
Large-Scale Geo-Replicated Conflict-free
Replicated Data Types

Carlos Bartolomeu
carlos.bartolomeu@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. Conflict-free Replicated Data Types (CRDTs) are data types
whose operations do not conflict with each other and, therefore, can be
replicated with minimal coordination among replicas. Relevant examples
of data types that can be implemented as CRDTs are counters and sets.
While it is easy to ensure that all replicas of CRDTs become eventually
consistent when the system becomes quiescent, different techniques can
be used to propagate the updates as efficiently as possible, with differ-
ent trade-offs among the amount of network traffic generated and the
staleness of local information. In this report we study the different alter-
natives that have been used to propagate updates and discuss potential
strategies to automate this selection to optimize the system operation.

1 Introduction

With the advent of cloud computing, and the need to maintain data repli-
cated in geographically remote data centers, searching for strategies to provide
data consistency with minimal synchronization became very relevant. Unfortu-
nately, most data types require operations to be totally ordered to ensure replica
consistency. This means that operations are diverted to a single primary replica,
incurring on long delays and availability problems, or that an expensive consen-
sus protocol such as Paxos[1] is used to order the updates.

Conflict-free Replicated Data Types (CRDTs)[2–4] are data types whose con-
current operations do not conflict with each other and, therefore, can be repli-
cated with minimal coordination among replicas. CRDTs are implemented in
such a way that any two concurrent operations A and B are commutative and,
therefore, even if they are executed in different sequential orders at different repli-
cas, the final result is still the same. As a result, there are no conflicts among
concurrent operations and replicas can often execute operations promptly, with-
out synchronization with other replicas, i.e., operations may be executed locally
first and shipped to other replicas only when it becomes appropriated. Using
this approach, even if replicas diverge from each other, convergence is even-
tually reached due to CRDTs properties. Thus CRDTs, unlike other eventual
consistency approaches, may strongly simplify the development of distributed
application such as social networks, collaborative documents, or online stores[5–
7].

1



Two main types of CRDTs have been proposed, that differ on the techniques
they use to reach eventual consistency, namely operation-based [2, 8] and state-
based [2] CRDTs. Operation-based CRDTs send to other replicas the operations
that are executed locally; these are later executed remotely also. On the contrary,
state-based CRDTs send the full state of the object (which includes the outcome
of the operations), such that it can be merged with the local state at remote
replicas. Both approaches have advantages and disadvantages as we will see later.
A third type of CRDTs has also been proposed more recently, named delta-based
CRDTs[9], which combines features of the two basic approaches above. Delta-
based CRDTs do not ship the full state but, instead, send a smaller state, labeled
delta-state, that represents the operations performed between two instants.

The CRDT specification allows for the implementation to choose when it is
more appropriate to exchange information among replicas, and allows to post-
pone eventual consistency to be reached in order to save communication and
computation resources. For how long eventual consistency can be postponed de-
pends on the application requirements. These requirements can be captured by
a Service Level Agreement (SLA)[10]. By using SLAs, the client or the System
Administrator can specify how the system should behave at a given situation.

With this work, we aim at studying the possibility of automating the choice of
the CRDT implementation based on the SLA that have been defined and based
on the characteristics of the execution environment. These characteristics can
be available processing power, observed network latency, timing of propagating
messages, etc.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3, we present all the
background related with our work. Section 4 describes the proposed architecture
to be implemented and Section 5 describes how we plan to evaluate our results.
Finally, Section 6 presents the schedule of future work and Section 7 concludes
the report.

2 Goals

This work assumes a datastore composed by multiple data centers, where
each of them maintains a CRDT replica, and that can be contacted by multiple
clients to execute operations. In this context, this work addresses the problem
of choosing the best strategy to send the operations/states of each replica to the
remaining replicas. In particular, we aim at automatically deciding if it is worth
to send a batch of operations (such as in pure operation-based CRDTs) or just
the full state of the replica (such as in state-based CRDTs), taking into account
the network traffic and the workload of servers.

Goals: After evaluating and comparing the different types of CRDTs,
this work focuses on designing a novel, automatic, dynamic strategy that
combines the different types of CRDTs in order to optimize CPU costs
and/or the communication costs.

2



Either operation-based, state-based, or delta-based CRDTs have advantages
and disadvantages, which will be explained later in the text. An extensive exper-
imental evaluation will determine in which scenario each CRDT implementation
performs best. Based on these results, we will design a system capable of dy-
namically changing the approach, if necessary, to optimize the CPU and network
resources while still preserving the consistency requirements of the application,
expressed as an SLA.

The project will produce the following expected results.

Expected results: The work will produce i) an implementation of the
different CRDT specifications; ii) a system, named A-CRDTs, that au-
tomatically combines multiple CRDTs implementation for better per-
formance, iii) an extensive experimental evaluation of A-CRDTs using
simulations of workloads.

3 Related Work

This section surveys the relevant work that has been produced in the area of
CRDTs. We start by discussing the problem of consistency when managing repli-
cated data, the consistency/cost tradeoff, and how the notion of Service Level
Agreement can be used to optimize the system performance. Then we move
to introduce the general properties of CRDTs and to present the three main
approaches that have been explored to implement that abstraction, namely:
operation-based, state-based, and delta-based CRDTs. Finally, we survey some
of the most common CRDTs, in particular counter and set datatypes, and com-
pare how their different implementation approaches perform in terms of memory
and cpu usage.

