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Abstract The OSGi Service Platform defines a framework for the de-
ployment of extensible and downloadable Java applications. The frame-
work introduces a management unit, called a bundle, that can be in-
stalled, updated, uninstalled, started or stopped without restarting the
entire framework. Bundles provide opportunities for increasing the de-
pendability of OSGi based applications in a modular way. This report
addresses the problem of augmenting an OSGi framework with fault-
tolerant mechanisms.

1 Introduction

The Java programming language is widely used today to build applications that
have high availability and reliability requirements. Therefore, it is of utmost
importance to design fault-tolerance support for those applications.

Unfortunately, the Java language, by itself, provides little support for the
modular deployment and maintenance of complex applications. The deployment
unit in Java is a Java ARchive (JAR) file which has the Java classes that will be
deployed. However, Java does not provide a standard way to manage these JAR
files, such install, uninstall, start and stop them in runtime. The problem of this
unmanageability for large applications is known as "Jar Hell", which is inspired
in a similar problem with windows operating systems, called "DLL Hell". Kaegi
and Deugo in their article [1] present a solution to this problem, based on the
use of a Java modularity technology called OSGi [2]. OSGi has been adopted
by several organizations as a step forward to improve the modularity of Java
applications, including Eclipse, Nokia, Motorola, BMW, Spring, among others.

The OSGi framework introduces a management unit, called bundle, that
can be installed, updated, uninstalled, started or stopped without restarting the
entire framework. Bundles provide opportunities for increasing the dependability
of OSGi based applications in a modular way, it provides the tools that allow
fault-recovery to be applied at the bundle level and not at the level of the entire
application. For instance, different fault-tolerance techniques may be applied to
each individual bundle, depending of its characteristics. This report addresses
the problem of augmenting an OSGi framework with fault-tolerant mechanisms
that exploit the modularity features of the framework.



The remaining of this report is organized as follows. Section 2 briefly intro-
duces the goals of our work and its expected outcomes. Section 3 presents all
the background related with our work, including a survey on the main fault tol-
erance techniques, a description of a fault tolerant system for CORBA, a brief
description of OSGi, and some fault-tolerance solutions for this framework. Sec-
tion 4 presents a proposal architecture to add modular fault-tolerance to the
OSGi framework and Section 5 describes the approach that will be followed to
perform the evaluation of the solution. At last, Section 6 presents the schedule
of future work and Section 7 concludes the report.

2 Goals

This work addresses the problem of increasing the dependability of OSGi based
systems. In namely:

Goals: This works aims at designing and implementing modular fault-
tolerant techniques for OSGi applications.

The work will mainly consider software fault tolerance for OSGi modules,
i.e., design solutions that can tolerate software faults in the bundles or that
arise from the interaction of the bundles with the OSGi runtime. The solution
needs to consider the following criteria:

— Increase of availability and reliability of OSGi modules (known as bundles);

— Provide different levels of the availability and reliability desirable to each
bundle, according to the specific characteristics and requirements of each
individual bundle;

— Achieve a solution with an acceptable performance.

Thus, instead of supporting a single fault-tolerance strategy, we aim at de-
signing an architecture that supports the application of different fault-tolerant
strategies to different bundles. Hence, we expect to achieve the following results:

Ezxpected results: The research will i) define a set of fault-tolerant mech-
anisms for OSGi bundles; ii) provide a prototype implementation of
these mechanisms; iii) implement a demonstration OSGi application that
makes use of these mechanisms and, finally; iv) an evaluation of the per-
formance penalties incurred and dependability benefits provided by the
approach.

3 Related Work

This section reviews the related work that is relevant to the project. It starts
by surveying the fundamental concepts associated with dependable computing,
including the main techniques to achieve fault-tolerance. Afterwards presents a
fault tolerant system for CORBA applications. Then it provides a brief introduc-
tion to the OSGi architecture. Finally, it summarizes some previous work that
addresses the specific problem of increasing the dependability of OSGi systems.



3.1 Fault Tolerance

Fault tolerance can be shortly defined as a technique to increase the depend-
ability of a system. This section starts by defining dependability, its attributes,
threats, and means. Fault tolerance is one of the means for achieving depend-
ability; as the names implies, it consists in tolerating faults, which are the first
threat for dependability. After that, two main classes of faults are presented,
classified according to their determinism. The deterministic faults are called
Bohrbugs, and the nondeterministic ones are called Heisenbugs. Afterwards, the
two main techniques used in replication are introduced, namely: active replica-
tion and passive replication. These techniques are important because fault tol-
erance is only achievable through redundancy, and replication fits in providing
that. Afterwards, the main differences between hardware and software failures
are identified, and are also described the reasons for the focus on software fault
tolerance in our work. Subsequently, some techniques for software fault tolerance
are presented, which are divided in two types: single-version and multi-version.
Then, some significant dimensions of fault tolerant systems are introduced. A
categorization of applications considering their fault tolerance strength is also
provided. Technologies available to increase the fault tolerance levels and some
case-studies are also surveyed. Finally, some fault injection techniques that can
be used for benchmarking fault tolerant systems are referred.

Dependability Computing systems are characterized by four properties: func-
tionality, performance, cost and dependability. Following Avizienis et al. [3], the
dependability can be described as the ability of the system to deliver service that
can justifiably be trusted, and it is characterized by the following attributes:

— Availability: Reflects the instant of time (not an interval of time) that the
system is running and responding correctly, i.e., readiness for correct service.

— Reliability: Reveals the interval of time that the system is running and
responding correctly without any interruption, i.e., continuity of correct ser-
vice. In opposition with the availability attribute, the reliability implies no
interruptions between a certain period of time. For instance, a system can
be high-available with fast interruptions, i.e., if the interruptions are a really
small portion of time a system can be high-available, while still unreliable.

— Safety: Defines the absence of catastrophic consequences on the user(s) and
the environment, i.e., the fail-safe system capability.

— Confidentiality: Defines the absence of unauthorized disclosure of infor-
mation.

— Maintainability: Reflects the ability to undergo repairs and modifications.

To conduct a dependability evaluation and comparison of several systems
is necessary to quantify the dependability attributes involved. Therefore, it is
necessary to define the following metrics.

