
Reliable Multicasting in

High-speed LANS

INESC Technical Report RT/ -90
P. Ver��ssimo, Lu��s Rodrigues

May 1990

Presented at the NATO Advanced Research Workshop on Architecture
and Performance issues of high-capacity LANs and MANs, France, June
1990

LIMITED DISTRIBUTION NOTICE

This report may have been submitted for publication outside Inesc. In view of
copyright protection in case it is accepted for publication, its distribution is limited
to peer communications and speci�c requests.

Reliable Multicasting in High-speed LANs

Paulo Ver��ssimo, Lu��s Rodrigues1

INESC - Instituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000 Lisboa -

Portugal, Tel.+351-1-545150.

Abstract: There is an increasing number of distributed applications, some of them
fault-tolerant, and it has been recognized that its construction may bene�t from the
existence of reliable broadcast protocols. Reliable broadcasting has deserved consider-
able attention recently. Some systems are clock-driven, exhibiting tight synchrony: they
rely on clock synchronization and space redundancy. Others, like the AMp, an atomic
multicast protocol for local area networks, are clock-less.
In application-independent systems, most of the time domain requirements are not of
the hard real-time kind { which clock-driven protocols are most suited for { but rather
of the on-line, or soft real-time kind. To encourage utilization of reliable broadcast
protocols in such applications, it is mandatory that bene�ts in quality of service are not
considered too costly in performance. Clock-less protocols provide an answer to this
requirement, since they can trade synchronism for fast termination.
This paper deals with the performance implications of supporting distributed applica-
tions, with clock-less reliable broadcast protocols. The question of the network inuence
in protocol performance is analyzed. We predict the performance of AMp on two target
LANs: the 10Mb/s token-bus, and the 100 Mb/s FDDI. We observe that the �gures
achieved with a LAN based approach are good enough to match the requirements of high
performance distributed kernels. Additionally, we show that, under these conditions,
using a high-speed LAN does present an advantage: not only throughput increases, a
natural consequence, but also speed, measured in duration of single AMp executions,
for small messages.

Keywords: Communication, Distributed system, Fault-tolerance, Reliable broad-
cast.

1 Introduction

There is an increasing number of distributed applications, some of them fault-tolerant,
and it has been recognized that its construction may bene�t from the existence of reliable
broadcast (RB) protocols. These protocols provide a service which has a set of order,
agreement and synchronism properties, in the presence of disturbing factors (load and
faults). In consequence, the user is alleviated from the task of ensuring them for each
application.

1This work has been supported in part by the CEC, through Esprit Project 1226 - DELTA-4, and by
JNICT, through Project 87634 - ESTIMULO. This paper contains some material previously published
in the proceedings of the ACM SIG-COMM'89 Conference, Austin-USA, September 1989.

Reliable broadcasting has deserved considerable attention recently. Some works, ex-
hibiting tight synchrony, are clock-driven: they rely on clock synchronization and space
redundancy [2,10]. The AMp, an atomic multicast protocol for local area networks, is a
loosely-synchronous protocol which does not use clocks. It relies on network properties,
to enforce timeliness. It compares with other clock-less approaches [5,7,8], although we
have worked in bounding termination times to suitable limits, which make it possible
to de�ne the situations for which the communication system is capable of representing
real-time interactions, both from the point of view of meeting communication delay
bounds and respecting temporal precedence of events.

This paper deals with the performance implications of supporting distributed appli-
cations, with reliable broadcast protocols. In application-independent systems, most of
the time domain requirements are not of the hard real-time kind { which clock-driven
protocols are most suited for { but more of the on-line, or soft real-time kind. That is,
rather than requiring an exact meeting of deadlines and a high degree of simultaneity,
for actions or messages, applications require responsivity, fastest possible reaction and
a probabilistic treatment of worst-case response times. To encourage utilization of reli-
able broadcast protocols in such applications, it is mandatory that the above-mentioned
bene�ts in quality of service are not considered too costly in performance, by the user(s).

The service properties and the operation of AMp are detailed in [16]: the protocol
o�ers a service featuring strong unanimous agreement and consistent and causal order
properties. From the point of view of fault-tolerance and distributed computing, they
are useful to implement distributed synchronization and replication control algorithms.
The AMp is envisaged to evolve to a multi-fold service, featuring weaker properties
(eg. FIFO order, datagrams), with the corresponding improvement in performance.
Given that the quality of service we are analyzing is the highest possible in terms
of agreement and order, we believe the results we present give some insight into the
expectable performance of the multi-fold service.

