
Dynamic Adaptation of Byzantine Fault Tolerant Protocols
(extended abstract of the MSc dissertation)

Carlos Eduardo Alves Carvalho
Departamento de Engenharia Informática
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Abstract—The problem of distributed consensus in the pres-
ence of Byzantine faults has received particular attention in
recent decades. Today a variety of solution to this problem
exist, each optimized for particular execution conditions. Given
that, in most cases, real systems operate under dynamic
conditions, it is important to develop mechanisms that allow
the algorithms to be adapted at runtime or to switch between
different algorithms so that is possible to optimize the system
to the current conditions. The problem of dynamic adaptation
of consensus algorithms is not new, but the literature is
scarce for the Byzantine case and there is no comprehensive
comparison of existing solutions. This work has two comple-
mentary objectives. First, it studies how the different dynamic
adaptation techniques proposed for the crash failure model
can be applied in the presence of Byzantine faults. Second,
it presents a comparative study of the performance of these
switching algorithms in practice. For that purpose, we have
implemented the switching algorithms in a common software
framework, based on the open source BFT-SMaRt package.
Using this common framework we have performed an extensive
evaluation that offers useful insights on the practical effects of
different mechanisms used to support the run-time switching
among Byzantine protocols.

I. INTRODUCTION

State Machine Replication (SMR)[1] is one of the fun-
damental techniques for providing fault tolerance. At its
core, this technique uses a distributed consensus algorithm
so that all the replicas can agree in the order in which
they should process the requests. This work focuses mainly
on the case where one intends to use SMR to tolerate
Byzantine faults (BFT). Among the systems that have been
proposed to accomplish BFT state machine replication we
highlight PBFT[2], Aardvark[3], and Zyzzyva[4]. Each of
these systems operates better under certain conditions, and
worse in others, with none surpassing all others in all
situations, as shown in [5]. Zyzzyva performs better when
no faults occur and the network is stable. On the other hand,
when faults frequently occur, Aardvark operates better than
the rest, sacrificing performance in the fault-free case. In
addition, the performance of the PBFT is less sensitive to
the increased size of the messages exchanged when com-
pared to Zyzzyva. These differences motivate the interest
of switching among different algorithms, or to dynamically
adapt a given algorithm.

Therefore, in this work we are interested in the study of
mechanisms that allow to adapt, or to replace, in runtime, a

consensus algorithm for another. This is relevant since most
of the practical applications of SMR are subject to variations
of their execution environment, from changes in the load
imposed by clients to variations on the network performance.
Furthermore, as there is no one-size-fits-all algorithm solu-
tion for a range of extended operating conditions [5], the
only way to ensure a good performance in face of a variable
envelope is to perform dynamic adaptation.

The problem of dynamic adaptation of consensus al-
gorithms is not new and has been well studied for the
crash fault model (e.g. [6], [7], [8]). However, the literature
is scarce for the Byzantine case and, in fact, several of
the previously proposed mechanisms may fail in face of
Byzantine faults and need to be modified to operate in
such a scenario. Even among algorithms developed taking
Byzantine faults into account there is, as far as we know,
no work to compare their performance. In this way, those
who seek to support dynamic adaptation while tolerating
Byzantine faults do not have at their disposal concrete data
in order to choose the adaptation technique that best suits
the characteristics and objectives of the target system.

Thus, this work has two main goals. First, it studies
how the different dynamic adaptation techniques that were
previously proposed for the crash failure model can be
adapted to work in the presence of Byzantine faults. Second,
it presents a comparative study of the performance of these
switching algorithms in practice. For that purpose, we have
implemented the switching algorithms in a common software
framework, based on the open source BFT-SMaRt library[9].
Using this common framework we have performed an ex-
tensive evaluation that offers useful insights on the practical
effects of different mechanisms used to support the run-time
switching among Byzantine algorithms.

II. RELATED WORK

There have been proposed multiple techniques for dy-
namically adapting consensus protocols in the literature.
We group these adaptive protocols into three categories:
those using a single reconfigurable consensus protocol, those
using multiple consensus protocols either as black-boxes, or
relying on stoppable consensus protocols.
Using a reconfigurable consensus algorithm. One of the
most straightforward ways to reconfigure a system is to
develop an adaptation aware monolithic protocol, which
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already incorporates all the behaviours that can be activated
at runtime. In this case, the dynamic adaptation simply
consists of modifying one or more configuration parameters
of the monolithic implementation. Nevertheless, since con-
sensus protocols involve multiple processes, it is necessary
to coordinate the reconfiguration of the different replicas
in order to ensure that they always operate in compatible
configurations (typically in the same configuration). Lamport
et. al. described how this technique can be carried out safely
[10]. A similar technique is also used in ByTAM [7], an
earlier attempt at producing a reconfigurable version of BFT-
SMaRt. One limitation of this approach is that it requires all
desirable behaviours be supported by a single protocol, that
quickly becomes extremely complex maintain, and whose
correction is difficult to ensure.

