
Priority-Based Totally Ordered Multicast�

Lu��s Rodrigues, Paulo Ver��ssimo, Antonio Casimiro

ler@inesc.pt,paulov@inesc.pt,casim@inesc.pt

IST-INESCy

April 10, 1995

Abstract

The replicated state-machine approach is a general paradigm to implement fault-
tolerant services that is particularly useful in real-time control applications. A to-
tally ordered multicast protocol is a well-known method to enforce replica determin-
ism in this approach. The paper presents an algorithm to provide a totally ordered
multicast delivery service that takes priorities into account. The algorithm enforces
the inter-replica coordination required to guarantee that high priority messages can
be delivered before queued low priority messages that have not been delivered. The
algorithm as been implemented as a variant of a protocol designed for local-area
networks.

Keywords: Distributed control; Fault tolerance; Communication protocols;
Algorithms; Real-time

1 Introduction

The replicated state-machine [12] approach is a general paradigm to implement
fault-tolerant services that is particularly useful in real-time control applications. In
order to enforce replica determinism, it is desirable that all commands are executed
in the same order by all replicas. A totally ordered multicast protocol provides such
guarantees.

In critical real-time applications, predictability of execution times is a fundamen-
tal requirement. Thus, a state-machine based control system should be designed in
such a way that queues are guaranteed to be bounded, usually resorting to some
method of o�-line scheduling. In such systems, the existence of long command
queues to the state machine is not an issue. However, in many non-critical applica-
tions, it is impossible to precisely anticipate the execution time of a command. Such
systems are often tackled using dynamic approaches, for instance, using priorities
that, at a given moment, express the relative urgency of tasks and messages to be
processed. In these systems, it is possible that a state-machine queues-in several
messages, of di�erent priorities, during the execution of a given command. When

�Selected portions of this report will appear in the proceedings of the 3rd IFIP/IFAC workshop on
Algorithms and Architectures for Real-Time Control(AARTC'95), Ostend-Belgium, 1995.

yInstituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal.

1

the state-machine is ready to execute a new command, it should consume the mes-
sage of higher priority. If the state-machine is replicated, this requires inter-replica
coordination, since all replicas must consume the same messages in the same or-
der. Thus, when message priorities must be taken into account, either the ordering
protocol is able to take into account message priorities or some inter-replica coordi-
nation protocol must be executed every time a message is selected from the input
queue.

This paper presents an algorithm to provide a totally ordered multicast delivery
service that takes priorities into account. The algorithm requires two rounds of
communication. In the �rst round the message is disseminated to all recipients and
in the second round it is ordered in the queues in a manner that secures a total order
but still takes into account the message relative priority. As long as a message has
not been delivered to any replica, it can be by-passed by messages of higher priority.
The paper also shows performance results obtained with an implementation of this
algorithm as a variant of a protocol designed for local-area networks.

The paper is organized as follows. Related work appears in Section 2. The
communication model is presented in Section 3 and the priority-based algorithm is
described in Section 4. Section 5 presents a short description of an implementation
of the algorithm. An analysis of the algorithm is presented in 6. Concluding remarks
appear in 7.

2 Related Work

A number of algorithms to enforce total order have been published in the literature.
Most of them are not exclusively concerned with the ordering problems but were also
designed to provide other services, such as reliable message delivery. However, to
have insight into the fundamental issues related with total ordering, the associated
algorithms should be studied decoupled from those required to achieve other goals.
Thus, this paper will be exclusively concerned with the aspects of published work
related with the provision of total delivery order.

Total order can be satis�ed by assigning unique identi�ers to all messages and by
delivering all messages according to a total order relation on these unique identi�ers
[12]. This de�nition implies that a message cannot be delivered to a process before
there is an assurance that no other message bearing a lower unique identi�er can
be subsequently delivered to that process (the message is then said to be stable).
Although the basic principle seems quite simple, the actual method to assign iden-
ti�ers and to verify message stability di�ers substantially on the algorithm, with
consequences on the relative performance and cost.

A possible solution to enforce total order is to use logical clocks [7] (which can
also be used to ensure causal delivery). However, if no other additional mecha-
nism is used, a message can only be considered stable when another message with
larger (logical) timestamp is received from every sender [12] (this also means that
all senders must periodically send messages). These algorithms are also known as
symmetric algorithms, as all participants have peer roles. These algorithms are
especially e�cient when all participants periodically produce messages, with ap-
proximately similar rates. There are several known protocols is this category [9, 5].

