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Abstract. This report addresses the problem of securing storage ser-
vices designed to support edge computing, that runs primarily on fog
nodes. We identify the major threats to the integrity, availability, and
consistency of data maintained by the edge storage service and we pro-
pose techniques to secure this service. Achieving low latency is one of the
main motivations for adopting edge computing, for this reason we give
special attention to the trade-o↵ between security and performance.
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1 Introduction

Cloud computing is a model for deploying Internet applications that allows
companies to deploy services in shared infrastructures, typically large data cen-
ters, that are managed by cloud providers. The economies of scale that result
from using large shared infrastructures reduce the deployment costs and make
it easier to scale the number of resources associated with each application in re-
sponse to changes in the demand. Cloud computing has been, therefore, widely
adopted both by private and public services [1].

Despite its benefits, cloud computing has some limitations. The number of
data centers that o↵er cloud computing services is relatively small, and they are
typically located in a few central locations. Thus, clients that operate far from
the data centers may experience long latencies. Also, many applications require
data to be sent to a data center to be processed. For applications that produce
large amounts of data, this model may require the consumption of significant
network resources.

Many applications deployed in the cloud provide a range of services to clients
that reside in the edge of the network: desktops, laptops, but also smartphones
or even smart devices such as cameras or home appliances also known as the
Internet of Things (IoT). The number and capacity of these devices have been
growing at a fast pace in recent years. Many of these devices can run real time
applications, such as augmented reality, that requires low latencies. Also, most
of these devices have sensors that produce enormous quantities of information
that need to be collected and processed [2].

One solution to address the latency and bandwidth requirements of new
edge applications is to process the data at the edge of the network close to
the devices, a paradigm called edge computing. To support edge computing, one
can complement the services provided by central data centers with the service
of smaller data centers, or even single servers, located closer to the edge. This
concept is often named fog computing [3,4]. It assumes the availability of fog
nodes that are located close to the edge and their numbers are several orders of
magnitude larger than those of data centers in the cloud.

Cloud nodes are physically located in secure premises, administered by a
single provider. Fog nodes, instead, are most likely managed by several di↵er-
ent local providers and installed in physical locations that are more vulnerable
to tampering. Therefore, fog nodes are substantially more vulnerable to being
compromised [5,6], and developers of applications and middleware for edge com-
puting need to take security as a primary concern in the design.

In this report, we address the problem of securing middleware for edge com-
puting. We focus, more specifically, on securing causally-consistent storage ser-
vices for the edge, such as the one proposed in Gesto [7]. These storage services
keep replicas of relevant data objects at di↵erent fog nodes so that users can
read and write data with low latency. Replicas coordinate to ensure that users
observe a consistent view of the data: we are particularly interested in storage
systems that can o↵er causal consistency [8], since it is the strongest type of
consistency that can be enforced without risking blocking the system when par-
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titions or failures occur. Because fog nodes have limited resources, a storage
service for the edge has to support partial replication, i.e., not all nodes store
all data and some nodes may even not store any data at all but still participate
in the coordination activities required to ensure data consistency.

Much work has been done in storage systems o↵ering causal consistency on
the cloud [9,10,11,12]. Since these systems rely on a fully trusted cloud, there
is a recent interest in expanding these systems to the edge such as Gesto [7].
Therefore, this type of systems exhibits similar security vulnerabilities to those
of fog nodes. In this context, this report identifies the major threats to the
integrity, availability, and consistency of data maintained by the edge storage
service and proposes techniques to secure this service. Because achieving low
latency is one of the main motivations for adopting edge computing, we give
particular attention to the trade-o↵ between security and performance.

We look for lightweight cryptographic techniques such as digital signatures
to assure integrity while keeping a reasonable trade-o↵ with availability. We
also provide the necessary data in messages that can be used to verify that the
consistency model holds.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we introduce the key
concepts relevant for our work and in Section 4 we address related work. Sec-
tion 5 describes the proposed architecture to be implemented and then Section 6
describes how we plan to evaluate our results. Finally, Section 7 presents the
schedule of future work and Section 8 concludes the report.