Using multiple consensus algorithms. A more modular
solution consists of implementing the different behaviours
using independent protocols and then having mechanisms
to switch among these protocols. We designate the compo-
nent that allows switching among two or more protocols a
switcher.

The most straightforward solution is to consider consensus
protocols as black-boxes. The advantage of this solution is
that any protocol could be integrated without major effort, as
requires no adaptive features from the consensus protocol.
Unfortunately, there is no direct way for a switcher to
identify whether a given protocol is already quiescent, which
presents a challenge. Therefore, the switchers in the different
replicas have to coordinate explicitly. An approach on this
is described by Mocito et. al. in [7], nevertheless, it assumes
a perfect failure detector. Bortnikov et. al. [11] presented a
CFT implementation of this technique.

Switching can be facilitated if the protocols export an
interface that allows the switcher to deactivate the protocol,
placing it in a quiescent state[10]; in the literature, these
protocols are designated as stoppable[12]. In this case, after
the deactivation has been requested by the switcher, the
various replicas of the protocol coordinate with each other
to ensure that new messages are no longer processed. Note
that there may be a gap in the communication flow during
the reconfiguration, since deactivating a protocol is not
instantaneous and requires coordination among the various
replicas. Furthermore, not all available Byzantine consensus
protocols have support for their deactivation, which limits
the coverage of this approach.

Aublin et. al. presented an special type of stoppable
protocols [13]. They propose algorithms, which, given a
set conditions—e.g. a specific failure occurs, or the net-
work is getting overloaded—autonomously stop. Using these
algorithms, the authors propose Abstract, a BFT systems
development framework that allows to deactivate one algo-
rithm and replace it with another one when environment
conditions change. When an algorithm is deactivated, it
responds to all requests with a proof of termination, its
operations history and an indication of the next algorithm to
be activated. The client is then responsible for forwarding

his request, together with the received information to the
new algorithm to be used. This continuous approach brings
a gap in communication due to the need for retransmission
of requests. By not using a dedicated switcher, one needs to
transfer more data over the network (the history) in order
to ensure the correction of the system as a whole. Another
disadvantage of Abstract is that it only supports a fixed set
of hard-coded policies to decide which reconfigurations are
meaningful.

As an optimization for adaptive techniques relying on
multiple protocols, Mocito et. al. [7] and Bortnikov et.
al. [11] propose to have both protocols (the one being used
and the protocol to which we want to switch to) concurrently
working, such that the impact of reconfiguring is unnotice-
able. Thus, the switcher would send all the messages in par-
allel to both protocols during a reconfiguration. Of course, a
disadvantage of this strategy is that it leads to a significant
increase in bandwidth usage during reconfiguration since all
messages are ordered by the two protocols, so it can only
be applied in systems where the network does not present a
bottleneck.

III. BYZANTINE PROTOCOL ADAPTATION

In this section we discuss the operation of several protocol
switching strategies in the presence of Byzantine faults.
We classified this strategies in three different categories: i)
adaptation using a reconfigurable algorithm, ii) adaptation
using algorithms as black boxes, and iii) adaptation using
stoppable algorithms. matching the categories described in
§II. If the switching algorithms have not been originally
proposed for this model, we discuss the changes that are
required to efficiently apply them to BFT protocols. We
also present some new optimizations that have not been
previously suggested in the literature.

A. System Model
We assume the Byzantine fault model, where failing

processes may exhibit arbitrary behaviour, including col-
luding to attack the system in a coordinated fashion. Nev-
ertheless, we consider an adversary with limited computa-
tional resources, and without the possibility to break the
cryptographic primitives used by the protocols. Finally, a
partially synchronous network is assumed, in which arbitrary
asynchrony periods may exist, but there is always a period
of synchrony in which the system can make progress; in the
moments of synchronization, the transmitted messages are
delivered to the recipient within a bounded time interval.

We assume that in the system there are N replicas with the
ability to instantiate several Byzantine protocols. Clients of
the replicated service do not interact with these instances
directly, but rather through a component called switcher,
which is responsible for forwarding these requests to one
or more of these protocols (making dynamic adaptation
transparent to clients). For resource-efficiency, each switcher
can be co-located with the respective replica instance. We
also assume that there is an external component to the
system, called the adaptation manager, that decides which
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protocol (or configuration) is going to be used at any
moment. When it is necessary to adapt, the adaptation
manager sends an order to all the switches, in order to
start the adaptation process. This adaptation commands are
ordered and identified with a monotonically increasing id.
The implementation of the adaptation manager is orthogonal
to this work, being described in [14]; typically the manager
itself is also replicated and each switcher only initiates
switching when it receives an identical command from a
quorum of adaptation manager replicas.

