
Enforcing Real-Time behaviour

on LAN-based protocols

INESC Technical Report AR/ -91
P.Ver��ssimo,J.Ru�no,L.Rodrigues

September 1991

To appear in the Proceedings of the 10th IFAC Workshop on Distributed Computer
Control Systems, IFAC, Semmering, Austria, September 1991

LIMITED DISTRIBUTION NOTICE

This report may have been submitted for publication outside Inesc. In view of copyright protection
in case it is accepted for publication, its distribution is limited to peer communications and speci�c
requests.

ESPRIT II P2252

DELTA4 - PHASE 3

Enforcing Real-Time behaviour

on LAN-based protocols

Abstract:

Local area networks form the basis of a number of distributed real-time systems. While current standard
technology does not solve all problems related with achieving real-time behaviour | in essence, bounded and
known message delivery delays | designers should be able to build reliable LAN-based real-time systems now,
using existing technology, VLSI, and namely, non-replicated architectures. Methods and techniques that make
this possible are worthwhile being studied. This paper describes the concepts and design options used in Delta-4
to overcome the problems posed by reliable real-time operation over standard LANs, whose only redundancy
exists at the physical medium level.

To appear in the Proceedings of the 10th IFAC Workshop on Distributed Computer
Control Systems, IFAC, Semmering, Austria, September 1991

Partner: INESC

Authors: P. Ver��ssimo, J. Ru�no, L. Rodrigues

Workpackage: 4

Date: November 1991 Reference:

Copyright c1991 The Delta-4 Project

Enforcing Real-Time behaviour

on LAN-based protocols

Paulo Ver��ssimo, Jos�e Ru�no, Lu��s Rodrigues

Technical University of Lisboa

INESC�

e-mail:...paulov@inesc.pt

Abstract

Local area networks form the basis of a number of distributed real-time systems. While current
standard technology does not solve all problems related with achieving real-time behaviour | in
essence, bounded and known message delivery delays | designers should be able to build reliable
LAN-based real-time systems now, using existing technology, VLSI, and namely, non-replicated archi-
tectures. Methods and techniques that make this possible are worthwhile being studied. This paper
describes the concepts and design options used in Delta-4 to overcome the problems posed by reliable
real-time operation over standard LANs, whose only redundancy exists at the physical medium level.

1 Introduction

Local area networks form the basis of a number of distributed real-time systems. It is mandatory that
they display real-time behaviour | in essence, bounded and known message delivery delays | and an
interesting fact is that structure alone does not determine real-time behaviour of a LAN. As an example
we �nd a discussion by Janetzky & Watson [1] on the need to account for individual o�ered load patterns,
to avoid violation of the bounded access delay o�ered in principle by ISO 8802/4 token-bus networks.
Peden shows settings where the scheme used by LANs such as the ISO 8802/5 token-ring, to enforce
priority-based precedence on the network can fail, thus leading to priority inversion [2]. Kopetz dismisses
the claim that Ethernet is not adequate for real-time, by superimposing a collision avoidance mechanism,
based on global time, on the bare ISO 8802/3 protocol [3]. LeLann quite rightly points out that new
LAN protocols are necessary for real-time and that the existing ones have shortcomings with regard to
determinism [4].

These facts call for a systemic approach to substantiate any claims of real-time behaviour of LAN-
based systems. Namely, to dress an elementary LAN with a model and a service, composing a subsystem
on which the correctness of other system services lies | for the matter of this paper, time-domain cor-
rectness or timeliness. This approach was followed for example in the Mars system [3], which assumes
a duplicated Ethernet LAN, and in the AAS system, which uses n-plicated token-rings [5]. Both archi-
tectures are based on a communication service with a well-de�ned subsystem interface o�ering certain
properties. The fact that the network is replicated o�ers resilience against failure of a single medium.

Despite what was said in the opening paragraphs, designers should be able to build LAN-based
real-time systems now, using existing technology, VLSI, etc. Methods and techniques that make this
possible are worthwhile being studied. One question to be asked is whether one can reliably obtain real-
time behaviour out of single, non-replicated LANs. The Delta-41 system architecture uses standardised
LANs, whose only redundancy may exist at the physical | electrical signalling in the medium | level
[6]. The reader should observe that this leads to a simpler system and to a cost-e�ective network infra-
structure. The quality of service achieved satis�es a wide spectrum of applications [7], with exception

�Instituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal, Tel.+351-1-
545150. This work has been supported in part by the CEC, through Esprit Project 1226 - DELTA-4.

