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Abstract. An adaptive system is a system capable of altering its con-
figuration in response to changes in its execution environment. A key
component of any adaptive system is a monitoring infrastructure, that
is able to collect information regarding the system operation and feed
the policies that guide the system adaptation. In this work, we describe
the first steps to build a monitoring infrastructure for supporting the
dynamic adaptation of Byzantine fault-tolerant systems. Building such
monitoring system encompasses two challenges: identifying i) what is the
relevant information that should be monitored, and that may be useful
to manage the adaptation, and; ii) the mechanisms that allow to provide
this information, in an efficient, consistent and fault-tolerant manner
to an adaptation manager that also needs to be replicated. This report
covers both of these aspects.
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1 Introduction

A Byzantine Fault Tolerant system (BFT) is a system able to tolerate arbi-
trary faults[1]. Byzantine fault tolerance is inherently expensive: in the general
case 3f + 1 replicas are needed to tolerate f Byzantine faults. Unfortunately,
the likelihood of systems suffering arbitrary faults tends to increase due to a
combination of technological factors (such as the increase of density in chips)
and social factors (such as the increased risk of malicious attacks). Therefore,
the design and development of BFT systems has gained significant interest in
the last decades[2–8].

As a result of the intense research in the field, several different BFT protocols
have been developed, each optimized for different operational conditions. This
has opened the door for the construction of adaptive BFT systems that can
dynamically commute among different protocols, in response to changes in the
environment[7, 9].

A key component in any adaptive system is a monitoring infrastructure,
that is able to collect information regarding the operation envelope of the man-
aged system. Information regarding the available resources (CPU, network band-
width), the system workload (rate of requests, profile of requests), occurring
faults, vulnerability to attacks, can be used by the polices that drive the sys-
tem adaptation, to select the most appropriate protocol configuration to achieve
some predefined system goals.

In a Byzantine fault-tolerant system, the monitoring system must be, itself,
tolerant to Byzantine faults. This means that the monitoring system must be
built using redundant components, such that a single fault will not cause inac-
curate or inconsistent information to be passed to the components that control
the system adaptations.

In this report, we address the design and implementation of a monitoring in-
frastructure for supporting the dynamic adaptation of Byzantine fault-tolerant
systems. In this context, we are interested in addressing two complementary
aspects, namely: identifying i) what is the relevant information that should be
monitored, and that may be useful to manage the adaptation, and; ii) the mech-
anisms that allow to provide this information, in an efficient, consistent, and
fault-tolerant manner to an adaptation manager that also needs to be replicated.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Sections 3, 4 and 5 we present the
background research related with our work. More specifically, in Section 3 we
discuss Byzantine Fault Tolerance, showing some of the different existent state
of the art protocols, in Section 4 we present what is an Adaptive System, how
its composed and go into detail on our managed system, finally in Section 5
we will discuss System Monitoring, why it is needed and what is important to
collect from the environment. Section 6 describes the proposed architecture to
be implemented and Section 7 describes how we plan to evaluate our results.
Finally, Section 8 presents the schedule of future work and Section 9 concludes
the report.
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2 Goals

This work addresses the problem of designing and implementing a monitoring
infrastructure for supporting the dynamic adaptation of Byzantine fault-tolerant
systems. More precisely:

Goals: We aim at designing a redundant monitoring infrastructure
that can provide consistent and accurate information regarding the op-
erational environment to the replicas of a fault-tolerant adaptation man-
ager, in order to feed the polices that drive the adaptation of a Byzantine
fault-tolerant system.

To achieve this goal we will need to design a monitoring architecture that can
support the availability of replicated sensors when collecting system information.
Data collected from these multiple sensors needs to be aggregated and processed
to filter inaccurate or inconsistent data that may be provided by faulty sensors.
Ideally we would like to derive an extensible monitoring infrastructure, that
could be easily augmented with new sensors and new fault-tolerant aggregation
functions in a seamless manner. A prototype of the monitoring system will be
implemented and integrated in the BFT-SMaRt[10] framework.

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the mon-
itoring infrastructure; ii) an implementation of the monitoring system,
iii) an extensive experimental evaluation using the resulting prototype.

3 Byzantine Fault Tolerance

3.1 BFT Protocols

In this Section we will present some of the state of the art protocols for
byzantine fault tolerance, namely for state machine replication, and show the
characteristics and differences between them. Although state replication proto-
cols usually have three sub-algorithms, agreement, view-change, and checkpoint-
ing, we will focus on the agreement protocol as it captures the main differences
among existing systems.

3.1.1 PBFT The protocol known as Practical Byzantine Fault Tolerance
(PBFT)[2] is one of the first BFT protocols designed with the aim of offering ac-
ceptable performance while being able to operate in asynchronous environments.
Its design has been highly influential and spurred several research projects to
derive other efficient implementations of BFT protocols. PBFT supports state
machine replication[11]. It requires at least 3f + 1 replicas to tolerate f faulty
replicas. During PBFT operation, replicas have different roles: one replica is
designated the primary and the others are designated the backups. A given con-
figuration, with roles assigned to each replica is called a view. If the primary is
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suspected to be faulty, the system moves to another configuration, in a process
that is called a view change. The evolution of the system is characterized by a
sequence of views. In the most frequent case, the system operates as follows: the
client sends a request to the primary replica, that triggers a three-phase protocol
to atomically multicast the request to the rest of the replicas. This protocol is
composed of the following phases:

1. Pre-prepare phase: The primary assigns a sequence number to the request
received (if the primary is still processing a previous request, it will buffer
incoming requests, later processing all of them in batch, using a single agree-
ment) and multicasts a pre-prepare message to all the backup replicas (the
request is piggybacked in that message).

2. Prepare phase: A backup replica checks the pre-prepare message and, if
it is considered valid, the replica multicasts a prepare message to all other
replicas. The participation of the backups is required to ensure the total
order of requests sent in a given view, even when the primary is faulty. Each
replica then needs to receive a valid pre-prepare message and at least 2f
matching prepare messages from different backups, in order to move on to
the next phase.

3. Commit phase: In this phase, each replica sends a commit message to the
other replicas. The replica then waits for at least 2f + 1 commit messages
from other replicas (possibly including its own) that match the original pre-
prepare message received.