Mean Time to Failure (MTTF) is the expected time that the system
will operate before the first failure occurs [4].



Mean Time to Repair (MTTR) is the average time necessary to repair
the system after a failure [4].

Mean Time between Failures (MTBF) is the expected time of a failure
occurrence in the system plus the expected necessary time to repair that failure.
Therefore, the reliability attribute is proportional to the Mean Time Between
Failures (MTBF) [5]. Furthermore, the availability can be defined as the ratio
between MTTF and MTBF [4].

Hence, the formulas to calculate the value of reliability and availability at-
tributes are the following:

Reliability = MTBF = MTTF + MTTR (1)

MTTF MTTF @)
MTBF  MTTF + MTTR

The dependability of a system can be compromised by three threats, namely:

Availability =

— Fault: adjudged or hypothesized cause of an error. There are two types of
faults: active and dormant; a fault is active when produces an error, otherwise
it is dormant;

— Error: part of the system state that may cause a subsequent failure;

— Failure: occurs when an error reaches the service interface and alters the
service.

A dependable computing system can be developed by using a combination of
the following four complementary techniques: fault prevention, fault tolerance,
fault removal and fault forecasting. All of these techniques are means to achieve
system dependability.

Fault prevention is related with the quality control employed during the de-
sign and conception of software and hardware. Operational physical faults may
be prevented by shielding, radiation hardening, etc. Interaction faults may pre-
vented by training, rigorous procedures for maintenance, "foolproof" packages,
among others. Malicious faults may be prevented by firewalls and similar de-
fenses.

Fault tolerance has the purpose of maintaining the delivery of correct service
in the presence of active faults. Usually, fault tolerance relies on error detec-
tion followed by error recovery. Error detection can be classified in two classes:
concurrent error detection (during the service delivery) and preemptive error
detection (while service delivery is suspended). The recovery has the purpose
of transforming the system state with errors and possibly faults into a system
state without detected errors. For that purpose, the recovery consists in error
handling and fault handling. Error handling is responsible for eliminating the
errors from the system state; fault handling prevents the faults that have been
located from being activated again. Errors can be eliminated using two main ap-
proaches: rollback (return to previous saved state without errors detected) and



roll-forward (creation of a new state). Fault handling involves four steps: fault
diagnosis, fault isolation, system reconfiguration and system reinitialization. It
is crucial that the mechanisms implemented by the fault tolerant system are
also protected against faults that can affect them. Hence, fault tolerance has a
recursive nature.

Fault removal consists of excluding the discovered faults from the system. It is
present during the development phase and operational life of a system. During
the development phase of a system, it requires three steps: verification, diagnosis
and correction. Verification techniques can be categorized in two types: static
and dynamic. Static verification can be performed without executing the system;
on the other hand, dynamic verification is during the execution of the system.
During the operational life of a system, fault removal may be implemented using
corrective or preventive maintenance. Corrective maintenance aims at remov-
ing faults that produced one or more errors and have been reported. Preventive
maintenance aims at removing faults before they might cause errors during nor-
mal operation.

Fault forecasting performs an evaluation of the system behavior based on fault
occurrence or activation. The evaluation has two aspects:

— Qualitative or ordinal evaluation: aims to identify, classify, rank the fail-
ures or the event combinations that would lead to system failures;

— Quantitative or probabilistic evaluation: aims to evaluate in terms of
probabilities the satisfaction degree of the dependability attributes.

The main concern of our work is increase the availability and reliability of
software modules. That can be achieved using the techniques described above,
but some faults are impossible to identify/correct and only the fault tolerance
technique can solve that situations. Obviously, is desirable to combine all the
techniques with each other to have a even better system dependability.

Fault Determinism Faults can be characterized according to its determin-
ism in two distinct classes [5]: Bohrbugs (deterministic faults) and Heisenbugs
(nondeterministic faults).

Bohrbugs (the name is inspired on the Bohr atom) are faults usually easy
to repeat, identify and correct. The repetitions of those kinds of faults are easy,
because they normally depend only in the input gave and the current state of
the system. Therefore, a specific Bohrbug that has happened for a particular
input and system state, it will happen again and again for the same input and
system state. With the right tools (for instance, debuggers) the identification
and the correction of this kind of bug is usually easy.

On the other hand, the Heisenbugs (the name is inspired on the Heisenberg
Uncertainty Principle in Physics) are faults really hard to repeat, identify and
correct. This kind of faults can depend on a variety of characteristics, like internal



clocks, threads synchronization, switch of threads, etc. This kind of character-
istics is very hard to control, therefore the repetition of a specific Heisenbug is
very hard to do. Consequently, the identification and correction of Heisenbugs
are also very hard to do, and even the presence of a tool (debugger), with that
purpose, can perturb enough the system to make the Heisenbug disappear on
that condition. Gray and Siewiorek [6] consider the name Heisenbug attributed
to a transient fault, and they suggest that most software faults in production
systems are transient.

Later in this report, these two faults definitions will be essential for the
comparison of some fault tolerance techniques.

Replication Techniques Fault tolerance in a system requires some form of
redundancy [7], and replication is one of the main techniques to achieve it.
Typically, a replicated component is a concurrent component, as multiple clients
may attempt to interact with different replicas at the same time. It is then of
paramount importance to define precisely what is the correct behavior of the
replicated component.

One of the most intuitive behaviors consists in requiring the replicated com-
ponent to behave like a single non-replicated component. This allows replication
to be transparent to applications that have been designed to operate with the
non-replicated component. Such component respect the property of linearizabil-
ity [8], which sometimes is called as one-copy equivalence.

To ensure linearizability in this case, the subsequent properties must be ful-
filled:

— Order: Given invocations op(arg) by client p; and op’(arg’) by client p; on
replicated server z, if two different replicas handle both invocations, they
handle them in the same order.

— Atomicity: Given invocation op(arg) by client p;, on replicated server z,
if one replica of « handles the invocation, then every correct (non-crashed)
replica of = also handles op(arg).

There are two main replication techniques that are able to ensure lineariz-
ability [9]: passive and active replication.

