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Abstract

The virtual synchrony model for group communication has proven

to be a powerful paradigm for building distributed applications. Im-

plementations of virtual synchrony usually require the use of failure

detectors and failure recovery protocols. In applications that require

the use of a large number of groups, signi�cant performance gains can

be attained if these groups share the resources required to provide vir-

tual synchrony. A service that maps user groups onto instances of a

virtually synchronous implementation is called a Light-Weight Group

Service.

This paper proposes a new design for the Light-Weight Group pro-

tocols that enables the usage of this service in a transparent manner.

As a test case, the new design was implemented in the Horus system,

although the underlying principles can be applied to other architec-

tures as well. The paper also presents performance results from this

implementation.
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1 Introduction

Virtually synchronous group communication [1, 2, 12] has proven to be a pow-
erful paradigm for developing distributed applications. This paradigm allows
processes to be organized in groups within which messages are exchanged to
achieve a common goal. Virtual synchrony ensures that all processes in the
group receive consistent information about the group membership in the form
of views. The membership of a group may change with time because new
processes may join the group and old processes may fail or voluntarily leave
the group. Virtual synchrony also orders messages with view changes, and
guarantees that all processes that install two consecutive views deliver the
same set of messages between these views.

To provide virtual synchrony, implementations require the use of failure
detectors and the execution of agreement and ordering protocols. Naturally,
these components consume some amount of system resources, such as band-
width and processing power. Although the impact of these services in the
overall system performance is usually small, there are opportunities for opti-
mization when several groups have a large percentage of common members,
because these groups can share common services. Such opportunities appear
in many applications [6, 11], in particular when object-oriented programming
styles are used [9, 14]. For instance, a parallel application programmed using
an distributed object memory can create hundreds of groups with similar
membership [3].

A technique that allows the previous type of optimization consists of map-
ping several user level groups onto a single virtually synchronous group. Since
these groups share common resources, they can be implemented more e�-
ciently than standalone groups and are called Light-Weight Groups (Lwgs ).
In contrast, the underlying virtually synchronous group is called in this con-
text a Heavy-Weight Group (Hwg ). A service that maps Lwgs ontoHwgs is
usually called a Light-Weight Group Service.

The Lwg paradigm is being used in several real-world applications. INFS,
a reliable network �le system built on the Isis system, uses this paradigm by
associating Lwgs with replicated �les. In this system, the replicas for a �le
change over time as users change the replication properties of the �le or as
access patterns to the �le change. The Lwg paradigm lends itself well to this
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application as the large number of �les amortized over a small set of �le repli-
cation servers cause signi�cant sharing of Hwgs between Lwgs . This setting
can be generalized to apply to any application which multiplexes many ob-
ject groups over a smaller set of processes or machines. In recognition of this,
the paradigm is supported in the Orbix+Isis product from Isis Distributed
Systems, and Iona Technologies Ltd. Here Lwgs play a key role in reduc-
ing the costs of object groups by amortizing many light-weight membership
changes over Hwgs .

Light-Weight Group Services have been implemented before in di�erent
group based communication systems [6, 11]. Unfortunately, in the previous
work, Lwgs did not preserve the exact interface of the underlying virtually
synchronous group, imposing restrictions on group usage. This paper pro-
poses a new design for the Lwg protocols that circumvents such limitations,
in particular, it proposes an innovative dynamic mapping approach that al-
lows the Light-Weight Group Service to be implemented in a fully trans-
parent manner. As a test case, the new protocols were implemented in the
Horus system [13] (as a new protocol layer) but the underlying principles can
be applied to other architectures (including the Isis [6] and NavTech [15]
systems).

The paper is organized as follows. Related work is surveyed in Section 2.
The design of the Light-Weight Group Service is described in Section 3, the
protocols are presented in Section 4 and the heuristics to support dynamic
mappings are discussed in Section 5. An implementation in Horus is pre-
sented in Section 6 and Section 7 concludes the paper.

2 Related work

To our knowledge, Delta-4 [11] was the �rst system to o�er some form of
Light-Weight Group Service. The Delta-4 group communication subsystem
was structured as a layered architecture, in a fashion similar to that of the
ISO stack. Virtually synchronous support was provided in the lower layers
of the architecture, immediately on top of standard MAC protocols. Several
session level groups can be mapped onto a single MAC level group, but that
association was statically de�ned (such an association is called a connection
in the Delta-4 terminology).

3



The Isis system has extended this principle, o�ering a Light-Weight
Group Service that supports dynamic associations between user level groups
and core Isis groups [6]. Still, in order to make appropriate mapping deci-
sions, Isis Lwgs require the speci�cation of the target membership of a user
group.

Neither of these approaches is transparent, in the sense that they do not
preserve the original Hwg interface. In both cases, it is necessary to provide
additional information, and it is our belief that this additional information
limits the advantages of Lwgs in two ways:

� a powerful feature of virtual synchrony is that it does not require a-
priori knowledge of the group membership; requiring this additional
information to implement the Lwg protocols reduces the applicability
of the system.

� having a di�erent programming interface, not only forces existing appli-
cations to be changed, but also prevents the Lwg protocols from being
used as an optional feature, in a transparent manner.

In this paper, we suggest a new suite of protocols which o�er the Lwg
abstraction transparently underneath the original Hwg interface.

3 Design overview

The main goal of the dynamic Lwg Service is to support resource sharing by
mapping several Lwgs groups with similar membership onto a single Hwg in
a way that fully preserves the original Hwg interface. Thus, the mapping
between Lwgs and Hwgsmust be done in a completely automated manner.
As a positive side e�ect of resource sharing, we expect to decrease the latency
of group operations by avoiding redundant start-up procedures.