Once these three phases are completed, the replicas can execute the operation
requested and send a reply message to the client, that waits for f + 1 replies
to deliver the result, assuring that at least one correct replica executed the
operation. Which, in turn, assures that at least f + 1 replicas committed the
request. This means that PBFT, can make progress even when in the presence
of faulty replicas. A faulty primary can slow down the system significantly, when
the current primary is suspected to be faulty, a view change occurs and another
replica is selected as primary. Figure 1 shows the operation of the algorithm in
the normal case scenario.

The design of PBFT includes a number of choices that aim at improving the
performance of the system. For instance, the protocol relies mostly on message
authentication codes (MACs) based on symmetric keys, instead of using digital
signatures and public key cryptography to authenticate the messages. This is
because MACs are several degrees faster to create and to check than digital
signatures. PBFT also tries to reduce communication costs, first by having only
one replica send the full reply while the others only send an acknowledgment of it.
Second, it proposes an optimized protocol to deal with read-only requests, where
the replicas tentatively respond to the client, which then waits for 2f + 1 replies
(if there are conflicting writes operations the client needs to re-transmit the
request as a standard read-write). Finally, in the last optimization, the replicas
tentatively execute the client’s request when the prepare phase is completed, as
it is very likely that the commit phase will be successful. The client waits for
2f + 1 tentative replies to deliver the result and, if there are conflicting replies,
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Fig. 1. PBFT Normal Case Operation; f=1, replica 3 is faulty. Taken from [2].

the client falls back to the normal protocol, resending the request and waiting
for f + 1 ”normal” replies.

3.1.2 Zyzzyva Zyzzyva[5] is a protocol that uses speculation to improve the
protocol’s performance in the best case scenario. As PBFT, Zyzzyva also requires
at least 3f + 1 replicas and also uses the notion of views, where one replica is
selected to play the role of a primary. In Zyzzyva the role of assigning the order to
the requests also falls on the primary replica. However, unlike PBFT, the replicas
in Zyzzyva speculatively execute the request upon its reception, without running
an expensive agreement protocol. This means that, in some cases, namely when
faults occur, different replicas may (speculatively) execute different requests in
different orders, and a conciliation algorithm needs to be executed in order to
reconcile the replicas state.

In Zyzzyva, the client takes a more active role, and helps the replicas in
assessing the success of the speculative steps. As in PBFT, the client sends the
request to the primary, which assigns a sequence number to the request and then
sends it to the backup replicas, establishing its order. If the primary is not faulty
and is not suspected, all correct replicas will process these requests in the same
order, and provide identical responses to the client. After collecting replies, the
client considers the request completed when one of the following conditions is
met:

1. If the client receives 3f + 1 consistent responses from the replicas, it can
consider that the request is complete. This is known as the fast case;

2. In the two phase case, the timeout set by the client upon sending the re-
quest is reached and the client still received between 2f+1 and 3f consistent
responses. In this case the client will provide help in terminating the proto-
col. For that purpose, it selects 2f + 1 identical replies to create a commit
certificate (this is proof that it has indeed received a sufficient amount of
consistent replies) and sends it to all replicas, to ensure that correct replicas
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become aware of the success of the speculative phase. Once 2f + 1 replicas
acknowledge and reply to the client, it can consider the request completed
and deliver the result to the application.

Figure 2 shows how the protocol works for the two scenarios described above.
If the client detects valid responses with different sequence numbers for the same
view, it as a Proof of Misbehavior of the primary, that when sent to the replicas
triggers a view change. In another case, if the client does not receive at least 2f+1
identical speculative replies it will conclude that the speculative execution has
failed. Zyzzyva fallsback to a protocol that is similar to PBFT: it retransmits the
request to all replicas which, in turn, resend it to the primary. The replicas set
a timer, if no progress is made and enough replicas consider the primary faulty,
a view change occurs, ensuring that the protocol will eventually make progress
on the requests. If the replicas receive the request from the primary, they once
again speculatively execute it and respond to the client. This is where Zyzzyva
under performs in relation to PBFT, if the primary is faulty, the speculative
work done is wasted and needs to be redone in a different view, yielding a worst
case scenario.

(a) fast case

(b) two phase case

Fig. 2. Zyzzyva Message Patterns; f=1. Taken from [5].

The implementation of Zyzzyva uses a number of additional optimizations.
Like PBFT, Zyzzyva uses of MACs and authenticators instead digital signatures
for most of the messages in the system in order to reduce its computational over-
head. Like PBFT, Zyzzyva also has a optimized protocol for read-only requests.
As a way to reduce the bandwidth consumption, when sending replies to the
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client, only one replica responds with the full reply while the others send only
digests of the response.

3.1.3 Quorum and Chain The works above show that it is possible to de-
rive different BFT protocols, that aim at different operational conditions. In
particular, Zyzzyva can outperform PBFT in fault-free runs (which should be
most common anyway). These ideas were explored in [7] to develop a system,
called Aliph that can run multiple protocols, for different operational conditions.
To switch among these protocols, the authors propose an abstraction that all
protocols should implement, called abortability, that captures the required prop-
erties to support dynamic reconfiguration. The underlying idea of Aliph is that
it should be possible to abort the execution of a protocol that can’t perform
under the current system’s conditions, and replace it with another more suitable
protocol.

With this framework in mind, the authors take the ideas of Zyzzyva even
further, by proposing protocols that work under very narrow conditions, but
that can be easily replaced. In this context, the authors propose two protocols,
namely Quorum and Chain, that we briefly describe below.

Quorum is variant of the speculative version of Zyzzyva that is optimized for
the case where there are no faults and there is a single client proposing com-
mands, meaning no contention (and, therefore, replicas cannot receive different
commands in different orders). In this protocol, the client sends the request di-
rectly to all replicas, that execute the request speculatively, and waits for 3f + 1
identical responses. If speculation works, the client can commit the request. If
3f +1 responses are not received or if some responses do not match, the protocol
is simply aborted. Since Quorum responds to the client with a one round-trip it
achieves very low latency, even if only for a very specific scenario. The message
pattern for this protocol in depicted in Figure 3(a).

