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Abstract

This paper presents a processor group membership
protocol designed to run on top of a local area network.
The protocol maintains information about a selected
group of stations that explicitly join the protocol by
keeping a replica of a global membership table at ev-
ery member. Additionally, the protocol guarantees
that a given station always occupies the same entry
in the table. As a result, table indexes do unique-
ly and universally identify a station and can thus be
used as short identifiers. The interest of a processor
group membership is twofold: it is a powerful auxil-
iary for process group membership management and
it provides support for efficient message addressing.

Keywords: Distributed Systems, Distributed Al-
gorithms, Fault-Tolerance, Communication Protocols,
Real-Time.

1 Introduction

Distributed systems may take advantage of the lo-
cal availability of up to date information about the
nodes in the system. This information is not static:
during the lifetime of the system, stations will join,
leave and, possibly, fail. A protocol able to dynam-
ically maintain information about the state of a giv-
en set of distributed entities is usually called a group
membership protocol.

*A version of this paper has been published in the Proceed-
ings of the 13th International Conference on Distributed Com-
puting System, Pittsburgh, Pennsylvania, May 25-28, 1993, 0-
8186-3770-6/93 © 1993 IEEE
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This paper presents a group membership protocol
designed for small scale fault-tolerant distributed sys-
tems built on top of a local area network. For effi-
ciency, the protocol is implemented in the lower lay-
ers of the communication system. More precisely, the
protocol is implemented on top of an exposed MAC
interface of standard VLSI LAN controllers. The ad-
vantages of this approach are twofold: the properties
of the architecture are exploited to achieve improved
performance and the services provided by the protocol
can be used by upper layers.

A particularly useful application of a low-level
group membership protocol is the possibility to dy-
namically assign short-addresses to each node of the
system. A short-address is a compact station iden-
tifier, built on the assumption that networks always
have a number of nodes much lower than that allowed
by the address space of standard 48-bit long LAN ad-
dresses. This can be exploited to provide an opti-
mized support for message addressing in the distribut-
ed system. We are specially concerned with fault-
tolerant architectures, implementing replication tech-
niques that are highly demanding on interchange of
information in multicast mode. A multicast message
is addressed to a set of components, usually resident
on different nodes of the system. Thus, a multicast
address can be translated into a set of station identi-
fiers. However, for efficiency, at the LAN level mul-
ticast addresses should be highly compressed and, if
possible, recognized by VLSI controllers. We analyze
several alternatives to implement multicast addresses
at the LAN level and we conclude that the associa-
tion of a short-address to each station participating in
the multicast traffic can improve the efficiency of the
communication system.

Our group membership protocol has then two ma-
jor goals:

e it keeps a complete, and updated, list of a selected
group of stations, participating in the multicast



traffic (target systems typically include up to 64
nodes). This group is called the Multicast Group
of Stations or simply MGS. The MGS protocol
assures that the membership view is updated con-
sistently in the presence of joins, leaves and fail-
ures. Changes in MGS membership are indicated
to the protocol users.

e it implements a mapping function that translates
unique node identifiers into short-addresses. To
enable run-time reconfiguration, the mapping is
not statically pre-defined and new stations are
able to, at any time, obtain a short-address. This
mapping 1s universal and stable, 1.e., in all sta-
tions, the same short-address corresponds to the
same station and that correspondence remains
unchanged during the lifetime of the system!.

The paper is organized as follows. Section 2 intro-
duces our design goals. In Section 3 we describe the
MGS group membership protocol. Some case studies
and numerical results appear in Section 4. Compar-
ison with related work appears in section 5 and final
concluding remarks are provided in section 6.

2 Design Goals
2.1 Target architecture

Our work was developed in the scope of the
DELTA-4 [8] architecture. The DELTA-4 architec-
ture aims at providing a solution to problems re-
quiring varying degrees of distribution, fault-tolerance
and real-time [1]. Tt does so by resorting to tech-
niques based on “macroscopic” replication of compo-
nents (processes, files, objects, ...) and its distribution
over a network. These services are implemented using
a versatile multi-primitive reliable multicast service,
the #AMp [10], designed to support distributed ap-
plications with different dependability, functionality,
and performance requirements. A major feature of
xAMp is that all communication primitives offer mul-
ticast addressing.

