
Unobtrusive Deferred Update Stabilization for Efficient Geo-Replication
(extended abstract of the MSc dissertation)

Chathuri Lanchana Rubasinghe Gunawardhana
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Geo-replication is a requirement of most cloud
applications. A fundamental problem that geo-replicated sys-
tems need to address is how to ensure that remote updates
are applied and made visible to clients in a consistent order.
For that purpose, both clients and servers are required to
maintain some form of metadata. Unfortunately, there is a
tradeoff between the amount of metadata a system needs
to maintain and the amount of concurrency offered to local
clients. Given the high costs of managing large amounts of
metadata, many practical systems opt to serialise some updates,
using some form of sequencer, which, as we will show, may
significantly reduce the throughput of the system. In this paper
we advocate an alternative approach that consists in allowing
full concurrency when processing local updates and using a
deferred local serialisation procedure, before shipping updates
to remote datacenters. This strategy allows to implement
inexpensive mechanisms to ensure system consistency require-
ments while avoiding intrusive effects on update operations,
a major performance limitation. We have implemented and
extensively evaluated our approach. Experimental data shows
that we outperform sequencer-based approaches by almost an
order of magnitude in the maximum achievable throughput.
Furthermore, unlike proposed sequencer-free solutions, our
approach reaches nearly optimal remote update visibility
latencies without limiting throughput.

I. INTRODUCTION

Geo-replication is a requirement for modern internet-
based services. Unfortunately, due to the long network de-
lays among geographically remote datacenters, synchronous
replication (where an update is applied to all replicas before
the operation returns to the client) is prohibitively slow for
most practical purposes. Therefore, many approaches require
some form of asynchronous replication strategy.

A fundamental problem associated with asynchronous
replication is how to ensure that updates performed in remote
datacenters are applied and made visible to clients in a con-
sistent manner. Many different consistency guarantees that
allow for asynchronous replication have been defined [1].
Among them, causal consistency [2] has been identified as
the strongest consistency model an always-available system
can implement [3], becoming of practical relevance in geo-
replicated settings. In fact, most weak consistency criteria
require that updates are causally ordered, and only differ
among each other on when it is safe to make remote updates
visible [4].

Not surprisingly, the metadata problem has been exten-
sively studied in the literature [5], [6], [7], [8], [9] (in fact,
most solutions have roots in the seminal works of [10], [11]).
A common solution to reduce the cost of implementing
causal consistency consists in serialising all updates that
are executed at a given datacenter [7]. In this case the
state observed by a client when accessing a datacenter can
be deterministically identified by the sequence number of
the last update that has been applied locally. Using this
approach, it is possible to ensure that clients always observe
values that are consistent with causality by maintaining the
metadata as small as a vector clock, with one entry for each
datacenter.

Unfortunately, serialising all updates that are applied
to a given datacenter may severely limit the concurrency
among independent updates. Even if different data items
are stored in different physical machines, all updates are
still synchronously ordered by some sequencer (operating
in the critical path of local clients), typically executed by
a small set of machines. Such serialisation may become
a bottleneck in the system. Therefore, the implementation
of efficient sequencers is, by itself, a relevant research
topic. CORFU [12] is a prominent example of an efficient
sequencer implementation for datacenters.

Recent systems such as GentleRain [8], and Cure [9]
have proposed an alternative technique to circumvent the
tradeoff between the metadata size and the concurrency
allowed in the system. In these systems, updates are tagged
with a small-sized timestamp value, that can either be a
single scalar [8] or a vector clock [9]. When a remote
update is received, it is hidden until one is sure that all
updates with a smaller timestamp have been locally applied.
For this, servers have to periodically run among them a
global stability checking procedure. Interestingly, each of
this stabilisation rounds generates N2 of intra-datacenter
messages and N ∗M2 of inter-datacenter messages, where
N is the number of partitions per datacenter and M is the
total number of datacenters. Thus, in order to reduce the
amount of messages that are exchanged among servers to
avoid overloading them, one is forced to either limit the
number of partitions per datacenter, throttling the concur-
rency inside a datacenter; or to reduce the frequency at which
the stabilisation rounds occur, deteriorating the quality-of-
service provided to clients.

1

In this paper, we advocate, implement, and evaluate a
novel approach to address the metadata versus concurrency
tradeoff in weakly causal consistent geo-replicated systems.
Our approach has some similarities with the systems that
rely on global stability checking but also significant dif-
ferences. As with [8], [9], we let local updates proceed
without any a priory synchronization. However, unlike pre-
vious systems, we totally order all updates, in a manner
consistent with causality, before shipping updates to remote
datacenters. As a result, expensive global stabilisation is
avoided, as it is trivial for a datacenter to check whether all
updates subsumed in the timestamps piggybacked by remote
updates have been locally applied (similarly to sequencer-
based solutions).

We have implemented our approach as a variant of the
open source version of Riak KV [13]. We have augmented
the system with a service that totally orders all the up-
dates, before shipping them, that we have called Eunomia1.
Our experimental results show that our system outperforms
sequencer-based systems by almost an order of magnitude
while serving significantly better quality-of-service to clients
compared with systems based on global stabilisation check-
ing procedures.

The contributions of this paper are the following:
• The introduction of Eunomia, a new service for unob-

trusively ordering updates, and the techniques behind it
(§II).

• A fault tolerant version of Eunomia (§II-C).
• Sound experimental comparison of the maximum load

that traditional sequencers and the newly introduced
Eunomia can handle, and their potential bottlenecks
(§V-A).

• Integration of Eunomia into an always-available geo-
replicated data store (§III) and its performance com-
parison to state-of-the-art solutions (§V-B).

II. Eunomia: UNOBTRUSIVE ORDERING

In this section, we first describe Eunomia and the tech-
niques behind it. Then, we show how Eunomia can effec-
tively sequence the updates that have occurred concurrently
in a given datacenter, hiding the complexity introduced by
such concurrency from remote geo-locations. We finally
discuss important aspects in the design of Eunomia and the
protocols used in its implementation.