The Lwg Service performs its task by managing a pool of Hwgs and es-
tablishing associations between Lwgs and these Hwgs . Every time a new
Lwg is created, the Service must decide if this Lwg should be associated with
one of the already created Hwgs (if any), or if a new Hwg should be added
to the pool. Whatever decision is made, the new Lwgwill be associated
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with some Hwg and will share that Hwgwith other Lwgs . Since the design
imposes no restriction in the way the membership of Lwgs changes in time,
mappings that are appropriate at one point may become ine�cient as the
system evolves. To compensate these changes, the Lwg Service allows map-
pings to be dynamically rede�ned. In such cases we say that a Lwg is switched
from one Hwg to another. If at some point in time a given Hwg seems to
become unsuitable for establishing further mappings, it is released from the
pool. Thus, the pool of Hwgsmanaged by the Service expands and shrinks
in time, not only due to the creation of new Lwgs , but also due to changes
in membership in these groups.

The Lwg service then has three main tasks: (i) preserves the virtually
synchronous interface of the Hwgs to the Lwgs users; (ii) de�nes the map-
ping and switching policies; and (iii) invokes a switching protocol, which is a
protocol that allows the association between a Lwg and aHwg to be changed
at run time. The �rst task is a critical point in the overall design as, if no
performance advantages can be obtained by mapping several Lwgs onto a
single Hwg , the implementation of mapping and switching strategies be-
comes pointless. In the next section we present the protocols that allow us
to achieve the �rst and third of these tasks. The mapping and switching
policies are presented in Section 5.

4 Protocols

This section describes the protocols that implement the Light-Weight Group
Service. These protocols perform several tasks required to o�er virtual syn-
chrony: join a group, leave a group, and multicast messages in a group. Ad-
ditionally, the protocol that allows the mappings to be dynamically changed
is also presented (this protocol is independent of the triggering heuristics).

4.1 Assumptions

The Light-Weight Group Service described in this paper was designed to
run on any of a set of group communication architectures. Particularly, the
service was designed with the Isis, Horus and NavTech systems in mind.
All these systems provide a virtually synchronous communication service.
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4.1.1 Virtual synchrony

Informally, virtual synchrony provides group membership information to each
process in the form of views and guarantees that all processes that install two
consecutive views deliver the same set of messages between these views. More
formally, virtually synchronous multicast communication can be de�ned as
follows [12]:

vs-multicast: Consider a set of processes g, a view V i(g), and a message m
multicast to the members of group V i(g). The multicast of messagem is
called a vs-multicast i� the following property is satis�ed. If 9p 2 V i(g)
which has delivered m in view V i(g) and has installed view V i+1(g),
then every process q 2 V i(g) which has installed V i+1(g) has delivered
m before installing V i+1(g). The system is virtually synchronous i�
every multicast is a vs-multicast.

This de�nition imposes a total order between view changes and multi-
casts, but does not enforce any ordering between messages delivered in the
same view. However, in this paper, we further assume that the virtually
synchronous layer delivers messages according causal precedence (and that
this guarantee is preserved across di�erent groups).

The implementation of virtual synchrony requires the use of a failure
detector plus the execution of some form of 
ush protocol to ensure that
all messages delivered to some processes in a given view are delivered to all
correct processes in that view before a new view is installed. To guarantee
the termination of the 
ush protocol, the tra�c may be temporarily stopped
during the protocol execution. This may lead to a short system slow down
during the execution of the view change protocol, but simpli�es applica-
tion design (for example, a process that multicasts a message can deliver it
locally immediately without any further computation or bookkeeping). How-
ever, protocols exist that allow the continuation of the message 
ow during
view changes [5]. It is also possible to implement a membership service that
addresses explicitly the problem of network partitions [4, 10]. The imple-
mentation of the Lwg service on top of such membership service is outside
the scope of this paper.
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Downcalls

Name Parameters

Join GroupId gid, Pid pid

Leave GroupId gid, Pid pid

Send GroupId gid, BitArray data

HoldOk GroupId gid

Upcalls

Name Parameters

View GroupId gid, PidList view

Data GroupId gid, Pid src, BitArray data

Hold GroupId gid

Table 1: VS interface primitives

4.1.2 Interface

A typical interface of a virtually synchronous layer contains the following
primitives, as listed in Table 1 (we denote the downcalls with the \.req"
su�x and the upcalls with the \.int" su�x): Join.req, is invoked by a
member that wants to join a group; Leave.req, invoked by a member that
wishes to leave a group; Send.req, is used to send a virtually synchronous
multicast; View.int, installs a new view; Data.int, indicates the delivery of
a multicast; Hold.int, indicates that the tra�c must be stopped temporarily
(usually, when a view change in the virtually synchronous layer is in process);
and HoldOk.req, is used to con�rm the Hold.int indication. Hold.int and
HoldOk.req may be hidden from the user at upper layers.

The main goal of our design is to build a service that allows several
user groups to share the same virtually synchronous group in a transparent
manner. Thus, the Light-Weight Group Service should export the same
interface as the virtual synchrony service, as illustrated in Figure 1.

The behavior of the interface is described by the state machine illustrated
in Figure 2. When the interface is not active, it is in the Idle state. As a
response to a Join.req, it leaves this state to the Joining state where it
remains until a view that contains the local process is received. From then
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User layer

LWG LWG LWG LWG LWG

HWG HWG

HWG Layer

Dynamic Mapping Protocols

Lwg Interface

Hwg Interface

Lwg.View.int Lwg.Data.int Lwg.Hold.int

Lwg.Join.req Lwg.Send.req Lwg.HoldOk.reqLwg.Leave.req

Hwg.View.int Hwg.Data.int Hwg.Hold.int

Hwg.Leave.req Hwg.Join.req Hwg.Send.req Hwg.HoldOk.req

Figure 1: Light-Weight Group service interface

on, the interface is said to be in Running state, and can accept Send.req

requests as well as Data.int interrupts. When there is the need to install
a new view, the user is requested to temporarily stop sending new messages
through the Hold.int. The interface remains in the Holding state until the
user acknowledges this request through the HoldOk.req. The interface is then
in theWaitView state, where messages from the current view can be delivered
but no new messages can be sent. When a new view is received (View.int)
the interface returns to the Running state. Finally, if the application wants to
leave the group it issues a Leave.req and the interface goes to the Leaving
state, where a view excluding the local process from the group is awaited
before returning to the Idle state.

