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Resumo

Com a chegada da computação na nuvem, e com a necessidade de manter a informação

replicada em centros de dados geograficamente distantes, tornou-se relevante procurar por es-

tratégias que garantam coerência nos dados com o mı́nimo de sincronização entre as réplicas.

Infelizmente, a maior parte dos tipos de dados requerem que as operações sejam ordenadas de

forma total para garantir a coerência das réplicas.

Os tipos de dados replicados isentos de conflitos, do Inglês, “Conflict-free Replicated Data

Types” ou simplesmente CRDTs, são tipos de dados cujas operações não entram em conflito

umas com as outras e, portanto, podem ser replicadas com um custo mı́nimo na coordenação

entre réplicas. Apesar de esta propriedade garantir que o sistema converge para um estado

coerente quando fica em repouso, a escolha do melhor método para propagar as actualizações

não é trivial. Abordagens diferentes, tais como o envio do estado ou a propagação de operações,

foram propostos para propagar actualizações de forma eficiente, com diferentes contra-partidas

tais como o uso da rede ou a desactualização da informação.

Esta tese propõe e avalia técnicas para o sistema escolher de forma automática qual o sistema

de propagação de actualizações a usar, com base no desempenho observado e nos requisitos da

aplicação. Estas técnicas foram integradas e avaliadas no SwiftCloud, um sistema que materializa

o estado da arte na manutenção de CRDTs geograficamente distribúıdas.





Abstract

With the advent of cloud computing, and the need to maintain data replicated in geograph-

ically remote data centers, searching for strategies to provide data consistency with minimal

synchronization became very relevant. Unfortunately, most data types require operations to be

totally ordered to ensure replica consistency.

Conflict-free Replicated Data Types (CRDTs) are data types whose operations do not con-

flict with each other and, therefore, can be replicated with minimal coordination among replicas.

While it is easy to ensure that all replicas of CRDTs become eventually consistent when the sys-

tem becomes quiescent, different techniques can be used to propagate the updates as efficiently

as possible. Different approaches, such as state transfer and operation forwarding, have been

proposed to propagate the updates as efficiently as possible, with different tradeoffs among the

amount of network traffic generated and the staleness of local information.

This thesis proposes and evaluates techniques to automatically adapt a CRDT implementa-

tion, such that the best approach is used, based on the application needs (captured by a SLA)

and the observed system configuration. Our techniques have been integrated in SwiftCloud, a

state of the art geo-replicated store based on CRDTs.
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1Introduction
This thesis addresses the limitation of only propagating operations of objects between dat-

acenters. The propagation of operations is in most cases enough, but when the distribution of

the access to the objects is not uniform this may become a bottleneck. For this purpose, the

thesis proposes a combination of two different approaches to propagate updates and a dynamic

mechanism that decides which approach is used by an object.

1.1 Motivation

With the advent of cloud computing, and the need to maintain data replicated in geograph-

ically remote data centers, searching for strategies to provide data consistency with minimal

synchronization became very relevant. Unfortunately, most data types require operations to

be totally ordered to ensure replica consistency. This means that operations are diverted to a

single primary replica, incurring on long delays and availability problems, or that an expensive

consensus protocol such as Paxos(Lamport 1998) is used to order the updates.

Conflict-free Replicated Data Types (CRDTs)(Shapiro, Preguiça, Baquero, and Zawirski

2011; Shapiro, Preguiça, Baquero, and Zawirski 2011; Letia, Preguiça, and Shapiro 2009) are

data types whose concurrent operations do not conflict with each other and, therefore, can be

replicated with minimal coordination among replicas. CRDTs are implemented in such a way

that any two concurrent operations A and B are commutative and, therefore, even if they are

executed in different sequential orders at different replicas, the final result is still the same.

As a result, there are no conflicts among concurrent operations and replicas can often execute

operations promptly, without synchronization with other replicas, i.e., operations may be ex-

ecuted locally first and shipped to other replicas only when it becomes appropriated. Using

this approach, even if replicas diverge from each other, convergence is eventually reached due to

CRDTs properties. Thus CRDTs, unlike other eventual consistency approaches, may strongly
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simplify the development of distributed application such as social networks, collaborative doc-

uments, or online stores(Zawirski, Bieniusa, Balegas, Duarte, Baquero, Shapiro, and Preguiça

2013; Navalho, Duarte, Preguiça, and Shapiro 2013; Preguica, Marques, Shapiro, and Letia

2009).

Two main types of CRDTs have been proposed, that differ on the techniques they use to

reach eventual consistency, namely operation-based(Shapiro, Preguiça, Baquero, and Zawirski

2011; Baquero, Almeida, and Shoker 2014) and state-based(Shapiro, Preguiça, Baquero, and

Zawirski 2011) CRDTs. Operation-based CRDTs send to other replicas the operations that are

executed locally; these are later executed remotely also. On the contrary, state-based CRDTs

send the full state of the object (which includes the outcome of the operations), such that it

can be merged with the local state at remote replicas. Both approaches have advantages and

disadvantages as we will see later. A third type of CRDTs has also been proposed more recently,

named delta-based CRDTs(Almeida, Shoker, and Baquero 2014), which combines features of the

two basic approaches above. Delta-based CRDTs do not ship the full state but, instead, send a

smaller state, labeled delta-state, that represents the operations performed between two instants.

The CRDT specification allows for the implementation to choose when it is more appropriate

to exchange information among replicas, and allows to postpone eventual consistency to be

reached in order to save communication and computation resources. For how long eventual

consistency can be postponed depends on the application requirements. These requirements

can be captured by a Service Level Agreement (SLA)(Terry, Prabhakaran, Kotla, Balakrishnan,

Aguilera, and Abu-Libdeh 2013). By using SLAs, the client or the System Administrator can

specify how the system should behave at a given situation.

1.2 Contributions

With this work, we aim at studying the possibility of automating the choice of the CRDT

implementation based on the SLA that have been defined and based on the characteristics of

the execution environment. These characteristics can be available processing power, observed

network latency, timing of propagating messages, etc. More precisely, the thesis makes the

following contributions:

• A practical study that compares an operation-based approach with a state-based approach.
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• The architecture of a system that benefits from using both approaches simultaneously and

dynamically.

1.3 Results

The results produced by this thesis can be enumerated as follows:

• An analysis of the advantages and limitations of the SwiftCloud implementation.

• A prototype of the described architecture called Bendy.

• An experimental evaluation of the implemented prototype, which can have up to 50% more

throughput when compared to a normal operation-based solution.

1.4 Research History

During my work, I benefited from the fruitful collaboration of Manuel Bravo.

In the beginning, the main focus of this work was to study how an operation-based solution

or a state-based solution would behave in different environments. In particular, how different

workloads, object distributions, object sizes and buffering updates would affect the throughput

and/or staleness of the object. Because of the variety of variables, we focused our experiments

on a single type of object: the set. A set is an interesting enough type of object because its

size can vary and sometimes there are dependencies between an add operation and a remove

operation. After an intense analysis of this data type, we designed and tested a prototype of

a system that benefits from combining both solutions to optimise the propagation of updates.

The architecture proposed in this thesis was inspired by the results obtained by the previous

study. Therefore most of the work was testing different running environments to better decide

the final architecture of our solution. Since the beginning we decide to build our solution on to

of SwiftCloud. So part of the work was also understanding the system and most of the times

trying to understand if SwiftCloud was capable of supporting our ideas.
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1.5 Structure of the Document

The rest of this document is organized as follows. For self-containment, Chapter 2 provides

an introduction to CRDTs and a description of its current implementations. Chapter 3 provides

a study about two implementations of CRDTs along with the architecture and the algorithms

used by Bendy. Chapter 4 presents the results of the experimental evaluation of the system.

Finally, Chapter 5 concludes this document by summarizing its main points and future work.



2Related Work
Introduction

This chapter surveys the relevant work that has been produced in the area of CRDTs.

We start by discussing the problem of consistency when managing replicated data, the consis-

tency/cost tradeoff, and how the notion of Service Level Agreement can be used to optimize

the system performance. Then we move to introduce the general properties of CRDTs and

to present the three main approaches that have been explored to implement that abstraction,

namely: operation-based, state-based, and delta-based CRDTs. We survey some of the most

common CRDTs, in particular counter and set datatypes. Finally, we compare how differ-

ent implementation approaches perform in terms of memory, time to propagate updates and

throughput.

2.1 Replication and Data Consistency

When data replicas are placed in geographically distant locations, such that the communica-

tion latency among replicas becomes significant, a tradeoff among performance and consistency

emerges. In particular, the performance of reads with different consistency guarantees may be

substantial. Strongly consistent reads generally involve multiple replicas or must be served by

a primary replica, whereas eventually consistent reads can be answered by the closest replica.

Six levels of consistency for read operation have been defined in the literature(Terry, Prab-

hakaran, Kotla, Balakrishnan, Aguilera, and Abu-Libdeh 2013; Terry, Demers, Petersen, Spre-

itzer, Theimer, and Welch 1994): strong, causal, bounded, read-my-writes, monotonic, and

eventual consistency, as explained below.

• Strong: A read returns the value of the last preceding write performed by any client.
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• Causal: A read returns the value of a latest write that causally precedes it or returns

some later version. The causal precedence relation < is defined such that op1 < op2 if

either (a) op1 occurs before op2 in the same session, (b) op1 is a write and op2 is a read

that returns the version writen in op1, or ,by the property of transitivity, (c) for some op3,

op1 < op3 and op3 < op2.

