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Abstract—Adaptive systems (AS) are capable of altering
their configuration in response to changes in its execution
environment, caused, e.g, by faults or alterations in access
patterns. A key component of any AS is the monitoring
system (MS), responsible for collecting information regarding
the operation and detect the changes to feed the policies that
guide the system adaptation. The MS is especially complex
in the presence of Byzantine faults, where system components
may produce incorrect messages, or even trigger unwarranted
adaptations, weakening the AS or making it less efficient. In
this work, we describe i) the choices made in the development
of a robust and flexible MS capable of handling various types
of sensors; And, ii) the mechanisms that allow the system to
provide a coherent view of the state of the AS, aggregating the
information provided by the sensors in a fault-tolerant manner.
The evaluation shows the extensibility of our SM and its scaling
capability.

I. INTRODUCTION

Adaptive systems modify their behavior in response to
changes in their execution environment, such as faults,
access patterns variations, utilization of shared resources,
the variation in system workload imposed by the number of
clients, service goals, etc. These dynamic changes trigger
alterations that affect the performance of the different sys-
tem’s components. For example, some Byzantine Fault Tol-
erant (BFT) protocols like Zyzzyva [1] operate in favorable
conditions, in a optimistic mode, where they present their
best performance. That being said, in the presence of faults,
Zyzzyva needs to execute complex additional stages of
communication, that impose an higher number of messages,
reducing its performance [2]. In similar fashion, other BFT
protocols found in the literature also employ optimizations
for specific scenarios of operation [3], [4], [5], [6], [7].

The lack of a standard solution, that is to say one adequate
for every operation condition, created the opportunity for the
construction of adaptive BFT systems that alternate between
different protocols in response to the dynamic changes in the
execution environment [6], [8], [9].

An important component of any adaptive system is its
underlying Monitoring System (MonS), responsible for col-
lecting information about the overall state of the main
system, which can then be used to feed adaptation policies.
This component is particularly complex in the presence
of Byzantine faults, where incorrect replicas may produce
messages in order to trigger wrong adaptations, making

the system vulnerable to possible attacks or exhibiting sub-
optimal performance. In order to avoid these issues, the
MonS must also be tolerant to Byzantine faults. This means,
not only being capable of tolerating incorrect MonS’ replicas
but also faulty sensors. Meaning that, even if a fraction
f of replicas from a sensor produce wrong values, the
MonS should still be able to feed the policies with correct
and coherent information about the target system. Note
also, that even correct replicas of a sensor might naturally
diverge in the collected values. For example, the reading
may be slightly shifted in time, meaning that although the
values are correct, they are from different points in time.
Furthermore, besides these challenges, its important that the
MonS’ architecture be flexible in order to develop more
Sensors.

With this work, we present a MonS that is autonomous,
robust and flexible, allowing the creation and management
of different types of sensors, capable grouping data from
various sources to export a coherent view of the main sys-
tem, even in the presence of Byzantine faults. The remainder
of this abstract is structured as follows: in Section II we
present part of the context that supports and motivates our
work, focusing on the monitoring strategies of adaptive
systems already introduced. In Section Il we present the
system model and the assumptions made and taken into
consideration during our work. In Section IV we present
the general view of the system detailing its architecture,
interfaces and main functionalities as well as the design
choices made. In Section V we present the results on the
evaluation of our work. Lastly, conclusions are presented in
Section VI

II. RELATED WORK

Like it was discussed before, some adaptive BFT systems
have already been introduced, each with its own monitoring
component. As such, in this section we will approach the
different solutions that have been introduced in said systems.

A. Aliph

Alyph[6] is a pioneer of its kind, an adaptive state ma-
chine system capable of switching its underlying Byzantine
fault tolerant protocol as its context changes. With this
system, the current protocol function only in the conditions
it was designed to perform best and when those conditions



change it defers the execution to another protocol that can
handle them, where after a quarantine period the initial
protocol is put in place.

The system changes protocols in a fixed “circular” or-
der utilizing three different protocols to handle worsening
degrees of concurrency or asynchrony deferring in the end
to PBFT[3] as a means to handle the worst case scenarios.
This static protocol switching presents some disadvantages
as it does not take into account other information from
the environment that also affects the protocols’ performance
(e.g. latency or number of clients), and as such it presents a
barely existent monitoring infrastructure, where only when
a timeout is reached or inconsistency with the replicas
responses occurs, a PANIC process is started and the next
protocol in line is put in effect. Returning back when a
quarantine period has passed.

B. ADAPT

Adapt[8] builds upon this concept gaining in performance
against the previous system by collecting and utilizing more
information about the context of the managed system in
order to chose the next best protocol, thus making the system
capable of dynamically switching its underlying protocol.

