
Skype Covert Channel Identification using Sketches in SDNs
(extended abstract of the MSc dissertation)

André Madeira
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professor Luı́s Rodrigues and Professor Nuno Santos

Abstract—The characterization of network flows is relevant
for multiple applications, in particular for security applications,
such as the detection of covert channels in real time. Typically,
this operation is performed by registering all the packets of
the relevant flows and, later, analyzing their characteristics,
for example, obtaining the distribution of their sizes. However,
this solution consumes many resources, affecting network
performance, and typically can only perform the classification
at a later time. We evaluate the possibility of exploring the
recent advances in SDN networks, programmable switches, the
P4 programming language and probabilistic data structures
(also called sketches) to characterize the flows in the switch
itself thus reducing the amount of network data that need to
be stored and analyzed to identify covert channels. We present a
software architecture for programmable switches that allows us
to characterize flows using two layers of filtering, each using a
sketch, to first reduce the high amount of flows being processed,
limiting the number of misclassified flows that do not contain
covert channels. Our solution allows us to monitor 5K flows
while keeping an accuracy of 0.95 in the detection of covert
flows, representing an increase in analysis capacity of 20 times
for the same amount of memory on the switch in the absence
of a sketch.

I. INTRODUCTION

The characterization of packet flows is required for
various security applications, such as detection of covert
channels [1], or creation of access profiles [2]. In this work,
we address the problem of detecting, in real time, covert
channels in multimedia flows, namely in Skype calls. We
consider the scenario where it is possible to have access to
packets exchanged for Skype connections and we intend to
identify which of these are legitimate calls and which are
calls that carry a covert channel. Covert channel information
is typically encoded in audio and video exchanged by Skype
through censorship-resistant communication tools such as
Facet [3] or DeltaShaper [4]. As Skype encrypts multimedia
information, the presence of the covert channel can only be
detected by analyzing some features of the packets, such as
their size or frequency. The thesis focus on the detection of
covert channels based on the packet size distribution of the
Skype call. Previous work [1] showed that most techniques
used to create the covert channel are vulnerable to this type
of analysis.

Typically, to analyze the distribution of the packets of a
given Skype call, copies of the corresponding flow packets
are created on a dedicated server that analyzes their charac-

teristics. Since the number of Skype calls can be quite high,
this process can entail a high cost, namely the bandwidth
needed to collect copies of packets. In addition, the analysis
of the packet size distribution is done in deferred mode,
there existing significant latency in the detection of flows
that carry covert channels.

In this work we assess the feasibility of exploring recent
advances in computer networks to detect covert channels at
lower costs and lower latency. SDNs provide the tools to
change the behavior of switches at runtime, and therefore
to dynamically select the flows for which statistical data
is collected. We intend to take advantage of programmable
switches, which can perform simple operations, to extract an
approximate distribution of the packet sizes of the various
flows in the switch itself without needing to duplicate
packets. In addition, we use the P4 language to implement
the programs capable of performing those operations at the
switch. Since the amount of memory available in switches is
relatively limited, we use probabilistic data structures (also
called sketches) [5], [6]. These structures use the available
memory in a very efficient way, but, on the other hand,
they do not allow for characterization of the distribution of
packets in a completely precise way. One of the challenges
of this work is to understand how it is possible to increase
the number of Skype connections monitored simultaneously,
with the limited memory that exists in the switch, obtaining
satisfactory accuracy in the classification of the flows.

Our solution is based on the use of a variant of the Count-
Min sketch [6]. An experimental evaluation of our solution
shows that it can significantly increase the number of Skype
flows that can be monitored. Our solution allows the analysis
of 20 times more flows for the same amount of available
memory.

II. RELATED WORK

This section introduces the concepts and technologies
used in the development of our system, namely: software-
defined networks (or SDNs), programmable switches, detec-
tion of covert channels and sketches.

A. SDN
The software-defined network architecture introduces a

clear separation between what is called a data plane, re-
sponsible for transporting packets on the network, and the

1

control plane, responsible for deciding which packets should
be transported and which paths they should follow. The
data plane is realized by the network equipment, typically
referred to as switches, which simply dispatch packets that
are received at an entry port to one or more exit ports,
through a dispatch table that takes advantage of specific
fields of the packet such as the source IP, for example.
Usually, these tables group packets into flows to identify
them more easily. Sequences of packets transmitted between
the same two computers and having the same fields used
by the switch to differentiate them belong to the same
flow. Dispatch tables can be configured remotely, via a
standard interface, by a centralized controller. In this way,
the routing policies can be expressed, programmatically, and
executed by the controller. In practice, this controller is a
program normally run on a dedicated machine. Switches can
also collect some statistics on their operation that can be
read using the same interface. This architecture has been
proven to facilitate the configuration and monitoring of
networks [7].

B. Programmable Switches

In a classic IP network architecture, the program run by a
switch when dispatching a packet is set by the manufacturer
and cannot be changed by the user. This restriction is due
not only to commercial policies but above all to the need
to ensure a high rate of packet switching. The evolution
of technology has shown that it is possible to develop
switches that can run small programs without compromising
the speed of the system [8]. These switches allow the user to
define programs to execute and allow these programs to be
loaded dynamically. This makes it possible, for example, to
install on the switch programs that perform flow monitoring
functions tailored to the needs of the network operator.