Another class of algorithms is based on the selection of a special process in the
system which is made responsible for establishing the ordering between messages.
This process works as a sequencer of all messages and is often called the \token

2

site". A number of algorithms based on this principle have been published with
di�erent degrees of fault-tolerance [4, 8, 6, 3].

Finally, there is a class of algorithms known by the name of Replica-Generated
Identi�ers [12]. In this technique, total order is computed in two phases. In the
�rst phase, message recipients propose candidate unique identi�ers for the message.
In the second phase one candidate is selected and used by all recipients to order the
message. Candidate identi�ers can be multicast to all recipients, resulting in a fully
decentralized algorithm, or can be sent to a single process which then disseminates
the selected value to all recipients (thus, that process acts as a protocol coordinator).
This last version formed the basis of the ABCAST protocol of the ISIS Toolkit [2].

Whatever approach is used, previous algorithms queue messages in some total
order but do not consider the possibility of re-ordering queued messages, not even
when these messages are still waiting for being consumed and messages of higher
priority arrive. In the approach presented here, the protocol is allowed to re-assign
the order of messages contained in the queue up to the point where some total order
has already been observed by a recipient.

3 Communication Model

It is assumed that communication is held among a group of processes P . Pro-
cesses communicate by exchanging multicast messages. Three events associated
with message exchanges are distinguished: receive, queue and deliver. A message m
is received when arriving at the local process, coming from the underlying message
exchange layer (this event is denoted recp(m)). Each process maintains a totally
ordered queue of messages Qp called the consumable queue. When a message is re-
ceived at some process p it is not queued in Qp immediately. Instead, a distributed
algorithm (described in this paper) is executed to ensure that messages are queued
ful�lling the total order requirement. Messages which have been received at process
p, but that have not been queued yet, are stored in a unordered list of messages,
Wp. The queuing event, denoted queuep(m), removes m from Wp and queues it in
Qp. Messages remain queued until the process is ready to consume another mes-
sage. When the process decides to consume another message it invokes a consume
operation which de-queues the �rst message in Qp; such message is said to be deliv-
ered (denoted delp(m)). In some occasions (usually when a high priority message is
being inserted in the queue), the consumable queue will be locked and the consume
operation is delayed until the queue is unlocked.

3.1 The priority based total order service

Under the model described above, a totally ordered multicast service can be de�ned
as follows:

P1: Total order: Any two messages delivered to a pair of processes are deliv-
ered in the same order to both processes. More precisely, if 9p : del

p(m) < delp(n)
then 8(q 2 P)(delq(m) < delq(n)). In such case, the order between messages is
denoted m � n.

This de�nition does not take into consideration the existence of message prior-
ities. Consider now that a priority attribute is associated with each message, m,
and is denoted by P (m). The priority accounting property can thus be de�ned as
follows:

3

P2: Priority accounting: If a message of lower priority l has not been deliv-
ered at any process when a message of higher priority h is received, then the total
order will respect h � l. More precisely, if Qp(recp(h)) denotes the state of the
consumable queue of process p, when message h is received by p:

9(l; h)(P (l)< P (h)) ^
8(p 2 P)(l 2 Qp(recp(h)))) h � l

(1)

A priority-based totally ordered multicast protocol is a protocol that preserves
P1 and P2.

3.2 Virtual synchrony

The above de�nitions do not consider process failures. Clearly, it is impossible to
guarantee the delivery of a message to a process that fails and never recovers. In this
paper the availability of a membership service is assumed. This service is respon-
sible for giving each process information, also called views, about the operational
processes in the system. With the help of the membership service, reliable delivery
can be de�ned as follows [11]:

View-atomic multicast: Consider a group g, a view vi(g), a message m mul-
ticast to g. The multicast m is view-atomic in view vi(g) i�: if 9p 2 vi(g) which has
delivered m in view vi(g) and has installed view vi+1(g), then all processes q 2 vi(g)
which have installed vi+1(g) have delivered m before installing vi+1(g).

It is assumed that the underlying communication system o�ers view-atomic
multicast communication. Thus, to be precise, properties P1 and P2 should be
rephrased to accommodate the view-atomic multicast de�nition. Since this is straight-
forward, they are not re-stated explicitly here.