Chain is a protocol that, like Quorum, is optimized for the fault-free case
but can handle concurrent requests from multiple clients. The protocol is a BFT
variant of the Chain-Replication[12] protocol. The Chain protocol structures
the replicas as a pipeline, where all of them know the fixed ordering of replicas.
The first replica in the order is the head of the chain and the last is the tail.
The client sends its requests to the head of the chain, that in turn assigns a
sequence number to the request, functioning like a primary. After assigning the
sequence number it sends the request to its successor and so on, until it reaches
the tail which responds to the client, as shown in Figure 3(b). Each replica only
accepts messages from its direct predecessor, with the exception of the head.
A technique called chain authenticators(CA’s) allows to provide a proof to the
client that the request was processed correctly by the replicas. This protocol
can offer good throughput in absence of failures, due to its ”pipeline” form of
processing, but requires an expensive reconfiguration of the chain if faults occur.
To avoid such costs, in case of failures, the protocol can simply be aborted and
replaced by another protocol.
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(a) (b)

Fig. 3. Quorum (a) and Chain (b) Message Pattern; f=1. Taken from [7].

3.1.4 Discussion We chose these protocols because we believe they exemplify
how protocols change in function of what they are built to do, namely how the
common case they consider impacts how the protocol works and the assumptions
they make.

PBFT was built to handle contention and still perform consistently under
failures and asynchrony as its common case scenario assumes these scenarios.
Zyzzyva, on the other hand, assumes that faults are not common and tries to
gain performance by not running an expensive agreement step, risking using a
costly recovery scheme if things go wrong. The last two we discussed only run
for very specific contexts, deferring to other protocols when that context is no
longer favorable according to their running conditions.

From analyzing these protocols we can see that a one-size-fits-all protocol
does not exist, and that, to the best of our knowledge,no protocol outperforms
the others in every possible scenario.

4 Adaptive Systems

Nowadays, systems tend to run in highly variable contexts, where conditions
frequently change, e.g. variations to network latency and bandwidth, to the
number of clients and more. In these kind of environments, a monolithic system’s
performance will likely suffer as it can only perform for a restrict set of conditions
for which it was developed. Adaptive systems, on the other hand, are able to react
to said events by changing their configuration and/or structure, e.g. adjusting
resource bounds, triggering machine relocation or even switching the underlying
protocol. Since these adaptations can be defined for a wide range of scenarios,
adaptive systems can be very flexible and embrace those events, allowing them
to maintain or even improve the quality of the service.

An Adaptive System is then a system capable of altering its configuration
during execution in response to changes to its context in order to achieve or
approach a defined goal. The operation of an adaptive system usually involves
the collection of data regarding the current performance of the system. This data
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is used to compute a number of metrics that can be subsequently used to reason
about the need to perform adaptations. These metrics feed an evaluation process,
namely an adaptation engine, that will check if the current configuration is still
appropriate for the status of the environment or still in line with the system
goals. If it is no longer the case, an adaptation may be triggered and changes
will be made to the system.

An adaptation policy defines in which conditions the system should be adapted
and what adaptation should be applied in each scenario. There are many different
ways to express policies, from high level approaches[13, 14] (that mainly specify
the system goals and let the choice of the required adaptations be performed
automatically from those goals) to low level event-condition-action rules[15],
that specify exactly which adaptations should be performed in response to each
event. In any case, the policies embody, explicitly or implicitly, a set of business
goals that the system should strive to achieve. Policies can be defined before the
system is deployed or can be created or improved during execution[16, 9].

The architecture of an adaptive system typically allows the implementation
of a control loop, known as the MAPE-K loop[17], whose name is derived from
its main components, namely the Monitor, Analyze, Plan, Execute, Knowledge.
This control loop captures the main responsibilities and concerns that occur in
an adaptive system. Thus, an adaptive system can be modeled as set of sub-
systems and components that interact among each other, each assigned with
some of the responsibilities mentioned above, as illustrated in Figure 4. When
deployed, the five components of the control loop and the system being managed,
can be clustered in three different sub-systems, namely:

– Monitoring system, the system that will collect the metrics from the system
context by interacting with its “external” components, the sensors. The sen-
sors collect relevant metrics, for the adaptations, from the managed system’s
context. This sub-system takes care of the Monitor and part of the Analysis
concerns of the system and is the target of this report;

– Adaptation System receives the metrics collected by the Monitoring system
and evaluates the state of the managed system against its goals, triggering
adaptations or reconfigurations if necessary. This component will do its own
analysis of the metrics and then plan and execute policies in the managed
system, adapting it to the current context;

– Managed System, the actual provider of services to the clients and the one
that needs to be able to resist the changes of its context to continue to
provide good quality of service to its users. The others depend on the type
of this system, namely for policy definition and metric collection.

4.1 State Machine Replication

In this section we will discuss the Replicated State Machine System, the man-
aged system that we want to monitor with our work, and analyze its character-
istics and capabilities, more concretely what can be adapted in such a system.
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Fig. 4. Generic Adaptive System Architecture.

State Machine Replication(SMR) is a technique to build robust services by
taking advantage of active service replication and state propagation. Thanks to
it, the services built on top of a replicated state machine are able to tolerate
faults and keep providing service to the clients even in their presence. The type
of faults it can tolerate depend on the underlying protocol of the state machine,
we will go into more detail about it ahead.

An SMR system works by running several copies of a service, simultaneously,
usually one per machine to take advantage of different fault probabilities. This
system is composed by three sub-algorithms, namely agreement, view change and
checkpointing. The agreement was discussed in Section 3.1 and view-change is
the process by which the primary in the agreement protocol is changed, as such,
view-changes are also usually handled by the protocol. In terms of checkpoint-
ing, each replica keeps a log of its activity, recording the different agreement
processes, operations executed and responses given to the clients, effectively
working as the replica’s state. After a certain amount of entries are added to the
log, the checkpointing process is triggered and the log is trimmed, thus creating a
checkpoint. A checkpoint represents all the entries added before its creation, and
as such these entries can be safely deleted from the log, keeping it from growing
indefinitely. If a replica lags behind or a new one is introduced they can request
a state transfer from the other replicas that, in turn, send their checkpoints
and “uncheckpointed” log entries effectively updating/recovering the requesting
replica’s state.

Analyzing this type of system and looking at an actual implementation,
namely BFT-SMaRT [10] an open-source SMR library whose adaptive imple-
mentation is the concrete monitoring target of our work, allows us to get some
insight into what can be adapted for this type of system. From our review of the
literature and implementation we denote four main types of adaptations that
may occur in an SMR system:

– SMR’s parameter reconfiguration;
– Reconfiguration of the SMR’s fault model;
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– Protocol Switching;
– Adaptations targeting the system’s replicas;

4.1.1 SMR’s Parameter Reconfiguration Several parameters are set when
a SMR system is deployed, as such, it stands to reason that some of said pa-
rameters could also be reconfigured to accommodate for changes in the system’s
environment.