A. Overview
Even though sequencers can simplify the cause effect

relationship among events, they can limit the concurrency of
the system as they falls into the critical path of the clients.
We propose Eunomia, a new service conceived to replace
sequencers in these settings. Eunomia aims at simplifying
the design of weakly consistent geo-replicated data stores
without compromising intra-datacenter concurrency. Unlike
traditional sequencers, Eunomia lets local client operations
to execute without synchronous coordination, an essential

1Greek goddess of law and legislation, her name can be translated as
”good order”.

N Number of partitions
Clockc Client c clock

pn Partition n
Clockn Current physical time at pn

Ops Set of unstable operations at Eunomia
PartitionTime Vector with an entry per partition at Eunomia

uj .ts Timestamp assigned to update uj

Table I
NOTATION USED IN THE PROTOCOL DESCRIPTION.

characteristic to avoid limiting concurrency and increasing
operation latencies. Then, in the background, Eunomia es-
tablishes a serialization of all updates occurring in the local
datacenter in an order consistent with causality, based on
timestamps generated locally by the individual servers that
compose the datacenter. We refer to this process as site stabi-
lization procedure. Thus, Eunomia is capable of abstracting
the internal complexity of a multi-server datacenter without
limiting the concurrency. Therefore, Eunomia can be used
to improve any existing sequencer-based solution to enforce
causal consistency across geo-locations [4], [7], as shown
in §III.

B. Eunomia Into Play

In order to better illustrate how Eunomia works, we
now present a detailed protocol of the interaction between
Eunomia and nodes that constitute a datacenter. In the
following exposition, we assume that updates to individual
items are serialized by the native update protocol. In fact,
we generalize this assumption for the case where multiple
items are managed by a given set of servers that serialize all
updates of those items. We call each of these set of servers
a partition. We assume FIFO links among partitions and
Eunomia. Table I provides a summary of the notation used
in our protocols.

Eunomia assumes that each individual partition can assign
a timestamp to each update without engaging in synchronous
coordination with other partitions, or with Eunomia servers.
We will explain below how this can be easily achieved.
These timestamps have to satisfy two properties.

Property 1: If an update uj causally depends on a second
update ui, then the timestamp assigned to uj (uj .ts) is
strictly greater than ui.ts.

Property 2: For two updates ui and uj received by Eu-
nomia from partition pn, if ui is received before uj then
uj .ts is strictly greater than ui.ts.

These two properties imply that updates are causally
ordered across all partitions and that once Eunomia receives
an update coming from a partition pn, no update with smaller
timestamp will be ever received from pn.

In order to provide the above properties, clients play a
fundamental role. A client c maintains during its session
the largest clock seen (Clockc). This clock aggregates its
causal dependencies and it is included in the client’s update

2

Algorithm 1 Operations at client c
1: function READ(Key)
2: send READ(Key) to server
3: receive 〈Value, Ts〉 from server
4: Clockc ← MAX(Clockc, Ts)
5: return Value

6: function UPDATE(Key, Value)
7: send UPDATE(Key, Value, Clockc) to server
8: receive Ts from server
9: Clockc ← Ts

10: return ok

requests. As described below, partitions compute update
timestamps considering client clocks, which is key for the
protocol’s correctness.

The protocol assumes that each partition pn is equipped
with a physical clock. Clocks are loosely synchronized by
a time synchronization protocol such as NTP [14]. The
correctness of the protocol does not depend on the clock
synchronization precision—namely on the clock drift. How-
ever, as discussed later, large clock drifts may have some
negative impact on the protocol’s performance (in particular,
on how fast the datacenter can ship updates to other remote
datacenters). To circumvent this limitation, our protocol uses
hybrid clocks [15], which have been shown to overcome
some of the limitations of simply using physical time. The
use of physical time is fundamental for the efficiency of the
site stabilization procedure performed by Eunomia.

We now proceed to describe how events are handled
by clients, servers and Eunomia (Algorithms 1, 2, and 3
respectively).

Read A client c sends a read request operation on a data
item (identified by Key) to the server(s) that host the partition
(pn) responsible for Key (Alg. 1, line 2). When pn receives
the request, it fetches the Value and the timestamp Ts that
is locally stored for Key and returns both to the client. Ts
is the clock used when the update operation was issued.
After receiving the pair 〈Value, Ts〉, the client computes the
maximum between Clockc and Ts (Alg. 1, line 4) to ensure
that the read operation is included in its causal history.

Update A client c sends an update request operation to the
server(s) hosting the responsible partition pn for the object
being updated. Apart from the Key and Value, the request
includes client’s clock Clockc (Alg. 1, line 7). When pn
receives the request, it first computes the timestamp of the
new update (Alg. 2, line 5). This is computed by taking the
maximum between Clockn (physical time), the maximum
timestamp ever used by pn (MaxTsn) plus one and Clockc
(client’s clock) plus one. This ensures that the timestamp is
greater than both Clockc and any other update timestamped
by pn. Then, pn stores the Value and the recently computed
timestamp in the local key-value store and asynchronously
sends the operation to the Eunomia service. Eunomia adds
the operation to the set of non-stable operations Ops and
updates the pn entry in the PartitionTime vector with opera-

Algorithm 2 Operations at partition pn
1: function READ(Key)
2: 〈Value, Ts〉 ← KV GET(Key)
3: return 〈Value, Ts〉

4: function UPDATE(Key, Value, Clockc)
5: MaxTsn ← MAX(Clockn, Clockc + 1, MaxTsn + 1)
6: KV PUT(Key, 〈Value, MaxTsn〉)
7: Op ← 〈 Key, Value, MaxTsn, pn〉
8: send ADD OP(Op) to Eunomia
9: return MaxTsn

10: function HEARTBEAT . Every ∆ time
11: if Clockn ≥ MaxTsn + ∆ then
12: send HEARTBEAT(pn, MaxTsc) to Eunomia

tion’s timestamp (Alg. 3, lines 2–4). Finally, pn returns the
update’s timestamp to the client who updates Clockc with
it, since it is guaranteed to be greater than its previous one.

