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Abstract—With the advent of cloud computing, and the need
to maintain data replicated in geographically remote data cen-
ters, searching for strategies to provide data consistency with
minimal synchronization became very relevant. Unfortunately,
most data types require operations to be totally ordered to
ensure replica consistency.

Conflict-free Replicated Data Types (CRDTs) are data types
whose operations do not conflict with each other and, therefore,
can be replicated with minimal coordination among replicas.
While it is easy to ensure that all replicas of CRDTs become
eventually consistent when the system becomes quiescent,
different techniques can be used to propagate the updates
as efficiently as possible. Different approaches, such as state
transfer and operation forwarding, have been proposed to
propagate the updates as efficiently as possible, with different
tradeoffs among the amount of network traffic generated and
the staleness of local information.

This thesis proposes and evaluates techniques to automat-
ically adapt a CRDT implementation, such that the best
approach is used, based on the application needs (captured by a
SLA) and the observed system configuration. Our techniques
have been integrated in SwiftCloud, a state of the art geo-
replicated store based on CRDTs.

I. INTRODUCTION

With the advent of cloud computing, and the need to
maintain data replicated in geographically remote data cen-
ters, searching for strategies to provide data consistency
with minimal synchronization became very relevant. Unfor-
tunately, most data types require operations to be totally
ordered to ensure replica consistency. This means that oper-
ations are diverted to a single primary replica, incurring on
long delays and availability problems, or that an expensive
consensus protocol such as Paxos[1] is used to order the
updates.

Conflict-free Replicated Data Types (CRDTs)[2], [3], [4]
are data types whose concurrent operations do not conflict
with each other and, therefore, can be replicated with min-
imal coordination among replicas. CRDTs are implemented
in such a way that any two concurrent operations A and B
are commutative and, therefore, even if they are executed
in different sequential orders at different replicas, the final
result is still the same. As a result, there are no conflicts
among concurrent operations and replicas can often execute
operations promptly, without synchronization with other
replicas, i.e., operations may be executed locally first and
shipped to other replicas only when it becomes appropriated.

Using this approach, even if replicas diverge from each other,
convergence is eventually reached due to CRDTs properties.
Thus CRDTs, unlike other eventual consistency approaches,
may strongly simplify the development of distributed appli-
cation such as social networks, collaborative documents, or
online stores[5], [6], [7].

Two main types of CRDTs have been proposed, that differ
on the techniques they use to reach eventual consistency,
namely operation-based [2], [8] and state-based[2] CRDTs.
Operation-based CRDTs send to other replicas the oper-
ations that are executed locally; these are later executed
remotely also. On the contrary, state-based CRDTs send
the full state of the object (which includes the outcome of
the operations), such that it can be merged with the local
state at remote replicas. Both approaches have advantages
and disadvantages as we will see later. A third type of
CRDTs has also been proposed more recently, named delta-
based CRDTs[9], which combines features of the two basic
approaches above. Delta-based CRDTs do not ship the
full state but, instead, send a smaller state, labeled delta-
state, that represents the operations performed between two
instants.

The CRDT specification allows for the implementation to
choose when it is more appropriate to exchange information
among replicas, and allows to postpone eventual consis-
tency to be reached in order to save communication and
computation resources. For how long eventual consistency
can be postponed depends on the application requirements.
These requirements can be captured by a Service Level
Agreement (SLA)[10]. By using SLAs, the client or the
System Administrator can specify how the system should
behave at a given situation.

The rest of this document is organized as follows. For self-
containment, Section II provides an introduction to CRDTs
and a description of its current implementations. Section III
introduces Bendy along with the design and implementation.
Section IV presents the results of the experimental evalua-
tion study. Finally, Section V concludes this document by
summarizing its main points and future work.

II. RELATED WORK

Considerable work has been done in order to use CRDTs
as an advantage by many systems that require high avail-
ability. Examples of that are the systems like Dynamo [11],
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Riak [12] and SwiftClowd [5].

A. Service Level Agreement (SLA)
It is possible to define different levels of consistency

for read and write operations. Typically, the consistency
level that must be enforced is a function of the application
semantics and business goals. These requirements can be
expressed in the form of a Service Level Agreement (SLA).