B. Using Reconfigurable Algorithms
As seen previously in §II, when using a reconfigurable

algorithm, the main challenge is to coordinate all the replicas
to use the same configuration. One of the simpler ways
of doing it, as suggested in [10], is to use the consensus
algorithm itself to define the logical instant at which the
reconfiguration takes effect. For this, the reconfiguration
algorithm must support pre-defined reconfiguration requests,
which are, as application requests, submitted for consensus.
Only when the replicas reach a consensus on a reconfigu-
ration command, the reconfiguration is applied, ensuring a
mild transition.

This adaptation strategy is generic and can be used assum-
ing any fault model, including BFT. The correction of the
switching algorithm depends exclusively on the properties of
the underlying consensus algorithm. Therefore, if we recon-
figure a Byzantine fault tolerant protocol, the reconfiguration
itself also tolerates this type of faults. This technique is
potentially the most efficient, especially since the protocol
can be implemented in order to prioritize reconfiguration
requests, causing these requests to be ordered before other
messages are queued to be ordered.

Unfortunately, efficiently implementing reconfigurable
consensus algorithms is significantly hard. One of the prob-
lems, apart from the obvious complexity of implementing
such complex algorithms, is that each of the behaviours
integrated in the algorithm may possibly require different
optimizations that may be in conflict; e.g. an optimization
that works for a protocol A, makes protocol B inefficient.
We detail our experience building such reconfigurable algo-
rithms in §IV.

C. Using Algorithms as a Black-Box
Adaptive strategies that consider consensus algorithms as

black-boxes use control messages, namely markers, to coor-
dinate the reconfiguration. Let us assume that an application
requests a reconfiguration from protocol A to protocol B. In
order to start the switching, each switcher (or a subset of
them) sends a marker via protocol A. When the first marker
is delivered (by the consensus protocol A), switches start
submitting request to protocol B instead to protocol A. Con-
sequently, from that point in time, switchers can only deliver
messages received through protocol B. Unfortunately, due
to the asynchrony of the system, a switcher can see several
of the messages sent by itself to protocol A ordered after a
marker, in which case it is obliged to re-send these messages

to protocol B. In this way, there can be not only a gap
during the reconfiguration, but also an increase in network
usage due to the need to re-send data messages to a different
protocol.

An additional difficulty to this approach in the presence of
Byzantine faults is to verify that the marker corresponds to
a configuration that was actually requested by the adaptation
manager, to prevent a Byzantine switcher from inducing
undesirable reconfigurations. We have considered two tech-
niques for obtaining this guarantee. The first is to include in
the marker a proof of veracity of the configuration request;
this consists in having the reconfiguration command signed
by a quorum of adaptation managers. A second solution
would be to start the switching only after receiving f + 1
markers from different switcher replicas. This last option
would eliminate the need to send the proof (since waiting
for f +1 markers, we are sure that one of them was sent by
a correct process), but would delay the switching process.
For this reason, in our prototype we use the first solution.

D. Using Stoppable Algorithms
Adaptive strategies that use stoppable consensus algo-

rithms have the potential of simplifying the reconfiguration
protocol at switchers. When a deactivation is requested,
these algorithms ensure that no request is ordered after
the stop command. Therefore, the switch does not have to
implement—as for the black-box strategies— a protocol to
cope with requests that have been already submitted but not
delivered before the marker.

Let us describe in more detail the steps followed to recon-
figure from a protocol A to B. Before the reconfiguration is
initiated by the manager, the switcher sends messages to pro-
tocol A; when the reconfiguration is triggered, the switcher
stops submitting messages and requests the deactivation
of protocol A: the flow of messages is then temporarily
stopped, while the switcher waits for protocol A to be in a
quiescent state; after obtaining confirmation of deactivation
of protocol A, the switcher resumes sending the messages,
now using protocol B. Note that there may be a gap in
the communication flow during the reconfiguration, since
deactivating a protocol is not instantaneous and requires
coordination among the various replicas. Furthermore, not
all available Byzantine consensus protocols have support
for their deactivation, which limits the coverage of this
approach.

In the Byzantine case, presents the following problem,
which arises from most Byzantine consensus protocols,
based on the election of a leading process: consider the case
in process pi is the leader of protocol B but it is the last
process to be informed that A is in the quiescent state. In this
case, the remaining processes, may have already switched to
Protocol B, and can erroneously assume that pi is faulty in
face of the absence of the leader’s activity (when in fact
pi is correct but blocked while awaiting the deactivation of
A). This can start a leader-switching processes in Protocol
B even before its operation is initiated in full, which can
harm system’s performance. For this reason, in a Byzantine
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fault tolerant system, it may be preferable for a switcher
replica to immediately send messages in Protocol B, even
before making sure that protocol A is quiescent. Note that
messages delivered by B will have to be quarantined until A
is quiescent. In order to avoid delivering the same message
to the application more than once, messages that have been
ordered by A in the past should be discarded from the
message list ordered by B and only then the remaining
messages ordered by B may be delivered.