2 Goals

This work addresses the problem of securing storage services for the edge
while ensuring low latency and e�cient bandwidth usage. Namely, it is concerned
with the security of services that execute on fog nodes, i.e., nodes that are placed
in close proximity to edge devices in order to provide cloud services with low
latency and e�cient bandwidth usage. More precisely, it focuses on the security
of a storage service for the edge.

Goals: This work aims at designing security mechanisms that address
the major threats to the integrity, availability, and consistency of data
maintained by the edge storage service.

If a fog node becomes compromised, it may attempt to corrupt the data
it stores, discard stored information, corrupt control messages in an attempt
to prevent the proper coordination of correct replicas, or serve faulty or stale
data to the client. All these actions may violate the consistency properties of
the storage service, or simply render it unresponsive or untimely. A fundamental
challenge is to provide an appropriate level of security without compromising the
performance of the system, given that one of the main goals of supporting edge
computing is to provide services with low latency to clients. To address these
faulty behaviors we will need to use a number of complementary techniques,
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from cryptographic signatures that may allow clients to verify the integrity of
data, to replication techniques to ensure the availability of data.

The project will produce the following expected results.

Expected results: The work will produce i) a set of algorithms to
secure storage services provide by fog nodes; ii) an implementation of
these mechanisms for a storage service using Unix nodes, iii) an extensive
experimental evaluation using a deployment on an experimental testbed
such as Grid’5000 [13].

3 Background

In this section, we will introduce relevant concepts that are important to the
understanding of this document. We will begin by presenting the edge computing
model in Section 3.1. In Section 3.2 we will explain why causal consistency is
important in data stores and in Section 3.3 we will present two use cases of
applications on the edge that depend on causality. Finally, in Section 3.4 we will
present security properties and mechanisms that are useful in the edge.

3.1 Edge Computing

Fig. 1. Three-layer fog computing architecture.

The emergence of IoT and its use of services in the cloud causes the need
for proximity between computing resources and the edge. Edge computing is a
model that takes advantage of the computing capabilities of devices that are at
the edge of the network. This computation near the edge devices merges with
the idea of fog computing, allowing all edge devices to take advantage of the
close computation o↵ered by fog nodes. The existence of distributed fog nodes
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close to the periphery of the network provides rich computing resources with low
latency, opening a window to a broad new kind of applications.

Figure 1 shows a general architecture of fog-edge computing, which consists
of multiple infrastructures layers. The number of nodes in each of these layers
decreases as we move from the cloud to the edge. On the other hand, the memory
and computation power increases from the edge to the cloud. In the cloud layer,
we may find data centers while in the fog layer we may find ISP servers, private
data centers, and 5G towers. Finally, in the edge, we may find all kinds of devices
such as desktops, laptops, tablets, mobile devices, sensors, and actuators. In
this architecture, the devices located in the edge layer will communicate mainly
with those located in the fog layer. In addition, fog nodes will also have to
communicate with the cloud where all data will be stored in a more secure and
persistent way.

Devices in the edge establish a connection with fog nodes and execute oper-
ations. Fog nodes are responsible for the propagation of such updates and the
correspondent metadata. These fog nodes are located in an exposed location
that increases the risk of being attacked, raising the probability of such nodes to
become malicious as discussed in Zhang et al. [5], Mukherjee et al. [6] and Zhou
et al. [14] surveys. If a fog node becomes malicious, it can generate or manipulate
metadata in a way that it a↵ects the correct functioning of the system.

Current data stores use metadata between servers to have data consistency.
In the next section, we will describe in more detail the importance of having
consistency over replicated data and the implicit trade-o↵ involved in ensuring
such guarantees. Most importantly we describe why many practical systems
adopt causal consistency.

3.2 Causal Consistency

Data consistency assures developers about the state of geographically repli-
cated data after undergoing multiple operations. With this guarantee, the de-
velopment of applications that uses replicated data becomes easier and more
e�cient. In this section we show why causal consistency is a relevant choice and
in Section 3.3 two examples show why data consistency is important.

Typical data stores located in the cloud o↵er data consistency. Usually, these
systems such as Saturn [9] and COPS [10] penalize availability to o↵er consis-
tency. In this work, we generalize the idea of a data storage and one important
characteristic they all have in common is the goal of achieving the best data
consistency possible.

