid protocol

should switch to passive mode using the closest active process as its sequencer.

To avoid frequent mode changes when the value of inter-message transmission

rate is very close to the delay value, the decision to change mode is only made

when the difference between these values becomes greater than a given threshold

(a threshold of 20% of the delay value was used).

Results obtained using the heuristic above are presented in Figure 5, alongside

with results from symmetric and token-site protocols. For clarity, exactly the same

scenarios as in Figure 3 were used, except that now the system ran continuously

while the process load changed with time, making the system evolve through all

nine scenarios in sequence. Also, results are now presented for both a Quasi-

Periodic and a Poisson message source. In the hybrid approach, every time

the load changes in at least one process, roles are reassigned and the affected

processes execute the transition algorithm on-line. It can be observed that the

hybrid protocol using both types of message sources, out-performs the two other

protocols, independently of individual process rates. With the Quasi-Periodic

source it shows an almost constant message delivery time, with a temporary

increase in message delivery latency upon each change in the operational envelope

(this is due to the time required to make local decisions and the disturbance

introduced by the switching protocol). With the Poisson source, although more

irregular and with a slightly higher delivery time, the results are still better than

either the symmetric (which performs poorly with Poisson sources7) or token-site

7Only certain values of the symmetric protocol appear in the figure so as to avoid losing detail
in the token-site and hybrid plots.
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protocol.

Throughout this paper, the concepts of the hybrid protocol were illustrated

with some relatively simple examples. In an extended report [19] simulations

results obtained with more elaborate scenarios are presented, showing that the

hybrid protocol offers significant advantages over symmetric or token-site ap-

proaches, in large-scale systems and heterogeneous environments.

7 Conclusions and future work

This paper proposed a new hybrid scheme for implementing totally ordered mul-

ticasts in geographically large-scale systems using a combination of symmetric

and token-site based protocols. This protocol is able to dynamically adapt to

changes in throughput and in network delays while reducing latency through a

rate-synchronization policy. The hybrid protocol was simulated for several sce-

narios, using different network topologies and traffic patterns. Results show that

the hybrid protocol can offer significant improvements in message latency.

Using simple heuristics, it is possible to make all switching decisions local

to each process. Alternative heuristics, for the mode-assignment algorithm and

for the switching policies, are currently being studied, to see if they can provide

better performance.

It has been shown that total order protocols can be combined in a hierarchical

manner [1]. An optimized solution for topologies based on interconnected LANs

could use a hierarchical combination of protocols specially designed for local area

networks (such as AMp [24]/xAMp [20] or Totem [2]) with the dynamic hybrid

protocol presented here.
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