C. P4

The Programming Protocol-Independent Packet Proces-
sors language, P4[9], is a high-level language for protocol-
independent packet processing and data plane program-
ming. P4 relies on the concept of match+action pipelines.
Forwarding network packets can be broken down into a
series of table lookups, until a suitable “match” is found,
and modifications to protocol headers, which are known as
“actions”. P4 can change the way switches process packets
once they are deployed, it is not tied to any predefined set of
network protocols dependent of the switch hardware but any
protocol of interest can be easily supported by the data plane
programming, and programmers are able to describe packet
processing functionality independently of the specifics of the
underlying hardware. Additionally, through the P4Runtime
API a centralized controller to communicate with the switch
and modify entries in the match+action tables, update the
forwarding plane logic and retrieve certain counter and flow
information.

0 3 6 0 0 0 1

2 0 3 0 0 1 0

1 0 0 7 0 0 4

H1

H2

H3

Increment count of

packets type P1

<1024, 192.168.1.100> Min

6

2

7

= 2

+1

+1

+1

Read count of

packets type P1

<1024, 192.168.1.100>

P =<Size, Source IP>

Figure 1. Representation of the Count-Min Sketch.

D. Covert Channel Detection in Multimedia Calls
A recent study [1] showed that the different techniques

that are now known to establish covert channels in multime-
dia flows alter the packet size distribution, in relation to the
distribution observed in a legitimate call. These differences
can be detected automatically using supervised classification
techniques based on decision trees, such as Random Forests
or the XGBoost algorithm. This makes it possible to perform
the detection of flows that cover channels by collecting
the packet size distribution. If it is possible to capture this
distribution, for example using the capabilities offered by
programmable switches, it becomes possible to detect covert
channels in real time.

E. Sketches
For large volumes of data, the calculation of exact values

of traffic distributions is computationally expensive and
requires large amounts of memory. The complexity of this
task motivated the development of sketches, data structures
that allow for the calculation of approximate values of
metrics based on a large number of samples. Typically,
sketches use hash functions to quickly associate the values
read to registers, allowing the number of registers used to
be significantly lower than would be necessary to obtain
the exact value. However, the use of hash functions entails
the possibility of collisions, in which different entities are
associated with the same register, introducing an error in the
estimate obtained. This error can be controlled by varying
the number of registers and the number of hash functions
used to realize the sketch. The literature is rich in different
types of sketches [5], [6], and recently several of these
structures have been proposed with the specific objective
of facilitating the monitoring of computer networks [10].

F. Count-Min Sketch (CM)
The Count-Min Sketch [6] is a sketch designed to per-

form counts using memory efficiently. The sketch stores
the counts in a two-dimensional matrix of registers, each
row of the matrix being associated with a hash function.
Figure 1 illustrates the operation of a CM sketch with
three hash functions (H1, H2 and H3) while processing a
packet identified by the tuple P = <Size, Source IP>. Upon
receiving the packet P1 = <1024, 192.168.1.100>, the sketch
groups the values of P1 and uses each hash function to select
the corresponding increments. Intuitively, knowing the space
and amount of identifiers of the items to be recorded, it is
possible to configure the number of rows and columns of

2

Switch

Count Operation

P4 Program

SDN Controller

Classification

Algorithm

Collect and Reset

Operations

Retrieved

Distributions

Flows Flows

Training Datasets Classified Flows

Figure 2. System architecture.

the matrix so that the probability of collisions in all rows
is small (this value is a sketch configuration parameter).
Finally, it is possible to read the P1 packet count recorded
by the sketch by grouping the values belonging to the tuple
and gathering the values of the registers corresponding to
each hash function. The sketch returns an approximation of
the actual count of P1 packets by choosing the lowest value
obtained from each line. The reasoning for this decision
focuses on the observation that the value of each line never
returns a count lower than the actual value of the item and
that higher values result from the occurrence of collisions.

III. USING SKETCHES TO CAPTURE PACKET SIZE
DISTRIBUTIONS

This chapter introduces our architecture, a flow measure-
ment system that allows for the monitoring of a high number
of network flows while maintaining high accuracy for covert
channel identification.

A. Goals

Our architecture works to facilitate the collection of
flow metrics about packet length distributions to identify
covert channels in Skype multimedia connections with high-
precision as unobtrusively as possible and while keeping
within the limitations of network devices. It makes use
of sketches to reduce the amount of memory required
while maintaining high accuracy for the metrics compressed
therein. After obtaining the measurements at a network node
(like a P4 switch), a separate machine should be responsible
for performing the machine learning-based classification as
seen in previous works [1].

B. Architecture Design

Our system, illustrated in Figure 2, makes use of pro-
grammable switches and SDN technology to create an
execution pipeline capable of intercepting flows, counting
packets, retrieving flow distributions and classifying them.
The logic of our system is divided between two major
components: the SDN controller and the P4 switch. Our
system focuses on obtaining packet length distributions to
populate the traffic differentiation mechanisms capable of

1.125.64.123

192.168.1.100

222.53.135.11

12.64.12.111

1 32 5 1 34 0 31 23 0 0

9 0 0 342 111 0 312 2 0 0

2 8 0 45 654 0 12 0 54 0

543 5 7 4 11 0 32 0 0 0

0 34 45 0 6 0 87 0 0 987

0 7 4 0 31 0 45 9 0 0

2 0 98 0 321 0 4 0 2 0

1 2 3 7 12 97 0 0 0 7

192.168.1.100

Flow Table Sketch Counters

Figure 3. Flow Table Operation.

detecting the existence of covert channels in multimedia
flows as analyzed in Section IV.

The P4 switch is mainly responsible for the counting
operation. It uses two different data structures: a Sketch
whose counters measure the packet length distributions for
the different flows. And a Flow Table to keep track of the
identifiers of flows whose packets are being counted on the
sketch counters. Each packet is identified through certain
header field combinations and range of values their size fall
into called buckets (for example, the packets of size between
10 and 20 bytes).