3.1 Replication and Data Consistency

When data replicas are placed in geographically distant locations, such that
the communication latency among replicas becomes significant, a tradeoff among
performance and consistency emerges. In particular, the performance of reads
with different consistency guarantees may be substantial. Strongly consistent
reads generally involve multiple replicas or must be served by a primary replica,
whereas eventually consistent reads can be answered by the closest replica.

Six levels of consistency for read operation have been defined in the litera-
ture[10, 11]: strong, causal, bounded, read-my-writes, monotonic, and eventual
consistency, as explained below.

– Strong: A read returns the value of the last preceding write performed by
any client.

– Causal: A read returns the value of a latest write that causally precedes it
or returns some later version. The causal precedence relation < is defined
such that op1 < op2 if either (a) op1 occurs before op2 in the same session,
(b) op1 is a write and op2 is a read that returns the version writen in op1, or
,by the property of transitivity, (c) for some op3, op1 < op3 and op3 < op2.

3



– Bounded(t): A read returns a value that is stale by at most t seconds.
Specifically, it returns the value of the latest write that completed at most t
seconds ago or some more recent version.

– Read-my-Writes: A read returns the value written by the last preceding
write in the same session or returns a later version; if no writes have been
performed to this key in this session, then the read may return any previous
value as in eventual consistency.

– Monotonic Reads: A read returns the same or a later version as a previous
read in this session; if the session has no previous reads for this key, then
the read may return the value of any write.

– Eventual: A read returns the value written by any write, i.e. any version
of the object with the given key; clients can expect that the latest version
eventually would be returned if no further writes were performed, but there
are no guarantees concerning how long this might take.

In a similar manner, in [11] consistency levels have also been defined for write
operations, namely Writes Follow Reads and Monotonic Writes as described
below:

– Writes Follow Reads: Writes made during the session are ordered after
any Writes whose effects were seen by previous Reads in the session.

– Monotonic Writes: Writes must follow previous Writes within the session.

Although the use of replication raises the problem of data consistency, it
has many advantages. In first place, replication offers fault-tolerance. Also, by
placing replicas close to the users, replication can provide fast access to data.

The tradeoffs among fault-tolerance and consistency have been captured by
the well-known CAP Theorem [12], that states that in a shared-data system we
can only have two of the following three properties: Consistency, Availability
and Partition-tolerance.

These tradeoffs open a large solution space that has been explored in many
different ways by different systems. In our work we weaken consistency, by al-
lowing replicas having different states, to ensure availability and leverage from
the CRDTs properties to simplify the replication management.

3.2 Service Level Agreements (SLA)

As we have seen in the previous section, it is possible to define different levels
of consistency for read and write operations. Typically, the consistency level that
must be enforced is a function of the application semantics and business goals.
These requirements can be expressed in the form of a Service Level Agreement
(SLA).

In most cases, applications prefer to use the stronger consistency, when the
network conditions are favorable. However, when the network is unstable (higher
latencies due to congestion, partitions, etc), different applications require differ-
ent consistency guarantees. Actually, the preferred consistency guarantee may

4



be even a function of the actual value of the network latency that is observed
(for instance, an application may be willing to wait t seconds to get strong
consistency but not more).

To cope with the fact that a given application may prefer different consis-
tency levels for different operational conditions, the use of a multiple-choice SLA
has been proposed in the context of the Pileus system[10]. This system allows
developers to define which level of consistency should be used according to the
response time of the system. This means, for a given SLA, if the system pre-
dicts that the response time of a strong read is more than the desired, then it
should use a other level of consistency, previously specified, in order to achieve
the desired response time with more gain. With such an SLA, a system is able to
adapt to different configurations of replicas and users and to changing conditions,
including variations in network or server load.

3.3 Conflict-free Replicated Data Types (CRDT)

A Conflict-free Replicated Data type (CRDT) is data structure, like a counter
or a set, which can be deployed in a distributed system, by placing replicas of
the data in multiple servers, in such a way that concurrent operations do not
conflict. As a result, a client may contact any server, and execute a sequence of
operations on that server, without being forced to wait for (potentially blocking)
coordination with other servers.

Since CRDTs avoid explicit synchronisation at every operation, the propaga-
tion of updates is often made asynchronously, in background. This means that,
at a given time, different replicas may contain different states. However, if the
system becomes quiescent, eventually all replicas converge to the same state.
However, unlike in other forms of eventual consistency, operations in CRDTs
never have to be cancelled or compensated, as a result of the synchronisation
among replicas (this derives form the fact that operations never conflict).

The state maintained by each replica is also named the replica payload. Client
requests are modelled as operations. An operation contains the method to be
executed and its arguments. The state of a replica after executing a client request
is a deterministic function of its state before executing the request and of the
operation received. The main difference among CRDT implementations is related
with the way different replicas are synchronised. In this respect, there are three
main approaches that have been proposed to implement CRDTs: operation-
based CRDTs, state-based CRDTs, and an hybrid approach named delta-based
CRDTs. These approaches are described in the following sub sections.

Operation-based CRDT: Commutative Replicated Data Type (Cm-
RDT) Operation-based CRDTs ensure that replicas eventually converge by
propagating all update operations to all replicas. Naturally, operations that are
read-only, i.e. do not change the state of the object, can be executed locally at
any replica, and have the result returned back to the client without the need for
any other coordination. Operation-based CRDTs can be seen as implementing
a form of active replication, given that all replicas must execute all the requests.