In the context of replicated data access, we can divide data consistency into
two categories: strong consistency and weak consistency.

In strong consistency, all replicas observe a consistent state. In other words,
replicas apply all the updates in the same order, serializing the updates. Such
a strict model comes at a heavy price. Replicas must coordinate to synchro-
nize each update, severely penalizing the system availability. In fact, it has been
proved that it is impossible o↵er simultaneously strong consistency, full availabil-
ity, and tolerance to network partition, a fact known as the CAP theorem [15].

6



To increase availability, it is necessary to weaken the consistency guarantees.
Weak consistency models o↵er high availability by relaxing some consistency
proprieties. Subsequently, replicas no longer behave like a single unreplicated
data item and users can observe behaviours that do not occur in a centralized
system.

Causal consistency [8] is one of the most relevant weak consistency models.
This consistency model captures the causal order between operations and en-
forces the visibility of this order in the entire system. In other words, given two
updates, a and b, if a potentially causes b, then in all replicates in the system it
is only possible to observe the update b after update a is applied. If b is causally
dependent on a is denoted a b.

We are interested in systems that can o↵er causal consistency, because it
has been shown that this is the strongest consistency model that can be o↵ered
without compromising availability [16]. Systems such as Gesto [7] o↵er causal
consistency on the edge. Since the edge is still a current subject of research, we
expect to see in the near future additional systems that support causal consis-
tency in this setting. In the next section, we will present two use cases, that
illustrate some applications for the use of data stores in the edge with causal
consistency.

3.3 Causally-Consistent Edge Applications

Applications that take advantage of the edge can o↵er users low latency
services because many times users can find a server just a hop away. Thus, the
existence of these servers near the edge as fog nodes requires a new model capable
of handling data consistency and data security. We present two distinct examples
of applications that run on the edge, where causality is an important guarantee.
Additionally, we show how a malicious node can compromise the system in case
that no safeguards are in place for ensuring the system’s security.

Messaging Application Many social networking platforms have developed
their messaging applications, typically involving features like group chat, allow-
ing multiple users to exchange messages among them. In this context, a fog node
can aggregate and process multiple messages and send them to the cloud, reduc-
ing latency and saving bandwidth usage. It is common for such group chats to be
administered by users which have the ability to add and/or remove other chat
users. A good example of why it is important to maintain causal consistency
guarantees is when an administrator revokes a user’s access to the chat. This
information must be propagated to all replicas that maintain the chat state.
Another user, on another replica, can observe this update and send a message
to the chat under the assumption that the revoked user will not read it. The
message must also be propagated to all replicas that maintain the chat state.
Note that the “revoke” update and the “new message” update are two di↵erent
operations, issued at di↵erent sites by di↵erent users. They can be propagated
and delivered to di↵erent sites in di↵erent orders. Still, each replica must ensure
that the revoked user can never read this new message, since the message has
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been added after the user has lost access to the chat. Causal consistency enforces
such guarantees.

If the fog node that originally received the “new message” update generates
metadata correctly, the remote replicas will know the correct order to apply
these updates, ensuring causality. However, if the fog node that generated the
metadata is malicious, it may intentionally generate the metadata in the wrong
order, and the remote replicas will apply the updates in an order that does not
respect causality. One consequence will be the revoked user reading the new
message, even though it has been added after the user has lost authorization for
the chat.

Mobile Interactive Multiplayer Game There has been a growing trend for
the development of mobile multiplayer games for smartphones which o↵er the
ability for users to trade objects within the game. Currently, these games require
users to connect to the cloud to avoid object replication attacks; this o↵ers high
latency which forces users to wait several seconds until the transactions are
accepted. Replication attacks can be accomplished if a user trades objects o✏ine
and then resets his state before the trade, allowing them to trade the same object
multiple times. By taking advantage of fog nodes, these transactions could be
processed closer to the edge to lower the latency, reduce the waiting time, and
provide a better experience to mobile game users. Another important factor is
the number of users that can simultaneously be using such an app.

