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Abstract

The ROMANCE project aims at building a Replicated Object MANage-
ment Con�gurable Environment based on Group Technology. Ultimately, we
aim to develop a programming environment to support sharing passive repli-
cated data objects regardless of data persistence or durability requirements.
ROMANCE objects are distributed and can be accessed from any node in
the system (in a location transparent way). Object access can be imple-
mented either by issuing remote invocations or by maintaining a local copy
of the object. Thus, shared objects may be replicated, both in volatile stor-
age, in the context of user processes, and/or in stable memory. Additionally,
ROMANCE intends to provide support for fault-tolerance and controlled
inconsistency of object replicas in the presence of network partitions.

This paper details the goals of the ROMANCE project, presents its soft-
ware architecture and current status. A fundamental goal of the project is to
experiment with Group Technology. In ROMANCE, distribution and repli-
cation are implemented using underlying group communication and member-
ship services. The paper also describes how these tools are used to achieve
ROMANCE goals.



Chapter 1

Introduction

The Navigators team at INESC has been working for some years now in
Group Technology [5, 33]. As a result, a Group Communications infrastruc-
ture optimized for local area networks has been developed [28]. We are now
extending this work in two directions: developing a group infrastructure for
large-scale networks; and developing higher level tools to help the program-
mer to incorporate the Group Technology in his/her applications.

In this framework, we have just started the ROMANCE project, aiming
at building a Replicated Object MANagement Con�gurable Environment
based on Group Technology. A fundamental goal of the project is to exper-
iment with Group Technology: we intend to make extensive use of group
communication and group membership services in all levels of the architec-
ture. Replicated object management will be a critical issue in most future
distributed systems and it is an area that is not yet satisfactorily covered
by existing systems. We hope that this experiment will help us to clarify
the inherent advantages and disadvantages of the use of groups to develop
distributed applications, since it is felt that group orientation will be a pre-
vailing paradigm in the future distributed systems [5].

Replication of objects in a distributed system has been used to improve
performance and also to provide fault-tolerance in di�erent application areas
such as: persistent data management [3], management of replicated compu-
tations [27], and distributed shared memory [25]. These three application
areas can be considered complementary and none of them fully covers the
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spectrum of applications that can use replicated data management. For
instance, while persistent data management systems often preclude the e�-
cient sharing of volatile objects, distributed shared-memory systems usually
do not o�er fault-tolerant features. In ROMANCE, we will search for models
that conciliate these di�erent approaches. Ultimately, we aim at developing
a programming environment that provides support for: (i) sharing passive
replicated objects, independently of their persistence or durability require-
ments; (ii) objects living in the context of user processes or residing in storage
servers; (iii) fault-tolerance; (iv) controlled inconsistency in the presence of
network partitions.

This paper presents the ROMANCE system architecture and describes
the current prototype implementation. The paper is organized as follows.
Section 2 describes the basic ROMANCE model and details how distributed
replicated objects can be accessed and how they can be made persistent
and/or fault-tolerant. The programmers view of ROMANCE is described in
section 3, where the relation between classes, inheritance and distribution is
also discussed. A practical example is given in section 4. Current status is
reported in section 5, comparison with related work on section 6, and �nal
concluding remarks appear in section 7.
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Chapter 2

Basic ROMANCE model

In ROMANCE we consider that the system is composed of a set of distributed
processors or nodes, that do not physically share memory and communicate
exclusively through message passing (see �gure 2.1). The system is popu-
lated by ROMANCE objects. ROMANCE objects consist of passive data
encapsulated by a set of operations or methods, dubbed the object interface.
Our model closely follows recent work on distributed object oriented sys-
tems as, among others, Emerald [6], Argus [21], Clouds [12], Comandos [32],
SOS [30], and Arjuna [31]. All ROMANCE objects are characterized by a
set of attributes:

� All ROMANCE objects are distributed. They can be accessed from
any node of the system, with location transparency. All ROMANCE
objects are accessed as if in the context of its client through the use of
an appropriate proxy [24].

� All ROMANCE objects are potentially replicated. Several copies, or
images of each object may exist in the distributed system, either for
fault-tolerance or for increased performance.

� All ROMANCE objects are potentially persistent. An object may have
images exclusively on volatile memory, in this case it is a pure volatile
object. However, the object may also maintain one or more images in
stable memory, assuring that the object state survives beyond the life
of the program that created it.
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Figure 2.1: System view.