The SDN controller is responsible for periodically re-
trieving the metrics from the switch and resetting its data
structures. The controller is programmed to execute a clas-
sification algorithm capable of identifying covert channels
within Skype flows. In order to perform this operation, the
algorithm must first be trained with datasets anticipating the
conditions of the expected traffic, taking into consideration
several factors. The execution of this algorithm leads to
the classification of the analyzed flows with with varying
accuracy according to these factors.

C. Switch Behaviour
The P4 switch is responsible for collecting the metrics

necessary for the identification of covert channels and pro-
viding it to the SDN controller. The P4 program installed
into the switch possesses two types of data structure, a
flow table for storing the identifier of flows being measured
and sketches which maintain the approximate distributions
of the flows. The switch must be able to increment the
sketch counters corresponding to each flow (updating the
appropriate entry in the flow table if necessary), provide
the flow representations to the switch and reset its data
structures.

1) Flow Table: The flow table consists of an array of
entries meant to store the flow identifiers of all the flows
currently being measured. This identifier can be made up of
different fields of the flow’s packets headers like the TCP/IP
5-tuple.

The purpose of the flow table is to both maintain a list
of all the flows being measured and to limit the number
of concurrent flows being measured. The accuracy of the
distributions is reduced the more flows are measured by
the sketch. This can be due to having the same counters

3

being shared by more flows. Another reason for it can be
due to reducing the amount of memory allocated to each
flow sub-sketch as will see in the next section with one of
our sketch variations. Since this list only maintains a set
of identifiers its memory requirements are negligible when
compared with the sketch’s. As such we will not consider it
in our calculations further on in the experimental evaluation.

Upon the arrival of a packet the flow table must first hash
the identifier to find which entry the program should be
occupied by the flow. If so, then the sketch will increment
the corresponding counters. If it is not present, a new entry in
the flow table needs to be allocated. If the entry is empty, the
flow is added to the flow table and the sketch will increment
the corresponding counters. Otherwise, the packet is ignored
and forwarded as necessary. Without having to check each
entry of the flow table one by one, the action of checking if
the flow is already present in the table (and consequently, in
the sketch) can be performed much faster. However, this will
lead to collisions between flow identifiers which result in
flows being ignored despite some entries still being available
at the table.

Figure 3 shows the behaviour of our system when count-
ing a packet identified by the IP 192.168.1.100 checking
its corresponding entry in the flow table and finding that it
is already present. In this case, the program will identify
the respective counters and increment them. It should be
mentioned that the above representation of the sketch coun-
ters is fully abstract and does not fully represent the real
implementation of our sketches. Those will be explained in
the following section.

2) CM Sketch Variations: In this section, we begin by
describing an approach for the collection of flow metrics that
does not take as a basis the use of a sketch and that therefore
is expected to consume a large amount of switch memory.
Then we introduced several variations of the CM sketch,
describing the advantages and limitations of each variation
for the accurate collection of metrics. The success achieved
by each sketch in characterizing and differentiating different
classes of flows is analyzed through the experimental study
presented in Section IV.
Absence of Sketch (No-CM) In the absence of a sketch, the
switch keeps a record for each packet size bucket belonging
to a given flow. Each bucket corresponds to a range of values
of sequential packet sizes. To accommodate the collection
of a large number of flows, it is possible to represent the
packet size distribution of each flow in a summary form by
compressing this distribution by increasing the range of each
bucket. However, it is possible that the use of this method
may result in the inaccurate representation of the packet size
distribution of each flow.
CM Sketch Simple (CM-S) The CM-S variation consists of
a single CM sketch, the operation of which was previously
described in Section II. When a packet is received by the
switch, a register in the sketch is incremented corresponding
to the application of the hash function on a tuple that
includes: (a) the bucket value to which the packet size

0 0 0 0 0 0 +1

0 0 0 0 0 +1 0

+1 0 0 0 0 0 0

0 +1 0 0 0 0 0

0 0 +1 0 0 0 0

0 0 0 0 0 +1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 +1 0 0 0

+1 0 0 0 0 0 0

0 0 0 0 +1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

H1

H2

H3

H1

H2

H3

H1

H2

H3

H1

H2

H3

H1

H2

H3

CM-S

192.168.1.100

192.168.1.101

Bucket 203

Bucket 204

<1024, 192.168.1.100>

Not updated – wrong IP

Not updated– wrong bucket Updated

Updated

CM-PF CM-PB

1024 // Bucket size

Figure 4. Example of the update of each sketch when receiving a packet.

corresponds and (b) the flow identifier. We remind the reader
that the identifier of a flow is composed of a set of fields
common to all packets belonging to the flow, such as the
source/destination IP and the ports used. In the CM-S sketch,
the counting of packets of a given bucket belonging to a flow
may be greatly influenced by packets (in this or another
bucket) belonging to any other flow. Since each flow has a
different identifier, the resulting tuple that is used as input
to the hash function is always different, which can reduce
collisions to values that still allow to differentiate the flows
from the estimation of the distribution that results from the
use of the sketch. Figure 4 illustrates the counting of a packet
identified by tuple P1=<1024, 192.168.1.100> in the CM-S
sketch (on the left).
CM Sketch per Flow (CM-PF) The CM-PF variation is
composed of an CM sketch for each flow, each of which
can be considered a sub-sketch of the CM-PF. When a
packet is received by the switch, the switch checks the
corresponding flow by attaching it to a specific entry in the
sketch. This entry is determined by another hash function.
If the entry obtained is already associated with another flow,
the new flow is not registered. The register to be incremented
is selected based on the application of the hash function
to the bucket identifier corresponding to the packet size.
Since this behaviour is similar to that of the flow table
the same hash operation may be used to identify both the
correct table entry and sub-sketch. The CM-PF sketch is
based on the observation that collisions in the registers
of each bucket will occur equally for each existing flow
(since all CM sketches are configured with the same hash
functions). Thus, by compressing a packet distribution into
a limited set of buckets, it is expected that different classes
of flows will cause a signature to emerge with sufficient
information to differentiate the various classes. Figure 4
illustrates the counting of a packet in the CM-PF sketch
(at the centre). Only the first entry of the sketch is updated
since it corresponds to the flow to which the packet received
belongs.
CM Sketch per Bucket (CM-PB) The CM-PB variation
is composed of an CM sketch for each packet size bucket,
each of which can be considered a sub-sketch of the CM-
PB. Each sketch occupies the same memory. When a packet