Multicast communication is extensively used in
DELTA-4. Thus, the efficiency of multicast address-
ing is of major significance for the overall performance
of the architecture. The MGS group membership pro-
tocol was designed to efficiently support zAMp’s ad-
dressing scheme. In the communication stack, the

1The user can always explicitly request to unmap a given
short-address.

MGS is integrated in the network infrastructure, im-
mediately on top of the MAC interface of the local area
network, running in parallel with the xAMp layer.

2.2 Efficient Multicast Addressing

Existing LAN VLSI controllers usually provide
hardware support for the use of multicast addresses.
However, the number of addresses that can be pro-
cessed by the VLSI is usually small and far less than
what is normally required in group-oriented systems.
Additionally, these multicast addresses must be con-
figured in all concerned stations before any multicast
transmission may take place. In many applications the
selection of the destination nodes is highly dynamic
and can only be made at send-time.

A common solution to overcome these hardware
limitations is to manipulate multicast addresses ex-
clusively by software, using a single multicast (or,
more often, broadcast) address of the LAN controller
chipset to physically disseminate the messages. In this
approach, a multicast address is usually represented
by a list of node identifiers exchanged as a message
field. However, such a representation does not allow
an efficient manipulation. For instance, to check if a
given identifier belongs to the multicast address the
list must be parsed and each entry read until a match
is found. Moreover, in a local area network, a node
identifier can be up to 48 bits, increasing comparison
times and the multicast address field size.

Another solution is to map each node identifier in-
to a short-address. Let the unique node identification
be represented as u; and the short identifier as s;, an
integer in the range [1 ... MaxStations ], such that
u; < s;. If such a mapping is possible, a multicast ad-
dress can be represented as a fixed-size array of bits,
where the sﬁh bit 1s asserted when station wu; 1s ad-
dressed and negated otherwise. This representation is
very compact and allows the operations on multicast
addresses to be implemented as binary logical and/or
operations. This represents a significant performance
improvement and when the maximum number of mul-
ticast stations is small, it allows the recognition of
selective addresses to be implemented in hardware, by
the chipset of the underlying network?.

2.3 Protocol service

Our group membership protocol provides the map-
ping function referred above by maintaining a ta-

?For instance, the MC68824[12] token-bus controller has a
group address mask which can be set to filter messages in func-
tion of a bit value.



ble with information about all stations participat-
ing in the multicast traffic. For efficiency and fault-
tolerance, the table is replicated at every group mem-
ber. The table includes an array of state entries, each
entry storing information about a given member of the
group: an entry contains, at least, the node unique i-
dentifier and a boolean stating if the node 1s alive.
Additionally, the entry may store user related data.
The short-address associated with each MGS member
is stored implicitly: 1t corresponds to the index of the
assoclated entry in the table.

A station may be connected to the network with-
out participating in the group membership protocol.
In order to join the MGS group it must execute a
MgsJoin operation. The join operation requires ex-
change of messages with the other MGS members to
acquire the state table, insert itself and obtain a short-
address. Upon an insertion in the MGS, a station is
informed of any change in the MGS membership by
an MgsChange indication. A station may leave the
MGS by executing an MgsLeave operation. The MGS
membership is checked at every execution of a Join or
Leave or when a specific MgsCheck operation is explic-
itly invoked. The MgsCheck can be called periodically
or upon the detection of an event that raises suspicion
about the failure of a MGS member.

When a station joins the MGS, it acquires a short-
address which will remain associated to that station.
Even if the station fails or leaves the MGS group, the
short-address remains assigned to the station address
so that the remaining stations can refer to it by the
associated short-address. If the station recovers and
executes a new join, it obtains its old short address.
A dedicated operation, MgsDelete is used to remove a
station from the MGS table and to release the associ-
ated short-address. Since there is a local copy of the
MGS table available at every station, translation be-
tween unique identifiers and short-address is a purely
local operation.

3 The MGS Protocol
3.1 Assumptions

The MGS was designed as a low-level membership
protocol running on top of local area networks. Thus,
it exploits the architecture and technology attributes
of LANSs that can be used to achieve improved perfor-
mance and dependability. The MGS benefits of this
low-level approach without compromising openness by
defining an abstract network interface with the prop-
erties presented in table 1. The interface, discussed

in detail in[13], abstracts the useful communication
properties that are common to most existing LANs
ensuring MGS portability.