1Delta-4 is a CEC Esprit II consortium, formed by Ferranti-CSL (GB), Bull (F), Credit Agricole (F), IEI (I), IITB (D),
INESC (P), LAAS (F), LGI (F), MARI (GB), NCSR (GB), Renault (F), SEMA (F), Un. of Newcastle (GB), designing an
open, dependable, distributed architecture.

1

of those critical ones which require glitch-free continuity of service provision, or which have very narrow
timeliness and synchronism speci�cations. For these exceptions, specialised space-redundant architectures
are recommended.

This paper describes concepts, design options and lessons learned in Delta-4, to overcome the prob-
lems posed in achieving reliable real-time operation of standard LANs. In short, a number of conditions
to achieve that aim are enumerated. Then, we establish a set of attributes for an abstract low-level frame
delivery service and show that such a service ful�ls the reliable real-time operation requirement. Finally,
we show that \dressing" a given LAN with the necessary mechanisms and protocols to implement the
service is easily achievable. One of these mechanisms is an innovative technique to tolerate partitions in
real-time networks, based on a concept called inaccessibility.

2 Reliable Real-Time communications requirements

It is assumed that the faulty behaviour LANs display consists of timing failures (delays) due to overload;
omission failures (lost frames), due to transmission errors; network partitions (eg. due to medium failure).

The requirement for reliable real-time operation of a communications subsystem is:

RT - A reliable real-time network displays bounded and known message delivery latency, in
the presence of disturbing factors such as overload or faults.

Secondarily, the subsystem should recognise urgency, i.e. the fact that some messages may get
through head of others. This is one mechanism for propagation of priorities in a distributed setting, but
practical systems will actually provide two urgency classes at this level: critical and non-critical tra�c.
All considered LANs provide this distinction through priorities.

In trying to obtain this behaviour out of a LAN, the failure modes just enumerated must be taken
into account2. Their e�ects must in some way be tolerated or limited. The conditions presented below
are su�cient to achieve requirement RT:

1. enforce bounded delay from request to transmission of a frame3, given the worst case load
conditions assumed (avoid timing failures);

2. ensure a message4 is delivered despite the occurrence of omission failures (tolerate omission
failures);

3. control partitions.

Condition 1 makes sure that any frame is sent within a known time bound, even if it does not arrive.
Condition 2 ensures that a message is delivered, even if that implies, for example, the transmission of
several frames to tolerate omissions. Condition 3 is mandatory for real-time systems. Since real-time
systems are supposed to make progress within more or less rigid time constraints, they do not tolerate
partitions in general. It is proposed to admit a class of controlled partitions, which can be tolerated with
the necessary measures.

3 The Abstract Network Model

A model for a network displaying reliable real-time operation has been advanced in [8] and laid down in
[9]. It was called the abstract network.

The idea is to consider a set of networks of a given type (LANs in the case) and be able to de�ne a set
of common properties abstracting from their physical particularities. The abstract network thus forms
a low-level service, useful to build complex protocols on top of, and rendering them LAN-independent.
In this case, it models the standardised ISO LANs5 (8802/x, FDDI). The abstract network attributes
concerning this discussion can be enumerated as follows:

An1 - Every frame queued for transmission is transmitted by the network within a bounded delay
Ttd + Tina.

2As well as architectural factors such as the fact that the LAN is not replicated, making transmission errors unavoidable.
3LAN level information packet.
4User level information packet.
5Including the 8802/3 CSMA/CD, if the deterministic variant[10], although not standard, is considered.

2

(a) transmission-with-reply

50 tries := 0; Resp := empty
51 do tries < nrTries ^ Resp 6= full!
52 Resp := empty;
53 Tx(data,idtries);
54 waitRepliesPutIn(TwaitReply, Resp);
55 tries := tries +1 od

(b) di�usion

50 tries := 0;
51 do tries < nrTries!
52
53 Tx(data,idtries);
54
55 tries := tries +1 od

Figure 1: k-omission tolerant protocol: (a) acknowledge based; (b) di�usion based.

An2 - A network, in a known interval Trd, may do at most k consecutive omission errors, either
caused by a transmitter or a receiver or the medium6.