E. Optimizing with Parallelization
We have seen previously that one way to reduce the gap

that may occur during switching is to send all messages to
both protocols, A and B, during the reconfiguration process.
The way to define the logical moment in which the switching
takes place can be the same described above. However, when
switching is done, messages not ordered by A will already
be ordered by B and ready to be delivered.

Systems that use this technique, such as [7] and [11],
assume that when the switching process starts protocols A
and B are already instantiated in all replicas and that no
process uses these protocols unnecessarily. In the Byzantine
setting, there is a risk that a Byzantine process will start
transmitting in protocol B even when no switch operation
has been requested by the adaptation manager, which will
lead to wasted resources and open the door for denial of
service attacks. To mitigate this problem, we developed the
following strategy. When a process sends a first message
in protocol B, it must add to that message a proof that
the switch to B has been requested. As before, this test
consists of the reconfiguration command signed by a quorum
of replication managers. A process that receives a message
for protocol B for the first time, it only activates protocol B
if the proof is valid. Otherwise, it discards the message and
issues an accusation against its sender.

Although it seems an optimization, it is not clear if in
practise the system will perform better when using this tech-
nique as it is resource-intensive and can lead to starvation.

IV. BFT-SMART INSTANTIATION

In order to carry out an experimental evaluation, require
to support a comparative analysis of the performance in
practice of the various techniques mentioned above, we
have implemented the different algorithms in a common
software framework, namely, the BFT-SMaRt platform[9].
BFT-SMaRt is an open-source software package that enables
the execution of a replicated state machine service that is
tolerant to Byzantine faults. We have chosen this framework
for implementing the switchers since it is one of the best per-
forming and actively supported BFT SMR implementations.
Unfortunately, the BFT-SMaRt offers a single consensus
algorithm, which is a variant of the algorithm described
in [15] for the Mod-SMaRt framework[16]. In order to illus-
trate the switching among different algorithms, we have also
developed an additional algorithm for BFT-SMaRt. Namely,
we have developed an implementation of the Fast Byzantine
Consensus[17], which we call Fast-SMaRt. In addition, we

added to the BFT-SMaRt a switcher module, which mediates
the interaction among clients and the supported consensus
algorithms. The switcher is prepared to receive reconfig-
uration commands from a replicated adaptation manager,
whose development is being done by other elements of our
team[14].

In addition to the switcher and the new consensus algo-
rithm mentioned above, we have developed other extensions
to BFT-SMaRt that are relevant to our experiments. In
particular, we have developed stoppable versions of the
Mod-SMaRt and Fast-SMaRt algorithms so that we can test
switching between algorithms with support for deactivation,
as well as the possibility to reconfigure the leader of these
algorithms at runtime so that it is possible to compare the
time of reconfiguring a single algorithm versus switching
between two instances of the same algorithm with different
configurations. It was also necessary to provide the BFT-
SMaRt with support for the parallel execution of multiple
algorithms; this has been achieved by adding new fields
to the message headers so that the dispatch layer is able
to forward the messages to the right algorithms. Finally,
support for including, in the messages, a proof that the
reconfiguration was requested was added. This allows the
activation by necessity of algorithms in replicas that, due
to the asynchrony of the system, have not yet received
these commands directly from the replicas of the adaptation
manager.

Note that it would be possible to optimize switching by
having specific switches for different types of faults (for
example, by implementing the protocols described in [7]
or [18] to switch between two fault-tolerant configurations).
However, the current protocol tolerates both Byzantine and
crash faults, and can be used to switch between the various
possible configurations.

In developing this extension to BFT-SMaRt, we had the
care to integrate them in the best way in the current develop-
ment trunk. For example, BFT-SMaRt was already prepared
to receive some reconfiguration commands, although only
for some specific adaptations such as the run-time change of
the replica set. We have developed our support mechanisms
for adaptation, particularly the switch, as an extension and
generalization of these services. The implementation of
the new algorithm also followed the class decomposition
already used in the implementation of the Mod-SMaRt.
A representation of the overall architecture of the system
is presented in Figure 1. These options will facilitate the
maintenance of our code and its future inclusion in the
BFT-SMaRt distribution. The developed code corresponds
to approximately 2k new lines of code (the base distribution
of the BFT-SMaRt has about 28k lines). A significant part
of the development effort of our extensions consisted in
the need to understand in depth the source code of the
BFT-SMaRt to ensure the correct integration of the new
extensions.