A good example is Pokemon Go [17]. When the game was launched, there
were millions of players around the world using a server located in the cloud that
resulted in high bandwidth usage. A game like Pokemon Go could be processed
in a fog node, reducing both the latency and bandwidth usage. We now present
a use case where a user trades and sells an object, the kind of operations that
multiplayer games o↵er. In particular, we show the importance of causality in
such operations. In a trade scenario where the user Alice executes two operations:
1) user Alice trades object A for B, 2) and then sells object B. The second
operation depends on the first. When these operations are propagated to other
replicas, they must be applied in the same order, 1 and then 2.

However, if a malicious fog node generates metadata in a di↵erent order, a
remote replica may try to sell object B from Alice, before the trade, breaking the
consistency of the application, since Alice does not possess object B in the remote
replica. In the next section, we will present security properties and mechanisms
that can avoid such attacks.

3.4 Edge Security

In the fog computing model, fog nodes bring resources closer to the edge.
However, the security guarantees o↵ered by the cloud cannot be moved so easily.
In the cloud model, data centers are isolated and well protected. On the other
hand, fog nodes will be more exposed, and subsequently, it is not possible to
use the same techniques as in the previous model, this challenge is discussed
in Zhang et al. [5], Mukherjee et al. [6] and Zhou et al. [14] surveys. Data
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centers in the cloud model are few, which allows easy key management and
secure communication channels between them. However, since there are large
numbers of fog nodes, it is not viable for a single fog node to know the identity
of all fog nodes in the network.

Fog nodes can be subjected to several malicious attacks, therefore, leaving
the system in a faulty state. Due to the exposed location of fog nodes, an attacker
could gain physical access to a fog node. Denial-of-Service (DoS) is also a possible
attack; an attacker can gain control of multiple edge devices and execute a
Distributed Denial-of-Service (DDoS). It is also possible to monitor the amount
and duration of the user’s data accesses and predict an attack based on the
user’s behavior. Considering the number of fog nodes, it is di�cult to detect if a
specific node is under attack, thus attackers have more opportunities and time
to discover weaknesses in the system.

To address these issues, we must initially enforce that only authorized edge
devices can use resources in the fog, based on some digital signatures. After this,
we will introduce the security properties that we will enforce on the edge and
address the mechanisms that help us deal with the challenge that is the huge
number of devices and their heterogeneity and which allows building a base of
trust in the fog, even if a fog node goes rogue.

3.4.1 Key Security Properties In this section, we describe some key con-
cepts in information security that allow us to reach security in a system regardless
of the underlying implementation. The focus of this work is to ensure some of
the following properties in a storage system located in the edge of the network.
To ensure the correct execution of our system, we must o↵er security guarantees.
Achieving these guarantees in the edge forces us to tackle new challenges, such
as the large number of devices and their heterogeneity. These challenges are a
problem for key distribution. Another challenge is how to have a base of trust
in an edge environment when a fog node may become malicious. In the follow-
ing paragraphs, we introduce some key security properties and how to achieve
these properties in an edge environment. Our focus is to secure the metadata
generated by a data store.

Authentication is the act of an entity proving to be what it claims to be, in
other words, the ability to provide some proof of its identity. In fog computing,
both the edge devices and the fog nodes require authentication. So, to avoid
an untrusted party to pretend to be a legitimate node and receive data from a
device, fog nodes must authenticate towards the edge devices. Similarly, edge
devices must authenticate towards fog nodes, so that a fog node can impose
some policy, such as allowing an authorized device to access a piece of data.

This mutual authentication requires an infrastructure with some base of
trust. Since the cloud is trusted and the fog nodes are well connected, this in-
frastructure should use the cloud to help authenticate both parties. Examples of
such infrastructures are Public Key Infrastructure (PKI) [18] that uses trusted
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entities to certify public keys or Identity-Based Encryption (IBE) [19] where
there is a trusted entity responsible for generating private keys for the devices.

Data Integrity consists of the property that no unauthorized entities have
manipulated the data. For example, when a data store sends a metadata message,
an intruder should not be able to substitute a false message for a legitimate one.
Also, if a cloudlet stores data, it should be able to detect if the stored data has
been tampered with. Due to the fog nodes proximity to the edge, an attacker
can easily intercept messages, or physically access a fog node and tamper with
data. The integrity of messages in our system must be assured, from the moment
a fog node generates a message until it reaches its destination. This is important
since fog nodes are responsible for propagating messages.

