
Record and Replay of Multithreaded Applications

Aliaksandra Sankova
aliaksandra.sankova@ist.utl.pt

Instituto Superior Técnico
(Advisor: Professor Luís Rodrigues)

Abstract. With the advent of multi-core processors, there is a strong
motivation to write concurrent programs, that can fully exploit the par-
allelism offered by the hardware. Unfortunately, developing concurrent
programs is a difficult task, prone to bugs that are difficult to find and to
correct. Common concurrent programming paradigms, such as those re-
lying on shared memory and explicit synchronization, can lead to subtle
data races that generate errors just for some particular thread interleav-
ings. Furthermore, these interleavings may be hard to reproduce. Due to
these reasons, there is a growing interest in developing tools that help the
programmers reproduce concurrency bugs. One of the main techniques
to achieve this goal is what has been called record and replay : it consists
of logging relevant information during the execution of a program that
allows the interleaving that causes the bug to be reproduced later. Un-
fortunately, the logging operation can introduce a substantial slowdown
in the execution of the application. In this report, we survey related work
and discuss how the current state of the art may be improved.

1 Introduction

In this report we address the problem of reproducing bugs in concurrent
programs that rely on the shared memory paradigm. In these programs, different
sequencial threads execute in parallel, quite often in different cores of a multi-
processor, and communicate with each other by reading and writing in shared
variables. Threads use explicit synchronization, such as locks or semaphores[1], to
coordinate among each other. In particular, when accessing shared data, the logic
of the program must ensure that the threads use the required synchronization
to avoid data races[2]. A data race occurs when different threads access a shared
data structure without synchronization and, at least, one of those accesses is a
write. Data races can be avoided by the correct use of synchronization primitives
but, unfortunately, these primitives are hard to master. An incorrectly placed or
missing synchronization primitive may not eliminate the race and can even create
other bugs, such as deadlocks[3]. Furthermore, the interleavings that cause the
bug may happen only in some rare circunstancies, and be very hard to reproduce.
This makes the debugging of concurrent programs an extremely difficult and
tedious task. In this context, we aim to study techniques and tools that simplify
the reproduction of concurrency bugs.

1



One of the main techniques to achieve the reproduction of concurrency bugs
is what has been called record and replay [4–13] (or deterministic replay). Record
and replay relies in instrumenting the application in order to record all sources of
non-determinism at runtime, including inputs, interrupts, signals, and scheduling
decisions. For multi-core environment, it is also necessary to record the order by
which different threads have accessed shared variables. This way, deterministic
replay can be achieved by re-executing the application while enforcing all points
of non-determinism to comply with the information stored in the log.

Unfortunately, faithfully logging a concurrent program’s execution requires
inserting additional synchronization (to ensure that the thread interleaving is
correctly traced). This, in combination with the large amount of information
that may be required to be captured, can induce an unacceptable slowdown in
the application [5, 6, 9, 10]. To address this issue, some approaches attempted to
reduce the amount of synchronization used to register the log, the amount of
information included in the log, or even both. For instance, one can trace only
partial information during the production run and then, at replay time, use
search techniques to infer thread interleavings that are compliant with the (par-
tial) log information [8, 13]. However, since reducing the amount of information
logged hinders the replay determinism, the challenge lies in identifying the best
trade-off between recording cost and inference time.

In this report, we present a survey of the most relevant literature on record
and replay, including systems that attempt to fully capture the order of accesses
to shared variables by different threads, and systems that combine partial or
inaccurate information with search techniques to reproduce the bug. Based on
the analysis of these techniques, we conjecture a hypothesis on how the state of
the art can be improved. Finally, we describe a plan to develop and evaluate the
proposed ideas.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3, we present all the
background related with our work. Section 4 describes the proposed architecture
to be implemented and Section 5 describes how we plan to evaluate our results.
Finally, Section 6 presents the schedule of future work and Section 7 concludes
the report.

2 Goals

Conservative record and replay solutions introduce a significant amount of
additional synchronization to ensure that accurate information regarding thread
interleavings is stored in the log. Recent work proposed a number of techniques
to reduce this amount of synchronization. Our work also explores this path and
will research additional techniques that may further reduce the cost of logging,
while still allowing for bug reproduction. In detail:

Goals: We aim at experimenting a relaxation of the logging proce-
dure, that will simply avoid synchronization when recording concurrent

2



accesses to shared variables. This will allow for imprecise information to
be stored in the log. To compensate for this fact, we will devise replay
mechanisms that can look for different interleaving that are compliant
with the information stored, in order to reproduce the bug in affordable
time.

In order to achieve the goal above we will start by changing the logging
mechanisms of STRIDE[12], to also relax the recording order of shared write
operations, in addition to reads. Then, we will devise and implement a module
capable of deriving an execution ordering, from the relaxed logs, that replays the
error. In summary, we will design and implement an optimistic record and replay
solution where the record of thread interleavings will be performed without any
synchronization.

The project is expected to produce the following results.

Expected results: The work will produce i) a specification of the algo-
rithms to trace, collect and analyze information in order to replay con-
current executions; ii) an implementation of a prototype of this system,
and iii) an extensive experimental evaluation using real-world applica-
tions and third-party benchmarks with concurrency bugs.

3 Related Work

Recording and replaying multithreaded applications has been an object of
study from more than a decade. In this section, we review the most important
related work and discuss the key concepts that have been introduced in the
literature. Section 3.1 presents an overview of the record and replay approach,
along with its main challenges. Section 3.2 describes the design choices and trade-
offs that one has to take into account when implementing this kind of systems.
Section 3.3 presents an overview of the most relevant record and replay solutions.
Finally, Section 3.4 summarizes the related work.