Timestamp Stability We say that a timestamp Ts is stable at
the Eunomia servers when one is sure that no update with
lower timestamp will be received from any partition (i.e.,
when Eunomia is aware of all updates with timestamp Ts
or lower). Periodically, Eunomia computes the value of the
maximum stable timestamp (StableTime), which is computed
as the minimum of the PartitionTime vector (Alg. 3, line 8).
Property 2 implies that no partition will ever timestamp
an update with an equal or smaller timestamp than Stable-
Time. Thus, Eunomia can confidently serialize all operations
tagged with a timestamp smaller than or equal to StableTime
(Alg. 3, line 9). Eunomia can serialize them in timestamp
order, which is consistent to causality (Property 1), and
then send them to other geo-locations (Alg. 3, line 10).
Note that non-causally related updates coming from different
partitions may have been timestamped with the same value.
In this case, operations are known to be concurrent and
Eunomia can process them in any order. For instance, it
could use the identifier of the partition that sent the update
to break ordering ties.

Heartbeats If a partition pn does not receive an update for
a fixed period of time, it will send a heartbeat including
its current time to Eunomia (Alg. 2, lines 10–12). This
is fundamental to ensure progress of the site stabilization
procedure. Thus, if a partition pn receives updates at a
slower pace than others, it will not slow down the processing
of other partitions updates at Eunomia. When Eunomia
receives a heartbeat from pn, it simply updates its entry in
the PartitionTime vector (Alg. 3, line 6).

C. Fault-Tolerance

In the description above, for simplicity, we have described
the Eunomia service as if implemented by a single non-
replicated server. Naturally, as any other service in a datacen-
ter, Eunomia must be made fault-tolerant. In fact, if Eunomia
fails, the site stabilization procedure stops, and thus, local
updates can no longer be propagated to other geo-locations.

3

Algorithm 3 Operations at Eunomia
1: function ADD OP(Op)
2: Ops ← Ops ∪ Op
3: 〈Key, Value, Ts, pn〉 ← Op
4: PartitionTime[pn]← Ts

5: function HEARTBEAT(pn, Ts)
6: PartitionTime[pn]← Ts

7: function PROCESS STABLE . Every θ time
8: StableTime ← MIN(PartitionTime)
9: StableOps ← FIND STABLE(Ops, StableTime)

10: PROCESS(StableOps)
11: Ops ← Ops \ StableOps

In order to avoid such limitation, we now propose a fault-
tolerant version of Eunomia.

In this new version, Eunomia is composed by a set of
Replicas. Algorithm 4 shows the behaviour of a replica ef
of the fault-tolerant Eunomia service. We assume the initial
set of Eunomia replicas is common knowledge: every replica
knows every other replica and all servers (that implement
data partitions) know the full set of replicas. Partition servers
send operations and heartbeats (Alg. 2, lines 8 and 12
respectively) to the whole set of Eunomia replicas. Each
replica processes operations and heartbeats exactly as in
Algorithm 3. Note that the algorithm is deterministic, and
its output does not depend on the order of inputs. Thus, if
the system would become quiescent, all replicas of Eunomia
would eventually reach the same state and output the same
stream of (serialized) operations.

To avoid unnecessary redundancy when exchanging meta-
data among datacenters, a leader-based strategy is used to
select the replica in charge of propagating this information.
The existence of a unique leader is not required for the
correctness of the algorithm; it is simply a mechanism to
save network resources. Thus, any leader election protocol
designed for asynchronous system can be plugged into our
implementation (such as Ω [?]). A change in the leadership
is notified to a replica ef through the NEW LEADER function
(Alg. 4, line 12).

The notion of a leader is used to optimize the service’s
operation as follows. When the PROCESS STABLE event
is triggered, only the leader replica computes the new
stable time and processes stable operations (Alg. 4, lines 2–
5). Then, after operations have been processed, the leader
sends the recently computed StableTime to the remaining
replicas (Alg. 4, line 7). When replica ef receives the new
stable time, it removes the operations already known to be
stable from its pending set of operations, since it is certain
that those operations have been already processed (Alg. 4,
lines 9–10).

D. Discussion

Correctness: We provide an informal proof that our
protocol satisfies the two properties required by Eunomia
(Properties 1 and 2).

Algorithm 4 Operations at Eunomia replica ef
1: function PROCESS STABLE . Every θ time
2: if Leaderf == ef then
3: StableTime ← MIN(PartitionTimef)
4: StableOps ← FIND STABLE(Opsf , StableTime)
5: PROCESS(StableOps)
6: Opsf ← Opsf\ StableOps
7: send STABLE(StableTime) to Replicasf \ {ef}

8: function STABLE(StableT ime)
9: StableOps ← FIND STABLE(Opsf , StableTime)

10: Opsf ← Opsf\ StableOps

11: function NEW LEADER(eg)
12: Leaderf ← eg

Property 2 is trivial to prove. We need to ensure that
updates handled by a partition pn are tagged with strictly
increasing timestamps and that heartbeats do not break the
monotonicity. By Algorithm 2 line 5, pn ensures that consec-
utive updates are tagged with increasing timestamps. On the
other hand, heartbeats are only sent when the physical clock
at pn is greater or equal to the lastest timestamp used to tag
an update plus a fixed time ∆ (Alg. 2, line 10). This ensures
that a heartbeat message is always tagged with a larger
timestamp that all previously processed updates. Finally, an
update happening right after a heartbeat is always tagged
with a larger timestamp than the heartbeat’s timestamp since
the physical clock (Clockn) is used to compute update’s
timestamp and this is assumed to increase monotonically
(Alg. 2 line 5).