In the metadata example, it is critical to detect a tampered message because
even the smallest change in the metadata, like a number in the timestamp, can
break the causality of the system. An e�cient way to enforce integrity requires
entities to calculate a hash of the data and generate a digital signature using a
secret, something like a Message Authentication Code (MAC). If the metadata
also brings a MAC, other entities in the system can verify the integrity of the
message.

Confidentiality is a property used to keep the content of the information from
all but those entities authorized to read it. When a data store system propagates
metadata from an update, replicas may or may not be interested in that message.
Thus, every replica must be able to read the content. Since this work focuses on
the correct behavior of the system, confidentiality is not one of the main goals.
However, an outside entity can derive information if it can read in plain-text all
the messages in the system. For example, it is possible to infer a device location
by reading the signatures in the metadata and what cloudlet received the update.

To ensure confidentiality, it is required that every message source ciphers the
content using some secret, shared only among the authenticated and authorized
entities in the system.

Non-Repudiation is a property which prevents an entity from denying previous
actions. For example, if Alice generates and sends a message, there can be no
doubt that Alice is the source of the message. This property is important to
identify malicious entities in a system. Once a cloudlet receives an update from
a device, it generates the correspondent metadata and propagates this message
to other nodes. Other nodes can only accept this message if it arrives digitally
signed by the cloudlet. If a cloudlet generates and propagates incorrect metadata,
it is necessary to detect and identify the responsible cloudlet. If the metadata
its signed by the private key of the source cloudlet, it is possible to identify
the responsible cloudlet. Non-repudiation makes it impossible for a malicious
cloudlet to refute its responsibility.
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Non-repudiation can be obtained using techniques similar to the ones used
to achieve integrity, for instance, by requiring every entity to sign their messages
digitally.

Availability is the degree to which a system can satisfy requests. High avail-
ability is an important feature that our work must ensure, providing that if the
system is not capable of responding to requests, then clients may stop using the
system, or break Service Level Agreement (SLA). Expensive security protocols
and mechanisms, that exhibit poor performance, may prevent the system from
satisfying request in due time, therefore contributing to availability loss. To help
in keeping the system availability, we will use light cryptographic techniques that
have low overhead.

3.4.2 Mechanisms To achieve the security properties mentioned above, we
can take advantage of cryptographic primitives giving entities access to data
respecting some policy. Edge devices are constrained in resources. Therefore we
will look for mechanisms that preferably place the heavy computation on the
fog side. We also look for an e�cient cryptography scheme that can deal with
the huge number of edge devices.

After this, we introduce Identity-Based Encryption, a scheme that uses asym-
metric keys and provides an e�cient key distributed solution, something vital
due to the huge number of devices in the edge. This scheme allows entities to
authenticate each other without the need to exchange credentials before estab-
lishing communication.

Then, we will discuss Trusted Execution Environments, an emerging technol-
ogy inside of a processor o↵ering a new base of trust. As a fog node is responsible
for receiving and propagating updates, clients must have some proof of trust to
use a fog node. Since we assume a fog node can be attacked and become mali-
cious, we need to o↵er the client some base of trust.

Identity-Based Encryption (IBE)[19] is a scheme that uses asymmetric keys
and allows any entity to generate someone else’s public key locally, which enables
any pair of users to verify each other’s signature without the need to exchange
public keys.

The cloud model uses the PKI that requires public keys to be shared. In PKI,
entities exchange public keys to authenticate each other, by proving they own the
private correspondent key. In this scheme the public keys come in a certificate,
which contains expiration date for key revocation. This scheme implies that one
entity must have the certificate of another to be able to authenticate. Thus, a fog
node would have to store as many certificates as there are fog nodes, to confirm
digital signatures of other fog nodes.

In a system with many entities, the distribution of the public keys may
become a burden. In IBE, public keys can be generated locally, using as input a
string that identifies the target identity. However, the private key of a user must
be generated by a trusted third party. One such party is called Private Key
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Generator (PKG). The PKG only provides the private key to an authenticated
entity, meaning that entities must authenticate towards the PKG to obtain a
private key correspondent to their identity.