3.1 Record and Replay

The goal of the record and replay (or deterministic replay) technique is to
allow a given execution of a program to be faithfully reproduced. This requires
the ability to reproduce not only the inputs provided to the program, but also
all non-deterministic events, such as interrupts and thread interleavings. Deter-
ministic replay has several applications, namely simplifying debugging, support
performance analysis of programs and architectures, exploit security vulnerabil-
ities, among others[14]. In general, techniques that provide deterministic replay
operate in two distinct phases:

1. Record phase, which consists in logging, at runtime, relevant data about the
execution, such as values read from inputs and shared variables.

3



2. Replay phase, which consists in re-executing the program in a controlled
manner, consulting the log to ensure that the reproduction follows the same
steps as the original run.

Although simple in theory, building a deterministic replay system poses sev-
eral issues. In the following, we discuss the most relevant challenges that need
to be addressed in the context of record and replay:

Non-determinism: There are many sources of non-determinism in a system[15].
At the user level, sources of non-determinism include certain system calls, sig-
nals, special architecture instructions[14]. At the system level, major sources
of non-determinism are signals from I/O devices, hardware interrupts, and
writes performed by Direct Memory Access[14]. No system deals with all
forms of non-determinism[16] and different systems target different levels of
abstraction.

Runtime overhead: The record phase may induce a non-negligible overhead
during the execution of a program. The more information is included in the
log, i.e., the finer the granularity of logging, the easier it is to ensure deter-
ministic replay, but the larger it is the recording overhead. Approaches that
opt to log less information, i.e., that perform logging at a coarser granular-
ity, are less expensive, but make it harder to reproduce the original schedule
in reasonable time. As such, there is an inherent tradeoff between logging
accuracy and replay efficiency [16].

Log size: On the record phase we are saving information to some trace file or
log. This log should have adequate size and the amount of space, dedicated
to store that log, should be minimal. Hence, another relevant metric of qual-
ity of deterministic replay systems is the space efficiency during the record
phase[16].

Security issues: When logging information during production runs, one must
take into account that some collected data may be sensitive. This raises
security and privacy issues if the log needs to be shared with others (for
instance, if the log is sent to the developer). Therefore, the degree of user
data disclosure during recording is also considered to be important when
devising record and replay solutions. Despite that, in our work, we do not
explicitly address this concern, because it is somewhat orthogonal to the
techniques that we plan to experiment with.

3.2 Design Choices

As it will become clear in the next sections, a large diversity of techniques
have been proposed to perform record and replay. To help in discussing the
related work, we will often resort to a brief taxonomy, where the following design
choices have been identified:

Implementation. Deterministic replay techniques are usually classified accord-
ing to the amount of specialized support that is built in hardware for this par-
ticular purpose. In particular, we consider three different types of systems:

4



– Hardware-only approaches[17, 18] are able to provide deterministic replay
with little recording overhead, but require expensive non-commodity hard-
ware and tie the approach to a particular architecture.

– Hybrid approaches[19], which combine hardware and software techniques,
look for a sweet-spot between hardware cost and efficiency but, like pure
hardware solutions, tie the approach to specific architectures.

– Software-only approaches[5, 6, 4, 7, 20, 21, 10, 11, 13, 10, 9, 8, 12] are usually not
as efficient as the ones above, but have the major advantage of being more
general. Therefore, they can be applied to many different off-the-shelf archi-
tectures.

For self-containment purposes, in Section 3.3, we will make an overview of
systems using the three techniques above. However, our work we will be mainly
focusing on software-only approaches.

Record and Replay Approach. Another way of classifying record and replay
systems consists in looking at the type of information that is recorded in the log.
Here, it is possible to distinguish approaches as content-based, order-based, and
search-based[16]:

– Content-based approaches, also called data-driven, log the values of all the
relevant inputs and shared variables read by each thread, such that the exact
same values can be used during replay. The major drawback of this approach
is that it generates very large logs and may induce severe slowdowns in the
execution of the program.

– Order-based approaches, also called control-driven, instead of tracking the
values of variables track the control flow of the program (such as timing of
interactions with program files or I/O channels) from a given initial state.
According to this method, it is not necessary to record every instruction
to replay an execution, which allows to reduce the amount of traced data.
However, read and write accesses to shared memory locations still need to
be tracked in order to support the reproduction of the thread interleaving.
Such tracking is called the exact linkage between reads and writes into shared
memory.
A main challenge with this approach is to ensure that the initial state of
the program is exactly the same in both the original and the reproduction
run. Unfortunately, the initial state may often depend on the availability
of external resources such as cores in multicore processor, that could affect
the internal state of the program being replayed. Furthermore, to ensure
that the log faithfully captures the thread read-write linkage, it is generally
necessary to introduce additional synchronization during the record phase.
Thus, even if order-based approaches represent an improvement over pure
content-based approaches, most of systems implemented with this approach
still induce a large overhead at runtime[9, 10] .

– Search-based approaches do not log the exact thread read-write linkage. In-
stead, they rely on a post-recording phase to construct a feasible interleaving

5



from a partial log [9, 8, 12] or infer the missing information. This way, it is
possible to substantially reduce the recording overhead at the cost of smaller
determinism guarantees and a potentially longer replay. However, since the
search space increases exponentially with the amount of missing information
regarding the ordering of thread shared accesses, search-based approaches
need to carefully balance the inference time and the recording overhead.

Since pure content- and order-based systems incur an overhead too high to
be practical, most recent solutions have adopted a search-based approach. Our
solution follows this trend, as well.

Range in Time. This criterion indicates whether the system requires the re-
play start point to be predetermined (static time range) or if it may be changed
(dynamic time range). Systems with static time range usually rely on check-
points, whereas systems with dynamic time range allow to replay an execution
backwards.