• Bounded(t): A read returns a value that is stale by at most t seconds. Specifically, it

returns the value of the latest write that completed at most t seconds ago or some more

recent version.

• Read-my-Writes: A read returns the value written by the last preceding write in the

same session or returns a later version; if no writes have been performed to this key in this

session, then the read may return any previous value as in eventual consistency.

• Monotonic Reads: A read returns the same or a later version as a previous read in this

session; if the session has no previous reads for this key, then the read may return the

value of any write.

• Eventual: A read returns the value written by any write, i.e. any version of the object

with the given key; clients can expect that the latest version eventually would be returned

if no further writes were performed, but there are no guarantees concerning how long this

might take.

In a similar manner, in (Terry, Demers, Petersen, Spreitzer, Theimer, and Welch 1994)

consistency levels have also been defined for write operations, namely Writes Follow Reads and

Monotonic Writes as described below:

• Writes Follow Reads: Writes made during the session are ordered after any Writes

whose effects were seen by previous Reads in the session.

• Monotonic Writes: Writes must follow previous Writes within the session.

Although the use of replication raises the problem of data consistency, it has many advan-

tages. In first place, replication offers fault-tolerance. Also, by placing replicas close to the

users, replication can provide fast access to data.
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The tradeoffs among fault-tolerance and consistency have been captured by the well-known

CAP Theorem (Brewer 2000), that states that in a shared-data system we can only have two of

the following three properties: Consistency, Availability and Partition-tolerance.

These tradeoffs open a large solution space that has been explored in many different ways

by different systems. In our work we weaken consistency, by allowing replicas having different

states, to ensure availability and leverage from the CRDTs properties to simplify the replication

management.

2.2 Service Level Agreement (SLA)

As we have seen in the previous section, it is possible to define different levels of consistency

for read and write operations. Typically, the consistency level that must be enforced is a function

of the application semantics and business goals. These requirements can be expressed in the

form of a Service Level Agreement (SLA).

In most cases, applications prefer to use the stronger consistency, when the network condi-

tions are favorable. However, when the network is unstable (higher latencies due to congestion,

partitions, etc), different applications require different consistency guarantees. Actually, the pre-

ferred consistency guarantee may be even a function of the actual value of the network latency

that is observed (for instance, an application may be willing to wait t seconds to get strong

consistency but not more).

To cope with the fact that a given application may prefer different consistency levels for

different operational conditions, the use of a multiple-choice SLA has been proposed in the

context of the Pileus system(Terry, Prabhakaran, Kotla, Balakrishnan, Aguilera, and Abu-

Libdeh 2013). This system allows developers to define which level of consistency should be

used according to the response time of the system. This means, for a given SLA, if the system

predicts that the response time of a strong read is more than the desired, then it should use a

other level of consistency, previously specified, in order to achieve the desired response time with

more gain. With such an SLA, a system is able to adapt to different configurations of replicas

and users and to changing conditions, including variations in network or server load.

In the context of our project, we will not use the SLA to determine the consistency level to

use. Instead, the max time that a user is willing to wait for an update, SLA time, will be used
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by our system as a hint to determine which approach an object should use.

2.3 Distributed Key-value Store Systems

Nowadays, there is a need for a system that gives the “always-on” experience and that is

able deal with failures in an infrastructure without impacting availability or performance. Also,

there is a need for a more reliable and scalable system as several companies grow world-wide

and serve millions customers around the world.

2.3.1 Dynamo and Riak

An example of a system that achieves those needs is Dynamo (DeCandia, Hastorun, Jam-

pani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, and Vogels 2007a). Dynamo

gathers a well known techniques to achieve scalability and availability: Data is partitioned and

replicated using consistent hashing, and consistency is simplified by object versioning. The

consistency among replicas during updates is maintained by a quorum-like technique and a

decentralized replica synchronization protocol. The gossip technique is used for a distributed

failure detection and membership protocol. Dynamo is completely decentralized and storage

nodes can be added and removed without requiring any manual partitioning or redistribution.

Another example is Riak (Klophaus 2010), inspired by Dynamo and many other similar

systems, Riak has some new features and extended functionalities that better fits their vision

of a geo-replicated and high available system. One feature is the use of CRDTs. By using this

kind of data types, Riak is able to improve scalability and independence between storage nodes

and removes the need for quorums and other expensive synchronization protocols.

2.3.2 SwiftCloud

SwiftCloud (Zawirski, Bieniusa, Balegas, Duarte, Baquero, Shapiro, and Preguiça 2013),

which was the starting point of this thesis work, is another distributed key-value store system

designed with the objective of proving the benefits of using CRDTs. SwiftCloud already em-

bodies a number of interesting features, such as support for transactions, caching at the clients,

propagation of operations among datacenters, etc. Therefore, we have opted to use SwiftCloud
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as a testbed to get more insights on the advantages and disadvantages of operation based and

state based CRDTs in practice. Because many decisions that were made in the architecture are

related to how SwiftCloud was design, we describe below a few relevant aspects of the system.

In SwiftCloud, client applications do not contact datacenters directly; instead, they use

a local proxy that keeps copies of the recently accessed objects and also maintains metadata

that encodes dependencies among updates. The purpose of the metadata is to ensure that

client application always observe states that are consistent with causality(Shapiro, Preguiça,

Baquero, and Zawirski 2011). Every time a transaction needs to read or write an object, it

first fetch the object from the local cache. If the object is not in the cache, or if the cache is

disabled, the client proxy fetches it from any datacenter that has a clock equal or higher than

the client’s clock. When the transaction ends, if any update was generated, it is propagated to

a datacenter asynchronously. Otherwise, it is a read-only transaction and the transaction ends

without contacting a datacenter.

Each datacenter maintains a copy of the entire CRDT database. Datacenters contact each

other to propagate updates received from clients and to ensure that their state eventually con-

verge. There are two services that run in each datacenter: surrogates, that are in charge of

interaction with clients, and a single sequencer, that is responsible for receiving and propagat-

ing updates among datacenters. A global single clock is used to record timestamps made by

transactions. It is also used to ensure that transactions are only applied when dependencies are

satisfied. Internally, CRDTs are encoded and stored using data structures similar to the ones

design for operation-based approach (Shapiro, Preguiça, Baquero, and Zawirski 2011). There-

fore, the propagation of updates among data centers follows exclusively an operation-based

approach. One of the contributions of this work is to extend SwiftCloud to support also a

state-based propagation of updates.

Regarding the propagation of updates among datacenters, they are dispatched asyn-

chronously as soon as a client commits a transaction. SwiftCloud offers no support to take

clients SLAs into consideration. When an update is received from a client in a datacenter, the

corresponding operation is scheduled to be shipped to the remaining datacenters asynchronously,

but as soon as possible. Although, in theory, the system could benefit from batching multiple

updates in applications with weak freshness constraints, no attempt to perform such batching

is implemented. When a replica receives an update from another replica, it first checks if the
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dependencies are satisfied and then applies it. This is a sequential process; therefore, if more

than one update is received from a remote datacenter, all updates are queued and processed

serially, one by one. SwiftCloud makes no attempt to parallelize this process because the queue

is usually short. However, if many updates are received close to each other, the processing of the

queue may become a bottleneck. Unfortunately, it is not trivial to parallelize the applications

of updates because updates can be only applied when the dependencies are satisfied, and up-

dates coming from a given datacenter typically depend of each other, due to the way SwiftCloud

maintains causality metadata.

2.4 Conflict-free Replicated Data Types (CRDTs)

A Conflict-free Replicated Data type (CRDT) is data structure, like a counter or a set, which

can be deployed in a distributed system, by placing replicas of the data in multiple servers, in

such a way that concurrent operations do not conflict. As a result, a client may contact any

server, and execute a sequence of operations on that server, without being forced to wait for

(potentially blocking) coordination with other servers.

Since CRDTs avoid explicit synchronization at every operation, the propagation of updates

is often made asynchronously, in background. This means that, at a given time, different replicas

may contain different states. However, if the system becomes quiescent, eventually all replicas

converge to the same state. However, unlike in other forms of eventual consistency, operations

in CRDTs never have to be cancelled or compensated, as a result of the synchronization among

replicas (this derives form the fact that operations never conflict).

The state maintained by each replica is also named the replica payload. Client requests are

modelled as operations. An operation contains the method to be executed and its arguments.

The state of a replica after executing a client request is a deterministic function of its state

before executing the request and of the operation received. The main difference among CRDT

implementations is related with the way different replicas are synchronized. In this respect,

there are three main approaches that have been proposed to implement CRDTs: operation-

based CRDTs, state-based CRDTs, and an hybrid approach named delta-based CRDTs. These

approaches are described in the following subsections.
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2.4.1 Operation-based CRDT: Commutative Replicated Data Type (Cm-

RDT)

Operation-based CRDTs ensure that replicas eventually converge by propagating all update

operations to all replicas. Naturally, operations that are read-only, i.e. do not change the state

of the object, can be executed locally at any replica, and have the result returned back to the

client without the need for any other coordination. Operation-based CRDTs can be seen as

implementing a form of active replication, given that all replicas must execute all the requests.