Protocol design assumes that communication com-
ponents have a fail-silent behavior. That is, a pro-
cessor fails by stopping producing outputs but never
produces an erroneous output. Tests performed in the
DELTA-4 project have shown that coverage of this as-
sumption for off-the-shelf hardware is largely accept-
able for applications requiring up to a moderate level
of fault-tolerance. When high coverage is required,
the use of self-checking components must substantiate
this assumption. In addition to processor faults, the
communication medium may have omission faults as
described in property Pn3.

The DELTA-4 communication infrastructure was
designed in order to meet high expectancies with re-
gard to fault-tolerance and real-time. The highly reli-
able and timely environment yielded by a single LAN
used in a closed fashion had also to do with the LAN-
based approach taken. We carefully devised a depend-
ability model and established its correctness in [13], for
such an environment. The MGS protocol, although
clock-less (it is not based on synchronized clocks), is
synchronous, in the sense that known and bounded
execution times are enforced, using the techniques de-
scribed in[14]. Here we briefly enumerate the major
requirements to achieve synchronism of a clock-less
protocol: upper bounds on message delivery delays
(Pn6), in the presence of overload and faults; perfor-
mance specification on the hardware/software in order
for processing times to be bounded and known; struc-
ture the protocol in a predictably bounded number
of clearly delimited phases; structure each phase as a
bounded series of timed-out transmissions-with-reply,
having thus with a known duration bound.

3.2 A reliable communication primitive

The abstract network service, upon which MGS re-
lies, offers an unreliable multicast service, presenting a
set of properties which are most useful to implemen-
t reliable multicast primitives. In absence of faults,
the broadcast (Pnl) and full duplex (Pn2) properties
provide message delivered to any processor connect-
ed to the network. However, although errors can be
considered rare in LANs, the occasional loss of mes-
sages — or omissions — cannot be prevented. Thus,
the membership protocol must be able to recover from
such errors. In the MGS, omission errors are detect-
ed and recovered using a transmission-with-response
procedure: it uses acknowledgments to confirm the
reception of the message and detects omission errors



Table 1: Summary of Network Properties.

e Pnl - Broadcast: Destinations receiving an
uncorrupted frame transmission, receive the
same frame.

e Pn2 - FError detection: Destinations detec-
t any corruption by the network in a locally
received frame.

e Pn3 - Bounded omission degree : The number
of network omission faults (k) is bounded.

e Pn4 - Full duplex : On request, frame indica-
tion can be provided at the sender.

e Pn5 - Network order : Any two frames indi-
cated in two different destination access points,
are indicated in the same order.

e Pn6 - Bounded transmission delay : Network
delays are bounded.

based on the bounded omission degree property of the
abstract network?.

The tr-w-resp procedure? is depicted in figure 1.
It consists of a loop, where the data message is sent
over the network and responses are awaited for. The
procedure waits during a pre-defined time interval for
the responses, which are inserted in a response bag,
and exits when the desired number of responses 1s col-
lected. Note that assuming bounded execution and
transmission delays (Pn6) a response from all correc-
t processors must be received within a bounded time
unless there are network omissions (Pn3). If some re-
sponses are missing, the response bag is re-initialized
and the message re-transmitted. The main loop fin-
ishes when all the intended responses are received or
when a pre-defined retry value is reached. Since the
number of retries is bounded, there is a well-known
worst-case execution time for the complete execution
of the tr-w-resp procedure by a correct processor (see
Sec. 4 for more details).

To preserve network order, the procedure re-
transmits the message until it 1s acknowledged by all
recipients in a same transmission. Note that by ab-
stract network property Pn4, the sender also receives
its own frames. When order is not required, the proce-
dure can be optimized by keeping responses in the bag
from one re-transmission to the other (response mes-
sages are inserted only once in the response bag) . For
some omission patterns, this would allow the bag to be
filled faster. To activate this mode, the flag “ord” must
be set to false. Finally, the boolean variable “first” can

3The detailed technique, as well as its advantages over other
approaches such as diffusion based masking is discussed in detail
in [14].

*It is a modified version of the procedure given in [13].

Figure 1: tr-w-resp ({m), ord, first, M, P,)

01 // (m) is a message to be sent. Dy, is the set of recipients.
02 // “ord” is a boolean specifying if network order is relevant.
03 // “first” allows the first transmission to be skipped.

04 // My is a bag of responses.