Multi-processor and Data Race Support. In a single-processor system, it
suffices to record the synchronization order and the thread scheduling decisions
to deterministically replay any concurrent program [6]. The reason is because, in
these systems, parallelism is actually an abstraction: only one thread physically
executes and accesses memory at a given point in time.

However, in a multi-processor environment (SMP and multicores), providing
deterministic replay becomes much more challenging. As threads do actually
execute simultaneously on different processors, logging the thread scheduling in
each processor is no longer enough to know the exact access ordering to shared
memory locations. A way to address this issue is to capture the full thread
schedule, which is not easy do to efficiently. This is also the reason why replaying
data races is a major challenge for multi-processor deterministic replay systems.

Immediate Replay. This criterion indicates whether a system is able to re-
play an execution at the first attempt or not. For instance, it is common for
search-based systems to relax immediate replay guarantees in order to reduce
the recording overhead.

3.3 Record and Replay Systems

In this section, we overview some of the most relevant record and replay sys-
tems, proposed over the years. To ease the description, we present the solutions
divided according to the way they are implemented.

Hardware-only Systems. Many of the early record and replay systems have
been designed considering the use of hardware support to detect data races, often
piggybacking on the cache coherence protocol. For instance, Bacon and Goldstein

6



[22] used a snooping bus to record all cache coherence traffic. In general, there
are two main approaches to capture the information in hardware-only systems:

– Data-driven: Memory is logically divided into blocks (that consist of one or
memory words) and a timestamp is associated with each block. Every time
a processor accesses a block, the timestamp is recorded and updated.

– Path-driven: The log identifies sequences of data accesses that have been
executed without interference from other threads. Each entry in the log, also
called a chunk, stores the address of all words that have been accessed in the
sequence. For conciseness, the set of identifiers that are part of the chunk is
stored as a Bloom Filter [14]. Data accesses are added to the current chunk
until a conflict exists. At that point, the chunk is recorded and a new chunk
is initiated.

The major advantage of hardware-only systems is that they allow to achieve
deterministic replay with little runtime overhead. Unfortunately, they are im-
practical in general due to the significant cost and amount of hardware modi-
fications they require. Also, in many cases, one is not interested in logging the
entire program but only parts of it. However, supporting selective logging would
require even more changes to the hardware.

We briefly summarize some of the most relevant hardware systems in the
next paragraphs:

Flight Data Recorder (FDR) [18], whose name is inspired in the mechanisms
used in avionics to trace flight data, is a system designed to continuously log data
about a program’s execution with the goal of supporting the replay of the last
second of a (crashed) execution. Since the system traces a substancial amount
of information, the state of the application is periodically checkpointed, such
that the log only needs to preserve the data accesses after the last checkpoint.
FDR leverages on previous work for implementing the checkpointing operation,
namely on the SafetyNet mechanism[23]. After a checkpoint, FDR logs accesses
to the cache. For this purpose, the system maintains an instruction counter
(IC) for each core and a cache instruction count (CIC) field to each cache line;
the CIC stores the IC of last instruction that accessed the cache line[14]. FDR
implements a number of optimizations[24] to avoid storing information that can
be inferred from previous entries. With these optimizations, the authors claim
that FDR can induce less than 2% slowdown in the execution of a program. In
terms of space overhead, FDR produces logs of 35 MB in an interval of 1,33s;
for a longer period, such as 3h of replay, the size of the log would amount to 320
GB.

ReRun [25] is a path-driven approach, that identifies and logs sequences of data
accesses that do not conflict with other threads. Such sequences, called episodes,
are stored in a compressed format (using bloom filters as described before) along
with a timestamp that identifies the order of the episode with regard to other
episodes. The bloom filter that encodes the data accesses during the episode,

7



denoted episode signature, is used to detect conflicts among episodes. A conflict
exists when one episode tries to access a data item that has been accessed by
another episode. ReRun uses Lamport Clocks as timestamps for episodes, i.e.,
each core keeps a logical clock that is updated, according to Lamport’s rules,
to keep track of causal dependencies between reads and writes. During replay,
episodes are executed according to the order of their timestamps. Although Re-
Run aimed at reducing the size of logs (when compared to FDR), it requires
logical clocks to be piggybacked with every cache coherence operation, which is
an additional source of overhead. In particular, the authors claim that ReRun’s
overhead is approximately 10%.

DeLorean [17] is another path-driven hardware system for deterministic replay.
As ReRun[25], DeLorean also logs chunks using signatures, but in a different way:
in DeLorean’s multi-processor execution environment, cores are continuously
executing chunks that are separated by register checkpoints. To detect a conflict,
the system compares chunks’ signatures. However, the updates of a chunk can
only be seen after chunk commits. If a conflict is found, the chunk is squashed
and re-executed. As with ReRun, replay determinism is achieved by replaying
chunks according to their timestamp order.

Hybrid Systems. Hybrid systems combine hardware and software support
for record and replay. They aim at supporting a wider range of scenarios while
reducing the costs associated with building dedicated hardware. In the following
paragraph, we refer to one of such systems.

Capo [19] uses hardware support to record the interleaving of threads and soft-
ware support to trace other sources of non-determinism. It also provides support
for logging only a subset of the entire program (for instance, the user code but not
the operating system code). This is achieved by defining an abstraction named
Replay Sphere, that encapsulates the set of threads whose operation need to be
logged, and by defining the explicit and implicit transitions that allow the core
to enter and leave the replay sphere. Capo generates a combined log of 2.5 bits
to 3.8 bits per kilo-instruction of the program, which results in a slowdown of
the system execution in the order of 21% to 41%.

Software-only Systems. There is a great variety of software-only techniques
that provide record and replay. In the following, we briefly describe some of the
most relevant software-based solutions proposed over the years.