In order to prove Property 1 we need to prove that the
partial order derived from update timestamps is consistent
with causality. The three properties of causality () are:

(i) Execution thread: for two operations a and b issued
during the same client session, if a happens before b
then a b;

(ii) Read from: for an update operation a and a read
operation b, a b if b reads the state written by a;

(iii) Transitivity: for operations a, b and c, if a c and
c b, then a b.

These properties, applied to our protocol, imply that an
update uj issued by client c has to be tagged with a
timestamp strictly greater than all its previous updates and
than any version previously read. Clockc, which is the
clock maintained by the client, aggregates the client’s causal
history in a single scalar. By Algorithm 2 line 5, we know
that the timestamp assigned to a client update is strictly
greater than Clockc. Thus, we only need to prove that Clockc
is always equal or greater than all previously read versions,
ensured by Algorithm 1 line 4, and that it is always greater
or equal to the timestamp assigned to its last update, ensured
by Algorithm 1 line 9.

Hybrid Clocks Hybrid clocks [15] are a combination of
physical time and logical time. The use of physical time is
fundamental for Eunomia. Although Eunomia could simply
use logical clocks, and still be correct, the rate at which

4

clocks from different partitions progress would depend on
the workload. This fact could cause the site stabilization pro-
cedure to progress slowly, delaying remote update visibility.
On the other hand, physical clocks from different partitions
always move at similar speed independently of the workload
characterization. This fact significantly stimulates the site
stabilization procedure, making update processing faster in
comparison to logical clocks.

On the other hand, the logical part of the hybrid clock is
meant to improve the protocol’s efficiency. One problem of
using loosely synchronized physical clocks is that in order
to ensure correctness, partitions may add waiting periods
to allow clocks of different partitions to catch up due to
clock drifts. In fact, protocols such as [8], [9] suffer from
this problem. The logical part of the hybrid clock avoids
artificial delays due to clock synchronization uncertainties. It
represents the largest clock seen by the process maintaining
the hybrid clock. In order to ensure that the hybrid clock
increases monotonically, the maximum between the physical
time and the logical time is returned when the clock is read.
Our current prototype implements a simple version of hybrid
clocks; a more elaborate implementation, able to bound the
divergence between the physical and the logical part of the
clock can be derived following [15].

Optimizing the Communication Patterns Eunomia con-
stantly receives operations and heartbeats from partitions.
This is an all-to-one communication schema and, if the
number of partitions is large, it may not scale in practice.
In order to overcome this problem and efficiently manage a
large number of partitions, two simple techniques have been
used: (i) build a propagation tree among partition servers;
and (ii) batch operations at partitions, and propagate them
to Eunomia only periodically. Both techniques (that can be
combined) aim at reducing the amount of messages received
by Eunomia per unit of time at the cost of a slight increase
in the stabilization time.

III. GEO-REPLICATION

In our previous protocol we have shown how to unobtru-
sively timestamp local updates in a partial order consistent
with causality. Still, we have not shown how to enforce
causal consistency across geo-locations. In this section, we
complete our previous protocol with the necessary mecha-
nisms to ensure that remote updates—coming from other
geo-locations—are made visible locally without violating
causality. We assume a total of M geo-locations, each of
them replicating the full set of objects. Each of these geo-
locations uses the Eunomia service and thus propagates local
updates in a total order consistent to causal consistency. We
assume FIFO links between datacenters.

A. Protocol Extensions

We proceed to explain how the metadata is enriched and
the changes we need to apply to our previous algorithms.
Table II provides a summary of the notation used in this
section.

M Number of datacenters
VClockc Client c vector (M entries)

rm Receiver at datacenter m
SiteTimem Applied updates vector at rm

Queuem Queues of pending updates at rm
uj .vts Update uj timestamp vector (M entries)

Table II
NOTATION USED IN THE GEO-REPLICATED PROTOCOL EXTENSION.

Updates are now tagged with a vector with an entry
per datacenter, capturing inter-datacenter dependencies. The
client clock is consequently also extended to a vector
(VClockc).

Update When a client c issues an update operation, it
piggybacks its VClockc summarizing both local and remote
dependencies. A partition pn computes uj vector timestamp
(uj .vts) as follows. First, the local entry of the vector
uj .vts[m] is computed as the maximum between Clockn,
MaxTsn + 1 and VClockc[m] + 1, similarly to Algorithm 2,
line 5. This permits Eunomia to still be able to causally
order local updates based on uj .vts[m]. Second, the rest
of the entries (remote datacenter entries) are assigned to its
sibling entries in VClockc. When the operation is completed,
pn returns uj .vts to the client who can directly substitutes
its VClockc since uj .vts is known to be strictly greater than
VClockc.

Read Read operations execute as in Algorithms 1 and 2.
The only difference is that the returned timestamp is a vector
instead of a scalar. Thus, in order to update VClockc, a client
c applies the MAX operation per entry.

Update Propagation The site stabilization procedure pro-
ceeds as before, totally ordering local updates based on the
local entry of their vector timestamp (u.vts[m]). Eunomia
propagates local updates to remote datacenters in u.vts[m]
order. Each update piggybacks its u.vts.

Remote Update Visibility Algorithm 5 shows how a re-
ceiver handles a remote update arrival. When datacenter m
receives a remote update uj coming from datacenter k, two
conditions have to be satisfied before applying it locally:
(i) all previously received updates coming from k have
already been applied locally; and (ii) uj dependencies, which
are subsumed in uj .vts, are visible locally. Both conditions
can be trivially checked. The first condition can be enforced
by simply keeping a queue (Queuem[k]) of pending updates
per remote datacenter (Alg. 5, line 3). The second condition
can be enforced by maintaining a vector with an entry
per remote datacenter (SiteTimem[k]) indicating the latest
update operation applied from each of the remote datacenters
(Alg. 5, line 4). If any of the two conditions is not satisfied,
uj is added to Queuem[k] and will be eventually applied
when both conditions hold.