An3 - A network, in a known interval Trd, may be inaccessible at most i times.

Ttd is the worst-case delay from request to end of transmission, in a normally operating network.
Tina is the maximum duration of a network inaccessibility period. Let us accept at this point that
inaccessibility is a period when the network does not provide service, although remaining operational
(take the example of the period from token-loss to recovery in a token LAN). It will be de�ned shortly.

Enforcing a bounded transmission time

Enforcing a bounded and known transmission time bound, Ttd (An1), has not only to do with controlling
the overall load o�ered by peer tra�c, but also with distinguishing among classes of urgency. Higher
urgency tra�c may thus be guaranteed enough of the channel bandwidth to ful�l its latency requirements,
in detriment of lower urgency ones. However, the latter may use the channel during idle periods, improving
bandwidth e�ciency of the communication system. This concerns:

� the own mechanisms of LANs | to ensure that load o�ered to the network by nodes is controlled
in a way to achieve that aim;

� user-level load control | in terms of bounded and known average arrival rate and minimum inter-
arrival time of transmission requests at each node.

LAN MAC-level priorities allow in principle urgent frames to overtake less urgent ones on the network
although it has been shown in [2] that the scheme may be upset in real settings. We will not spend too
much time with these issues, since they have been studied by a number of authors[1,11,12,13,14].

Handling omission failures

The bounded omission degree7 assumption introduced in An2 is very helpful as the foundation
of basic error processing protocols with deterministic termination | crucial for real-time operation.
Other properties of higher-level reliable broadcast/multicast protocols are easily implemented above the
omission-free abstract network.

The assumption is realistic and it is based on the observation that omission errors are rare in LANs
but may occur in bursts. Additionally, it is reasonable, for the limited interval of a protocol execution,
to make the single fault assumption. In consequence, these omission bursts derive from the failure of a

6In receiver or medium failures, errors as perceived by the recipient are consecutive; in the case of consecutive transmitter
failures, these may be interleaved with good transmissions from other points, from the recipient's viewpoint.

7We call omission degree (Od) to the number of consecutive omissions produced by a component.

3

single component [9]. A number of ways of handling omission failures are possible. Two alternative ways,
based respectively on detection/recovery and masking of omission errors, are presented in �gure 1. If k
is the maximum omission degree as per An2, then NrTries = k + 1.

The detection/recovery algorithm is implemented through transmission-with-reply rounds8. Since
error rate is expected to be low, this is optimal for the average case. After transmission, replies from
a number of recipients are awaited for; replies are put in a bag Resp, which becomes full when it has
all expected replies. In absence of errors there is only one try. The waitRepliesPutIn function waits
at most during TwaitReply, after which it returns with the replies it got. Note that the several tries to
send message with reference id are identi�ed by an index tries (l.53). Reference id allows detection of
duplicates. The version in (a) of the �gure was presented in [9]. It seeks a completely correct series, i.e.
one where all recipients receive a given try and all replies are got, in order to enforce total order among
competing LAN transmissions9. A minor variation consisting of deleting line 52, yields an unordered
version.

The masking algorithm | (b) in the �gure | is di�usion-based and in principle obtains the lowest
worst-case delivery delay, given that it systematically repeats a transmission k+1 times, without waiting
for any replies or error-detecting timeouts. However, note that if TwaitReply � Ttd, both expressions for
worst-case delivery delay will yield similar values. Given An2, after its execution at least one instance
of message id arrives at every recipient. However it introduces a �xed overhead in processing, increases
network load, and total order is not ensured.

The transmission-with-reply method allows detection of failure, i.e. absence of reply after k + 1
tries. This also works in the case of coverage failure of the bounded omission degree assumption (the
abstract network detects the fact; it will be up to the higher-level protocol to handle it). In this sense,
transmission-with-reply is safer than di�usion, in case coverage of An2 is not considered high enough.
This is very important in real-life networks, where large noise bursts can arise. Even if the medium is
fault-tolerant, recon�guration may not occur fast enough to avoid all di�usion repetitions to fail.

The transmission-with-reply method, being bi-directional, requires a tighter coupling than di�usion,
between sender and recipients. Overall scalability is similar, if a group orientation (multicast) is con-
sidered. In fact, average group dimension remains rather stable with system size increase. With regard
to scalability of group dimension, di�usion is obviously better. An additional feature of transmission-
with-reply is that the replies can also convey information from the recipients in a performance-e�cient
manner. This information may be useful for higher-level protocols built above the abstract network; this
feature was used in [9]. A comparison between both methods is summarized in table 1.