5



The algorithm used to disseminate the operations among all replicas is inde-
pendent of the implementation of the CRDT, and several strategies may be used:
broadcast, gossip, spanning-trees, etc. However, there are a number of properties
that the dissemination process must preserve. In first place, the dissemination
must be reliable, such that all operations are received by all replicas and must
ensure exactly-once delivery. If a replica does not receive a given operation, or if
it applies a given operation more than once, its state may never converge with
the state of the remaining replicas. Furthermore, all operation-based CRDTs
require causal delivery, as discussed in Section 3.1.

State-based CRDT: Convergent Replicated Data Type (CvRDT) State-
based CRDTs ensure that replicas eventually converge by propagating the state
of each replica to other replicas and by relying on a merge operation that com-
bines the state received from a remote replica with the state of the local replica.
When using state-based CRDTs, a request is sent to a single replica, that exe-
cutes the operation locally. The operation is not propagated to the other replicas.
Instead, the state of the replica that has executed the request will, eventually,
be propagated and merged with the state of the other replicas.

The key to this approach is to encode the state of the replicas in such a way
that the merge function becomes idempotent. Thus, if the same state update is
applied twice to the same replica, the result should be the same as if it is applied
only once. Furthermore, if two different states contain the effects of different, but
overlapping, set of operations, the result of the merge function should still be
equivalent to the state that would have been achieved by executing each request
only once in that replica. To ensure that states can be merged in an idempotent
manner is not trivial and, usually, the state must be encoded in a manner that
is less space efficient than in operation-based CRDTs.

As before, the approach is independent of the strategy used to decide when
to propagate the state of one replica to the other replicas. A new state can be
sent every time a client request is processed, or a new state can be sent periodi-
cally, and contain the result of many update requests. However, the idempotent
property of the merge function puts much less constraints on the dissemination
of state updates, when compared to the dissemination of operations. State mes-
sages may be delivered more than once or even lost; lost updates are masked by
the next state transfer. In the previous case, the order by which state updates is
applied is not relevant because the internal structure of the data type together
with the merge operation ensures convergence of the replicas.

Delta-based CRDT: Conflict-free Replicated Data Type (δ-CRDT)
Delta-based CRDTs combine features of operation based and state-based CRDTs.
The idea is that, as a result of applying an operation, a delta-state is produced.
A delta only captures changes caused by the associated operation but has the
mergeable properties of state-based CRDT. When a delta A is merged with
other delta B, a new delta C is created, which represents the delta A and delta B
merged. One delta state is comparable to an operation but has the property of

6



being able to capture multiple operations as a result of multiple merges. Since
a delta states are mergeable, it can be sent to replicas without any requirement
because the final state of the replica will always be consistent. All the replicas
converge when all the replicas have seen, directly or indirectly, all the deltas
states.

3.4 Portfolio of basic CRDTs

In this section we describe and specify some of the basic data types that have
been proposed, such as the counter and the set, which are the basic blocks for
more complex data types like graphs. The study of these concrete data types
helps in understanding the challenges, benefits, and limitations of CRDTs.

About the algorithms that will be presented, the communication is not de-
scribed. Instead, we assume the replicas have communications channels and what
they send to each other is returned by the operation performed.

Counters A counter is a replicated integer that supports three operations,
namely increment, decrement, and value (the first two operations change the
state of the counter and the third operation returns its value). It is straight-
forward to extend the interface to include operations for adding and subtracting
any value. The semantics of the counter are such that its value converges towards
the global number of increments minus the number of decrements. A counter is
useful in many applications, for instance for counting the number of currently
logged-in users.

Algorithm 1 Operation-based Counter

1: payload integer i
2: initial 0
3: function Increment
4: i := i+ 1
5: return +1 . Operation

6: function Decrement
7: i := i− 1
8: return −1 . Operation

9: function Value
10: return i
11: function Update(operation k)
12: i := i+ k . it will increment or decrement depending on k being positive or

negative

Operation-based Counter: An operation-based counter is the simplest CRDT we
can find. Its payload is an integer i and supports two basic operations: increment
and decrement. It can be extended to support increments of any value as can be

7



infered just by looking at the specification depicted in Alg. 1. This is possible
because any increment or decrement are operations that commute.

Algorithm 2 State-based Grow-only Counter

1: payload integer[n] P . One entry per replica
2: initial [0, 0,...,0]
3: function Increment
4: r := myID() . r: source replica
5: P [r] := P [r] + 1

6: function Value
7: return

∑
i P [i]

8: function Merge(State X)
9: P [i] := max(P [i], X.P [i]) : ∀i ∈ [0, n− 1]

Algorithm 3 Delta-based Grow-only Counter

1: payload integer[n] P . One entry per replica
2: initial [0, 0,...,0]
3: function Increment
4: r := myID() . r: source replica
5: P [r] := P [r] + 1
6: return (r, P [r]) . Delta

7: function Value
8: return

∑
i P [i]