05 // a response is expected from each p € Py

06 // (usually Pr = D).

o7

08 retries := 0;

09 do // while

10 if (retries = 0V ord) then Py, := Pr; M, :=0; fi

11 if (retries > 0V first) then send (m); fi

12 retries := retries + 1; timeout := 0; start a timer;
13 while (Py # 0 A —timeout) do

14 when message (rm,) received from p A p € Py, do
15 add (rym) to My; remove p from P 3 od

16 when timer expires do

17 timeout := 1; od

18 od

19 while (retries < MAX A Py, # 0)

be set to false to prevent the message from being sent
over the network on the first cycle of the procedure.
This parameter is useful to allow other processors to
collect responses — and execute the procedure — on
behalf of the sender without re-transmitting the mes-
sage. The protocol description will give examples of
how “first” and “ord” parameters can be used.

Several transmissions with response can be execut-
ing simultaneously, on the same or different machines.
We assume that messages can be uniquely identified®.
Different re-transmissions of the same message can al-
so be distinguished. It is thus possible to relate any
response with the appropriate tr-w-resp instantiation
(also called an emitter-machine). To make a protocol
tolerant to sender crashes, several emitter-machines
may be activated concurrently, at recipient sites, for
a same message transmission (in this case, responses
must be also broadcasted). The next section shows
how these features are used by the MGS.

3.3 Protocol Execution

The Multicast Group of Stations protocol maintain-
s, at every member node, a replica of a global MGS
state table where the relevant information about group
membership 1s stored. The protocol keeps all copies of
the state table consistent by ensuring every update is
an atomic operation. This is achieved by a distributed
lock mechanism: a node must acquire the lock before
making any change to the state table. The protocol

5The unique message identification is disseminated with the
message within an MGS protocol header common to all protocol
frames.



assures that, at any given instant, only one node can
hold the lock and that only the lock holder is able to
change the MGS state.

The protocol is fully decentralized, that is, there
is no special node in charge of performing operations
on the MGS state table. Instead, any node can try
to perform an update at any instant. This has sev-
eral advantages: the same protocol is used at the ini-
tialization, during normal functioning and for failure
recovery; upon detection of a failure, any node can
immediately execute the reconfiguration of the MGS
membership; upon any change, the new MGS state is
quickly disseminated to all correct members, despite
the occurrence of failures. Different versions of the
MGS state table are timestamped with a unique ver-
sion number.

For clarity, the protocol description is split into
three cooperating activities: Guardian, Changer and
Accepter. Each of these activities has a different goal:

e Guardian activities are responsible for reading
and updating of the local copies of the MGS s-
tate table. There is a Guardian running at every
MGS member.

e Changer activities perform the computation of
the global MGS state table by exchanging infor-
mation with all active Guardians. A Changer
is only activated when a Join, Leave, Delete or
Check operation needs to be executed. Several
Changers, in different nodes, may compete to ob-
tain the state lock, although only one can hold
the lock at a given instant. In a single node only
one Changer can be active at a given moment.

e Accepters assure proper protocol termination in
case of failure of a Changer. Accepters are cre-
ated whenever a local copy of the MGS table is
updated. Several Accepters can be active at the
same time in the same and/or in different nodes.

The sequences of actions performed by each activi-
ty are sketched in figure 2 and illustrated in figure 3.
The protocol description already includes some opti-
mizations described in the following section. For clar-
ity, in the figures, the changers are drawn separate-
ly from the guardians. The reader should remember
that there is always a local guardian residing in the
same node of the active changer. Note also that local
shared variables are not protected with mutual exclu-
sion mechanisms since all activities can be easily ex-
ecuted by the same task/process (we can neglect the
processing overhead compared to the delays associated
to message transit). The following paragraphs give an

informal description of the interaction between these
different entities. Some sequences are described in i-
talic. These correspond to optimizations that are not
mandatory for understanding the basic protocol; the
reader may wish to skip them until next section.

1. The Changer starts the protocol by sending a
(GetState) message to the Guardians of all MGS mem-
bers. With this message, the Changer requests the
Guardians to provide him with the most recent value
of the MGS state table and, implicitly, it tries to ac-
quire the lock of the table. It then waits a response
from every MGS member.