Adapt is divided into two main components, namely a
Quality Control System (QCS) and an Event System (ES).
The QCS takes care of utilizing the information collected
to evaluate the current protocol and deciding if switching to
another would grant the managed system more performance
or if that gain in performance is worth the switch. In order
to evaluate the protocols, it uses machine learning models to
predict the protocol’s performance. The ES is the component
in charge of collecting information from the system’s context
that most impacts the system and feeding it to the QCS.

Since the main focus of this work falls on the QCS and the
dynamic protocol switching the ES is left as possible future
work. Thus, it is implemented as a simple module, only
reading information from the application, such as message
size and the number of active clients, and not employing any
form of fault tolerance, not being robust to the presence of
faulty sensors or its own replicas.

C. Bytam

Bytam[9] tries to expand the adaptability of these types of
systems by introducing more flexibility in the development
of adaptation policies, namely introducing the possibility
to define Event-Condition-Action policies. Furthermore, be-
sides flexibility it also expands the targets of said adap-
tations, not only considering changes in protocol but also
changes to the number of replicas or internal parameters of
the SMR.

Although in this system, and contrasting with ADAPT,
a robust monitoring infrastructure is considered where a
replicated component that can receive information from
replicated sensors, the main focus of the paper is still the
adaptation side of the system showing a limited specification
for the monitoring system and a rigid monitoring infrastruc-
ture restricted to a fixed set of sensors.
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Figure 1. System Architecture

III. SYSTEM MODEL

We assume a distributed system composed by several
processes that communicate by exchanging messages. The
system is asynchronous, in the sense, that processing and
communication times may occasionally exceed any limita-
tion previously imposed. However, we also assume that the
behavior of a majority of the processes, including the ones
pertaining to sensors, does not make a timely adaptation
to the system an infeasible task. The processes also have
access to an external source of time. This source is used to
mark the different readings with timestamps; we also assume
that the clock synchronization of the processes pertaining to
the sensors is external to our system and done by a trusted
source.

The different components of the system are subject to the
occurrence of Byzantine faults, thus capable of exhibiting
arbitrary behavior. These faults may occur due to natural
causes or from the intrusion of malicious agents. We assume
that a maximum f = L%‘HJ replicas of each component may
exhibit Byzantine behavior, where n is the total number of
replicas for the given component; these replicas may also
collude in order to try subverting the system. Lastly, we
also assume that the processes possess limited resources
and can not break the cryptographic techniques used in our
algorithms.

Lastly, although the system could feed different types of
systems, we currently assume that the target that consumes
the monitoring information is an Adaptation Manager (AM)
integrated with our system that uses the collected data to
evaluate policies and trigger adaptations in order to improve
a managed system. We also assume that this manager is
deterministic in its actions and decisions.

IV. ARCHITECTURE

The monitor system is comprised of four main compo-
nents, namely: A set of 1.Semsors, a Monitoring Broker
which we designate by 2.Aggregator, a 3.Data Store and
a 4.Consensus Module. And a few secondary ones, that
provide useful functionality not tied to the core functioning
of the system. A general representation of the system is
presented in Fig. 1.



The sensors collect information from the Managed System
(MS) and its execution environment. They work in one
of two operation modes: they may respond to a sporadic
event (e.g. a crash, leader change) or provide a continuous
flow of updates regarding some characteristic from the MS,
to compute statistics (such as system load or throughput).
Given that a BFT system is replicated, for robustness,
the sensors also ought to be replicated, whose collected
data can then be compared and/or aggregated. Each sensor
can monitor one or more replicas. As a consequence of
multiple sensors, replicated data can be generated for the
same event or reading. This replicated data may be shifted,
this can happen due to benign reasons such as different
sensors detecting the same event in slightly skewed moments
in time, or because of a faulty sensor reporting wrong
sensing data. Thus, an Aggregator service is responsible for
gathering the data from all sensors and solve inconsistencies
in their perspective of the event, after it is passed through
a Consensus Module. Finally, the processed sensor data is
stored in robust and consistent manner in a Data Store to
enable the design of policies from data aggregated across
several sensor probes and longer periods of time. We detail
these components in the next sections.

A. Sensors

The Sensors have the function of collecting information
from the MS and its execution environment. The various sen-
sors can be configured to have different fault models, namely
they can tolerate crash faults, tolerate Byzantine faults or
not tolerate any faults. The type of fault model chosen will
depend on a number of factors, like the semantics of a certain
data to be collected or the possibility of installing different
independent sensors to observe a given phenomenon. For
example, the throughput of the MS or number of active
clients can be seen across its different replicas and, as
such can be collected by independent sensors, allowing for
Byzantine fault tolerance for these metrics. On the other
hand, some sensors possess characteristics that does not
allow this or where its replication does not make sense (e.g
CPU statistics from a server).