Anyway, if bounded transmission delay Ttd is ensured, either of these mechanisms implementingAn2
satisfy the second condition to attain real-time behaviour: message delivery despite omission failures.

The main feature of the bounded omission degree technique, whichever transmission method used,
is that it has deterministic termination, i.e. it executes within a bounded and known time, in absence of
partitions.

Controlling Partitions: Inaccessibility

The third condition is to control partitions. It is the trickiest problem to solve and it will be discussed
at some length in the sequel of the paper.

Let a network be partitioned when there are subsets of the nodes which cannot communicate with
each other10. Remember that the LAN is not replicated,

so there are a number of causes for partition in LANs: bus medium failure (cable or tap defect), ring
disruption, transmitter or receiver defects; token loss; etc.

A �rst observation is that, although partitions are undesirable in real-time, the LAN will at least
have glitches in operation, since it is not replicated. Some standard LANs have embedded means of
recovering from some of the situations described above (eg. token regeneration for token-based LANs).

8This is di�erent from the LLC type 3 service, namely because it is multipointand because replies can convey semantically
useful information.

9Besides, merely conferring transmission reliability, the ordering property of this low level protocol may be used to build
very e�cient atomic protocols [8].

10The subsets may have a single element. When the network is completely down, all partitions have a single element,
since each node can communicate with no one.

4

Features Tx-with-reply di�usion
execution time lowest w/ lowest w/

no faults w-case faults
w-case k:TwaitReply+ (k + 1):Ttd

deliv. delay +Ttd
no-fault equal equal

deliv. delay
directionality bi- uni-
scalability
(overall) equal equal

(of groups) highest
proc. overhead highest
network load highest
total order possible not possible

failure detection yes no
upper-layer info not
in reply frame possible applicable
resilience to high (detects none

lack of coverage violation)

Table 1: Comparison between transmission-with-reply and di�usion methods.

The aim is to control all of them.

The solution is based on a very simple idea: if one knows for how long a network is partitioned,
then synchronous, real-time operation of the system is possible, provided that those glitch periods are
acceptably short. Let us call them periods of inaccessibility, to di�erentiate from classical partitions.

Inaccessibility has been introduced in [8]. Its formal de�nition in [9] is recalled here:

Certain kinds of components may temporarily refrain from providing service, without that having to

be necessarily considered a failure. That state, that we call inaccessibility, is de�nable, if:

� (i) it can be made known to the users of the component;

� (ii) inaccessibility limits (duration, rate) are part of the component speci�cation;

� (iii) violation of those limits implies permanent failure of the component.

We now explain our approach to control partitions, based on transforming them in inaccessibility pe-
riods. All that is necessary is for the abstract network implementation to complement LAN functionality
in order to:

� recover from all conditions leading to partition, i.e. reestablish connectivity among a�ected nodes;

� ensure that the inaccessibility periods have a bound and that it is suitably low for the service requirements;

� accommodate inaccessibility in protocol execution and timeliness calculations.

This is not hard to implement, as shown in the next section. In consequence, inaccessibility will: rep-
resent a set of \allowed" temporary partitions; stipulate limits for the duration of the resulting glitches
during a protocol execution; and require of the network components some self-assessment capability. This
way, all partitions are controlled. Uncontrolled partitions are of course still possible, because systems do
fail, but that event means the total and permanent failure of the real-time communications subsystem.

An3 is attained through this methodology, and a network exhibiting An3 satis�es the third condition
to achieve real-time behaviour enumerated in section 2.

4 Implementing inaccessibility control

Given the concept and shown it is the foundation for reliable real-time operation of single LANs subject
to partitions, design criteria and protocols to set-up an abstract network ful�lling An3 are presented
next.

First, one must recover from all conditions leading to partition. For example, recovering from physical
| mechanical or electrical | partition by means of medium and physical layer redundancy is assured in

5

Rate tdl tSD tSl Scenario tina
Mbps �s �s �s (ms)

Token Loss 5.98
5 36 11 27 No Successor 0.32

Join Contention 3.70
No Conten. 0.10

Token Loss 9.98
10 18 22 49 No Successor 0.37

Join Contention 5.49
No Conten. 0.14

Table 2: Inaccessibility Times For Token Bus. tdl: delimiter (header/trailer) duration; tSD: station delay;
tSl: slot-time; tina: inaccessibility periods.

standard FDDI, through a dual-recon�guring ring, capable of surviving one interruption of the ring [15].
In a token-bus network some similar measures should be custom-implemented, for instance dual-media,
since it has no standardised redundancy.

