
Integration of Flight Simulator 2002 with an
epidemic multicast protocol

M.João Monteiro
Universidade de Lisboa
mjmonteiro@di.fc.ul.pt

Jośe Pereira
Universidade do Minho

jop@di.uminho.pt

Luı́s Rodrigues
Universidade de Lisboa

ler@di.fc.ul.pt

Abstract— Multi-player games are increasingly popular
in the Internet. This growing interest results in the need
to support a high number of participants, which raises
the issue of scalability, namely in what regards the ability
to offer good performance in such a large-scale setting.
This paper addresses the issue of designing middleware
solutions to support large-scale multi-player applications.
In particular, we are interested in studying the feasibility
of using epidemic multicast protocols for information
dissemination in multi-player games based on a peer-to-
peer architecture. We have integrated a comercial multi-
player game, the Microsoft Flight Simulator 2002, with
an epidemic multicast protocol appropriate to this kind
of applications, the NEEM. The paper describes how this
integration was achieved and presents evaluation results
of the resulting prototype.
Keywords: Epidemic multicast, peer-to-peer architec-
ture, multi-player games.

I. I NTRODUCTION

Multi-player applications are more and more common
in the Internet today. Such applications have generated
interest from users and from hosting companies who see
them as new sources of income and useful advertise-
ment vehicles. Multi-players games are one of the most
popular instances of these applications. Due to the large
number of users that games can attract, these applications
raise interesting scalability problems. One should note
that the users of these games are not confined to players,
since on-line games are becoming spectators’ games [2],
with spectators actively participating in the game through
chatting or even through betting1.

A common requirement for multi-players games is
the necessity of multicasting updates among users, on a
regular basis. Unfortunately, it is extremely hard, if not

This work has been partially supported by FCT project RUMOR
(POSI/40088/CHS/2001) and Microsoft Research Grant (2001-39).

Contact: Faculdade de Ciências da Universidade de Lisboa, Dep.
de Inforḿatica. Bloco C5, Campo Grande 1749-016 Lisboa, Portugal.

1As an example visithttp://youplaygames.com.

impossible, to enforce reliable multicast in a scalable
way. Some protocols, such as RMTP [10], generate a
large number of acknowledgments that must be received
and processed, a task that may quickly overcharge the
sender. Even with more sophisticated acknowledgment
mechanisms [7], messages have to be buffered and re-
transmitted until all recipients acknowledge their recep-
tion or are declared failed. So, when a receiver is slower,
messages accumulate in the sender buffer, which will
inevitably be forced to adjust its throughput, thus causing
the whole group to be slower.

Probabilistic multicast protocols, also called, gossip-
based or epidemic, overcome the scalability limitations
mentioned above. They support the efficient dissemina-
tion of data among a large number of nodes while pro-
viding a probabilistic guarantee of delivery [8], [1], [9],
[3]. These protocols present an interesting compromise
between the reliability and the scalability requirements
of multi-player games. By using this type of proto-
cols, it is possible to assure throughput stability even
for very large groups with heterogeneous behaviour, as
the load required to ensure reliability is evenly spread
across all members and no single perturbed node can
block senders. Among these protocols, we highlight
NEEM [14]. This protocol combines the use of TCP
at the transport layer (for a network-friendly operation)
with an efficient buffer management that allows purging
of messages that are already obsolete. NEEM is particu-
larly tailored to support large-scale multi-player games.

The present paper describes the effort of integrating
a commercial multi-player game, the Microsoft Flight
Simulator 2002, with the NEEM epidemic multicast
protocol. The goal of this work is to validate the useful-
ness of this kind of protocols to solve the problems of
scalability that are raised when a very large number of
participants is involved in the game.

The rest of the paper is structured as follows: For self-
containment, Section II introduces the Flight-Simulator

game and Section III makes an overview of the NEEM
protocol. Section IV describes the integration of these
components and Section V includes the evaluation of
the resulting prototype. Finally, Section VI concludes the
paper.

II. M ICROSOFTFLIGHT SIMULATOR 2002

The game we have selected to perform and validate the
integration of multi-player games with probabilistic mul-
ticast protocols is the Microsoft Flight Simulator 2002
(FS2002). In the following sections we offer a general
overview of the FS2002 operation, and we discuss some
peculiarities that are relevant to the integration work.
The scalability problems of multi-player games are also
discussed in the concrete context of FS2002.