While the system is occupied with a previous request, incoming requests
are accumulated in message queues. These requests can then be batched for
the agreement process allowing multiple operations to be executed with a sin-
gle agreement, decreasing the cost of running said agreement. The size of the
system’s message queues and batch can be a reconfigurable parameter in the
system. E.g. If the latency in the system is increasing, increasing the size of the
batch will reduce the number of agreements, allowing the system to cope with
the increase in latency. Or if the amount of requests keeps increasing and the
system still has free memory, the size of the message queues can be increased
along with the size of the batch to handle that load, instead of just dropping
requests.

The messages exchanged within the system utilize some form of cryptography
to ensure its authenticity and integrity. The two main techniques used in an
SMR system are digital signatures and MACs, each with its own strengths and
weaknesses. As such, we could reconfigure this property as necessary, either
to gain performance (using MACs) or a stronger authenticity premise to the
messages, like non-repudiation.

The last parameter for reconfiguration we will discuss is the value to trigger
the checkpointing process. As shown in [15] this parameter, for the BFT-SMaRT
library, has different ideal values depending on the number of replicas in the
system. If an adaptation to scale the replication factor either up or down exists
for the system, then checkpointing threshold should also be reconfigured.

4.1.2 Fault Model Reconfiguration SMR systems can also be configured
in terms of their fault model, more specifically, they can run one of two types of
fault tolerance, Crash Fault Tolerance(CFT) or Byzantine Fault Tolerance(BFT)
for the agreement step. This configuration will have an impact on other possible
configuration parameters, namely the number of servers necessary to tolerate f
faults thus changing the replication factor, 2f + 1 and 3f + 1 for CFT and BFT
respectively, and the underlying protocol used in the agreement step.

Considering certain business models where, for some periods of time, the
system’s throughput becomes more important and some amount of ”loss” is
acceptable, an interesting approach would be to allow the system to switch
its fault model from BFT to CFT, by changing the underlying protocol, e.g.
switching some protocol like Zyzzyva or PBFT to something like Paxos[18], also
effectively increasing the amount of crash faults tolerated. By running the less
expensive fault model, the system would be able to increase its performance and
be able to handle more requests thus possibly still compensating for the loss in
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robustness. The opposite is also possible, changing from CFT to BFT if some
erratic behavior is detected, gaining robustness at the cost of performance.

4.1.3 Protocol Reconfiguration As discussed in Section 3.1, there are a
wide range of different protocols but none that outperforms the others in every
scenario. As such, a meaningful adaptation that can be done in an SMR system
is switching the underlying protocol to suit the current context of the system,
as evidenced in [7, 9]. With this adaptation we can create a system that can
leverage the benefits of existing solutions and mitigate their shortcomings.

Protocol switching can be done in one of two ways, a static approach or a
dynamic one. In the static approach there is a fixed order for the protocols, when
the conditions do not suit the current protocol, it aborts and a switch to the next
one in line is made, as shown in Aliph[7]. As is done in Aliph, we could have an
order like Quorum to Chain and to Backup (authors use PBFT). This approach
suffers by not taking advantage of other information about the characteristics
and performance of the protocols. This is where dynamic switching comes in, by
analyzing how the protocols behave in a wide range of scenarios we can make
more educated switches as evidenced in ADAPT[9]. Even if the context of the
system is still in line with the protocol in place, another protocol can have better
performance in the same context, as such a switch to this second protocol would
be beneficial to the system.

4.1.4 Replica Adaptations Since an SMR system uses a replication factor
to mask faults, we could introduce adaptations at this level. The replication
factor could be reconfigured as threat level changes by scaling up or down the
number of replicas in the system[15] or even by moving replicas to other machines
in a more “secure” location.

Also, considering that the system can only make guaranties about the safety
and integrity of its service if the number of faulty replicas does not exceed f ,
it would also be reasonable to have adaptations that deal with faulty replicas,
more specifically having the capability of:

– Reconfiguring a faulty replica;
– Switching the replica out for a “fresh” one;
– Moving the replica to another machine;

The adaptation of moving replicas from one machine to another can also
have another purpose. It can be done as a way to increase the capability or
performance of said replica by increasing the base resources it has access to,
because some co-located workload is incompatible with the system’s workload[19,
20] or even if the probability of failure for that machine has increased[21].

5 State Machine Replication System Monitoring

In this Section we will discuss the Monitoring System which is the main focus
of this work. Namely, we will look at the general architecture of the monitoring
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system, what kind of metrics will be collected from the monitored system, and
what type of faults the monitor system will detect.

5.1 Monitoring System’s Architecture

One of the main purposes of the monitoring system is to collect metrics about
the performance of the monitored system and about its operational environment.
The collection of metrics is done by deploying an infrastructure of components
called sensors. The sensors are deployed along side the managed system, having
the responsibility of monitoring it, by reading metric values and detecting rele-
vant events that may occur. Sensors can be placed in the processing nodes, to
measure metrics such as CPU utilization, memory utilization, etc, or in network-
ing components, to measure metrics such as packet loss, available bandwidth,
etc.

Values collected by the sensors are typically sent to a logically centralized
component of the monitoring system. This component, that we will simply name
the monitoring broker, is in charge of aggregating and filtering data collected by
the sensors (for instance, by masking erroneous values sent by faulty sensors)
and in charge of sending the processed sensor information to the Adaptation
Manager (AM). In turn, the AM will use the values provided by the monitoring
system to feed the policies that define how the system should be adapted. The
transfer of information from the sensors to the broker can be performed by
pushing the information from the sensors to the broker, by having the broker
periodically pull the information from the sensors, or by any combination of
these two approaches.

5.1.1 Fault Tolerant Monitoring System As with any other system com-
ponent, a sensor may be subject to faults. A faulty sensor may provide inaccurate
readings, that do not reflect the real state of the system. If the faulty reading
escalates to the Adaptation Manager and the policies are not robust enough to
tolerate such inaccurate readings, one may induce the system to perform non-
optimal adaptations, or even adaptations that may cause the system to fail.
Therefore, whenever possible, we would like the monitoring system to imple-
ment mechanisms to filter inaccurate values that may be potentially provided
by faulty sensors. In this way, at least for some metrics, the monitoring sys-
tem can guarantee the delivery of accurate information to the the adaptation
manager, simplifying the specification of the adaptation policies. Typically, tol-
erance to faulty sensors can be achieved by replicating the sensors and then by
applying some voting function to the values provided by different sensors. Note
that, in some cases, it is not feasible to install redundant sensors, and the faulty
values must be handled explicitly at the AM level. For instance, if a node has
been compromised by an attacker, it may be impossible (but most likely, also
irrelevant) to determine exact value of CPU utilization at that node.