The algorithm used to disseminate the operations among all replicas is independent of the

implementation of the CRDT, and several strategies may be used: broadcast, gossip, spanning-

trees, etc. However, there are a number of properties that the dissemination process must

preserve. In first place, the dissemination must be reliable, such that all operations are re-

ceived by all replicas and must ensure exactly-once delivery. If a replica does not receive a

given operation, or if it applies a given operation more than once, its state may never converge

with the state of the remaining replicas. Furthermore, some operation-based CRDTs, such as

the optimised observed-removed set(Bieniusa, Zawirski, Preguiça, Shapiro, Baquero, Balegas,

and Duarte 2012), require causal delivery, which makes the dissemination process even more

demanding.

2.4.2 State-based CRDT: Convergent Replicated Data Type (CvRDT)

State-based CRDTs ensure that replicas eventually converge by propagating the state of

each replica to other replicas and by relying on a merge operation that combines the state

received from a remote replica with the state of the local replica. When using state-based

CRDTs, a request is sent to a single replica, that executes the operation locally. The operation

is not propagated to the other replicas. Instead, the state of the replica that has executed the

request will, eventually, be propagated and merged with the state of the other replicas.

The key to this approach is to encode the state of the replicas in such a way that the merge

function becomes idempotent. Thus, if the same state update is applied twice to the same

replica, the result should be the same as if it is applied only once. Furthermore, if two different

states contain the effects of different, but overlapping, set of operations, the result of the merge

function should still be equivalent to the state that would have been achieved by executing each
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request only once in that replica. To ensure that states can be merged in an idempotent manner

is not trivial and, usually, the state must be encoded in a manner that is less space efficient than

in operation-based CRDTs.

As before, the approach is independent of the strategy used to decide when to propagate

the state of one replica to the other replicas. A new state can be sent every time a client request

is processed, or a new state can be sent periodically, and contain the result of many update

requests. However, the idempotent property of the merge function puts much less constraints

on the dissemination of state updates, when compared to the dissemination of operations. State

messages may be delivered more than once or even lost; lost updates are masked by the next state

transfer. In the previous case, the order by which state updates is applied is not relevant because

the internal structure of the data type together with the merge operation ensures convergence

of the replicas.

2.4.3 Delta-based CRDT: Conflict-free Replicated Data Type (δ-CRDT)

Delta-based CRDTs combine features of operation based and state-based CRDTs. The idea

is that, as a result of applying an operation, a delta-state is produced. A delta only captures

changes caused by the associated operation but has the mergeable properties of state-based

CRDT. When a delta A is merged with other delta B, a new delta C is created, which represents

the delta A and delta B merged. One delta state is comparable to an operation but has the

property of being able to capture multiple operations as a result of multiple merges. Since a

delta states are mergeable, it can be sent to replicas without any requirement because the final

state of the replica will always be consistent. All the replicas converge when all the replicas have

seen, directly or indirectly, all the deltas states.

2.5 Portfolio of basic CRDTs

In this section we describe and specify some of the basic data types that have been proposed,

such as the counter and the set, which are the basic blocks for more complex data types like

graphs. The study of these concrete data types helps in understanding the challenges, benefits,

and limitations of CRDTs.
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About the algorithms that will be presented, the communication is not described. Instead,

we assume the replicas have communications channels and what they send to each other is

returned by the operation performed.

2.5.1 Counters

A counter is a replicated integer that supports three operations, namely increment, decre-

ment, and value (the first two operations change the state of the counter and the third operation

returns its value). It is straightforward to extend the interface to include operations for adding

and subtracting any value. The semantics of the counter are such that its value converges to-

wards the global number of increments minus the number of decrements. A counter is useful in

many applications, for instance for counting the number of currently logged-in users.

2.5.1.1 Operation-based Counter:

An operation-based counter is the simplest CRDT we can find. Its payload is an integer i

and supports two basic operations: increment and decrement. It can be extended to support

increments of any value as can be infered just by looking at the specification depicted in Alg. 2.1.

This is possible because any increment or decrement are operations that commute.

Algorithm 2.1 Operation-based Counter

1: payload integer i
2: initial 0
3: function Increment
4: i := i+ 1
5: return +1 . Operation

6: function Decrement
7: i := i− 1
8: return −1 . Operation

9: function Value
10: return i
11: function Update(operation k)
12: i := i+ k . it will increment or decrement depending on k being positive or negative
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2.5.1.2 State-based Counter:

A state-based counter requires a more complex data structure. To simplify the problem,

let us specify a grow-only counter. Suppose that we have a payload, like in the operation-based

approach, which is an integer i, and the merge operation does the max of each payload. Consider

two replicas, with the same initial state of 0; at each one, a client originates increment. They

converge to 1 instead of the expected 2. Suppose instead that the payload is an integer and that

merge adds the two values. This implementation does not have the properties of a CvRDT,

given that the merge operation is not idempotent. In (Bieniusa, Zawirski, Preguiça, Shapiro,

Baquero, Balegas, and Duarte 2012) the following solution has been proposed to implement a

state-based counter: the payload is stored as a vector of integers, with one position per replica

(inspired by vector clocks). To increment, each replica adds 1 to its position in the vector. The

value is the sum of all entries of the vector. Merge takes the maximum of each entry. The

specification can be seen in Alg. 2.2. To implement a counter that supports increment and

decrement operations we need two vectors, one for increments and one for decrements. This is

because if we use only one vector the max function in the merge operation will not take into

account the decrements. The value of the counter is increments minus decrements.

Algorithm 2.2 State-based Grow-only Counter

1: payload integer[n] P . One entry per replica
2: initial [0, 0,...,0]
3: function Increment
4: r := myID() . r: source replica
5: P [r] := P [r] + 1

6: function Value
7: return

∑
i P [i]

8: function Merge(State X)
9: P [i] := max(P [i], X.P [i]) : ∀i ∈ [0, n− 1]

2.5.1.3 Delta-based Counter:

The delta-based counter is inspired by the specification of the state-based counter. After

executing an increment it produces a delta which is basically the replica’s entry of the vector.

In Alg. 2.3 shows that the payload is the same and the merge operation is the same as well. The

only difference in the merge operation is that is most likely for a delta to have the entry of one

replica’s counter instead of the full state that have the counter’s entries of all the replicas. This
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Algorithm 2.3 Delta-based Grow-only Counter

1: payload integer[n] P . One entry per replica
2: initial [0, 0,...,0]
3: function Increment
4: r := myID() . r: source replica
5: P [r] := P [r] + 1
6: return (r, P [r]) . Delta

7: function Value
8: return

∑
i P [i]

9: function Merge(Delta X)
10: P [i] := max(P [i], X.P [i]) : ∀i ∈ X

small difference allow the replicas to send a delta or a small group of deltas merged into one

instead of the full state. More details about the performance of this implementation are given

in Section 3.1.

2.5.2 Sets

A set is a data type that stores elements, without any particular order, and with no rep-

etitions. It has two operations: add and remove, where add adds an element to the set and

remove removes the element from the set. This data type is the basic block for other complex

data structures like maps and graphs as we will see later in this report. So, it is essential to

have a specification of this data type for the different approaches of CRDTs. Unfortunately,

the semantics of a set under concurrent operations it is not trivial. To introduce the problem,

imagine that initially the set contains only one item {A} and that its state is maintained by

three replicas (1, 2, 3) that are consistent. If, concurrently, replica 1 removes A and then adds

A again, replica 2 removes A and replica 3 does nothing, then, there are different serializa-

tion orders for these three operations and different orders may provide different final outcomes.

A discussion of the possible semantics and valid outcomes of the concurrent set is provided

in (Shapiro, Preguiça, Baquero, and Zawirski 2011). In this report we will only consider the

Observed-Removed Set semantics because it is, at the moment, the best apporach in terms of

space and with less limitations.
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Algorithm 2.4 Operation-based Observed-Removed Set (OR-Set)

1: payload set S . set of pairs { (element e, unique-tag u), ...}
2: initial ∅
3: function Lookup(element e)
4: boolean b = (∃u : (e, u) ∈ S)
5: return b
6: function Add(element e)
7: α := unique() . unique() returns a unique tag value
8: S := S ∪ {(e, α)}
9: return (add, e, α) . representation of the add operation

10: function Remove(element e)
11: R := {(e, u)|∃u : (e, u) ∈ S}
12: S := S \R
13: return (remove, e, R) . representation of the remove operation

14: function Update(operation (op, e, u)) . executes operations from other replicas
15: if op = add then
16: S := S ∪ {(e, u)}
17: if op = remove then
18: S := S \ u

Algorithm 2.5 State-based Observed-Remove Set

1: payload set E, . E: elements, set of triples { (element e, timestamp c, replica i)}
2: vect v . v: summary (vector) of received triples
3: initial ∅, [0, ..., 0]
4: function Lookup(element e)
5: boolean b = (∃c, i : (e, c, i) ∈ S)
6: return b
7: function Add(element e)
8: r := myId() . r = source replica
9: c := v[r] + 1

10: O := {(e, c′, r) ∈ E|c′ < c}
11: v[r] := c
12: E := E ∪ {(e, c, r)} \O
13: function Remove(element e)
14: R := {∀c, i : (e, c, i) ∈ E}
15: E := E \R
16: function Merge(State B)
17: M := (E ∩B.E)
18: M ′ := {(e, c, i) ∈ E \B.E|c > B.v[i]}
19: M ′′ := {(e, c, i) ∈ B.E \ E|c > v[i]}
20: U := M ∪M ′ ∪M ′′

21: O := {(e, c, i) ∈ U |∃e, c′, i ∈ U : c < c′} . Old and duplicated elements
22: E := U \O
23: v := [max(v[0], B.v[0]), ...,max(v[n], B.v[n])]



2.5. PORTFOLIO OF BASIC CRDTS 19

2.5.2.1 Operation-based Set:

To solve the previous problem using Operation-based CRDTs each element needs a unique

tag. Therefore, the payload of the data type will be a set of tuples (element, tag), where the

tag is a unique identifier associated with each insert operation. This tag is needed to support

the remove operation: when removing an element, a replica will send to others the element that

it wants to remove and all the tags that it sees. This way, when add and remove operations

are concurrent the add operation will always win because it is adding an element with a new

tag that is not in the set of tags from the remove operation. When considering the resulting

specification, provided in Alg. 2.4, the concurrent scenario described before will always has the

same outcome, which is a set with the element A. This solution imposes a constraint on the

communication pattern: because a remove operation always depends on an add operation, the

operations exchanged between all replicas must respect causal delivery.