4

is received by the switch, the CM-PB sketch increments the
records corresponding to the application of the hash function
on the flow identifier in the CM sketch for the size bucket
of the packet concerned. In the CM-PB sketch, all the flows
that collide in one of the sketches will collide in all sketches.
However, if the colliding flows have similar distributions,
these collisions do not affect the resulting distribution. On
the contrary, if one of the colliding flows presents a distinct
distribution, it may still be correctly identified, which is
desirable in the context of this work. Figure 4 illustrates
the counting of a packet received in the CM-PB sketch (on
the right). Only the second entry of the sketch is updated
since the bucket to which this sketch belongs corresponds
to the size of the packet.

This concludes the discussion of the behaviour of the P4
switch and in the next section, we will begin discussing the
behaviour of the SDN controller.

D. SDN Controller Behaviour
The SDN controller interacts with the switch by periodi-

cally retrieving the flow representations from the switch and
resetting its data structures. Both of these operations are
supported by the P4Runtime API. Afterwards, the metrics
are classified by a classification algorithm, which is trained
with a profile appropriate for the gathered flows. Next, we
provide more details on how to generate training datasets
and how the classification algorithm works.

1) Configuration Space and Dataset Generation: In order
to train the classifier to correctly identify the we must gen-
erate training datasets based on the configuration employed.
This configuration is meant to emulate the certain properties
of the execution environment our system is to be employed
in. This configuration is based on several parameters:

• Sketch Variation: Different sketch variations cause a
different impact to the accuracy of flow identification
since they allow the different flows to collide in dif-
ferent ways. Our datasets are retrieved from the results
of applying the sketch variation compression to a non-
compressed set of flows.

• Available Memory: The memory available to the sketch
is dictates the total number of counters available to the
sketch, therefore directly impacting the final accuracy.

• Sketch Size: Altering the width and length of the sketch
(or sub-sketches) will alter the error margins according
to the CM sketch [6] specifications.

• Maximum Flow Number: The number of concurrent
flows can severely impact the accuracy of the clas-
sification since a too great number of different flows
colliding on the same counters can lead to misleading
factors towards the classification. For the CM-PF this
will lead to a greater number of sub-sketches thus
reducing their size and possibly compromising the
distributions of their flows. The maximum number of
flows can be enforced by the number of entries in the
flow table.

• Regular-Covert Flow Ratio: Although this is of no
significance to the CM-PF variation, both the CM-S

Esboço F1 Classificador Esboço F2 Classificador Medições

P
a

c
o

te
s

Fluxos

Filtrado
Medições

P
a

c
o

te
s

Switch SDN Controller

FP Sketch

DP Sketch

Classifier

(Filtering Phase)

Classifier

(Decision Phase)

Flows

Identified

Flows

Metrics

Metrics

Flows

Figure 5. System architecture.

and CM-PB variations can be severely impacted by
this ratio since both covert flows and regular flows
may collide with each other in these variations. In the
cases where multiple flows of a single type collide
with very few of another type, the latter may be
incorrectly identified as the former. This is due to the
more common type of flow being a greater influence
on the final mixed result leading to it resembling those
flows.

• Packets per Flow: This can also be interpreted as the
amount of time between each retrieval of metrics. The
more packets per flow we take in the more descriptive
the packet length distribution becomes. However, simi-
lar to the previous item, in cases of multi-type collisions
it may lead to misclassifications.

• Bucket Range: The range of values of each bucket
impacts all sketch variations. Higher bucket ranges will
lead to less overall buckets to maintain while providing
less detailed distributions and vice-versa. For the CM-
PB, a greater number of buckets will lead to a greater
number of sub-sketches thus reducing their size and
possibly compromising the distributions obtained.

Datasets with the the packet size distributions that take
into account these parameters should be generated and used
to train the classifier before the system begins its execution.
Additionally, generating testing datasets using the same
parameter configuration can be used to test the accuracy
of the classifier until acceptable results can be achieved.
This way the classification algorithm may begin accurately
identifying covert channels as soon as they are retrieved from
the switch.

2) Classification Algorithm: The classification algorithm
allow us to sort the received flows into the two classes:
Regular skype flows and Covert channel flows. It does so
by taking into consideration the different statistics of each
type of flow across several instances present in the training
datasets. In our case these statistics consist of the several
buckets that make up the packet length distributions. Of
course, this means that altering the number of buckets will
provide us with with varying numbers of datapoints. By
reducing the number of datapoints we can greatly reduce
the error introduced by the sketches since the number of
colliding items is reduced as well.

5

E. 2-Phase Architecture

In addition to the previous architectural design, we pro-
pose an extension to it in the shape of a two-phase archi-
tecture, both working in parallel, as seen in Figure 5. It
uses two flow tables, two sketch variations and two classifier
configurations in sequence in order to identify flows carrying
covert channels. The first phase is called the Filter Phase and
the sketch belonging to it is called FP Sketch. The second
phase is called the Decision Phase and the sketch belonging
to it is called the DP Sketch. Later, in the evaluation section,
we will assess the effectiveness of this architecture against
that of the single-phase architecture and what type of sketch
is best suited for each phase.