Each sensor possesses a set of properties necessary in
order to identify and process the information collected. Said
properties are presented in Table 1.

The data collected from the MS is passively sent to
aggregator in order to be processed. Since, and as it will
be discussed ahead, the aggregator is implemented as an
application on top of a Replicated State Machine (RSM) the
sensors are similar to clients sending commands to the RSM.
As such, these can be sensors themselves or merely proxies
for the actual probes, allowing them to also “encapsulate”
possible legacy sensors. However, contrary to regular RSM
clients, the sensors do need to wait for a response from the
aggregator as they do not perform actions upon the system.
This restriction is intentional, seeing as in order for the
adaptation to be efficient, knowledge about the MS strategies
is required, and so we believe they should be systematized
and coordinated by a specific service.

O O S

Listing 1. Classe PeriodicSensor

package argus.sensors;

public abstract class PeriodicSensor extends BaseSensor{

public PeriodicSensor(Integer id, String type, PrivateKey
pKey) {...}

public abstract SignedMessage collectValue ()}

Each message sent to the aggregator by the sensors
contains the collected information associated with a locally
attributed sequence number, incremented at each new mes-
sage. Furthermore, the message also contains the sensor
identifier, the identifier of the respective replica and a
timestamp, identifying when the collection was made. This
way the replicas can be grouped as single sensor in the
aggregator. Lastly, all sent messages are signed with the
respective credentials of the sensor.

We classify the collected type into two different cate-
gories: Metrics and Events. We define metrics as numeric
values periodically collected that represent a specific infor-
mation about the MS (e.g some host’s CPU load). On the
other hand, we classify events as “arbitrary” situations that
occur in the MS, such as a leader change or the detection
of a fault in one of its replicas.

1) Extensibility: The managed system’s goals may be
subject to change, introducing new needs and consequently
new possible adaptations. This may imply a need to gather
new metrics from the MS’ execution environment, meaning
the sensor infrastructure would need to expand in order to
accommodate these new requirements. As such, a small API
is presented in order to facilitate the development of new
sensors and also abstract the communication details between
the sensor client and the RSM. Furthermore, this API also
offers some deployment mechanisms for the sensors by
default, as this is also one of the main efforts of extending
the sensor infrastructure or basic system startup.

For deployment we consider two possibilities. Either
the sensor needs access to internal information pertaining
to the MS or it needs to collect information about the
MS’ execution environment, meaning external to its core
execution. As such, the API presents two ways of deploying
the sensors, respectively, as a concurrent execution thread
along with the MS or as a separate process launched either
on the same machine as the MS or not. These were made to
work with the sensor development interfaces also provided
by the API. Namely, we offer an abstract class to create
periodic sensors, shown in Listing 1 and one to store reactive
sensor’s information since as stated, the events monitored
can range from many types.

B. Aggregator

In order to simplify the sensors implementation and for
the monitoring system to be robust, the Aggregator was
developed as a replicated service, extending a fairly popular
open-source state machine replication library called Bft-
SMaRt[10], that is already capable of tolerating Byzantine




Table T
SENSOR’S PROPERTIES

Identifier

Replica Identifier
Cardinality
Number of Faults
Operation Mode
Rate

Fault Model
Credentials

Reactive or Periodic

Uniquely identifies the single sensors ou group of sensors (replicas)
Identifies the different replicas of a sensor (when applicable, by default zero)
Size of the group of sensor replicas

Fault limit under which the sensor (or group) can operate correctly

Rate at which it collects new values (applicable only to Periodic sensors)
Non replicated, Crash Tolerant, Byzantine
Cryptographic (asymmetric) keys to authenticate the sent messages

faults. Since the sensors act as clients to this RSM, the
collected values received through their messages can be
totally ordered by the underlying BFT protocol, thus creating
a linear sequence of values and allowing all correct replicas
of the aggregator to work on them by the same order. This
allows the sensors (or more specifically their replicas) to
only concern themselves with the collection of the data,
leaving the responsibility of processing and consolidating
that information from the MS to the aggregator.

As values are being received and before they can be
processed and later stored or delivered to, e.g an adaptation
manager to feed its policies, the aggregator must first await
minimum quantity of messages, namely a quorum, for each
sequence number. The size of the quorum for a particular
sensor is extrapolated from the previously referred proper-
ties. Note that, quorums higher than 1 are only strictly re-
quired for sensors set to tolerate Byzantine faults. Although
some benefits could be had from aggregating messages of
several replicas of Crash tolerant sensors (mitigating slight
divergences in values), a single message can be used as it
will be a correct representation of the collection.