2.5.2.2 State-based Set:

The state-base approach requires a more complex solution to support the merge operation.

Thus, the payload needs to maintain a causal vector, where each entry has a timestamp that

belongs to a specific replica. The set’s payload consists of a set of tuples with three components:

(element, timestamp, replica ID). Like the state-based counter, the only information that is sent

to other replicas is the state, and the merge operation ensures convergence. The trick in this

solution is in the merge operation. An element should be preserved in the merged state only if:

either it is in both payloads (set M in Alg. 2.5), or it is in the local payload and not recently

removed from the remote one (set M’) or vice-versa (M”) - an element has been removed if it

is not in the payload but its identifier is reflected in the replica’s causal vector. This approach

does not impose causal delivery constraints on the communication pattern. The drawback is the

space for storage and the cost to send the whole state instead of few operations.

2.5.2.3 Delta-based Set:

The solution for the delta-based set (Alg. 2.6) is inspired by the state-base set. This time,

instead of the causal vector, we have a set with tuples (timestamp, replica) and we call this

causal context. The causal context set is used in the merge operation to determine if an element
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was added or removed from the set. If a replica makes an add, then the delta contains the set

with the element added and the causal context has the tag (timestamp,replica) associated to

that element. If a replica makes a remove, then the delta contains an empty set and the causal

context has the tag (timestamp,replica) associated to element that was removed. In the merge

operation their causal contexts are simply unioned; whereas, the new tagged element set only

preserves: (1) the triples present in both sets (therefore, not removed in either), and also (2) any

triple present in one of the sets and whose tag is not present in the causal context of the other

state. This approach is amenable for buffering operations before engaging in communication,

because we can compress the result of multiple operations in a single delta state. The drawback

is that the causal context will always increase dependently on the number of adds an never

decrease. One possible solution to manage the space is by using a distributed garbage collector,

that cleans the tags from the causal context of elements that where removed by all replicas.

This, obviously, requires some sort of synchronization.

Algorithm 2.6 Delta-based Optimized Observed-Removed Set

1: payload set E, . E: elements, set of triples { (element e, timestamp c, replica i)}
2: set V . V : { (timestamp c, replica i)} causal context
3: initial ∅, ∅
4: function Lookup(element e) : boolean
5: boolean b = (∃c, i : (e, c, i) ∈ S)
6: return b
7: function Add(element e) : Delta
8: r := myId() . r = source replica
9: c := 1 +max({k|(r, k) ∈ V })

10: E := E ∪ {(e, c, r)}
11: V := V ∪ {(c, r)}
12: return ({(e, c, r)}, {(c, r)} . Delta

13: function Remove(element e) : Delta
14: R := {∀c, i : (e, c, i) ∈ E}
15: R′ := V ∩R
16: E := E \R
17: V := V \R′

18: return ({}, R′) . Delta

19: function Merge(Delta B)
20: M := (E ∩B.E)
21: M ′ := {(e, c, i) ∈ E|(c, i) /∈ B.V }
22: M ′′ := {(e, c, i) ∈ B.E|(c, i) /∈ V }
23: E := M ∪M ′ ∪M ′′

24: V := V ∪B.V
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2.5.3 Registers

A register is a data type that stores one value in memory. It only has two operations: assign

- to change the value; and get - to obtain the value. The problem to solve, in a distributed

register, is the concurrent updates to the register because that operation does not commute. Two

major approaches have been identified to address this problem(Shapiro, Preguiça, Baquero, and

Zawirski 2011): in the first one operation takes precedence over the other (LWW-Register) and,

in the second one, both operations are retained (MV-Register). The Last-Writer-Wins Register

(LWW-Register) tries to solve concurrency using timestamps to create total order. Timestamps

are assumed unique, totally ordered, and consistent with causal order; i.e., if assignment 1

happened-before assignment 2, the former’s timestamp is less than the latter’s (Lamport 1978).

This way, older updates with lower timestamps are discarded and updates with higher timestamp

are preserved. Due to its simplicity, both the operation-based approach or the state-based

approach look similar. This means that there are no advantage of one approach over the other

in terms of storage space or cpu consumption. The Multi-Value Register (MV-Register), instead

of deciding which value is the correct one for concurrent updates, takes all concurrent values

and store them in a set. Therefore, it leaves up to the application to decide which value is the

correct one.

2.5.4 Graphs

A more complex structure is a graph. A graph is a pair of sets (V,E) (called vertices and

edges respectively) such that E ⊆ V × V . Any of the Set specifications described above can be

used for V and E. Because of its nature (E ⊆ V × V ), operations on vertices and edges are

not independent. An edge may be added only if the corresponding vertices exist; conversely, a

vertex may be removed only if it supports no edge(Shapiro, Preguiça, Baquero, and Zawirski

2011). However, if concurrently a edge is added while a vertex is removed there should exist

a deterministic way to preserve the invariant E ⊆ V × V . There are two intuitive forms to

solve this without using synchronization: (i) Give precedence to removeVertex(u): all edges to

or from u are removed as a side effect. This it is easy to implement, by using tombstones for

removed verteces. (ii) Give precedence to addEdge(u, v): if either u or v has been removed, it is

restored. A good example of a use of a graph is a Replicated Growable Array (RGA). This is a

linked list (linear graph) that provides Partial Order to its elements and supports the operation
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addRight(v, a). Each element (vertex) is connected (edges) to other element. With this concept

it is now possible to make co-operative text editing systems. To solve the problem of concurrent

adds to the same vertex we can either timestamps like in registers or use other deterministic tie

breaker.

2.5.5 CRDT use cases

A CRDT is ideal for a Key-value store that provides at least eventual consistency and that

demands conflict free operations like in Dynamo (DeCandia, Hastorun, Jampani, Kakulapati,

Lakshman, Pilchin, Sivasubramanian, Vosshall, and Vogels 2007a), Riak (Klophaus 2010) or

SwiftCloud (Zawirski, Bieniusa, Balegas, Duarte, Baquero, Shapiro, and Preguiça 2013).

In terms of applicability, any system that can tolerate some staleness for read operations

and/or perform disconnected updates:

• web search

• social networks

• e-mail

• calendaring programs

• news readers

• shopping cart

• co-operative text editing

For some of this applications a weak consistency like eventual consistency is enough, as long as

the user waits the least possible for a response. For others, some stronger consistencies may

be required, like monotonic reads or read my writes, but still tolerate some data staleness. For

example, in a social network, a user don’t want some posts to disappear after they were seen,

but a user in Europe can tolerate for a late post made in America.

Regarding the shopping cart solution the CRDT set fits perfectly. As it was described

before, with CRDT sets we can guarantee that concurrent changes to the set do not conflict with
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each other, i.e., we can avoid the anomalies of the Amazon shopping cart(DeCandia, Hastorun,

Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, and Vogels 2007b).

For the co-operative text editing we can take the advantages of the Replicated Growable

Array (RGA). Because with RGA we can insert elements in a relative position to other elements,

we can design a system that supports multiple users writing text in the same page and even in

the same word. The system WOOT(Oster, Urso, Molli, and Imine 2006) is one of many systems

that do this.

Summary

This chapter starts by introducing some concepts, like Replication, Data Consistency and

Service Level Agreement (SLA). Then it describes some Distributed Key-value Store systems

that are the state of the art. In particular SwiftCloud, which was the starting point for the pro-

totype developed in this thesis. Finally, we present in detail the three approaches to implement

CRDTs, and we also describe how to implement some data types for each approach.

After making an analysis of what was described and based on the literature, the Table 2.1

summarizes the most relevant features of the three approaches.

In terms of memory stored in the replica the operation-based is the best one because it has

almost no metadata. On the contrary, the delta-based requires a large amount of memory for

storing the causal history, for the set specification. In terms of computational power, the merge

operation has much more overhead when comparing to apply N operations at once due to the

complexity of the merge operation. These two factors are where the operation-based approach

has big advantages. Now in terms of communication, the operation-based approach must send its

operations to every replica and it requires causal delivery. On the other hand, we have the state

and delta approaches that do not require causal delivery and only need to send its state/delta to

R replicas. The more replicas we send the state, the faster it will converge. In terms of operations

that are buffered, once again, the operation-based approach is the worst because it needs an

array that grows with the number of operations while the delta-based approach can represent

several operations in one object. Finally we have the garbage collector, this is fundamental

for the delta-based approach remain useful, otherwise the memory in the replica would grow

uncontrollably. We could also use garbage collection in the buffer of operations, in the operation-
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based approach, to reduce its size, i.e., search for operations like add(A) followed by remove(A)

that can be removed because they cancel each other. About the delta-based approach, we found

out that it costs at least as much as a state-based approach. This is dependent on the object

type. For example the counter, we will see later that the worst case for the delta approach is

as good as using the state approach. While in the case of the set the delta-approach can easily

become worse than state-based approach.