In general, one needs to show that all the recovery glitches are time-bounded and determine the
upper bound. Those include operating situations, typical to each LAN, such as re-establishment of the
logical ring after loss of token and physical recon�guration subsequent to ring breakage, or switch-over to
an operational spare after bus failure, etc. To illustrate this engineering procedure, a study of ISO 8802/4
token-bus inaccessibility is presented in table 2. The scenarios are the causes for inaccessibility foreseen
in the standard speci�cation. Absolute worst-case �gures are given in a detailed study (cf. [16]) but the
LAN can be con�gured and operated so as to limit them to the �gures above. Token loss accounts for the
maximum duration of an isolated occurrence. It corresponds to token-bus Tina and is, in a 10Mb/s bus,
Tina ' 10ms. Medium failure is not accounted for, because we devised a method for real-time switch-over
between busses of a dual-media token-bus which is glitch-free [17].

Finally, inaccessibility must be included in the timeliness model. Let us consider a system only
with local clocks (timers), used to implement timeouts. Timeouts detect timing, omission and crash
failures in the abstract network protocols. They can also be used by upper-layer protocols to perform
surveillance of remote parties, upon waiting for the reply to a request (eg. RPC). Two things are
necessary: calculation of real execution times (for real-time processing purposes) and dimensioning of
timeouts taking inaccessibility into account.

Calculations for real worst-case protocol execution times will have terms which are a function of
Tina, corresponding to worst-case inaccessibility periods that may occur during an execution. According
to An3, in an interval chosen at random, Trd, there may be i inaccessibility periods. When engineering
the protocol, this must be taken into account. When calculating timeliness however, more workable
assumptions can be made. Let us simplify by assuming that i = 1 and that during a whole protocol
execution there can be at most one inaccessibility period. This is realistic for most settings, and implies
that Tina be simply added to the worst-case protocol execution time expression computed without taking
inaccessibility into account. We will use this assumption in the sequel of the text.

Timeout values depend on execution times. Protocol timers must in general include Tina, or else
they timeout too early should inaccessibility occur. In this case, the protocol may fail11.

At this point, note that incorporating Tina in the timers is a su�cient condition for running syn-
chronous (real-time) protocols over the abstract network, using the transmission-with-reply protocol. The
di�usion protocol requires additional measures, since it does not use timeouts.

Before going any further, note that the timers are now undesirably long, since Tina may be much
greater than Ttd. A solution hiding inaccessibility away would be welcome, with two obvious advantages:
giving the programmer the simple and elegant abstraction of a virtual distributed environment which is
always connected; yielding shorter timeouts.

11Consider the example of the protocol of �gure 1(a): if the TwaitReply timer does not include Tina, it may timeout all
the k+ 1 times during an inaccessibility period, and recipient failure is wrongly detected. The one in �gure 1(b) makes the
higher-level user believe the message was indeed delivered after some estimated delay; in fact, it may be waiting in some
queue long after.

6

send cfm

start
TwaitRemote

cfmsend

start
TwaitRemote

retry

(2) (3)(1) (4)

