
Relaxed Logging for Replay of Multithreaded Applications
(extended abstract of the MSc dissertation)

Aliaksandra Sankova
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—The advent of multi-core processors brought new
opportunity to exploit parallelism in programs. However, devel-
oping concurrent programs is a sophisticated task, due the new
type of bugs that may appear and that may be very difficult
to find and to correct. In particular, when multiple threads
access shared memory, a buggy parallel program can lead
to subtle data races that generate errors in some particular
thread interleavings. There is a growing interest on building
tools that help to reproduce such interleavings, helping the
programmer to correct the code. One of the main techniques
to achieve this goal is what has been called record and replay:
it consists of logging relevant information during the execution
of a program that allows the interleaving that causes the bug to
be reproduced later. This technique solves the problem of bug
reproduction but, unfortunately, in many cases it introduces a
substantial slowdown in the execution of the application. This
dissertation presents a study of existing approaches to record
and replay, reflects on trade-offs and decisions of each system,
and proposes a new approach of relaxed logging that aims
at reducing the cost of the record phase without introducing
a substantial increase in the time required to execute replay
phase. We have implemented a prototype to validate these ideas
and have evaluated it using several benchmarks.

I. INTRODUCTION

In this dissertation we address the problem of reproducing
bugs in concurrent programs that rely on the shared memory
paradigm. These programs can be characterized by different
sequential threads that execute in parallel, quite often in
different cores of a multi-processor, communicating with
each other by reading and writing in shared variables. In
order to coordinate and communicate among each other,
such threads need to use explicit synchronization, such as
locks or semaphores[1]. In particular, when accessing shared
data, the logic of the program must ensure that the threads
use the required synchronization to avoid data races[2]. A
data race occurs when different threads access a shared
data structure without synchronization, and at least one
of those accesses is a write. Data races can be avoided
by the correct use of synchronization primitives however
these primitives are hard to master. An incorrectly placed or
missing synchronization primitive may not only eliminate
the race but even create other bugs, for example introduce
deadlocks[3]. Furthermore, the interleavings that cause the
bug may happen only in some rare circumstances, and
be very hard to reproduce. This makes the debugging of
concurrent programs an extremely difficult and tedious task.

In this context we studied techniques and tools that simplify
the reproduction of concurrency bugs and came up with
an idea of how the state of the art could be improved.
Delving into the topic, one of the main techniques to achieve
the reproduction of concurrency bugs is what has been
called record and replay [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13] (or deterministic replay [14]). Record and
replay relies in instrumenting the application in order to
record all sources of non-determinism at runtime, including
inputs, interrupts, signals, and scheduling decisions. For
multi-core environments, it is also necessary to record the
order by which different threads have accessed shared vari-
ables. This way, deterministic replay can be achieved by re-
executing the application while enforcing all points of non-
determinism to comply with the information stored in the
log. Unfortunately, faithfully logging a concurrent program’s
execution requires inserting additional synchronization (to
ensure that the thread interleaving is correctly traced). This,
in combination with the large amount of information that
may be required to be captured, can induce an unacceptable
slowdown in the application [5], [6], [9], [10]. To address
this issue, some approaches attempted to reduce the amount
of synchronization used to register the log, the amount of
information included in the log, or even both. For instance,
one can trace only partial information during the production
run and then, at replay time, use search techniques to infer
thread interleavings that are compliant with the (partial) log
information [8], [13]. However, since reducing the amount
of information logged hinders the replay determinism, the
challenge lies in identifying the best trade-off between
recording cost and inference time.

II. RELATED WORK

Record and replay of multithreaded applications (also
known as deterministic replay) is a popular technique
to reproduce non-trivial bugs, in particular bugs of non-
deterministic nature. The goal of this technique is to allow
a given execution of a program to be faithfully reproduced,
which requires the ability to reproduce not only the inputs
provided to the program, but also all non-deterministic
events, such as interrupts and thread interleavings. In gen-
eral, techniques that provide deterministic replay operate in
two distinct phases: record (capturing relevant information
about original execution) and replay(re-execution of the

1

program in a controlled manner, ensuring that the run
reconstructs the original one). Although simple in theory,
building a deterministic replay system poses several issues.
Some of them are listed:

• Non-deterministic nature of concurrency bugs can, from
time to time, make them disappear when specific inter-
leaving does not occur.

• The record phase may induce a non-negligible overhead
during the execution of a program.

• When logging information during production runs, se-
curity and privacy issues are raised if some collected
data is sensitive.

In order to mitigate the impact of mentioned issues, a large
diversity of techniques has been proposed to perform record
and replay. These techniques are usually classified according
to the amount of specialized support that is built in hard-
ware for this particular purpose. Thus, we can distinguish
hardware-only systems [15], [16], hybrid systems[17] and
software-only systems[5], [6], [4], [7], [18], [19], [10], [11],
[13], [10], [9], [8], [12]. Systems with usage of hardware are
able to provide deterministic replay with significantly lower
recording overhead than in software solutions. However,
bringing these concepts to reality requires expensive non-
commodity hardware extensions and ties the approach to
a particular architecture. Software-only systems are not
as efficient as hardware ones, but are the most common
tendency in research of deterministic replay due to their
advantage of being more general. In its turn, software-only
systems can be classified by the type of information that
is recorded in the log. According to [20] it is possible to
distinguish three approaches:

• Content-based Approach Such systems are also called
data-driven as they record and replay the data read by
each instruction. Literally, they log the values of all
the relevant inputs and shared variables read by each
thread, such that the exact same values can be used
during replay. The major drawback of this approach is
that it generates very large logs and may induce severe
slowdowns in the execution of the program, making
approach inefficient [19].