Naturally, the monitoring broker (that collects the values from the replicated
sensors and applies the filtering functions) may also be subject to faults. There-
fore, the broker itself needs to be replicated. Since that, in turn, the adaptation
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manager will also need to be replicated, in the report we advocate a deployment
where each replica of the monitoring broker is colocated with each replica of the
adaptation manager, such that the fault-tolerance of these two components can
be dealt in an integrated form. However, the need to replicated the monitoring
broker opens the door for a faulty sensor to send conflicting values to different
replicas of the broker. In turn, this may cause different replicas of the broker
to pass conflicting monitoring information to the different replicas of the adap-
tation manager. To avoid this issue, some form of agreement must be executed
among replicas of the monitoring monitor.

A potential problem that may occur when building a fully fault-tolerant mon-
itoring system is that the need to use replicated sensors may induce a significant
load on the monitoring tasks. Assume that each sensors is replicated using 3f +1
replicas and that the system requires the use of x sensors, we may need to de-
ploy x(3f + 1) sensors, which can be an high number even for small values of f
and x. For instance, just to tolerate 1 faulty sensor, and by having 5 different
types of sensors, we would need to deploy 20 sensors’ replicas in the system, each
sending readings to the different replicas of the broker, which would account for
80 messages for each monitoring cycle. To mitigate this problem we will support
different fault models and different replication degrees for each class of sensors,
such that information regarding the semantics and the implementation of sensors
can be used to avoid unnecessary redundancy. For instance, it may happen that
the implementation of a given sensor makes the occurrence of byzantine faults
unlikely, or that, for some metrics, the adaptation policy is robust to inaccurate
readings, and therefore less than 3f + 1 replicas need to be used.

Another potential problem is the amount of coordination that needs to be
performed among replicas of the monitoring broker to ensure that consistent
outputs are generated. To run a separate consensus for each value received from
a (potentially faulty) sensor is certainly prohibitively expensive. Therefore, we
aim at batching agreements of individual readings, and performing these multiple
consensus in parallel.

5.2 Relevant Metrics to Monitor

The exact sensors to be implemented during this project are still unknown at
this stage. This will naturally depend of the properties of the managed system,
the types of adaptations it supports, and on the needs of the adaptation policies
that are going to be implemented by the adaptation manager. These components
are also still under development at this stage. Nevertheless, in this section, we
aim at identifying some of the relevant metrics that may be important to capture
by the monitoring system that we aim at developing.

The main concerns with a SMR system are its performance and robustness.
This performance and robustness can be affected by a number of factors directly
or indirectly. As such, we identify some of these impact factors and provide some
examples of the respective metrics that the monitoring system needs to capture:

– Workload Patterns: The number of request per unit of time that are made to
the system, and the characterization of these requests, has an obvious impact
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on the system performance. Besides the presence of faults, the impact fac-
tors that most significantly affect the protocol’s performance are number of
clients, request size and response size[9]. In most cases, the workload changes
with time, such that it may be relevant to adapt the system configuration
accordingly. Information regarding the workload can be measure at the sys-
tem interface, for instance measuring the number of requests that arrive to
the proxies, or indirectly though the observation of the state or performance
of some system components (for instance, inferred from the size of request
queues);

– Network Utilization: In a distributed system, the network is often a bot-
tleneck that can limit the system performance. Different protocols make
different tradeoffs between network utilization and other properties, such as
latency. For instance, quite often it is possible to reduce the latency of a
protocol by sending more messages; naturally such latency benefits are only
experienced if the network is not saturated. Information about the network
utilization, as well as information regarding other network properties, such
packet drop rates, can be useful to select the right system adaptation;

– Machine Utilization: Other potential bottleneck source in a distributed sys-
tems are the resources of each individual node, such as memory and CPU.
Elastic scaling, the ability to automatically increase or decrease the number
of servers in response to changes in the workload, is a classical example of a
type system adaptation that can benefit from detailed information regarding
the resource utilization at each node. Furthermore, as we have seen, BFT
protocols are often asymmetric, and there is often one node (the leader) that
has more tasks than the remaining nodes (the backups). Knowledge about
the resource utilization of each machine in a BFT configuration may be use-
ful to select the most appropriate node to execute the role of the primary in
a failure-free run.

– Threat Level: Byzantine faults are often caused by a malicious agent that
is able to intrude the system. A number of intrusion detection mechanisms
exist that are based on detecting anomalous patterns in the system behavior
that may indicate attempts by an adversary to intrude the system. Such
information can be used, with information from other sources, to compute
a threat level that is correlated with the likelihood of malicious faults and
that may be used to reconfigure the system to a configuration that is more
robust, even if the cost of a performance loss (by using more replicas or by
using more diverse, but less optimized, implementations).

5.3 Fault Detection

The monitoring system can also detect and report the occurrence of faults.
Knowledge about the faults and their location can be used by the adaptive
system to automatically perform corrective measures, for instance by re-starting
replicas or launching new replicas to replace failed replicas of a given component.
Note that even if the managed system is able to mask a fault, this information
is critical to allow the system to recover the original degree of fault-tolerance.
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For instance, a typical BFT protocol can continue to operate if one of the repli-
cas is faulty, but the faulty replica should be replaced before new faults occur.
Also, an early detection of faults, and a quick triggering of corrective measures,
may ensure the containment of errors to a small subset of components, making
recovery more efficient.

There are two approaches to fault handling :

– Fault Masking: We discussed this approach in Section 3, it utilizes a replica-
tion factor to hide the presence of faults to the clients up to a certain number
of faults.

– Fault Detection: This method to fault handling consists in detecting faulty
components so that they can be either removed or repaired. This approach
will the topic discussed in this section.