Instant Replay [7] can be considered a pioneer software-only record and replay
system. It follows an order-based approach: the system records the history of
accesses to all the shared objects with respect to a particular thread. As this
requires to uniquely identify shared objects dynamically, each object is extended
with a custom version number that gets incremented after every write access
during both record and replay. The computation model of Instant Replay is based

8



on the CREW (Concurrent-Reader-Exclusive-Writer) protocol, which assigns
two possible states to each shared object:

– Concurrent Read: implies a state where no processor allowed to write, but
all processors are allowed to read the value with no restrictions.

– Exclusive Write: implies a state where only one processor (called the owner)
is allowed to read and write, whereas the processors are deprived of access.

This method makes the record phase quite costly and, due to the small gran-
ularity of shared memory accesses, tends to create enormous trace files. It has
been reported that performance suffers an overhead up to 10x times.

DejaVu [4] is another order-based system, designed at IBM ten years after In-
stant Replay, with the purpose of providing deterministic replay for Java pro-
grams. This system is based on capturing the total order of thread accesses, thus
allowing to deterministically replay non-deterministic executions. To this end,
DejaVu uses a global timestamping scheme, which exists in two categories:

– Critical events, which encompass synchronization points and shared memory
accesses, relevant to the record and replay process.

– Non-critical events, which are those that only influence the thread where
they get executed, so their scheduling is not utterly relevant.

This approach becomes less appealing when the number of threads and cores of
a processor increases, as the overhead to capture the global order of all thread
events becomes extremely high.

RecPlay [6] is a successor of DejaVu, but, unlike the latter, uses Lamport clocks
instead of a global clock. RecPlay is based on the assumption that most programs
do not have data races, and that the synchronization races are intentional and
beneficial. As such, this solution traces threads accesses to only synchronization
variables (such as monitor entries and exits). Since these Lamport timestamps
are stored in the trace in a compressed from, the runtime slowdown is not very
large. In the replay phase, the trace is consulted for every synchronization op-
eration[26]. The drawback of this approach is the loss of determinism (as many
shared memory accesses may not be synchronized) and the impossibility to re-
play problematic runs in the presence of data races[27].

JaRec [5] is a portable record and replay system, designed especially for Java
applications. This system operates at the bytecode level. Its working principle
is very similar to RecPlay[6], as it is also based on assumption that applications
are data-race free. In particular, JaRec tracks only the lock acquisition, thus
it is not able to reproduce buggy execution caused by data races as well. In
other words, this system provides deterministic replay, but only until the first
data race condition. This proviso makes JaRec and its predecessor RecPlay[6]
unattractive in practice. In terms of performance degradation, JaRec’s recording
overhead lies between 10% to 125%, depending on the scale of the benchmark
used.

9



iDNA [21] is an instruction level tracing framework, based on dynamic binary
instrumentation. This system addresses non-determinism by tracking and restor-
ing changes to registers and main memory. In order to do so, it maintains a copy
of the user-level memory, which is implemented as a direct mapped cache. iDNA
monitors the data values at every dynamic instance of instructions during the
execution, and tracks the order of synchronization operations, which means that
it does not support the reproduction of data races. An interesting feature of
iDNA is the possibility to replay threads independently, as each of them main-
tains its own copy. But this can also be seen as a source of large log files. In fact,
iDNA produces, on average, dozens of mega-bytes per second of trace sizes and
incurs runtime overhead of 11x.

LEAP [10] is a deterministic replay solution for concurrent Java programs on
multi-processors. LEAP is based on the observation that there is no need to track
the global ordering of thread accesses to shared memory locations. Instead, it
suffices for each shared variable to track only the thread interleaving that it
sees (denoted access vector). Therefore, this solution produces a set of vectors
containing the local access order with respect to the shared memory locations,
rather than a single vector with the global order. As each shared variable has its
own synchronization, this approach allows accesses to different variables to be
recorded in parallel, thus imposing lower runtime overhead. Despite providing
slightly weaker determinism guarantees, the authors prove that LEAP’s tech-
nique does not affect the correctness of the replay.

One of the limitations of LEAP is that does not distinguish different instances
of the same class, which creates false dependencies between different objects and
a consequent increase on the recording overhead. Nevertheless, the experimental
evaluation in [10] showed that LEAP is up to 10x times faster than global order
approaches (e.g. Instant Replay [7] and DejaVu [4]) and 2x to 10x faster than
JaRec [5], albeit it still incurs huge overhead for applications with many shared
accesses. As for space efficiency, trace sizes range from 51 to 37760 KB/sec.

ORDER [11] was developed in order to record and reproduce non-deterministic
events inside the Java virtual machine (JVM). This system follows an order-
based approach and is based on two main observations: i) good locality at the
object level with respect to thread accesses, and ii) frequent object movements
due to garbage collection.

ORDER literally records the order of threads accessing shared objects, elim-
inating unnecessary dependencies introduced by moving objects within memory
during garbage collection. It also implements an offline log compression algo-
rithm, used to filter out remaining unnecessary dependencies from thread-local
and assigned-once objects, caused by imprecise static compiler analysis. To this
end, ORDER extends the header of each object with following five meta-data
fields:

– Object Identifier (OI) that works as an unique hash of the object.

10



– Accessing thread identifier (AT) and access counter (AC), which are used to
maintain the current status of the object’s access time-line. Every time-line
recorded by ORDER can thus be interpreted as “the object OI is accessed by
thread AT for AC times”.

– Object-level lock that is used to protect the whole object and synchronize
the recording of the accesses to it.

– Read-Write flag, which records whether the current time-line record is read-
only or read-write, for future log compression.