In the two-phase architecture, certain suspicious flows can
be processed by both phases. New flows are first inserted
into the flow table associated with the FP Sketch and start
incrementing counters in the sketch itself depending on the
functioning of the variation. The purpose of this phase is
to obtain a preliminary (and possibly more inaccurate than
when using the single-phase architecture) estimate of the
packet length distribution of each flow. Additionally, simi-
larly to the regular architecture, the content of this sketch
will be periodically retrieved by the controller in order
to be classified. However, after the classification algorithm
identifies the class of each flow, the regular Skype flows are
discarded while the ones identified as containing a covert
channel are kept. These flows are considered suspect and
will be inserted into the flow table of the DP Sketch. This is
performed during what was previously the “reset” operation
and while the flow table of the FP Sketch will be completely
reset, the one from the DP Sketch simply has its contents
overwritten. Both sketch variations are still reset.

For the Decision Phase, the flow table associated with its
sketch does not function the same way as its original in-
carnation. Instead, upon the reception of a packet belonging
to a flow present in the flow table, the DP will increment
its corresponding counters in its sketch. If the flow is not
present in this flow table it may still be inserted in or
matched to the flow table corresponding to the FP Sketch
and increment the counters in the FP Sketch according to
its original behaviour.

The purpose of the DP Sketch is to obtain a second
estimation (usually more accurate than the previous phases’
since it only has to account for the previously classified
suspicious flows) of the reintroduced flows, thus providing
the system with two layers of filtering out flows that the
classifiers does not consider suspicious.

Seeing how regular Skype flows are more common than
ones containing covert channels, the Filtering Phase con-
tributes to softening the initially biased ratio between the two
before performing a precise classification with the Decision
Phase. Hence since the number of flows measured in the
Decision Phase is much smaller than in the Filtering phase
we can obtain much more precise metrics for the suspicious
flows which can be used to better identify covert channels.

Finally, since both phases will have to handle significantly

different number of flows the memory available will not be
equally divided between the two sketches. Instead, a larger
part of the available memory is allocated towards the FP
Sketch and the remainder to the DP Sketch. Additionally,
due to this separation of the available memory it is also likely
that the classifiers for each phase use different configurations
when creating the training datasets.

IV. EVALUATION

The evaluation of our system. It highlights our architec-
tures ability to perform flow distinction between those that
contain covert channels and those that do not. In addition
it highlights the ability of an architecture that contains two
filtering phases to further reduce the number of misclassified
flows that do not contain covert channels. Our evaluation
is mainly concerned with two dimensions: the number of
flows that can be characterized and the accuracy of the
differentiation associated with these flows.

A. Experiment Configuration
1) Sketch Configuration: We simulate the use of a pro-

grammable switch using sketches for the collection of a rep-
resentation of packet size distribution for a limited number of
flows. Each sketch uses three hash functions that correspond
to the application of a single hash function initialized with
a distinct seed value.

The useful memory of the switch will be set to the
total size of 0.3 MB, which was chosen chosen taking into
account the theoretical basis underlying the design of the
CM sketch. Measuring 1000 flows of approximately 3000
packets each certain using 0.3 MB of memory provide us
with certain guarantees. With this amount of memory it is
guaranteed with 95% probability that the value of the count
read from each register, in a given bucket of the CM sketch,
incurs an error of less than 10% of the total package of the
true distribution of a flow.

To match the configuration in previous work [1], the
packet sizes of each flow are quantified in buckets at the
granularity k = 5 bytes. Considering the possible existence
of packets with a size ranging from 0 to 1500 bytes, we use
a total of 300 buckets. Additionally, we use the source IP
(randomly assigned) to assign an identifier to each flow.

2) Dataset: Our experiences contemplate the transmis-
sion of multimedia flows in a proportion of 95% of le-
gitimate Skype flows and, respectively, 5% of Skype flows
carrying a covert channel. This ratio captures the simulation
of a real workload where it is expected that the vast majority
of the observed flows in the network do not act as vehicle of
a covert channel. The flows that carry a covert channel were
produced by the Facet [3] and DeltaShaper [4] tools, which
replace a region of the video frames produced in legitimate
video calls with some content to be transmitted in the covert
channel, e.g., a Youtube video or a stream of IP packets.
Each flow has a total duration of 60 seconds. All flows
were obtained through contact with the authors of the study
mentioned above [1] and number at 1000 Facet flows and
300 flows for two configurations of DeltaShaper. Since all

6

of the available flows have an approximate duration of one
minute we split them into segments of 30 seconds, one for
each phase of the 2-phase architecture. Using the same 30
second segment during the single phase architecture allow
us to compare the two architectures.

3) Metrics: Previous works [1], [4], [3] studying the
detection of covert channels on the Internet use the ROC
AUC [11] metric to measure the success achieved in the
differentiation of flows. Briefly, AUC summarizes the rela-
tionship between a classifier’s true positive and false positive
rates. In our case, the true positives would be the amount of
Skype flows identified as such and the false positives would
be the same for the covert channel flows. In the context of
this work, a classifier with the ability to make a random
guess about the class of a flow displays an AUC = 0.5,
while a perfect classifier is characterized by an AUC =
1. We use the same metric to evaluate the accuracy of
the different types of sketches. Additionally, we use the
supervised classification algorithm XGBoost, as proposed
by Barradas et al. [1]. The classifier is trained using a set
of flows reserved for training, collected in rounds. In each
round, we select a flow sub-sampling at 95%/5%. Then
an approximate representation of the distribution of these
flows is obtained through the sketch under analysis. The
classifier is trained with a set of balanced samples (with the
same amount of Skype and covert channel flows) obtained
from the representations of the distributions generated by
the sketch. This process is repeated for 200 rounds.