• Order-Based Approach Instead of tracking the values
of variables, order-based systems track the control flow
of the program (such as timing of interactions with
program files or I/O channels) from a given initial state.
these types of systems are also called control-driven.
According to this approach it is not necessary to record
every instruction to replay an execution, which allows
to reduce the amount of traced data. However, read and
write accesses to shared memory locations still need to
be tracked in order to support the reproduction of the
thread interleaving. Such tracking is called the exact
linkage between reads and writes into shared mem-
ory. This technique imposes lower overhead on record
phase and creates smaller amounts of logs comparing
to content-based solutions. The main challenge with
this approach is to ensure that the initial state of the

program is exactly the same in both the original and the
reproduction run. Unfortunately, the initial state may
often depend on the availability of external resources
such as cores in multicore processors, that could affect
the internal state of the program being replayed. Fur-
thermore, to ensure that the log faithfully captures the
thread read-write linkage, it is generally necessary to
introduce additional synchronization during the record
phase. Thus, even if order-based approaches represent
an improvement over pure content-based approaches,
most systems implemented with this approach still
induce a large overhead at runtime [9], [10].

• Search-Based Approach was created with a goal to
mitigate an extremely high cost for some applications
incurred by assurance of bug reproducibility in every
execution, which sometimes would cause up to 100x
slowdown [8]. The main idea is to not log the exact
thread read-write linkage and instead, to rely on a
post-recording phase to construct a feasible interleaving
from a partial log [9], [8], [12] or to infer the missing
information[14]. This way, it is possible to substantially
reduce the recording overhead at the cost of smaller
determinism guarantees and a potentially longer replay.
However, since the search space increases exponentially
with the amount of missing information regarding the
ordering of thread shared accesses, search-based ap-
proaches need to carefully balance the inference time
and the recording overhead. Since pure content- and
order-based systems incur an overhead is too high to be
practical, most recent solutions have adopted a search-
based approach. Our solution follows this trend, as well.

In order to shorten the related work chapter, here we only
concentrate on systems that were presented within last three
years.

1) CARE: CARE [13] is a very recent application-level
deterministic record and replay technique for Java concurrent
programs. CARE employs an order-based approach that
leverages thread locality of variable accesses in order to
avoid recording all read-write linkages. Concretely, during
the record phase, CARE assigns each thread with a software
cache. This cache is updated every time the thread reads
or writes on a shared variable, and is queried whenever
the thread performs a read operation. Write operations
are always synchronized and recorded into the trace file
whenever a new thread writes on a given shared variable,
whereas read operations are only logged in the presence of
a cache miss. A cache miss occurs when the value read from
the shared variable differs from the one previously buffered
in the cache, meaning that another thread must have written
on this variable before. At this point, CARE logs the exact
read-write linkage by redoing the read action again with
synchronization.

In the replay phase, CARE does not try to determine all
non-recorded read-write linkages. Instead, it simulates the
behavior of all caches and overrides read values from mem-
ory by values buffered in thread-local caches. This provides

2

value-determinism guarantees at replay. Evaluation shows
that CARE resolved all missed linkages for sequentially
consistent replay, and exhibited 3.4x reduction on runtime
overhead and 7x reduction on log size when compared to
LEAP.

Direction of our approach is inspired by two comple-
mentary works that explore different points in the design
space of record and replay systems, namely STRIDE [12]
and CLAP [14].

2) STRIDE [12]: a state-of-the-art search-based solution
that targets value determinism by recording bounded shared
memory access linkages instead of exact ones. Under the
sequential consistency assumption, STRIDE infers a failure-
inducing interleaving in polynomial time. Its recording
scheme logs read operations without adding extra synchro-
nization, which reduces the runtime overhead with respect
to pure order-based approaches [10]. Write operations, on
the other hand, are still captured in a synchronized fashion.
To allow the reconstruction of the global thread schedule,
STRIDE logs read operations with write fingerprints. More
concretely, STRIDE associates a version number to all the
recorded write operations and, for each read operation,
STRIDE records a pair consisting of the value returned by
the read operation and the latest version of write that read
can possibly link to, i.e., the bounded linkage. This bounded
linkage is later leveraged by STRIDE’s search mechanism
to quickly find the correct match between reads and writes.
Since STRIDE is the base system of the work in this thesis,
we describe its architecture in slightly more detail than the
previous systems. The essential concepts of STRIDE are
then the execution log, the memory model and the legal
schedule. The execution log is divided into three parts:

• LWx, which is a vector containing the local total order
of the writes performed by different threads on the
shared variable x.

• LAi, which registers the order of lock/unlock opera-
tions on lock l. It allows to reproduce deadlocks.