For example, if Alice receives a message from Bob, she can locally generate
Bob’s public key and decipher the message, knowing that only Bob has the
corresponding private key (providing authentication and integrity). Alice is not
required to exchange keys with Bob. A public key for Bob can be generated by
providing a string, in this case, “Bob”. The PKG can only give the corresponding
private key to the entity Bob.

In this scheme, public keys do not possess certificates and therefore no ex-
piration date. Subsequently, key revocation is done di↵erently from PKI. Key
expiration can be done by adding the current date to the string when generating
public keys. For example, when Alice generates a public key of Bob, she uses the
string “Bob k current-date”. This method implies that all entities in the system
must authenticate every day if the granularity of the “authentication lease” is
one day, for example.

Trusted Execution Environments (TEE) [20,21] In the fog model, fog
nodes can become compromised and lead to leakage of private information or
leaving systems in a faulty state. In particular, the exposed location of such
nodes makes them more vulnerable. TEE is a secure area in the processor that
o↵ers a higher level of security than the operating system. Code that executes
inside a TEE is isolated from the operating system, providing integrity and
confidentiality, even if the operating system is compromised.

TEE is a natural choice to secure the computation and sensitive data in fog
nodes. Edge and fog devices are a very compelling opportunity to use processors
with this technology. With it, fog nodes can securely store private keys and
o↵er clients a base of trust. If fog node providers choose to have this kind of
technology, will have an additional security guarantee over the fog model.

A processor with this technology can operate in one of two modes, normal
world or secure world. Normal world is where the operating system and applica-
tions run without any special security guarantees, while in secure world mode,
application code has isolation, integrity, and confidentiality. This division be-
tween two di↵erent modes requires developers to build applications in two parts,
one for each world. One important goal of these architectures is enabling any
application to take advantage of this secure environment. Therefore, device hard-
ware configuration provides a TEE API, where applications in normal world can
request secure operations in secure world. These requests require the processor
to switch context between the two modes. When the processor switches from
normal mode to secure mode, it fetches the last state of the application that
will run in secure mode, decrypts it and verifies its integrity. When it goes from
secure to normal mode, it encrypts this state and stores it in memory. Between
context switch, this state is encrypted and decrypted using a key that is secure
in a chip element.
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TEE also o↵ers a remote call to verify that secure world inside the processor
has not been tampered with, which is known as attestation.

Examples of architectures with such TEE are: Intel SGX which is an archi-
tecture that already exists in many Intel processors and is a practical solution to
the fog (Intel Fog Reference Design [22]); ARM TrustZone that exists in proces-
sors focused on the mobile devices, o↵ering low-power consumption; AMD SEV
that can o↵er processor at a low price.

4 Related Work

This section discusses the reviewed literature in the areas of data consistency
and security in edge-fog. To achieve the goals in Section 2, we searched for ideas
present in the following works.

Our work will focus on providing security guarantees in a data store at the
edge, so we will try to define what kind of data store makes sense at the edge
and how to reach the security guarantees for this data store. To achieve this
goal, we will identify and then solve the following questions:

– Architecture, what kind of architecture can a data store at edge have?
– Operations, what are the operations that a data store have?
– Messages, what kind of messages can exist in a data store?
– Authentication, how to provide authentication for clients and fog nodes?
– Integrity, how to ensure message integrity?
– Confidentiality, how ensure that only authorized entities can read the con-

tent of a message?
– Non-Repudiation, how to identify the origin of a message?
– Availability, how to respond to the highest possible number of requests?
– Untrusted Nodes, how to avoid or deal with a fog node becoming mali-

cious?

The remainder of this section is organized as follows: Section 4.1, presents
three systems that o↵er causal consistency on a distributed data store. This work
will help answer what kind of architecture, operations, and messages exists in
such systems. Section 4.2, addresses previous work related to security that can
be applied in fog computing and helps to answer the other questions presented
above.

4.1 Causal Consistent Data Stores

In this work, we assume that a data store is a distributed repository for per-
sistently storing data, which is replicated among multiple remote replicas. So
that a remote replica can apply an update respecting causal order, it is neces-
sary to generate metadata associated to each update. For the cloud level, there
has been considerable research on how to generate and propagate metadata e�-
ciently. However, most works assume that cloud nodes can trust each other, and
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do not use sophisticated security mechanisms (other than using secure channels
when exchanging metadata among nodes). We will introduce the use of stronger
security mechanisms in the forthcoming sections.