9: function Merge(Delta X)
10: P [i] := max(P [i], X.P [i]) : ∀i ∈ X

State-based Counter: A state-based counter requires a more complex data struc-
ture. To simplify the problem, let us specify a grow-only counter. Suppose that
we have a payload, like in the operation-based approach, which is an integer i,
and the merge operation does the max of each payload. Consider two replicas,
with the same initial state of 0; at each one, a client originates increment. They
converge to 1 instead of the expected 2. Suppose instead that the payload is
an integer and that merge adds the two values. This implementation does not
have the properties of a CvRDT, given that the merge operation is not idempo-
tent. In [13] the following solution has been proposed to implement a state-based
counter: the payload is stored as a vector of integers, with one position per replica
(inspired by vector clocks). To increment, each replica adds 1 to its position in
the vector. The value is the sum of all entries of the vector. Merge takes the
maximum of each entry. The specification can be seen in Alg. 2. To implement a
counter that supports increment and decrement operations we need two vectors,

8



one for increments and one for decrements. This is because if we use only one
vector the max function in the merge operation will not take into account the
decrements. The value of the counter is increments minus decrements.

Delta-based Counter: The delta-based counter is inspired by the specification of
the state-based counter. After executing an increment it produces a delta which
is basically the replica’s entry of the vector. In Alg. 3 shows that the payload
is the same and the merge operation is the same as well. The only difference in
the merge operation is that is most likely for a delta to have the entry of one
replica’s counter instead of the full state that have the counter’s entries of all
the replicas. This small difference allow the replicas to send a delta or a small
group of deltas merged into one instead of the full state. More details about the
performance of this implementation are given in Section 3.6.

Sets A set is a data type that stores elements, without any particular order,
and with no repetitions. It has two operations: add and remove, where add adds
an element to the set and remove removes the element from the set. This data
type is the basic block for other complex data structures like maps and graphs
as we will see later in this report. So, it is essential to have a specification of this
data type for the different approaches of CRDTs. Unfortunately, the semantics
of a set under concurrent operations it is not trivial. To introduce the problem,
imagine that initially the set contains only one item {A} and that its state is
maintained by three replicas (1, 2, 3) that are consistent. If, concurrently, replica
1 removes A and then adds A again, replica 2 removes A and replica 3 does
nothing, then, there are different serialization orders for these three operations
and different orders may provide different final outcomes. A discussion of the
possible semantics and valid outcomes of the concurrent set is provided in [2]. In
this report we will only consider the Observed-Removed Set semantics because it
is, at the moment, the best apporach in terms of space and with less limitations.

Operation-based Set: To solve the previous problem using Operation-based CRDTs
each element needs a unique tag. Therefore, the payload of the data type will be
a set of tuples (element, tag), where the tag is a unique identifier associated with
each insert operation. This tag is needed to support the remove operation: when
removing an element, a replica will send to others the element that it wants to
remove and all the tags that it sees. This way, when add and remove operations
are concurrent the add operation will always win because it is adding an element
with a new tag that is not in the set of tags from the remove operation. When
considering the resulting specification, provided in Alg. 4, the concurrent sce-
nario described before will always has the same outcome, which is a set with the
element A. This solution imposes a constraint on the communication pattern:
because a remove operation always depends on an add operation, the operations
exchanged between all replicas must respect causal delivery.

State-based Set: The state-base approach requires a more complex solution to
support the merge operation. Thus, the payload needs to maintain a causal vec-

9



Algorithm 4 Operation-based Observed-Removed Set (OR-Set)

1: payload set S . set of pairs { (element e, unique-tag u), ...}
2: initial ∅
3: function Lookup(element e)
4: boolean b = (∃u : (e, u) ∈ S)
5: return b
6: function Add(element e)
7: α := unique() . unique() returns a unique tag value
8: S := S ∪ {(e, α)}
9: return (add, e, α) . representation of the add operation

10: function Remove(element e)
11: R := {(e, u)|∃u : (e, u) ∈ S}
12: S := S \R
13: return (remove, e, R) . representation of the remove operation

14: function Update(operation (op, e, u)) . executes operations from other replicas
15: if op = add then
16: S := S ∪ {(e, u)}
17: if op = remove then
18: S := S \ u

Algorithm 5 State-based Observed-Remove Set

1: payload set E, . E: elements, set of triples { (element e, timestamp c, replica i)}
vect v . v: summary (vector) of received triples

2: initial ∅, [0, ..., 0]
3: function Lookup(element e)
4: boolean b = (∃c, i : (e, c, i) ∈ S)
5: return b
6: function Add(element e)
7: r := myId() . r = source replica
8: c := v[r] + 1
9: O := {(e, c′, r) ∈ E|c′ < c}

10: v[r] := c
11: E := E ∪ {(e, c, r)} \O
12: function Remove(element e)
13: R := {∀c, i : (e, c, i) ∈ E}
14: E := E \R
15: function Merge(State B)
16: M := (E ∩B.E)
17: M ′ := {(e, c, i) ∈ E \B.E|c > B.v[i]}
18: M ′′ := {(e, c, i) ∈ B.E \ E|c > v[i]}
19: U := M ∪M ′ ∪M ′′

20: O := {(e, c, i) ∈ U |∃e, c′, i ∈ U : c < c′} . Old and duplicated elements
21: E := U \O
22: v := [max(v[0], B.v[0]), ...,max(v[n], B.v[n])]

10



tor, where each entry has a timestamp that belongs to a specific replica. The
set’s payload consists of a set of tuples with three components: (element, times-
tamp, replica ID). Like the state-based counter, the only information that is sent
to other replicas is the state, and the merge operation ensures convergence. The
trick in this solution is in the merge operation. An element should be preserved
in the merged state only if: either it is in both payloads (set M in Alg. 5), or
it is in the local payload and not recently removed from the remote one (set
M’) or vice-versa (M”) - an element has been removed if it is not in the pay-
load but its identifier is reflected in the replica’s causal vector. This approach
does not impose causal delivery constraints on the communication pattern. The
drawback is the space for storage and the cost to send the whole state instead
of few operations.