5.3.1 Background The work done in the context of Fault Detection is ex-
tensive, specially in attempts to solve the consensus problem in the presence of
faults, evidenced by the work done by Chandra et al. [22] where they introduced
the concept of unreliable failure detectors and study their potential to solve the
consensus in the presence crash faults, which is later expanded to byzantine
faults by Kihlstrom et al.[23] and Malkhi et al.[24], to name a few.

Unreliable Failure Detectors have been categorized as having two proper-
ties[22]:

– Completeness: There is a time after which every process that crashes is
permanently suspected by some correct process.

– Accuracy: There is a time after which some correct process is never suspected
by any correct process.

The definition of these two properties will depend of the strength of the
detectors considered as well as the faults they detect, the one presented above
is in relation to the weakest failure detector considered in Chandra et al. work
in the context of consensus in the presence crash faults. E.g Kihlstrom et al.
and Malkhi et al. present these properties in the context of byzantine faults,
or Doudou et al.[25] that present them for a more particular\restricted class of
byzantine faults, namely muteness faults.

Failure detectors are not omnipotent, and as such there are limitations to
what can be detected, such that byzantine faults can be divided into non-
detectable and detectable failures[23].

– Non-detectable Byzantine faults are faults that cannot be detected from re-
ceived messages or that cannot be attributed to a particular process, e.g a
Byzantine process that sends a different initial value than the one it was
supposed to.

– Detectable Byzantine faults can be defined as two different sets, omission
faults and commission faults. Omission faults occurs when a process does
not send a required message to all necessary processes.
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Commission faults, on the other hand, are divided into two types, processes
that send messages not properly formed or authenticated and processes that
send divergent messages to the different replicas.

The Crash Faults can be defined as a subset of byzantine omission faults, as
such we focused on the classification of the byzantine fault type. In Figure 5 we
can see a visual representation of this fault classification.

Fig. 5. Byzantine fault classification.

Considering that the presence of these faults can also be because of an attack
perpetrated with malicious intent and not simply an arbitrary occurrence, an-
other interesting concept to employ in fault detection is Intrusion Detection[26].
This type of detection works by scanning the network or machines for signs of
”foul-play” that could indicate that an attack is occurring, a machine has been
intruded or that such attempts were made. E.g by detecting an unusual amount
of port scans done to the machines where the replicas are located or detecting a
great amount of requests with the purpose of taking the system offline. However
they also have some issues, they are either based on heuristics that can produce
an high quantity of false positives and negatives or require a formal specification
of what to expect out of a system, which for complex systems, like one that
utilizes protocol switching, can be hard to produce or maintain.

5.3.2 Interest in Fault Detection Haerberlen et al.[27] present a case advo-
cating in favor of fault detection, and very concisely expose the main advantages
of this approach, such as enabling a timely response to faults detected and serv-
ing as a deterrent to attacking the system itself, among others.

Although this work is directed at monitoring a system that utilizes fault
masking, both approaches are complementary to one another. Fault detection
can be used to enhance the resilience of the masking method to fault handling.
Since a system employing the fault masking technique can only mask the faults
to the clients and guarantee the service correctness up to a certain number of
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faulty replicas, its useful to be able to detect which of the replicas of the system
are the faulty ones and repair them preventing the number of faulty replicas
from surpassing that threshold, thus extending the system’s life and preventing
severe harm from occurring.

Some systems that utilize the concept of fault detection have already been
introduced:

Falcon[28] is a failure detector that leverages internal knowledge from various
system layers to present sub-second crash detection and reliability with little dis-
ruption. Falcon uses a network of spies that monitor the various layers and report
if they are UP or DOWN. Considering that there is some degree of possibility
for a false positive where a reported DOWN layer can start sending messages,
Falcon’s spies as a last resort kill the layer they suspect to be DOWN, making
that report definitive, aiming at the smallest layer possible. This killing process
introduces a degree of cost to deal with false positives as it can be coarse-grained
or fail under the presence of network partitions. In response to this, Albatross[29]
was introduced as an improvement over Falcon. This failure detector still utilizes
the spy network introduced with the previous system, but instead of killing the
layer to create a definitive report it uses Software Defined Networks, modifying
it to prevent the messages of the suspected crashed processes to get through to
the correct ones.

PeerReview[30] is another failure detection system but for a byzantine con-
text. Its aim is to provide accountability in distributed systems in a general
and practical way, ensuring that byzantine faults observed by correct nodes are
eventually discovered and linked with the faulty node. In PeerReview each node
keeps a tamper evident log that records the messages sent and received by it as
well as the input and outputs of the application, this allows the detection of de-
viant behavior by a particular node. The system thus requires that the messages
are signed in order to guarantee their non-repudiation and prevent spoofing,
allowing their utilization as proof to show faulty behavior.

The last example we will discuss is ByzID[31], a Byzantine fault-tolerant
protocol that tries to approach the costs of crash tolerant algorithms by utilizing
an Intrusion Detection System (IDS). This protocol relies on a specification-
based IDS to detect and suppress primary equivocation, enforce fairness, detect
various other replica failures and trigger replica reconfiguration, making it almost
like a Primary Backup protocol that tolerates byzantine faults, requiring only
2f+1 replicas. It is able to this by integrating an instance of said IDS into
each replica to monitor and discard messages that are not in conform with the
specification. To have this kind of responsibility and power, the IDS needs to be
built on top of trusted hardware to become a trusted component for the system
and, although the authors claim that this IDS is simple and lightweight in order
to be able to be built as a trusted component, we believe that in practice this
might be a more complicated assumption. Considering the power the IDS has in
order to keep the replicas in check, it might not be as lightweight as assumed,
and no practical implementation in trusted hardware is presented.
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6 Architecture

In this section we propose the architecture for the target of this paper, the
Monitoring System (MonS).

6.1 Overview

As discussed in the related work above, the MonS is one of three main com-
ponents in an adaptive system, the monitor will have to communicate with these
other components, either to monitor the components, in the case of the Man-
aged System (MS), or to relay the information collected in the case of Adaptation
Manager (AM).

The MonS consists of a monitoring broker which we will designate as the Ag-
gregator and an infrastructure of smaller components, the sensors. The sensors
will collect data from that MS’s context and from the MS itself and then trans-
mit that information back to the aggregator. The sensors are then, the points
of contact between the MS and the MonS. The aggregator takes that data, pro-
cesses it and then feeds it to the AM, thus acting as a proxy for this information
and being the point of contact with the AM. The interactions between the com-
ponents of the MonS and between the other subsystems of the adaptive system
are exemplified in Figure 6

Fig. 6. Monitoring System interactions in the adaptive system. Components in yellow
are part of the Monitoring System, the ones represented by the S are the Sensors.