In most cases, applications prefer to use the stronger
consistency, when the network conditions are favorable.
However, when the network is unstable (higher latencies due
to congestion, partitions, etc), different applications require
different consistency guarantees. Actually, the preferred con-
sistency guarantee may be even a function of the actual value
of the network latency that is observed (for instance, an
application may be willing to wait t seconds to get strong
consistency but not more).

To cope with the fact that a given application may prefer
different consistency levels for different operational condi-
tions, the use of a multiple-choice SLA has been proposed
in the context of the Pileus system[10]. This system allows
developers to define which level of consistency should be
used according to the response time of the system. This
means, for a given SLA, if the system predicts that the
response time of a strong read is more than the desired,
then it should use a other level of consistency, previously
specified, in order to achieve the desired response time with
more gain. With such an SLA, a system is able to adapt to
different configurations of replicas and users and to changing
conditions, including variations in network or server load.

In the context of our project, we will not use the SLA
to determine the consistency level to use. Instead, the max
time that a user is willing to wait for an update, SLA time,
will be used by our system as a hint to determine which
approach an object should use.

B. CRDT implementations
Conflict-free Replicated Data Types (CRDTs) are data

structures that allow replicas to be updated concurrently and
still ensure that all replicas may eventually converge to the
same state[2], [3]. CRDTs are a powerful alternative to sim-
pler approaches to reconcile divergent replicas, such as user-
specified functions[13], which make programming hard, or
last-write-wins semantics[14], that may cause updates to
be lost. Two main types of CRDTs have been proposed,
based on different propagation models, namely operation-
and state-based CRDTs.

For operation-based CRDTs, a replica propagates its
applied operations to other replicas. Concurrent operations
are designed to be commutative; thus, replicas can deliver
concurrent updates in different orders and still converge to
the same state, without the risk of having conflicts. This
approach requires exactly-once delivery, a quite expensive
requirement and, in some cases, causally ordered delivery
(see, for instance, the optimized observed-removed set[15]).

On the other hand, for state-based CRDTs, a replica ships
its whole internal state to other replicas. Upon arrival of a

state update, replicas merge both the local and the received
state. The merge operation of state-based CRDTs is idem-
potent, commutative, and associative. Therefore, state-based
CRDTs have less requirements for the delivery channel
compared to operation-based CRDTs: messages can be lost,
duplicated or even delivered out-of-order, but replicas will
converge to the same state as long as they have seen the latest
states from each other. To ensure that states can be merged
in this manner is not trivial and, usually, the state must be
encoded in a manner that is less space efficient than with
operation-based CRDTs. Finally, different strategies may be
used to decide when to propagate the state of one replica.
For instance, a new state can be sent every time a client
request is processed, or a new state can be sent periodically,
incorporating the result of multiple requests.

C. SwiftCloud
SwiftCloud is a geo-replicated cloud storage system that

stores CRDTs and caches data at clients [5]. It consists of
several datacenters that fully replicate the datastore. Clients
communicate with the closest datacenter and locally cache
recently accessed data. To the best of our knowledge, Swift-
Cloud is the most complete and up-to-date geo-replicated
storage system that incorporates support for CRDTs. There-
fore, we have opted to use it as a testbed to get more insights
on the advantages and disadvantages of operation based and
state based CRDTs in practice.

In SwiftCloud, transactions are first executed and com-
mitted in the client side, then propagated to the preferred
datacenter, which eventually propagates committed transac-
tions to the rest of datacenters (using an operation-based
approach). Thus, SwiftCloud is able to provide low access
latencies for both write and read operations by delivering
slightly stale data. For fault tolerance, committed transac-
tions are only visible to other clients after they have been
seen by K datacenters.

The way transactions are propagated and applied pro-
vides causal+ consistency. Causal consistency is tracked and
enforced by relying on a vector clock with an entry per
datacenter. SwiftCloud implementation is based on a per-
datacenter serialization point that sequences local updates
and enforces causal dependencies.

III. BENDY

Our study have shown that when updates need to be
propagated as soon as possible, the operation-based ap-
proach outperforms the state-based approach; this justifies
the original SwiftCloud implementation. However, when
clients are willing to tolerate reading information that is
slightly stale, significant gains can be obtain by using the
state-based approach. Also, for clients that can tolerate some
latency, as long as it is small, the best approach might
depend on the size of the object.