In passive replication, also known as primary-backup, one replica, called pri-
mary, is responsible for processing and respond to all invocations from the clients.
The remaining replicas, called backups, do not process direct invocations from
the client but, instead, interact exclusively with the primary. The purpose of
the backups is to store the state changes that occur in the primary replica after
each invocation. Furthermore, if the primary fails, one of the backup replicas
will be selected (using some leader election algorithm previously agreed among
all replicas) to play the role of new primary replica.

Figure 1 illustrated the processing of one invocation from a client and as-
suming that no failures occur. The steps are detailed below:

1. The client process p; sends op(arg) to the primary replica (z!) together with
a unique invocation identifier, invocationlD.
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Figure 1. Example of a passive replication interaction (Figure from [9])

2. The primary replica (z!) processes (invokes) op(arg) and obtains the re-
sponse res. Then, it captures the updated state (stateupdate) and sends it
to the backups in an update message (invocationID, res, stateupdate). As a
result, the backups update their state and return an acknowledgment to the
primary replica.

3. When the primary replica receives the acknowledgments from all correct
(non-crashed) backups, it returns the response res to the client process p;.

Both properties of linearizability are fulfilled as follows: the order is ensured
by the primary replica, and the reception of the stateupdate message by all
backup replicas ensures the atomicity property. If the primary replica fails before
responding, this replication technique requires the client process to re-issue the
request.

In the active replication, also called the state-machine approach, all replicas
play the same role thus there is no centralized control. In this case, all replicas are
required to receive requests, process them and respond to the client. In order
to satisfy the linearizability property, request need to be disseminated total-
order-multicast (also known as atomic multicast). This primitive ensures the
properties required to ensure linearizability: order and atomicity. This replication
technique has the limitation that the operations processed by the replicas need
to be deterministic (thus the name, state-machine).

Figure 2 illustrates a run of active replication technique for one invocation
from a client and assuming no failures in replicas. The steps are detailed below:

1. The invocation op(arg) is atomically broadcast to all the replicas of x.

2. Each replica processes the invocation, updates its own state, and returns the
response to client process p;.

3. The client process p; waits until it receives the first response or a majority
of identical responses (depending if the client want to test the correctness of
the replicas responses)
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Figure 2. Example of an active replication interaction (Figure from [9])

Hardware / Software Failures

Hardware Failures. The high failure rate in the beginning of the hardware com-
ponent life is higher because of something described as Infant-Mortality, which
is usually caused by manufacturing problems like poor soldering, leaking capac-
itor, etc. However, in general these kinds of hardware components do not pass
the tests executed by the manufactory. After this life phase, during the useful
life of the hardware component the fail rate decreases to a low rate, and for that
reason is possible to have a better belief in the hardware component during this
phase. In the last phase (end of life) there is a continuous increase of the fail rate,
leading, sooner or later, to a failure of the hardware component. This increase
happens because hardware suffers from degradation through its life time, which
does not happen with software. The fail rate can be greatly reduced, almost
to zero, with the introduction of replicated hardware modules in the system,
preferably within the hardware expected life time to ensure a smaller fail rate.

Software Failures. It is kind of an agreement that software is more complex
than hardware, and this complexity is increasing day after day. Therefore, this
complexity is the cause of the increasing rate of software faults introduced during
the development phase of the software system. Most of the faults are corrected
during the testing phase of the project, but some unpredictable faults (usually
Heisenbugs) can still cause failures to the system, and that is the main reason of
why the focus in our work will be related with software faults. Besides this, the
software fault tolerant solutions are usually a cheaper way to provide a better
dependability for applications.

Software Fault Tolerance The key to providing high availability is to mod-
ularize the system so that modules are the unit of failure and replacement.
Additionally, the combination of modularity and redundancy is the key to pro-
viding continuous service even if some components fail [5]. Subsequently it will
be presented the two main redundancy approaches related to software modules:
single-version and multi-version.



Single-Version Software Fault Tolerance Techniques Single-version fault
tolerance is based on the use of redundancy applied to a single version of a
software module to detect and recover from faults. Considering this type of
fault tolerance, it will be introduced two important techniques to achieve fault
tolerance: checkpointing and process pairs.

Checkpoint. As mentioned before, most of the software faults remaining after
development and tests are Heisenbugs, which are unanticipated. They appear,
do the damage and then apparently just go away, leaving no obvious reason for
their activation. Therefore, one solution for these Heisenbugs is the restore of
the failed module and the retry of the same operation. Furthermore, a restart
or rollback has the advantages of being independent of the damage caused by a
fault, and general enough that it can be used at multiple levels in a system [10].
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Figure 3. Representation of Checkpoint and Restart Technique (Figure from [11])

In Figure 3 is possible to observe a generic representation of a module using
checkpoint and restart technique. The idea is simple, the module does a check-
point of its state (for instance, during the execution, at fixed intervals of time)
and it has an input and an output. If an error is detected (for example, wrong
output) the module recover its previously checkpointed state and retries the same
input. Notice that if the cause of failure was a Heiseinbug, the module in the
retry will (usually) work properly. If not, probably the module is experiencing a
Bohrbug, which is usually easy to identify and correct [5].

Process Pairs. A process pair uses the same software module running on sep-
arate processors [12] and uses the checkpoint and restart technique, described
above, for the recovery. The processors are labeled as primary and secondary (or
backup).

In Figure 4 is possible to observe a generic representation of this technique.
The primary processor is actively processing the input and creating the output,
at the same time it checkpoints its state and sends it to the secondary processor.
When an error is detected, the secondary processor loads the last checkpointed
state from the primary processor and it takes its role, being now the primary
processor. The faulty processor takes the secondary role when becomes ready
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Figure 4. Representation of Process Pairs Technique (Figure from [11])

again for normal operation. The key advantage of this technique is the availability
of the module, which continues uninterrupted after the incident of a failure in
the system. This technique has a main limitation; the module can only have
deterministic operations on it.

Multi-Version Software Fault Tolerance Techniques Multi-version fault
tolerance is based on the use of redundancy applied to two or more different
versions of a software module to detect and recover from faults. These different
versions can be executed in sequence or in parallel.