2. The Guardians, upon reception of the { GetState)
message, send a response message, ( MyState), contain-
ing the value of the local copy of the table, 7p,4,. A
boolean lock is set to avoid further changes until a new
state table is disseminated by the Changer that just
acquired the lock. For that purpose, the identifica-
tion of the lock holder is also stored. Meanwhile, if a
(GetState) message is received from a different Chang-
er, a negative acknowledgment, ( ChState) is returned.
The current changer must disseminate a new MGS s-
tate (and implicitly release the lock) within bounded
time. A timer, the lockTimer, is started to check the
activity of the current changer®.

Since the underlying abstract network is unreliable,
it is possible for a single (GetState) message to lock
just a subset of the Guardians. Thus, two competing
Changers can mutually refrain each other of acquiring
the lock. This scenarto, called a contention, is dis-
cussed 1n detail in sec. 3.4.

3. The Changer collects all acknowledgments.

o If a negative acknowledgment, {ChState), is re-
ceived from every member, this means that the
lock is currently held by another Changer. The
local changer waits for the termination of the lock
holder to resume activity from step 1. If the active
changer fails, the local changer will also resume
activity after a pre-defined delay.

o If all responses are of { MyState, T) type but some
responses are missing the {GetState) is retrans-
mitted. The Changer always expects an acknowl-
edgment from every member marked active in the
MGS state table. A joining member initializes the
set of expected acknowledgments when it receives
the first (MyState, T) message.

o If both (ChState) and (MyState, T) messages are
recetved this indicates a contention scenarto. The

6The value of the lockTimer is a function of the worst-case
execution time of the tr-w-resp procedure.



Responses are:
A<MyState, T>
B:<MyState, T>
C=<MyState, T>
Dx<?>

[ State not locked
Il Locked by A
X Omission

omission ...
retry

<GetState,0>

Changer A <Ge£$tate,0>

table locked
update

Responses are:
Ax<RcState>
B<RcState>
CxRcState>
Dx<RcState>

new state receive
table unlocked

<NewState, T>

Guardians

Accepters

(started when
new stateis

received)

changer and
guardi an A
reside on the
same processor.

All accepters
collect the
responses and
terminate.

Figure 3: Execution with omissions.

locking level is incremented and (GetState) is re-
transmaitted. Note that the parameter “ord” of the
“tr-w-resp” procedure is activated. This means
that a complete new set of responses is expected

after each retransmission.

o If all responses are of (MyState, T) type and no
responses are missing, the Changer copies the s-
tate returned by the Guardians to a temporary
variable. The temporary variable is changed ac-
cordingly to the operation being executed: new
members can be added, marked as failed or en-
tries can be deleted. The temporary state version
number is incremented and the state is dissemi-
nated in a (NewState, 7) message. This message
propagates a new MGS state table and, implic-
itly, releases the table lock. The Changer then
waits for a confirmation of reception from every
Guardian.

If the state information returned by several
(MyState, T) responses differ, this indicates an
unstable state. The (GetState) message is re-
transmitted until the state stabilizes.

4. When the Guardian receives the (NewState, T)
message 1t updates the local copy of the MGS state
table and releases the lock. It immediately starts an
Accepter to mask the possible failure of the changer.
The Accepter will run the same steps as the Changer,
from step 5. An acknowledgment {RecState) is multi-
casted to the network. The flag c_end is set to indicate
to the waiting local changer (if any) that the MGS s-
tate is again unlocked.

The accepter invokes the procedure “tr-with-resp”
with the parameter “first” inactive. This means that
the accepter collects the acknowledgments and only re-
transmaits the new state if some of them are missing.

5.  The Changer (and the Accepters) collect
(ReState) frames. If some acknowledgments are miss-
ing the Changer (and the Accepters) retransmit the
(NewState, T) until an acknowledgment is received
from every multicast station in the network. The
bounded omission degree property assures that the
(NewState, T) will be received by all correct proces-
sors 1n an finite time interval.

The (NewState, T) is disseminated with the “ord”
parameter of the “tr-w-resp” procedure inactive. Thus,
a posttive acknowledgment must be received, at least
once, from each guardian.