1) Aggregation Function: After the quorum of values
from a particular sensor has been reached, it needs to be
condensated into a singular value, representative of the state
of that particular data, and not only that but also allowing
the aggregator to decide on a timestamp for the collection
done. To do this, each sensor or set of sensor’ replicas has an
aggregation function associated with it, that is then applied
to the group of values accumulated. These functions need to
be deterministic and can be basic operations like averaging
the obtained values or be ones capable of filtering Byzantine
values, for example, by removing the f lowest and highest
readings and averaging the resulting values. In order to add
more aggregation functions into the aggregator, an interface
is provided. Although not strictly necessary to aggregate
non-replicated sensors’ collected values, the function can
also serve to do some preprocessing on the gathered value.

Since the BFT protocol ensures that each correct replica
the aggregator processes the same collected values by the
same order and the aggregation function is deterministic, all
correct replicas will reach the same aggregated result, thus
achieving robust aggregation.

Lastly, it should be noted that the values obtained by
applying these functions are what we designate by approxi-
mately correct values since, due to small divergences, correct
sensor replicas may collect slightly different values. For

DN W=

Listing 2. E lo of . fio fil

identifier=Throughput

sensorType=Metric

f=1

quorum=3

aggregationFunction=argus.aggregator. function.
FaultTolerantBigDecimalAverageFunction

example, if the replicas of a given sensor collect the values
40, 43 and 45, we assume that any value in the range of 40
to 45 is approximately correct and a representative of that
particular collection.

2) Sensor Information Registration & Manipulation: The
aggregator itself is agnostic in regards to the implementation
of the sensors. In order to correctly function, it only requires
some knowledge regarding the properties of the sensors
deployed along with how they should be aggregated and the
reception values using the correct format. As such, the sys-
tem provides two mechanisms to register this information,
namely:

o The properties from the sensors may be defined in a
file called aggregation.config (an example is provided
in Listing 2) along with a folder containing the different
public keys pertaining to the sensor. Having these been
defined, the system will automatically load them into
the aggregator during its initialization.

« A sensor may be registered after the system has been
initialized though a provided interface. This allow some
flexibility to the developer, allowing this data to be
retrieved from an external source or even be hardcoded
into the system.

As stated in Section IV-Al, the sensor infrastructure may
need to be expanded or reduced and furthermore, some
adaptations, e.g replica relocation, as they are triggered, may
shutdown or redeploy certain sensors or their replicas as a
result of it, possibly changing configuration parameters of
said sensors, like quorum size or aggregation function. As
such, the second mechanism can also be used for this pur-
pose. In order to alter the parameters for a particular sensor
or remove it, the method pertaining to that information needs
to be called while providing the correct unique identifier and
the new value to be introduced.

C. Data Store

Although adaptation policies may be triggered due to
recent or immediate events, some may require a view of



the MS over a large period of time. This would allow those
policies to understand, e.g workload tendencies or heavier
access periods, thus allowing the creation of more complex
adaptations and preemptively triggering them in order to
optimize the system. Furthermore, it would allow the miti-
gation of the effect of transient out of norm collections and
the possible combination of different types of metrics and
events.

In order to allow these type of policies the system, after
aggregating the sensors’ collections, stores the final values
in a Data Store and provides access to them through a
Storage Interface, discussed ahead. Each of the replicas
of the aggregator will have a copy/instance of the data
store, effectively making this also a replicated component,
as you would expect. Since each replica of the aggregator
reaches the same values by the same order, it will produce
a consistent and coherent state across each data store.

The prototype of this component is implemented as a rela-
tional database embedded in the system using H2[11]. For a
more concrete/complete implementation the use of a proper
time-series database such as InfluxDB[12] or KairosDB[13]
would be beneficial as it would allow a broader and more
complex manipulation of data natively.

1) Storage Interface: This interface’s purpose is, as you
would expect, allowing the target system to access the stored
information in order to feed its policies. Since the data store
is currently implemented in H2, SQL is the language utilized
for accessing the data.

In order for the data to be accessed in a robust and
coherent manner by all correct replicas of the adaptation
manager, the AM needs a way to limit it’s search. As such
each entry recorded in the data store is marked with a unique
id (as of now, merely a increasing counter) that serves as a
version number for the store. Each time the AM is “called
into action”, either due to an event or a timer being triggered,
the id of the latest version is passed as an argument which
can then be used to limit the search. This guarantees that all
correct replicas of the AM will evaluate its policies using the
same input data, since it has a single entry point activated
by ordered events.