It should be noted that the details of the actual interface of each of the
target architectures may di�er. In particular, the details of the interface for
the case of the Horus system will be presented in Section 6.
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Running

Holding

WaitView

Hold.int HoldOk.req 

View.int

Send.req
Data.int

Send.req
Data.int

Data.int

Idle Idle
Joining

Idle
Leaving

Join.req

View.int

View.int

Leave.req

Data.int

Figure 2: VS interface state machine

Name Parameters Returns

ns.set LwgId lwg, HwgId hwg none

ns.read LwgId lwg HwgId hwg

ns.testset LwgId lwg, HwgId hwg HwgId hwg

Table 2: Name service interface primitives

4.1.3 Storing mappings

The implementation of the Light-Weight Group Service requires mappings
between Lwgs and Hwgs to be stored in a way that can be accessed by
every process. Typically, when Join.req is issued at some process, that
process has to �nd out if the associated Lwg is already mapped onto some
Hwg . In this paper we assume that mappings are stored in some external
Name Service. The name service exports three primitives, as illustrated in
Table 2, namely: ns.set, which establishes a mapping between a Lwg and
a Hwg ; ns.read, which returns the current mapping for a given Lwg ; and
ns.testset, which returns the current mapping for a given Lwg or, if no
such mapping exits, establishes a new mapping to the Hwg speci�ed. This
last primitive is o�ered both to minimize the number of accesses to the name
service and to prevent race conditions among processes that concurrently try
to establish new mappings for the same Lwg .

Note that, for availability, the name service may be replicated. A possible
implementation would replicate the name service at every process, making
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updates expensive but read operations purely local.

4.2 Variables

The protocols use the following variables for each Lwg : lwgId, the identi�er
of the Lwg ; currentHwg, the identi�er of the Hwg on which the Lwg is
currently mapped; nextHwg, the identi�er of theHwgwhere the Lwg is going
to be mapped in the future (usually the same as currentHwg, except when a
switch is being executed); currentView, the current group view of the Lwg ;
joiningList, a list of processes that want to join the Lwg ; leavingList, a
list of processes that want to leave the Lwg ; state, the current state of the
protocol, which is one of the states showed in Figure 2; nacks, some protocols
require an acknowledgment to be collected from every group member (the
number of acknowledgments received is collected in this variable); doFlush,
a boolean variable which is set whenever a 
ush needs to be performed;
coordinator, a boolean 
ag which is set to true when the local process is
the oldest member of the Lwg .

Additionally, for each Hwg , the following variables are also used: hwgId,
the identi�er of theHwg ; currentView, the current group view of theHwg ;
mappedLwgs, a list of Lwgsmapped onto this Hwg ; nHoldOk, the number
of HoldOk.req acknowledgments received. Sometimes, in order to 
ush the
Hwg , the tra�c must be stopped at all mapped Lwgs , nHoldOk is used to
keep track of how many Lwgs have acknowledged an lwg.Hold.int.

4.3 The 
ush protocol

The core of the Light-Weight Group implementation is the 
ush protocol,
which is responsible for installing a new view. The protocol is illustrated
in Figure 3. The protocol is initiated by the coordinator that multicasts a
FLUSHmessage when the doFlush 
ag is set (we will later show the scenarios
that trigger this condition). When the FLUSH is received, the application is
requested to stop sending through the Hold.int interrupt (l. 307). When the
corresponding HoldOk.req is received from the application, the Lwgmember
acknowledges the FLUSH message with a FLUSH OK (l. 312). The protocol
is terminated by the coordinator that sends a VIEW message as soon as

10



300 when lwg.doFlush and lwg.coordinator and lwg.state = Running do

301 lwg.doFlush := FALSE; lwg.nacks := 0;
302 hwg.Send.req ( lwg.currentHwg, hFLUSH, lwg.lwgIdi);
303 od

305
306 when hwg.Data.int (hFLUSH, lwgIdi) received do

307 lwg.Hold.int ( lwg.lwgId ); lwg.state := Holding;
308 od

309
310 when lwg.HoldOk.req ( lwgid ) do
311 lwg.state := WaitView;
312 hwg.Send.req ( lwg.currentHwg, hFLUSH OK, lwg.lwgIdi )
313 od

314
316 when hwg.Data.int (hFLUSH OK, lwgIdi) received do

317 lwg.nacks := lwg.nacks + 1;
318 od

319
320 when lwg.nacks = # lwg.curentView and lwg.coordinator do
321 newView := lwg.currentView \ lwg.joiningList - lwg.leavingList;
322 viewMess := hVIEW, lwg.lwgId, lwg.nextHwg, newViewi ;
323 hwg.Send.req ( lwg.currentHwg, viewMess );
324 od

325
326 when hwg.Data.int (hVIEW, lwgId, nextHwg, newViewi) received do

327 if local process in newView then

328 lwg.currentView := newView;
329 lwg.joiningList := lwg.joiningList - newView;
330 lwg.leavingList := lwg.leavingList \ newView;
331 lwg.currentHwg := nextHwg;
332 if lwg.coordinator then
333 ns.set ( lwg.lwgId, lwg.currentHwg ); fi
334 lwg.state := Running;
335 else

336 lwg.state := Idle;
337 fi

338 lwg.View.int ( lwg.currentView );
339 od

Figure 3: Flush protocol
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a FLUSH OK is received from every member (l. 320). When the VIEW
message is received, the tra�c is resumed by delivering the new view through
the lwg.View.int interrupt (l. 326). In addition to the new membership
of the group, the VIEW messages disseminates the identity of the Hwg that
should be used during the next view (l. 331). Thus, the 
ush protocol is used
both to change the group membership and to execute the switch protocol.
If a member process fails or becomes unreachable while executing the 
ush
protocol, another round of the 
ush protocol starts immediately, collecting
FLUSH OK replies from currently available members. Therefore the 
ush
protocol can not block.