4 Priority Based Total Ordering

The presentation of the algorithm is split into several steps. The �rst subsection
summarizes the notation used in the remaining of the text. Then, the algorithm
is described with some degree of informality. Subsection 4.3 describes how a single
message is inserted in the queue. Finally, the concurrent version of the algorithm is
described in subsection 4.4.

4.1 Notation

The representation of the internal state of the consumable queue Qp is critical for
the description of the algorithm, thus the next paragraphs introduce the notation
used in this paper. Each element in this queue, Qp, is a message, m 2 Qp. A
number of attributes are associated with each message in the queue:

(i) The priority associated with the message, P (m).
(ii) A lock-set, represented by Lp(m), that contains the identi�cation of all mes-

sages that have locked m (the locking mechanism will be described later in this
section).

The queue de�nes a total order relation � between messages. It is assumed
that every queue is bounded by two dummy messages, denoted queue head, Hp,
and queue tail, T p, such that for all m 2 Qp we have Hp � m � T p . Also,
to avoid stating explicitly frontier conditions, it is assumed that Hp and T p are

4

operation consume (Qp)
when (succ(Hp) 6= T p ^ Lp(succ(Hp)) = ;) do
let m = succ(Hp));
dequeue and deliver m.

Figure 1: Consume operation.

associated with respectively a higher and a lower priority than any priority assigned
to a message. Since there is a total order of messages in the queue, some additional
de�nitions are used to denote particular positions or portions of the queue:

1. The operation prec(m) obtains the predecessor of m accordingly to the total
order relation �. Similarly, the operation succ(m) obtains the successor ofm.

2. succ(Hp) is called the �rstmessage in the queue. Similarly, prec(T p), is called
the last message in the queue. If succ(Hp) = T p the queue is said to be empty.

3. A portion of the queue is represented as an interval. For instance,]m : : :n[�
Qp represents the set of consecutive messages between messages m and n. The
complete queue can be represented by, Qp =]Hp : : :T p[.

Once queued, a message remains in the queue until it reaches its head and is
consumed. The consume operation delivers the �rst message in the queue (if any)
unless that message is locked, and can be sketched as illustrated in �gure 1.

4.2 Overview

To respect message priorities, the communication system cannot manage the queue
of consumable messages using a FIFO policy. Naturally, to enforce a total order,
messages should be delivered to clients in the same order at every process. The
purpose of the ordering algorithm is to select an insertion point, i.e. the �nal
position of a message in the queue, derived from the state of each queue at the
moment the message is received.

To simplify the description, it is assumed that only two priority levels are used,
namely high and low. This scheme is generalized for an arbitrary number of priorities
later in the paper. It is assumed that messages are processed using a FIFO policy
for each priority level.

Messages of the lowest priority are always inserted at the tail of the queue;
no special procedure is required to determine its insertion point. Thus, queue re-
ordering must only be performed for high priority messages. An example is used
to introduce the mechanism that determines the insertion point for a single high
priority message. Consider the scenario depicted in �gure 2. Let the message being
inserted in the queue be called the joining message. The �gure represents the
consumable queue of three processes. Processor 1 is executing faster than the other
two processors; message m has already been delivered. If a joining message h of
high priority arrives, it must be inserted at the head of the queue of the fastest
processor (i.e., before n), and in the corresponding point in the other queues.

Implementing queue re-ordering on deliverable messages requires the consumable
queue to be locked during the execution of the distributed agreement (to ensure
that the queue state remains unchanged during the algorithm execution). However,

5

Process 1 Process 2 Process 3

 Message h is received

State of
queues
just before
arrival
of

n, low n, low n, low

m, lowm, low

State of
queues
after the
arrival
of

n, low n, low n, low

h, high h, high h, high

m, low m, low

Head

Tail

Head Head

Tail Tail

Head

Head Head

Tail Tail Tail

h

h

Figure 2: Priority-based total order.

6

only messages of lower priority than the joining message need to be locked during
insertion point agreement. This means that messages of higher priority than the
joining message are not locked. As a result, the state-machine can only be delayed
in consuming a new command when preemption is requested by a higher priority
message, which is perfectly acceptable.

4.3 Insertion point selection

The mechanism that selects an appropriate insertion point for a given message was
introduced in an informal way. This section details this mechanism for a generic
system, where an arbitrary number of message priorities exist. However, at this
stage, the insertion of a single message is considered. This algorithm is generalized
in the next sub-section.