For a different type of target system, namely one that
runs concurrently with our own, this measure would not
suffice, such that additional mechanisms would need to be
added. For example, all accesses to the data store would
need to be coordinated and passed through the consensus
and most likely the end system would need to also employ
some coordination in its implementation (if replicated).

D. Consensus Module

As mentioned before, the aggregator groups the values
collected by the sensors in order to guarantee that every
correct replica executes operations over the same coherent
view of the data. The sensors’ messages are associated with
one another in accordance with the properties specified for
the sensor or replicated group, registered in the aggregator.
In a similar fashion, a lower boundary on the amount of
messages needed for each type of sensor is defined based

on the quantity of tolerated faults, cardinality and type
of fault model selected, as shown in section IV-A. The
messages can be ordered as they arrive or accumulated first
for later ordering. Thus we can divide this process into two
steps, Accumulation and Consensus. We experiment with
four different approaches in order to implement this module
and report on their performance in section V.

1) Post-Consensus Accumulation: PosC: In the first im-
plementation, designated as PosC, each value received from
the sensors is immediately totally ordered through the con-
sensus, namely the Bft-SMaRT library. Only after being
delivered to the aggregator for accumulation and eventual
aggregation upon reaching the quorum defined for the sen-
sor. As such, in this case, we have the consensus step before
the accumulation one. This means that even for replicated
sensors, a consensus is performed for each value/message
sent by the sensor or sensor’s replicas (this ignoring pos-
sible batching). Upon delivering the ordered value to the
aggregator, its validity is tested with the following steps:

1) Verify that the sensor with the same identifier as the

value received is registered in the aggregator;

2) Validating the authenticity of the message by checking

its correct signature by the sensor or its replica;

3) Check value freshness;

4) Finally check if the quorum has been reached.

This is the base implementation and is the one consid-
ered while explaining the different components and their
responsibilities described in the rest of this section. A visual
representation of the general message pattern for PosC is
presented in Figure 2 (the internal message exchange of Bft-
SMaRT is omitted[14]).
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Figure 2. Message pattern for PosC and Integrated-PreC, S represents a
sensor and its replicas.

2) Pre-Consensus Accumulation: Total-PreC & Disperse-
PreC: For the first two, the sensors send their values directly
to the aggregator to be accumulated, without a defined order.
During this accumulation, each of the values passes through
the verification described in the previous section. When
the quorum is achieved, the accumulation is sent by an
internal client to be totally ordered, and thus the consensus
is finally run. This implementation choice adds an extra
communication step to the protocol when compared to the
one presented previously, as shown in Figure 3. After the set
of values is ordered, it is delivered back to the aggregator



to be aggregated, passing first through a similar verification
step as before to guarantee its correctness after ordering,
namely:

1) A sensor with the same identifier is registered in the

aggregator;

2) The set quorum for that sensor has indeed been
reached;

3) The messages/values accumulated are correctly
signed;

4) They are from “unique” sources, meaning the values
are not accumulated from the same replica;

5) The message freshness, namely if the sequence num-
ber has not been previously decided;

T~
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Figure 3. Message pattern for Total-PreC and Disperse-PreC.

In variant Total-PreC, every correct replica sends the
accumulated value set as soon as the quorum is achieved.
As such, the accumulations are effectively replicated, not
being necessary to have a leader replica (excluding obviously
the underlying consensus protocol). When one of these
messages passes through the final verification, after being
ordered, the remaining ones are discarded. This means that
the number of consensus executed does not differs from
PosC, thus presenting a clear cost. Even in the best case
scenario, this implementation wastes a great deal of work
done, due to the replication of the messages sent to the
consensus, being latter discarded. On the other hand, it
shows a simple to implement pre-consensus accumulation,
without altering the replicated state machine and explicitly
dealing with the possible occurrence of faults.

The second variant, Disperse-PreC, tries to improve the
previous one, namely it tries to avoid running a consensus for
each value received. In order to do that, the role of sending
the accumulations to the consensus is distributed between the
replicas, by applying a hash function to the unique identifier
of the different sensors. As such, each of the sensors is
attributed to a certain replica. In the optimal case, without
the occurrence of Byzantine faults, each of the replicas of
the system is only in charge of sending the accumulations
for the sensors its responsible for. With this optimization
the load is then distributed amongst the replicas. However,
there is the possibility that the progress of certain sensors
will be affected when one of the replicas becomes Byzantine,
either by sending wrong values or by not sending them at

all. To deal with this cases, when the correct replicas detect
a lack of progress for a specific sensor, they revert to the
first implementation, Total-PreC, for the sensors attributed
to the faulty replica.