Our conjecture is that benefits may be achieved by sup-
porting both approaches simultaneously, such that for some
realistic SLAs, an operation-based approach is used for
larger objects and a state-base approach is used for smaller
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objects. Notice that the number of updates received by each
object within a SLA time window also plays an important
role deciding between approaches. To validate our hypothe-
sis, we have developed a prototype of an hybrid system, that
we have named Bendy, that is able to adapt the approach
used for each object dynamically. This section reports on
the design of this prototype and on the experimental results
that validate our assumption.

A. Overview of the System
Bendy is, internally, composed of two independent Swift-

Cloud instances, which are hidden from the client by an
extended SwiftCloud proxy.

One instance is the original, operation-based SwiftCloud
implementation as described in [5]. Another instance is
the version that we have produced that uses exclusively
state-based CRDTs. Bendy makes dynamic decisions about
which approach is more favourable for a given object, based
on its size, on the associated SLA, and on the workload
characterisation; the object state is stored in one of the
instances accordingly. If, at some point, the implementation
of an object needs to be changed in runtime, the state of the
objects is transferred from one instance to the other, and the
proxies updated such that the current implementation is used.
Figure 1(a) show the interactions between the two instance
with the proxy, and figure 1(b) represents the architecture
what was described above.

Although this approach is somehow rudimentary, and
more efficient switchover between implementations could
be supported by redesigning the metadata structure of
SwiftCloud from scratch, we have opted not to do so for
two reasons: first, the entire redesign of SwiftCloud is a
challenge on its own, and outside the scope of this work;
second, by using the current approach it is possible to make
direct comparisons with the original implementation (i.e, all
observed benefits derive from the use of dynamic adapta-
tion, and not from other optimisations of the SwiftCloud
middleware).

Note that the extended proxy maintains the metadata
for both instances such that all accesses to a given object
respect causality, regardless of the instance where the object
is currently stored. Also, Bendy is focused only on the
propagation of updates on the server side, and because of
that, the remaining implementation of the clients is preserved
from the original SwiftCloud system.

B. Taking SLAs Into Account
In Bendy, one SLA will be associated for all object.

However, due to different access ratio of some objects, some
updates are propagated as soon as possible, as in the original
SwiftCloud implementation. The SLA is used mainly to
decide when updates need to be propagated.

When deciding if an object should use an operation-
based or a state-based approach, Bendy takes into ac-
count the global SLA, the object size, and the workload
characterisation for that object, more precisely how many
updates are expected to be performed during a period that

(a) Interaction between the two SwiftCloud instances and the proxy,
representing a Data Center.

(b) Client view of the system

Figure 1. Overview of the described system.

corresponds to the SLA. If the ratio between the number
of expected updates and the object size is above a given
threshold, a state-based approach is used. Otherwise the
default operation-based approach is used.

From the study that was made, we could observe that
no significant advantages can be extracted from batching
operation-based updates. Also, from the same study, we have
seen that delaying operation-based updates may cause other
updates to be stalled. Thus, for objects that are selected to
use an operation-based approach, updates are propagated
as soon as possible, exactly as in the original SwiftCloud
implementation.

Regarding the state-based approach, one could observe in
the study that significant gains can be obtained by delaying
the propagation of updates. Therefore, in Bendy, we use the
following strategy. Let δo be the latency tolerated for object o
according to the corresponding SLA. Let µo be propagation
time. Let tuo be the time at which some update uo on object o
has been performed at a given datacenter. To ensure that the
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object SLA is not violated, Bendy forces the propagation
of that update (and all subsequent updates that have been
buffered) at the following instant.

As it will be discussed in the next section, the propagation
time µo depends not only on the size of the objects,
but also on the number of updates that are propagated
simultaneously. Thus, as discussed before, the value µo is
adjusted in runtime, based on values measured during the
last synchronizations.

C. Propagation Time

SLAs can be exploited to batch updates, a technique that
can bring significant advantages for state-based approaches.
However, batched updates need to be propagated before the
SLA expires, with enough slack to transmit and deploy the
updates at remote sites without violating the SLA. Therefore,
the assessment of the time needed to propagate and apply
updates, that we denote the propagation time, is of critical
importance for any system that aims at exploring relaxed
SLAs.