Table 2.1: Qualitative comparison between CRDT approaches

Operation-based State-based Delta-based

Memory in replicas low average high

Computational power low high high

Communication contact all replicas contact R replicas contact R replicas

Memory of buffers low - average

Garbage collection low - high

constrains causal delivery none none

The next chapter starts by analysing, in more detail, each approach and compare them in

practice. Then we will introduce the architecture and implementation details of our system,

derived from the practical study.
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From the previous chapter, we identified three different approaches to solve the CRDT

problem. Each approach has its advantages and disadvantages. However, we need to see in

practice if there a system that could benefit from using an approach over the other, and if a

dynamic system can be a viable solution.

The Section 3.1 reflects the initial work made for the thesis. It is also in this section, that

we’ve began to understand the real pros and cons of each approach with actual data made from

early experiments. This data was important to better design the architecture of the final system

and was also used statically for the dynamic decisions.

After this study, we present a global view of the system in Section 3.2, and then we describe

in more detail the features of the system in Sections 3.3, 3.4 and 3.5. Finally in Section 3.6, we

discuss some issues we had during the development of the system.

3.1 State-Based vs Operation-Based Tradeoffs

In this section, we study the tradeoffs between the use of state-based and operation-based

CRDTs in geo-replicated settings. In particular, we use scenarios where the application may

have different requirements in terms of data freshness, a feature that is extremely relevant

in cloud scenarios(Terry, Prabhakaran, Kotla, Balakrishnan, Aguilera, and Abu-Libdeh 2013).

This requirements are captured by SLAs. For this study, we have created an alternative version

of SwiftCloud, where the method to propagate updates among the datacenters has been changed

to use a state-based approach. We have used both versions, under similar workloads to compare

these approaches, varying object sizes and using different SLAs.
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Figure 3.1: Comparison of the memory stored in each replica to represent a counter

3.1.1 Memory Stored in Each Replica

Regarding the Counter, we did a small test to compare the memory usage, see Figure 3.1.

This plot depicts the evolution of the memory after N operations in a system with 15 replicas.

We compare three implementations/approaches (i) operation-based, (ii) state-based, and (iii)

delta-based.

We instantly notice that both operation-based and state-based version are constant in mem-

ory size. For the operation-based, it does not have any metadata. So in terms of memory it’s

the same as having a normal centralized counter which has constant memory size. For the

state-based and delta-based approaches, both depend on the number of replicas. However, the

state-based depends on the number of replicas that exists in the system, while the delta-based

depends on the number of replicas that made an operation. That explains why at the beginning

the delta-based uses less memory. But after some time, eventually all replicas will make at least

one operation and the memory spent to represent the counter will be the same as if we were

using the state-base approach.

Regarding the Set, we did a similar test with 15 replicas but the chance of adding a new

element was 70% while the remove chance was 30%, meaning the size of set will increase with

more operations made. We can observe that the memory increases as we expected with the

increase of the number of elements in the set. In particular, the state-base approach has,
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Figure 3.2: Comparison of the memory stored in each replica to represent a set

besides the internal set, a fixed sized vector that depends on the number replicas, and the

delta-base approach, instead of a vector, it has a second set that depends on the number of

operations (causal context). As we can see in Figure 3.2, the difference between the memory

used in operation-based and state-based is small, because the state-base approach has a fixed

sized vector and requires more metadata per element. The delta-based approach has the worst

results because the memory also depends on the number of operations, and with no garbage

collection it grows quickly.

3.1.2 Complexity of Operations

The normal operations of each data type usually do not have a high computational com-

plexity, instead, the merge operation in the state-based and delta-based approach may become

expensive. Regarding the counter, the increment and decrement operations have constant time

in any approach. But the merge operation has to make a max function for each entry of the

vector and it costs O(R) where R is the number of replicas. Regarding the set, the add operation

is constant and the for remove operation we always have to search for the tags to be removed.

When we implement the specifications of the set we can always use some optimizations like hash

sets or maps, for fast access to the element and its tags, but we cannot avoid the overhead of

the merge operation. The merge operation, either the state-based or delta-based approach, has

to make intersection of the payload to see the common elements and then check the elements
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Figure 3.3: Time that takes to converge two replicas that diverge in N operations - either by
merging states (state and delta) or by applying all operations (op)

that are new in both of the payload to not remove them. The state-base approach demands

some computational power for this operation comparing to the operation-base approach, and it

cost more as the size of the set increases. However, this is not too bad when we compare to

the delta-base approach with no garbage collection. Because, in the last approach, the causal

context grows with the size of the operations made the merge operation takes a huge amount of

time searching for a tag in the causal history to know if the element should exists or be removed.

With this analysis we can explain the results obtained (see Figure 3.3) for the merge opera-

tion. The test consists in two replicas with an equal initial state that make different N operations

an in the end they converge. For the initial state both replicas made 300 equal operations. Then

each replica executed N different operations to simulate divergence. The operations performed

were add and remove with 75% chance of adding, which means the size of the set should increase.

In the end we measured the time it took to converge, either by applying all the N operations

at once (operation-based approach) or by merging the two states/deltas. The graph shows the

time it takes for one replica to apply N operations made by the other replica. As we can see,

applying a buffer of operations is not so expensive as making one merge operation, for example,

applying 400 operation costs more or less 12µs, one merge of two states that diverge in 400

operations costs 144µs and one merge of two deltas that diverge as well in 400 operations costs

442µs.
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These two results, from memory stored and from complexity, indicate that the operation-

based approach is always better. But, if we take into account the memory that takes to buffer

the N operations, maybe the other approaches are worth to use.

3.1.3 Relevance of the Object Size

In this first experiment, clients access a single object, whose size varies, and propagate

updates immediately, i.e., there will be no SLA. The goal is to assess for which object sizes one

approach is better than the other.

(a) Throughput (b) Latency

Figure 3.4: Impact of the object size for both approaches

Figure 3.4 shows the impact of the object size when propagating updates among two different

datacenters using both operation-based (dotted lines) and state-based approaches (continuous

lines). The plot on the left shows the system throughput (measured in number of transactions

per second). The plot on the right shows the time it takes for operations to be applied in the

remote preferred datacenter. The results are somehow unsurprising, and support the design

decisions of the SwiftCloud developers. When SLAs are not taken into account, the operation-

based approach always offers the best performance, both in terms of throughput and latency.

About the time to apply an update, we noticed that there is a drop in this value. At a first

look it may look contradictory, because the object size is increased. However, the main reason

is the drop in the throughput. Because the clients now take more time to perform transactions,

the server has more cpu available (less thread scheduling) to perform the merge operation. Yet,
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(a) Small object size (12KB) (b) Large object size (59KB)

Figure 3.5: Relaxing data freshness requirements

the server is not able to support more clients due to higher activity in the network.

3.1.4 Impact of Buffering and using an SLA

We now study the impact of buffering updates and delaying its propagation to other dat-

acenters. In this experiment, we fix the object size and vary the SLA. The impact of the SLA

on the operation-based approach is that multiples updates can be batched and sent in a single

message to other datacenters. This may yield some improvement on the network utilisation.

For the state-based approach, this means that a single state-update is sent instead of multiple

operations. The goal of this experiment is to understand, for different object sizes, how many

updates need to be buffered to compensate the additional overhead of sending the entire state.

The intuition is that the weaker the requirements of the application (i.e. more updates can be

batched), the better the state-based approach performs.

The results for a database of objects with a fixed size of 12KB are depicted in Figure 3.5. The

y axis shows the overall system throughput for different SLAs. The larger the SLA constraint

on the x axis, the more relaxed the SLA is, and more updates can be batched. The initial value

of SLA=0 corresponds to the original SwiftCloud implementation without any batching.

Interestingly, even for very small relaxations of the SLA, the state-based approach out-

performs the operation-based approach. In fact, significant throughput improvements can be

achieved if the application can tolerate a certain amount of staleness in the observed data. For
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instance, for an SLA of 15s the throughput of the system can be 50% higher if the state-based

approach is used.

An additional conclusion extracted from this experiment is that no advantages can be ob-

tained due to relaxed SLAs in the operation-based approach. Although the relaxed SLA allows

to batch multiple updates in a single message, the fact that all operations need to be applied

serially, via a computationally expensive procedure, counterbalances this potential benefit. One

potential avenue for research, that has not been explored in this work, is to find techniques to

merge operation-based updates based on semantic information and combine this with techniques

to apply updates in parallel.

3.1.5 Impact of Inter-Object Dependencies

In the previous experiments we have used a single object. We now experiment with different

objects, each with a different SLA. In particular we will take a look at the operation-based

solution. The goal is to understand how potential causal dependencies that are established by

the way SwiftCloud manages the objects metadata may interfere with the staleness of the object.

More precisely, we consider a SwiftCloud system with two different sets of clients. The first

set of clients accesses exclusively object O1, which has an SLA of 5s (i.e., clients tolerate reading

data that is 5s stale). The second set of clients accesses exclusively object O2, which has an

SLA of 8s. In our experimental setting, with two datacenters, and 2 clients per DC, we are able

to batch 476 operation for object O1 and 728 operations for object O2.