The motivation for the use of multiple versions for the same module is the ex-
pectation that modules built differently (different designers, different algorithms,
different design tools, etc.) should fail differently [13]. Hence, if one version fails
on a particular input, it is expected that other version it will be able to provide a
correct output. Concluding, the multi-version can tolerate Bohrbugs and Heisen-
bugs but the single-version (described above) can only tolerate Heisenbugs.

This approach has some techniques to achieve fault tolerance, the two most
important techniques are: recovery blocks and N-version programming.

Recovery Blocks. The recovery blocks technique [14,15] combines the basics of
checkpoint and restart approach with multiple versions of a software module. The
checkpoints are created before a version executes, this is necessary to recover the
state if the version fails.

This model is defined by a primary version and one or more alternate ver-
sions, which is possible to see in Figure 5. The primary version will be executed
successfully most of the time, but in case of failure in the acceptance test, a
different version is tried, until the acceptance test passes or all versions were
tried. The acceptance test does not need to be based only in output; it can be
implemented by various embedded checks to increase the effectiveness of the
error detection.

N-Version Programming. The N-version programming technique [16] is designed
to achieve a decision of output correctness from multiple module versions (see
Figure 6).

That decision is accomplished by a selection algorithm (usually a voter) to
select the correct output from all the outputs of each version. This aspect is the
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Figure 6. N-Version Programming Model (Figure from [11])

main difference between this technique and the recovery blocks technique, which
requires an application dependent acceptance test. The execution of the versions
can be sequential or in parallel, but the sequential execution may need the use
of checkpoints to reload the state before a different version is executed.

Dimensions of Fault Tolerance The demands for fault tolerance in the ap-
plications software are a reality. Therefore, to fulfill those demands, there are
some technologies possible to integrate with applications already developed or in
development. It is possible to divide in two major dimensions the requirements of
the applications: availability and data consistency. Ideally, these two dimensions
should be as high as possible in any application with a need of fault tolerance.
However, in reality, achieving that kind of perfection requires introduction of an
undesirable amount of overhead to the application performance. Consequently,
there is a prioritization of which dimension the application needs the most.
Figure 7 shows a graph of the dimensions magnitude present in some systems.
For example, the telephone systems prefer a continuous availability instead of a
perfect data consistency, because it is not a huge problem if in a conversation
of five minutes, one second of the conversation is lost, but it is a huge problem
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Figure 7. Dimensions of Fault Tolerance (Figure from [17])

if the telephone systems are unavailable during five minutes. As an opposite
example, the bank systems prefer a perfect data consistency instead of a con-
tinuous availability, because when the clients do a transaction they need to be
sure of the transaction consistency instead of having the system always available
but without that sure. Further in this section, it will be presented five software
fault tolerance levels possible to classify any application, and how is it possible
to achieve a specific level on any application simply by integrating some of the
technologies available.

Software Fault Tolerance Levels Before introducing the software fault tol-
erance application levels, it will be presented the usual model of applications
based in client-server architecture.

Figure 8 presents a view of the components of an application. The application
is running within an Operating/Database System, which is represented by a
process (compiled code) with two kinds of data:

— Volatile data: the variables, structures, pointers and all the bytes in the
static and dynamic memory segments of the process;

— Persistent data: the files/information typically stored into a hard drive or
database.

The interaction with the application is made by the clients.

Based on the major dimensions (availability and data consistency) presented
above in this section, Huang and Kintala [17] with their experience in AT&T
decided to define the following five software fault tolerance levels for the appli-
cations:

Level 0 - No fault tolerance in the application software: This level is defined by
an application without any kind of fault tolerance. When the application hangs
or crash, it has to be manually restarted and the internal state (volatile data)
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Figure 8. Example of an application in client-server architecture (Figure from [17])

starts from the initial state. Besides that, it is likely that application leaves the
persistent data in an incorrect or inconsistent state.

Level 1 - Automatic detection and restart: This level is similar to the previous
one, but the detection and the restart of the application are automatic. However,
it has the same issues of Level 0 related with the internal state (volatile data)
and the persistent data. This level ensures a higher availability in comparison
with Level 0.

Level 2 - Periodic checkpointing, logging and recovery of the internal state: This
level has the same characteristics of Level 1, with a difference in the volatile
data consistency. In this level, the internal state of the application is periodically
checkpointed, i.e., the volatile data is saved and the messages to the server are
logged. After a failure is detected, the application is restarted with the last
saved internal state (volatile data) and the logged messages are reprocessed to
get the state of the application right before the occurred failure. The application
availability and volatile data consistency in this level are higher than Level 1.

Level 3 - Persistent data recovery: This level has the same characteristics of
Level 2, with a difference in the persistent data consistency. The persistent data
of the application is replicated through backup disks. And in case of application
failure, the backup brings the persistent data close to the application state before
the occurred failure. The data consistency in this level is higher than Level 2.
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Level 4 - Continuous operation without any interruption: This level of fault
tolerance in software guarantees the highest degree of availability and data con-
sistency. This is provided, for example, using replicated processing of the appli-
cation on "hot" spare hardware. Multicast message, voting and other mechanisms
must be used to maintain consistency and concurrency control.

Technologies and Experience Huang and Kintala [17] developed three reusable
components possible to integrate with any application, these components are pro-
jected to increase the fault tolerance levels (defined previously) of applications.

Watchd is a watchdog daemon process that runs on a single machine or on a
network of machines. This component is responsible for the detection of hangs
or crashes of the application, and in that case, it will restart the application.
It has two methods to detect the hangs. The first method sends null messages
to the local application process using IPC (Inter Process Communication), and
then checks the return value. The second method asks the application process to
send heartbeat message periodically to the watchd. The watchd cannot distin-
guish between hung processes or very slow processes. After detecting the hang
or crash of the application, watchd restart and recover the application at the
initial internal state or the last state before the hang/crash, depending if the
watchd is used in combination with Libft or not. The watchd can also recover
an application to another backup node, in case the primary node has crashed.
Another feature of the watchd is the capability of watching and recovering itself
in case of its own failure. An application integrated with the watchd component
can guarantee the Level 1 of the software fault tolerance levels.