� All ROMANCE objects are potentially concurrent. The ROMANCE
system does not enforce any concurrency control policy. The object
itself must implement its own internal concurrency control policy, us-
ing the appropriate mechanisms. Global concurrency control policies,
such as serializability, for synchronizing activities that access multiple
objects, may be enforced but are not considered in the current system
stage.

In order to support the access to distributed replicated objects, the RO-
MANCE system relies on the existence of some pre-de�ned objects, namely
(�gure 2.1):

� The ROMANCE Distributed Name Service (RDNS) used to locate RO-
MANCE objects in the system.

� The ROMANCE Factory, in charge of activating, when needed, a server
for an object. A server contains a local image of the object and is able
to process remote invocations on behalf of remote clients.
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Figure 2.2: Storage system.

� The ROMANCE Storage System, responsible for storing stable im-
ages of persistent objects. The Storage System can be decomposed in
several Object Repositories. Each Object Repository is itself a RO-
MANCE object, built upon one or more volatile and stable images (
�gure 2.2). Thus, the storage system may be easily enriched with new
Object Repositories, programmed using the core ROMANCE compo-
nents.

These components cooperate to provide distributed access to ROMANCE
objects. In our system, shared data can only be accessed through a set of
operations, or interface. The interface implementation can support the object
access using at least two alternatives: (i) access a remote image through
remote invocations; (ii) to create a local image of the object; this image
is automatically kept consistent with other images through some selected
replicated data management protocol. Both types of access may be available
simultaneously for each object and several interface implementations may
be linked with any object client since ROMANCE will support run-time
selection of the most appropriate implementation. We will �rst analyze these
methods separately and, afterwards, we will describe how they coexist in the
ROMANCE environment.
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2.1 Remote access

Access to remote objects is performed through remote invocations. This
method is supported by two auxiliary blocks: a Group Remote Invocation
Proxy (GRIP) and a matching Ambassador [10]. The GRIP marshals the
local client invocation in a message multicasted to the remote ambassador(s),
and waits for results, if any (GRIP functionality is similar to the client stub
of point-to-point RPC). The ambassador is the GRIP counterpart on the
server side, and is responsible for transforming messages in the appropriate
method invocation to the local image and to send the results, if any, back to
the calling GRIP. An ambassador is usually associated with a volatile object
image, although it might be con�gured to forward the invocations to another
GRIP, acting as a protocol gateway (an approach similar to the use of SSP
chains [29]). In ROMANCE, a pair consisting of one ambassador with a local
object image is called a server.

The pair GRIP/Ambassador de�nes a protocol to access the remote im-
age. This protocol may vary with the object class, and it is possible to
support more than one access method for the same object. The ROMANCE
library will contain a set of o�-the-shelf pairs available for the designer of
new distributed replicated objects.

For fault-tolerance, the ambassador may be replicated. In this case, two
or more ambassadors will serve remote invocations, and each ambassador
will keep a local image of the object. Clients will interact with the group of
ambassadors, through replicated remote invocations [9, 20] (see �gure 2.3) 1.

2.2 Maintain a local image

Another method to access ROMANCE objects is to maintain a local image
of the object. This may improve performance if locality of data can be
exploited. However, to use this approach, one has to solve two problems: (i)
when the new image is created, its state must be fetched from some valid
copy in the system; (ii) the new copy must be kept consistent with the other

1When objects are accessed exclusively through remote invocations, the protocol be-

tween the GRIPs and the Ambassadors can also be used to maintain replica consistency.

However, this is not often the case in ROMANCE.
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copies in the system accordingly to some prede�ned criteria. In ROMANCE
we want to give the designer the freedom to select, or implement, the most
appropriate consistency criteria for its classes, on a class by class basis. Thus,
the same solution cannot be applied to all objects: each class of objects will
have its consistency criteria and, consequently, will use di�erent mechanisms
to solve the two problems above.

Since active images of the same object need to cooperate to be consistent
they need to exchange messages. This communication can also be modeled
by replicated remote invocations. Thus, a replicated object, in addition to
its public (service) interface, must also de�ne a private interface, with the
methods used for inter-replica coordination. As any other interface for a RO-
MANCE object, this private interface is accessed through GRIP/Ambassador
pairs. Since all images can potentially invoke and receive invocations from
other images, they will be necessarily associated with an ambassador and a
GRIP for that interface (see �gure 2.4).