Performance-wise, there are three questions in the design of reliable broadcast pro-
tocols, which inuence the �nal result: (i) which fault model; (ii) what level in commu-
nications stack; (iii) which network.

The fail-silent assumption

Given the cost associated to distributed agreement approaches [13], that consider ar-
bitrary behaviour of components, we assume the communication system fails in a con-
trolled manner, exhibiting what is called the fail-silent property [14]: the network
adapters where AMp runs are thus con�ned to always deliver correct messages, tolerate
a bounded number of temporary errors { such as transmission errors { and halt after
their �rst failure. This already represents a performance head-start, because it simpli�es
protocol design. However, the main improvement of the protocol, performance-wise, is
to take advantage of LANs.

The low-level approach

The protocol was designed both to run on top of LANs and not to depend on a par-
ticular LAN. The architecture is built on standard LANs, in view of taking advantage
of the availability of communications hardware and of the possibility of coexistence
with standard stations, in the same network. Additionally, LANs have architecture and
technology attributes which can be used for improved performance and dependability.

The data link layer seemed to be the adequate level to engineer the AMp. This low-
level approach is justi�ed by several reasons: for one, tradeo�s regarding performance
are best made, using LAN facilities; for another, it is low enough to allow several options
for upper layers: OSI-like multipoint stacks [14], transfer layers (eg. XTP) [9] or high-
performance distributed application support environments [3].

So the AMp o�ers a data link level interface to the user. In order to make the
protocol design LAN independent, and thus very portable, it interfaces an \abstract
local area network", whose properties are guaranteed by a harmonizing driver built on
top of the exposed MAC2 interface of the particular VLSI LAN controller.

High-speed LANs?

In a sense, the abstract network extends the concept of LLC3, the LAN independent
sub-layer of the IEEE, and later ISO, 802 standard: besides o�ering a message (service
data unit) delivery service, it makes visible a set of functional properties which are
common to LANs in general. These are used to optimize protocol design.

Now that we have a LAN independent interface, we start by analyzing the suitability
of the AMp for LANs in general, by making some predictions about its execution time,
on a target LAN: a 10Mb/s ISO 8802/4 token-bus. Secondly, we analyze whether AMp
performance will bene�t from migrating to a higher throughput LAN, such as the 100
Mb/s ANS X139 FDDI.

We show that not only AMp throughput increases, a natural consequence, but also
speed, measured in duration of single AMp executions, for small messages. This fact is of
outstanding importance, since it has been recognized that communication speed is the
dominating requirement for distributed computing [6,9,11]. On the other hand, it shows
a way of using technology to improve performance without compromising portability.
While keeping a neat, independent interface in the LAN world, something can be done
to increase performance, by merely changing LAN.

Prior to presenting our predictions for AMp, on token-bus and on FDDI, we intro-
duce the protocol operation details which are relevant to our analysis.

2Medium Access Control sub-layer.
3Logical Link Control sub-layer.

2 Reliable Multicasting with the AMp

The AMp relies on the properties of an underlying abstract network. The set of proper-
ties de�ned are: Unreliable Broadcast and Authentication | by a frame check sequence
| ensuring that although frames may be lost, the destinations that receive a frame,
receive the one that was transmitted. Bounded Omission Degree4 speci�es the number
of successive transmission errors of a correct network to be lower than a known value
k. Bounded Transmission Delay ensures that any frame queued for transmission is sent
within a known delay Ttd, in absence of faults. Network Order guarantees that any two
frames received at any two sites, are received in the same order. Full Duplex implies
that the sender itself is also included in this ordering property as a recipient.

The AMp provides highly parallel reliable group communication, which takes place
inside groups of participant entities. The AMp provides a service of reliable group
communication which ensures that when a message is delivered, it is delivered to all
correct participants (unanimity), in the same precedence order to all of them (order)
and within a known bounded time (termination). The message delivered is the one
transmitted by the sender and it is always delivered, unless some participant(s) is(are)
inaccessible (validity). Inaccessibility will not be discussed here. The reader may �nd
details about it in [16]. It is a temporary state whereby a recipient may refuse, in a
given execution, to accept a message, causing the protocol to terminate timely with a
negative con�rmation. We are concerned in this paper with the cases where a message
is delivered. The protocol is resilient to omission errors and stopping faults during its
execution. A bounded omission degree is tolerated, but any number of nodes may fail,
in a single phase of the protocol5. In case of sender failure, a termination protocol is ran
by a monitor function, to ensure completion of the transmission in course. Node failures
and group membership changes are indicated to all participants, consistently ordered
relatively to the information messages. Any group member may initiate a transmission
and the sender also receives the message transmitted. Multicasting is transparent, in
the sense that only one message is sent and there is no need for a previous knowledge by
the user, of the whereabouts or number of destinations. In fact, the destination address
is location independent and related to a unique designation each group possesses in the
system.