FLUSH PENDING is a recursive function (Algorithm 5
line 9) that makes sure no pending operation satisfying the

5

Algorithm 5 Operations at rm
1: function NEW UPDATE(uj , k)
2: Queuem[k]← [Queuem[k]|uj] . add to tail
3: if HEAD(Queuem[k]) == uj then
4: if ∀d ∈M \ {m, k}, SiteTimem[d] ≥ uj [d] then
5: send APPLY(uj) to server
6: receive ok from server
7: SiteTimem[k]← uj [k]
8: POP(Queuem[k])
9: FLUSH PENDING

above two conditions is left without being applied. When
a pending operation uj originating at k is applied, both
Queuem[k] and SiteTimem[k] are updated consequently.

B. Discussion

Vector Clocks: Our protocol relies on vector clocks
to ensure causal consistency across different geo-locations.
We could easily adapt our protocols to use a single scalar,
as in [8]. Nevertheless, vector clocks make a more effi-
cient tracking of causal dependencies introducing no false
dependencies across datacenters, which reduces the update
visibility latency, at the cost of slightly increasing the storage
and computation overhead. Note that the lower-bound update
visibility latency for a system relying on vector clocks is the
latency between the originator of the update and the remote
datacenter, while with a single scalar it is the time distance
to the farthest datacenter regardless of the originator of the
update.

Separation of Data and Metadata In the protocols de-
scribed before, partitions send updates (including the update
value) to the Eunomia service, which is responsible for
eventually propagating them to remote datacenters. This
can limit the maximum load that Eunomia can handle and
become a bottleneck due to the potentially large amount
of data that has to be handled. In order to overcome this
limitation, we propose decoupling data and metadata.

Thus, in our prototype, for each update operation, parti-
tions generate a unique update identifier (u.id), composed
of the local entry of the update vector timestamp (u.vts[m])
and the object identifier (Key). We avoid sending the value
of the update to Eunomia. Instead, partitions only send the
unique identifier u.id together with the partition id (pn).
Eunomia is only responsible for handling and propagating
these lightweight identifiers, while the partitions itself are
responsible for propagating the update values together with
u.id to its sibling partitions in other datacenters. A receiver
rm proceed as before, but a partition pn can only execute the
remote operation once it has received both the data and the
metadata. This technique slightly increases the computation
overhead at partitions, but it allows Eunomia to handle a
significantly heavier load independently of update values.

IV. IMPLEMENTATION

The Eunomia service has been implemented in the C++
programming language and integrated with a version of

Riak KV [13], a weakly consistent datastore used by many
companies offering cloud-based services including bet365
and Rovio. Since Riak KV is implemented in Erlang, we
first attempted to build Eunomia using the Erlang/OTP
framework, but unfortunately we rapidly reached a bottle-
neck in our early experiments due to the inefficiency of
Erlang data structures. Note that for Eunomia to work,
we need to store a potentially very large number of updates,
coming from all logical partitions composing a datacenter,
and periodically traversed them in timestamp order when a
new stable time is computed. Inserting and traversing this
(ordered) set of updates was limiting the maximum load that
Eunomia could handle. The C++ implementation does not
suffer from these performance limitations.

Furthermore, in order to fully explore the capacities of
Eunomia and experimentally demonstrate our hypothesis,
we have integrated Eunomia with a causally consistent geo-
replicated datastore implementing the protocol presented in
§II-A and §III. Our prototype, namely EunomiaKV , is built
as a variant of Riak KV [13], and includes the optimizations
discussed in §II-D and §III-B. Since the open source version
does not support replication across Riak KV clusters, we
have also augmented the open source version of Riak KV
with geo-replication support.

V. EVALUATION

Our main goal with the evaluation is to show that Euno-
mia does not suffer from the limitations of the competing
approaches. Therefore, we compare Eunomia with both
sequencer based approaches and with approaches based on
global stabilization checking procedures. We recall that the
main disadvantage of sequencers is to throttle throughput,
by operating in the critical path of local clients. Therefore,
we aim at showing that Eunomia does not compromise
the intra-datacenter concurrency and can reach much better
throughput than sequencer based approaches. Conversely,
the disadvantage of the global stabilization approach is to
introduce long delays in update visibility at remote sites.
Thus, we also aim at showing that Eunomia does not
significantly delay remote update visibility.

Experimental Setup The experimental test-bed used is
a private cloud composed by a set of virtual machines
deployed over 20 physical machines (8 cores and 40 GB of
RAM) connected via a Gigabit switch. Each VM, which runs
Ubuntu 14.04, and is equipped with 2 (virtual) cores, 10GB
disk and 9GB of RAM memory; is allocated in a different
physical. Before running each experiment, physical clocks
are synchronized using the NTP protocol [14] through a near
NTP server.

Workload Generator Each client VM runs its own instance
of a custom version of Basho Bench [16], a load-generator
and benchmarking tool to conduct accurate and repeatable
performance tests. For each experiment, we deploy as many
client instances as possible without overloading the system.

In our experiments, unless specified, we use the following
parameters. Values used in operations are a fixed binary of

6

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
h
ro

u
g
h

p
u

t
(K

o
p
s
/s

e
c
) Eunomia 15

Eunomia 30
Eunomia 45
Eunomia 60
Eunomia 75
Sequencer

Figure 1. Maximum throughput achieved by Eunomia and an implemen-
tation of a sequencer. We vary the number of partitions that propagate
operations to Eunomia.

100 bytes. We use a uniform key distribution across a total of
100k keys (objects). Each experiment runs for 10 mins and
the first and the last minute of each experiment is ignored
to avoid experimental artifacts.

A. Eunomia Throughput
We first report on a number of experiments that aim at:

(i) experimentally measuring the maximum load that our
efficient implementation of Eunomia can handle, varying the
number of partitions connected to it; (ii) comparing Eunomia
to traditional sequencers; and (iii) assessing how failures
affect the performance of the Eunomia service.