4.4 The create/join protocol

The create/join procedure consists of two main steps, as illustrated in Fig-
ure 4. In the �rst step, a map is established between the Lwg and some
Hwg (l. 401). To minimize accesses to the name service, the joining process
proposes a mapping based on its own local Hwgs according to the mapping
heuristics mentioned in Section 5. Then, in a single access to the name service
it commits this mapping or, in the case where the Lwg is already mapped
onto some other HWG, obtains the existing mapping (l. 404). Additionally,
if the process is not a member of the selected Hwg , it joins the Hwg before
executing the second step (l. 405).

The second step consists of sending a JOIN message to all members of
the Hwg (l. 412). When the JOIN message is received, the identi�er of the
joining process is added to the joiningList and doFlush 
ag is activated (l.
414). The coordinator of the Lwgwill then trigger a 
ush protocol which,
in turn, will install a new view.

4.5 The leave protocol

The leave procedure in Figure 5 is similar to the joining protocol. The process
simply sends a LEAVE message to all members of the Hwg (l. 503). When
the LEAVE message is received, the identi�er of the process is added to
the leavingList and the doFlush 
ag is activated. The coordinator of the
Lwgwill then trigger a 
ush protocol which, in turn, will install a new view.
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400 when lwg.Join.req ( lwgId, processId ) do
401 // �rst step
402 lwg.lwgId := lwgId; lwg.state := Idle;
403 lwg.currentHwg := proposeLocalMapping ();
404 lwg.currentHwg := ns.testset ( lwgId, lwg.currentHwg );
405 if local process not member of hwgId then

406 hwg.Join.req ( lwg.currentHwg );
407 wait hwg.View.int (lwg.currentHwg);
408 fi

409 localMap ( lwg.lwgid, lwg.currentHwg );
410 // second step
411 lwg.state := Joining;
412 hwg.Send.req (lwg.currentHwg, hJOIN, lwg.lwgId, processIdi );
413 od

414 when hwg.Data.int (hJOIN, lwgId, processIdi) received do

415 lwg.joiningList := lwg.joiningList [ processId;
416 lwg.doFlush := TRUE;
417 od

Figure 4: The create/join protocol

500 when lwg.Leave.req ( lwgId, processId ) do
501 lwg.state := Leaving;
503 hwg.Send.req ( lwg.CurrentHwg, hLEAVE, lwgId, processIdi );
504 od

505
506 when hwg.Data.int (hLEAVE, lwgId, processIdi) received do

507 lwg.leavingList := lwg.leavingList [ processId;
508 lwg.doFlush := TRUE; // will trigger 
ush
509 od

Figure 5: The leave protocol
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4.6 The message passing protocol

The principle of the message passing protocol is very simple. The Lwg service
simply encapsulates the Lwgmessage in a dedicated hDATA, lwgid, datai
message which is multicast on the Hwg . On the recipient side, when such
message is received the lwgid part is examined and the data part is forwarded
to the speci�ed Lwg .

A message multicast on a Hwg could be performed using two main ap-
proaches. In the �rst approach, the message is multicast to all members of the
Hwg and then each site that is not a member of the concerned Lwg discards
the message. This has two disadvantages:

� it makes the multicast more expensive, since more destination sites are
used than those strictly needed;

� it consumes resources to handle the received messages at those sites.

The other approach consists of using some form of selective address mech-
anism, which allows to multicast a message in a Hwg just to a subset of all
the members of the Hwg . An approach similar to this was used in the
Delta-4 [11] and Isis lightweight group mechanisms [6].

4.7 The switch protocol

Assume that a given Lwg , lwgId, needs to be switched from one Hwg ,
hwgFrom, to another Hwg , hwgTo. The switch protocol is initiated by some
process member of lwgId. In order to inform other members of lwgId of
the start of the switching procedure, it multicasts an hOPEN, lwgId, hwgToi
message on hwgFrom (l. 601). When this message is received, all members of
lwgId check if they are already members of hwgTo and, in case they are not,
join this group (l. 603).

When a member of the Lwg detects that all members have joined hwgTo,
it sets the variable nextHwg and activates the doFlush 
ag (l. 608). As in
the previous cases, this will trigger the execution of the 
ush protocol which
will install a new view and commit the new mapping. The switch protocol
is presented in Figure 6.
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600 when lwgId needs to be switched to hwgTo do

601 hwg.Send.req ( lwg.currentHwg, hOPEN, lwgId, hwgToi );
602
603 when hwg.Data.int (hOPEN, lwgId, hwgToi) received do

604 // OPEN is received through hwgFrom
605 if I am not member of hwgTo then

606 hwg.Join.req ( hwgTo ); fi
607 od

608 when lwg.currentView � hwgTo.currentView do

609 lwg.nextHwg := hwgTo; lwg.doFlush := TRUE;
610 od

611 od

Figure 6: The switch protocol

4.8 The failure handling protocol

The basic failure handling protocol is quite simple because most of the com-
plexity is handled by the virtually synchronous service. Whenever a failure
is detected by a Hwg , a Hold.int is generated in order to stop the traf-
�c 
ow (l. 700). This interrupt must be multiplexed to all Lwgsmapped
onto that Hwg (see Figure 7). The Light-Weight Group Service waits for
an acknowledgment from every Lwg (in-transit messages can still be sent or
received) and then acknowledges the Hold.int interrupt (l. 706). Finally,
when a new view is installed in the Hwg , the failed processes are removed
from the views of all mapped Lwgs (l. 713).