From our experience with SwiftCloud, we observed that
the number of objects and the number of updates per object
are the main variables that affect the propagation time. This
is illustrated by the following experiments where we have
fixed the SLA and object size and vary two other parameters,
namely the number of objects and the number of updates
batched: (i) in the first experiment, we fixed the number of
objects to 200 and we vary the number of updates; (ii) in
the second, we fixed the number of updates to 8 per object
and we vary the number of objects.

Figure 2(a) depicts the results from the first experiment.
As expected, the number of batched updates are irrelevant in
the state-based approach (as a single state per object is sent
before the SLA expires). On the contrary, the propagation
time increases significantly with the number of batched
updates, in the operation-based approach. Interestingly, it
can be observed that the propagation time grows super-
linearly, because the system resources become exhausted in
two many updates are queued to be applied at once. This
further reinforces the observation that, at least in the current
implementation of SwiftCloud, it is hard to extract benefits
from relaxed SLAs with the operation-based approach.

Results for the second experiment are depicted in Fig-
ure 2(b). Unsurprisingly, the propagation time increases with
the total number of updates but the interesting aspect is
that the increase is linear with state-based approach while
the operation-based approach depicts, as above, a super-
linear degradation. However, these figures clearly show that,
when computing the propagation time, one need to have
a estimate of the total number of objects that are using
batching, in order to compensate for the burst of updates that
can result from having SLAs for multiple objects expiring
simultaneously.

Since the parameters identified above, that influence the
propagation time, are hard or impossible to predict offline,
in Bendy we keep in runtime statistics for the propagation

(a) Updates per object vs Latency on server side

(b) Number of objects vs Latency on server side

Figure 2. Propagation Time

time for the subset of the top-k objects that use a state-based
approach.

In this prototype, the propagation time tix in round i, for
each of the objects Ox that use state-based, is computed
dynamically as follows:

tix = tiux
+ δ − µi

x

where tiux
is the time at which Ox received the first update

operation ux for this round; δ is the visibility delay tolerated
by the application (specified in the SLA) and; µi

X is a
moving average over a window of the time that the last
n coordination procedures took.

D. Dynamic Adaptation
Recent work on adaptive storage systems[16] provides

evidence that substantial gains can be achieved without
performing fine-grain adaptation of every and single object
in a storage system. In fact, many realistic workloads follow
a zipfian distribution, where some objects are accessed much
more often than the others. Thus, a large fraction of the
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Algorithm III.1 Process of migrating objects from one
instance to the other.

1: function MIGRATE
2: O :=GETOLDTOPK()
3: E :=GETNEWTOPK()
4: N := (O \ E) ∪ (E \O) . N = all objects to be

migrated
5: while N 6= ∅ do
6: m ⊆ N
7: LOCKOBJECTS(m)
8: MIGRATEOBJECTS(m)
9: UNLOCKOBJECTS(m)

10: N := N \m
11: function MIGRATEOBJECTS(m)
12: for id in m do
13: o :=FETCHOBJECT(id, replicaA)
14: o :=RECONFIGURE(o) . Each type of

object implements its own mechanisms to change from
one approach to the other

15: STOREOBJECT(id, o, replicaB)
16: function LOCKOBJECTS(m)
17: for id in m do
18: LOCKCLIENTACCESS(id)
19: FLUSHPENDINGUPDATES()
20: function UNLOCKOBJECTS(m)
21: FLUSHPENDINGUPDATES()
22: for id in m do
23: UNLOCKCLIENTACCESS(id)

gains can be achieved by adapting only the implementation
of those popular objects.

1) Reconfiguration: Based on these observations, Bendy
performs a top-k analysis of the workload and only adapts
the implementation of the most popular object. All other
objects just use the default SwiftCloud implementation.
The state-of-the-art stream analysis algorithm [17] permits
to infer the top-k most frequent items of a stream in an
approximate, but very efficient manner. Given that workloads
may change in run-time, the top-k analysis is repeated peri-
odically. The Algorithm III.1 describes the whole process. At
the end of each period, Bendy first reverts back to the default
(operation-based) implementation all objects that are no
longer part of the top-k. For those objects in the top-k. Bendy
selects the target implementation using the criteria described
above. Finally, Bendy reconfigures the implementation of
those objects for which the target implementation differs
from the current implementation in use.