• TRi, which corresponds to the read log of thread i.
The memory model, in turn, defines the set of values

committed by writes that are allowed to be returned by a
read. STRIDE uses the most strict memory model for con-
current programs – sequential consistency [21]. As defined
by Lamport, under sequential consistency, the result of any
concurrent execution is the same as if the operations on all
the processors are executed in some sequential order and the
operations of each individual thread appear in the program
order. In this context, the legal schedule represents a total
order of the read-write operations that conform with the
memory behavior rules of STRIDE.

Using these concepts, STRIDE is able to, from an impre-
cise execution log, generate a feasible thread access ordering
such that all read and write operations conform to the
sequential consistency memory model. The main advantage
of this approach is the low runtime overhead due to the
avoidance of additional synchronization when logging reads
on shared variables. Authors claim that STRIDE incurs on

Figure 1. Components of proposed system

average of 2.5x smaller runtime slowdown and 3.88x smaller
log than LEAP. On the other hand, this approach has the
downside of losing some determinism guarantees.

3) CLAP [14]: another state-of-the art search-based solu-
tion that targets path determinism, created for C/C++ mul-
tithreaded programs. Path determinism means this solution
does not track values of operations but the path of each
thread local execution or, in another words, control flow
decisions. Such an approach allows to shrink the search
space and gain significant time on the replay phase, as a
possibility to take an incorrect execution path be reduced,
as will the time of interference. The main idea is to create a
constraint model that would represent possible interleavings,
encode it as a set of formulae and solve it with help of
SMT solver. To further reduce time the solution search time,
CLAP generates various candidate schedules to the solver
and checks if they satisfy the residuary part of constraints.
The main drawback of the approach, used in CLAP is the
amount of candidate schedules the system may generate be-
fore hitting feasibility. It also produces huge traces, difficult
to process with increasing complexity of applications under
instrumentation. Thus, depending on programs instrumented,
runtime overhead would lay between 9.3% and 269%.

III. OREO

This dissertation introduces OREO, a novel technique
for record of replay that aims at exploring a new trade-off
between the overhead imposed during the record phase and
the time it takes to reproduce the buggy execution during the
replay phase. The name of solution stands for ”Optimistic
approach to REcord phase” of deterministic replay applied
to multithreaded applications. The OREO architecture fol-
lows the general model of software-only record and replay
systems: program is preliminary instrumented, in order to
allow to trace information at runtime. The resulting logs are
then used to to replay the original run.

Figure 1 illustrates the architecture of our system, which
in particular consists of four internal components and one
external, namely the transformer, the recorder, the offline
resolver, the replayer and external SMT solver. We describe
each component as follows.

3

• Transformer: This component is responsible for the
program instrumentation and analysis. It takes the byte-
code of an arbitrary Java program and produces two
versions: the record version and the replay version.
Our transformer role consist of various tasks: i) shared
program elements (SPE), i.e. variables that can be
concurrently accessed by different threads, ii) collect
instructions of access to SPE, iii) collect information
about threads. In addition to it, the transformer also
instruments two versions of the code: a record version
and a replay version, that will serve as input to the
recorder and the replayer, respectively.

• Recorder: This component executes the record ver-
sion of the program (previously instrumented by the
transformer) and stores the relevant events into a trace
file. Concretely, the recorder produces per thread logs,
containing the write operations, the read operations,
the lock acquisition order and information about thread
creation. Unlike STRIDE, we do not introduce any kind
of synchronization to log write operations, so writes
with the same version are allowed.

• Offline Resolver: This component processes logs pro-
duced by the recorder, with the goal of producing a
feasible execution ordering of events, i.e., the legal
schedule. To this end, the offline resolver changed
philosophy of its existence, to recall that the name
remained unchanged. It first was created to build up
a schedule by bounded linkage infer, time to time
referring to conflicts resolution. After its role changed,
in current system prototype the offline-resolver is used
to convert logs from recorder to a set of SMT formu-
lae, consisting of Read-Write constrains that represent
local order or order per thread, and Memory Model
constraints, which we build with the algorithm, similar
to bounded linkage infer from STRIDE. All this we
pass to the SMT solver

• SMT Solver (external): is a high-performance theorem
prover that is accessed by a part of code from offline-
resolver called SMT Connector. It returns a set of SMT
formulae describing expressions that satisfy provided
constraints, which is further converted to a legal sched-
ule.

• Replayer: This component controls the scheduling of
threads to enforce a deterministic replay using both
the access vectors and the thread identity information.
In such a way, if there is a bug in execution, it
will get triggered in a deterministic way. Thus, de-
velopers working with multithreaded applications, gain
possibility to repeat the events in their program (so-
called cyclic debugging) and get the vision of what is
happening among threads.

A. Usage of SMT and Constraint Model
The idea to use SMT constraint solving to replay

an execution is not new. For instance, Lee et al. have
been experimenting with offline symbolic analysis for
deterministic replay at the hardware level[22], [23] as