4.9 Synchronization with the name server

When a switch occurs, the name service is informed of the new mapping so
that further joins are directed to the appropriate Hwg . A problem of using
an external name service to keep information about the mapping between
Lwgs and Hwgs , is that it is di�cult to guarantee that processes always
read up-to-date information. To avoid expensive synchronization procedures,
we allow processes to read outdated information (for instance, when a read
to the name service is executed concurrently with the execution of the switch
protocol). To compensate for this, all members of a Hwg keep information
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700 when hwg.Hold.int (hwg) do
701 forall lwg in hwg.mappedLwg
702 lwg.Hold.int (lwg);
703 endfor

704 od

705
706 when lwg.HoldOk.req (lwg) do
707 hwg.nHoldOk := hwg.nHoldOk +1;
708 if hwg.nHoldOk = # hwg.mappedLwg then
709 hwg.HoldOk.req (hwg.hwgId);
710 fi

711 od

712
713 when hwg.View.int (hwgId, newview) do
714 hwg.currentView := newview;
715 forall lwg in hwg.mappedLwg do
716 lwg.currentView := lwg.currentView \ newView;
717 lwg.joiningList := lwg.joiningList \ newView;
718 lwg.leavingList := lwg.leavingList \ newView;
719 lwg.View.int (lwg.lwgId, lwg.curentView);
720 if local process oldest in lwg.currentView then

721 lwg.coordinator := TRUE;
722 fi

723 endfor

724 od

Figure 7: Failure handling
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about the new mappings of previously mapped Lwgs . This information
is used like a forward-pointer, to redirect a process that is using outdated
mapping information. Forward-pointers are discarded based on the passage
of time. Thus, we assume that when a process gets a mapping from the name
service, this information is valid just for some reasonable period of time (in
some sense, it works as a lease [7]).

4.10 Interleaving of protocols

The �nal protocols are slightly more complex than the ones presented in
this paper due to the possible interleaving of the failure handling protocol
with the remaining protocols. Figure 8 illustrates the state transition of the
complete protocol.

5 Dynamic mapping

In the type of systems we are targeting (like Isis, Horus or NavTech ), when
a process joins or creates a group it is not required to know in advance its fu-
ture membership. Actually, in most cases this membership cannot be known
in advance, as it often depends on run-time parameters like number and lo-
cation of users, load, occurrence of faults and so on. Thus, the Lwg Service
must be able to operate with this lack of information, using heuristics to �nd
the most appropriate mappings between Lwgs and Hwgs .

5.1 Potential disadvantages

In order to be e�ective, the mapping strategy should avoid the following
potential disadvantages of having several Lwgs sharing a single Hwg :

� All Lwgs will share the same FIFO channel and this, at least theoreti-
cally, reduces the parallelism of the system: a message losses from one
Lwg can delay the delivery of a message from other Lwg . In prac-
tice, since with today's technology message losses are rare events, this
problem is almost negligible.
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Running

Holding

WaitView

Idle Idle
Joining

Idle
Leaving

lwg.doFlush & lwg.coordinator/
hwg.Send.req (<FLUSH>)

hwg.Data.int (<FLUSH>) /
lwg.Hold.int

lwg.Send.req (data) /
hwg.Send.req (<DATA,data>

hwg.Data.int (<DATA,data>) /
lwg.Data.int (data)

lwg.Send.req (data) /
hwg.Send.req (<DATA,data>)

hwg.Data.int (<DATA,data>) /
lwg.Data.int (data)

lwg.HoldOk.req  /
hwg.Send.req (<FLUSH_OK>)

hwg.Data.int (<DATA,data>) /
lwg.Data.int (data)

hwg.Data.int (<FLUSH_OK>) /
lwg.nacks := lwg.nacks + 1

lwg.nacks = #lwg.CurrentView 
& lwg.coordinator /
hwg.Send,req (<VIEW>)

hwg.Data.int (<VIEW>) /
lwg.VIEW.int

lwg.Leave.req /
hwg.Send.req (<LEAVE>)

hwg.Data.int (<DATA,data>) /
lwg.Data.int (data)

hwg.Data.int (<VIEW>) /
lwg.VIEW.int

lwg.Join.req  /
hwg.Send.req (<JOIN>)

hwg.Data.int (<VIEW>) /
lwg.VIEW.int

HwgFailureFlushed

hwg.Hold.int  /
lwg.Hold.int
hwg.prev := running

lwg.HoldOk.req  /
hwg.nHoldOk := hwg.nHoldOk +1

hwg.nHoldOk = hwg.mappedLwg  /
hwg.HoldOk.req

hwg.View.int & hwg.prev = running  /
lwg.VIEW.int

hwg.Hold.int  /
hwg.prev := Holding

lwg.Send.req (data) /
hwg.Send.req (<DATA,data>

hwg.Data.int (<DATA,data>) /
lwg.Data.int (data)

hwg.View.int  & hwg.prev = Holding/
hwg.Send.req (<FLUSH_OK>)

hwg.Hold.int  /
hwg.prev := WaitView

hwg.View.int  & hwg.prev = WaitView/
-

Figure 8: Light-Weight Group state machine
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� If no selective addressing is available (i.e., if it is impossible to send
messages to subsets of the whole Hwg ), all messages regarding a given
Lwgwill have to be broadcast in the Hwg . This means that when the
membership of the Hwg is a superset of the membership of the Lwg ,
some processes will have to spend resources discarding messages not
addressed to them.