For comparison, these experiments also show the max-
imum load that a traditional sequencer can handle. Our
implementation of a sequencer is the simplest possible and
mimics traditional implementations. In every update oper-
ation, data servers synchronously request a monotonically
increasing number to the sequencer before returning to the
client. We have also implemented a fault-tolerant version of
the sequencer based on chain replication [?]: Replicas of the
sequencer are organized in a chain. Partitions send requests
to the head of the chain. Requests traverse the chain up to
the tail. When the tail receives a request, it replies back to
the data server, which in turn returns to the client. In our
experiments the chain is composed of three replicas.

In order to stretch as much as possible the implementation,
circumventing other potential sources of bottlenecks in the
system, we directly connect clients to Eunomia, bypassing
the data store. Thus, each client simulates a different server
(in charge of a data partition) in a multi-server datacenter.
This allowed us to emulate the use of very large datacenters,
with much more data servers than the ones that were at our
disposal for this experiments, and overload Eunomia in a
way that would be otherwise impossible with our testbed.

Throughput Upper-Bound We first compare the non fault-
tolerant version of the Eunomia against a non fault-tolerant
implementation of a sequencer. The Eunomia implementa-
tion used for the experiment is configured to batch updates
and only send them to Eunomia after 2ms. Figure 1 plots
the maximum throughput achieved by both services.

As results show, Eunomia maximum throughput is
reached when having 60 servers (data partitions) issuing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h

p
u

t Eunomia Non-FT
Eunomia 1-FT
Eunomia 2-FT
Eunomia 3-FT

Sequencer Non-FT
Sequencer 3-FT

Figure 2. Maximum throughput achieved by a fault-tolerant version of
Eunomia and sequencers. Non-FT denotes non fault-tolerant versions while
1-, 2-, and 3-FT denote fault-tolerant versions with 1, 2, and 3 replicas

operations eagerly (with zero waiting time between oper-
ations). We observe that Eunomia is able to handle almost
an order of magnitude more operations per second than a
sequencer (more precisely, 7.7 times more operations, ex-
ceeding 370kops while the sequencer is saturated at 48kops).
Considering that according to our experiments, a single
machine in a Riak cluster is able to handle approximately
3kops per second, These results confirm that sequencers
limit intra-datacenter concurrency and can easily become a
bottleneck for medium size clusters (i.e, for clusters above
150 machines, the sequencer would be the limiting factor of
system performance), even assuming a read dominant (9:1)
workload, a common workload for internet-based services.
On the other hand, under the same workload assumptions,
more than a thousand data servers could be used before
saturating Eunomia.

Another advantage of Eunomia in comparison to se-
quencers is that, as discussed in §II-D, batching is not in
the client critical path. Thus, Eunomia’s throughput can be
further stretched by increasing the batching time (at the cost
of slightly increasing the remote update visibility latency).
Such stretching cannot be easily achieved with sequencers,
as any attempt to batch requests at the sequencer blocks
clients.

Fault-Tolerance Overhead In the following experiments
we measure the overhead introduced by the fault-tolerant
version of Eunomia and the impact of faults in the service.
Figure 2 compares the maximum throughput achievable by
Eunomia when increasing the number of replicas up to three.
For completeness, the plot also includes the throughput for
a non fault-tolerant sequencer and its fault-tolerant version
with three replicas. We normalized the throughput against
the non fault-tolerant version of Eunomia. As results show,
the fault-tolerant version of Eunomia only adds a small
overhead (roughly 9% penalty) independently on the number
of replicas. We expect this overhead to increase as the
number of replicas increases, but we consider three replicas
to be a realistic number. On the other hand, adding fault-
tolerance to the sequencer version adds a penalty of almost
33%, thus being more expensive proportionally. The reason
for this difference is that, as explained before, Eunomia
replicas do not need to coordinate as their results are

7

independent of relative order of inputs, while sequencer
replicas need to coordinate to avoid providing inconsistent
sequence numbers.

B. Experiments with Geo-Replication
We now report on a set of experiments offering evidence

that a causally consistent geo-replicated datastore built using
Eunomia is capable of providing higher throughput and
better quality-of-service than previous solutions that avoid
the use of local sequencers.

For this purpose, we have implemented GentleRain [8]
and a variation of it that uses vector clocks instead of
a single scalar to enforce causal consistency across geo-
locations. The latter resembles the causally consistency
protocol implemented by Cure [9]. Both approaches are
sequencer-free implementations that rely on a global sta-
bilization checking procedure in order to apply operations
in remote locations consistently with causality. For this,
sibling partitions across datacenters have to periodically
send heartbeats, and each partition within a datacenter has
to periodically compute its local-datacenter stable time. In
our experiments, we set the frequency of this events to
10 ms and 5 ms respectively unless otherwise specified.
Both approaches are implemented using the codebase of
EunomiaKV and thus integrated with Riak KV. To simplify
the implementation, we avoided building the propagation
tree and used all to all communication to calculate the GST.
This is an acceptable design choice as tree is only required
if the number of partitions in the cluster is large.

In most of our experiments, we deploy 3 datacenters, each
of them composed of 8 logical partitions balanced across
3 servers. The emulated round-trip-times across datacenters
(DCs) are 80ms between DC1 and both DC2 and DC3, and
160ms between DC2 and DC3.

1) Throughput: In the following experiments, we mea-
sure the throughput provided by EunomiaKV , GentleRain,
Cure, and an eventually consistent multi-cluster version of
Riak KV. Note that the latter does not enforce causality,
and thus partitions execute remote updates as soon as they
are received. Therefore, the comparison of Eunomia with
Riak KV allows to assess the overhead induced by Eunomia
for providing causal consistency. As discussed below, this
overhead is very small.