Libft is a user-level library of C functions that can be used in application pro-
grams to specify and checkpointing critical data, recover the checkpointed data,
log events, locate and reconnect a server, do exception handling, do N-version
programming, and use recovery blocks techniques. The checkpointing mecha-
nism used by this library minimizes the overhead by saving only critical data
and avoiding data-structure traversals. This idea is analogous to the Recovery
Box concept in Sprite [18]. Watchd and Libft, when combined in an application,
can guarantee the Level 2 of the software fault tolerance levels.

nDFS is a multi-dimensional file system based on 3DFS [19] and provides fa-
cilities for replication of critical persistent data. Speed, robustness and replica-
tion transparency are the primary design goals of nDFS. An application using
Watchd, Libft and nDFS can guarantee the Level 3 of the software fault tolerance
levels.

The telecommunication network management products in AT&T has been
enhanced using these technologies. The experience with those AT&T products
reveals that these technologies are indeed economical and effective means to
increase the level of fault tolerance in application software. The performance
overhead induced by these technologies varies from 0.1% to 14%, depending on
which technologies are being used.
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Fault Injection Techniques Fault injection techniques are useful to test and
evaluate the fault tolerance capabilities of a target system. These techniques can
be divided, depending on the target system, in the two kinds: Hardware and
Software. Following Hsueh et al. [20], software fault injections can be done at
different stages: during compile-time or during runtime. Compile-time injection
changes the program source code during the compilation, introducing faulty in-
structions with the intention of simulating faults during the execution of the
respective program. This type of injection does not require any additional soft-
ware running during the execution of the program, which is an advantage in
comparison with the runtime injection, as it minimizes the perturbation to the
system. On the other hand, the runtime injection has the benefit of being able
to inject faults as the workload program runs. Furthermore, runtime injection
may use three different mechanisms to trigger fault injections:

— Time-out: uses a timer to trigger the injection of faults to the program. It
is a good option to introduce unpredictable fault effects.

— Exception/trap: it is based on the use of exceptions/traps to transfer the
control to the fault injector. Unlike the time-out, this mechanism can inject
faults when occur certain events or conditions.

— Code insertion: the target program suffers code insertion, during runtime,
to inject faults to the program. This mechanism allows fault injection to take
place before particular instructions.

3.2 Fault Tolerance in CORBA

In this section is presented a fault tolerance system for CORBA applications,
called Eternal. This system had a large influence in the conception of the Fault-
Tolerant CORBA standard [21]. At first this section presents a small description
of CORBA, and afterwards an overview of the Eternal system. This overview of
the Eternal system is described below because CORBA and OSGi systems have
some similarities. Therefore, the techniques used by Eternal can solve some of
the problems that can arise when providing fault tolerance to OSGi applications.

CORBA The Common Object Request Broker Architecture [22] (CORBA) is
a standard defined by the Object Management Group (OMG), that defines how
objects executing in different nodes of a distributed system may make remote
invocations among them. The interface of CORBA objects is specified in an
Interface Definition Language (IDL); the client of a remote object only needs
to be aware of the IDL interface, and not of the specific details of the object
implementation.

The main component of CORBA model is the Object Request Broker (ORB),
which acts as intermediary in the communication between a client object and
a server object, shielding them from differences in programming language, plat-
forms, and physical locations. Communication among clients and servers uses a
standardized TCP /IP-based Internet Inter-ORB Protocol (IIOP).
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Eternal The Eternal system [23,24] is a component-based framework that pro-
vides transparent fault tolerance for CORBA applications. This way the ap-
plication programmer does not need to be concerned with fault tolerant issues
during the application development. The Eternal system provides fault toler-
ance by replicating CORBA objects. Therefore, each CORBA object is, in fact,
implemented by several replicas, which guarantees a higher availability. The use
of several replicas for a single object requires a strong replica consistency, which
raises four concerns to achieve that consistency in a transparent way. The con-
cerns are the following: ordering of operations, duplicate operations, recovery,
and multithreading.

Ordering of operations To maintain the replicas of the same object in a consistent
state, these replicas need to receive the operations in the same order. Eternal
achieves this by using a reliable totally-ordered multicast protocol.

Duplicate operations Since every replica of an object receives the same operation,
therefore each replica will produce a response. Hence, this requires Eternal to
remove the duplicated responses, because it is not expected that an object (even
if replicated) produces more than one response for each invocation.

Recovery When a replica fails (and then is recovered) or a new replica is acti-
vated, Eternal needs to ensure, before the replica starts to operate, that replica
has the same state of the other replicas of the object, which are already oper-
ational and with the same state. To achieve that, Eternal retrieves the state of
the other replicas and applies it to the new or recovered replica.

Multithreading Multithreaded objects can guide their replicas to an inconsistent
state. Therefore, Eternal has mechanisms to overcome this problem.

Figure 9 illustrates the components architecture of the Eternal system.

The Replication Manager component, which is divided in three components,
is responsible for replicating each object and distribute the replicas across the
system, according the requirements specified by the user. The Property Manager
component gives to the user the option of defining the fault tolerance properties
to be used, such as the replication style, the consistency style, the initial and the
minimum number of replicas, and the time interval for each state checkpointing.
The Generic Factory component provides the functionality for the creation and
deletion of object replicas. And, at last, the Object Group Manager component
allows users to have direct control over the replicated objects.

The Fault Detector component is capable to detect host, process and object
faults. To achieve this, each object inherits a Monitorable interface, which can
provide a way to check the object status. Furthermore, the user can define prop-
erties like the monitoring style (pull or push) and the time interval to check the
object status. In addition, the Fault Detector when detect a fault communicate
that occurrence to the Fault Notifier. The Fault Notifier receives reports of faults
and filters them to remove duplicate reports, and distribute the fault reports to
all interested parties. One of those interested parties is the Replication Manager,
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Figure 9. Architectural overview of the Eternal system (Figure from [23])
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which can start the appropriate recovery actions on receiving a fault report from
the Fault Notifier.