Figure 3.6 plots all measured times that took to process the queue of batched updates, after

they are received from a remote datacenter. Without inter-objects dependencies and with such

low amount of updates, the processing time for any of the objects is also low. However, as it may

be observed from the results, the time it takes to empty O1’s operation queue can be as large

as 8s, i.e., as large as the SLA for the object O2. The same happens in the other way, object

O2 can take up to 5s, the SLA time of the object O1. This behaviour is easily explained by the

false interdependencies created by SwiftCloud metadata: some of the operations for object O1

depend on operations for object O2. Since the propagation of O2 operations can be postponed

by 8s, O1 operation may be stalled for an amount of time that depends on the SLAs of other

objects. This experiment shows that it may be very hard to support clients with different SLAs
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Figure 3.6: Time required for the synchronization of an object.

in the current implementation of SwiftCloud.

3.2 Overview of the System

As it was described in the previous chapter, when updates need to be propagated as soon

as possible, the operation-based approach outperforms the state-based approach; this justifies

the original SwiftCloud implementation. However, when clients are willing to tolerate reading

information that is slightly stale, significant gains can be obtain by using the state-based ap-

proach. Also, for clients that can tolerate some latency, as long as it is small, the best approach

might depend on the size of the object.

Our conjecture is that benefits may be achieved by supporting both approaches simultane-

ously, such that for some realistic SLAs, an operation-based approach is used for larger objects

and a state-base approach is used for smaller objects. Notice that the number of updates re-

ceived by each object within a SLA time window also plays an important role deciding between

approaches. To validate our hypothesis, we have developed a prototype of an hybrid system,

that we have named Bendy, that is able to adapt the approach used for each object dynamically.

This section reports on the design of this prototype and on the experimental results that validate

our assumption.

In order to reduce the amount of metadata that is stored by clients, SwiftCloud maintains

vector clocks that encode updates for multiple objects. This makes extremely hard to support

simultaneously state-based and operation-based implementations for different objects, due to the

interdependencies among both implementations (Subsection 3.1.5). Since the goal of this thesis
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(a) Interaction between the two SwiftCloud in-
stances and the proxy, representing a Data Center.

(b) Client view of the system

Figure 3.7: Overview of the described system.

was not to perform a major redesign of SwiftCloud but, instead, explore the advantages of using

both approaches (and, in this way, provide experimental evidence to support such redesign)

we have used a pragmatic approach when architecting our prototype. Bendy is, internally,

composed of two independent SwiftCloud instances, which are hidden from the client by an

extended SwiftCloud proxy.

One instance is the original, operation-based SwiftCloud implementation as described in

(Zawirski, Bieniusa, Balegas, Duarte, Baquero, Shapiro, and Preguiça 2013). Another instance

is the version that we have produced that uses exclusively state-based CRDTs. Bendy makes

dynamic decisions about which approach is more favourable for a given object, based on its size,

on the associated SLA, and on the workload characterisation; the object state is stored in one of

the instances accordingly. If, at some point, the implementation of an object needs to be changed

in runtime, the state of the objects is transferred from one instance to the other, and the proxies

updated such that the current implementation is used. Figure 3.7(a) show the interactions

between the two instance with the proxy, and figure 3.7(b) represents the architecture what was

described above.

Although this approach is somehow rudimentary, and more efficient switchover between

implementations could be supported by redesigning the metadata structure of SwiftCloud from

scratch, we have opted not to do so for two reasons: first, the entire redesign of SwiftCloud is a

challenge on its own, and outside the scope of this work; second, by using the current approach
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it is possible to make direct comparisons with the original implementation (i.e, all observed

benefits derive from the use of dynamic adaptation, and not from other optimisations of the

SwiftCloud middleware).

Note that the extended proxy maintains the metadata for both instances such that all ac-

cesses to a given object respect causality, regardless of the instance where the object is currently

stored. Also, Bendy is focused only on the propagation of updates on the server side, and because

of that, the remaining implementation of the clients is preserved from the original SwiftCloud

system.

3.3 Taking SLAs Into Account

In Bendy, one SLA will be associated for all object. However, due to different access ratio

of some objects, some updates are propagated as soon as possible, as in the original SwiftCloud

implementation. The SLA is used mainly to decide when updates need to be propagated.

When deciding if an object should use an operation-based or a state-based approach, Bendy

takes into account the global SLA, the object size, and the workload characterisation for that

object, more precisely how many updates are expected to be performed during a period that

corresponds to the SLA. If the ratio between the number of expected updates and the object size

is above a given threshold, a state-based approach is used. Otherwise the default operation-based

approach is used.

From the results presented in Subsection 3.1.4, we could observe that no significant advan-

tages can be extracted from batching operation-based updates. Also, from Subsection 3.1.5 we

have seen that delaying operation-based updates may cause other updates to be stalled. Thus,

for objects that are selected to use an operation-based approach, updates are propagated as

soon as possible, exactly as in the original SwiftCloud implementation.

Also from Subsection 3.1.4, one could observe that significant gains can be obtained by

delaying the propagation of updates in the state-based approach. Therefore, in Bendy, we use

the following strategy. Let δo be the latency tolerated for object o according to the corresponding

SLA. Let µo be propagation time. Let tuo be the time at which some update uo on object o has

been performed at a given datacenter. To ensure that the object SLA is not violated, Bendy
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forces the propagation of that update (and all subsequent updates that have been buffered) at

the following instant.

As it will be discussed in the next section, the propagation time µo depends not only on

the size of the objects, but also on the number of updates that are propagated simultaneously.

Thus, as discussed before, the value µo is adjusted in runtime, based on values measured during

the last synchronizations.

3.4 Propagation Time

SLAs can be exploited to batch updates, a technique that can bring significant advantages

for state-based approaches. However, batched updates need to be propagated before the SLA

expires, with enough slack to transmit and deploy the updates at remote sites without violating

the SLA. Therefore, the assessment of the time needed to propagate and apply updates, that

we denote the propagation time, is of critical importance for any system that aims at exploring

relaxed SLAs.

From our experience with SwiftCloud, we observed that the number of objects and the

number of updates per object are the main variables that affect the propagation time. This is

illustrated by the following experiments where we have fixed the SLA and object size and vary

two other parameters, namely the number of objects and the number of updates batched: (i) in

the first experiment, we fixed the number of objects to 200 and we vary the number of updates;

(ii) in the second, we fixed the number of updates to 8 per object and we vary the number of

objects.

Figure 3.8(a) depicts the results from the first experiment. As expected, the number of

batched updates are irrelevant in the state-based approach (as a single state per object is sent

before the SLA expires). On the contrary, the propagation time increases significantly with the

number of batched updates, in the operation-based approach. Interestingly, it can be observed

that the propagation time grows super-linearly, because the system resources become exhausted

in two many updates are queued to be applied at once. This further reinforces the observation

that, at least in the current implementation of SwiftCloud, it is hard to extract benefits from

relaxed SLAs with the operation-based approach.

Results for the second experiment are depicted in Figure 3.8(b). Unsurprisingly, the prop-
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(a) Updates per object vs Latency on server side (b) Number of objects vs Latency on server side

Figure 3.8: Propagation Time

agation time increases with the total number of updates but the interesting aspect is that the

increase is linear with state-based approach while the operation-based approach depicts, as

above, a super-linear degradation. However, these figures clearly show that, when computing

the propagation time, one need to have a estimate of the total number of objects that are using

batching, in order to compensate for the burst of updates that can result from having SLAs for

multiple objects expiring simultaneously.

Since the parameters identified above, that influence the propagation time, are hard or

impossible to predict offline, in Bendy we keep in runtime statistics for the propagation time for

the subset of the top-k objects that use a state-based approach.

In this prototype, the propagation time tix in round i, for each of the objects Ox that use

state-based, is computed dynamically as follows:

tix = tiux
+ δ − µix

where tiux
is the time at which Ox received the first update operation ux for this round; δ is the

visibility delay tolerated by the application (specified in the SLA) and; µiX is a moving average

over a window of the time that the last n coordination procedures took.
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3.5 Dynamic Adaptation

Recent work on adaptive storage systems(Couceiro, Chandrasekara, Bravo, Hiltunen, Ro-

mano, and Rodrigues ) provides evidence that substantial gains can be achieved without per-

forming fine-grain adaptation of every and single object in a storage system. In fact, many

realistic workloads follow a zipfian distribution, where some objects are accessed much more

often than the others. Thus, a large fraction of the gains can be achieved by adapting only the

implementation of those popular objects.

3.5.1 Reconfiguration

Based on these observations, Bendy performs a top-k analysis of the workload and only

adapts the implementation of the most popular object. All other objects just use the default

SwiftCloud implementation. The state-of-the-art stream analysis algorithm (Metwally, Agrawal,

and El Abbadi 2005) permits to infer the top-k most frequent items of a stream in an approx-

imate, but very efficient manner. Given that workloads may change in run-time, the top-k

analysis is repeated periodically. The Algorithm 3.1 describes the whole process. At the end

of each period, Bendy first reverts back to the default (operation-based) implementation all

objects that are no longer part of the top-k. For those objects in the top-k. Bendy selects

the target implementation using the criteria described above. Finally, Bendy reconfigures the

implementation of those objects for which the target implementation differs from the current

implementation in use.