Specially, developing an adaptable algorithm from BFT-
SMaRt was the most complex task. BFT-SMaRt was already
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Figure 1: System architecture

optimized for Mod-SMaRt and introducing Fast-SMaRt
not only broke performance as it also broke correctness.
This happened because some parts of BFT-SMaRt were
implemented with the Mod-SMaRt execution flow in mind
and didn’t work with other consensus behaviour, like the
leader election. This, among other sections, had to be
reimplemented in order to cope with Fast-SMaRt, and keep
performance as close as possible to the original BFT-SMaRt.

V. EVALUATION

In order to compare the different adaptation techniques,
in this section we intend to answer the following questions:

a) How much time it takes for a reconfiguration to be
executed with each technique?

b) What is the impact on system performance caused by
adapting with the different techniques?

c) What load is imposed by the adaptation on the network?
d) How useful are the the distinct adaptation techniques

to bring the system out of a poor performance situation
caused by environmental conditions?

e) How large is the advantage of using reconfigurable
protocols, instead of stoppable or black-box, if on wants
to perform adaptations that do not demand coordination
(known as flash adaptations)?

So, in this chapter an experimental evaluation is presented
to answer such questions. In §V-A and §V-B we address
questions a), b) and c). Question d) is discussed in §V-D
and question e) is explored in §V-C

To mitigate artefacts in the data caused by unwanted
hidden variables, like the physical network conditions or
the virtual machines performance, 15 runs were performed
for each experiment. The 4 most deviating datasets, the two
with smaller value and the two with bigger values, were
discarded. After that an average was calculated, being the
values presented in the graphs. The standard deviation fell
between 7% and 12%, nevertheless the differences among
the different techniques kept consistent within each of the
individual experiment run.

A. Local Network Context
To execute this experiments 6 BFT-SMaRt replicas were

used, as this is the minimum replicas needed to tolerate
one fault using Fast-SMaRt [17], and a client capable of
introducing variable load in the system. All the replicas and
the client were hosted in independent virtual machines on
the DigitalOcean1 cloud provider. Each machine as a dual
core CPU running at 2.40GHz, 2GB of RAM and a full-
duplex 1Gb/s network connection. This configuration was
chosen for being the most powerful, hence closer to a real-
world server, within the available resources. The client which
generates load sends requests in multiple threads, simulating
multiple clients. In this section of experiments the client
sends a request of 10kB each after receiving the reply (with
10B) of the previous request (works in a closed-loop). The
system ran for 4 minutes, which were dropped, before any
adaptation was executed so that the load introduced by the
client could put the system in a stable point of performance.
The same experiences were also performed with 11 replicas
(tolerating two faults) and, although the performance of the
system was 62% inferior, the conclusions were similar. The
results are omitted due to space restrictions, being available
in the thesis.

1) Adaptation Time: To evaluate the time needed to per-
form an adaptation using each technique, it was accounted
the delay between the arrival of an adaptation request and
the application of such adaptation. This has been performed
with different amounts of load introduced in the system.
The results are presented in Figure 2. In the graph is
also represented the time of a consensus run to order a
request, since it represents the minimum time to execute
an operation on the system with the given conditions. It is
observable that the time of adaptation using reconfigurable
protocols grows much slower that the other approaches,
closely to the consensus time. This happens mainly because
in a solution using reconfigurable protocols it’s possible to
have access to the queue of incoming requests and prioritize
adaptation requests, while in all other techniques that is not
possible. This way, when using reconfigurable protocols, the
adaptation time grows only with the time taken to order a
request, while on the other hand, in the other techniques
it grows both with the time to process a request and the
queuing time.
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Figure 2: Execution time of an adaptation in a local network,
using 6 replicas

1https://digitalocean.com
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2) Throughput During an Adaptation: To measure the
overhead of executing an adaptation with each of the tech-
niques described, it was used a client with 20 threads, being
this the configuration that introduced a significant load in
the system without putting it under excessive stress. The
throughput was extrapolated at every 100 requests ordered,
by measuring the time it took to order the said requests.
After the request number 1000 an adaptation request, to
switch from Mod-SMaRt to Fast-SMaRt, was submitted to
the system. The obtained results are shown in Figure 3.

It can be observed that, in the context of this experiments,
none of the used techniques introduced a visible overhead
in the throughput of the system. The rise in throughput be-
tween requests 1000 and 1100 exists because the adaptation
introduced in the system contributed to an overall increase
in performance.

3) Network Overhead of an Adaptation: The network
load was measured during the same experiment described
above, with samples every millisecond. In order to facilitate
the comparison of the data, the most relevant 40ms of
execution were taken and aligned so the reconfiguration
request arrives at 10ms. The data is represented in Figure 4.