Algorithm 6 Delta-based Optimized Observed-Removed Set

1: payload set E, . E: elements, set of triples { (element e, timestamp c, replica i)}
set V . V : { (timestamp c, replica i)} causal context

2: initial ∅, ∅
3: function Lookup(element e) : boolean
4: boolean b = (∃c, i : (e, c, i) ∈ S)
5: return b
6: function Add(element e) : Delta
7: r := myId() . r = source replica
8: c := 1 +max({k|(r, k) ∈ V })
9: E := E ∪ {(e, c, r)}

10: V := V ∪ {(c, r)}
11: return ({(e, c, r)}, {(c, r)} . Delta

12: function Remove(element e) : Delta
13: R := {∀c, i : (e, c, i) ∈ E}
14: R′ := V ∩R
15: E := E \R
16: V := V \R′

17: return ({}, R′) . Delta

18: function Merge(Delta B)
19: M := (E ∩B.E)
20: M ′ := {(e, c, i) ∈ E|(c, i) /∈ B.V }
21: M ′′ := {(e, c, i) ∈ B.E|(c, i) /∈ V }
22: E := M ∪M ′ ∪M ′′

23: V := V ∪B.V

Delta-based Set: The solution for the delta-based set is inspired by the state-base
set. This time, instead of the causal vector, we have a set with tuples (timestamp,
replica) and we call this causal context. The causal context set is used in the
merge operation to determine if an element was added or removed from the
set. If a replica makes an add, then the delta contains the set with the element

11



added and the causal context has the tag (timestamp,replica) associated to that
element. If a replica makes a remove, then the delta contains an empty set and
the causal context has the tag (timestamp,replica) associated to element that
was removed. In the merge operation their causal contexts are simply unioned;
whereas, the new tagged element set only preserves: (1) the triples present in
both sets (therefore, not removed in either), and also (2) any triple present in
one of the sets and whose tag is not present in the causal context of the other
state. This approach is amenable for buffering operations before engaging in
communication, because we can compress the result of multiple operations in a
single delta state. The drawback is that the causal context will always increase
dependently on the number of adds an never decrease. One possible solution to
manage the space is by using a distributed garbage collector, that cleans the tags
from the causal context of elements that where removed by all replicas. This,
obviously, requires some sort of synchronization.

Registers and Graphs There are more examples of CRDTs like Registers
and Graphs that have many different applications (for instance, co-operative
text editing)[2].

Registers A register is a data type that stores one value in memory. It only
has two operations: assign - to change the value; and get - to obtain the value.
The problem to solve, in a distributed register, is the concurrent updates to the
register because that operation does not commute. Two major approaches have
been identified to address this problem[2]: in the first one operation takes prece-
dence over the other (LWW-Register) and, in the second one, both operations
are retained (MV-Register). The Last-Writer-Wins Register (LWW-Register)
tries to solve concurrency using timestamps to create total order. Timestamps
are assumed unique, totally ordered, and consistent with causal order; i.e., if
assignment 1 happened-before assignment 2, the former’s timestamp is less than
the latter’s [14]. This way, older updates with lower timestamps are discarded
and updates with higher timestamp are preserved. Due to its simplicity, both the
operation-based approach or the state-based approach look similar. This means
that there are no advantage of one approach over the other in terms of space or
cpu consumption. The Multi-Value Register (MV-Register), instead of deciding
which value is the correct one for concurrent updates, takes all concurrent values
and store them in a set. Therefore, it leaves up to the application to decide which
value is the correct one.

Graphs A more complex structure is a graph. A graph is a pair of sets (V,E)
(called vertices and edges respectively) such that E ⊆ V × V . Any of the Set
specifications described above can be used for V and E. Because of its nature
(E ⊆ V ×V ), operations on vertices and edges are not independent. An edge may
be added only if the corresponding vertices exist; conversely, a vertex may be
removed only if it supports no edge[2]. However, if concurrently a edge is added
while a vertex is removed there should exist a deterministic way to preserve

12



the invariant E ⊆ V × V . There are two intuitive forms to solve this without
using synchronization: (i) Give precedence to removeVertex(u): all edges to or
from u are removed as a side effect. This it is easy to implement, by using
tombstones for removed verteces. (ii) Give precedence to addEdge(u, v): if either
u or v has been removed, it is restored. A good example of a use of a graph is
a Replicated Growable Array (RGA). This is a linked list (linear graph) that
provides Partial Order to its elements and supports the operation addRight(v, a).
Each element (vertex) is connected (edges) to other element. With this concept it
is now possible to make co-operative text editing systems. To solve the problem
of concurrent adds to the same vertex we can either timestamps like in registers
or use other deterministic tie breaker.

3.5 CRDT Use Cases

We now give some examples of how CRDTs can be used in real systems: (i)
in a shopping cart solution [15], (ii) in a co-operative text editing [16], (iii) in
any system that requires high availability and partitioning[5, 6].