In this model, the object client invokes directly an object's image. The
image itself, accordingly with the class consistency criteria and protocol used
for replicated data management, decides when it must invoke the private
interface of other replicas. Thus, the details of inter-replica coordination are
hidden from the object client. It should be emphasized that not all accesses
to an image will require interaction between the replicas. Typically, some
operations will be purely local (usually, read operations).

2.3 Mixed access

The two types of access previously mentioned are harmonized in ROMANCE
in a single model, such that both types of access may coexist simultaneously,
as illustrated in �gure 2.5. In this approach, several object images may be
active in the system (in the �gure, on nodes D, E, F, and G). These active
images are kept consistent using some replicated data management protocol.
To implement this protocol, all images export a private interface, that can
only be invoked by other object images. These interactions are performed by
GRIPs and Ambassadors supported at run-time by a multicast group that
links all replicas (Replica Consistency Group). The purpose of this multicast
group is twofold: it maintains membership information about active replicas

9



Ambassador
Group

Remote Client Group
(1 element only)

Replica
Consistency
Group

Data Copy

Client

  GRIP  Matching
Ambassador

Client
Representative Node

Gateway

C1 CR1

C1

CR1

CR1

C2

CR2

CR2

CR2

C3

C4

C5

Node A

Node B

Node C

Node D

Node F

Node G

Node E

Data

Data

Data

Data

Data

Figure 2.5: Mixed model (local copy and remote access).

10



and is a private channel for inter-replica coordination.

Some object images are accessed directly from local clients, as illustrated
by clients C3, C4, and C5 in �gure 5. However, remote clients are also
supported, since the object may export its public interface through one or
more GRIP/Ambassador pairs. For fault-tolerance, object ambassadors can
be replicated, although the number of ambassador replicas do not need nec-
essarily to match the total number of object images in the system (in the
example, ambassadors are instantiated on nodes D and E). The �gure also
illustrates how Ambassadors and GRIPs can be composed to provide a pro-
tocol gateway (node C).

In the mixed model, replica consistency must be encapsulated within the
image public interface, since local clients access this interface directly. Thus,
in principle, there is no need to support consistency at the level of the protocol
between the GRIPs and the Ambassadors supporting the public interface. In
practice, the Ambassador acts as a local representative of the remote client.
However, since the Ambassador is itself replicated, the protocol between
Ambassador replicas and client GRIPs must ensure that remote invocations
are performed exactly once in a unique object image (as the image is itself
responsible for propagate invocation results to other images when needed).

2.4 Persistence

All ROMANCE objects are potentially persistent. In order to make one
object persistent one has simply to assign an Object Repository to that
object. The Object Repository will keep one or more object images in stable
storage. Persistent objects are ushed to disk automatically when their last
volatile image is de-activated. However, the object state may be saved in
the repository at any other instant. Only one Object Repository may be
associated with a given object at any moment. This is not a limitation as
Object Repository can be aggregates formed from other Object Repositories.

ROMANCE objects can be replicated both in stable memory and in
volatile memory. In the general case, when a new image is activated, its
state is fetched from the state of another active image, if any. Otherwise, the
state of the new volatile image is retrieved from the object's repository.
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2.5 Fault-tolerance

In ROMANCE fault-tolerance is achieved through replication. At this stage,
only crash-failures [27] are considered. Objects can be replicated both in
volatile memory and in stable memory. Replication of images in volatile
memory provides continuity of service in case of processor crashes. Main-
taining at least one image in stable store provides tolerance to total proces-
sor crashes (as generalized power-failures). Replication of images in stable
storage provides tolerance to permanent storage failures. All communication
failures, including lost, duplication, re-order, and corruption of messages are
handled by the underlying group-communication primitives. Network parti-
tions are the exception to this rule. These are dealt with the mechanisms
described in the following section.

2.6 Object Granularity

In ROMANCE we do not enforce any particular granularity for replicated
distributed objects. Object size may di�er and it is up to the object designer
to choose the appropriate granularity of replication, accordingly to the pat-
tern of object accesses. In principle, an object may be as small as a single
octet, but such a granularity might prove to be ine�cient, as the overhead
to maintain replication and distributed access would be too large when com-
pared with object size. Thus, ROMANCE is mainly targeted for coarse grain
objects. Objects with very large sizes can also be supported but may require
dedicated protocols for state transfer.