the majority of modern processors operate with relaxed
memory model in order to enable performance optimization.
However, their solutions are not applicable in our case as
they require expensive hardware modifications. Bringing
their ideas to software-only systems would mean aiming at
value determinism and therefore, feeding the SMT solver
with non-trivial symbolic expressions, to find the legal
schedule. To circumvent this drawback, CLAP [14] collects
per-thread path profiles at runtime and uses them to guide
a symbolic execution of the program, collecting symbolic
information with respect to data-flow, control-flow and
synchronization operations. This way, CLAP is able to
build a constraint model that requires the solver just to
reason on orderings of operations, instead of having to
find the actual values returned by the read operations that
allow to satisfy the constraints. However, since CLAP only
records the execution path that each thread followed during
the production, in the constraint model, it has to generate
constraints that match each read on a shared variable to
all the writes on that variable. As a result, CLAP exhibits
poor scalability. Consequently, let us present the set of
constraints that OREO passes to the SMT solver to obtain
a legal schedule. Our idea is to use logged values to
encode a constraint model representing the feasible thread
interleavings that conform with the original execution.
To facilitate constraint creation we use a dictionary data
structure, where the key is a combination of a shared
variable identifier with the value of a write operation. The
value itself is a list of all the events that happened to the
same field with the same value - a collection of writes with
different versions. From above, we encode all the necessary
constraints into a formula Φ constructed by a conjunction
of four sub-formulae:

(1)Φ = Φmo ∧ Φrw ∧ Φwv ∧ Φso

where Φmo stands for the memory order constraints, Φrw
denotes the read-write constraints over captured SPE ac-
cesses, Φwv are constraints which denote that among write
operations the earliest has the lowest version number and
Φso denotes synchronization order constraints that define
the order of thread-related events. We further explain each
constraint further.

1) Intra-thread Constraints: The following constraints
are built using the information collected in a single per-
thraed log, and aim to restrict the order of events within a
thread:

• Memory Order Constraints Memory Order Constraints
allow us to preserve partial order in which instructions
are executed in each thread and represent data flow
within the execution. This is important as it allows us
to follow the original flow and therefore, reproduce the
bug when needed. In order to produce these type of
constraints we parse events from the log and sort them
according to the value of eventId, per-thread counter
of events. Thus, event with a smaller eventID value

4

happened earlier in what corresponds to a sequential
consistent memory model.

• Write Versioning Constraints A state where writes
should be ordered according to the versions captured at
runtime. We again sort events observed within thread
execution and sort them by version value so the least
version would denote the earliest event. This constraint
reduces time of linkage inference when in the global
execution different threads managed to perform write
operations with the same version.

2) Inter-thread Constraints: These constraints aim to
provide global order sequence of events from all the log
instances hence adhere to a legal schedule of the original
execution with the maximum alignment:

• Read-Write Constraints Read-write constraints repre-
sent a linkage between read and write operations across
the execution, stating their execution order. Let us
consider a read operation Ri on a shared variable where
i is a particular version of captured access and Wi

is one or more write operation on the same variable.
ORi will denote the order of read and OWi the order
of write operations respectively. To compose read-
write constraints we scan the log from the end to the
beginning, looking for a corresponding write access
that would match in value and in version to each read
operation. If a perfect match is found, we add a string
denoting that the write operation happened before the
read one:

OWı < ORı (2)

If there are more write operations with the same
version, we take a slightly different approach. Let us
consider that WT1

i and WT2
i denote write operations

on the same shared variable, which were occasionally
captured with the same version (due to data races).
There will be two mutually exclusive ways to sort them
out:

1) Ri happened after WT1
i . Then either WT2

i had to
happen before WT1

i or this local ordering is not
feasible.

2) Ri happened after WT2
i . Then either WT1

i had to
happen before WT2

i or this local ordering is not
feasible.

Adding such branching to will enlarge the search space
but also increase probability to actually repeat the
original execution. Thus, for this particular situation we
will add the following constraint:

((Ri < WT1
i)∧

((WT2
i < WT1

i) ∨ (Ri < WT2
i)))∧

((Ri < WT2
i)∧

((WT1
i < WT2

i) ∨ (Ri < WT1
i)))

(3)

In such a way, n write operations with the same version
will produce n! mutually exclusive ways to match

them to each read. Here SMT solver will help us to
gain better increase in time of execution than custom
algorithm with Java data structures.

• Synchronization Order Constraints Synchronization Or-
der Constraints in OREO aim at enforcing the control
flow of the program and therefore, ordering partial
order events such as START, EXIT, JOIN, FORK
while relaxing the model on locking and such events
as SIGNAL, WAIT. This approach allows us to speed
up building a model for Z3 while still being able to
determine happens-before relation in general and avoid
locking. In such a way, OREO imposes 4 types of
partial order constraints:

1) START < EXIT denotes the thread lifetime. The
thread cannot finish before starting.

2) FORK < START denotes how the child thread
should be created.

3) FORK < JOIN denotes the global rule of child
thread creation.

4) EXIT < JOIN denotes how the child thread should
be finished.

Finally, the constraint formulae set is sent to a SMT
solver.

B. Our model versus CLAP

Our approach is similar to one proposed in CLAP[14],
however it is operating on a simpler memory model.
The main differences are listed:

– Simplified read-write: OREO significantly reduces
the size of the read-write constraints generated by
CLAP, by tracing the value that each read saw
at runtime. This way, OREO encodes only the
matching of a read with the set of possible writes
that wrote that same value.

– Eliminated locking constraints: OREO records the
locking order at runtime, which allows to elim-
inate the locking constraints produced by CLAP
altogether. Note that this set of constraints is cubic
on the number of locking pairs, which results in a
substantial reduction of the solving time. This fact
was previously in shown in [24].