For the shopping cart solution the CRDT set fits perfectly. As it was described
before, with CRDT sets we can guarantee that concurrent changes to the set do
not conflict with each other, i.e., we can avoid the anomalies of the Amazon
shopping cart[15].

For the co-operative text editing we can take the advantages of the Replicated
Growable Array (RGA). Because with RGA we can insert elements in a relative
position to other elements, we can design a system that supports multiple users
writing text in the same page and even in the same word. The system WOOT[16]
is one of many systems that do this.

There are other systems that take advantage of CRDTs. For instance, Swift-
Cloud [5] is able to run transactions in client side due to the mergeable properties
of CRDTs.

3.6 Discussion and Comparison

We now discuss the advantages and disadvantages of operation-based, state-
based, and delta-based CRDTs, considering the memory consumption, the com-
putational complexity of the operations, and also the metadata garbage collec-
tion required by each approach.

Memory Stored in Each Replica Regarding the Counter, we did a small
test to compare the memory usage, see Figure 1. This plot depicts the evolution
of the memory after N operations in a system with 15 replicas. We compare
three implementeations/approaches (i) opearion-based, (ii) state-based, and (iii)
delta-based.

We instantly notice that both operation-based and state-based version are
constant in memory size. For the operation-based, it does not have any metadata.
So in terms of memory it’s the same as having a normal centralized counter which

13



Fig. 1. Comparison of the memory stored in each replica to represent a counter

Fig. 2. Comparison of the memory stored in each replica to represent a set

has constant memory size. For the state-based and delta-based approaches, both
depend on the number of replicas. However, the state-based depends on the
number of replicas that exists in the system, while the delta-based depends
on the number of replicas that made an operation. That explains why at the
beginning the delta-based uses less memory. But after some time, eventually all
replicas will make at least one operation and the memory spent to represent the
counter will be the same as if we were using the state-base approach.

Regarding the Set, the memory increases or decreases depending on the num-
ber of elements in the set. In particular, the state-base approach has, besides the
internal set, a fixed sized vector that depends on the number replicas, and the
delta-base approach, instead of a vector, it has a second set that depends on the
number of operations (causal context). As we can see in Figure 2, the difference
between the memory used in operation-based and state-based is small, because
the state-base approach has a fixed sized vector and requires more metadata per
element. The delta-based approach has the worst results because the memory
also depends on the number of operations, and with no garbage collection it
grows quickly.

14



Complexity of Operations The normal operations of each data type usually
do not have a high computational complexity, instead, the merge operation in
the state-based and delta-based approach may become expensive. Regarding the
counter, the increment and decrement operations have constant time in any
approach. But the merge operation has to make a max function for each entry
of the vector and it costs O(R) where R is the number of replicas. Regarding the
set, the add operation is constant and the for remove operation we always have
to search for the tags to be removed. When we implement the specifications
of the set we can always use some optimizations like hash sets or maps, for
fast access to the element and its tags, but we cannot avoid the overhead of
the merge operation. The merge operation, either the state-based or delta-based
approach, has to make intersection of the payload to see the common elements
and then check the elements that are new in both of the payload to not remove
them. The state-base approach demands some computational power for this
operation comparing to the operation-base approach, and it cost more as the
size of the set increases. However, this is not too bad when we compare to the
delta-base approach with no garbage collection. Because, in this approach, the
causal context grows with the size of the operations made the merge operation
takes a huge amount of time searching for a tag in the causal history to know if
the element should exists or be removed.

With this analysis we can explain the results obtained (see Figure 3) for the
merge operation. The test consists in two replicas with an equal initial state
that make different N operations an in the end they converge. For the initial
state both replicas made 300 equal operations. Then each replica executed N
different operations to simulate divergence. The operations performed were add
and remove with 75% chance of adding, which means the size of the set should
increase. In the end we measured the time it took to converge, either by applying
all the N operations at once (operation-based approach) or by merging the
two states/deltas. The graph shows the time it takes for one replica to apply
N operations made by the other replica. As we can see, applying a buffer of
operations is not so expensive as making one merge operation, for example,
applying 400 operation costs more or less 12µs, one merge of two states that
diverge in 400 operations costs 144µs and one merge of two deltas that diverge
as well in 400 operations costs 442µs.

These two results, from memory stored and from complexity, indicate that
the operation-based approach is always better. But, if we take into account the
memory that takes to buffer the N operations, maybe the other approaches are
worth to use.

Memory required for Buffered Operations If in our system we don’t want
to be constantly communicating with other replicas we should buffer them and
then send them all later. In this situation, for the operation-based approach we
must keep a buffer of every operation that has not been sent. For the delta-based
approach we keep a delta that contains all the operations not sent but not the
full state. And for the state-base approach, we cannot buffer any operation so

15



Fig. 3. Time that takes to converge two replicas that diverge in N operations - either
by merging states (state and delta) or by applying all operations (op)

Fig. 4. Comparison between the size of a buffer with N operations and the equivalent
stored in a delta and in a state for the counter

we always have to send the full state. As it can be seen in Figures 4 and 5, after
buffering some operations the size of the buffer is larger than the size of the actual
state (in state-base approach) or the delta, which means the operation-based
approach is not always the best option. This test is similar to the first one for
the memory stored in each replica. Here we show the size of a buffer/delta/state
that is ready to be sent after performing N operations.