3.4 Optimizations

In the protocol described above, operations on the
MGS state table are serialized by the locking mech-
anism. This scheme presented a poor performance
when many nodes tried to change the MGS state table
simultaneously. During system startup this disadvan-
tage was evident: there all processors try to execute
a Join operation at approximately the same time. To
overcome this limitation we have enhanced our proto-
col with a mechanism that allows cooperation between
Changers, as described below:

A changer operation [ist is associated to each
Changer. At activation time, the operation list on-
ly contains the operations to be performed by the lo-
cal Changer. Whenever a Changer tries to acquire
the state lock its operation list is disseminated in the
(GetState, oplist) message. Guardians, upon reception
of a (GetState, oplist), read the operation list field (o-
plist) and add those operations to the operation list
of the local Changer. Through this mechanism, active
Changers exchange their operation list while trying to
obtain the state lock. The winner of the lock i1s then



Figure 2: MGS Protocol
shared variables
101 c_end // boolean flag, used when a active changer finishes
102 c_opl // used to exchange information between changers

103 U is a set with all the stations in the network

guardian activity

201 // Tngs is the MGS table;

202 // V(T) gives the table version number

203 // wioek is the identity of table lock

204

205 forever do

206 when (GetState, opl) received from p do

207 c_opl := c_opl + opl;

208 if ujocr # nil then send (ChState);

209 else ujoer 1= ps

210 start lockTimer; send (MyState, Trngs) 3 fi; od
211  when (NewState,t) received from p and p = ujocr do
212 Tings = t; send (RcState) ;

213 start Accepter for (NewState,t) ;

214 c_end :=true; ujoer = nily stop lockTimer; od

215 when lockTimer expired do

216 Upoek := nil; start a Changer; od // lock holder failed
217 when (NewState,t) received from p and p # ujocr do
218 if V(t) > V(Tmgs) then Tpgs := ¢ fi;

219 send (RcState); od // delayed retransmission
2200d // forever

changer activity

301 // Tiemp Is a temporary copy of the MGS state
302 // In(T) gives the set of active members

303

304when operation needs to be performed do

305 // operation is join, leave, check or delete

306 c_opl := operation; c_end:=false;

307 // get state sequence (implicitly obtains the lock)
308 // locking levels not depicted

309 tr-w-resp ({ GetState, c_opl),1,1, M, ,U);

310 while —(Vi,5 € M,,r is of type { MyState, t; )

311 At; = t;) do // while state is unstable

312 start retry Timer; // wait my turn

313 while ( = retryTimer expired A—c_end);

314 if operation performed by other changer then
315 return fi;

316 c_end=false; stop retryTimer;

317 tr-w-resp ({ GetState, c_opl),1,1, M., U); // retry
318 od

319 get Ttemp from responses;

320 changeState ( Tiemp, c-opl );

321 // propagate state sequence (implicitly releases the lock)
322 tr-w-resp ({(NewState, Tremp), 0,1, Mr, In(Tiemp));

323 if a failure is detected then the changer is re-activated;
3240d

accepter activity

401 // (NewState, Tacc) is the message to be disseminated
402

403when accepter is activated do

404  tr-w-resp ({(NewState, Tacc), 0,0, My, In(Tace))s
405 if a failure is detected then the changer is activated;

able to perform all the operations collected during the
first phase of the protocol execution. The Changers
that loose the competition for the lock wait for the
new state table to confirm whether their operations
were already executed or not.

Another aspect where the need for optimization was
stressed by practical experiments, was the mechanis-
m to recover from contentions. A contention occurs
when two competing Changers both refrain from ac-
quiring the state lock. This scenario may happen in
presence of network omissions: a Changer sends a first
(GetState) message that, due to omissions, is only re-
ceived by a sub-set of the Guardians; another Changer
also sends a (GetState) message and locks the remain-
ing Guardians; in this scenario none of the Changers
acquires the lock.

Our first version of the protocol did not provide
any special mechanism to provide a fast recovery from
contentions. When a contention occurs, both Chang-
ers set their retryTimers (line 312 of figure 2) and
Guardians remained locked until expiration of the
lockTimer (line 215 of figure 2). Recovery was then
depended of timers which needed to be configured
with long worst case values. To overcome this limita-
tion we have introduced a mechanism that was already
used with success in the xAMp based on locking levels.
Locking levels work as follows. When a Changer re-
quest the state lock by sending a (GetState) message,
it associates a numeric value to that request. This val-
ue is called the locking level. Guardians also store the
locking level associated with the lock holder and are
allowed to attribute the lock to a Changer other than
the current lock holder if (and only if) they receive a
(GetState) request with a locking level higher than the
current level. All Changers start with the lowest lock-
ing level and only increment the locking level when
they are sure that a contention has occurred.