Abstract Network

User Interface
req

<-- Inaccessibility

~~~~~~~~ <-- Through system layers -->

t_out

Figure 2: Timing of the inaccessibility masking mechanism

4.1 Timer-freezing mechanism

The mechanism proposed to hide inaccessibility is very simple. It concerns all timeouts controlling
timeliness of remote interactions, be them transmission-with reply timeouts or upper-layer timeouts. The
value of the timeouts does not include inaccessibility. The mechanism is based on stopping (freezing) all
timers when inaccessibility is detected and while it lasts, and restarting them when the network becomes
accessible again.

All protocols can then be constructed as if the network were always accessible. Both algorithms of
�gure 1 will work unchanged. As an example, a protocol over a token-bus can assume that the LAN is
always in steady state with the ring formed, and that there are no station joins or leaves, and no token
losses. Then, the worst-case frame transmission time in all situations, from the programmer or protocol
designer's point of view12, is merely the maximum queue plus access plus transmission delay, Ttd, under
those operating conditions. This yields an optimal sizing of timers, with regard to detection of other
errors, such as omission and node failures.

On the other hand, worst-case timeliness calculations, i.e. determining the real duration of activities,
are tuned by adding Tina | which must be determined for each LAN | to the computed protocol
execution time expressions.

4.2 Inaccessibility masking mechanism

Freezing the timers is an engineering issue, which implies: inaccessibility to be detected by the commu-
nications adapter part; information between the adapter and the timers to ow quickly enough; timers
to be stopped/resumed on arrival of in-/accessibility noti�cations.

While this mechanism can be easily implemented on specially built hardware, the conditions named
above are not always met in existing hardware/software platforms. Namely: the timer package may not
have the functionality for lightweight start-restart; some LAN controllers do not signal all inaccessibility
situations, or do not do it consistently at all nodes.

Thence, an alternative had to be seeked, since porting of the abstract network to existing environ-
ments was desired. We devised a mechanism which masks inaccessibility at the network interface level.
We explain it next.

Assume that the following system requirements are ful�lled: (i) in the interface with the abstract
network, all requests are positively con�rmed when the frame is transmitted. (ii) in a layered architec-
ture, the higher-level request is also con�rmed: the low-level con�rmation that the request was served
propagates up the layers; (iii) timers to control a remote request are only started after the con�rmation
that it was issued. In consequence, when the network is inaccessible the con�rmation does not come. Let
us follow the several situations depicted in �gure 2:

Timer TwaitRemote equals the desired waiting time at any level of the system (to receive an RPC
result, or a transmission reply).

Situation (1): Since a remote interaction is started by a send request, a timer controlling it at
whatever level will be pending of the con�rmation from the network. Should it be inaccessible, timer
start will be postponed until the network becomes accessible again.

Situation (2): After the timer is started, it will count up to TwaitRemote. In this situation, the
network becomes inaccessible after the timer is started and accessible again before it expires. If there

12I.e. for the sake of dimensioning timeouts.

7



is not enough time for the remote frame to arrive, the timer will expire.

Situation (3): Inaccessibility lasts beyond TwaitRemote, but ends before anything is attempted in
order to recover. A timeout is issued here as well.

Situations (2) and (3) are analogous. They are not disturbing: the timer is there to detect these
facts. Inaccessibility has just been transformed into an omission. Given An2 and An3, whatever methods
used to take care of k omissions in the system, will keep working for k + i (i - number of inaccessibility
occurrences, see An3). This means that inaccessibility is in fact masked out of the system algorithms
above the abstract network. The system programmer can, for example, be given a consolidated K = k+ i

omission bound �gure.

Note the very little di�erence between the e�ect of inaccessibility in situations 2 or 3, and that
of a slightly longer LAN access time. In fact, `inaccessibility` would not be needed for this, it would
su�ce to make timers a little longer. However, this approach is justi�ed by the bi-modal characteristic
of LAN operation, with the more serious inaccessibility situations lasting much longer than Ttd and thus
TwaitRemote. That is the case of:

Situation (4): Inaccessibility still lasts when recovery is attempted (the second send request).

The protocol failures due to short timers described earlier in a footnote occurred because the pro-
tocols might proceed during an inaccessibility period. In order for this mechanism of short timers and
transforming inaccessibility into omissions to work, it is necessary that each inaccessibility period is seen
as one \omission". The con�rmed send request performs this role, preventing the protocol from proceed-