In both record and replay phases, ORDER relies on instrumentation actions
added to the JVM. At record time, the system compares the AT in the object
header with the identifier of the current accessing thread (CTID). If the access
belongs to the same thread, ORDER increments the corresponding AC. Other-
wise, ORDER appends the tuple (AT, AC) to the log and proceeds with the
execution. During replay, the process is similar: the system checks if AT ==
CTID and if the requesting thread is the expected one (according to the log), it
decrements the AC allowing thread to continue executing. Otherwise, the thread
gets blocked until its turn.
Performance evaluation results show that ORDER is 1.4x to 3.2x faster than
LEAP.

CARE [13] is a very recent application-level deterministic record and replay tech-
nique for Java concurrent programs. CARE employs an order-based approach
that leverages thread locality of variable accesses in order to avoid recording
all read-write linkages. Concretely, during the record phase, CARE assigns each
thread with a software cache. This cache is updated every time the thread reads
or writes on a shared variable, and queried whenever the thread performs a read
operation. Write operations are always synchronized and recorded into the trace
file whenever a new thread writes on a given shared variable, whereas read oper-
ations are only logged in the presence of a cache miss. A cache miss occurs when
the value read from the shared variable differs from the one previously buffered
in the cache, meaning that another thread must have written on this variable
before. At this point, CARE logs the exact read-write linkage by redoing the
read action again with synchronization.

In the replay phase, CARE does not try to determine all non-recorded read-
write linkages. Instead, it simulates the behavior of all caches and overrides read
values from memory by values buffered in thread-local caches. This provides
value-determinism guarantees at replay. Evaluation shows that CARE resolved
all missed linkages for sequentially consistent replay, and exhibited 3.4x reduction
on runtime overhead and 7x reduction on log size when compared to LEAP.

All the aforementioned systems employ an order-based approach. In the fol-
lowing, we describe some of most relevant search-based solutions.

PRES [8] is a search-based record and replay system for C/C++ concurrent pro-
grams. Its underlying idea consists of minimizing the recording overhead during

11



production runs, at the cost of an increase in the number of attempts to re-
play the bug during diagnosis. To this end, PRES records solely a partial trace
of the original execution, denoted sketch (the authors have explored five differ-
ent sketching techniques that represent a trade off between recording overhead
and reproducibility). Later, in order to reconstruct the non-recorded informa-
tion, PRES relies on an intelligent offline replayer to search the space of possi-
ble thread interleavings, choosing one that fits the sketch. As the search space
includes all possible schedules, it grows exponentially with the number of data-
race conditions. To address this issue, PRES leverages on feedback produced
from each failed attempt to guide the subsequent one and on heuristics to ex-
plore the search space efficiently. Most of the times, this mechanism allows to
successfully replay bugs in a few number of attempts (1-28 tries according to the
experiments). In terms of performance slowdown, authors report an overhead
from 28% (for network applications) to several hundred times (for CPU-bound
applications.

ODR [9], similarly to PRES, relaxes the need for generating a high-fidelity replay
of the original execution by inferring offline an execution that provides the same
outputs as the production run. In other words, ODR provides the so-called output
determinism, which authors claim to be valuable for debugging due to: i) the
reproduction of all output visible errors, such as core dumps and various crashes,
ii) the assurance of memory-access values being consistent with the failure, and
iii) the no obligation for the values of data races to be identical to the original
ones.

However, this system provides no guarantees regarding the non-output prop-
erties of the execution, which makes replaying data races very challenging. To
address this, ODR uses a technique, called Deterministic Run Inference (DRI),
to infer data-race outcomes, instead of recording them. Once inferred, the system
substitutes these values in future replays, thus achieving output-determinism.

As an exhaustive search of the space data races is unfeasible for most pro-
grams, DRI employs two facilitating techniques: i) guiding the search, which
allows to prune the search space by leveraging the partial information recorded
at runtime, and ii) relaxing the memory-consistency of all possible executions in
the search space, which allows to find output-deterministic executions with less
effort.

According to ODR’s evaluation, while recording causes a modest slowdown
of 1.6x, the inference time at the replay phase ranges from 300x to over 39000x
the original application time (for ODR’s low-recording overhead mode), with
some searches not completing at all. Authors do not provide information about
trace sizes.

STRIDE [12] is a state-of-the art search-based solution that records bounded
shared memory access linkages instead of exact ones. Under the sequential consis-
tency assumption, STRIDE infers a failure-inducing interleaving in polynomial
time. Its recording scheme logs read operations without adding extra synchro-
nization, which reduces the runtime overhead with respect to pure order-based

12



approaches [10]. Write operations, on the other hand, are still captured in a syn-
chronized fashion. To allow the reconstruction of the global thread schedule,
STRIDE logs read operations with write fingerprints. More concretely, STRIDE
associates a version number to all the recorded write operations and, for each
read operation, STRIDE records a pair consisting of the value returned by the
read operation and the latest version of write that read can possibly link to,
i.e., the bounded linkage. This bounded linkage is later leveraged by STRIDE’s
search mechanism to quickly find the correct match between reads and writes.

Since STRIDE is the base system of the work in this thesis, we describe
its architecture in slightly more detail than the previous systems. The essential
concepts of STRIDE are then the execution log, the memory model and the legal
schedule. The execution log is divided into three parts:

– LWx, which is a vector containing the local total order of the writes per-
formed by different threads on the shared variable x.

– LAi, which registers the order of lock/unlock operations on lock l. It allows
to reproduce deadlocks.

– TRi, which corresponds to the read log of thread i.

The memory model, in turn, defines the set of values committed by writes that
are allowed to be returned by a read. STRIDE uses the most strict memory model
for concurrent programs – sequential consistency [28]. As defined by Lamport,
under sequential consistency, the result of any concurrent execution is the same
as if the operations on all the processors are executed in some sequential order
and the operations of each individual thread appear in the program order. In this
context, the legal schedule represents a total order of the read-write operations
that conform with the memory behavior rules of STRIDE.