Given that Bendy is implemented as a wrapper, the re-
configuration of a given object is implemented by migrating
that object from one SwiftCloud instance to the other. In this
process, N objects are migrated, and to ensure consistency,
we lock the access to an object that is being reconfigured to
the other implementation. The action of locking access to an
object might have impact on the throughput, specially if we
lock the access to all the objects, that are being migrated,

at the same time. To avoid such drawback, the system can
migrate m objects at a time until all N objects are migrated.
Being m a fraction of N . More details are provided in
section IV-D with experiments that compare different values
for m.

2) Selecting the Right Implementation: Bendy requires
several statistics about the objects and the workload to be
maintained, such as the object size, the update ratio, and the
time it takes to propagate and apply state updates. To keep
those statistic for every object in the storage system may
cause an unnecessary overhead. Also, client proxies need to
be aware of which instance stores a given object.

When deciding if an object should use an operation-based
or a state-based approach, Bendy takes into account the SLA,
the object size, and the workload characterisation for that
object, more precisely how many updates are expected to
be performed during a period that corresponds to the SLA.
If the ratio between the number of expected updates and the
object size is above a given threshold, a state-based approach
is used. Otherwise the default operation-based approach is
used.

E. Implementation Issues
During the development of the system, many decisions

were made to implement the features that were described
above. The main features are: the implementation of state
approach, the combination of the two approaches operation-
and state-based and the dynamic system.

1) Implementation of the state-based approach: As it
was discussed before, we started our project with an im-
plementation of SwiftCloud that only supports operation-
based CRDTs. The first step was to implement a state-
based solution to make the first comparisons between the
two approaches. Thus, we based our implementation on the
original algorithms from [2] and managed to implement the
merge function. For that, we’ve extend the CRDT interface
and changed the internal representation of the objects like
in the algorithms. However, we’ve only changed how the
updates where propagated on the server side, because we
assumed that one client will never make enough updates
that justifies the sending of a state. Instead, we look at the
client as an entity that makes operations remotely and not as
a replica, like in the original SwiftCloud. We’ve kept all the
features of the Client and focused only on the server side.

The second part of implementing the state-based approach
was the propagation of updates. At the same time we did
the propagation of updates we started to add the notion of
SLA. Since, in the original SwiftCloud, the updates were
sent asynchronously, it was not hard to implement the SLA.
Basically we’ve added a delay between synchronizations to
the synchronization thread. Later, we’ve implemented the
formula described in Section III-C to ensure that the SLA
was satisfied. About the propagation of updates, we had
to implement the merge of the replica’s clock to ensure
that clients were able to see updates from other replicas.
Although in the specification of the state approach it is
not required to have a causal clock outside of the object,
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we’ve found out that it was harder change completely the
SwiftCloud implementation than keeping the clock. Besides
that, we intended to integrate with the operation-based
approach which needs that global clock.

2) Combining operation-based and state-based ap-
proaches: After the implementation of the state approach,
we tried to put together both approaches in the instance.
However, that was impossible due to the complexity of the
global causal clock and because, when merging an object,
the merge of the clock sometimes it contain the timestamps
of other operations. This means that after making a merge
of an object and its clock, the operations that were on
hold to be applied will be discarded because the new clock
already includes the timestamp of those operations. We’ve
looked at this problem for a long time, and the best solution
was to separate the two implementations into two instances.
Otherwise, we wouldn’t have time to work on the dynamic
part of the system.

To hide the two instances from the client we created a
proxy. This proxy basically forwards the client’s request to
the instance that has the object. For the client there were no
changes. We kept the same interface so that the client can
make operations regardless of the propagation method that
each instance uses.