B. Single Sketch Evaluation
1) Setup: We begin by comparing the performance of the

different variants of the CM sketch to a solution that does not
resort to sketches. All variations use all available memory.
In this case, the first 30s of traffic corresponding to each
flow were collected by the sketch with 0.3MB of memory
available. In this experiment, we intend to understand the
number of flows that can be analyzed by the different types
of sketches while obtaining a classification accuracy above
three different values of AUC appropriate for each system.

2) Results: The results are shown in Figures 6, 7, and
8. In the graphs on the left we compare all the different
sketches with each other while in the graphs on the right
we track the AUC values for the best performing sketch
variation as we increase the amount of flows being tracked.

All systems show somewhat similar results in Figures 6a,
7a and 8a. In all three, CM-PF provides the best perfor-
mance, showing significantly better results than the other
variants, CM-S appears to be the next best variation closely
followed by CM-PB, both of which often show results
similar to No-CM in all figures.

Facet, as seen when compared with the other two systems,
shows the best results, being able to support close to 3K
flows concurrently at the highest AUC value we set for it
(0.95). We believe this is due to Facet possessing the highest
base accuracy (where the metrics are collected without com-
pression) at approximately 0.99 AUC whereas DeltaShaper
320 possessed a base 0.86 AUC and DeltaShaper 160

No-CM CM-S CM-PB CM-PF

0K

2K

4K

6K

8K

Fl
ow

s

0.80 AUC

0.90 AUC

0.95 AUC

(a) Flows

0K 5K 10K 15K
0

0.2

0.4

0.6

0.8

1

Flows

A
U

C

(b) ACU

Figure 6. Performance of CM sketch for Facet.

No-CM CM-S CM-PB CM-PF

0K

1K

2K

3K

4K

Fl
ow

s

0.70 AUC

0.75 AUC

0.80 AUC

(a) Flows

2K 4K 6K 8K
0

0.2

0.4

0.6

0.8

1

Flows

A
U

C

(b) ACU

Figure 7. Performance of the CM sketch for DeltaShaper 320.

No-CM CM-S CM-PB CM-PF

0K

1K

2K

3K

4K

Fl
ow

s

0.575 AUC

0.60 AUC

0.625 AUC

(a) Flows

2K 4K 6K 8K
0

0.2

0.4

0.6

0.8

1

Flows

A
U

C

(b) ACU

Figure 8. Performance of the CM sketch for DeltaShaper 160.

possessed 0.66 AUC. Since employing sketches incurs some
form of compression on the metrics the poorer the initial
accuracy of the system, the poorer the results will be after
they are compressed. In the absence of sketches, with the
previously defined configuration, it is possible to measure a
total of 262 concurrent flows. Since no sketch is used the
AUC value is always equal to the base AUC of each system.

The CM-S sketch can measure more flows than simple
registers for all AUC values, indicating that despite the
various collisions between flows and buckets it is still
possible to distinguish the two types of traffic with high
accuracy. The CM-S sketch was able to successfully measure
approximately 500 flows concurrently for the Facet system
at highest AUC value, while for the other two it obtained
results equal to that of the No-CM variation.

The CM-PB sketch shows values below CM-S, which is
due to the fact that CM-PB does not make efficient use of the
available memory, since the different buckets are not used
uniformly by the different flows. This phenomenon can be
seen in Figure 9, which illustrates the heat map for buckets
13 and 100. Each line corresponds to the application of a

7

H
a
s
h

 F
u

n
c
t
io

n

Register Number Register Number

H
a
s
h

 F
u

n
c
t
io

n

Bucket 13 Bucket 100

H1

H2

H3

H1

H2

H3

Figure 9. Heat Map for buckets 13 and 100 of the CM-PB sketch.

distinct hash function (as previously illustrated in Figure 4)
and the memory division provides 87 registers for each hash
function for each bucket. According to the heat map, this
number of records is not sufficient to avoid a large number of
collisions as the number of flows accounted for by the sketch
is increased. It is then found that for the flows under analysis
there are buckets with a high packet count while others have
a low count. The redistribution of the space reserved for
buckets rarely used to reduce the number of collisions in the
remaining buckets is a time-consuming process that requires
manual tuning of the sketch. The CM-PB sketch was able to
successfully measure approximately 200 flows concurrently
for the Facet system at highest AUC value, while for the
other two it obtained results equal to that of the No-CM
variation.

Finally, the CM-PF sketch gets the best results. This is due
to the fact that each flow is kept separate from all others,
preventing the collision between legitimate Skype flows and
flows carrying a covert channel. Additionally, the two types
of flows are easily distinguishable based on the packet size
distribution, and these differences remain visible even when
several buckets collide in the same register. It should be
noted that CM-PF supports the same number of flows for
AUC 0.8 and 0.9 as the compression at the register’s level is
not significant. The CM-PF sketch was able to successfully
measure approximately 3K flows concurrently for the Facet
system at highest AUC value, while for the other two it was
able to measure approximately 1K flows.

For the graphs 6b, 7b and 8b we can see how as the packet
length distributions are further compressed when using the
CM-PF sketch, the accuracy decreases accordingly. By using
CM-PF to measure large quantities of flows it is necessary
to reduce the size of each CM sketch, leading to that, from
a certain number of flows, the number of collisions between
distinct buckets leads to loss of ability to distinguish traffic.