The agreement for the insertion of a message is executed in two phases: the lock-
phase and the insertion-phase. During the lock-phase, a joining message is received
by all replicas; at each replica the state of the queue is computed and the portion
of the queue that can potentially be a�ected by the joining message is locked. This
portion of the queue is called the target-tail for the joining message. The target-tail
of every replica is disseminated or just sent to a coordinator node (the algorithm
can be executed by a central node, for instance the sender, or in a fully distributed
manner by all replicas). Using this information, an insertion-point for the joining
message is computed. When agreement is reached about the insertion point the
insertion-phase begins: the queue is re-ordered to insert the joining message and
the target-tail is unlocked. The rules to compute the target-tail and the insertion-
point in the case where only a single message is joining the queue are described in
this subsection.

The target-tail for message j in processor p, denoted T p
j , can be de�ned precisely

as the message interval that satis�es the following condition:

T p
j = [x : : :T p] � Qp :

(P (prec(x)) � P (j))^
8(m 2 T p

j)(P (m) < P (j)):
(2)

In other words, the target-tail contains all messages from the tail of the queue
up to (not including) the �rst message with equal or higher priority than the joining
message. If the joining message's priority is lower or equal than that of any other
message in the queue, the target-tail will only contain the dummy T p element. On
the contrary, if the joining message has an higher priority than any other message
in the queue, the target-tail will be the complete queue. The target-tail for a join-
ing message restrains the set of messages that must be locked and the number of
message identi�ers exchanged for insertion point agreement. The locking operation
is represented by adding the joining message to the lock-set of all messages in the
target-tail, that is:

8(m 2 T p
j)(L

p(m) = Lp(m)[fjg) (3)

After �nding the target-tail for a joining message at each processor, the insertion
point for the message must be found. This point is the �rst message of lower priority
not yet delivered to any state-machine replica. In order to �nd it, all target-tails
must be collected from every processor. Messages that do not belong to all queues
must be eliminated, since they have already been consumed in at least one replica.

7

More precisely, the common-set for message j at processor p, Cpj , is de�ned as the
set of messages that satisfy the following condition:

Cpj =
\

n2P

T n
j (4)

Having found the common-set for message j, the insertion point is just the �rst
message in the set, ij . The insertion point is used as follows at each replica p:

1. Message j is inserted immediately before ij in Qp (i.e. j = prec(ij)).

2. Finally, the target-tail for the joining message is unlocked to resume message
consumption (that is, j is removed from the lock-set of all messages in the
queue).

This ends the non-concurrent version of the algorithm. The concurrent version
is slightly complex and is described in the next subsection.

4.4 Concurrent queue re-ordering

The algorithm just described assumes that a single message is inserted at a time in
the replicas' consumable queues. If several messages can be inserted concurrently,
the queue state changes during the insertion algorithm. There are two ways by
which the queue state can be changed:

� The replica can consume some messages. This is prevented by locking the
target-tail for the joining message. As described earlier, only messages with
lower priority than the joining message are assigned to the joining message
target-tail and therefore locked.

� Other clients may send new messages which may also require queue re-ordering.

One way to solve this last problem is to accept only one joining message at a
time. That is, de�ne a total order on all incoming messages and process insertion
point agreement sequentially, only starting the agreement for the next message
after the previous message has been inserted. However, this would have two main
disadvantages: it would enforce an undesirable serialization in the execution of
the agreement algorithm and it would make high priority messages wait for low
priority messages (this priority inversion would partially cancel the advantages of
the priority-based total order mechanism).

In this section, the algorithm is extended to allow the agreement on insertion
point for di�erent messages to run in parallel. In this concurrent version, the main
problem is to �nd a total order of concurrent messages that are joining the queue
\in the same insertion point". The algorithm should take into account the relative
priority of messages and should not block a message of high priority due to a message
of lower priority. The total order for concurrent messages of the same priority may
be arbitrary. To simplify the description, it is assumed that messages of the same
priority are inserted sequentially in the queue. In practice, this is not a limitation
as algorithms to enforce a total order on messages with the same priority are well
known [2, 8, 12].