Groups

Each gate, the entity used by a participant to communicate, uses an instantiation of
the AMp machine, comprising the EmitterMachine and the ReceiverMachine, a local
GroupMonitor agent, which participates in error recovery and fault treatment proce-
dures, and two context structures, the GroupV iew and the ReceiveQueue, containing,
respectively, the group composition and the frames received for that group. Error detec-
tion is done on a transfer-by-transfer basis, and relies on consistency of the group views

4Omission degree (Od) is the number of successive omission errors that a correct component does. A
component exceeding its speci�ed Od is considered failed and must shut-down.

5A phase is a well delimited portion of a protocol execution, which is a containment domain for error
detection. A protocol may have several phases. The organization of AMp in phases is important for the
enforcement of timeliness properties.

Data
Ind.

Accept

Time

Ti

Data
Cfm.

Sender
Recipients

Data
Request

Data (*)

Resps
Tt

Te

Data
Ind.

(1)

(2)

(1) Inclusive multicast.
(2) One of the recipients did not see Accept.
(*) Repeated at most k+1 times.

Accept

Req
Decis.

(2)

(a) ERROR in
DISSEMINATION
 PHASE

(b) ERROR in
DECISION
 PHASE

Data

Resps

Early
Wait Decis.
Timer

timeout

Data
Ind.

Wait Resp.
Timer

timeout

Figure 1: Timing diagram of AMp: In grey, in both phases, a transient omission error:
a) Dissemination; b) Decision.

of all members. We proceed by describing some assumptions that support protocol
operation; then we present the description of the protocol operation itself.

Assumptions

Assumptions 1.i are the foundation of the correctness of operation of our two-phase-
accept protocol implementation.

Assumptions

1.1 there may be several competitive transmissions in course, in the same group.

1.2 there may be several concurrent transmissions in course in the network, from
di�erent groups.

1.3 at any time, there may be at most one transmission in course, per group, per
node.

1.4 the sender positively con�rms that all correct participants receive a decision,
if it is reject.

An EmitterMachine, once started, executes atomically, i.e. it is not preempted by
other sending actions in the group, for example, from the ActiveMonitor.

The decision frame is not acknowledged, for accept, in the interest of improved
performance. Safety of this method is based in a simple algorithm:

� assumption 1.4 above;

� all participants log the sequence number of the last message delivered (lastDeliv
for sender) or accepted (lastAccept for recipients);

� omission errors in decision can then be recovered very simply: a recipient requests
a missing decision, and the sender may respond accept if lastDeliv has a higher
sequence number; else, it is not yet �nished with processing it.

The protocol

Our atomic multicasting service relies on a two-phase accept protocol, sketched in
�g.1, which resembles a commit protocol, only in that the sender coordinates the oper-
ation: it sends a message, implicitly querying about the possibility of its acceptance, to
which recipients reply (dissemination phase). In the second phase (decision phase), the
sender checks whether responses are all a�rmative, in which case it issues an accept {
or reject, if otherwise. Protocol execution is carried on, in the event of sender failure, by
a termination protocol. However, in this case, delivery is no longer ensured. Should the
message be delivered, unanimity is nevertheless ful�lled. The phases are implemented
with transmission- with- response rounds, and end after reception of all expected re-
sponses. In worst case, it may take as many rounds as the allowed omission degree plus
one (k+1).

An atomic multicast transmission is initiated by the protocol coordinator, the sender
(E), by sending a multicast frame containing the message. The Dissemination phase
(�g. 1) then proceeds as follows:

� After transmission, E will expect a number of responses indicated by its group
view, within a prede�ned response time (TwaitResponse). When all responses
arrive or TwaitResponse has elapsed, they are analyzed and if some recipient
cannot accept the frame, decision= reject.

� Normally, responses are of "can accept" type, meaning recipients are accessi-
ble; then, if all recipients responded, according to the sender GroupView, de-
cision=accept. If there are responses missing, the data frame is retransmitted.