A. Game Overview

FS2002 is a realistic flight simulator game which sup-
ports multi-player operation both on local area networks
and on the Internet. Each player controls a single aircraft
in a virtual world, shared by all the players. Several
kinds of aircrafts and flight charts are made available
to each player. In a multi-player session there is a host
that selects the scenario in which the session will take
place and which is responsible for maintaining the group
membership. If the current host fails, a new node takes
over this role such that the game can proceed. The
users can interact with each other through text messages,
creating a typical ”chat” environment.

The FS2002 implementation on the Windows ope-
rating system uses the DirectPlay API [11]. This is a
message passing protocol often used to implement multi-
player games in Windows. DirectPlay, also offers a
membership protocol. FS2002 relies on a peer-to-peer
architecture in which the state of the game is repli-
cated on every participant. For this purpose, each player
maintains the authoritative state of the locally controlled
aircraft and periodically updates other participants by
sending information about its position and velocity [12].
The packet that carries the state updating is presented
in Fig. 1. The velocity vector is represented by its three
components(v lat, v lon, v alt). The fields correspond-
ing to the position of the aircraft are the last six fields. To
represent the position of the aircraft, latitude, longitude
and altitude values are disseminated linearized into high
and low order bit fields, which are identified by suffixes
M and m, respectively, in Fig. 1.

B. Performance restrictions

In nowadays Internet, FS2002 participants access the
network through residential connections such as ADSL,

cable or even traditional analog modems. Even broad-
band connections are asymmetric and have restricted
uplink capacities. This makes the use of a peer-to-peer
architecture to disseminate all updates extremely chal-
lenging as a single node does not have enough bandwidth
to disseminate the information to all other nodes. The
use of probabilistic multicast protocols alleviates this
problem since each node only has to communicate with a
few other nodes to achieve multicast. However, even with
these protocols, the restricted bandwidth available can
generate congestion, inducing message losses. It is worth
noting that a centralized solution also raises scalability
problems on the server side.

Let us analyze the communication requirements of a
game such as FS2002 in a concrete scenario. Each player
multicasts 4 state update messages each second, carrying
60 bytes of payload each. When players are connected
using V.90 modems (56 kbps downlink, 33.6 kbps uplink)
a maximum of 17 peers can be contacted for each state
update. As each player is responsible for multicasting
its updates to all spectators, this means that 17 is in
fact the total number of players plus spectators. Even
with broadband connections, the uplink is lower than the
available downlink bandwidth, thus limiting the number
of destinations. This can be mitigated by relying on a
centralized server with a more expensive high bandwidth
network connection. However, this does not entirely
solve the problem, as a hosting service is also expected
to host more than one simultaneous instance of the
game. The amount of traffic imposed on the server is
still proportional to the total number of spectators and
thus the cost of such service grows linearly with the
bandwidth used.

In this paper, we propose a different architecture which
consists in using an epidemic multicast protocol that
allows the spectators to cooperate in a decentralized
dissemination of the game updates. With this approach
we avoid the use of a centralized server and we take the
best advantage of the peer-to-peer architecture, supported
by DirectPlay.

III. T HE NEEM PROTOCOL

This work uses a new probabilistic multicast protocol,
called NEEM [14], that was conceived to operate in

pbh lat_M lon_M alt_M lat_m lon_m alt_mn. seq v_lat v_lon v_alt v_gr

Fig. 1. Update packet.

networks with the same features as those where multi-
player games, like FS2002, operate. The next para-
graphs describe the NEEM architecture and its main
components: the epidemic dissemination mechanisms,
the buffer management and the use of TCP.

NEEM was implemented using Appia [13]. Appia is
a framework that supports the composition and exe-
cution of micro-protocols. Each Appia module is a
micro-protocol and is responsible for ensuring certain
properties. These modules are independent and can be
combined, building a stack configured with the desired
properties. Fig. 2 presents the stack that implements
NEEM. Each layer of the Appia stack is an essential
NEEM component, that will be described in the follow-
ing paragraphs.

a) Epidemic Multicast:The top layer of the stack
is the NEEM’s epidemic multicast mechanism [4], that
works as follows: A message is initially tagged with the
maximum number of roundsr and then forwarded to
distinct f other nodes chosen randomly. On reception,
the number of rounds is decremented. When this counter
reaches zero, the message is discarded. In the other cases,
the message is forwarded again to anotherf nodes.
Delivery happens when a new message is received by
a node. The guarantees offered by the protocol depend
on appropriate configuration ofr andf [8], [9].