2.7 Network partitions

A partition of the distributed system occurs when the system is split into
groups of isolated nodes. The nodes in each partition can communicate with
each other, but no node in one partition can communicate with nodes in other
partitions. If replica divergence must be avoided, at most one partition may
be allowed to continue processing invocations. This partition, if existent,
is called the distinguished group. Naturally, the distinguished group may
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Figure 2.6: Network partitions in ROMANCE.

vary from object to object, depending on the number of images and on their
location.

Note that it is impossible for members of one partition to obtain informa-
tion about other partitions. Thus, the selection of the distinguished group
must be made exclusively by the members of the group . Additionally, a
group can only be allowed to proceed if it is sure that no other group will
be selected. One possible criteria is to allow the work to continue only in
a partition with the majority of nodes. Other possible variant, is to assign
votes to each node and select the partition with the majority of votes [16].
In any case, to verify it belongs to the distinguished group, an image must
have a view of the replicas that it can access, and a view of the replicas it
should be able to access if the network were fully connected. In ROMANCE
these two views are dubbed respectively, segment level view and long term
replica view (see �gure 2.6).

The segment level view keeps the replica membership in each network
partition. In absence of partitions, the segment view maintains the list of all
object images in the system. When a partition occurs, each image is provided
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with a new segment view, containing all the images in its partition. The task
of maintaining this view is performed directly by the membership functions
of the underlying group communication infrastructure [28].

A long term replica view is associated with every ROMANCE object.
It is usually pre-de�ned or de�ned by system management components. It
contains the list of replicas that are expected to be accessible in absence
of network partitions. The availability of an object can then be de�ned as
a function of the long term replica view and the segment view. This can
be used to ensure that only one partition is selected as the distinguished
group, or to ensure that an object is inaccessible until a minimum level of
fault-tolerance is provided.

Additionally, ROMANCE uses a third level of membership dubbed the
dynamic system-wide view. This view is itself a ROMANCE object, on its
own, and may be implemented using the previous views, if replicated. It pro-
vides a partition-tolerant system wide registration service, where all images
of an object may register. It is intended for objects whose number of images
cannot be known \a priori" or may change at run time (for instance a shared
editor). The system-wide view provides means for decision making when
choosing the distinguished group for such objects, through the comparison
of the segment level view with the total number of images in the system, at
the moment the partition occurred.

2.8 ROMANCE and Groups

A fundamental goal of the project is to experiment with Group Technology:
we intend to make massive use of group communication and group member-
ship services. In particular, every time a component is replicated, a group is
created and used to maintain replica location and membership, to exchange
information between replicas, and as a method to o�er access to a public ob-
ject interface [33]. We intend to build a set of replica management protocols
using groups and compare our results of other algorithms or implementations
using di�erent approaches [22, 18, 23]. By using groups in all aspects of the
architecture we expect to evaluate the inherent merits and disadvantages of
our current Group Technology.

It should be noted that in ROMANCE we look to groups as an archi-
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tectural solution to solve distribution and replication problems. Thus, from
the point of view of the client of ROMANCE objects, the use of groups is
transparent. Group Technology can also be used to support applications
where the notion of groups appears explicitly in the problem speci�cation.
This kind of support, is provided at a higher layer and is currently being
studied in our research group in the framework of de�ning and implementing
a generic groupware platform [11].
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Chapter 3

Programming in ROMANCE

The ROMANCE project intends to create an environment that encourages
the programmer to use and to develop distributed replicated objects. These
two aspects are supported through di�erent mechanisms. Use of ROMANCE
objects is encouraged by making distribution and replication transparent.
ROMANCE objects can be created and accessed in the same way as other
objects of the designer programming language. From the point of view of ob-
ject implementor, replication is not transparent. Nevertheless, ROMANCE
provides a set of models and tools that ease the task of programming new
distributed replicated objects.