3) Implementing a dynamic system: Regarding this topic,
most of the details are explained in the Section III-D.
Nevertheless, there is one aspect that needs to be explained
with more detail. Regarding the migration of an object from
one approach to the other, we had to make it in a simple
manner. Because we have two instances, the causal clocks of
each instance will grow independently. However, we need to
move one object from one side to the other and changing the
clocks was not easy. The best solution was to momentarily
lock the object on the two instances for all clients except
one. There is one client that belongs to the system and it is
in charge of migrate objects. This client, contacts directly the
instance instead of contacting the proxy like the other clients.
It reads the value on the original instance, removes the object
from that instance (by removing its the elements in the case
of the set) and applies that value on the other instance.
Finally we flush all buffers to ensure that all replicas have
migrated the object and we unlock the

IV. EVALUATION

This section presents an evaluation of Bendy. We first
present our experimental setting, where we list the systems
we use to compare Bendy with. Then we present experi-
ments comparing the throughput and the bandwidth used by
each of the systems. We finally evaluate how Bendy is able
to adapt to changes in the workload.

A. Experimental Setup
Each experiment uses 3 datacenters. Each datacenter

replicates the full key-space which is composed by 1000
objects for the experiments in Subsections IV-B and IV-C,
and 50000 objects for the experiments in subsection IV-D.
We run a total 600 clients, having 200 client associated with

each datacenter. In order to generate the workload, we use
a zipfian distribution. All objects have associated a SLA of
10s. We first run a warm-up phase were the database is
populated. Then, each experiment runs for 5 minutes.

In our experiments, we compare the following three
systems:

• An unmodified version of SwiftCloud (op-based here-
after) that implements an operation-based dissemination
process. Updates are propagated immediately without
batching them.

• A modified version of SwiftCloud (state-based here-
after) that implements a state-based dissemination pro-
cess. Updates are batched based on the formula pre-
sented in Subsection III-C.

• Bendy which is a mixed approach that follows the spec-
ifications presented in Section III. It is approximately
2200 lines of Java. Bendy is built on top of SwiftCloud.

B. Throughput
In the following experiment we aim at comparing the

three systems in terms of throughput. Since Bendy runs
two independent instances of SwiftCloud, one implementing
operation-based and other one implementing state-based,
bridged by an extended proxy, we opted for running the
experiments in two instances also for the other systems.
This allows us to achieve comparable results; even though
op-based and state-based systems could run the whole
experiment using a single instance since they do not mix
approaches.

Figure 3(a) show the results for two different workloads:
(i) a read-dominated workload with only 5% of updates
(Workload-1); and (ii) a balanced workload with an equal
number of reads and updates (Workload-2). These are two
of the workloads specified by the widely used YCSB[18]
benchmark and are representative of the workloads imposed
by typical applications of geo-replicated storage systems. In
addition, for each of the workloads, we experiment with two
different object sizes: S (12KB) and XL (30KB). Bendy, due
to the parametrization of the zipfian distribution generator
and our top-k analysis, optimizes the dissemination process
of 1% of the total number of objects. In these experiments,
we are forced to limit the number of objects to 1000 since
the state-based approach starts struggling and becoming
very unstable with a large number and size of objects, due
to the amount of information that needs to ship in every
coordination procedure. Operation-based and Bendy do not
suffer from this problem but in order to have comparable
results across systems we limit the number of objects also
for them. In the experiment in Subsection IV-D we use a
more realistic amount of objects (50000) to demonstrate that
our system does not suffer from this problem.

The results show that Bendy always outperforms the other
two systems (up to 127% in some cases). The reason is
because our system does not reach the bottleneck stage that
the other solutions have to face. The state-based solution
has to struggle with large-sized objects while the operation-
based approach struggles with the high amount of operations
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(a) Throughput

(b) Bandwidth

Figure 3. Throughput vs Bandwidth

issued in a few objects. This experiment validates our
hypothesis, and demonstrates that benefits can be achieved
by having a hybrid system.