The membership protocol is itself based on gossip
and keeps at each node a list of other locally known
nodes [3], [5]. This list is a partial view of the entire
group and, as it has been shown, this is sufficient for
gossiping to succeed, even if this list is much smaller
than the entire group. Upon each gossip round, the iden-
tification of some locally known nodes is piggybacked on
data messages. When a message is received, the local list
is updated with the nodes in the arriving list. If the size
of the local list overcomes a certain pre-defined limit,
some nodes are removed randomly.

It is worth noting that for a group ofn participants, the
size of the partial local view, as well as the parameters

Epidemic Multicast

Buffer Management

TCP InterfaceA
pp

ia
 s

ta
ck

Fig. 2. NEEM.

f and r are of the order of magnitude oflog n, which
allows the existence of very large groups.

b) Buffer management:The layer responsible for
the buffer management stores the received messages that
will be gossiped in subsequent rounds. For short bursts of
incoming messages, buffering alone is enough to spread
the load in time and thus to avoid message losses. For
continued loads, the buffers are eventually exhausted.
To prevent a single perturbed node to degrade overall
performance, the epidemic multicast protocol cannot
wait until buffer space is available. The only option is to
select a message to be discarded. This selection is done
by combining the following strategies:

• Semantic purging:A message that has been rec-
ognized as obsolete is discarded. In contrast with
other purging policies, this strategy can be applied
even if the buffer is not full. This has the potencial
advantage of reducing average buffer occupancy and
thus of lower latency.

• Age-based purging:The message that has been
relayed more times is discarded. This strategy can
be used even if no obsolete messages are discovered
and can still offer some performance advantages.

• Random purging:A message is selected at random
to make up room for each newly arrived message.
This strategy is used as a last resort.

An important aspect in the design of the NEEM’s
interface is how to allow the application convey the
required semantic knowledge to the protocol (to allow
the identification of obsolete messages) while at the same
time retaining the generality of the implementation. The
proposed implementation is to associate a small bitmap
to each message. If theith bit is set in the bitmap of
messagen, then the message with sequence numbern−i

is considered obsolete.
c) Interface with TCP: The bottom layer is the

interface of Appia’s stack with the TCP implementation
of the underlying operating system. The choice of using
TCP relies on the existence of the congestion control
mechanism which allows a better usage of the available
bandwidth. The available bandwidth in each node is
divided by several TCP connections (i.e. as many as the
size of the local membership list), so it is possible to
reduce the size of the buffers and, therefore, is possible
to reduce the latency and the total of resources used [6].

IV. I NTEGRATION

The integration of the FS2002 with NEEM has ex-
ploited the fact that the game is based on the DirectPlay
API. We have implemented an adaptation layer, called

Classification Extrapolation Extrapolation Classification

FS2002

NEEM

FS2002

NEEM

DirectPlay DirectPlay

MultiplexerMultiplexer

NeemAdapter.dll NeemAdapter.dll

Fig. 3. Integration architecture.

NeemAdapter, a dynamic library that intercepts the calls
to the original library dplayx.dll. The NeemAdapter
intercepts all data messages and forwards the remaining
control operations to the original library without further
processing. The state update messages have an additional
processing both on sending and reception. Outbound
traffic is classified and inbound traffic is pre-processed
by an extrapolation component. The NeemAdapter is
also responsible for transforming the peer-to-peer update
multicast of FS2002 in a call to the NEEM protocol.
These components are described in the following sec-
tions. The Fig. 3 presents the integration’s architecture.

The NEEM protocol was complemented with an inter-
face layer, at the top of the Appia stack, which is respon-
sible for the interface between the Java2 implementation
of NEEM and the C++ implementation of NeemAdapter.
We have also replaced the bottom layer of the NEEM,
the TCP layer, by a layer that interfaces with DirectPlay,
which in turn calls the native TCP/IP implementation of
the operating system. These changes to the Appia stack
of the NEEM protocol are depicted in Fig. 4.

2The Java language was used for rapid prototyping. In a comercial
solution the performance restrictions of Java would have to be
considered.

dll2appia interface

DirectPlay InterfaceA
pp

ia
 s

ta
ck

Buffer Management

Epidemic Multicast

Fig. 4. NEEM adjusted.