The results shown in Figure 6b show that the CM-PF
sketch reaches an AUC of between 0.9 and 1 for a number
of flows of less than 8K, falling to 0.7 at 13K flows. At this
point, a sharp decrease in AUC is observed, approaching the
value 0.5, and therefore reducing the classification decision
to a random guess for a number of flows greater than 14K.
For both the DeltaShaper graphs, the expected decrease is
not as linear as for the Facet system. In accordance with
our previous observation, of inferior base AUC’s leading to

decreased accuracy when performing compression, so too
does the progress of the AUC become more unpredictable
as we add more flows. In short, the figure shows that
as the size of each CM sketch decreases, each counter
that composes it will be shared by a greater number of
buckets. In this way, the values corresponding to reading
these buckets will tend to be shared. Of course, the more
buckets share the same values, the greater the degree of
overlap of approximations of distributions of different flows.
When the system in question possesses a high base AUC, the
decrease in the AUC as more flows are added seems almost
linear. Something which becomes less possible as the base
AUC decreases.

C. Hash Function Variation
1) Setup: Next, we seek to investigate how the addition of

an extra hash function impacts the accuracy of the classifier
while maintaining all other parameters of the previous
configuration. We utilize the Facet test bed as it showcased
the best results in the previous tests and possesses the highest
base accuracy of all three systems. By increasing the number
of hash functions we increase the likelihood of the query
being within a certain error margin from approximately 95%
to 98% while increasing our error by approximately 25%.

2) Results: While the results from the graphs in Figure 10
seem similar to the previous a closer inspection shows
that the addition of a fourth hash function was unable to
produce superior results to the previous test’s, in some cases
there was a decrease of almost 50% of flows measured
concurrently. Increasing the number of hash functions results
in a decrease in the number of counters per sketch row
which results in more collisions. This increase in the number
of collisions leads to an increase in the expected error
margin for each item read by approximately 25%, resulting
in metrics further compressed than seen in previous tests.

From graph 10a, when compared with 6a, we can observe
a decrease in the number of flows that can be concurrently
measured for both the CM-S and CM-PB sketches. For the
CM-PF sketch the same can be seen for the AUC values
of 0.90 and 0.95. While 0.80 AUC does show an increase,
this is due to it being an extreme case where neither sketch
could be pushed anymore allowing the 4 hash functions case
to surpass the 3 hash functions case due only to having
just enough counters to provide a decent accuracy score. In
this case, adding any further compression would have left
the system with the probability of correctly identifying the
type of flow being classified is similar to that of a coin flip,
therefore what we see at 0.80 AUC is an outlier that does
not fully represent the impact of the additional hash function.
Graph 10b also shows a much more rapid drop in accuracy
than with only 3-hash functions and an overall decrease in
the amount of measured flows.

Overall, it seems that for our purposes increasing the
number of hash functions does not provide us with any
benefits. The increase of the likelihood of the query being
within a certain error margin does not compensate for the
added error due to having less counters per hash function.

8

No-CM CM-S CM-PB CM-PF
0K

2K

4K

6K

8K

10K
Fl

ow
s

0.80 AUC

0.90 AUC

0.95 AUC

(a) Comparing all sketches.

0K 5K 10K 15K
0

0.2

0.4

0.6

0.8

1

Flows

A
U

C

(b) CM-PF progression.

Figure 10. Analysis capacity of flows for each variation of the CM sketch for the Facet system using 4 hash functions.

CM-S+
CM-PF

CM-PB+
CM-PF

CM-PF+
CM-PF

CM-PF

0K

5K

10K

15K

Fl
ow

s

0.80 AUC

0.90 AUC

0.95 AUC

(a) Facet

CM-S+
CM-PF

CM-PB+
CM-PF

CM-PF+
CM-PF

CM-PF

0K

2K

4K

6K 0.70 AUC

0.75 AUC

0.80 AUC

(b) DeltaShaper 320

CM-S+
CM-PF

CM-PB+
CM-PF

CM-PF+
CM-PF

CM-PF

0K

2K

4K

6K 0.575 AUC

0.60 AUC

0.625 AUC

(c) DeltaShaper 160

Figure 11. Analysis capacity of flows using the two-phase architecture.

CM-PF+ CM-PF
0K

2K

4K

6K

8K

10K

CM-PF

Fl
ow

s

0.15-0.15MB 0.175-0.125MB

0.2-0.1MB 0.225-0.075MB

0.25-0.05MB

Figure 12. Analysis capacity of flows using the two-phase architecture.

D. Evaluation of the Two-Phase Architecture

1) Setup: In this section we assess whether the proposed
architecture, which is based on the use of two sketches
in sequence, offers advantages in relation to the use of a
single sketch. Instead of experimenting with all possible
combinations of different sketches, we chose to always use
the sketch that presented the best results in the decision
phase (i.e. using CM-PF as an DP sketch) and to vary
only the sketch used in the filtering phase. To simulate the
differentiation of flows in real time, the filtering phase is
fed with the first 30s of traffic of each stream, while the
decision phase is fed with the remaining 30s (making up
the total duration of each flow in our data set).

2) Results: In Figure 11 we present the results for a
configuration where 0.2 MB are reserved for the FP sketch
and 0.1 MB are used for the DP sketch for all 3 systems.
Note that in these tests only the DP sketch maintains the

indicated AUC; the first phase may admit a lower AUC as
the flows selected for the second phase will be re-analyzed.

Taking as an example the 9K flows Facet can collect
for AUC values of 0.80 and 0.90 using 0.3MB as seen in
Figure 6a, the two-phase architecture should, therefore, be
able to classify 3K flows when using 0.1 MB in the decision
phase. In this way, to be competitive, the architecture in two
phases will have to filter more than 2/3 of the flows in the
filtering phase. The values of Figure 11 show that this is
not always accomplished. Specifically, for lower AUCs, like
0.80 and 0.90, the two-phase architecture cannot classify
the same number of flows as seen previously using a single
CM-PF sketch.