� If some station does not answer within the retry mechanism, it is considered failed.
However, the execution proceeds, allowing timely termination: an accept decision
may be sent if all the remaining stations can accept the message. Stations con-
sidered as having failed are removed from the group view, by the Group Monitor.

The decision phase is implemented in the following way:

� The reject frames always require response (assumption 1.4). A station that does
not answer within the retry limit, is considered failed.

� The accept frame, on the other hand, does not require response. A timeout mech-
anism, at the recipients, covers omission errors in the transmission of a decision:
after receiving an information frame and responding, a timer is started with a pre-
de�ned TwaitDecision time. If no decision is received within this time, a recipient
requests the decision to the sender6 (�g. 1).

6The reader will notice, in �g. 1, that the �rst decision request is triggered by an early timeout. In
fact, the waitDecision timer is a two-shot timer. Please refer to the end of sec. 3.1, for details.

� Note that in case of reject, a sender only starts a new transmission after assuring
that all the group members received the reject (assumption 1.4). So, when a
sender receives such a decision request it can answer with an accept without any
knowledge of the past, or proceed, if it was still processing that frame. The
recipients will retransmit the decision request, until the retry limit is exceeded.
When that happens, the sender is considered failed and the GroupMonitor is called
upon, to reestablish group coherence.

The accept decision being the most frequent completion of the protocol, we chose
to make it negatively acknowledged, which optimizes transmission rate, due to the
pipelining e�ect, in absence of faults. It allows to decrease the transmission cycle time,
once a new transfer may start right after issuing the previous one's accept. However,
the detection of omission errors in a negatively acknowledged transmission is slower
than its positively acknowledged counterpart, since a recipient must wait a worst case
transmission time, before issuing a decision request frame. A performance improving
consequence of assumptions 1.3 and 1.4 is that a recipient may accept a pending frame
if it receives a new frame from the same sender. This is expected to avoid the expiration
of the waitDecisionTimer, in situations of fair to high tra�c, maintaining the pipelining
e�ect.

Group Monitor

There is a Group Monitor function, which executes, under a privileged state, critical
activities relevant to correct operation of the protocol. Namely, it maintains consistency
of the GroupView, recovering from station failures. Additionally, it runs the termination
protocol in case of sender failure. It also controls joins and leaves from a Group, so that
all GroupViews change consistently.

The distributed Group Monitor function relies on information provided by the sever-
al local GroupMonitors of a group. It may be invoked by several groups simultaneously,
executing with total independence from the monitors of other groups. The local Group-
Monitors are normally inactive. At most one monitor is active at a time, in each group,
and if it fails, it is replaced by another GroupMonitor who detects the failure. The
procedure is recursive.

The monitor executes in two phases (StepOne and StepTwo). The �rst phase
(StepOne) includes the identi�cation of failed stations and search for the presence of
pending messages from failed senders. It is an investigation process, responded by the
local monitor entities. After this, a second phase (StepTwo) is performed, including
the decision to accept or reject those messages and �nally the dissemination of the new
group view.

All cases

Te O1:(tacc + twaitResponse(n� 1))+
O3[O2:(tacc + txwr(FR) + tprBg(n))+

O2:(tacc + twaitResponse(n� 1) + tprBg(n))]+
O3[tacc + txwr(FR) +O6:tearlyDecision +O6:twaitDecision + tacc+

O6:O4:(twaitResponse(1) + tacc)+
O5:(txwr(rqDEC) + tprRx) + O6:O5:(twaitResponse(1) + tAM)]+

O5:(tacc + tDEC + tprRx)

Active Monitor action

tAM O7:(tacc + twaitResponse(n� 1)) + tacc + txwr(Step1) + tprBg(n)+
O9:(tacc + txwr(Step1) + tprBg(n))+

O8:(tacc + twaitResponse(n� 1)) + tacc + txwr(Step2) + tprRx

Variables for error situations

O1 Number of omission errors in Dissemination.
O2 Recipient(s) failure: true - O2=1; false - O2=0.
O3 Decision errors: true - O3=1; false - O3=0.
O4 Number of omissions in decision request.
O5 Sender failure: true - O5=1; false - O5=0.
O6 Omissions in 1st dec. req.: true - O6=1; false - O6=0.
O7 Number of omissions in Step1.
O8 Number of omissions in Step2.
O9 Group has changed: true - O9=1; false - O9=0.

Table 1: Temporal expression for AMp execution time, Te, with several error scenarios.