Ideally, object interfaces should be speci�ed using the language used to
program the application. This is the natural approach when the language is
specially designed to support distribution. Unfortunately, this is not a feature
of many popular programming languages, like C [19] or C++ [13]. Thus,
these languages have to be used with restrictions, for instance, on parameter
passing to remote invocations. An alternative approach, is to use a dedicated
language to specify the object interface, dubbed an Interface Description
Language (IDL), and then use a compiler to translate this speci�cation into
one or more target programming languages. The later approach is currently
being used in many distributed systems and platforms, such as ANSA [1]
or CORBA [26]. This approach is also followed in ROMANCE. Currently,
we support CORBA as the Interface Description Language and C++ as the
target programming language.
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Translation from CORBA IDL to C++ is provided by a specialized RO-
MANCE compiler. This compiler was developed using \The IDL Compiler
Front End" provided by Sun 1 for the OMG group, from which only the
back-end needed to be re-programmed (in fact, our compiler was based on
already modi�ed back-end, developed at INESC). We have chosen this com-
piler since it reduced substantially the programming e�ort, and by using a
standard, OMG provided front-end, we are assured that the ROMANCE
speci�cations conform to CORBA syntax.

From a CORBA IDL speci�cation, the ROMANCE compiler produces
a set of C++ classes, that support the use and programming of distributed
replicated objects. These classes are (see also �gure 3.1):

1Sun Microsystems, Inc.
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� A Signature class whose public interface, in C++, matches the CORBA
IDL interface description. From the point of view of the object inter-
face, this class is as a virtual base class for all object implementations.
Additionally, this class registers all available implementations for that
class, and selects an appropriate implementation when one object of
the class needs to be accessed. It keeps also a list of all available sub-
types, that is of all Signature classes derived from it. Thus, from some
Signature class it is possible to create an object of any specialization of
the desired signature. All interfaces are identi�ed, and can be accessed
in ROMANCE, by the associated interface name, as de�ned in its IDL
description.

� An Envelope class hides from the object client the actual implementa-
tion being used. The envelope [10] class is the visible C++ interface of
the object and is in charge of forwarding the requests to the selected
implementation. Its interface must match the object signature, thus it
is derived from the Signature class. When an envelope is created, it
requests to the interface class to build an appropriate implementation
for the object. If desired, it is possible to specify the sub-type of the
object being created (by default, an object of the type de�ned by the
IDL source is created).

� A standard Group Remote Invocation Proxy (GRIP). This GRIP is
automatically generated from the IDL description. The GRIP is re-
sponsible for marshaling the invocation input parameters, invoke the
remote ambassador(s), collect and un-marshal the results if any. The
standard GRIP communicates with the name service in order to obtain
the ambassador-group for the target object and establishes a connec-
tion with such group. If no image of the object is active, the GRIP can
request the remote activation of object servers (which may be repli-
cated), through the services of the ROMANCE factory.

� A Local image template, for the replicated image implementation. The
template must be �lled by the programmer with the code that actually
implements the interface functionality. If the object is to be replicated,
the programmer has to invoke the object private methods that sup-
port replicated data management. Usually, the replication algorithm
is encapsulated in one of the object's base class. If the mechanism
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to maintain replica consistency requires complex initialization, like in-
stantiation of GRIPs and Ambassadors for inter-replica coordination,
this will also be encapsulated in the object's base class initializers.

� A standard Ambassador to collect and process remote invocations. Its
protocols match those of the standard GRIP. When created, an am-
bassador can be supplied with any Interface implementation. In the
most common case, the ambassador accesses an implementation that
contains a local copy of the data. Optionally, it can also access a GRIP
of di�erent type, assuming the role of gateway, between two di�erent
access methods.

3.1 Inheritance

All ROMANCE objects share some common functionality. For instance all
romance objects are potentially persistent, may be linked to an object repos-
itory and saved in and retrieved from stable storage. Naturally, this basic
functionality can be accessed remotely or locally. It is thus described in a
ROMANCE basic interface, from which all ROMANCE interfaces must be
derived. Interface inheritance is supported at the IDL level. All new RO-
MANCE interfaces must be derived directly from this basic interface or from
one of the interfaces provided in the ROMANCE library. Although multiple
inheritance is supported by CORBA IDL syntax, only simple interface inher-
itance is supported in ROMANCE. This may prove to be a limitation, and
we are currently evaluating such an extension. The ROMANCE compiler
generates C++ sources in such a way that the code from the base classes is
reused in the implementations of the derived classes. Thus, each interface
can be translated to C++ separately, and there is no need to re-write any
code to implement the functionality derived from base classes. This rule ap-
plies for local image implementations as well as for class envelopes, GRIPs
and Ambassadors.