On the other hand, when aiming for 0.95 AUC values,
the two-layer architecture can offer tangible advantages. In
fact, using a combination of the two-layer CM-PF sketch
it is possible to increase the number of flows that can be
monitored from 3K to about 4.5 K, which represents an
increase of about 50% for the Facet system. Seeing as the
original 3K flows for this AUC value is much lower than the
other values, the 4.5K flows seen here is a sufficiently low
amount that the filtering phase can successfully filter out a
great majority of the flows.

The only tools that show increases over the single phase
architecture are the Facet and DeltaShaper 320. This relates
once more to the base accuracy of each system. Since the
accuracy of DeltaShaper 320 and 160 are inferior to Facet’s,
the number of flows that are filtered out by the filtering phase
are lower than Facet’s as well. This means that a higher
percentage of flows are considered suspicious and pass to

9

the decision phase. Since the number of flows that can be
measured concurrently in the DP sketch is limited, the initial
number of flows fed to the filtering phase must also be lower
in order to account for this limit. As such, DeltaShaper 320
(which has a base AUC of 0.86, lower than Facet’s 0.99)
does not show an increase in flows of the same proportion
as Facet’s. Additionally, DeltaShaper 160 (with a base AUC
of 0.66) does not show any improvements at all.

E. Varying the Filter’s Memory
1) Setup: In this section, we analyze how the available

memory for the different phases of analysis affects the
ability that the system displays in the differentiation of flows.
More concretely, we compare different configurations of the
architecture in two phases, varying the proportion of memory
reserved for each of the sketches, namely by fixing the
available memory for FP, between 0.15 MB and 0.25 MB, in
successive increases of 25KB. In this experience, we use the
best combination of previously identified sketches (CM-PF
+ CM-PF) and best performing system (Facet).

2) Results: As can be seen from Figure 12, different
proportions show different results, as the memory reserved
for the DP needs to be sufficient to accurately classify all
flows that are not filtered in FP. Therefore there is a balance
between the filtering capacity of the first stage and the
accuracy of the second stage. For the study settings, the
proportion that offers the best results is to reserve 0.175
MB for FP and 0.125 MB for DP. With this configuration it
is possible to monitor about 5k flows, a gain of about 66%
relative to the use of a single sketch.

V. CONCLUSIONS

In this work we studied the possibility of classifying
covert channels in real time and efficiently, taking advan-
tage of the use of programmable switches, software-defined
networks and the P4 language to capture an approximate rep-
resentation of the distribution of the flows to be monitored.
This representation is then sent to a server to be classified.
In order to capture an approximation of the distribution
efficiently, we use probabilistic data structures known as
sketches. In this context, we propose an innovative two-layer
filter architecture, where in a first phase a sketch allows for
filtering a significant fraction of the flows, the remaining
flows being classified using a sketch configured to obtain
better accuracy. At its best, this architecture shows gains of
more than 66% from the use of a single sketch, being able
to monitor about 5k flows simultaneously and offering an
AUC of 0.95 in the identification of covert channels, using
for this purpose only 0.3 MB of memory in the switch.

ACKNOWLEDGMENTS

This work was partially supported through projects with
ref. UID/CEC/50021/2019 and COSMOS (financed by the
OE with ref. PTDC/EEI-COM/29271/2017 and by the Pro-
grama Operacional Regional de Lisboa in its FEDER com-
ponent with ref. Lisboa-01-0145-FEDER-029271) and by
FCT (INESC-ID multiannual funding) through the PIDDAC

Program funds. Parts of this work have been performed in
collaboration with Diogo Barradas and other members of the
Distributed Systems Group at INESC-ID.

REFERENCES

[1] D. Barradas, N. Santos, and L. Rodrigues, “Effective detec-
tion of multimedia protocol tunneling using machine learn-
ing,” Proceedings of the 27th USENIX Security Symposium,
pp. 169–185, August 2018.

[2] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable
website fingerprinting technique,” in 25th USENIX Security
Symposium, Austin, Texas, USA, August 2016, pp. 1187–
1203.

[3] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming over
videoconferencing for censorship circumvention,” in Proceed-
ings of the 13th Workshop on Privacy in the Electronic
Society, Scottsdale, AZ, USA, 2014, pp. 163–172.

[4] D. Barradas, N. Santos, and L. Rodrigues, “Deltashaper:
Enabling unobservable censorship-resistant tcp tunneling over
videoconferencing streams,” in Proceedings on Privacy En-
hancing Technologies, vol. 2017(4), Minneapolis, MN, USA,
2017, pp. 5–22.

[5] M. Charikar, K. Chen, and M. Farach-Colton, “Finding fre-
quent items in data streams,” ICALP ’02 Proceedings of the
29th International Colloquium on Automata, Languages and
Programming, pp. 693–703, July 2002.

[6] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” Journal
of Algorithms, vol. 55, no. 1, pp. 58–75, April 2005.

[7] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothen-
berg, A. S., and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103,
no. 1, pp. 14–76, Jan 2015.

[8] Barefoot,
https://www.barefootnetworks.com/products/brief-tofino/,
accessed: 2019-10-26.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker, “P4: Programming
protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp.
87–95, July 2014.

[10] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou,
R. Miao, X. Li, and S. Uhlig, “Elastic sketch: Adaptive and
fast network-wide measurements,” SIGCOMM ’18
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pp. 561–575,
August 2018.

[11] T. Fawcett, “Roc graphs: Notes and practical considerations
for data mining researchers,” ReCALL, vol. 31, pp. 1–38, 01
2004.

10