The algorithm becomes more clear with an example
(see figure 4): a first Changer, A sends a (GetState)
message that, due to an omission, is not received by
Guardian D. The lowest locking level, say 0, is as-
sociated with that request. Another Changer, B also
sends a {GetState) message — also using locking lev-
el 0 — and locks D. Changer A detects that some
responses are missing and retransmits the {GetState)
message keeping its locking level at 0. Changer B re-
ceives (ChState) from Guardians 4, B and C' and re-
ceives (MyState) from D: this identifies a contention
scenario. Thus, Changer B increments his locking lev-
el before retransmitting the {GetState) message. If
there are no omissions during the dissemination of B’s
message, B wins the lock; otherwise the locking lev-
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Figure 4: Competitive changers.

el is incremented again (note that as a result of its
first retransmission, changer A also detects the con-
tention). The bounded omission degree property as-
sures the convergence of the protocol. The figure also
illustrates the cooperation between changers: B’s lo-
cal guardian picks the operation list associated with
the (GetState) message received from changer 4 and
gives 1t to changer B before a new state is generated;
when the guardian at processor A receives the new s-
tate informs the local changer (which then checks if
all operations were performed).

Contention can also occur during the release of the
lock. This scenario occurs in presence of omissions
during the dissemination of the (NewState) message or
when the lock holder fails. In order to assure proper
termination of state propagation the lock winner must
always wait for the stability of the MGS state. In order
words, the lock winner must retransmit the {GetState)
message until the same state table is returned by all
positive acknowledgments.

3.5 Handling of failed stations

Failures of a group member are only detected when
a Changer 1s activated to perform an MGS operation.
A special MgsCheck operation is provided to activate
a Changer only for membership verification purposes.
If the Changer itself fails, the protocol also assures
that all copies of the state table are left in a consistent

state.

The most simple case of failure detection occurs
during the execution of the “r-w-resp” procedure. If
the absence of an acknowledgment from a member
persists after the network omission degree has been
masked, then the failure of that member is assumed.
If the failure is detected by a changer before the prop-
agation of the new state, this information will be dis-
seminated with the new table. Otherwise, if detected
by a Changer or by an Accepter during the propagate
sequence, the changer must be activated again.

A slightly more elaborated scenario occurs when a
Changer fails. Here recovery depends of the Changer
state in the failure instant. When the Changer hold-
s the state lock and fails before propagating the new
state, the failure is detected by the Guardians activ-
ities when the lockTimer expires. When the Changer
fails during the dissemination of the (NewState) mes-
sage, the protocol termination is assured by Accepter
activities. In the latter case, the failure of the node
will be detected by the Accepter during the execution
of the “tr-w-resp” procedure.

MGS does not have any intrinsic mechanism to de-
tect the failure of a member when all changers are i-
dle. This option was excluded during the design phase
based on the observation that many target systems al-
ready incorporate some form of “i’m alive” mechanism
(as token-rotation on token based LANs). When this
is the case, including such a mechanism in the MGS
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Figure 5: Performance.

would be redundant. However, the MGS does provide
the MgsCheck primitive that allows the membership
to be checked when there is a suspicion of failure. An
example of such a use, is the token-ring based DELTA-
4 system: status information concerning the detection
of token losses is provided by the token-ring chipset,
allowing an MgsCheck investigation action to be trig-
gered. When the target architecture does not provide
any support for failure detection, MgsCheck can then
be periodically invoked. Any of the alternatives en-
sures bounded-time failure detection mandatory for
real-time operation.

4 Performance

The performance of MGS depends upon the number
of nodes involved, the number and type of faults and
the number of active changers. The results presented
here were obtained using a version implementing the
optimizations of sec. 3.4.

Naturally, best-case occurs when only one chang-
er is active and no faults occur. Here, the protocol
requires exchange of 2(1 + n) messages. Let Tyyr(n)
be the time required to execute a “tr-w-resp” series,
where n i1s the number of nodes involved, and let Ty
be the transit delay for a single message. The best
case termination time, defined as the time to execute
a MGS operation, is given by Tiy,(n) + Ty. If sever-
al changers are competing for the lock, and again in
absence of faults, termination can be delayed by the
duration of the propagate state sequence. This mean-
s that the worst-case termination time in absence of
failures is given by Tiyr(n) + 274.