Each interface de�nes a type in the system, and is assigned with an
unique system-wide identi�er that remains unchanged after its creation. All
C++ methods generated from the interface signature are declared virtual
such that derived implementations may specialize the base interface by re-
de�ning one or more methods. Additionally, it is possible from the C++
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classes generated from a given interface, to access an object of any of the
interface specializations. Thus, any interface acts as a generalization of all
its derived interfaces.

3.2 Replication, inheritance and distribution

The use of inheritence to express properties such as consistency, atomicity,
etc, is today commonly used in many projects [31, 14, 23]. In ROMANCE,
each replica management policy is de�ned through a bi-directional interface
with the managed data object. Replica consistency is maintained by activat-
ing this interface. For instance, a release consistency [15] policy may require
the invocation of acquire and release primitives to bound object access, and
needs to access the object state to obtain and update the replica state.

Since to be managed by a given policy, an object has to export some
pre-de�ned operations, all objects managed by a given policy are derived
from a virtual base class that de�nes the agreed interface. Basically, only
the implementations that maintain a local copy need to be derived from
such class. This has the advantage of making all the other class hierarchies
(envelopes, GRIPS and ambassadors) independent of the replication method
used. In ROMANCE, we achieve this goal by avoiding any reference to the
consistency mechanism at the level of the interface speci�cation. In this way,
a type is not bound to any replica management policy at speci�cation time.
The compiler generates a template for the \local image" implementation
that be customized by deriving it from the appropriate class. In principle,
we should be able to support di�erent replication strategies for the same type
of objects. However, this raises a new problem: when accessing an object of
a given type, it is necessary to know which strategy is being used for that
particular object, in order to select the matching implementation. At this
moment, we assume that only one replication strategy is associated with each
type.
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Chapter 4

An example

This section exempli�es how replicated objects are programmed and used in
the ROMANCE system. The programmer wants to build a replicated volatile
object that exports only two operations readLong and writeLong. This object
should be remotely accessible, through function shipping, but also through
a local copy which is kept consistent with all other local copies. The RO-
MANCE library provides a replica management algorithm to ensure strong
replica consistency. This algorithm is available as a ROMANCE class, and
described in the �le ``Strong.h'' (see �gure 4.1). The include �le includes
a description of the interface used for inter-replica coordination (which is
uniquely manipulated by the base class) and a list of methods that can be
used by the object implementor to keep the copies consistent.

The implementor may specify a new class, by deriving its interface from
the basic Romance interface (``RBasic.hil'') as illustrated by the interface
\ Explo" on ``Explo.hidl''. He/she can also implement specializations of
his/hers own interface by deriving from it new interfaces (``Specialization.hidl'').
The ROMANCE compiler, will generate, the appropriate Signature, En-
velope, GRIP, Ambassador and Local implementation template. To en-
force strong consistency between the volatile copies of the object, the pro-
grammer has simply to derive the \local copy" implementation of its type
(``ExploLoc Strong.h'') from the class de�ned in the ROMANCE library.
The �gure also shows how the programmer should use the private replicated
data management interface to �ll the template form of the local implementa-
tion (``ExploLoc Strong.C''). A sketch of how the client envelope looks is
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main ()
{
    ExploEnv    ofthistype ( "joe" );
    ExploEnv    ofderivedtype ( "Specialization", "zoe" );
    ROrbLong l;
    RResult     r;
   

    r = ofthistype.readLong ( &l );
    r = ofderivedtype.writeLong ( l );
}

Main.C

/* ---------------------------------------------

Strong consistency

Private interface:

  Acquire a read lock .......... rlock  ();
  Acquire a write lock ......... wlock  ();
  Release a acquired lock ...... unlock ();

Automatically called:
Fetch the object state ... snapshot (RImage*)
Load the object state .... load (RImage*)

-----------------------------------------------*/

Strong.h

To use this functionality, derive 
"YourClassLoc_xxx"from Strong.h

ExploLoc_Strong.h

class ExploLoc_Strong: public Strong, public virtual ExploSig {

  public: 

  rlock ();
  *r = // do something
  unlock ();
  return Except_Ok;

ExploLoc_Strong.C

RResult
ExploLoc_Strong::readLong ( ROrbLong* r )
{

#include "Explo.hidl"

interface Specialization: Explo {
RResult  readLong  ( out long a );
RResult  writeLong ( in long a );