3 Performance issues

Let us discuss now time-related properties of AMp. We will base our analysis of AMp
performance in its phases of transmission with-response (TxwResp) rounds. Absolute
duration of an execution depends very much on the LAN used, and the particular
protocol implementation. Let us de�ne:

� Execution Time (Te): The time between the send request primitive and the issuing
of the last receive indication for that message.

For the time domain analysis which forms this section, we start by deriving some
generic LAN variables. Then we de�ne expressions for the execution time, Te, in several
situations. We de�ne equally a scenario which will be the target of our observations.

Bounded execution times are only possible if all the terms in Te are bounded. Two
critical terms here are LAN and user related, respectively: access delay and queue
delay. They depend on the individual and global o�ered load. In LANs, they can only
be controlled if all nodes speak the same language, i.e. if they can cooperate in some
form to control the o�ered load. In cyclic hard real-time systems, where the delay of
urgent messages must be bounded with accuracy, we believe it is preferable to tune

operation in order that queue delay is zero { at least for high priority/urgency services
{ when running on single LANs. We are looking at systems with mixed cyclic and
bursty tra�c, so we consider average values, but we will use this design principle, which
requires, very simply, that the user cycle is lengthier than the network cycle. The latter
is given by access delay, which is inuenced by user load, indirectly, through a measure
of the average channel utilization, �. As for access delay, both LANs tested, token-bus
and FDDI, have access control mechanisms based on the timed-token principle [12,1].
Given the minimum token rotation time for these LANs, Rmn, the average access delay,
tacc, is half the average token rotation time, which, in turn, is inversely proportional to
channel load, �:

tacc = Rav=2 =
Rmn

2(1� �)
(1)

Let us assume we have the token-less LAN-independent protocol, as described in
[16]. The execution time (Te) expression, taking the possible errors into account, is
given in table 1. Let us de�ne the general scenario, in an industrial environment, for
example, a small cell network for real-time manufacturing control:

SCENARIO:

� con�guration: channel length Cl = 500m and a total number of stations Nst =
32; network omission degree is Od � 2; channel propagation delay then comes
tPD = Cl:5ns=m = 2:5� s7;

� protocol parameters: message length, lIF , ranges from 80 to 1280 octets; groups
of n = 6 and n = 12 participants are analyzed; protocol frame length is lPF = 40
octets (RF- response frame; DEC- decision; rqDEC- request decision);

3.1 The AMp on Token-bus

Let us clarify the meaning of the variables at stake, starting by the AMp on token-bus.

ENVIRONMENT 1:

� network operation: channel rate is Cr = 10Mb=s, station delay is tSD = 2�s;
we consider a total background o�ered load of �BK = 10%, in the network; we are
now able to derive the following time variables:

{ token duration: tTK = lTK:8=Cr = 18�s

{ minimum token rotation time in token-bus:

Rmn = Nst:(tPD + tSD + tTK) (2)

= 707�s (3)

7Assuming a wave propagation velocity of 0:2m=ns.

80 octets n = 6
Te n=6 n=12 320 oct. 1280 oct.

no faults 2.7 3.1 2.8 3.6
1 om. f. diss. 4.5 5.1 4.7 5.5
1 om. f. dec. 5.5 6.2 5.7 6.5
k om. f. diss. 6.4 7.2 6.6 7.4
sender fail.. 13 14 13 14

Table 2: Execution time, Te (ms), for several message lengths and
number of group participants, in the presence of several errors
(AMp on TB).

{ average access time (�BK = 10%)(eqs 1 e 2): tacc = 393�s

{ information frame duration: tFR = lIF :8=Cr(minimum : 64�s)

{ protocol frame duration: tRF = tDEC = trqDEC = 32�s

Given that we expect to take advantage of the token rotation, to cycle our trans-
missions with-response, we rede�ne token rotation time subsequent to a transmission,
tRT (i; �), as the time needed for the token to rotate, carrying i responses, over a back-
ground load of �:

tRT (i; �) =
Rmn

1� �
+ i:tRF (4)

We de�ne processing time variables, which account for the CPU time to execute
protocol processing steps. We will consider two values: tprRx, for processing of reception
of generic protocol frames, and for processing of reception of information frames and
generating the response; tprBg(n), for processing of a bag of n responses and preparing
the decision. Processing times are estimated by protocol analysis, counting the number
of 'C' instructions in the sequential path of the relevant processing steps8, obtaining:
tprRx = 0:7 � 250 = 175�s, and for n = 6, tprBg = 0:7 � 420 = 294�s. These values
are estimates for an optimized implementation. They may be validated with adequate
protocol measurement tools. The duration of a transmission of frame FR with response,
is then:

txwr(FR) = tFR + tprRx + tRT (n� 1; �) (5)