To solve this problem, an additional structure is used, called the consumed-
history, Hp. This structure is maintained by every process and keeps track of
messages already consumed by the associated replica. With this additional structure

8

the algorithm is extended to support concurrent insertion of messages. The lock-
phase of the algorithm runs without major changes. When a joining message is
received, its correspondent target-tail is computed (as described in the previous
section) and the identi�cation of the joining message is added to the lock-set of all
messages in the target-tail. Since concurrent executions of the algorithm are now
allowed, the lock-set of a given message can include several messages. Both the
message's target-tail, and the consumed-history at recp(j), referred to as Hp

j , are
then distributed to all recipients or sent to a coordinator node.

Using this information, the common-set and an insertion-point for the joining
message are computed exactly as in the non-concurrent case. Additionally, the
history-set for message j, Hj is computed as the union of the consumed-history sets
of all processes when the message was received:

Hj =
[

q2P

Hq
j (5)

The history-set for a joining message j contains all messages that were already
consumed in at least one process at the moment j was received (and j's target-tails
computed).

The fundamental di�erences between the concurrent, and the non-concurrent
versions of the algorithm occur during the insertion phase. The problem with the
concurrent execution of the algorithm is that several messages can be inserted \at
the same point"; thus the insertion-point computed in the previous stage is provi-
sional and a de�nitive insertion-point must be computed. The joining message must
be inserted preceding all the concurrent messages of lower priority and succeeding
all messages of higher priority. During the insertion phase, the existence of other
concurrent messages can be detected by the observation of at least one of the two
scenarios:

� Case A: the message selected as the insertion-point has been locked by another
concurrent message.

� Case B: other messages of lower priority than the joining message, but of
higher priority than the insertion-point message, have been inserted before
the insertion-point.

The new insertion algorithm has to consider both cases, as described in the
following paragraphs.

Each of the previous cases is dealt with a di�erent mechanism. Case A is dealt
making the joining message inherit the locking set of the insertion-point message.
Case B is dealt inserting the joining message, not before the insertion-point mes-
sage, but before all messages of lower priority that have been inserted before the
provisional insertion-point message. The complete sequence of actions that must be
performed is listed below:

1. Let i be the computed provisional insertion-point for message j. The lock-set
of j is initialized to \Lp(j) = fmjm 2 Lp(i)^ P (m) > P (j)g", i.e., it inherits
the lock-set of the insertion-point message but discards locks from messages
of lower priority.

2. Some of the messages that have been inserted at that point may have lower
priority than the joining message. If there are messages in this condition,
these messages are locked due to the inheritance of lock-sets described in the

9

Process 1 Process 2

l
i

iv

vi

l

H

T T

H

H

l

m

T

h

H

l

m

T

h

T

H

L{h}

L{h}

l

m

l

T

H

L{m}

h

L{m,h}
ii

l l L{m,h}

T T

H H

iii
l

T

H

T

H

L{h}

L{h}

l

m

L{m,h}

v

l

T

H

H

l

m

L{m}

T

h

h

Process 1 Process 2

L{h} L{m,h} L{h} L{m}

L{m,h} L{m,h}

L{m}

Figure 3: Concurrent queue re-ordering.

10

previous step. The set of locked messages, called the locking interval for the
joining message X p

j is then de�ned as the maximum interval such that:

X p
j = [xj : : : ij] � Qp :

8(n 2 X p
j)(P (n) < P (j)^ n 62 Hj)

(6)

Note that eventually, xj = ij . This means that only messages of higher priority
than the joining message have been concurrently inserted at that point. The
message xj is chosen as the de�nitive insertion-point for the joining message.
The joining message is inserted before xj .

3. Finally j is removed from the lock-set of all messages in the queue. Addition-
ally, all messages m such that P (m) < P (j) are removed from the lock sets
of all messages in]Hp : : : j]. This prevents the joining message from being de-
layed by other joining messages of lower priority (which may have concurrently
locked the messages).

The �nal step of the concurrent version of the priority-based total order algo-
rithm is to avoid the continuous growth of the consumed-history. Messages in the
consumed-histories can be discarded as soon as they are inserted in the consumed-
histories of all replicas (this means that they have already been delivered every-
where). Thus consumed-histories can be simply garbage-collected by letting the
recipients periodically exchange their histories. Since this operation is required by
the algorithm, the garbage-collection of consumed-histories can be performed with-
out any additional exchange of messages.