In this experiment, the state-based approach seems to,
most of the times, outperform the operation-based approach.
However, for the state-based approach, the SLA of 10s was
only satisfied once as we can see in the Table I. The main
reason for not being able to satisfy the SLA was the large
amount of states that are processed at the same time and its
size. Nevertheless, as our study unveils, this directly depends

ops state Bendy
Workload-1S 1 523 11 640 267
Workload-2S 377 5 290 237
Workload-1XL 1 238 55 119 799
Workload-2XL 492 63 120 729

Table I
COORDINATION TIME (AVERAGE)

on the workload, the SLA, and the size of the objects.
Finally, one more subtle conclusion one can extract from

this experiment is that, with the state-based approach, one
must take special care to avoid violating the SLA. We notice
that, as soon as the size and the number of objects increases,
the accumulated processing time for all state-updates also
increase. Thus, a naively configured state-based approach
can easily start violating the target SLA. For instance, Table I
lists the average time that the coordination procedures took
for each of the experiments. One can see that the state-based
solution is only able to satisfy the SLA of 10s for the one of
the experiments (Workload-2S), violating in the other three,
e.g. for Workload-2XL, it takes more than 60s on average.
This reinforces the importance of applying the state-based
approach just to a small number of top-k objects, that have
the bigger impact on the system performance.

C. Bandwidth Utilization
With the same experiment, we also measured the band-

width usage of the different approaches. Figure 3(b) shows
the amount of bandwidth, in MB, used by each of the
approaches for the entire run of five minutes. The experiment
configuration and the used workloads are equivalent to the
ones presented in the previous subsection.

The results match our analysis. As expected, the pure
state-based system, is by far the worst solution. In many
cases this system sends the state of objects that only received
2 or 3 operations, which is not efficient. Regarding Bendy,
it uses more bandwidth than the pure operation-based sys-
tem. Nevertheless, as demonstrated before, we reach better
throughput mostly because of (i) the benefit of batching
updates, and (ii) the inter-object dependencies problem of
the operation-based system described in our study.

D. Dynamic Behavior
In previous experiments, we have compared the through-

put of all the approaches at a stable point. However, in a real
setting, the workload may change dynamically. Therefore, in
this subsection, we describe an experiment where we induce
a dynamic change in the workload by changing the most
accessed objects. Our goal is to assess how well Bendy
adapts to the changes and how the adaptation penalizes the
throughput provided by Bendy.

For this experiment, we use a balanced workload with an
equal number of reads and updates. The experiment goes as
follows: during the first 100 seconds, the system is stable,
meaning that no changes in workload are introduced; then
the most accessed objects are changed. This forces Bendy
to migrate a total of 700 objects between instances in order
to optimize the newly identified top-k objects. We compare
four variations of Bendy:

1) A version that does not adapt to the new workload
(baseline);

2) A version that migrates all objects at once (All at
once);

3) A version that migrates the objects in groups of 50
(50 by 50);
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4) A version that migrates the objects in groups of 10
(10 by 10).

Figure 4 shows the throughput of each of the variations.
One can see that, after changing the workload (100th
second), all variations of Bendy degrade their performance
reducing its throughput almost 33%. This is because the
objects being optimized are not highly accessed anymore
and the new hot objects are using basic operation-based
approach, which does not benefit from batching. Then, after
125 more seconds (225th second), the migration process
is started. As expected, if we move all objects at once
the throughput drops drastically until the balancing process
ends. However, if we migrate a small amount of objects
at a time, the process may take longer but the throughput
loss is minimal. We can conclude that moving by groups
of around 50 objects is a reasonable solution. Although the
throughput initially drops (about 20%), it recovers quite fast,
achieving maximum throughput in less than 50 seconds since
the balancing process started.

Another aspect of our dynamic system is the ability to
detect that the top-k list has changed. As in all autonomic
system, there is a tradeoff between how fast the system reacts
to changes and the likelihood of the new state to be stable.
Since we consider this problem orthogonal to this thesis, we
decided to adopt a simple approach, in which we wait for
some extra time once the change has been detected, before
starting the adaptations procedure of Bendy. Of course, we
could adopt more sophisticated techniques in order to make
Bendy more robust to transient workload oscillation, such
as techniques to filter out outliers [19], detect statistically
relevant shifts of system’s metrics [20], or predict future
workload trends [21].

In order to get some insights on the time we have to wait
until considering a change in the workload stable, we evalu-
ate the time that our top-k analysis needs in order to propose
a top-k list close to the optimal. For the implementation of
top-k that was used, there is a variable called capacity which
is the number of events that happened in the past. In our
solution, each event is an access to an object. This means,
if the algorithm uses a large capacity then we will have more
accuracy in the result. However, if the capacity is extremely
large, we will waste a lot of resources in terms of memory
and it should take more time to process a list of top-k objects.
Figure 5 shows the results of the experiment. As one can
see, a larger capacity brings more accuracy, and the top-k
analysis rapidly starts proposing almost an optimal list of
hot objects (only 10% of error) in barely 75 seconds. This
justifies the 125 seconds time window used in the previous
experiment before adapting the system.