Summary To better evaluate the differences among the three approaches, for
different data types, we present in Table 1 a summary of the aspects dicussed
above.

In terms of memory stored in the replica the operation-based is the best one
because it has almost no metadata. On the contrary, the delta-based requires a
large amount of memory for storing the causal history, for the set specification.

16



Fig. 5. Comparison between the size of a buffer with N operations and the equivalent
stored in a delta and in a state for the set

In terms of computational power, the merge operation has much more overhead
when comparing to apply N operations at once due to the complexity of the
merge operation. These two factors are where the operation-based approach has
big advantages. Now in terms of communication, the operation-based approach
must send its operations to every replica and it requires causal delivery. On the
other hand, we have the state and delta approaches that do not require causal
delivery and only need to send its state/delta to R replicas. The more replicas we
send the state, the faster it will converge. In terms of operations that are buffered,
once again, the operation-based approach is the worst because it needs an array
that grows with the number of operations while the delta-based approach can
represent several operations in one object. Finally we have the garbage collector,
this is fundamental for the delta-based approach remain useful, otherwise the
memory in the replica would grow uncontrollably. We could also use garbage
collection in the buffer of operations, in the operation-based approach, to reduce

Table 1. Qualitative comparison between CRDT approaches

Approach
Memory

in replicas
computational

power
communication

memory
of

buffers

garbage
collection

constrains

operation-
based

low low
contact all

replicas
high low

causal
delivery

state-
based

average high
contact R
replicas

- - none

delta-
based

high high
contact R
replicas

average high none

17



its size, i.e., search for operations like add(A) followed by remove(A) that can
be removed because they cancel each other.

4 Architecture

Our system, named A-CRDTs, will be a framework that provides to the
developers datatypes that are highly available and replicated. Also, they have
the chance to define SLAs in order to define how old the data may become and
how divergent the replicas can be from each other.

From the point of view of a developer that will use our framework, he will
have to decide which datatypes to use, the servers that will be used as replicas
and define SLAs for each instance of datatype used. By default, our system will
always try to optimize the use of cpu and network, but by using SLAs it will
be possible to adapt the system to the desired configuration. The datatypes will
be identified with a key, allowing multiple instances of the same datatype. The
clients can contact any replica in order to perform reads and writes, however
they should contact the nearest replica for better response times.

About the system itself, Figure 6, each replica will run an instance of the
A-CRDTs to store the datatypes and will be able to communicate with other
instances in order to converge the state they maintain. In more detail, each server
instance will be capable of deciding, in runtime, which approach should be used
based on statistics they hold about other replicas and converting datatypes. Each
replica has also a monitoring system that gathers information of its resources
and from other replicas’ monitors. The SLA is unique per instance of a specific
data type.

Fig. 6. Architecture of the A-CRDTs framework. - The replicas exchange

18



4.1 Monitoring

Each replica will have a monitoring module that has access to the machine
cpu usage and network usage. The monitoring module is also able to communi-
cate with other monitoring modules in order to gather their information. This
information will be:

(i) an estimate of how divergent a replica is from itself, in other words, the
number of operations that each replica made differently since the last syn-
chronization;

(ii) the number of operations over time;

(iii) the amount of data sent over time;

Some of this information is already traded while the replicas exchange opera-
tions/states, therefore the system will not flood the replicas with messages just
to gather this information.

4.2 SLA

Regarding the SLAs, each entry of the SLA has 4 properties: divergence
level, network bandwidth, cpu usage and utility. The value of the properties
network bandwidth and cpu usage are the requirements for the system and in
return it ensures the correspondent divergence level. In this example, Table 2, if
at least one of the replicas cannot ensure a divergence level of 50 operations with
less than 10% cpu usage and 10% network bandwidth in any CRDT approach,
then it should change the divergence level to 50 operations. We can achieve this
decision by predicting if changing the CRDT approach would match the required
resources consumption and assign to it a utility value. Then we multiply that
value by the correspondent utility value of the SLA entry. In the end, the SLA
entry with the best result contains the divergence level that the system should
adopt. This concept of using utility values to choose the SLA entry is based on
the algorithm described in the D. Terry’s paper [10].

Table 2. Example of an SLA

ID
divergence

level
network

bandwidth
cpu utility

1 50 op 10% 20% 1

2 50 op 20% 20% 0.8

3 100 op 20% 50% 0.5

19



4.3 Changing the approach

Changing the CRDT approach in runtime is something that may be expen-
sive, either because it may require some synchronization or because it may cost
cpu time to convert the data type itself. However, in a long run, changing the
CRDT approach could lead to a better usage of the available system resources.
It is not decided yet if all the replicas should change to the same approach or if
only one replica changes the approach. Only after some benchmarks will it be
possible to decide if it’s better to use one strategy over the other or if both are
strategies are reliable depending on the workload of the system. Either way, the
replica should periodically calculate if the current CRDT approach is the most
efficient given the information from the monitoring module and the requirements
of an SLA.

5 Evaluation

To test the system, we will create a configurable application that uses the
framework to test different workloads of the system. We will also change the
running environment of the system by simulating delays in the communication
and changing cpu power of the replicas.

5.1 Changes in the environment

Our framework will be useful in the cases that the environment of the global
system changes. For example if some communications start to get slower or some
replicas start to have too much workload, our system will be able to change the
CRDT approach in order to improve the overall performance of the system.