ing until the period ends. Note also why the duration of inaccessibility does not a�ect system timers: it
is either simultaneous with the TwaitRemote period, or with the request-to-con�rmation period.

We have shown that inaccessibility is masked out of all system activity: its duration is hidden; its
occurrence is transformed into an omission. Looking back at the algorithms of �gure 1, both will work:

� the di�usion algorithm is throttled by the abstract network interface in case of inaccessibility, if
correctly used, i.e. the user protocol should not proceed beyond a point where a reliable delivery
is assumed, without receiving the collection of k + 1 transmission con�rmations corresponding to
that delivery;

� the transmission-with-reply algorithm works practically unchanged; the only modi�cation required
is to make nrTries = k + i + 1 instead of just k + 1. An individual transmission in case of
inaccessibility works like the example in �gure 2, with TwaitReply substituted for TwaitRemote.

On the quantitative side, execution times are not increased by Tina anymore when faults occur (the
case with including Tina in the timer values). Besides, when inaccessibility occurs, in lieu of increasing
by Tina, they increase at most by tina (the e�ective duration, which may be much lower than Tina).

The disadvantage with regard to the timer freezing scheme, which \stops" the time in this part of
the system, is that timeouts do occur due to inaccessibility, and recoveries have to be initiated.

5 Conclusions

Methodologies for enforcing reliability and real-time behaviour of standard LANs have been discussed.
The de�nition of a LAN-based communication sub-system with a well-de�ned set of properties provides,
in addition to several non-functional attributes, very simple low-level reliable frame delivery services.
These have proved to ease construction of complex protocols such as reliable multicast. The handling of
failures which may hinder timeliness, including a class of controlled partitions, was shown to be possible
in non-replicated networks, in order to yield reliable real-time operation.

Such mechanisms substantiate the correctness of the approach, followed by the Delta-4 architecture,
of designing robust real-time distributed systems using standard communication components.

References

[1] Dittmar Janetzky and Kym S. Watson. Token bus performance in MAP and Proway. In IFAC
Workshop on Distributed Computer Protocol System, 1986.

8



[2] Je�ery H. Peden and Alfred C. Weaver. The utilization of priorities on token ring networks. In 13th
Conference on Local Computer Networks, Minneapolis, USA, October 1988.

[3] H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in a synchronous
distributed real-time system. In IFIP WG10.4 Int. Working Conference on Dependable Computing
for Critical Applications, Sta Barbara - USA, August 1989.

[4] Gerard LeLann. Critical issues in distributed real-time computing. In Workshop on communication
networks and distributed operating systems within the space environment, European Space Research
and Technology Centre, October 1989.

[5] Flaviu Cristian. Synchronous Atomic Broadcast for Redundant Broadcast Channels. Technical Re-
port , IBM Almaden Research Center, 1989.

[6] D. Powell, D. Seaton, G. Bonn, P. Ver��ssimo, and F. Waeselynk. The Delta-4 approach to dependabil-
ity in open distributed computing systems. In Digest of Papers, The 18th International Symposium
on Fault-Tolerant Computing, IEEE, Tokyo - Japan, June 1988.

[7] D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed Computing. ESPRIT
Research Reports, Springer Verlag, November 1991.

[8] P. Ver��ssimo, L. Rodrigues, and M. Baptista. AMp: a highly parallel atomic multicast protocol. In
SIGCOM'89 Symposium, ACM, Austin-USA, September 1989.

[9] P. Ver��ssimo and Jos�e A. Marques. Reliable broadcast for fault-tolerance on local computer networks.
In Ninth Symposium on Reliable Distributed Systems, IEEE, Huntsville, Alabama-USA, October
1990. Also as INESC AR/24-90.

[10] G. Le Lann. The 802.3D Protocol: A variation of the IEEE802.3 Standard for Real-time LANs.
Technical Report, INRIA, France, 1987.

[11] R.Mangala Gorur and Alfred C. Weaver. Setting target rotation times in an IEEE Token Bus
network. IEEE Transactions on Industrial Electronics, 35(3), August 1988.

[12] D. Dykeman and W. Bux. An investigation of the FDDI media-access control protocol. In E-
FOC/LAN, Basel, Switzerland, June 1987.

[13] Marjory J. Johnson. Proof that timing requirements of the FDDI token ring protocol are satis�ed.
IEEE Transactions on Communications, 35(6), June 1987.

[14] Raj Jain. Performance analysis of FDDI token ring networks: e�ect of parameters and guidelines
for setting TTRT. In SIGCOM'90 Symposium, ACM, Philadelphia-USA, September 1990.

[15] X3T9.5 FDDI. FDDI documents: Media Access Layer, Physical and Medium Dependent Layer,
Station Mgt. 1986.

[16] J. Ru�no and P. Ver��ssimo. A study on the inaccessibility characteristics of ISO 8802/4 Token-Bus
LANs. In IEEE INFOCOM'92 Conference on Computer Communications, IEEE, Florence, Italy,
May 1992. (to appear).

[17] Paulo Ver��ssimo. Redundant media mechanisms for dependable communication in token-bus LANs.
In 13th Local Computer Network Conference, IEEE, Minneapolis-USA, October 1988.

9