Figure 3 illustrates the concurrent queue re-ordering algorithm. It uses two
processors and three messages, l, m and h. The priorities of these messages are
such that P (l) < P (m) < P (h). During the lock-phase, both messages m and h

lock l (3.i). The agreed provisional insertion-point for both messages will be l. If
process 1 insertsm �rst, it will detect the presence of a concurrent message of higher
priority by reading the lock-set. The lock-set of l is inherited by m (3.iii). When
h is inserted at processor 2 the same procedure applies but, since h is the message
with higher priority, h is not locked by m. Finally, when m is queued at processor
2 and h at processor 1, case B of the algorithm applies. The locking interval for
message h at processor 1 is [m : : : l] (3.iv). The locking interval for message m at
processor 2 is [l] (3.v).

4.5 Fault-tolerance

Fault-tolerance is supported by the underlying virtually-synchronous communica-
tion. The advantages of this primitive are illustrated using a simple protocol imple-
mentation.

Figure 4 presents the pseudo-code for an implementation where processes, in
response to a multicast, disseminate the associated target-tail and the consumed-
history among all members of the group through an acknowledgment message. This
algorithm is not optimized; section 5 presents a more e�cient implementation. All
messages are disseminated using virtual-synchrony. This guarantees that if a process
receives a joining message j, all other correct processes also receive j and acknowl-
edge its reception. Acknowledgments are also vs-multicasted. Thus, if a process
remains correct, all other processes receive its acknowledgment. Otherwise, a new
view (without the failed process) is installed. In either case, an acknowledgment

11

when r needs to multicast message j do
vs-multicast (j)

when p receives j do

add j to Wp; compute T p
j and Hp

j .

let Ap
j := ;; // allocate bag of acks

vs-multicast (hack; j; p; T p
j ;H

p
j i);

when p receives hack; j; q; T q
j ;H

q
ji from q do

add hack; j; q; T q
j ;H

q
ji to A

p
j ;

when #Ap
j = #Vp do

compute Hj , C
p
j , ij , X

p
j , and xj ;

remove j from Wp and insert j in Qp at xj ;
when new view V installed do

Vp = V ;

Figure 4: A simple implementation.

will be received from every process in the view, and the information collected is
used to compute the message's insertion-point.

5 An Implementation In xAMp

The priority-based total ordering algorithm was implemented and tested. The im-
plementation was done in the framework of a group communications service devel-
oped at INESC called xAMp [10]. The xAMp provides a set of group membership,
reliable multicast and time services, which are highly versatile. Its implementation
consists of a highly integrated package which exploits broadcast local-area networks
and the use of fail-silent components, to provide the best tradeo� between func-
tionality and performance. It provides the user with di�erent qualities of service
ranging from unreliable multicast to atomic multicast.

The atomic primitive assures that a message is delivered to all or none of the
correct group members (unanimity) in the same relative order to other messages
(total order) in a bounded interval of time (synchronism). This basic primitive is
implemented using a two-phase accept algorithm: its operation resembles that of a
commit algorithm, in that the sender coordinates the algorithm: it sends a message,
implicitly querying about the possibility of its acceptance, to which recipients reply
(dissemination phase). In the second phase (decision phase), the sender checks
whether responses are all a�rmative, in which case it issues an accept { or reject,
if otherwise. In the event of sender failure, algorithm execution is carried on by
a termination algorithm. This algorithm was formally speci�ed (in Estelle) and
veri�ed [1].

The priority-based total order was easily accommodated as a variant of this basic
procedure. During the dissemination phase the sender implicitly locks the relevant
messages in the consumable queues of all recipients (i.e., the messages in the target-
tail), and uses the responses to read their state; this executes the lock-phase of
the algorithm. The computation of the insertion-point is performed by the sender
and disseminated during the decision phase. When the decision arrives, recipients
insert the new message in the queue (unlocking the relevant elements) as described

12

256 512 768 1024

3.0

3.5

4.0

4.5

5.0

5.5

6.0

message size (bytes)

time (ms)

2 stations

6 stations
atomic

priority-based

Figure 5: Performance

in the previous section; this corresponds to the insertion-phase of the algorithm.
The order by which messages cross the network is used to enforce a total order on
messages of the same priority. Thus, the implementation of the priority-based total
order algorithm in the xAMp is fully concurrent, i.e, several senders can execute
the algorithm in parallel (for messages of the same or di�erent priority).