We believe that OREO moves a step forward towards
the sweet spot between finding a legal schedule in-
ference via constraint solving and recording overhead.
Since we trace the exact value that a read operation
saw at runtime, we are able to substantially reduce
the amount of writes that it can be matched with.
As a result, the constraint model built by OREO is
simpler than that of CLAP, and the SMT solver is
capable of finding a solution more easily. From the
other side, conservative record and replay solutions
introduce a significant amount of additional synchro-
nization to ensure that accurate information regard-
ing thread interleavings is stored in the log. Recent
work proposed a number of techniques to reduce this
amount of synchronization. Our work also explores

5

this path: we introduce a relaxation of the logging
procedure removing locking from write operations,
used in STRIDE. Removing these locks allows us to
gain an increase in execution speed. Although tracing
the write order without synchronization may cause
conflicts in the write versions mechanism (e.g., two
writes may be recorded with the same version number),
the experiments in [12] showed that the read/write
operation and the corresponding recording operation
tend to occur contiguously for most programs. Our
experiments in Section IV further support this claim.

C. Implementation Details

1) Transformer: The OREO transformer is developed
on top of Soot[25], a static program analysis framework
for optimizing Java bytecode, developed at McGill Uni-
versity in 1999. This framework supports three inter-
mediate representations for representing Java bytecode:
Baf, a streamlined representation of Java’s stack-based
bytecode; Jimple, a typed three-address intermediate
representation suitable for optimization; and Grimp, an
aggregated version of Jimple. Our transformer takes the
bytecode of the Java program selected for analysis, and
performs its instrumentation on Jimple, in particular:

– localizes shared program elements (SPEs), which
we recognize in two types: shared variables (static
and instance elements of class that can be accessed
by different threads), and synchronization variables
(locks and monitors).

– produces record and replay code versions by injec-
tion of Jimple probes into original code.

– visits each Jimple statement and performs tasks
they describe.

Our transformer can instrument only Java programs.
Depending on nature of SPE it inserts different probes:

– Operations on shared variables beforeLoad, after-
Load, beforeStore, afterStore;

– Operations on synchronized variables beforeMon-
itorEnterStatic, afterMonitorEnterStatic, recording
calls to signal() and await() beforeConditionEnter,
afterConditionEnter;

– Monitor acquisition operations for instance in-
vocations beforeMonitorEnter, afterMonitorEnter,
exitMonitor;

– Thread behavior and control flow events
mainThreadStartRun, threadStartRun,
threadExitRun, and so on.

Thus, the OREO transformer can be seen as a sim-
plified version of the transformer, proposed by Huang
et al.[10]. We inject less instructions, do not provide
annotation-based specifications for inserted end-points
and therefore, do not support user specified end points
on record. Transformer output provides us with the
number of shared variables and the number of synchro-
nization variables that are necessary to call record or
replay driver.

2) Recorder: When the record version is running, we
pass through all injected Jimple probes and collect
information about accesses to SPE in internal data
structures. To represent each operation, we imple-
mented a java class Event that can exist in 8 following
types: read, write, lock, unlock, join, fork, start, exit.
For each thread we create a counter, that assigns a
partial order position to operations within the thread.
Unlike STRIDE, we do not introduce any kind of
synchronization to log write operations, so writes with
the same version number are allowed. A conflict can be
detected when there is more than one write operation
on the same shared variable with the same event version
number - as we increase version counter on each
access, we can see a bug introduced by data races.
We also maintain statistics of conflict ratio per run.
On every thread fork, the parent thread ID is added to
the thread creation order list. In order to save logs, we
insert a ShutDownHook into the JVM Runtime in the
recorder as an end point. When the program execution
is over, the ShutDownHook will be invoked to perform
saving of captured traces from internal data structures
to physical files. Logs are stored in the JSON format.

3) Offline-Resolver: The SMT Solver used in OREO
is the Z3[26], a high-performance theorem prover de-
veloped at Microsoft Research that is being used in
several projects since February 2007. It is targeted at
solving problems that arise in software verification and
software analysis. While supporting various theories,
it has proven to be useful in such application areas
as extended static checking, predicate abstraction, test
case generation. In our system we interact with the Z3
through a component written in Java, the Z3Connector,
which uses Z3’s binary API inside, providing us with a
simplified interface to submit formulas in a text format.
The reason for using the Z3 in OREO is its ability to
produce models as part of the output by assigning val-
ues to the constants in the input and generating partial
function graphs for predicates and function symbols.
This allows us literally return a legal schedule, which
requires a small conversion to be executed on replay
driver.

4) Replayer: The Replayer controls the scheduling of
threads and operations performed by them. Replay is
based on information from the access vectors, received
from the model provided by Z3, and the thread creation
order list. Before creating a new thread, if compares
the ID of the parent thread to the ID at the head of
the thread creation order list. If they match, the new
thread is allowed to be created and the head of the
list is removed. Before replaying any access, threads
coordinate with each other by semaphores, counting
amount of SPE already accessed. Process is quick as the
threads accessing different SPEs can execute in parallel.

6

IV. EVALUATION

We conducted experiments with the purpose of evalu-
ating our system according to the following criteria:

– Recording overhead, in terms of performance
slowdown imposed by the logging, with respect
to the native execution.

– Log size, in terms of the amount of information
stored in the trace files during the production run.