Using these concepts, STRIDE is able to, from an imprecise execution log,
generate a feasible thread access ordering such that all read and write opera-
tions conform to the sequential consistency memory model. The main advantage
of this approach is the low runtime overhead due to the avoidance of addi-
tional synchronization when logging reads on shared variables. Authors claim
that STRIDE incurs on average of 2.5x smaller runtime slowdown and 3.88x
smaller log than LEAP. On the other hand, this approach has the downside of
losing some determinism guarantees.

3.4 Overall analysis and conclusion

Table 1 summarizes the record and replay systems presented above. The sys-
tems are classified according to their implementation type and record and replay
approach, along with some additional relevant criteria, namely the range in time,
multi-processor support, ability to replay data-races, and ability to immediately
replay without a state exploration stage. We also add a short reference to the
main features of each system.

It is important to highlight that doing a precise comparative analysis of
these systems is almost impossible, since their evaluations have been performed
on different benchmarks and using distinct criteria.

13



System Implementation

R&R Main feature Range in Multi-processor Data Races Immediate

Year

Approach of System Time support support Replay

Flight Data hardware point-to continuous static X X X 2003
Recorder -point logging (checkpoints)
ReRun hardware chunk isolate episodes static X X X 2008

(non-conflicting
access sequences)

DeLorean hardware chunk logs chunks static X X X 2008
using signature (checkpoints)

Capo hybrid hybrid Replay Sphere static X X X 2009
(checkpoints)

Instant software order full history of dynamic X X 1987
Replay accesses
DeJavu software order captures thread dynamic X X 1998

schedule
RecPlay software order uses Lamport clock dynamic X X 1999

JaRec software order logs lock dynamic X X 2004
acquisitions

iDNA software order tracks changes dynamic X X 2006
to registers

LEAP software order uses access vectors for dynamic X X X 2010
shared variables

ORDER software order mitigates dynamic X X X 2011
influence of

garbage collection
CARE software order uses cache dynamic X X X 2014

scheme
PRES software search different recording dynamic X X 2009

schemes
ODR software search Deterministic Run dynamic X X 2009

Inference
STRIDE software search bounded linkage dynamic X X 2012

scheme

Table 1. Summary of the presented systems.

14



Despite that, it is possible to conclude that, in general, hardware solutions
impose very small overheads (up to 2%), but require expensive hardware modi-
fications. Hybrid solutions, in turn, rely on less hardware modifications and are
still able to achieve a modest performance overhead (between 20% and 40%).
However, they still suffer from compatibility issues, which makes this approach
unattractive.

On the other hand, software-only solutions seem to be the most attractive
due to the possibility of being easily deployed on commodity machines. De-
spite that, they require a clear trade-off between strong determinism guarantees
and time and space overhead. In single-processor systems, it suffices to log the
thread preemption points made by the scheduler to achieve deterministic replay,
whereas, for multi-processor systems, racing memory accesses may affect the
execution path, hence making deterministic replay much more challenging. As
such, since DejaVu records solely scheduling invocations in the Java Virtual Ma-
chine, it only provides deterministic replay of multithreaded Java applications
on uni-processors.

Among the solutions that strive to provide record and replay for multi-core
systems, it is possible to see the variety of a trade-offs when observing Table 1.
For instance, Instant Replay aims to provide a global order of operations adding
extra synchronization to enforce replay. iDNA, in turn, records all the values read
from or written to a memory cell as well as the thread synchronization order,
while JaRec and RecPlay abolish the idea of global ordering and use Lamport
clocks to maintain partial thread access orders. Unfortunately, they assume that
programs are race-free and, therefore, are only able to ensure deterministic replay
up until the first race. As for LEAP and Order, two state-of-the-art order-based
techniques, they record the exact order of shared memory accesses, but incur high
performance slowdown. PRES and ODR achieve smaller recording overhead by
means of searching heuristics that explore the non-recorded thread interleaving
space, but at the cost of more replay attempts. Finally, STRIDE, a very recent
search-based system, introduces a novel technique that relies on bounded linkages
to relax the logging of read operations, albeit still requiring synchronization for
tracking writes. Regarding time and space overhead, one can argue that, over the
years, solutions have been improving these indicators. Nowadays, one considers
the a recording technique as efficient if the overhead is generally less than 10% [8].

4 Architecture

This works aims to design and implement a prototype of a record and replay
system, capable of reproducing concurrency bugs in multi-processors, while in-
curring low time and space overhead. To achieve this, we plan to optimistically
log both read and write operations on shared variables during production runs.
In other words, no extra synchronization will be added to the program. This
reduces the recording overhead, but allows the captured read-write linkage to
be imprecise (because the actual event and the recording operation do not hap-
pen atomically). However, since most programs tend to exhibit a strong locality

15



with respect to thread accesses [12], we believe that it will be possible to infer
a legal schedule in a reasonable amount of time (polynomial time in practice,
with respect to the number of threads and shared accesses). To devise the neces-
sary record and replay algorithms, we will draw on the techniques described in
STRIDE [12]. In the following sections, we justify the choice of STRIDE as the
basis of this work, as well as describe the architecture of the proposed system.

As a final remark, our work will target concurrent programs written in Java,
but we believe that our ideas may be applied to programs written in other
languages.

4.1 STRIDE Properties

Similarly to STRIDE, our solution will follow a search-based approach, that
relaxes the need to record the exact read-write linkage and yet is able to recon-
struct a schedule equivalent to the original one. The key aspects that motivated
our choice of designing our solution on top of STRIDE are as follows:

– Software-based approach: STRIDE is a software-only system and, therefore,
does not require expensive hardware modifications nor raises compatibility
issues.