� The failure of a Hwgmember disturbs the operation of the Hwg :
usually, upon failure, the Hwg has to go through a 
ush procedure to
enforce virtually synchronous properties (this procedure was discussed
in section 4). Whenever the membership of the Hwg does not exactly
match the membership of the Lwg , the operation of the Lwg risks
being disturbed by failures of processes which are not in the LWG.

In order to minimize these undesirable e�ects, Lwgs should be mapped
into Hwgs with similar membership (ideally, with exactly the same member-
ship). Unfortunately, when a group is created and the mapping needs to be
established, the future membership of both the new Lwg and of the existing
Hwgs cannot be foreseen (the membership of a Hwg is forced to grow to
follow the membership of the mapped Lwgs ). As a result, the mapping de-
cision is of heuristic nature, and consequently, prone to non-optimal results.
Here we concentrate on general-purpose heuristics even though heuristics can
be tuned for speci�c applications.

5.2 Policies

There are two main approaches that can be followed when establishing a
mapping for a Lwgwhich is being created:

� the pessimistic approach, where it is assumed that the membership of
the Lwgwill be extremely di�erent from that of other running Lwgs ,
and thus, a new Hwg should be created. If later the assumption is
proven to be incorrect, one can try to switch the Lwg to a more ap-
propriate Hwg . The disadvantage of this approach is that the heavier
operation to creat a new Hwg , is always executed by default.
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� the optimistic approach, where it is assumed that the membership of
the new Lwg is going to be similar to that of some other Lwg already
in operation. The new Lwg can then be mapped onto some existing
Hwg and later, if the choice is proven to be inappropriate, switch the
Lwg to a more appropriate Hwg . This approach has the advantage
of performing by default a less expensive operation. Furthermore, if
necessary, the expensive operation of joining a Hwg can be executed
in a less critical point of the application execution-path (for instance,
using some moments of reduced communication).

5.3 Mapping rule

Due to its advantages, we have followed the optimistic approach. The map-
ping strategy works as follows:

optimistic mapping rule: when a Lwg is created, the Lwg Service maps
the Lwg on an existing Hwgwith larger membership, i.e., a Hwgwith
more probability of including future members of the Lwg . If several
Hwgmatch this criterion, the Hwgwith less Lwgs already mapped
onto it is selected (this minimizes the shared channel disadvantage).

5.4 Moving strategies

The mapping rule tries to increase the number of appropriate mappings.
However, due to the lack of information about the future, some of the map-
pings done at group creation time will later reveal to be inappropriate. For
instance, it might happen that two non-overlapping Lwgs are mapped on the
same Hwg . In extreme cases, the mapping heuristic could lead to the exis-
tence of a single (huge) Hwg in the system where all Lwgs were mapped. To
prevent such cases from occurring, our approach includes the use of correc-
tive measures, which are based on the ability to change the mapping between
Lwgs and Hwgs at run-time. This is done through a switch protocol, which
switches a given Lwg from one Hwg to another Hwg (the protocol was de-
scribed in Section 4).

The �rst aspect that needs to be considered is when it is worthwhile to
schedule a switch of a given Lwg from one Hwg to another. Since the more
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the membership of the Hwg di�ers from that of the Lwg (the Hwg always
contains the Lwg ) the more signi�cant the the disadvantages listed in Sec-
tion 5.1 become. We use the following rule:

k-minority rule: a Lwgwhose membership is a minority of the member-
ship of the Hwg should be switched. More precisely, the condition for
scheduling the switch is, for some parameter km,

NMEMB(Lwg )<NMEMB(Hwg )=km,

where NMEMB(group) denotes the number of members in the group.

The second aspect to consider is the selection of the new Hwg for the
Lwg to switch to. If no other Hwg exists, a new Hwg should be �rst cre-
ated to allow the execution of the switch protocol. However, if some other
Hwg already exists, it should be considered a potential candidate to support
the Lwg . Naturally, switching should minimize the disadvantages of sharing
Hwgs . Thus, an existing Hwg should only be selected if its membership is
close enough to that of Lwg being switched. We use the following rule:

k-closeness rule: an existing Hwg should only be eligible to support a
switching Lwg if the following inequality is true, for some parameter
kc,

(NMEMB(Hwg )�NMEMB(Lwg ))<NMEMB(Hwg )=kc.

If no Hwg exists satisfying this rule, a new Hwg should be created to
switch the Lwg .

The third aspect to be considered is the timing to actually perform the
switch. Ideally, switching should be done in periods of low activity of the
Lwg , in order to avoid disturbing the Lwg tra�c (the switching protocol
involves 
ushing the group). However, in some cases, these periods may
not occur with the frequency necessary to perform all the required switches.
Thus, in our design we also consider that a switch protocol can be initiated
when some threshold is reached.

t-threshold rule: if the k-minority rule remains applicable for a pre-de�ned
period of time tthreshold, and no idle moment occurs within this period,
the switch protocol is initiated for that Lwgwhen the threshold is
exceeded despite the tra�c load at that moment.
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It is also important to recognize that group membership changes can oc-
cur in bursts. In particular, during group creation and during recon�guration
(after failures) several new members may join the group in a short period of
time. To avoid a cascade of switches, we should prevent the switch protocol
from being started immediately after a change in con�guration. To achieve
this, we use the following rule:

t-stability rule: no Lwg should changeHwgmore than once in a pre-de�ned
period of time tstable.