A. Multiplexer

FS2002 relies on a peer-to-peer architecture, where
each player is responsible for disseminating the update
of its position and velocity to all the other participants
(players and spectators). Without our adaptation layer,
this would be done point-to-point to each of the desti-
nations. In order to benefit from the presence of the epi-
demic multicast protocol, the NeemAdapter transforms
each set of point-to-point calls into a single call to the
NEEM protocol. This, in turn, implements an epidemic
multicast that, as noted before, can be performed without
requiring the sender to communicate directly with all
other nodes.

B. Classification

One of the essential issues when using NEEM is how
to encode the message semantics. Each of the updates to
be sent by a player are submitted to a classification pro-
cess, where they are related to the previousn updates3.
In order to do so, the NeemAdapter keeps a list with
the lastn updates sent. By comparing an update with
the ones before, the classification component identifies
the previous messages that become obsolete and builds
the bitmap associated to the new update. As a result,
the buffer management layer only needs to process these
bitmaps and remains completely unaware of the content
of FS2002’s messages.

The rule used to decide when a message makes other
obsolete is based on the observation of the distance
between both updates: if both messages are referring
to positions that differ less than a pre-defined factor,
then the elder one is considered obsolete; otherwise,
no message is classified as obsolete. So, a messagemj

makesmi obsolete if:
• j > i and

3The parametern depends on the dimension chosen for the bitmap.

• ∀k : i < k ≤ j, the velocity vector ofmk differs
from that of mi by less than a factorF , more
precisely:| ~vmk

− ~vmi
| ≤ F ∗ | ~vmi

|.

When applied to FS2002 traffic and withF = 0.01,
this rule results in a message making its predecessor
obsolete with a probability of46%. With F = 0.02 this
rises to72%. These numbers disregard messages other
than updates, whose number is relatively insignificant.

C. Extrapolation

The NeemAdapter intercepts all messages received by
DirectPlay, with FS2002 as destination. The messages
with the state updates arrive with a constant interval be-
tween them of approximately 320ms. The NeemAdapter
keeps a timeout for each of the aircrafts in the session
(except itself), in order to compensate for lost or delayed
messages in the probabilistic protocol, by extrapolating
these messages from the past positions.

The NeemAdapter keeps the last update received from
each aircraft and, if the timeout expires and no new
update is received, the extrapolation process is initiated
based on the information kept. This process extrapolates
a new position from the position of the last update
stored and assumes that the velocity remains the same.
It then builds a new update packet with this extrapolated
information, that is sent up to FS2002. This extrapolated
packet is kept in the NeemAdapter, replacing the last one,
like any original update coming from the network.

V. EVALUATION

Since we do not have the resources to build a con-
trolled experiment with hundreds of FS2002 spectators,
we have considered the real traces of the FS2002 and
extracted an abstract model of the traffic pattern of
FS2002 that was used to feed simulation. Traffic is
collected, in the prototype, by intercepting requests at
the DirectPlay API. The use of simulation has also the
advantage of allowing comparisons between protocols,
when submitted exactly to the same traffic.

A. Simulation model

The model used simulates the NEEM behaviour in
order to identify which messages are lost when the
system is configured with the traffic extracted from
FS2002. This model has a set of processes that execute
the NEEM protocol, forwarding, storing and delivering
messages. The membership mechanism is the only one
that is not simulated. Each node is connected to a subset
of distinct nodes chosen randomly which constitute its
local membership. This membership is generated once

before running all simulations. The network is simulated
by a set of queues that connect all the participating
nodes. Each node then divides the available bandwidth
by the connections to the processes it knows.

The results presented in this paper were achieved using
500 nodes. Each point-to-point connection has an asso-
ciated buffer with capacity for storing 10 messages, in
the buffer management layer. For the epidemic multicast,
the local membership of each node has 12 entries, the
messages are sent to 6 destinations and each messages
is retransmitted 6 times. The network is configured such
that each link has a 56kbps bandwidth both for downlink
and uplink and a latency of 25ms, in the worst case. A
justification for these values can be found in [8]. Each
simulation run for 300s. The first 100s and the last 50s
are discarded to avoid transient states.

The traffic pattern of FS2002 can be generalized as
follows. Traffic is composed of an amount of traffic that
never becomes obsolete. The remaining share can be
divided in as many chains as the aircrafts in the session.
We say that each message in a chain is made obsolete
by its successor with a probability of46% – having
F = 0.01.