– Bounded linkage: all systems presented in Table 1, except STRIDE, either
log the exact shared read-write linkages at the cost of a large runtime over-
head or use off-line heuristics to search for a feasible thread interleaving in
an exponential space. STRIDE, on the other hand, was the first system to
leverage write fingerprints to record inexact read-write linkages at runtime
and still reconstruct the original execution in polynomial time.

– State-of-the-art overhead indicators: comparing to the previous determinis-
tic replay solutions, STRIDE was able to, on average, reduce the runtime
overhead in 2.5x and to produce 3.88x smaller logs, with respect to pure
order-based solutions (e.g. LEAP [10]).

Despite that, we claim that STRIDE is not perfect and that there is still some
space left for improvement. For instance, STRIDE requires locking writes (lo-
cally) for each shared memory location, which incurs 10x overhead for programs
with workloads where 30% of the operations are writes. This cost is still too high
for production usage.

In this context, the following question arises: Is it possible to further reduce
the recording overhead by relaxing the logging of shared write operations in addi-
tion to read operations, while maintaining the ability to reconstruct the schedule
in a reasonable amount of time? We believe so. Tracing the write order without
synchronization may cause conflicts in the write versioning mechanism (e.g. two
writes may be recorded with the same version number). However, as showed by
the experiments in [12], the read/write operation and the corresponding record-
ing operation tend to occur contiguously for most programs. As such, one should
only have to resolve a few write conflicts in order to be able to apply STRIDE’s
replay algorithm as is. If this is not the case and the number of write conflicts is

16



high, one could also introduce some adaptive mechanism in the record phase to
switch between exact and relaxed write logging, thus allowing to automatically
tune the recording scheme to the application nature. The next section further
explains this idea, by presenting the architecture envisioned for our system.

Fig. 1. Components of proposed system

4.2 Proposed Architecture

Figure 1 illustrates the architecture of the proposed system. In particular,
the system consists of four components, namely the transformer, the recorder,
the offline resolver, and the replayer. We describe each component as follows.

– Transformer. This component is responsible for the preliminary analysis of
program. In addition to locating the shared variables in the program, the
transforms also instruments two versions of the code: a record version and
a replay version, that will serve as input to the recorder and the replayer,
respectively.

– Recorder. This component executes the record version of the program (pre-
viously instrumented by the transformer) and stores the relevant events into
a trace file. Concretely, the recorder produces three types of logs, containing
the write operations, the read operations, and the lock acquisition order,

17



respectively. Unlike STRIDE, we will not introduce any kind of synchroniza-
tion to log write operations, so writes with the same version will be allowed,
for example.

– Offline Resolver. This component processes logs produced by the recorder,
with the goal of producing a feasible execution ordering of events, i.e., the
legal schedule. To this end, the offline resolver will have to not only use the
bounded linkages to infer the correct match between reads and writes, but
also resolve potential versioning conflicts among write operations. To address
the first issue, we can leverage the techniques employed by STRIDE: for every
read operation we will look for the write operation with the same value and
a version not higher than the bounded linkage. As for the second issue, we
intend to devise novel algorithms.

– Replayer. This component is responsible for replaying of the program execu-
tion by enforcing the order of thread accesses indicated in the legal schedule,
previously generated by the offline resolver.

5 Evaluation

The evaluation of the proposed solution will be performed experimentally,
based on a running prototype. In particular, we are interested in evaluating our
system according to the following criteria:
– Recording overhead, both in terms of execution slowdown and log sizes.
– Bug Reproducibility, to assess whether the system is able to reconstruct the

original execution and produce a legal schedule that triggers the concurrency
bug.

– Inference Cost, to evaluate whether our system will be able to find the correct
linkage in a reasonable amount of time. The authors of STRIDE report
that its matching algorithm runs in time O(Kn), where K is the number
of threads and n the total length of the execution log. However, they claim
that STRIDE is able to find the corresponding write for each read in time
O(1) for most test cases. As a consequence, we expect that our algorithm
will run with time complexity O(c), in practice, where c is the number of
write conflicts for a given version number. This because each read can only
be matched to one of the c writes conflicting. Nevertheless, in the future, we
plan to support this claim with a more thorough complexity analysis.

– Ratio of Write Conflicts, in order to understand the impact of tracing write
operations without synchronization and assess how the likelihood of find-
ing write versioning conflicts varies with the nature of the application (e.g.
the percentage of write operations, the number of threads, and the shared
accesses).

We plan to compare our results against STRIDE (and against other systems,
if time allows), in order to assess the benefits and limitations of our solution. As
test subjects, we will use benchmarks from the Dacapo1 and Java Grande2 suites,
1 http://www.dacapobench.org
2 http://www.javagrande.org

18



as they were already used to evaluate STRIDE. Since these benchmark suites
contain programs with different read-write percentages and number of shared
accesses, we expect to obtain a good notion of the favorable and unfavorable
conditions for our system. As for the bug reproducibility, we plan to use bugs
from real-world applications and benchmark programs, such as the IBM ConTest
suite [29].

6 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, as well as the necessary algorithms to resolve write versioning
conflicts.

– March 30 - May 3: Perform an experimental evaluation of the results.
– May 4 - May 23, 2014: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15, 2014: Deliver the MSc dissertation.

7 Conclusions

In this report, we have surveyed some representative approaches to record and
replay of multithreaded programs, as well as presented the current state of the art
by describing several systems. We discussed the main challenges and performance
metrics that have to be taken into account. We proposed a new approach to make
the logging phase more efficient, using a relaxed logging procedure and offline
algorithms to link operations and produce a replay schedule. In addition, we
presented the overall architecture of a system able to implement this approach,
and described the evaluation methodology that will be used to assess the results.