Finally, it is possible that after a Lwg switch, a process �nds itself a
member of some Hwgwithout having any Lwgmapped on it. If this situa-
tion persists for some time, the process should leave the Hwg . The following
rule is used:

t-shrink rule: a member of a Hwgwhich has no Lwgmapped on that
Hwg for more than some period of time tshrink must leave the Hwg .

Naturally, the heuristics can be improved and tuned in face of existing
applications. When the software infrastructure allows it, it is may be desir-
able to have di�erent heuristics for di�erent kinds of applications.

In the previous paragraphs we have discussed what measures can be taken
to minimize the disadvantages of having inappropriate mappings. Inappro-
priate mappings occur when the membership of the Lwg is just a small subset
of the membership of the Hwg . The Lwg Service should also make e�orts
to promote appropriate mappings, i.e, it should try to map all Lwgs with
similar membership in a single Hwg .

In fact, the main goal of a Lwg Service is to promote the sharing of
resources and this goal is better attained if the number ofHwg groups is kept
low. Besides this main advantage, we can cite a number of other advantages
of having a small number of Hwgs . If the number of Hwg is low, the
search space is small and the heuristics can be applied in more e�cient way.
Also, in some architectures there is a limited number of hardware multicast
addresses; if there is a small number of Hwgs it is possible to assign one of
such addresses to each Hwg .
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The previous heuristics do not guarantee that the number ofHwgs is kept
low because they do not consider as a disadvantage having severalHwgs with
similar membership. For instance, an application using m Lwgs running on
n processes could result in the following worst case. If each process creates or
joins the n groups in a di�erent order, the application might end up with m
Hwgs using a di�erent Hwg for each Lwg , even though all the Hwgs have
the same membership. Also, with the evolution of the system, it is possible
for groups with initially di�erent memberships reach a point where they have
similar memberships. The following rule takes these aspects into account:

k-merge rule: two existingHwgs ,H1 andH2, should be merged (by switch-
ing all Lwgsmapped on H2 to H1, and discarding H2) if the following
inequality is true (assuming H1 is bigger than H2):

(NMEMB(H1)�NMEMB(H2))<NMEMB(H1)=km.

To improve the e�ciency of these heuristics, the Lwg Service could ac-
cept hints, in the form of probable membership or connections as in the
Isis or Delta-4 systems. However, these parameters should be maintained as
optional to preserve the virtual synchrony group interface.

6 An implementation in Horus

6.1 Horus overview

Horus is a group communication system which o�ers great 
exibility in the
properties provided by protocols. It uses virtually synchronous protocols to
support dynamic group membership, message ordering, synchronization and
failure handling.

In the Horus architecture, protocols are constructed dynamically by stack-
ing microprotocols, which support a common interface. Each microprotocol
o�ers a small integral set of communication properties, and is implemented
as a layer in Horus. Each layer has a set of entry points for downcall and
upcall procedures denoted with the \.req" and \.int" su�xes respectively.

Horus provides a large set of microprotocols. The following are related
to our design of the Light-Weight Group Service. The COM layer provides
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the Horus interface over other low-level communication interfaces (includ-
ing IP, UDP, ATM, the x-kernel and a network simulator). The NAK layer
provides reliable FIFO unicast and multicast. The FRAG layer implements
fragmentation and reassembly of messages. The MBRSHIP layer guaran-
tees virtual synchrony. The CAUSAL and TOTAL layers o�er causally and
totally ordered message delivery respectively.

6.2 Horus virtual synchrony protocols

The MBRSHIP layer in Horus implements virtually synchronous member-
ship and message atomicity. During message transmission, members of the
group are constantly collecting stability information of all the messages they
have sent or received. A message is stable if it has been received by every
member of the group. Virtual synchrony is ensured by a 
ush protocol that
is conceptually similar to that presented in this paper. However, the imple-
mentation of the 
ush protocols in Horus, both in the MBRSHIP layer and
in the LWG layer, uses a coordinator based approach to reduce the number
of multicast messages exchanged.

In the MBRSHIP layer, the oldest member in a view is designated as the
coordinator. During a membership change, the coordinator decides which
members are correct and should be included in the next view. It broadcasts
a FLUSH message to the surviving members, requesting them to stop sending
messages and to ignore messages from incorrect members. Upon receipt of a
FLUSH, a member forwards to the coordinator its unstable messages followed
by a FLUSH OK message (these messages are point-to-point). When the
coordinator has received a FLUSH OK message from all correct processes in
the current view, it rebroadcasts those unstable messages. Upon receiving
rebroadcast messages, the members ignore those it has already delivered.
The 
ush is completed after all the messages have stabilized. At this point
a new view may be installed.

In our implementation, the LWG layer is put on top of the \MBR-
SHIP:FRAG:NAK:COM" stack. The LWG 
ush protocol is implemented
using a coordinator based solution where the FLUSH OK and VIEW mes-
sages carry the causal dependencies required to automatically 
ush data
messages. Currently, all Lwgmessages are sent in multicast to all members
of the Hwg .
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6.3 Performance

We conducted the performance tests for LWG in Horus on a system of SUN
Sparc10 workstations running SunOS 4.1.3, connected by a loaded 10M bps
Ethernet. The low-level protocol we used is UDP/IP with the Deering mul-
ticast extension. We tested n identical four-member groups using four ma-
chines with one process per machine.

We conducted three di�erent types of tests to measure the impact of
Lwg Service on: (i) group membership operation, (ii) failure handling and
(iii) data transfer. In these tests, every group member has the stack \LWG:-
MBRSHIP:FRAG:NAK:COM" underneath it. To evaluate the e�ectiveness
of our approach, the exactly same tests were run without the Lwg layer.
In the rest of the section, all the 
ush time measurements are taken at the
coordinator. When a member joins, the 
ush time is measured between a
Join.req and a View.int. When a member leaves, the 
ush time is mea-
sured between the receipt of the LEAVEmessage and the following View.int.