On the other hand, the load introduced in the network
varies among the different techniques used. The use of non
reconfigurable protocols imposes an increase on network
usage after an adaptation is executed as the protocol that
ceased to be active continues to execute in the background
until it depletes the queue of received requests. When using
parallelization techniques there is a visible overhead on the
network prior to the execution of a reconfiguration. This
happens because as soon as an adaptation request is received
the next protocol to be active starts executing tentatively in
parallel with the currently active protocol, existing a period
with an increase of nearly 90% of the load on the network,
when comparing with the normal execution.

B. Wide-area Network Context
To experiment the different techniques in an wide-area

network context, a cross-datacenter network was emulated.
To emulate the said network topology 6 replicas were hosted
in the same datacenter and latency was introduced between
them at the Linux Kernel level, using the netem2 tool. To

2https://wiki.linuxfoundation.org/networking/netem
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Figure 4: Network load during an adaptation, in a local
network, using 6 replicas

Table I: Latencies between the different replicas in the
system used in the wide-area network experiments

Replica 1 2 3 4 5
0 10ms 74ms 84ms 52ms 89ms
1 - 69ms 79ms 45ms 81ms
2 - - 10ms 107ms 154ms
3 - - - 118ms 161ms
4 - - - - 52ms

try to have a network environment as close as possible to a
realistic use case, real latency values across Amazon data-
centers were used. The emulated network simulates having
a system replica in each of the following datacenters: North
California, Oregon, Ireland, Frankfurt, Tokyo and Sidney.
The amount of latency between each replica is presented in
[19] and are shown in Table I. To emulate the variability in
the communications delay a jitter of ±10% of the latency
added.

1) Adaptation Time: Except from the network environ-
ment, this experiment closely followed the one described in
§V-A1. However, due to the increase of latency, the batching
mechanism of BFT-SMaRt was more prominent, reducing
the load of consensus messages to be processed. This raised
the need to introduce more clients to introduce enough load
to bring the system performance to its peak. So, 2 multi-
threaded client were used using a total number of threads
between 100 and 1300, with half of the threads running in
each client process. The collected data is shown in Figure 5.

The results show that the difference in time between
adapting using a reconfigurable protocol versus adapting
with other techniques is much closer to be constant than
in a local network, mainly up to the load introduced by
1100 replicas. This happens because the latency introduced
by the network (felt by all the techniques) is much more
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Figure 5: Reconfiguration time in a wide-area network
environment

relevant than the latency introduced by the queuing time,
which is the main differentiator of the different techniques
reconfiguration times. Nevertheless, the absolute value of
the difference between the distinct solution is much more
prominent than in a local network, instead of less than ten
milliseconds, in this environment the differences ar hundreds
of milliseconds.

The steeper slope observed starting in the load introduced
by 1200 clients derives from the fact that the system starts to
fail in coping with the number of incoming requests, having
greater queuing times, which affects directly the time of
executing an adaptation when using non reconfigurable or
stoppable protocols.

We can then conclude that in a wide-area network en-
vironment, there is a greater load span in which the dif-
ferent techniques present very significant differences, when
compared to a local network. However differences exist in
the overall time, and may get several orders of magnitude
different if the queuing time surpasses the ordering time of
a request. This can be of interest if the adaptation is time-
sensitive and must be performed as fast as possible, as in a
local network, using a reconfigurable protocol is the faster
technique.

2) Throughput During an Adaptation: To test the over-
head of carrying an adaptation in an wide-area network
environment a similar method to the one described in V-A2
was followed. 6 BFT-SMaRt replicas and 2 multi-threaded
clients were used. Because of the higher latency in request
processing it was possible to collect data with time based
samples. This is, instead of collecting data samples every
100 requests ordered, like in the local network experimental
method, the throughput was calculated at every 100ms
based on the number of requests answered in that time.
This approach facilitates the interpretation of the results
as it’s more intuitive to rationalize using the passage of
time instead of the number of requests answered. After 4
minutes, 20 seconds of execution were registered, where
an adaptation request arrived at the system shortly after
the 500th millisecond. The throughput of answered requests
during this time, with a load of 1000 and 1200 client threads,
is represented in Figures 6 and 7. This loads were chosen
because 1000 clients introduced a steady peak performance
and 1200 clients introduced a near-peak performance with
an increase in queuing time.