3) Integrated Implementation: Integrated-PreC: The ob-
jective of this implementation is to remove the extra com-
munication step that arises from the two previous solutions.
In order to do this, the aggregator was merged with the
Bft-SMaRT library, and as such, the accumulation step was
integrated into the underlying consensus protocol.

The messages sent by the sensors are received by the
library similar to what happens in implementation PosC, but
the message is intercepted before the consensus is initiated
and passed through the first validation process previously
described, thus the value is retained. And as such, that
message itself is never ordered. When the quorum is reached,
a message is created internally with the accumulated values
and the consensus is initiated. As such, the intermediary
step of using an internal client to relay the message is
cut from the process and the extra communication step is
thus removed. Since the messages from the sensors can be
received in different orders by the replicas of the system, the
accumulation that is used by the leader to start the consensus
may be different to the one reached by the remaining
replicas. As such, in order to not trigger unnecessary leader
changes, messages are not compared based on content, but
on the identifier of the sensor and the respective sequence
number. Instead of the content being compared, to guarantee
correctness and keep the current leader replica in check, the
second validation step refereed previously is done during the
communication steps of the underlying protocol. Namely, its
run by each replica upon receiving the propose that starts
the consensus. If this step fails, the leader change procedure
is started. After being totally ordered the accumulations are
then aggregated.

Lastly, an optimization is employed for sensors that only
require quorums of one message. Running the two full
validations is unnecessary in this scenario, when a message
from these sensors is received, only a check for singular
quorum is done, before and during the consensus. Only after
being ordered and delivered is the value validated using the
first validation refereed, minus the last step of checking
a reached quorum. As such, this implementation shows a
similar message exchange as PosC, shown in Figure 2, but
does away with the need to run a consensus for every value
received, which is relevant for replicated sensors.

E. Timer Service

A simple timer service is also provided. This service can
be useful to notify, for example, an adaptation manager that a
certain grace period has elapsed or that its time to reevaluate
its policies. That being said, this notification only occurs if
the timer is triggered in a majority of replicas of the system,
passing through its consensus. The timers work as clients
of the replicated state machine, using an internal client to
the system. The events are sent as they are triggered, and
as it happens with the sensors, the values pass through the



aggregator where an accumulation occurs. Finally when the
quorum is reached, the event can be delivered. Two types of
timers are provide by the service: Periodic Timers (that, as
the name implies, are triggered repeatedly with a rate defined
in the moment its registered) and timers that are triggered
once, with a delay defined at registration.

FE. Event Controller

Although they are also stored in the data store, events are
a type of data that in general require immediate reaction.
As such, upon its occurrence the system feed by our own
may require a particular action to be triggered. In order
to provide this feature, our system offers the possibility of
registering handlers associated to certain events. When the
event is captured by the sensors and properly aggregated, the
respective handler is called allowing, for example, simply
informing the other system about its occurrence.

V. EVALUATION

The evaluation is divided into two parts, and it seeks
to answer the two following questions: How easy is it to
extend the monitoring infrastructure of our system using
the provided API and How do the performances from the
different implementations presented in IV-D compare to one
another, and more concretely does performing accumulation
of values before the consensus yield any advantages?

The answer to the first question is omitted due to size
constraints and its deferred to the accompanying thesis. For
the second question the answer is presented ahead.

A. Evaluation Setup

The system and sensors used in the evaluation were hosted
by Digital Ocean[15]. Each replica of the system had its own
individual virtualized environment, while the sensors shared
some hosts as it will be explained ahead. The specifications
for the virtualized machines of both the system’s replicas
and sensors is presented in Table II. The notable difference
in specification is not with the intention of running a sensor
more powerful than the system, but several smaller ones in
a single environment mitigating the occurrence bottlenecks.

Table IT
VIRTUALIZED ENVIRONMENTS’ SPECIFICATIONS
System replica’s | Client/Sensors’
CPU (cores) 4 8
RAM (GBs) 8 16
SSD (GBs) 80 160

Considering that our system was implemented resorting
to the Bft-SMaRT library, the components are executed in
a Java Virtual Machine (JVM). The version used to run the
system/sensors was 1.8.0_144. Each replica was launched
without changing the default JVM’s heap size values.

B. Evaluation Performed

In order to evaluate the performance of the different
implementations, they were subjected to varying degrees of
workloads. In the experiments, a value is considered decided
after it is aggregated, as such, in order for the complexity of
the aggregation function to not affect the results, a dummy
one was utilized merely returning the first value from the
obtained set. Furthermore, the aggregated values are not
stored in the data store to merely test the performance of
the algorithms. Considering that the objective is to analyze
the limits of each pre-consensus accumulation versions and
compare them with the base implementation, in which the
accumulation is done post consensus, the tests will be
synthetic in the workload that they will generate. Thus, these
do not represent real world scenarios. In the deployment of
the monitoring system, we defined f = 1, thus generating
four system replicas.