We experiment with both uniform and power-law key
distributions, denoted with U and P respectively in Figure 3.
For each of them, we vary the read:write ratio (99:1, 90:10,
75:25 and 50:50). These ratios are representative of real large
internet-based services workloads. As shown by Figure 3,
the throughput of all solutions decreases as we increase
the percentage of updates. Nevertheless, EunomiaKV always
provides a comparable throughput to eventual consistency.
Precisely, on average, EunomiaKV only drops 4.7% of
throughput, being extremely close in read intensive work-
loads (1% drop). On the other hand, GentleRain and Cure
are always significantly below both eventual consistency and
EunomiaKV . This is due to the cost of the global stabiliza-
tion checking procedure. Note that the throughput difference

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

50:50 U 75:25 U 90:10 U 99:1 U 50:50 P 75:25 P 90:10 P 99:1 P

T
h
ro

u
g
h

p
u

t
(o

p
s
/s

e
c
)

Eventual
EunomiaKV

GentleRain
Cure

Figure 3. Throughput comparison between EunomiaKV and state-of-the-
art sequencer-free solutions.

between GentleRain and Cure is caused by the overhead
introduced by the metadata enrichment procedure of the
latter (as discussed in §III-B). Based on our experiments, it
is possible to conclude that the absolute number of updates
per unit of time is the factor that has the largest impact in
EunomiaKV (rather than key contention).

2) Remote Update Visibility: In order to compare the
quality-of-service that can be provided by EunomiaKV ,
GentleRain, and Cure, we measure remote update visibil-
ity latency. In EunomiaKV , we measure the time interval
between the data arrival and the instant in which the update
is executed at the responsible partition. Note that, for an
update to be applied, a datacenter needs to have access
to the metadata (in our case, provided by Eunomia) and
check that all of its causal dependencies have also been
previously applied locally. In our implementation, partitions
ship updates immediately to remote datacenters. Therefore,
we have observed that updates are always locally avail-
able to be applied by the time metadata indicates that its
causal dependencies are already satisfied locally. Although
other strategies could be used to ship the payload of the
updates, this has a crucial advantage for the evaluation
of Eunomia: under this deployment the update visibility
latency is exclusively influenced by the performance of the
metadata management strategy, including the stabilization
delay incurred at the originating datacenter.

On the other hand, for GentleRain and Cure, we measure
the time interval between the arrival of the remote operation
to the partition and when the global stabilization checking
procedure allows its visibility. Note that all values presented
in the figures already factor-out the network latencies among
datacenters (which are the same for all protocols); thus
numbers capture only the artifical artifacts inherent to the
different approaches.

Figure 4 shows the cumulative distribution of the latency
before updates originating at DC1 become visible at DC2.
We observe that EunomiaKV offers, by far, the best remote
update visibility latency. Unsurprisingly, GentleRain extra
delay is larger than Cure’s because of the amount of false
dependencies added when aggregating causal dependencies
into a single scalar. In fact, GentleRain is not capable of

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

Remote update visibility (milliseconds)

GentleRain
Cure

EunomiaKV

Figure 4. Visibility latency of remotes updates originating at DC1
measured at DC2 (40ms trip-time).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

Remote update visibility (milliseconds)

GentleRain
Cure

EunomiaKV

Figure 5. Visibility latency of remotes updates originating at DC2
measured at DC3 (80ms trip-time).

making updates visible without adding 40ms of extra delay.
Again, the scalar is the cause of this phenomenon since the
minimum delay will not depend on the originator of the
update but on the travel time to the furthest datacenter. This
confirms the rationale presented in the discussion of §III-B.

Finally, in order to isolate the impact of GentleRain’s
global stabilization checking procedure independently of
the metadata size, we measure the remote update visibility
latency at DC3 for updates originating at DC2. As one
can observe in Figure 5, GentleRain exhibits better remote
update latencies than Cure but still worse than EunomiaKV .
In this setting, vector clocks does not help reducing latencies.
Thus, the gap between Cure and GentleRain is exclusively
due to the storage and computational overhead caused
by vector clocks. Furthermore, the fact that EunomiaKV
still provides better latencies is, once again, an empirical
evidence that global stabilization checking procedures are
expensive in practice.

3) Throughput vs Remote Visibility Tradeoff: In this last
subsection, we discuss the tradeoff between throughput and
remote update visibility latency posed by solutions relying
on a global stabilization checking procedures. In our pre-
vious experiments, we set the local-datacenter stable time
computation frequency to 5ms, which, according to our ex-
periments, does the best tradeoff. In this section we explore
this tradeoff in more detail, to provide a better insight on
the cost of global stabilization checking procedures.

For this purpose, we vary the local-datacenter stable
time computation frequency between 1ms and 100ms. We
measure both the remote update visibility latency and the

 0
 20
 40
 60
 80

 100
 120
 140
 160

9
0

th
 p

e
rc

e
n
ti
le

v
is

ib
ili

ty
 l
a
te

n
c
ie

s
 (

m
s
)

Cure EunomiaKV

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 5 10 15 20 50 100

T
h
ro

u
g

h
p

u
t

(o
p

s
/s

)

Clock computation frequency (milliseconds)

GentleRain

Figure 6. Tradeoff between throughput and remote update visibility latency
posed by global stabilization checking procedures.

throughput. Again, latencies refer to the artificial delay
added by the system at DC2 for updates originating at DC1.
Figure 6 shows the results of this experiment. The graph at
the bottom plots throughput numbers. The graph on the top
plots the 90th percentile of remote update visibility latencies.
As one can observe, as we increase the frequency of the
computation, lower artificial delays are added but also lower
throughput is provided. We can observe that the throughput
decreases more rapidly when the experiment moves towards
higher frequencies. The figure also shows the throughput
and update visibility latencies of EunomiaKV . Even when
the computation is very frequent (1ms), GentleRain and
Cure do not reach remote update latencies comparable to
EunomiaKV while its drop in throughput is quite significant
(more precisely 18.2% for GentleRain and 44.4% for Cure).
We noticed that our version of Cure was slightly overloaded
for 1ms frequency. Thus, artifical delays where drastically
increased (90th percentile of 75ms), even surpassing Gen-
tleRain’s 90th percentile (66ms) for the same frequency. We
have not plotted this to avoid obstructing plot readability.

These results confirm that global stabilization checking
procedures are quite expensive in practice and that solutions
based on them are far from achieving remote update laten-
cies close to optimal latencies.