– Amount of write conflicts, in order to understand
the impact of tracing write operations without
synchronization and to assess the likelihood of
finding write versioning conflicts that vary with
the nature of the application (e.g. the percentage
of write operations, the number of threads, and the
shared accesses).

– Inference Time, to evaluate whether our system
will be able find and produce a legal schedule that
triggers the concurrency bug in a practical amount
of time.

As test subjects, we first used a micro-benchmark,
named Bank, that simulates (unsynchronized) transfers
on bank accounts. As this micro-benchmark allows
to easily tune the number of threads and the number
of shared accesses, we were able to assess OREO’s
benefits and limitations with respect to STRIDE in the
presence of different execution scenarios.
In addition, we also tested OREO against STRIDE
with four other third-party benchmarks: two from the
IBM ConTest suite [27] and two from the Java Grande1

suite.

A. Bank Micro-benchmark

In order to evaluate both the performance and the replay
ability of OREO, we started by developing a micro-
benchmark that allows to easily tune the number of
threads and shared accesses used in the experiments.
This micro-benchmark consists of an application that
simulates transfers between bank accounts. Since the
threads concurrently update the accounts with no syn-
chronization, the final balance may not be correct.
An execution of the benchmark corresponds to per-
forming a number num ops of operations (i.e.,
transfers between accounts). Here, each thread
executes num ops/num threads transfers, where
num threads indicates the number of threads execut-
ing. Once a thread finishes its transfers, it does a sanity
check to verifies whether the sum of all individual
accounts is equal to the expected total balance. In case
of inconsistency, the thread raises an exception that
prints a message indicating that a bug has occurred.
To assess how OREO compares against STRIDE in
the presence of different complexity scenarios, we
executed the bank micro-benchmark with 12 distinct
configurations. These configurations were obtained by

1http://www.javagrande.org

 0

 20

 40

 60

 80

 100

50 100 500 1000

O
ve

rh
ea

d
(%

)

#Operations

Bank Benchmark - 2 Threads

OREO STRIDE

 0

 20

 40

 60

 80

 100

50 100 500 1000

O
ve

rh
ea

d
(%

)

#Operations

Bank Benchmark - 4 Threads

OREO STRIDE

 0

 20

 40

 60

 80

 100

50 100 500 1000

O
ve

rh
ea

d
(%

)

#Operations

Bank Benchmark - 8 Threads

OREO STRIDE

Figure 2. Recording overhead (%) for OREO and STRIDE for benchmark
Bank, executed with 2, 4, and 8 threads. Results are averaged over 5 runs.

varying the number of operations of the program for
the set of values {50, 100, 500, 1000}, as well as the
number of threads for the set of values {2, 4, 8}. Finally,
the number of accounts (i.e., of shared variables) was
set to 10.
1) Recording Overhead: Figure 2 depicts the recording
overhead, with respect to the native execution time,
of both OREO and STRIDE for the bank micro-
benchmark, when varying the number of threads and
the number of operations. The plots show that OREO
imposed less runtime slowdown than STRIDE for all

7

#Operations
#Threads 50 100 500 1000

2 45KB 74KB 305KB 597KB
4 47KB 77KB 307KB 598KB
8 54KB 82KB 311KB 603KB

Table I
LOG SIZES FOR OREO.

#Operations
#Threads 50 100 500 1000

2 5s 50s 3h56m >8h
4 23s 4m22s 5h16m >8h
8 59s 4m1s 7h1m >8h

Table II
AMOUNT OF TIME REQUIRED TO SOLVE THE CONSTRAINT MODEL WITH

THE READ-WRITE LINKAGES AND PRODUCE A LEGAL SCHEDULE.

cases. On average, STRIDE incurred 64% recording
overhead, whereas OREO achieved an overhead of
45%, thus being 1.4x faster than STRIDE.
Another interesting observation that we can draw from
Figure 2 is that the overhead does not increase linearly
with the number of threads. This is because an increas-
ing number of threads implies a smaller of operations
executed by thread.
Finally, we expected the overhead reduction achieved
by OREO to increase with the number of operations,
as the negative effect of using locks would be more
visible. We believe that this did not happen in this
benchmark because the amount of writes did not com-
prise the majority of the operations of the program. As
a result, the negative impact of STRIDE’s additional
synchronization ended to be diluted in the overall
instrumentation cost, required to log the events.
2) Log Sizes: Since our implementations of OREO
and STRIDE share the same data structures and event
objects, the trace files generated by the two techniques
are identical. As such, we solely report the log sizes
for OREO. Table I reports these results.
As expected, Table I shows that the size of the logs in-
crease with the number of operations performed during
the execution. Also, despite being the same amount of
operations, having more threads also results in slightly
larger logs, because each thread has a dedicated array
where it stores its events. Hence, there is a small
fixed space cost resulting from these per-thread data
structures.
3) Write Conflicts: Curiously, for all the experiments,
we have never observed version conflicts when logging
write operations without additional synchronization.
This provides further support our initial claim that
version conflicts are rare.
4) Inference Time: Table II reports the time OREO
took to produce a legal schedule, corresponding to the
solving time of the constraint model. It is possible
to see that an increase in the number of operations
has a significant impact on the solving, as the SMT

solver required 10x more time to solve the model
when doubling the amount of operations from 50 to
100. Moreover, for the cases where the benchmark
was configured to perform 1000 operations, the solver
took even more than 8h. This indicates that for long
executions, it might be useful to perform a first stage
when read-write linkages are resolved solely using
write versions. Then, in case of version conflicts, one
could resort to the SMT solver to produce the legal
schedule.
As a final remark, we highlight the fact that OREO was
able to reproduce the bugs in the different executions
using the inferred schedules.