Acknowledgments We are grateful to N. Machado, M. Bravo and H.Miranda
for the fruitful discussions and comments during the preparation of this report.
This work was partially supported by EUROEAST, an Erasmus Mundus Action
2 project funded by the European Commission.

References

1. Dijkstra, E.W.: Cooperating sequential processes. Springer (2002)
2. Netzer, R., Miller, B.P.: Detecting data races in parallel program executions.

University of Wisconsin-Madison, Computer Sciences Department (1989)
3. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing

Surveys (CSUR) 3(2) (1971) 67–78
4. Choi, J.D., Srinivasan, H.: Deterministic replay of java multithreaded applications.

In: Proceedings of the SIGMETRICS symposium on Parallel and distributed tools,
ACM (1998) 48–59

19



5. Georges, A., Christiaens, M., Ronsse, M., De Bosschere, K.: Jarec: a portable
record/replay environment for multi-threaded java applications. Software: practice
and experience 34(6) (2004) 523–547

6. Ronsse, M., De Bosschere, K.: Recplay: a fully integrated practical record/replay
system. ACM Transactions on Computer Systems (TOCS) 17(2) (1999) 133–152

7. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging parallel programs with instant
replay. Computers, IEEE Transactions on 100(4) (1987) 471–482

8. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.: Pres:
probabilistic replay with execution sketching on multiprocessors. In: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, ACM
(2009) 177–192

9. Altekar, G., Stoica, I.: Odr: output-deterministic replay for multicore debugging.
In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems prin-
ciples, ACM (2009) 193–206

10. Huang, J., Liu, P., Zhang, C.: Leap: lightweight deterministic multi-processor
replay of concurrent java programs. In: Proceedings of the eighteenth ACM SIG-
SOFT international symposium on Foundations of software engineering, ACM
(2010) 207–216

11. Yang, Z., Yang, M., Xu, L., Chen, H., Zang, B.: Order: Object centric deterministic
replay for java. In: USENIX Annual Technical Conference. (2011)

12. Zhou, J., Xiao, X., Zhang, C.: Stride: Search-based deterministic replay in poly-
nomial time via bounded linkage. In: Proceedings of the 2012 International Con-
ference on Software Engineering, IEEE Press (2012) 892–902

13. Jiang, Y., Gu, T., Xu, C., Ma, X., Lu, J.: Care: cache guided deterministic replay
for concurrent java programs. In: ICSE. (2014) 457–467

14. Pokam, G., Pereira, C., Danne, K., Yang, L., King, S., Torrellas, J.: Hardware and
software approaches for deterministic multi-processor replay of concurrent pro-
grams. Intel Technology Journal 13(4) (2009)

15. Tanenbaum, A.S., Austin, T., Chandavarkar, B.: Structured computer organiza-
tion. Pearson (2013)

16. Cornelis, F., Georges, A., Christiaens, M., Ronsse, M., Ghesquiere, T., Bosschere,
K.: A taxonomy of execution replay systems. In: Proceedings of International Con-
ference on Advances in Infrastructure for Electronic Business, Education, Science,
Medicine, and Mobile Technologies on the Internet, Citeseer (2003)

17. Montesinos, P., Ceze, L., Torrellas, J.: Delorean: Recording and deterministically
replaying shared-memory multiprocessor execution ef? ciently. In: Computer Ar-
chitecture, 2008. ISCA’08. 35th International Symposium on, IEEE (2008) 289–300

18. Xu, M., Bodik, R., Hill, M.D.: A" flight data recorder" for enabling full-system
multiprocessor deterministic replay. In: Computer Architecture, 2003. Proceedings.
30th Annual International Symposium on, IEEE (2003) 122–133

19. Montesinos, P., Hicks, M., King, S.T., Torrellas, J.: Capo: a software-hardware in-
terface for practical deterministic multiprocessor replay. In: ACM Sigplan Notices.
Volume 44., ACM (2009) 73–84

20. Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multi-
threading in software. ACM Sigplan Notices 44(3) (2009) 97–108

21. Bhansali, S., Chen, W.K., De Jong, S., Edwards, A., Murray, R., Drinić, M., Mi-
hočka, D., Chau, J.: Framework for instruction-level tracing and analysis of pro-
gram executions. In: Proceedings of the 2nd international conference on Virtual
execution environments, ACM (2006) 154–163

22. Bacon, D.F., Goldstein, S.C.: Hardware-assisted replay of multiprocessor programs.
Volume 26. ACM (1991)

20



23. Sorin, D.J., Martin, M.M., Hill, M.D., Wood, D.A.: Safetynet: improving the
availability of shared memory multiprocessors with global checkpoint/recovery. In:
Computer Architecture, 2002. Proceedings. 29th Annual International Symposium
on, IEEE (2002) 123–134

24. Netzer, R.H.: Optimal tracing and replay for debugging shared-memory parallel
programs. Volume 28. ACM (1993)

25. Hower, D.R., Hill, M.D.: Rerun: Exploiting episodes for lightweight memory race
recording. In: ACM SIGARCH Computer Architecture News. Volume 36., IEEE
Computer Society (2008) 265–276

26. Ronsse, M., Christiaens, M., De Bosschere, K.: Cyclic debugging using execution
replay. In: Computational Science-ICCS 2001. Springer (2001) 851–860

27. Ronsse, M., De Bosschere, K., Christiaens, M., de Kergommeaux, J.C., Kran-
zlmüller, D.: Record/replay for nondeterministic program executions. Commu-
nications of the ACM 46(9) (2003) 62–67

28. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. Computers, IEEE Transactions on 100(9) (1979) 690–691

29. Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In:
Proceedings of the 17th International Symposium on Parallel and Distributed Pro-
cessing. IPDPS’03, IEEE Computer Society (2003) 286–293

21