As the adaptation takes more time in this network envi-
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Figure 6: Throughput during an adaptation, in an wide-area
network, using 1000 client threads.
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Figure 7: Throughput during an adaptation, in an wide-area
network, using 1200 client threads.

ronment the differences in performance among the differ-
ent techniques become more apparent. One can note that
the adaptation using reconfigurable and stoppable protocols
carry little to no overhead in throughput. On the other hand,
solutions using non-reconfigurable protocols carry a penal-
ization in throughput in the moments after an adaptation,
because the protocol that ceased to be active continues to
operate after the adaptation, until the it depletes the exist-
ing queue of incoming requests, hence wasting processing
resources. Finally the approaches that use parallelization
present a belly before the executing of the adaptation and a
peak in throughput right after the adaptation is executed.
The loss of throughput happens because of the parallel
execution of protocols in these techniques, carrying costs
in performance due to the sharing of resources among
both protocols. The peak happens because the new protocol
already started ordering requests as soon as the adaptation
command arrived and now it can dispatch in burst all the
processed requests to the clients.

The behaviour of parallelization techniques arise the ques-
tion if the peak reached after the adaptation compensates
the loss of performance before it, when compared to their
counterpart techniques that use no parallelization. In order
to answer this question a graph showing the total amount
of requests answered with the different techniques was
derived from the throughput data. The results are presented
in Figures 8 and 9.

The data shows us that in the case of using black-box
protocols the parallelization optimization reveals itself to be
of worth, compensating, in part, the penalization introduced
by the use of black-box protocols when compared to re-
configurable and stoppable ones. Although the difference
is only about 100 requests in this experiment, this small
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Figure 8: Answered requests during an adaptation, in an
wide-area network, using 1000 client threads.
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Figure 9: Answered requests during an adaptation, in an
wide-area network, using 1200 client threads.

differences may add up and impact a long-lived system
with recurring adaptations. On the contrary, when comparing
the use of parallelization when using stoppable protocols
the data shows that not always the parallel execution is
beneficial. This happens because using stoppable protocols
does not incur in visible losses of performance by itself.
So, the issue relies on if the peak of throughput using
stoppable protocols with parallelization compensates the loss
of performance prior to the adaptation because there is no
loss of performance to cover, like when using black-box
protocols.

We can see that parallelization surpasses its counterpart
when using 1200 client threads, while it doesn’t when using
1000 client threads. The main difference among them is the
time between receiving an adaptation request and executing
it, which is the time that the soon-to-be active protocol
executes tentatively. It’s visible that with a greater time,
the parallelization technique has better results. This happens
because the consensus protocols usually have a warm-up
time until they reach peak performance, in the Fast-Smart
case its due to the batching behaviour, which benefits with
queues which length is near the maximum batch size. So,
with shorter adaptation times, the time spent warming up
the new protocol may not compensate the overall loss of
performance due to parallelization. In the conditions of
this experiment, a possible optimization for adapting using
stoppable protocols and parallelization would be to delay the
execution of the adaptation so the protocol executes enough
time to compensate the overall drop in throughput, contrary
to the intuitive idea of executing an adaptation as fast as
possible. Of course this is a very specific case, where the
adaptation is being made only to increase performance, not
being critical or time sensitive as it would be if it was
done for security purposes, for example. Furthermore, the
peak throughput of the protocol executing tentatively must

be higher than loss of throughput in the active protocol
when compared to the throughput it would have if no other
protocol was executing.

3) Throughput Overhead of an Adaptation: During this
experiments described above, the network load was also
collected. The results are shown in Figure 10. Although the
differences are amplified due to greater load and adaptation
time, the conclusions are similar to the ones discussed in
V-A2.
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(a) With a load of 1000 clients.
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(b) With a load of 1200 clients.

Figure 10: Load introduced in an wide-area network when
executing an adaptation

C. Adaptation Under Heavy Load

All the previous discussed experimental cases assumed
a stable execution of the system, this is, the system was
not operating in conditions that aggressively reduced its
performance. This leads to the question: How useful are the
the distinct adaptation techniques to bring the system out
of a poor performance situation caused by environmental
conditions?

To answer this question, a simulation of several clients
becoming faulty, and introducing too much load, was done
to test how the adaptations could help dealing with it.
Specifically, the experiment simulates clients who operate
out of the BFT-SMaRt protocol by executing in an open-
loop, this is, not waiting for the answer to request n before
sending request n + 1. To emulate a possible adaptation
issued by the adaptation manager, a protocol switch to
Safe-SMaRt was issued when the system’s latency degraded
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beyond 43 seconds. This happened at second 0 in the graph
presented in Figure 11.

The network conditions are similar to the ones used
in V-B. There were used 1000 clients were half of them,
500, were faulty and operating in an open-loop, ignoring
the answers of the replicated server.
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Figure 11: Introduction of an adaptation when the system’s
performance is heavily degraded

Note that this experiment does not aim at proving the
utility of Safe-SMaRt improve the resilience of the system
to faulty clients, as that falls out the scope of this thesis. This
experiment was performed to compare how each adaptation
technique performs when used in heavily degraded system’s
performance conditions.