The sensor used is based on the micro-benchmark already
offered by the RSM library. Each sensor/replica is deployed
as an independent thread that consistently sends the same
correctly signed value, without any wait occurring between
the messages sent. This is done in order to achieve a high
workload. In order to create a consistent load during a
considerable amount of time, this value is sent a total of
8000 times by each sensor. In this evaluation, we vary the
amount of sensors deployed and alternate between replicated
and non-replicated. This is done in three different scenarios,
namely, a no latency (or a negligible amount), a flat latency
scenario and a emulation of a real world latency scenario.
The last two will be performed only with replicated sensors
as that is the main case we want to evaluate, namely if saving
on running a consensus per value yields any performance
gain. Furthermore, these latencies were introduced using
Unix’s fc command.

The implementations that will be tested will be PosC,
Disperse-PreC and Integrated-PreC. Total-PreC was put
aside for the testing as the optimized version, Disperse-PreC
performs better, as evidenced by some preliminary testing
done. Its also important to refer that the hash function used
in implementation Disperse-PreC distributes the sensors
uniformly between the different replicas.

For the experiments the final throughput values were
obtained by performing the median between the average of
values reached by the each of the 4 replicas, before any
sensor had finished sending messages. This allows the results
to not be affected by transient higher/lower values.

For the tests with non-replicated sensors, 16 sensors are
launched concurrently in each client machine, while for the
replicated ones only 4 sensors are deployed. Note though,
that each one of these last ones is in fact composed of
4 independent threads, thus each client machine in either
test generates an equivalent amount of message load for
the system. In both tests, five experiments were conducted,
increasing the number of client hosts from 1 until 5, making
up 16, 32, 48, 64, 80 and 4, 8, 12, 16, 20 sensors for the
non-replicated and replicated tests, respectively.



Note as well that from the results a complete direct
comparison cannot be made for the different scenarios, as
these were performed at different point in time and although
the machines have the same specifications, their performance
vary as the conditions of the physical host for the virtual
environment changes.

Lastly, for the different experiments the timeout value for
the timer that tracks the liveness of the system (more con-
cretely the one that makes sure the leader makes progress)
is set to an “infinite” value in order for it to not affect the
results. This is justifiable, as in our particular testing we are
interested in the best case scenario where no faults occur.
Furthermore, since every replica is located inside the same
data center we can expect that no message is lost and as
such the leader is capable of receiving all of them.

1) Flat Latency Experiment: With this experiment we
wanted to emulate an equidistant network with a consid-
erable amount of latency. As such, we introduce 50ms of
latency with a jitter of 3ms between the system’s replicas
and co-locate the sensors with the leader. The topology is
similar to the one presented in Figure 4, but the values are
all 50ms except the link between sensor and leader which
is the same.

2) Real World Latency Experiment: The scenario we
chose to emulate was a Wide Area Network spread across 4
different places of the globe, as such the latencies introduced
are based on the average latencies between Amazon EC2
regions taken from [16]. For this test we chose the regions
Frankfurt (where the leader is placed), Tokyo, Sydney and
North California. Once again the sensors are co-located with
the leader replica and a topology for this experiment is
presented in Figure 4.

Franikfurt
(Leader)

322 104

168 104

Figure 4. Real World Latency Scenario Topology. Values of latency
presented as ms.

C. Non-Replicated Sensor Results

Although the main focus of the implementation Disperse-
PreC and Integrated-PreC is to try improving the system’s
performance with replicated sensors, we conducted an exper-
iment we non-replicated sensors as stated before. The results

are presented in Figure 5. As we expected, the difference
in performance between the base implementation PosC and
the integrated version Integrated-PreC is not significant, as
the implementations are similar in the way that they handle
non-replicated sensors’ messages.
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Figure 5. Performance results with non-replicated sensors in a latency

free scenario.