In order to mutually control activity, we had seen in the last section that both sender
and recipient use timers. Their values are dependent on the network operation condi-
tions presented below, and are computed by the communications management entity.
The sender starts timer TwaitResponse, after receiving con�rmation of transmission
by the network:

twaitResponse(i) = (1 + vP):tprRx + tRT (i; �BK + vL) (6)

8We are assuming a protocol processor capable of executing one 'C' instruction per �s, and an opti-
mized compiler with 30% e�ciency, whence 1inst: = 0:7�s.

80 octets n = 6
Te n=6 n=12 320 oct. 1280 oct.

no faults 0.72 0.94 0.73 0.81

1 om. f. diss. 1.0 1.3 1.0 1.1

1 om. f. dec. 1.15 1.4 1.2 1.3

k om. f. diss. 1.3 1.6 1.3 1.4

sender fail. 2.4 3.0 2.4 2.5

Table 3: Execution time, Te (ms), for several message lengths and
number of group participants, in the presence of several errors
(AMp on FDDI).

The number of responses expected to come from the network is i = n � 1 (n: number
of group members), whereas variables vP e vL account for, respectively, CPU and LAN
load variability, which we arbitrate to be vP = vL = 30%. It seems to be a reasonable
assumption: given �BK = 10%, we are accommodating average LAN loads between
10 � 40%; for the CPU, we are considering average instruction execution times from
0:7� 1�s. Since the timer value depends on group dimension, each group has a timer.
Each recipient starts timer TwaitDecision, to control sender activity. This timer also
depends on group dimension, n, so, it also belongs to each group. Besides, its �rst
purpose, in absence of permanent failures, is to detect and recover from omissions in
the (non-acknowledged) decision; in consequence, it is a two-shot timer, with a �rst
timeout given by tearlyDecision:

tearlyDecision = 0:5� tRT (n; �BK) + tprBg(n) +
Rmn

2(1� �BK)
+ tDEC

twaitDecision = tRT (n� 2; �BK + vL) + (1 + vP):tprBg(n) +
Rmn

2:(1� �BK + vL)
+ tDEC

The rationale for dimensioning of these timers is that, after con�rmation, from the
network, of transmission of the response, the recipient starts the timer (tearlyDecision),
dimensioned for the average case: the recipient is the n

2

th to reply in the tRT process;
after the token rotates, it allows an optimistic processing time for the bag of responses
followed by transmission of the decision, after waiting the access time9. The �rst signal
of the timer occurs after this interval, if a decision did not come. It is used to send a
rqDEC datagram (see tab. 1), continuing until the �nal value of twaitDecision, calculated
by the expression above. Then, if necessary, a transmission-with-response rqDEC, is
sent, with a timer value of twaitResponse(1). The timer values, for this environment, are:
twaitResponse(5) = 1566�s, twaitResponse(1) = 1438�s, tearlyDecision = 1191�s, and
twaitDecision = 2310 �s.

Expressions for duration of the AMp, in the presence of several errors, are given in
table 1. We extracted some example situations, as a function of message length and
number of group participants, and present the relevant values for Te, in table 2.

9Optimistic, because no variabilities are taken into account.

Tdlv [�s] �(%) tacc 80 oct. 320 oct. 1280 oct.

TB 10 392 460 650 1420
40 590 653 845 1610

FDDI 1 11 18 37 114
4 11 18 37 114

Table 4: Datagram service time (�s), in function of several lengths
and loads, for token-bus and FDDI, including access time, for loads
of 10% e 40% (weighted by 1:10 in FDDI).

3.2 The AMp on FDDI

The use of FDDI, with a 100Mb=s rate, seems to be advantageous for complex protocols:

� given the increased available bandwidth, which reduces the impact of protocol
frames in channel utilization;

� given the increased speed, because of the shorter rotation and transmission times,
for the same load condition.

With the purpose of comparison with the token-bus LAN, we rede�ne environment
1, in the viewpoint of the individual user. We are not observing the performance of a
particular LAN, but that of a protocol using LANs. Besides, we are concerned with
the analysis, proper of real-time services, of the service provided to the individual user,
despite some background load. So, we scale down the relative background load, �BK,
by a ratio of 10:1, to maintain the same absolute load (in octets), and maintain message
lengths, decreasing frame duration.