As discussed in section 5.1.1 the MonS will have to have a fault tolerant
architecture. The aggregator will be built using the BFT-SMaRT library as a
basis, but with some alterations, considering responsibilities of this component
that will be discussed in section 6.3. The sensors will be built as simply as
possible to limit the overhead their presence will have on the MS. They will
merely collect the metric values and send them to the aggregator. As stated in
section 5.1.1 in order to achieve this simplicity, even for the replicated sensors,
the responsibility of running the consensus for the values collected will be pushed
onto the aggregator. The aggregator will have to receive the different values for
the metrics and aggregate them as it will be discussed in section 6.3.
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6.2 Sensors

We divide the sensors into three types depending on the type of faults they
tolerate, namely non-replicated, crash tolerant or byzantine tolerant. This dis-
tinction needs to be made because the conditions for each sensor change ac-
cording to where they are deployed or the type of metric they gather, and some
of their configuration changes as a result. Each sensor (if singular) or sensor’s
replicas (if replicated) are defined by four configuration parameters. (1) The
identifier, a value that identifies the sensor or sensor replicas and the metric
that it collects. This is used to identify the values obtained for said metric be-
fore the AM; (2) their type that as referred above we separate into three different
categories; (3) IP Address to identify the sensor in the network; and (4) a public
key (or keys) used for creating secure communication channels or authenticate
the messages transmitted by it.

Considering the impact the sensors can have on the MS’s environment and
its performance, as we referred before, they being as simple as possible is a
key requirement to keep in mind for their implementation. The type of metric
that the sensor will target and the place where it will be deployed will influence
how the sensor will be implemented and the process by which it will collect the
metric. As such, some considerations need to be made for their implementation
like operating system, programming language, available libraries that depend on
the previous two, among others. Some sensors will possibly require that the MS
implements an API in order to collect accurate information about its internal
state, e.g sensors that track the correctness of the messages structure, as the MS
will adapt its protocol, message structure might also change.

As discussed in sections 4.1.1 and 5.2 the metrics collected reflect important
factors that impact the MS. We divide these metrics into three categories:

– Performance Metrics: Data that directly affects or is related to the perfor-
mance of the MS, such that its collection can give insight on how the system
is performing. This includes metrics such as latency, throughput, etc;

– Resource Metrics: As the name implies this applies to information on how
resources are being spent and their availability in the MS, e.g CPU con-
sumption or available memory;

– Fault Metrics: Metrics that indicate the presence of faulty components or
threat level in the overall system.

Although some metrics can be categorized as belonging to more than one
type, we consider their primary application for this categorization. In Table 1
we present possible sensors considered to be integrated into the MonS, divided
with the categories presented above.

6.3 Aggregator

In this section we will explain in detail how the aggregator is constructed,
how it works and its features. In Figure 7 we see how the aggregator is composed.
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Table 1. Sensor Examples.

(a) Performance Metric Sensors.

Sensor Description

Latency Records the latency present in the system

Throughput Measures the amount of requests being processed by the
system

Capacity Collects the number of active clients sending requests to the
system

Request & Response Size Captures the size of incoming request and respective re-
sponses

(b) Resource Metric Sensors.

Sensor Description

CPU Consumption Records the CPU utilization percentage for the replicas ma-
chine

Disk I/O Collect disk I/O statistics, namely reads and writes

Memory Consumption Captures the memory consumption percentage

(c) Fault Metric Sensors.

Sensor Description

Quorum Records the replicas that participate in the quorum of the agree-
ment Protocol

Crash Checks if the replica’s process is still running

Muteness Checks to see if a replica is not sending the messages that it should

Divergence Checks if the messages that a replica sends to other replicas diverge

Incorrect Messages Checks to see if the messages are properly formed and authenti-
cated

Fig. 7. Aggregator internal workings. (component S is a Sensor).
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6.3.1 Aggregation Function In order to save on the cost of adding fault
tolerance to the sensors and help keep them as simple as possible, the aggrega-
tor is in charge of the data condensation, namely each set of replicated sensors
will have an aggregation function associated with it, e.g some basic operation
like averaging the result, discovering the median of the values received or even a
composition of operations to create a more complex aggregation. This function
is applied to “rounds” of metrics as they are collected (the sensors gather met-
rics sequentially, sending the metrics with its attached sequence number, thus
composing a “round”). The result of the aggregation function is then sent to the
AM in a robust manner. Another application of this function, besides aggregat-
ing the replicated metrics, is applying some degree of processing to the data,
such as transforming the raw information into to more easy to use data for the
AM, thus serving some purpose even for non-replicated sensors. This function
also needs to be deterministic in order to guarantee that every replica arrives at
the same result.

The aggregation function by itself is not enough to guarantee the integrity
and equality of its result across the different replicas of the aggregator, e.g if one
of the sensor’s replicas is faulty it could send different values to each replica of
the aggregator, effectively making each of them output a different value when
aggregating the results. As such, before applying the aggregation function the
diverging values for the replicas of the sensors need to be filtered out.

In order to achieve this we need an extra filtering step before the aggregation
function is applied to the values received. This is done by running a consensus
when the metrics are received ensuring that by the end of it, all correct replicas
of the aggregator will have the same values as input for the aggregation function.

6.3.2 Prediction Function Since the adaptations executed by the AM are
triggered by changes in the state of the environment, if we could somehow un-
derstand how the context will evolve we could have a system that preemptively
triggers such adaptations in response to events before they even happen. To ac-
complish this, we need to look at current and past events that occur in the MS’s
context and try to predict what might be coming ahead.