};

Specialization.hidl

}

public:
  ExploCli ();
  ExploCli (const RObjName& n );
  ExploCli (const RTypeName& t, const RObjName& n );
  ~ExploCli ();

     virtual RResult readLong  ( ROrbLong* a );
     virtual RResult writeLong (const ROrbLobg& a );

protected:
   // some other stuff

}

ExploEnv.h

class ExploEnv: public RBasicEnv, public virtual ExploSig {

RResult  readLong  ( out long a );
RResult  writeLong ( in long a );

};

Explo.hidl

interface Explo: RBasic {

#include "RBasic.hidl"

Figure 4.1: An example.

presented in the �gure (``ExploEnv.h''). Finally, the �gure also illustrates
how a program using objects of new classes might be coded (``Main.C'').
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Chapter 5

Current status and future work

The current prototype runs on a local-area network using the xAMp group
communications service [28] as the underlying group communication infras-
tructure. The ROMANCE CORBA IDL to C++ compiler is implemented.
Although it does not yet support the complete set of IDL constructs, it is
usable and all the existing objects were built using this compiler. All the
classes described in section 3 are generated by the compiler. All objects are
programmed in C++, and object volatile images live in the address space of
UNIX multi-threaded processes. Prototypes of the ROMANCE Name Ser-
vice and of the ROMANCE Factory are implemented. Thus, ROMANCE
objects can be activated and accessed, either by keeping a local image or
through remote innovations. Persistence is currently provided through a pro-
totype Object Repository based on the UNIX �le system. The ROMANCE
library contains only a very limited set of replica management protocols. No
partition-tolerant object was implemented yet. At this stage, we are still
trying to exercise our basic model, using \toy" implementations of all com-
ponents to create some practical feedback to re�ne our model. In the near
future, we intend to continue this exercise to test the concepts not experi-
mented until now. In particular, we will implement a set of weak-consistent
replication strategies and a set of partition-tolerant objects. Only after doing
these experiments, and having stronger con�dence in our design choices we
will implement sophisticated versions of ROMANCE services. The port of
ROMANCE to other group communication infrastructures, like for instance
the ISIS system [4, 5], is also part of our long-term goal.
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Chapter 6

Related work

We are searching for models that integrate two usually incompatible methods
of access to replicated objects. Namely, ROMANCE supports simultaneously
remote invocations and local copy access. To our knowledge, the work in
this area is very limited. However, each of these methods have been inten-
sively studied in separate. Remote invocations (and remote function calls) to
replicated objects has been supported by several systems as troupes [9], AR-
GUS [20], DELTA-4 [27] or Arjuna [31]. More recent research projects include
the ELECTRA [23] object oriented toolkit that also provides abstractions for
remote method calling or the Object Groups [17] prototype that uses the ISIS
system. However, most of these systems preclude local access to replicas and
provide support for only a limited set of pre-de�ned replication strategies.
In ROMANCE we follow the path of allowing di�erent replication methods
to be applied to di�erent objects, using a problem-oriented shared memory
approach [8]. A system that provides support for di�erent shared-memory
implementations is Munin [7], that uses type-speci�c memory coherence pro-
tocols tailored for di�erent types of data. Additionally, our approach avoids
the use of dedicated language support, and uniquely uses CORBA IDL to
specify interfaces. Other approaches exist that de�ne new languages. The
ORCA programming language supports distributed replicated objects [2] but
provides only a single model of consistency. A more versatile approach, that
also resources to a specialized compiler, is given by the Fragmented Object
model [24].
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Chapter 7

Conclusions

This paper presents a Replicated Object MANagement Con�gurable En-
vironment based on Group Technology. The environment, dubbed RO-
MANCE, provides support for using and programming distributed replicated
objects. It achieves this goal through a set of tools, libraries and run-time
support objects that were presented and discussed in this paper. A primary
goal of the ROMANCE project is to experiment with the Group Technology.
All membership and remote invocation services are based on fault-tolerant
Group Technology. Currently, the xAMp protocol suite is being used, but
ports to other group toolkits (for instance, ISIS) are foreseen. We hope that
in the lifetime of the project, by building a wide set of replicated objects, we
will be able experiment the use of groups in a large number of scenarios, and
to assess the intrinsic merits and limitations of Group Technology.
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