Implementation Disperse-PreC after the third test is in-
capable of keeping up with the other two implementations
showing a clear difference in throughput in the following
tests. Furthermore, in the final test with 80 sensors one of
the replicas ended up not being able to conclude the test,
due to an exception regarding the exhaustion of memory
in Java’s heap space. That being said this was the least
performant replica, as shown across the different tests. This
is due to the fact that this implementation ends up working
as a re-sender for each message sent by the sensors due to
the extra communication step and as such its overwhelmed
by the load introduced in the final tests. An optimization
could be introduced to fix this issue, either by having the
sensors being aware of their non-replicated characteristic
and sending their values directly to the RSM for ordering
instead of sending it to the aggregator for accumulation
first, or by changing the underlying RSM to handle these
cases similar to how Integrated-PreC does it. The first option
would break the separation between sensor and monitoring
system, and the second one would go against the point of
this implementation of not altering the RSM, and as such
non of the two is ideal for the purpose of this evaluation.

D. Replicated Sensor Results

These results are the ones we are most interested in dis-
cussing as they are the main focus of these implementations.
In a latency free environment, results shown in Figure 6, all
three implementations present similar performance for most
of the tests. As expected, implementation Disperse-PreC is
now capable of handling the higher quantities of incoming
messages since it only needs to send the accumulation to the



consensus. In the last test with 20 sensors, small differences
in throughput appeared, namely with Integrated-PreC. This
difference foreshadows something that becomes apparent in
the next scenario with flat latency introduced.

— PosC
800 - Disperse-PreC
—— Integrated-PreC

720
_ 640
wv
2
& 560 -
=
5
2 480
o
3
£ 400 -
£

320

240

160 A

16 24 32 a0 48 56 64 72 80
Number of Sensors' Replicas
Figure 6. Performance results with replicated sensors in a latency free

scenario.

As shown in Figure 7, implementations PosC and
Disperse-PreC present no real differences in performance in
any of the tests performed, on the other hand implementation
Integrated-PreC starts showing lower performance with 12
sensors onwards until the last test where it seems to hit a
cap at roughly 720 ops/sec. This was not what we expected,
with this scenario we were hoping to see this implementation
show a level of performance either on par or slightly better
than the remaining implementations. This seems to occur
because in this scenario the consensus is still more bound
by CPU than by latency, and since Integrated-PreC runs a
more expensive validation during the consensus after the
reception of the propose, it thus achieves a lesser throughout.
This finding is supported by Disperse-PreC showing similar
performance to PosC although its presents an extra step
in communication and also performs the same secondary
validation step but not during the consensus process.

With the real world scenario, we expected that the con-
sensus would be more bound by latency, as it was increased,
allowing for the implementation Integrated-PreC to gain
performance comparatively to PosC. In part this is true,
as shown in Figure 8, Integrated-PreC does for a moment
present higher performance than PosC, albeit not really
a significant difference. In the last test with 80 sensors
both these implementations showed a drop in throughput.
The big surprise in this scenario is Disperse-PreC that is
able to handle the workload from the last test and present
higher performance than the remaining implementations.
This occurs because its consensus is not as bound by CPU
as the one from Integrated-PreC and due to the accumulation
that allow it to run fewer consensus than PosC, even with an
extra communication step. This shows that accumulating the
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Figure 7. Performance results with replicated sensors in a flat latency

scenario.

values before running the consensus has advantages against
running a consensus per value. Furthermore, considering
that in the previous scenario Integrated-PreC was showing
less throughput than PosC, with the increase in latency it
was able to achieve slightly higher performance than PosC
showing the benefits of pre consensus accumulation.
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Figure 8. Performance results with replicated sensors in a real world

latency scenario.

E. General Discussion

Although the results were not exactly what we expected
where the integrated solution would present the best results,
the general idea of applying the accumulation step before
running the consensus did show positive results which was
part of our hypothesis. From these experiments, we could
also see some room for possible improvements in these
implementations. For example, for Integrated-PreC we could
try to improve the validation step that is done after the



propose phase of the consensus and resolve any inefficiency
present or, instead of using Asymmetric Encryption to sign
the messages, the sensors/replicas could use it to exchange
Symmetric keys helping to improve performance. Further-
more, an hybrid implementation between Disperse-PreC and
Integrated-PreC could be attempted, resolving the issues
of Disperse-PreC with non-replicated sensors and possibly
improving performance with replicated ones.

Lastly, for real world utilization any of these implementa-
tions would perform similarly, as the tests conducted do not
represent this scenario, since even the workloads from the
tests with the least amount of sensors would still surpass
most cases of normal use. That being said, as of now in
this context, the best implementation would probably be
PosC, since the system is built upon a proven to work
stock RSM library where most, if not all, corner cases have
been considered, thus possibly providing the most stable
deployment.

VI. CONCLUSIONS

With our work, we presented the architecture of a mon-
itoring system not only capable of tolerating Byzantine
faults of its core components, but also capable of tolerating
such faults of its sensors, allowing them to present varying
degrees of replication. More concretely, we presented the
different components of the system, their functionalities and
how they interact with each other.
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