It is possible to note that using adaptable protocols is
again the fastest way to introduce an adaptation, being
introduced more than 40 seconds before any other technique
in this case. This happens because of the prioritization of
adaptation requests, as discussed before. A new insight, not
verified clearly before, is that in this case, the parallelization
performs better that non-parallel commutation. Even if they
are applied some seconds later, their parallel execution helps
to bring the system to a good performance much faster. This
happens because the new protocol, executing in parallel, has
the chance of operating during a considerable amount of
time, being able to operate in peak performance for a great
amount of time. Moreover, the new protocol is more resilient
to the attack being performed, having better performance
than the previous protocol. Note that although this is verifi-
able in this case, in some performance degradation contexts,
parallelization may be worse than non-parallel techniques,
specially if the bottleneck in performance is bandwidth or
computing power.

D. Flash Adaptation versus Ordered Adaptation
As seen in III-B, when using reconfigurable protocols it

is possible to introduce fine-grained adaptations. Even more
so, some of this adaptations can be performed without the
necessity of running a consensus. This arises the question
How great is the advantage of using reconfigurable pro-
tocols, instead of stoppable or black-box, if on wants to
perform adaptations that don’t demand coordination? To
answer this, the delay of introducing an adaptation which
does not require a consensus (called flash adaptation) using
a reconfigurable protocol versus using other techniques,

namely stoppable and pure black-box protocols. The adapta-
tion introduced aimed at start logging the replicas activity to
disk. A fine-grained adaptation which demands coordination,
specifically changing the leader, is also present in the chart
to allow a comparison between a coordination-demanding
and a flash adaptation using a reconfigurable protocol.

The experimental setup follows closely the one used for
wide-area performance experiments (V-B), but with added
latency between the adaptation manager’s replicas and the
system replicas. This latency was added using netem, as
before, with values between 25ms and 35ms. The time was
measured between issuing the first adaptation command at
the adaptation manager’s replicas and it being applied by a
quorum of system’s replicas, which consists in 5 replicas
in this context. The last replica was ignored as it could
be faulty, under the system model. The obtained results are
presented in Figure 12.
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Figure 12: Adaptation time of flash, coordination-
demanding, stoppable and pure black-box approaches.

It is visible that flash, using reconfigurable protocols,
adaptations are applied much faster than when the same
adaptation is applied with other techniques. This follows
what was expected, as when using stoppable and black-box
protocols this adaptations still demand running consensus to
switch between two protocols with different configurations,
whereas when using reconfigurable protocols it does not.

The majority of the time taken by the flash technique to
apply the configuration is actually the latency between the
adaptation manager’s replicas and the switchers, as applying
the adaptation is in practise just some simple method calls.
On the other hand, when applying a coordination-demanding
adaptation, it takes more time due to the need of a consensus
run. The differences among the other techniques derive from
the loss of performance when using parallelization and the
queueing time, as already previously discussed in V-B.

VI. CONCLUSION

In this dissertation we have addressed the problem of
performing dynamic reconfiguration of BFT systems. We
have organized, in a systematic manner, a portfolio of
algorithms to switch in run-time between different protocols.
The algorithms have been derived by adapting previous
solutions that have been developed for different fault models.
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The algorithms can be applied in different scenarios,
depending of the properties of the protocols involved in
the reconfiguration. We have classified the target protocols
into three main categories, namely: reconfigurable protocols,
stoppable protocols, and protocols without any specific sup-
port for adaptation, that need to be treated as black-boxes.
We have also identified several optimizations that can be
applied to the reconfiguration algorithms, such as prioritizing
adaptations and using parallelization.

To understand the tradeoffs involved when applying these
algorithms in practice, and to obtain a comparative assess-
ment of their performance, we have implemented them in a
common framework, based on the BFT-SMaRt open source
project. We have deployed these implementation in different
settings.

Our results show that in a local network, using target
protocols as a black-box reveals itself to be the best solution
given that it presents the same performance as other alter-
natives and it is the easiest to deploy. On the contrary, when
performing reconfiguration in a geo-replicated system, the
use of black-box protocols presents a significant overhead
when compared to other alternatives. Thus, it may be worth
to change to target protocols such that they support at
least a stoppable interface. We have also observed that
parallelization is always useful for high-bandwidth networks
when using black-box algorithms. However, if stoppable
algorithms are used, parallelization is only beneficial in face
of large network delays. Finally, as as expected, if the target
protocols are reconfigurable, switching can be executed with
significant savings, namely in terms of latency.

As future work we would like to use the findings reported
here to improve adaptation policies for several concrete
applications that can benefit from dynamic reconfiguration,
such as geo-replicated distributed ledgers. Another interest-
ing direction in future work is to combine different switching
algorithms in order to switch between protocols with distinct
levels of support for adaptation.
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