B. Third-Party Benchmarks
In order to further assess OREO’s benefits and lim-
itations, we also conducted experiments with four
third-party benchmarks. We used the benchmark bugs
TwoStage and Airline from the IBM ConTest bench-
mark suite [27], and programs Crypt and LUFact from
the Java Grande benchmark2 (both with input size B).
Table III reports the results of our experiments.
Columns 1-3 characterize the programs in terms of
their number of threads and shared accesses. Columns
4 and 5 report the recording overhead for OREO and
STRIDE, respectively. Column 6 shows the log size
generated by OREO. Column 7 indicates the number
of write conflicts observed during the execution and,
finally, column 8 contains the time required to solve
the constraint model.
1) Recording Overhead: Comparing the recording
overhead of OREO to that of STRIDE for the third-
party benchmarks, it is possible to see that, once again,
OREO outperforms STRIDE for all test cases. The most
prominent case is TwoStage, where OREO was 8.7x
faster than STRIDE, reducing the recording overhead
from 41.7% to 4.8%. This program has only 41 shared
accesses and has some synchronization operations on
the original code as well, which caused OREO’s in-
strumentation to not be too harmful for the program’s
performance. On the other hand, since STRIDE injects
extra locks to record write operations, it imposed a non-
negligible slowdown at runtime.
2) Log Sizes: The log sizes produced by OREO (which
are identical to those of STRIDE) ranged from 3.1KB
for TwoStage to 373KB for LUFact. As expected,
the logs were larger for programs with more shared
accesses, such as LUFact.
We stored the traces as strings in JSON format, to ease
user readability. Therefore, we believe that the space
overhead could be reduced by using more efficient data
structures, such as serializable objects, and compression
techniques.
3) Write Conflicts: Similarly to the previous section,
we did not observe any write conflicts on the third-party

2http://www.javagrande.org

8

Program #Threads #Shared Recording Overhead (%) Log #Write Solving
Accesses OREO STRIDE Size Conflicts Time

TwoStage 5 41 4.8 41.7 3.1KB 0 0.13s
Airline 11 94 13.7 43.5 7.5KB 0 1.93s
Crypt 3 57 1.3 10.6 4KB 0 0.23s

LUFact 2 4037 42.5 64.3 373KB 0 29m

Table III
RESULTS FOR THIRD-PARTY BENCHMARKS.

benchmarks. Curiously, this did not even occur in the
Airline program, which had 11 threads running. We
believe that this is due to the fact that, despite having
many concurrent threads, Airline did not have many
shared write operations to incur version conflicts.
4) Inference Time: Regarding inference time, we can
see in Table III that OREO is able to find the read-write
linkage in a very short amount of time for programs
TwoStage, Airline, and Crypt. For LUFact, however,
OREO took 29m to produce a legal schedule, due to
the large number of shared accesses in this program.
To further compare OREO against prior work, we
generated the CLAP’s constraint model for the LUFact
test case and tried to solve it3. The solver found a
solution in 1h, which was twice the time it took for
OREO.

C. Summary of Evaluation
The results from our experiments showed that OREO
incurs, on average, 1.4x and 2.6x less recording over-
head than STRIDE, respectively for the Bank micro-
benchmark and the third-party benchmarks. In terms of
constraint solving, OREO was also 2x faster than CLAP
to resolve the read-write linkages for the program
LUFact. Finally, OREO was able to produce a legal
schedule, capable of replaying the original execution,
within 7 hours for most test cases, which we argue to
be a practical amount of time to be used in debugging.

V. CONCLUSIONS

This dissertation has presented and evaluated OREO,
a novel approach to record-and-replay. OREO aims
at making the logging phase more efficient, using a
relaxed logging procedure and offline algorithms to
link operations and produce a replay schedule. OREO
combines features of different state-of-the-art systems,
such as STRIDE[12] and CLAP[14] to get better re-
sults. We have implemented OREO and performed
an experimental evaluation assess its advantages and
limitations.
For future work we would like to explore adaptive
mechanisms in the record phase, to switch between
exact and relaxed write logging, thus allowing to auto-
matically tune the recording scheme to an application’s
nature.

3We experimented with LUFact alone, as this was the program for which
the constraint model exhibit more complexity and the solver had required
more time to find a solution.

ACKNOWLEDGMENTS

This project has been funded with support from the
European Commission. This report reflects the views
only of the author, and the Commission cannot be held
responsible for any use which may be made of the
information contained therein. Parts of this work have
been performed in collaboration with other members of
the Distributed Systems Group at INESC-ID, namely,
Nuno Machado and Manuel Bravo, to whom I express
my deepest gratitude for their support and guidance.

REFERENCES

[1] E. W. Dijkstra, Cooperating sequential processes.
Springer, 2002.

[2] R. Netzer and B. P. Miller, Detecting data races in
parallel program executions. University of Wisconsin-
Madison, Computer Sciences Department, 1989.