B. Results

Fig. 5 compares the performance of the original
FS2002 without spectators with FS2002 plus NEEM
with 500 spectators. ConsideringF = 0.02, the figure
presents the throughput of the messages that never be-
come obsolete. In the considered scenario, the original
decentralized protocol of FS2002 makes it possible to
deliver every message successfully until 28 players. It’s

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

m
sg

/s
)

Number of players

FS 2002, zero spectators
pbcast, 500 spectators
NEEM, 500 spectators

Fig. 5. FS2002 performance.

Fig. 6. Routes comparison.

worth noting that the multicast is made by each of the
players, which implies that 28 is the total number of
participants (players and spectators). So, the maximum
number of spectators that the FS2002 can support is 27,
in the extreme case where there is only one player.

With NEEM, the update multicast is distributed. So,
it’s possible to support a high number of spectators
independent of the number of players. Fig. 5 also shows
how it is possible to deliver almost all messages that
never become obsolete, in the presence of 500 spectators.
In contrast, a traditional epidemic multicast protocol
– pbcast [8] – will loose messages that never become
obsolete.

The impact of the message losses is visible when
we compare the extrapolated route from both protocols
with the original route. Fig. 6 presents such comparison.
Using NEEM protocol the difference between the routes
is never larger than 100m and most packets that suffer
extrapolation present a difference around 20m, resulting
in 32m of average. In contrast, the route extrapolated
from pbcast implies greater errors, resulting in an aver-
age difference of 49m.

VI. CONCLUSIONS

This paper presents the integration of a multi-player
game, the Microsoft Flight Simulator 2002, with the pro-
tocol NEEM, which combines epidemic multicast with
message semantics. The evaluation of this integration is
done through implementation and simulation. The results
achieved show that, in contrast with the original protocol
used by the game that only supports few spectators, is
possible to disseminate the game state by hundreds of
spectators. The use of message semantics allows the
support of hundreds of spectators without having to

reduce the number of concurrent players, as necessary
when using a tradicional epidemic multicast protocol.

REFERENCES

[1] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast.ACM Transactions on Computer
Systems, 17(2), May 1999.

[2] S. Drucker, L. He, M. Cohen, C. Wong, and A. Gupta. Spectator
games: A new entertainment modality of networked multiplayer
games. Technical report, Microsoft Research, 2002.

[3] P. Eugster, R. Guerraoui, S. Handrukande, A.-M. Kermarrec,
and P. Kouznetsov. Lighweight probabilistic broadcast. InIEEE
Intl. Conf. on Dependable Systems and Networks (DSN), 2001.

[4] S. Formigo, J. Pereira, and L. Rodrigues. Difusão probabilista
com fiabilidade sem̂antica. InActas da 5a Confer̂encia sobre
Redes de Computadores, Faro, Portugal, September 2002.

[5] A.J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-
peer membership management for gossip-based protocols.IEEE
Transactions on Computers, February 2003.

[6] A. Goel, C. Krasic, K. Li, and J. Walpole. Supporting low
latency TCP-based media streams. InIntl. Ws. on Quality of
Service (IWQoS’2002), 2002.

[7] K. Guo. Scalable Message Stability Detection Protocols. PhD
thesis, May 1998.

[8] M. Hayden and K. Birman. Probabilistic broadcast. Techni-
cal Report TR96-1606, Cornell University, Computer Science,
1996.

[9] A.-M. Kermarrec, L. Masssoulié, and A. Ganesh. Reliable prob-
abilistic communication in large-scale information dissemina-
tion systems. Technical Report 2000-105, Microsoft Research,
2000.

[10] J. Lin and S. Paul. RMTP: A reliable multicast transport pro-
tocol. In IEEE Conf. Computer Communications (INFOCOM),
1996.

[11] Microsoft Corp. DirectPlay 8.1, 2002.
[12] Microsoft Corp. Microsoft Flight Simulator 2002 Software

Development Kit – Multiplayer/Flight instructor, 2002.
[13] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible

protocol kernel supporting multiple coordinated channels. In
IEEE Intl. Conf. Distributed Computing Systems (ICDCS),
2001.

[14] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-
M. Kermarrec. Neem: Network-friendly epidemic multicast.
In Proceedings of the 22th IEEE Symposium on Reliable
Distributed Systems (SRDS’02), page (accepted for publication),
Florence,Italy, October 2003.