The Interceptor component in the Eternal system attaches itself to each
CORBA object at runtime, which provides a way to adapt the behavior of the
object as desired. This component employs the library interpositioning hooks
found on Unix and Windows NT. Therefore, the connections are transparently
converted into connections to the Replication Mechanisms component.

Eternal provides three different types of replication: active, cold passive and
warm passive. Therefore, the Replication Mechanisms component performs dif-
ferent operations for each type of replication. The active and passive replication
mechanisms were already explained earlier in this report, and this component
follows the same basis. The difference of the warm passive and the cold passive
replication is related with the state transfer phase from the primary replica. The
warm passive replication maintains synchronized all the backup replicas, but the
cold passive replication does not load the backup replicas, instead just retrieves
and stores in a log the state of the primary replica.

The Recovery Mechanisms component is responsible to recover, when is de-
manded, the three kinds of state present in every replicated CORBA object:
application state, ORB state (maintained by the ORB) and infrastructure state
(maintained by the Eternal). To enable the capture and recover of the appli-
cation state is necessary that the CORBA object inherits a Checkpointable in-
terface that contains methods to retrieve (get_state()) and assign (set__state())
the state for that object. Additionally, the Recovery Mechanisms log all new
messages arriving during the time of state’s assignment to a replica.
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Figure 10 shows the interaction of all the Eternal components described pre-
viously with a replicated object S, which has two replicas: S1 and S2.

An important limitation present in Eternal and also in other fault tolerant
systems is the need for deterministic operations in their replicated objects.

3.3 OSGi

The OSGi Alliance was founded in March 1999 and it is the responsible for the
creation and continuous progress of the OSGi Service Platform specification.
The last specification of this service is the Release 4 (Version 4.1) [2], which
was released in April 2007. The description of the OSGi Framework, during this
section, is based on that release.

The OSGi Framework forms the core of the OSGi Service Platform, which
supports the deployment of extensible and downloadable applications, known as
bundles. The OSGi devices can download and install OSGi bundles, and remove
them when they are no longer required. The framework is responsible for the
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management of the bundles in a dynamic and scalable way. One of the main ad-
vantages of the OSGi framework is the support for the bundle "hot deployment",
i.e., the support to install, update, uninstall, start or stop of a bundle while
the framework is running. At the time of writing of this report, it is possible to
find several OSGi framework implementations of the OSGi specification, such as
Apache Felix [25], Eclipse Equinox [26] and Knopflerfish [27].

Architecture The OSGi Framework architecture and functionality is divided
in the following major layers, as depicted in Figure 11: Security Layer, Module
Layer, Life Cycle Layer, Service Layer, and finally, Actual Services. There are
some dependencies among these layers. The Module Layer can be used without
the Life Cycle Layer and Service Layer. Additionally, Life Cycle Layer can be
used without Service Layer. However, the Service Layer requires all the other
layers.

Bundles | Service |

| Life cycle |

Security

| Module |

I Execution Environment |

| Hardware/QS |

Figure 11. OSGi Framework Layers (Figure from [2])

Security Layer The Security Layer is based on Java 2 security architecture,
by adding a number of constraints and defining some issues left open by the
standard Java specification, which are necessary for the proper execution of the
OSGi Framework.

Module Layer The Module Layer is responsible for the modularization model
for Java. A bundle is the unit of deployment in the OSGi, which consists in a
Java ARchive (JAR) file that contains a manifest, described below, and some
arrangement of Java class files, native code and associated resources. The mani-
fest of a bundle contains information about dependencies on other resources (for
instance, other bundles) and other information of how the Framework installs
and activates a bundle. The modularization model defines strict rules for pack-
age sharing among distinct bundles, i.e., in which manner a bundle can export
and/or import Java packages to/of another bundle.
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Life Cycle Layer The Life Cycle Layer provides the API for the life cycle of
bundles, which defines how bundles are installed, updated, uninstalled, started
and stopped. Furthermore, it supplies a comprehensive event API to allow a
management bundle to control the operations of the service platform. The life

cycle of a bundle passes through the following possible states, illustrated in
Figure 12:

INSTALLED: the bundle was successfully installed;

RESOLVED: the classes imported by the bundle are available. In this state
the bundle is ready to start or stop;

STARTING: the bundle is being started and it will become active when its
activation policy allows it;

ACTIVE: the bundle was successfully activated and it is running;

STOPPING: the bundle is being stopped;

UNINSTALLED: the bundle was uninstalled.

update
refresh

INSTALLED

STARTING

—_ policy

ACTIVE

stop

STOPPING

resolve
refresh
update

uninstall

RESOLVED

uninstall

SN UNINSTALLED'

Figure 12. OSGi Bundle State Life Cycle (Figure from [2])

Service Layer The Service Layer is based on a publish, find and bind model. A
service is defined by a public Java interface, which is decoupled from its imple-
mentation, and bundles can register services (publish), search for them (find),
or receive notifications when their registration state changes (when bound). Be-
sides, a service runs within a bundle and this bundle is responsible to register the
services owned in the OSGi Framework service registry, which maintains the in-
formation to let other bundles find and bind the services registered. Furthermore,
the dependencies between the bundle owning a service and the bundles using it
are managed by the OSGi Framework. Then, when a bundle is uninstalled, the
OSGi Framework unregisters all the services owned by that bundle.

This layer provides the higher abstraction level achievable by the bundles,

which gives a simple, dynamic, concise, and consistent programming model for
bundle developers.
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Layer Interactions Figure 13 shows the interaction between the OSGi layers
described above and a bundle. The bundles are capable of register, unregister,
get and unget OSGi services. The Life Cycle layer can start and stop a bundle,
and also install and uninstall bundles in the Module layer. Besides, the Life
Cycle layer can also manage the Service layer, for instance, when a bundle with
registered services is unnistalled, then its services registered in the Service layer
are also unregistered.

— register

e
get
unget
manage
g g [ Life Cycle
stop
o
= !nstall
é uninstall
class load

execute )

Figure 13. Interactions between the layers (Figure from [2])

3.4 Fault Tolerance in OSGi

OSGi Framework Release 4 does not address the problem of providing fault
tolerance support for bundles. However, OSGi is being applied in systems with
dependability requirements, including systems with high availability and reliabil-
ity requirements. In the following paragraphs some works that address the prob-
lem of adding dependability features to OSGi based systems will be described,
namely solutions for OSGi-based residential gateways [28,29] and a proposals for
virtual distributed OSGi [30,31].