This function is defined and then associated with the sensor much like how
it is done with the aggregation function, but unlike it, the prediction function
also takes into account past events, as such metric values for sensors that have
this option defined will have to be stored for future use. The final result of this
function will be a tendency, so by receiving the input and crunching the data it
will output a supposition on how the values of that sensor will develop in the
future. If they will stable, have a tendency to rise or decrease, e.g if the latency
values have been steadily increasing for the past twenty collections made, then
a very simple prediction function could look at this and say that latency as a
tendency to continue to go up. Also, considering how some factors impact each
other, this function could also take into account the data from other sensors if
available.
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6.3.3 Metric Propagation When the final value for the metric is obtained,
the aggregator replicas will have to propagate it to the AM. To achieve this we
have two options. In the first one we treat each of the aggregator’s replicas as
a process that shares the same machine with a replica of the AM, and as such
the value can be passed directly from the aggregator to the AM. This works
because all correct replicas of the aggregator possess the same result for the
metric collected, and even if some replicas of the aggregator are faulty since
they are co-located with the processes of the AM, those replicas of the AM
will also be faulty. The main advantage of this method is the resources saved
in the message exchange, each process sends/receives exactly one message. On
the other hand, the MonS and AM become integrated with one another, thus
imposing some restrains to the AM, namely it terms of its replicas deployment.
Since the replicas will have to be co-located, we cannot take advantage of different
machines to power both the system monitoring and adaptation engine separately.

The second approach would be to have each replica of the aggregator prop-
agate its result to each replica of the AM. When the replicas of the AM receive
2f+1 messages with the same value, they can deliver it to the policies for consid-
eration. The amount of messages sent with this approach is its main drawback,
since we would have each replica of the aggregator send a message to each replica
of the AM, thus having a great number of messages circulating in the system.
Although this effect can be mitigated with the use of batching and sending var-
ious results to the AM, it will still tax the system. Unlike the other approach,
this does not have limitations in terms of replica deployment, as the MonS and
AM are independent systems.

6.3.4 Extensibility The MS’s goals may be subject to change, introducing
new needs and consequently new possible adaptations. This introduction may
imply a need to gather new metrics from the execution environment, meaning
the sensor infrastructure would also need to be expanded further than for what
it was deployed, in order to accommodate this need. Furthermore, some adap-
tations, e.g replica relocation, as they are triggered, may shutdown or redeploy
certain sensors as a result of it, possibly changing configuration parameters of
said sensors. Considering this, there is a clear demand for the MonS to be built
using a modular and extensible approach such that it could be augmented with
new sensors, be able to disconnect retired ones, add and remove sensors’ replicas
or even seamlessly change the underlying aggregation or prediction functions of
sensors.

The management of sensors needs to be made at the aggregator level, working
with coordination from the AM. As such, this component will provide an API
in order to receive requests to change these settings. This API will have to be
robust considering the fault tolerance aspect of the system we are constructing.
And so, considering that the AM is also a replicated component, in order for
it to accept and execute the reconfigurations, the MonS will need to receive,
going by the standard, 2f + 1 equal requests from the AM replicas in order to
guarantee the legitimacy of the demand.
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To add a new sensor this API will need receive a set of parameters, some of
the ones defined in Section 6.2 and some others, which will represent the sensor
in the aggregator:

– Identifier: This will identify the sensor and the metrics it collects before the
aggregator and the AM. As such, the most probable identifier would be the
name of metric collected by it;

– Type: Indicates the type of sensor, either non-replicated, crash or byzantine
tolerant;

– Number of Faults: This represents the number of faults tolerated by the
sensor (0 if non-replicated);

– IP List: List of IP’s for the sensor, one or more depending on its type. If the
sensor is replicated. This will also define the order for the replicas;

– Public key(PK) List: List of PK’s that will be used to establish a secure
connection with the sensor in the network. Their order must be that of the
previous parameter;

– Aggregation Function: This is the function used to aggregate the results.
This is defined by implementing an interface, with a method that receives
an array of inputs and outputs a result;

– Prediction Function: This is the function that will analyze the present and
past data received from the sensor and try to predict how the system’s
context will evolve for that particular metric. By defining this, the values
will be stored up to a certain amount also defined by this function. This
function will also have to specify if it depends on other sensor’s information,
if the sensor does not exist or has not been associated with aggregator this
will be kept in a dormant state.

To add and remove replicas of a sensor is just a case of sending the Id of
the sensor, the IP or IPs of the replicas and their respective PKs. Depending
on the case, its removed or added to the list of accepted inputs. When adding,
the replica’s value will be put in the end for the order in the array, and in case
of removal the order is adjusted accordingly. To alter the aggregation function
or any other parameter (except the identifier) is just a question of sending the
parameter’s value and the sensor’s identifier using the provided API.

7 Evaluation

In this Section we define the metrics that will be used to evaluate our solution.
We are interested in measuring the overhead the Managed System monitoring
will have in its performance, how our solution performs and how accurate is our
fault detection.

To evaluate how much overhead the Monitoring System causes, we will start
by evaluating the performance (this will be measured in terms of throughput) of
the managed system without any monitoring to establish a baseline. After this
is established we will measure the performance with varying degrees of metrics
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collected, by increasing the number of active sensors, and do a comparison of
the results.

Another important metric to evaluate in how well the solution performs. We
will evaluate the solution in terms of metric throughput towards the Adaptation
Manager, with varying amounts of sensors active and in the presence of faults.
Also important is how well the Filtering/Aggregation approach, described in
Section 6.3, works namely how close to the actual value for the metric it is. This
will also be tested with and without the presence of faults.

Lastly, to evaluate the accuracy of the fault detection implementation we will
look into false negatives and positives detected, by introducing artificial faults
into the replicas of the managed system.

8 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

9 Conclusions

In this document, we started by presenting the motivation and challenges
that drives this work and also defining the goals for the work.

After that, we contextualized the problem showing the literature review done
on the subject. First we presented some of the different state of the art protocols
for byzantine fault tolerance and showed the differences between them. With
these differences we concluded that neither of them is better than the others in
every scenario. As such, it stands to reason that a system able to take advantage
of the right protocol for the right context is an interesting concept.

With this in mind, we discussed Adaptive Systems, what they are, how they
adapt and how they are composed. In this topic, we then discussed the moni-
toring target of our work, the replicated state machine, and looked into to what
could be adapted in such a system.

Lastly we examined the target system of this work, the Monitoring System.
Here we looked into how a monitoring system is composed, and how the mon-
itoring target affects this architecture, namely how how the monitoring system
needs to be fault tolerant in order to produce correct information for the Adap-
tation Manager. Furthermore, we discussed what the system needs to capture
from the managed system and the topic of fault detection.
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With the related work presented, we described our solution, taking into ac-
count the requirements that such a system would require and need to satisfy,
namely introducing a byzantine fault tolerant architecture built with sensor ex-
tensibility in mind.

We close this report by presenting the metrics that will support the evaluation
of our solution and assess the quality of our work.
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