[3] E. G. Coffman, M. Elphick, and A. Shoshani, “System
deadlocks,” ACM Computing Surveys (CSUR), vol. 3,
no. 2, pp. 67–78, 1971.

[4] J.-D. Choi and H. Srinivasan, “Deterministic replay of
java multithreaded applications,” in Proceedings of the
SIGMETRICS symposium on Parallel and distributed
tools. ACM, 1998, pp. 48–59.

[5] A. Georges, M. Christiaens, M. Ronsse, and
K. De Bosschere, “Jarec: a portable record/replay
environment for multi-threaded java applications,”
Software: practice and experience, vol. 34, no. 6, pp.
523–547, 2004.

[6] M. Ronsse and K. De Bosschere, “Recplay: a fully
integrated practical record/replay system,” ACM Trans-
actions on Computer Systems (TOCS), vol. 17, no. 2,
pp. 133–152, 1999.

[7] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging
parallel programs with instant replay,” Computers, IEEE
Transactions on, vol. 100, no. 4, pp. 471–482, 1987.

[8] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,
K. H. Lee, and S. Lu, “Pres: probabilistic replay with
execution sketching on multiprocessors,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009, pp. 177–192.

[9] G. Altekar and I. Stoica, “Odr: output-deterministic
replay for multicore debugging,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 193–206.

9

[10] J. Huang, P. Liu, and C. Zhang, “Leap: lightweight
deterministic multi-processor replay of concurrent java
programs,” in Proceedings of the eighteenth ACM SIG-
SOFT international symposium on Foundations of soft-
ware engineering. ACM, 2010, pp. 207–216.

[11] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang,
“Order: Object centric deterministic replay for java.”
in USENIX Annual Technical Conference, 2011.

[12] J. Zhou, X. Xiao, and C. Zhang, “Stride: Search-based
deterministic replay in polynomial time via bounded
linkage,” in Proceedings of the 2012 International Con-
ference on Software Engineering. IEEE Press, 2012,
pp. 892–902.

[13] Y. Jiang, T. Gu, C. Xu, X. Ma, and J. Lu, “Care:
cache guided deterministic replay for concurrent java
programs.” in ICSE, 2014, pp. 457–467.

[14] J. Huang, C. Zhang, and J. Dolby, “Clap: recording local
executions to reproduce concurrency failures,” in ACM
SIGPLAN Notices, vol. 48, no. 6. ACM, 2013, pp.
141–152.

[15] P. Montesinos, L. Ceze, and J. Torrellas, “Delorean:
Recording and deterministically replaying shared-
memory multiprocessor execution ef? ciently,” in Com-
puter Architecture, 2008. ISCA’08. 35th International
Symposium on. IEEE, 2008, pp. 289–300.

[16] M. Xu, R. Bodik, and M. D. Hill, “A” flight data
recorder” for enabling full-system multiprocessor de-
terministic replay,” in Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on.
IEEE, 2003, pp. 122–133.

[17] P. Montesinos, M. Hicks, S. T. King, and J. Torrel-
las, “Capo: a software-hardware interface for practical
deterministic multiprocessor replay,” in ACM Sigplan
Notices, vol. 44, no. 3. ACM, 2009, pp. 73–84.

[18] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo:
efficient deterministic multithreading in software,” ACM
Sigplan Notices, vol. 44, no. 3, pp. 97–108, 2009.

[19] S. Bhansali, W.-K. Chen, S. De Jong, A. Edwards,
R. Murray, M. Drinić, D. Mihočka, and J. Chau,
“Framework for instruction-level tracing and analysis of
program executions,” in Proceedings of the 2nd inter-
national conference on Virtual execution environments.
ACM, 2006, pp. 154–163.

[20] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse,
T. Ghesquiere, and K. Bosschere, “A taxonomy of exe-
cution replay systems,” in Proceedings of International
Conference on Advances in Infrastructure for Electronic
Business, Education, Science, Medicine, and Mobile
Technologies on the Internet. Citeseer, 2003.

[21] L. Lamport, “How to make a multiprocessor computer
that correctly executes multiprocess programs,” Com-
puters, IEEE Transactions on, vol. 100, no. 9, pp. 690–
691, 1979.

[22] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and
C. Pereira, “Offline symbolic analysis for multi-
processor execution replay,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Mi-
croarchitecture. ACM, 2009, pp. 564–575.

[23] D. Lee, M. Said, S. Narayanasamy, and Z. Yang,
“Offline symbolic analysis to infer total store order,”
in High Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium on. IEEE,
2011, pp. 357–358.

[24] M. Bravo, N. Machado, P. Romano, and L. Rodrigues,
“Towards effective and efficient search-based determin-
istic replay,” in Proceedings of the 9th Workshop on Hot
Topics in Dependable Systems, ser. HotDep ’13. New
York, NY, USA: ACM, 2013, pp. 10:1–10:6.

[25] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan, “Soot-a java bytecode optimization
framework,” in Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative
research. IBM Press, 1999, p. 13.

[26] L. De Moura and N. Bjørner, “Z3: An efficient smt
solver,” in Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[27] E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns
and how to test them,” in Proceedings of the 17th
International Symposium on Parallel and Distributed
Processing, ser. IPDPS’03. IEEE Computer Society,
2003, pp. 286–293.

10