E. Discussion
The results obtained with Bendy, clearly show that sig-

nificant benefits can be achieved if multiple CRDT imple-
mentations are supported in a single system, and the best
implementation is used according to the user SLA and the
workload characterization. This opens the door for new
avenues of research, in the design and implementation of

Figure 5. Percentage of objects in a top-k list that are different from the
optimal top-k list.

systems that can provide such functionality in an much
more integrated manner, than that provided by the wrapper
approach followed in the Bendy design. In the following
paragraphs, we discuss a number of insights and guidelines,
that we gained from our experience with the evaluation
SwiftCloud and the implementation of Bendy, that may be
useful when building future systems:

• If updates need to be pushed as soon as possible, the
current SwiftCloud operation-based approach excels.
However, if clients can tolerate stale data, significant
gains could be achieved by supporting state-based prop-
agation of updates.

• With the current SwiftCloud implementation, no signif-
icant advantages can be extracted from batching mul-
tiple operation-based updates. This happens because
SwiftCloud applies all the batched operations serially
and independently (for instance, releasing and grabbing
locks for every single operation in the batch). There
is room to optimize SwiftCloud for more efficient pro-
cessing of batched updates. Also, semantic compression
of batched updates, as suggested by in [9], would also
improve the system.

• The way SwiftCloud compresses client metadata,
namely by using a single clock shared by all objects,
makes hard, if not impossible, to support multiple dis-
tinct SLAs in an effective manner, as the interdependen-
cies that are created among updates may cause SLAs
to be violated. Techniques that are more costly, but
that allow for more fine-grain tracking of dependencies
(such as using per-object clocks [22]) are needed to
effective support multiple SLAs.

Taking into consideration our experience, implementa-
tions that aim at outperforming Bendy should use the
following guidelines:

• To rely on CRDT implementations that support both
approaches, like the Optimized OR-Set [15].

• To use metadata maintenance techniques that avoid cre-
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Figure 4. Throughput of one DC during the balancing process of top-k objects.

ating false dependencies among objects using different
SLAs.

• To use metadata maintenance techniques that ensure
that causality information regarding objects using dif-
ferent implementations is not compressed together, as
this creates undesirable dependencies among both im-
plementations.

• Embed in the transaction processing engine sensors
that may simplify the task of extracting the workload
characterisation, namely the update rate, given that the
benefits of the state-based over the operation-based crit-
ically depend on the possibility of aggregating multiple
updates before the SLA expires.

V. CONCLUSIONS

In this thesis we have analyzed the cost performance
tradeoffs between the two main approaches that can be
used to propagate updates in geo-replicated stores using
CRDTs, namely operation-based and state-base approaches.
Our work shows that node of the approaches outperforms
the other in absolute terms, and that an hybrid system may
yield the best results. In particular, we have show that, if the
application is willing to tolerate small amounts of staleness
when reading objects, significant throughput gains can be
achieved by encoding multiple updates in a single state-
update.

In order to validate our hypothesis, we have presented
and evaluated Bendy, a CRDT-based geo-replicated storage
system that supports both operation- and state-based ap-
proches. Bendy is able to optimize object-wise for a bounded
number of objects (hot objects) the dissemination process.
Plus, Bendy is able to react to changes in the workload
by relying on an approximate, but very efficient, state-of-
the-art stream analysis algorithm. Our results have shown
that Bendy outperforms solutions that use only one of the
two approaches, and that is capable of rapidly self-adapt to
variations in the workload.

In the process of implementing and experimenting with
both approaches, using SwiftCloud, a state of the art CRDT-
based geo-replicated storage system, we were also able
to get interesting insights that may help in driving future
implementations of similar systems. In particular, designers

need to take special care on providing support for efficient
processing of batched operation-based updates, fast state-
updates, and carefully crafted metadata structures that avoid
undesirable false causal dependencies among objects.
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