The performance of the priority-based total order service was compared with
that of the atomic quality of service. The di�erence in performance between the
algorithms is mainly due to two factors: i) the processing overhead introduced by
the lock operations and the computation of the insertion point; ii) acknowledgments
are slightly bigger in the priority-based service, as they carry the target-tails for the
joining messages. However, in the tests the consumable queues of state-machines
replicas were usually small, with just a few number of pending messages. In this
case { believed representative { the overhead of the priority-based algorithm was
relatively small (less than 1ms). Performance results for an implementation of the
algorithm running as a device-driver in Sun machines, interconnected by a Ethernet
network are shown in �g 5. As shown, it takes less than 6ms to insert a 1024 bytes
high priority message in the consumable queue of a group of 6 replicas.

6 Discussion

The algorithm presented is a variant of the \replica-generated identi�ers" algorithm
[12]. A variant that did not take into accout messages priorities has been previously
implemented in the ISIS system [2] and later replaced by a \token-site" based pro-
tocol due to performance reasons. Since the algorithm is only usefull in applications
where the mean time to consume a message is greater than the time involved in the
communication rounds, its use must be careful weighted when slow networks are
used.

The algorithm was implemented and tested over local-area networks. The tim-
ings obtained show that a message can be queued in a few milliseconds when small
number of processes are involved. Since most fault-tolerant applications do not
need very high replication degrees, the use of the priority-based algorithm is advan-
tageous because it merges the message dissemination with the replica co-ordination
phases, with obvious gains in performance and resource consumption.

13

7 Conclusion

An algorithm to enforce total order delivery based on message priorities was pre-
sented. The algorithm requires two rounds of virtually synchronous communication.
In the �rst round message is disseminated to all recipients and in the second round
it is ordered in the queues in a manner that respects a total order but still takes into
account the message relative priority. The algorithm is useful for all state-machine
like applications where the time to consume a message is far greater than the time
involved in the communication rounds. This restricts its applicability as a general
tool. The algorithm was implemented as a variant of the xAMp protocol, designed
for local-area networks. The results obtained are quite satisfactory and show that
it can have practical use.

Acknowledgments

The authors are grateful to C. Almeida for his comments on earlier versions of
this paper.

References

[1] M. Baptista, L. Rodrigues, P. Ver��ssimo, S. Graf, J.L. Richier., C. Rodriguez,
and J. Voiron. Formal speci�cation and veri�cation of a network independent
atomic multicast protocol. In Proceedings of the Third International Conference
on Formal Description Techniques (FORTE 90), Madrid- Spain, November
1990. IFIP.

[2] K. Birman and T. Joseph. Reliable communication in the presence of failures.
ACM Transactions on Computer Systems, 5(1), February 1987.

[3] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic
group multicast. ACM Transactions on Computer Systems, 9(3), August 1991.

[4] J. Chang and N. Maxemchuck. Reliable broadcast protocols. ACM, Transac-
tions on Computer Systems, 2(3), August 1984.

[5] D. Dolev and S. Kramerand D. Malki. Early delivery totally ordered multicast
in asynchronous environments. In Digest of Papers, The 23th International
Symposium on Fault-Tolerant Computing, pages 544{553, Toulouse, France,
June 1993. IEEE.

[6] R. Ladin, B. Liskov, and L. Shrira. Lazy replication: exploiting the semantics
of distributed services. In Proceedings of the Workshop on the Management of
Replicated Data, pages 31{34, Houston - USA, November 1990. IEEE.

[7] L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 7(21), July 1978.

[8] M M.F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An e�cient
reliable broadcast protocol. Operating Systems Review, 23:5{19, October 1989.

[9] L.L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using
context information in interprocess communication. ACM Transactions on
Computer Systems, 7(3), August 1989.

[10] L. Rodrigues and P. Ver��ssimo. xAMp: a multi-primitive group communi-
cations cervice. In Proceedings of the 11th Symposium on Reliable Distributed
Systems, pages 112{121, Houston, Texas, October 1992. IEEE. INESC AR/66-
92.

14

[11] A. Schiper and A. Ricciardi. Virtually-synchronous communication based on a
weak failure suspector. In Digest of Papers, The 23th International Symposium
on Fault-Tolerant Computing, pages 534{543, Toulouse, France, June 1993.
IEEE.

[12] F. B. Schneider. Replication management using the state-machine approach.
In S.J. Mullender, editor, Distributed Systems, 2nd Edition, ACM-Press, chap-
ter 7. Addison-Wesley, 1993.

15