ENVIRONMENT 2:

The con�guration of the network is identical to that of environment 1. Protocol
parameters are the same. The channel rate becomes Cr = 100Mb=s and the station
delay, tSD = 0:6�s; the background load becomes, as explained, �BK = 1%. Once more,
we compute the following network operation variables:

� token duration: tTK = 0:88�s

� we recompute Rmn for FDDI: Rmn = tPD +Nst:tSD + tTK = 22:6�s

� average access time (�BK = 1%)(eqs 1 above): tacc = 11�s

� minimum information frame duration: tFR = 6:4�s

� protocol frame duration: tRF = tDEC = trqDEC = 3:2�s

Processing times are AMp code dependent, so they remain unchanged. Variabili-
ties remain at vP = vL = 30%. Timers are based in the same expressions, but they

do change: twaitResponse(5) = 281�s, twaitResponse(1) = 268�s, tearlyDecision = 330�s, e
twaitDecision = 454�s. We repeat, in table 3, the predictions for Te in the same situations
as done for token-bus, in table 2.

In the graphics we present in the end, the di�erences become clearer. Firstly, they
reveal the main points of dependence of AMp execution time:

� message length, lFR;

� group dimension, n;

� LAN load, �;

� LAN dimension, Rmn (function of Cl and Nst)

Secondly, they show the impact of running AMp on FDDI, rather than token-bus, for
the same conditions.

4 Conclusions

We have analyzed a protocol which provides atomic multicasting at the Data Link layer.
The interest of this approach, if compared with other existing reliable broadcast works,
is that it takes advantage from the inherent facilities of the underlying Lans, from which
we name broadcast capability, multicast addressing, token-based access control, priority
scheduling, low-level synchronization. Either based on a software shell on top of the
exposed interface of VLSI controllers [16], or based on hardware support [17], the aim of
this kind of approach is e�ciency at the low cost of a non-replicated standard Lan, for
distributed and fault-tolerant applications. The communication primitive provided was
proven to be of great help in assisting the implementation of distributed computations.
In a report, we describe the programming of the Amaze game [4] as a replicated and
distributed state machine. The state machine replicates directly use the AMp, with no
further "glue", for their interactions. In the Delta-410 system [14], AMp is used as the
low-level primitive in an OSI-like stack, which has fault tolerance mechanisms based on
replication and voting, implemented at the Session layer; the resulting communication
architecture provides support for a dependable computation system, featuring several
fault tolerance tools.

As we could see in table 2, the net performance of AMp on a moderate throughput
LAN (10Mb/s token-bus) seems to be very satisfying, since execution time is of the
order of 3ms for short messages. If compared with other \system-level" services in most
systems, eg. point-to-point null RPCs, it is of the same order of magnitude, if not faster,
but with a signi�cantly higher quality of service.

Migrating to FDDI yields an impressive improvement. In a �rst analysis, we can
observe a neat performance improvement, not only in the large frames (throughput),
but also in the small frames (speed). Some reasons for this are clear in table 4: delivery

10Delta-4 is a CEC Esprit II consortium, formed by Ferranti-CSL (GB), Bull (F), Credit Agricole (F),
IEI (I), IITB (D), INESC (P), LAAS (F), LGI (F), MARI (GB), NCSR (GB), Renault (F), SEMA (F),
Un. of Newcastle (GB).

time includes transmission time and access time: both are far more favourable in FDDI.
Particularly, the access time is a signi�cant amount of the overall delivery time, in any
of them. We saw that tacc depends on token rotation time (eq. 1), which is shorter in
the FDDI token-ring, because the token is released right after frame transmission and,
of course, tokens are 10 times shorter in FDDI than in token-bus. So, this is one of the
reasons for speed improvement, and it remains valid for all qualities of service, down
to the datagram. The second, as we saw, has to do with reduced transmission times
overall, both for information and protocol frames, and with its consequence of scaling
down the relative network load, for the same amount of absolute o�ered load. The more
complex the protocol is, the greater the improvement, and this is particularly true of
the described atomic service.