To simulate the network environment we can use a tool called Modelnet 1.
With this tool we can run real applications atop a hypothetical network with
assigned bandwidth, latency, queue length, and other link properties. For the cpu
usage we can put other applications running at the same time or use a tool like
cpulimit 2. This tool prevents a process from running for more than a specified
time ratio, therefore limits the cpu usage of a process.

5.2 Comparison to other systems

Since our system may change the CRDT approach over time, we will per-
form the same workload tests with a similar system that uses only one CRDT
approach. This means that we will test each CRDT approach (state-based,
operation-based and delta-based) with different workloads and then compare
it to our system.

To properly test the system we will need at least three data centers and a large
number clients using the application at the same time. It will all be simulated

1 http://systems.cs.colorado.edu/2011/04/modelnet-colorado/
2 https://github.com/opsengine/cpulimit

20



in a cluster with virtual machines, unless we have the chance to test it in real
machines located in different places of the world. The workload tests will be based
on the YCSB Yahoo benchmark [17], where we test different proportions of reads
and writes. We will also make another test where we will use different SLAs. On
one SLA we vary the ‘maximum time without changes’ from a low value like
10s to a high value like 100s and on another SLA we vary the ‘divergence level’
like 50 operations to 500 operations. These are simple examples of SLAs just to
analyse how the system reacts to different levels of divergence.

In the end we will measure if the system consumed the least resources for a
given SLA. Which means, our system used the most efficient approach given the
requirements of the SLA.

6 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23, 2015: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15, 2015: Deliver the MSc dissertation.

7 Conclusions

CRDTs have been used to provide to systems high availability and replica-
tion using eventual consistency. Three major approaches have been proposed:
operation based, state based and delta based CRDT. Each approach has its
benefits. Operation based CRDTs consumes less memory on the server side but
requires more communication. On the other hand, state based CRDTs require
more space on the server but is good when updates are exchanged with less
frequency and require less communication.

So we propose a solution that aims to select the best approach, in runtime,
depending on the workload of the system. It also enables the programmers to
define SLAs in order to customize the system for specific environments.

We have also presented the architecture of the proposed solution. Its detailed
specification, implementation, and experimental evaluation are left for future
work, whose schedule has also been presented.

Acknowledgments We are grateful to Manuel Bravo for the fruitful discussions
and comments during the preparation of this report. This work was partially sup-
ported by Fundação para a Ciência e Tecnologia (FCT) via the INESC-ID multi-
annual funding through the PIDDAC Program fund grant, under project PEst-
OE/EEI/LA0021/2013, and via the project PEPITA (PTDC/EEI-SCR/2776/
2012).

21



References

1. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2) (May
1998) 133–169

2. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506
(January 2011)

3. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Proceedings of the 13th International Conference on Stabilization, Safety,
and Security of Distributed Systems. SSS’11, Berlin, Heidelberg, Springer-Verlag
(2011) 386–400

4. Letia, M., Preguiça, N.M., Shapiro, M.: Crdts: Consistency without concurrency
control. CoRR abs/0907.0929 (2009)

5. Zawirski, M., Bieniusa, A., Balegas, V., Duarte, S., Baquero, C., Shapiro, M.,
Preguiça, N.M.: Swiftcloud: Fault-tolerant geo-replication integrated all the way
to the client machine. CoRR abs/1310.3107 (2013)

6. Navalho, D., Duarte, S., Preguiça, N., Shapiro, M.: Incremental stream processing
using computational conflict-free replicated data types. In: Proceedings of the 3rd
International Workshop on Cloud Data and Platforms. CloudDP ’13, New York,
NY, USA, ACM (2013) 31–36

7. Preguica, N., Marques, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: Proceedings of the 2009 29th IEEE Inter-
national Conference on Distributed Computing Systems. ICDCS ’09, Washington,
DC, USA, IEEE Computer Society (2009) 395–403

8. Baquero, C., Almeida, P., Shoker, A.: Making operation-based crdts operation-
based. In Magoutis, K., Pietzuch, P., eds.: Distributed Applications and Interop-
erable Systems. Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2014) 126–140

9. Almeida, P.S., Shoker, A., Baquero, C.: Efficient state-based crdts by delta-
mutation. CoRR abs/1410.2803 (2014)

10. Terry, D., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M., Abu-
Libdeh, H.: Consistency-based service level agreements for cloud storage. In:
Proceedings ACM Symposium on Operating Systems Principles, ACM (November
2013)

11. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.W.:
Session guarantees for weakly consistent replicated data. In: Proceedings of the
Third International Conference on Parallel and Distributed Information Systems.
PDIS ’94, Washington, DC, USA, IEEE Computer Society (1994) 140–149

12. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing.
PODC ’00, New York, NY, USA, ACM (2000) 7–

13. Bieniusa, A., Zawirski, M., Preguiça, N.M., Shapiro, M., Baquero, C., Balegas,
V., Duarte, S.: An optimized conflict-free replicated set. CoRR abs/1210.3368
(2012)

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (July 1978) 558–565

15. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41(6) (October 2007) 205–220

22



16. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for p2p collaborative
editing. In: Proceedings of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work. CSCW ’06, New York, NY, USA, ACM (2006) 259–
268

17. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing. SoCC ’10, New York, NY, USA, ACM (2010) 143–154

23