Replicated OSGi Gateways Thomsen [28] presents a solution to eliminate
the single point of failure of OSGi-based residential gateways, which are respon-
sible for home automation and the communication with all the home devices
(through several physical interfaces, such as power lines, Ethernet, ZigBee). To
achieve that, Thomsen creates sub-gateways for each type of network, allowing
the creation of autonomous islands in case of the main gateway failure. There-
fore, the system can still operate without the main gateway, even if with some
limitations, which provides a form of graceful degradation. The system relies on
the use of a passive replication based technique (also known as primary-backup),
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where the primary replica is the main gateway, and the sub-gateways are the
backup replicas. To accomplish replication, Thomsen discussed the three follow-
ing issues: What, How and When to replicate.

What to replicate. To maintain the sub-gateways always replicated is necessary
to replicate the bundles (executable code, internal state and persistent data) of
the main gateway.

How to replicate. A bundle is composed by the executable code, internal state
and persistent data. Each has a different way to reach replication. Since the
executable code of a bundle is a JAR file, the replication is done by copy the
JAR file. The internal state is replicated based on which position is the CPU
processing of the code, and CPU registers and memory contents. The persistent
data can be done based on the copy of the files/information stored in a persistent
storage.

When to replicate. The executable code is replicated when the buddle suffers
an update. The remaining data is replicated periodically or when happens a
modification.

Proxy-based OSGi Framework In a similar context, but with focus in the
services provided through OSGi Framework, Heejune Ahn et al. [29] presents a
proxy-based solution, which provides features to monitor, detect faults, recover
and isolate a failed service from other service. Consequently, this solution adds
four components to the OSGi Framework: proxy, policy manager, dispatcher and
monitor. A proxy is constructed for each service instance, with the purpose of
controlling all the calls to that service. The monitor is responsible for the state
checking of each service. Finally, the dispatcher decides and routes the service
call to the best implementation available with the help of the policy manager. In
this work, Heejune Ahn et al. only provide fault tolerance to a stateless service,
therefore, the service internal state and persistent data are not recovered.

Distributed OSGi Maragkos [30] in his work provides a way to replicate and
migrate bundles in a Virtual OSGi Framework [32], which is based in the R-OSGi
platform [33].

Remoting-OSGi (R-OSGi) R-OSGi [33] is a distributed middleware platform
that can distribute an OSGi application through different nodes running the
OSGi Framework. Besides, the R-OSGi layer on top the OSGi is transparent
and matches the lightweight design of OSGi. This way, any application prepared
to run with OSGi services bundles, can be distributed through R-OSGi.

The approach followed by Rellermeyer et al. to achieve the R-OSGi main goal
was through the usage of service proxies and the usage of a centralized service
registry. Each service published by a bundle in a specific node, when is necessary
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in other node (bind) a proxy service is created in the other node. This proxy
imitates locally the real service, communicating through the network.

To discover the services available in all nodes, the centralized service registry
is used by the R-OSGi.

The Virtual OSGi Framework The concept of Virtual OSGi Framework (VOSGi) [32]
is to treat the whole network as a large virtual OSGi Framework, as if it was a
simple and not distributed OSGi Framework. This concept uses the R-OSGi logic

to achieve that purpose. The main difference of the Virtual OSGi in comparison
with R-OSGi is the awareness of the distributed services. In Virtual OSGi the
application is not aware of the distribution through several OSGi nodes. There-
fore, VOSGi hides the distribution as if it was a simple OSGi Framework running
locally in one node.

Replication and Migration of OSGi Bundles in VOSGi As stated previously,
Maragkos [30] presents solutions to replicate and migrate OSGi bundles in the
Virtual OSGi Framework. The main problem on the migration of a bundle, is
related with Java threads, because Java technology does not provide functional-
ity to access thread’s state [34]. Therefore, it is necessary to implement a thread
serialization mechanism. The implementation by Maragkos of this mechanism
is done by the introduction of application code with ASM (bytecode trans-
former) [35], with the purpose of extracting the internal state of the running
thread in specific safe points. With this mechanism implemented, the migration
of a bundle through different machines becomes possible.

Dependable Distributed OSGi At the present time, service providers need
to provide among the costumers a strong isolation of their resources/services to
give the illusion to a costumer that all the resources/services are available only
to that costumer. Matos and Sousa [31] in their work provide an OSGi-based
architecture and core services to fulfill that isolation with a concern in depend-
ability aspects, which are a requirement of the service providers and costumers.
Summarily, the goals are:

— Extend the OSGi Platform to be able to safely run multiple customers;

— Ability to migrate customers between nodes;

— Ability to measure resource usage of each customer;

— Ability to enforce Service Level Agreements requirements based on business
policies.

Three architectures are presented. The first runs a JVM (Java Virtual Machine)
for each OSGi Framework running and this is controlled by the Instance Man-
ager, which is the external entity running also in a JVM (see Figure 14). The
problems of this architecture are the overhead caused by the multiple JVMs,
the difficulty task of the Instance Manager and the lack of a "direct" method to
communicate through instances.

A way to overcome the problems listed above is presented in the second
architecture, which only uses one JVM to all the instances (see Figure 15).
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Figure 14. Architecture with multiple OSGi instances on different JVMs (Figure
from [31])
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Figure 15. Architecture with multiple OSGi instances with only one JVM (Figure
from [31])

Nevertheless, to provide a platform dynamic and modular, it makes sense to
place the Instance Manager on top of the OSGi Framework with an OSGi envi-
ronment on it, possible to have multiple instances (see Figure 16). A good feature
of this solution is the possibility to run bundles in the lower OSGi Framework
which can communicate with the bundles in the multiple OSGi environments on
top of the Instance Manager.