Indeed, this quality of service is often too high for a diversity of requirements. Due to
atomicity and active participation of all group elements in communication, the protocol
does not scale well with group dimension. This will be solved in a future version, with
development of a multi-fold service, accommodating di�erent qualities of service [15].
Then, concerning reduced quality of service, the reader will note, from table 4, that a
multicast datagram execution time in FDDI is, in average, 30�s, for short messages.
From equation 5, we obtain 230�s for a transmission-with- response with the same av-
erage length. This value is a good approximation for an AMp variant where consistent
order is relaxed to FIFO, keeping the other properties, namely unanimity. If we approx-
imate cycle time11 to execution time, this would mean 4000 short reliable broadcasts
per second. Token-bus estimates for the same situation, although still very good, are
much more modest: 600�s for a datagram service, and 1:4ms for a transmission-with-
response, yielding around 700 reliable broadcasts per second.

These predictions make us feel optimistic about the performance of communications
intensive applications in high-speed LANs. They also seem to con�rm the suitability
of FDDI as a front-end network in high performance distributed computing, not only
in scienti�c or graphic applications, but also in other areas, such as continuous and
discrete distributed process control, control and monitoring of physical experiments.

11I.e., the maximum frequency of protocol executions by a sender.

References

[1] FDDI Token-Ring Media Access Control (MAC). ANS X3.139, 1987.

[2] Ozalp Babao~glu and Rog�erio Drummond. Streets of byzantium: network archi-
tectures for fast reliable broadcasts. IEEE Transactions on Software Engineering,
SE-11(6), June 1985.

[3] P. Barrett, P. Bond, A. Hilborne, L. Rodrigues, D. Seaton, N. Speirs, and P.
Ver��ssimo. The Delta-4 Extra performance architecture (xpa). In Digest of Papers,
The 20th International Symposium on Fault-Tolerant Computing, IEEE, Newcastle-
UK, June 1990.

[4] E.J. Berglund and D. Cheriton. A distributed multi-player game program using
the distributed V-Kernel. IEEE Software, (2), May 1985.

[5] K. Birman and T. Joseph. Reliable communication in the presence of failures.
ACM, Transactions on Computer Systems, 5(1), February 1987.

[6] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1), February 1984.

[7] Mich�ele Cart, Jean Ferrie, and Sukrisno Mardyanto. Atomic broadcast protocol,
preserving concurrency for an unreliable broadcast network. In J. Cabanel, G.
Pujole, and A. Danthine, editors, Local communication systems: LAN and PBX,
North-Holland, IFIP, 1987.

[8] J. Chang and N. Maxemchuck. Reliable broadcast protocols. ACM, Transactions
on Computer Systems, 2(3), August 1984.

[9] Greg Chesson. XTP/PE overview. In 13th Local Computer Network Conference,
Minneapolis-USA, October 1988.

[10] F. Cristian, Aghili. H., R. Strong, and D. Dolev. Atomic Broadcast: From simple
message di�usion to Byzantine Agreement. In Digest of Papers, The 15th Inter-
national Symposium on Fault-Tolerant Computing, IEEE, Ann Arbor-USA, June
1985.

[11] Norman C. Hutchinson and Larry P. Peterson. Design of the x-Kernel. In SIG-
COMM'88: Communications Architectures and Protocols, ACM, Stanford, USA,
August 1988.

[12] ISO. ISO DIS 8802/4-85, Token Passing Bus Access Method. 1985.

[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Transactions on Prog. Lang. and Systems, 4(3), July 1982.

[14] D. Powell, D. Seaton, G. Bonn, P. Ver��ssimo, and F. Waeselynk. The Delta-4
approach to dependability in open distributed computing systems. In Digest of
Papers, The 18th International Symposium on Fault-Tolerant Computing, IEEE,
Tokyo - Japan, June 1988.

[15] P. Ver��ssimo, editor. XPA: The Extra Performance Architecture of Delta-4. Design
Guide, Esprit Project Delta-4 G89.129/I1/R, also INESC Technical Rep. RT/54-89,
November 1989.

[16] P. Ver��ssimo, L. Rodrigues, and M. Baptista. AMp: a highly parallel atomic mul-
ticast protocol. In SIGCOM'89 Symposium, ACM, Austin-USA, September 1989.

[17] Paulo Ver��ssimo, Lu��s Rodrigues, and Jos�e Marques. Atomic Multicast Extensions
for 802.4 Token-Bus. In FOC/LAN 87 Conference, Anaheim-USA, October 1987.

Figure 2: AMp execution times, as a function of message length, lFR; group dimension,
n; LAN load, �; LAN dimension, Rmn. Each graphic compares Token-bus (TB) with
FDDI.