VI. RELATED WORK

Recently, and tackling scalability challenges close to ours,
multiple weakly consistent geo-replicated data stores imple-
menting causal consistency across geo-locations have been
proposed. We group them into two categories: (i) sequencer-
based solutions [7]; (ii) and sequencer-free solutions [5], [6],
[8], [9].

Sequencer-based These solutions rely on a single sequencer
per datacenter to enforce causal consistency. The sequencer
is in charge of totally ordering local updates, in a causally
consistent manner, and propagate them to remote locations.

9

The use of synchronous sequencers significantly limits the
intra-datacenter concurrency, as demonstrated by our ex-
periments. We have shown that sequencers may get easily
saturated for medium-size clusters, while Eunomia is able
to handle much heavier loads (up to 7.7 times more).

Sequencer-free There have been two major trends in this
category: (i) solutions that rely on explicit dependency
check messages [5], [6]; and (ii) solutions based on global
stabilization checking procedures [8], [9].

COPS [5] finely track dependencies for each individual
data item. Remote updates are tagged with a list of de-
pendencies. When a datacenter receives a remote update,
it issues an explicit dependency checking messages per
dependency. This process is known to be expensive and
to limit systems performance [8] due to the large amount
of metadata generated. Orbe [6] only partially solves this
problem by aggregating dependencies belonging to the same
logical partition into one scalar.

As a solution to the metadata problem, research com-
munity has proposed alternatives that rely on a background
global stabilization checking procedure [8], [9]. This proce-
dure equips partitions with sufficient information to safely
execute remote updates consistently with causality. As our
extensive evaluation has empirically demonstrated, global
stabilization checking procedures are expensive in practice.
EunomiaKV exhibits significantly better throughput than
these solutions (therefore much better than solutions based
on explicit dependency check messages [8]). In addition,
our evaluation have shown that EunomiaKV generates sub-
stantially smaller remote update visibility latencies than
GentleRain and Cure, the two most performant solutions of
the state-of-the-art.

VII. CONCLUSIONS

We have presented a novel approach for building weakly
consistent geo-replicated data stores that require updates to
be causally ordered. Our solution relies on a new service,
namely Eunomia, that abstracts the internal complexity of
datacenters, a key characteristic to inexpensively implement
causal consistency across geo-locations. Furthermore, unlike
sequencers, Eunomia does not limit the intra-datacenter
concurrency by performing a cheap and unobtrusive ordering
of updates.

The paper described the techniques behind Eunomia and a
high performant causally consistent geo-replicated protocol
that integrates it. Our experimental results demonstrate that
Eunomia, unlike sequencers, is able to handle very heavy
loads without becoming a performance bottleneck (up to
7.7 times more operations per second than a sequencer).
Furthermore, we have built a data store, namely EunomiaKV ,
that implements the proposed geo-replicated protocol. Our
prototype is built as a variant of the Riak KV data store.
According to our experiments, EunomiaKV is currently the
most performant causal consistency implementation, pro-
viding appreciably higher throughput and smaller update
visibility delay than GentleRain and Cure, the two most
performant solutions of the state-of-the-art.

ACKNOWLEDGEMENT
This work has been performed in collaboration with

Manuel Bravo, a member of the Distributed Systems Group
at INESC-ID. We would like to thank Kuganesan Srijeyan-
than for his help on the C++ version of Eunomia.

REFERENCES

[1] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica, “Highly available transactions:
Virtues and limitations,” Proc. VLDB Endow., vol. 7,
no. 3, pp. 181–192, Nov. 2013. [Online]. Available:
http://dx.doi.org/10.14778/2732232.2732237

[2] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto, “Causal memory: definitions, implementation, and
programming,” Distributed Computing, vol. 9, no. 1, pp. 37–
49, 1995.

[3] H. Attiya, F. Ellen, and A. Morrison, “Limitations of highly-
available eventually-consistent data stores,” ser. PODC, 2015.

[4] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers, “Flexible update propagation for weakly
consistent replication,” ser. SOSP, 1997.

[5] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen, “Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops,” ser. SOSP, 2011.

[6] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe:
Scalable causal consistency using dependency matrices and
physical clocks,” ser. SoCC, 2013.

[7] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A
causal+ consistent datastore based on chain replication,” ser.
EuroSys, 2013.

[8] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gen-
tlerain: Cheap and scalable causal consistency with physical
clocks,” ser. SoCC, 2014.

[9] D. D. Akkoorath, A. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bi-
eniusa, N. Preguiça, and M. Shapiro, “Cure: Strong semantics
meets high availability and low latency,” ser. ICDCS, 2016.

[10] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Providing
high availability using lazy replication,” ACM Trans. Comput.
Syst., 1992.

[11] K. Birman, A. Schiper, and P. Stephenson, “Lightweight
causal and atomic group multicast,” ACM Trans. Comput.
Syst., vol. 9, no. 3, Aug. 1991.

[12] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler,
M. Wei, and J. D. Davis, “Corfu: A shared log design for
flash clusters,” ser. NSDI, 2012.

[13] “Riak KV,”
https://github.com/basho/riak kv.

[14] “The network time protocol,”
http://www.ntp.org.

[15] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and
M. Leone, “Logical physical clocks,” ser. OPODIS, 2014.

[16] “Basho Bench,”
http://github.com/basho/basho bench.

10

http://dx.doi.org/10.14778/2732232.2732237
https://github.com/basho/riak_kv
http://www.ntp.org
http://github.com/basho/basho_bench

	Introduction
	Eunomia: Unobtrusive Ordering
	Overview
	Eunomia Into Play
	Fault-Tolerance
	Discussion

	Geo-replication
	Protocol Extensions
	Discussion

	Implementation
	Evaluation
	Eunomia Throughput
	Experiments with Geo-Replication
	Throughput
	Remote Update Visibility
	Throughput vs Remote Visibility Tradeoff

	Related work
	Conclusions
	References