Matos and Sousa also describe three modules to this architecture: monitoring
module, migration module and autonomic module. The monitoring module is re-
sponsible to measure the resource usage of each running instance and the overall
resource availability. The migration module is responsible to migrate the virtual
OSGi instances from one node to another node. The OSGi specification enforces
that the Framework state shall be persistent across Framework reboots. There-
fore, this makes the migration of the virtual OSGi Framework simple to do, but
to be successful it is also required the migration of the bundles (including their
state) in that OSGi Framework, which their state are not specified as persistent
in the OSGi specification. Besides this, it is required a Storage Area Network or
a distributed filesystem through nodes. For stateless bundles the solution is al-
ready solved, but stateful bundles requires a more complicated approach, which
is not provided in their work, delaying this matter to future work. Finally, the
autonomic module is responsible to enforce the business policies defined by the
administrator.
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4 Proposed Architecture

The aim of this section is to define an architecture that allows to apply modular
fault-tolerance to OSGi system.

4.1 Techniques Provided

Our architecture will support the following fault-tolerance techniques (that pro-
vide different fault-tolerance levels, using the taxonomy of [17]):

— Stateless Recovery (Level 1 in software fault tolerance)
— Stateful Recovery (Level 2 in software fault tolerance)

— Passive Replication (Level 3 in software fault tolerance)
— Active Replication (Level 3 in software fault tolerance)

The architecture will allow a different mechanism to be applied to different
bundles, according to the specific properties of the bundle and the concrete
fault-tolerance requirements of the system.

We assume that the developer of the OSGi application will provide in the
OSGi bundles manifest information regarding the properties of the bundle such
that the appropriate fault-tolerance mechanisms may be selected at deployment
time (for instance, Active Replication mechanism requires the bundle to only
have deterministic operations).

4.2 Architecture Overview

As described in the related work presenting the OSGi, the OSGi services are
based on a publish, find and bind model. This model is supported by the OSGi
Framework, by providing a service registry which maintains all the information
about the services registered in that framework. These services can be registered
only by bundles, and the bundle which has the implementation and registers
a service is considered its owner. Therefore, when a bundle is uninstalled, all
owned services of that bundle are unregistered.
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Figure 17. OSGi Bundle Fault Tolerance Solution Architecture

Any registered service can be used by any other bundle running in the frame-
work, and for the other bundles a service is provided as a public interface, which
is the only way to interact with that service. Besides, the usage of a service inter-
face is always through the OSGi Framework. For this reason, the fault tolerance
support for bundles will be constrained, in our proposal, to the service level of
the OSGi Framework, i.e., only the functionality exported as an OSGi service
can be provided with fault tolerance support.

Our proposed architecture adds a new layer to the original OSGi Framework
architecture. This new layer, which can be implemented as a bundle in the OSGi
Framework, will provide dependability services that will allow implementing the
four fault-tolerance techniques enumerated before. The resulting architecture is
depicted in Figure 17 and is composed of the following layers: the Operating Sys-
tem, Java Virtual Machine, OSGi Framework and FTOSGI layer. The FTOSGi
layer is responsible to interact with the bundles that need one of the software
fault tolerance mechanisms. Therefore, this layer is divided in three modules:
Monitor, State Manager and Core. The Monitor module is responsible to mon-
itor the availability status of the bundles running on top of the FTOSGI layer.
Besides, it monitors itself and the other two modules (State Manager and Core)
of FTOSGI layer. The State Manager module is responsible for the state captur-
ing of the bundles state. Clearly, this module is only necessary for the Stateful
Recovery, Passive Replication and Active Replication mechanisms. In the State-
less Recovery mechanism, this module it is not used at all. The Core module is
responsible with the interaction with the below OSGi Framework and the bun-
dles on top of the FTOSGI layer. This module will manage its bundles, keeping
all the information necessary to succeed on granting software fault tolerance to
them, providing changed bundles to run in the OSGi Framework below.
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5 Evaluation Methodology

The evaluation of the proposed architecture and mechanisms will be done ex-
perimentally, using a prototype to be developed as future work.

5.1 Metrics

The evaluation will measure essentially properties of dependability, such as avail-
ability, reliability and also the performance. Therefore, the crucial metrics to
measure the availability and reliability are the following:

— Mean Time to Failure (MTTF)
— Mean Time to Repair (MTTR)
— Mean Time between Failures (MTBF)

Finally, to achieve a performance metric it will be measured the time (in
milliseconds) spent by OSGi services to process and respond to requests.

5.2 Methodology
The evaluation will consider different aspects of the proposed mechanisms.

— First we will demonstrate the execution of each mechanism, by developing
some simple applications that can benefit from the proposed fault-tolerant
techniques and by injecting manually faults in their code to activate the fault
recovery/mask mechanisms.

— Then we will assess the performance penalty of the fault-tolerance mecha-
nisms by comparing the performance of OSGi services with and without the
mechanisms in place.

— We will also extract some metrics about fault-recovery times, for instance,
how fast it takes for a backup to take over the role of a primary when the
later fails.

— Finally we will attempt to measure the potential impact of our mechanisms
in the dependability of an OSGi system. For that purpose we will attempt
to use some fault-injection tools in the running system. Given the timeframe
of the work, and the fact that we do not have an easy access to a hardware
fault-injection tools, we will attempt to perform software fault-injection, as
described in the related work.

6 Scheduling of Future Work

Future work is scheduled as follows:

January 9 - March 29, 2009: Detailed design and implementation of the
proposed architecture, including preliminary tests.

March 30 - May 3, 2009: Perform the complete experimental evaluation of
the results.

— May 4 - May 23, 2009: Write a paper describing the project.

May 24 - June 15, 2009: Finish the writing of the dissertation.

— June 15, 2009: Deliver the MSc dissertation.
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7 Conclusions

Our projects aims at designing and implementing an architecture that provides
fault-tolerance to OSGi applications. For that purpose we aim at augmenting
the OSGi architecture with a layer that implements a number of different fault-
tolerant mechanisms that can be applied in a modular way to different bundles.
In this report we have surveyed the relevant related work, sketched the pro-
posed architecture and described our plans to evaluated the results obtained. The
detailed specification of the architecture, its implementation and experimental
evaluation is left for future work, whose schedule has also been presented.
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