6.3.1 Membership operations.

To evaluate the e�ect of Lwgs on membership operations, we measured the
total 
ush time at the coordinator when another process joins, one by one, n
groups with the same membership. We measured the 
ush time between the
time when the coordinator receives the �rst Join.req and the last View.int.
Figure 9 shows the 
ush time when a process joins as the third and fourth
member. The time required to perform membership operations is a function
of the number of executions of the 
ush protocol. Without the Lwg layer, the
time for joining n groups of p�1 members, denoted JoinTimeHwg (p; n), can
be approximately1 expressed as follows (where FlushHwg (p) is the amount
of time for each Hwg 
ush when the resulting group size is p):

JoinTimeHwg (p; n) = FlushHwg (p)� n

When the Lwg layer is used, this time can be expressed as (where FlushLwg (p)
is the amount of time for each Lwg 
ush):

1The measured time is smaller since there is some degree of parallelism among concur-
rent 
ushes.
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JoinTimeLwg (p; n) = FlushHwg (p) + FlushLwg (p)� n

In this case, when the process joins the �rst of the n Lwgs , it joins the
underlying Hwg �rst. As a result, the �rst join involves a Hwg 
ush and a
Lwg 
ush.

In the Horus implementation, the 
ush process is identical for both
Hwgs and Lwgs . In either case, the coordinator waits until it has col-
lected FLUSH OK messages from all other members and, as soon as the

ush is done, installs a new view. The di�erence between FlushHwg (p) and
FlushLwg (p) solely comes from the con�guration of resources in the under-
lying layers. In the Hwg approach, the MBRSHIP, FRAG, NAK and COM
layers need to be recon�gured every time a new view is installed (this is per-
formed by installing the new view in all these layers). In the Lwg approach,
these resources are shared and need to be recon�gured only once.

The di�erence between FlushHwg (p) and FlushLwg (p) is shown in Fig-
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ure 10 where the 
ush time is measured when a non-coordinator leaves one
of the n four-member groups.

The improvement of Lwgs over Hwgs in this case is not impressive.
Still, it provides some amount of optimization whose bene�t becomes non-
neglegible for large number of groups. When several joins are requested in
bursts, the performance can be further improved by piggybacking several in-
dependent joins and executing them in a single operation. We are planning
to modify the Horus interface to allow a process to join n Lwgs at once, and
then build a \join-piggyback" layer that can be inserted at any point in the
stack.

6.3.2 Failure recovery.

To evaluate the e�ect of Lwgs on failure recovery, we conducted the following
test: a given process, member of n identical four-member groups, crashes and
forces these n groups to recon�gure. The recovery time, measured between
the detection of the failure and the installation of a new view2 is presented
in Figure 11.

Again, the installation of a new view is preceded by a 
ush operation.
Since a failure is noti�ed at each of the n groups, each group starts its
own 
ush. In the Hwg test, n Hwg 
ushes need to be run in parallel. On
the other hand, the Lwg layer multiplexes the 
ushes of all Lwgs in a sin-
gle 
ush of the underlying shared Hwg . Thus, the total recovery time for
Hwgs shows a more than linear increase as n increases, whereas for Lwgs ,
the total recovery time increases linearly with a very 
at slop. This small
linear increase is due to the fact that, in any case, all Lwgs need to be no-
ti�ed of the group membership change. For readability, a scaled illustration
of this relatively 
at slop is shown in Figure 12.

6.3.3 Data transfer.

To evaluate the impact of Lwg on data transfer, we measured one-way la-
tency when one member is multicasting 10-Byte messages in one of the n
four-member groups. Figure 13 shows that up to n = 50, the one-way la-

2In Horus, failure detection is performed at the lower layers [8].
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tency of the Hwg test is slightly better than that of the Lwg test, with the
di�erence being 20 microseconds. After n = 50, The Lwg �gure stays con-
stant at 1.25 milliseconds, while the Hwg �gure increases dramatically from
1.28 to 2.90 milliseconds as n increases from 50 to 200.

It is interesting to discuss the causes for these behaviors. In order to o�er
timely failure detection and reliable FIFO communication, the NAK layer in
Horus has each group member multicast one \status" report background
message every 2 seconds. Every member therefore receives one \status"
report every 2 seconds. When there are n Hwgs on each process, a total
of n=2 background messages need to be handled every second. Experiments
show that the network bandwidth is more than enough to handle n=2 IP
multicasts per second of small background messages even when n = 200. The
bottleneck is the receiver processing speed [8]. As n increases, the process
is not fast enough to handle all the incoming messages, therefore, it drops
them from the input bu�er. The resulting requests for retransmissions and
retransmissions themselves add even more load to the system. This snowball
e�ect causes the 
ush time and data transfer latency for n groups to increase
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dramatically with n.

These results show that the resource sharing promoted by the Lwg approach
o�ers clear performance advantages. It is interesting to observe that the sig-
ni�cant improvements in failure recovery are not achieved at the cost of
degrading other services. On the contrary, the performance of data transfer
and join operations is also improved for large number of groups.

7 Conclusions and future work

In this paper we have presented a technique that promotes resource sharing
among groups that have the same or similar membership. This is achieved
by executing, in a fully transparent manner, a set of inexpensive protocols on
top of a virtually synchronous layer. An implementation of these protocols
in the Horus system has shown that this approach o�ers clear performance
advantages. The experiments were done in a environment where the map-
ping between light-weight groups and heavy-weight groups remains constant
over signi�cant periods of operation. We are currently experimenting the
switching heuristics (that dynamically modify this mapping) to extend these
results to less stable group patterns.
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