Given that Bendy is implemented as a wrapper, the reconfiguration of a given object is

implemented by migrating that object from one SwiftCloud instance to the other. In this

process, N objects are migrated, and to ensure consistency, we lock the access to an object that

is being reconfigured to the other implementation. The action of locking access to an object

might have impact on the throughput, specially if we lock the access to all the objects, that are

being migrated, at the same time. To avoid such drawback, the system can migrate m objects

at a time until all N objects are migrated. Being m a fraction of N . More details are provided

in section 4.4 with experiments that compare different values for m.
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Algorithm 3.1 Process of migrating objects from one instance to the other.

1: function Migrate
2: O :=GetOldTopK()
3: E :=GetNewTopK()
4: N := (O \ E) ∪ (E \O) . N = all objects to be migrated
5: while N 6= ∅ do
6: m ⊆ N
7: LockObjects(m)
8: MigrateObjects(m)
9: UnlockObjects(m)

10: N := N \m
11: function MigrateObjects(m)
12: for id in m do
13: o :=FetchObject(id, replicaA)
14: o :=Reconfigure(o) . Each type of object implements its own mechanisms to

change from one approach to the other
15: StoreObject(id, o, replicaB)

16: function LockObjects(m)
17: for id in m do
18: LockClientAccess(id)

19: FlushPendingUpdates()

20: function UnlockObjects(m)
21: FlushPendingUpdates()
22: for id in m do
23: UnlockClientAccess(id)

3.5.2 Selecting the Right Implementation

Bendy requires several statistics about the objects and the workload to be maintained, such

as the object size, the update ratio, and the time it takes to propagate and apply state updates.

To keep those statistic for every object in the storage system may cause an unnecessary overhead.

Also, client proxies need to be aware of which instance stores a given object.

When deciding if an object should use an operation-based or a state-based approach, Bendy

takes into account the SLA, the object size, and the workload characterisation for that object,

more precisely how many updates are expected to be performed during a period that corresponds

to the SLA. If the ratio between the number of expected updates and the object size is above a

given threshold, a state-based approach is used. Otherwise the default operation-based approach

is used.
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3.6 Implementation Issues

During the development of the system, many decisions were made to implement the features

that were described above. The main features are: the implementation of state approach, the

combination of the two approaches operation- and state-based and the dynamic system.

3.6.1 Implementation of the state-based approach

As it was discussed before, we started our project with an implementation of SwiftCloud that

only supports operation-based CRDTs. The first step was to implement a state-based solution

to make the first comparisons between the two approaches. Thus, we based our implementation

on the algorithms described in Section 2.5 and managed to implement the merge function. For

that, we’ve extend the CRDT interface and changed the internal representation of the objects

like in the algorithms. However, we’ve only changed how the updates where propagated on the

server side, because we assumed that one client will never make enough updates that justifies

the sending of a state. Instead, we look at the client as an entity that makes operations remotely

and not as a replica, like in the original SwiftCloud. We’ve kept all the features of the Client

and focused only on the server side.

The second part of implementing the state-based approach was the propagation of updates.

At the same time we did the propagation of updates we started to add the notion of SLA. Since,

in the original SwiftCloud, the updates were sent asynchronously, it was not hard to implement

the SLA. Basically we’ve added a delay between synchronizations to the synchronization thread.

Later, we’ve implemented the formula described in Section 3.4 to ensure that the SLA was

satisfied. About the propagation of updates, we had to implement the merge of the replica’s

clock to ensure that clients were able to see updates from other replicas. Although in the

specification of the state approach it is not required to have a causal clock outside of the object,

we’ve found out that it was harder change completely the SwiftCloud implementation than

keeping the clock. Besides that, we intended to integrate with the operation-based approach

which needs that global clock.
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3.6.2 Combining operation-based and state-based approaches

After the implementation of the state approach, we tried to put together both approaches in

the instance. However, that was impossible due to the complexity of the global causal clock and

because, when merging an object, the merge of the clock sometimes it contain the timestamps

of other operations. This means that after making a merge of an object and its clock, the

operations that were on hold to be applied will be discarded because the new clock already

includes the timestamp of those operations. We’ve looked at this problem for a long time, and

the best solution was to separate the two implementations into two instances. Otherwise, we

wouldn’t have time to work on the dynamic part of the system.

To hide the two instances from the client we created a proxy. This proxy basically forwards

the client’s request to the instance that has the object. For the client there were no changes.

We kept the same interface so that the client can make operations regardless of the propagation

method that each instance uses.

3.6.3 Implementing a dynamic system

Regarding this topic, most of the details are explained in the Section 3.5. Nevertheless,

there is one aspect that needs to be explained with more detail. Regarding the migration of

an object from one approach to the other, we had to make it in a simple manner. Because we

have two instances, the causal clocks of each instance will grow independently. However, we

need to move one object from one side to the other and changing the clocks was not easy. The

best solution was to momentarily lock the object on the two instances for all clients except one.

There is one client that belongs to the system and it is in charge of migrate objects. This client,

contacts directly the instance instead of contacting the proxy like the other clients. It reads

the value on the original instance, removes the object from that instance (by removing its the

elements in the case of the set) and applies that value on the other instance. Finally we flush

all buffers to ensure that all replicas have migrated the object and we unlock the object to all

clients.
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Summary

In this chapter we have been through the design and implementation of Bendy. First we

showed an overview of the system, comparing with SwiftCloud. Then, we presented more details

about the particularities of the system, like the adding of an SLA, the propagation of updates

and the dynamic adaptation.

In the next chapter we present the experimental evaluation made using this prototype.
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4Evaluation
This chapter presents an evaluation of Bendy. We first present our experimental setting,

where we list the systems we use to compare Bendy with. Then we present experiments com-

paring the throughput and the bandwidth used by each of the systems. We finally evaluate how

Bendy is able to adapt to changes in the workload.

4.1 Experimental Setup

Each experiment uses 3 datacenters. Each datacenter replicates the full key-space which is

composed by 1000 objects for the experiments in Subsections 4.2 and 4.3, and 50000 objects for

the experiments in Subsection 4.4. We run a total 600 clients, having 200 client associated with

each datacenter. In order to generate the workload, we use a zipfian distribution. All objects

have associated a SLA of 10s. We first run a warm-up phase were the database is populated.

Then, each experiment runs for 5 minutes.

In our experiments, we compare the following three systems:

• An unmodified version of SwiftCloud (op-based hereafter) that implements an operation-

based dissemination process. Updates are propagated immediately without batching them.

• A modified version of SwiftCloud (state-based hereafter) that implements a state-based

dissemination process. Updates are batched based on the formula presented in Subsection

3.4.

• Bendy which is a mixed approach that follows the specifications presented in Chapter 3.

It is approximately 2200 lines of Java. Bendy is built on top of SwiftCloud.
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4.2 Throughput

In the following experiment we aim at comparing the three systems in terms of throughput.

Since Bendy runs two independent instances of SwiftCloud, one implementing operation-based

and other one implementing state-based, bridged by an extended proxy, we opted for running the

experiments in two instances also for the other systems. This allows us to achieve comparable

results; even though op-based and state-based systems could run the whole experiment using a

single instance since they do not mix approaches.

Figure 4.1(a) show the results for two different workloads: (i) a read-dominated workload

with only 5% of updates (Workload-1); and (ii) a balanced workload with an equal number of

reads and updates (Workload-2). These are two of the workloads specified by the widely used

YCSB(Cooper, Silberstein, Tam, Ramakrishnan, and Sears 2010) benchmark and are represen-

tative of the workloads imposed by typical applications of geo-replicated storage systems. In

addition, for each of the workloads, we experiment with two different object sizes: S (12KB)

and XL (30KB). Bendy, due to the parametrization of the zipfian distribution generator and

our top-k analysis, optimizes the dissemination process of 1% of the total number of objects. In

these experiments, we are forced to limit the number of objects to 1000 since the state-based

approach starts struggling and becoming very unstable with a large number and size of objects,

due to the amount of information that needs to ship in every coordination procedure. Operation-

based and Bendy do not suffer from this problem but in order to have comparable results across

systems we limit the number of objects also for them. In the experiment in Subsection 4.4 we

use a more realistic amount of objects (50000) to demonstrate that our system does not suffer

from this problem.

The results show that Bendy always outperforms the other two systems (up to 127% in

some cases). The reason is because our system does not reach the bottleneck stage that the

ops state Bendy

Workload-1S 1 523 11 640 267

Workload-2S 377 5 290 237

Workload-1XL 1 238 55 119 799

Workload-2XL 492 63 120 729

Table 4.1: Coordination time (average)
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(a) Throughput (b) Bandwidth

Figure 4.1: Throughput vs Bandwidth

other solutions have to face. The state-based solution has to struggle with large-sized objects

while the operation-based approach struggles with the high amount of operations issued in a

few objects. This experiment validates our hypothesis, and demonstrates that benefits can be

achieved by having a hybrid system.

In this experiment, the state-based approach seems to, most of the times, outperform the

operation-based approach. However, for the state-based approach, the SLA of 10s was only

satisfied once as we can see in the Table 4.1. The main reason for not being able to satisfy

the SLA was the large amount of states that are processed at the same time and its size.

Nevertheless, as Section 3.1 unveils, this directly depends on the workload, the SLA, and the

size of the objects.