When f (f < k) omission failures occur, “r-w-
resp” series can generate up to (f+1)(14n) messages.
The MGS involves then the exchange of (f+2)(1+n)
messages and exhibits a worst case termination time
of (f + 1)Tiwr(n) + 274 (omission faults only).

Worst case values are obtained in the presence of
crash faults. Worst results for the number of messages
exchanged are obtained when stations other than the
Changer fail. The Changer needs to execute “lr-w-
resp” up to the network omission degree, which is k+1.
Thus, there is a (k + 1)(n + 1) message overhead per
failure. Worst case for termination times occurs when
a Changer fails immediately after acquiring the state
lock. Loosers only try to obtain the lock again when
the retryTimer expires. There is an extra delay equal
to the value of this timer per Changer failure. The
worst case termination time is then strongly depen-
dent on timer configuration.

Numerical results strongly depend on the actual ar-
chitecture used to support the MGS implementation.
We have made our measurements on a cluster of SUN
Sparc-Stations with MGS implemented as an Unix’
device driver. The execution time of an MGS opera-
tion, as a function of the membership size, 1s presented
in figure 5. It ranges from 7.3 ms with 2 stations to
20.3 ms with 13 stations, which roughly gives an in-
crement of 1ms per extra member.

5 Related work

To our knowledge, there are not many examples of
low level processor group membership protocols in the
literature. A group membership that, as ours, keeps
information about active nodes in the system is pre-
sented in [5]. However, it assumes tightly-synchronous
behavior of the system and makes extremely restric-
tive fault assumptions: for instance, a scenario where
a message sent 1s lost by two receivers but received
by the remaining nodes is excluded from the fault hy-
pothesis. This assumption is valid in the highly closed
environment of MARS [6] but is clearly unacceptable
in most of our target LAN based systems [15]. A set of
group membership protocols for synchronous systems
based on point-to-point networks is presented in [3].
This work 1s hardly comparable to ours since it as-
sumes the availability of a clock-driven atomic broad-
cast primitive [2], thus obviating most of the problems
MGS is concerned with. Furthermore, none of the two
previous examples provide support for dynamic attri-
bution of short-addresses to system nodes. The pro-
tocol in [7] eliminates in the assumptions the ordering
problem we are concerned with. In this approach pro-
tocol synchrony is based on the ’cycles’ of an under-
lying time domain multiplexing technique where the
order in which processes access the network is static

"Unix is a trademark of USL.



and known in advance. Approaches like that of [4] are
also not comparable to ours since they do not provide
consistent views of membership changes. The protocol
in [9] is closer to ours and also resembles a two-phase
commit protocol. However, it does not exploit the
use of broadcast networks and it is designed for asyn-
chronous systems. Thus, it cannot guarantee bounded
execution times. On the contrary, our approach relies
on bounded execution and transmission delays to en-
force the timely behaviour of the protocol. Addition-
ally, our assumptions simplify the recovery algorithm
which does not require the use of three-phase protocol-
s. The use of short-addresses to improve the efficien-
cy of a local area network is, for example, exploited
in Autonet [11], although oriented for point-to-point
communication.

6 Conclusions

The design and implementation of the MGS proto-
col and of the xAMp multi-primitive service has pro-
vided us with a better insight of how to split group
support functionality into different architecture levels.
We have found that the availability of a low-level pro-
cessor group membership strongly simplifies the im-
plementation of higher-level process group member-
ship and communication protocols. Thus, we believe
to have made a correct use of the end-to-end argu-
ment by implementing such service near the abstract
network layer, where technology can be exploited to
improve its performance.

When designing the MGS group membership pro-
tocol, we tried to follow a kind of “small is beautiful”
approach. Actual experiments with prototypes on d-
ifferent networks have shown that over-simplification
incurred some performance penalties. We have then
implemented some optimizations which, although s-
lightly increasing protocol complexity, provide satis-
fying performance under highly demanding scenarios
such as system startup.

Since MGS is based on the “tr-w-resp” technique,
thus requiring the transmission of an acknowledgment
per node, its performance decreases linearly with the
number of nodes involved. Groups of multicast sta-
tions up to 64 nodes are in fact those for which our
protocol is best suited. The results presented in sec-
tion 4 show that its use is effective when the number of
stations is small and address recognition can be hard-
ware implemented. Currently, MGS is being used to
support xAMp’s multicast address mechanism.
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