Finally, one more subtle conclusion one can extract from this experiment is that, with the

state-based approach, one must take special care to avoid violating the SLA. We notice that,

as soon as the size and the number of objects increases, the accumulated processing time for

all state-updates also increase. Thus, a naively configured state-based approach can easily start

violating the target SLA. For instance, Table 4.1 lists the average time that the coordination

procedures took for each of the experiments. One can see that the state-based solution is only

able to satisfy the SLA of 10s for the one of the experiments (Workload-2S), violating in the

other three, e.g. for Workload-2XL, it takes more than 60s on average. This reinforces the

importance of applying the state-based approach just to a small number of top-k objects, that

have the bigger impact on the system performance.
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4.3 Bandwidth Utilization

With the same experiment, we also measured the bandwidth usage of the different ap-

proaches. Figure 4.1(b) shows the amount of bandwidth, in MB, used by each of the approaches

for the entire run of five minutes. The experiment configuration and the used workloads are

equivalent to the ones presented in the previous subsection.

The results match our analysis. As expected, the pure state-based system, is by far the

worst solution. In many cases this system sends the state of objects that only received 2 or

3 operations, which is not efficient. Regarding Bendy, it uses more bandwidth than the pure

operation-based system. Nevertheless, as demonstrated before, we reach better throughput

mostly because of (i) the benefit of batching updates, and (ii) the inter-object dependencies

problem of the operation-based system described in Subsection 3.1.5.

4.4 Dynamic Behavior

In previous experiments, we have compared the throughput of all the approaches at a stable

point. However, in a real setting, the workload may change dynamically. Therefore, in this

subsection, we describe an experiment where we induce a dynamic change in the workload by

changing the most accessed objects. Our goal is to assess how well Bendy adapts to the changes

and how the adaptation penalizes the throughput provided by Bendy.

For this experiment, we use a balanced workload with an equal number of reads and updates.

The experiment goes as follows: during the first 100 seconds, the system is stable, meaning that

no changes in workload are introduced; then the most accessed objects are changed. This

forces Bendy to migrate a total of 700 objects between instances in order to optimize the newly

identified top-k objects. We compare four variations of Bendy:

i. A version that does not adapt to the new workload (baseline);

ii. A version that migrates all objects at once (All at once);

iii. A version that migrates the objects in groups of 50 (50 by 50 );

iv. A version that migrates the objects in groups of 10 (10 by 10 ).
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Figure 4.2: Throughput of one DC during the balancing process of top-k objects.

Figure 4.2 shows the throughput of each of the variations. One can see that, after changing

the workload (100th second), all variations of Bendy degrade their performance reducing its

throughput almost 33%. This is because the objects being optimized are not highly accessed

anymore and the new hot objects are using basic operation-based approach, which does not

benefit from batching. Then, after 125 more seconds (225th second), the migration process is

started. As expected, if we move all objects at once the throughput drops drastically until the

balancing process ends. However, if we migrate a small amount of objects at a time, the process

may take longer but the throughput loss is minimal. We can conclude that moving by groups

of around 50 objects is a reasonable solution. Although the throughput initially drops (about

20%), it recovers quite fast, achieving maximum throughput in less than 50 seconds since the

balancing process started.

Another aspect of our dynamic system is the ability to detect that the top-k list has changed.

As in all autonomic system, there is a tradeoff between how fast the system reacts to changes

and the likelihood of the new state to be stable. Since we consider this problem orthogonal

to this thesis, we decided to adopt a simple approach, in which we wait for some extra time

once the change has been detected, before starting the adaptations procedure of Bendy. Of

course, we could adopt more sophisticated techniques in order to make Bendy more robust to

transient workload oscillation, such as techniques to filter out outliers (Hodge and Austin 2004),

detect statistically relevant shifts of system’s metrics (Page 1954), or predict future workload

trends (Kalman 1960).
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Figure 4.3: Percentage of objects in a top-k list that are different from the optimal top-k list.

In order to get some insights on the time we have to wait until considering a change in the

workload stable, we evaluate the time that our top-k analysis needs in order to propose a top-k

list close to the optimal. For the implementation of top-k that was used, there is a variable

called capacity which is the number of events that happened in the past. In our solution, each

event is an access to an object. This means, if the algorithm uses a large capacity then we will

have more accuracy in the result. However, if the capacity is extremely large, we will waste a lot

of resources in terms of memory and it should take more time to process a list of top-k objects.

Figure 4.3 shows the results of the experiment. As one can see, a larger capacity brings more

accuracy, and the top-k analysis rapidly starts proposing almost an optimal list of hot objects

(only 10% of error) in barely 75 seconds. This justifies the 125 seconds time window used in the

previous experiment before adapting the system.

4.5 Discussion

The results obtained with Bendy, clearly show that significant benefits can be achieved if

multiple CRDT implementations are supported in a single system, and the best implementation

is used according to the user SLA and the workload characterization. This opens the door for

new avenues of research, in the design and implementation of systems that can provide such

functionality in an much more integrated manner, than that provided by the wrapper approach

followed in the Bendy design. In the following paragraphs, we discuss a number of insights
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and guidelines, that we gained from our experience with the evaluation SwiftCloud and the

implementation of Bendy, that may be useful when building future systems:

• If updates need to be pushed as soon as possible, the current SwiftCloud operation-based

approach excels. However, if clients can tolerate stale data, significant gains could be

achieved by supporting state-based propagation of updates.

• With the current SwiftCloud implementation, no significant advantages can be extracted

from batching multiple operation-based updates. This happens because SwiftCloud applies

all the batched operations serially and independently (for instance, releasing and grabbing

locks for every single operation in the batch). There is room to optimize SwiftCloud

for more efficient processing of batched updates. Also, semantic compression of batched

updates, as suggested by in (Almeida, Shoker, and Baquero 2014), would also improve the

system.

• The way SwiftCloud compresses client metadata, namely by using a single clock shared by

all objects, makes hard, if not impossible, to support multiple distinct SLAs in an effective

manner, as the interdependencies that are created among updates may cause SLAs to be

violated. Techniques that are more costly, but that allow for more fine-grain tracking of

dependencies (such as using per-object clocks (Lloyd, Freedman, Kaminsky, and Andersen

2011)) are needed to effective support multiple SLAs.

Taking into consideration our experience, implementations that aim at outperforming Bendy

should use the following guidelines:

• To rely on CRDT implementations that support both approaches, like the Optimized

OR-Set (Bieniusa, Zawirski, Preguiça, Shapiro, Baquero, Balegas, and Duarte 2012).

• To use metadata maintenance techniques that avoid creating false dependencies among

objects using different SLAs.

• To use metadata maintenance techniques that ensure that causality information regard-

ing objects using different implementations is not compressed together, as this creates

undesirable dependencies among both implementations.
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• Embed in the transaction processing engine sensors that may simplify the task of extracting

the workload characterisation, namely the update rate, given that the benefits of the state-

based over the operation-based critically depend on the possibility of aggregating multiple

updates before the SLA expires.

Summary

In this chapter we introduced the experimental evaluation made to Bendy and its results.

First we started by comparing the system with the two generic solutions: operation-based and

state-based solutions. The comparisons where in terms of Throughput, Bandwidth usage and

taking into account if the SLA was satisfied. Then we performed some analysis to our system in

a simulated environment. In that environment we could simulate changes in the top-k elements

and observe the system balancing itself to recover the maximum throughput. Finally, we made

some micro-benchmark to analyse the time for the system to properly detect a change in the

top-k distribution.

The next chapter finishes this thesis by presenting the conclusions regarding the work de-

veloped and also introduces some directions in terms of future work.
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5.1 Conclusions

In this thesis we have analyzed the cost performance tradeoffs between the two main ap-

proaches that can be used to propagate updates in geo-replicated stores using CRDTs, namely

operation-based and state-base approaches. Our work shows that node of the approaches out-

performs the other in absolute terms, and that an hybrid system may yield the best results. In

particular, we have show that, if the application is willing to tolerate small amounts of stale-

ness when reading objects, significant throughput gains can be achieved by encoding multiple

updates in a single state-update.

In order to validate our hypothesis, we have presented and evaluated Bendy, a CRDT-based

geo-replicated storage system that supports both operation- and state-based approches. Bendy

is able to optimize object-wise for a bounded number of objects (hot objects) the dissemination

process. Plus, Bendy is able to react to changes in the workload by relying on an approximate,

but very efficient, state-of-the-art stream analysis algorithm. Our results have shown that Bendy

outperforms solutions that use only one of the two approaches, and that is capable of rapidly

self-adapt to variations in the workload.

In the process of implementing and experimenting with both approaches, using SwiftCloud, a

state of the art CRDT-based geo-replicated storage system, we were also able to get interesting

insights that may help in driving future implementations of similar systems. In particular,

designers need to take special care on providing support for efficient processing of batched

operation-based updates, fast state-updates, and carefully crafted metadata structures that

avoid undesirable false causal dependencies among objects.
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5.2 Future Work

As future work, there is the possibility of using machine learning to better decide the

approach to use for each object, instead of using static analysis. However, this is not a trivial

solution because in order to make a decision correctly, a accurate data model must be produced.

This means, the training data should have a representative amount of possible configurations

and the best approach for each configuration.

Another aspect for future work is to remove the two instances of CRDTs and use only one

that supports both approaches. For this solution, a deep change in the metadata of the system

is needed to correctly support both approaches.
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