We start by presenting several alternatives to o↵er causal consistency in
data stores while keeping metadata size small and low latency for clients. In the
following paragraphs we describe Saturn and COPS, which detail architectures
for the cloud layer and GESTO, that is located at the edge. These are the kind of
storage systems that we pretend to secure. Therefore, we will be able to answer
what type of architecture, operations, and messages exists in such systems.

4.1.1 Saturn [9] Saturn is a metadata distribution system at the data center
level that ensures the causality of updates in a geo-replicated storage system. In
Saturn, a client is required to connect to a data center before he can perform read
and write operations. To ensure causal order of the updates, Saturn generates
metadata for each update. The metadata associated with each update is called
label. Data centers are responsible for generating labels for each update and
propagating them to remote replicas and clients. Saturn assumes that replicas
are organized in a tree for an e�cient metadata propagation.

A label in Saturn contains the following components: a type (that can have
two di↵erent vaues, namely update or migration); a source identifier of the data
center that generated the label; a timestamp that consists of a single scalar; and
a target that indicates which data item should be updated (or a data center in
the case of migration).

When a client connects to a new data center, also known as migration, first he
needs to attach to this new data center. The client sends his label, and the data
center verifies that it has all the necessary updates to ensure that the client’s
causal history is respected. If an update is missing, the client will have to wait
until the data center can perform all the required updates. Once the client is
attached to a data center, he can perform write and read operations.

A read request from a client implies that he has performed attachment and
therefore the server contains all the required updates to respect the causal past of
the client. Thus, the data center only needs to return the most recent value and
its label; the client will replace his old label with the new one. After replacing the
label, the client becomes causally dependent on this new value. This dependency
is captured by the label.

For a write request, the client sends the data key (target), the new value, and
his current label. Then, the data center applies the update and generates a new
label, with a greater timestamp than the one of the client. Afterward, the new
label is propagated to the other replicas and returned to the client, replacing his
old label. When a remote replica receives the new data and the new label, it first
verifies if it has all the necessary updates to guarantee that the causal order is
respected, then it applies the update and finally stores the label.

An essential feature of Saturn is its data center topology: since the replicas
are organized as a tree, the propagation of the metadata between them is more
e�cient. Also, the size of metadata is constant, independently of the number of
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replicas in the system. However, due to the reduced size of the metadata, the
updates have more false dependencies that correspond to an increase in latency
when applying the updates.

4.1.2 COPS [10] COPS is another geo-replicated system at the data center
level that o↵ers causal consistency for a distributed key-value store.

In COPS, in contrast to Saturn, clients are responsible for handling their
causal history. To achieve this, clients maintain, in memory, a graph with their
dependencies, hereafter referred to as context. The context is composed of objects
ID and their corresponded version; this version is a single timestamp. In COPS,
replicas do not assume any particular architecture to propagate metadata.

Whenever the client reads a new object, it updates its context with the new
version of this object. The data center only needs to return the latest object and
the correspondent version.

For a write operation, the client first generates the nearest dependencies base
on his current context. Nearest dependencies are obtained by eliminating updates
that are directly dependent, and therefore significantly smaller in size than the
context. Then, the client sends the nearest dependencies, the object key, and
the new value to the data center. Once the data center receives the update, it
assigns the key a version number and returns it to the client. Since the client
holds a session with the data center, the update can be immediately committed
at the local data store. In a remote replica it must verify that it has all nearest
dependencies locally, before committing the update.

Although the migrations are not specified in COPS, it is still possible for a
client to migrate from a data center to another. Since clients hold their entire
causal past, once they arrive at the new data center, they can just wait until all
the required updates are committed in the new data center before reading.

The main feature in COPS is that the dependency context is stored in the
client, allowing a write to be performed at any data center while still o↵ering
causal consistency. A direct downside is the memory and computation required
by the client to maintain his context.

4.1.3 Gesto [7] Gesto is also a system that o↵ers causal consistency on a data
store, however with architecture at the edge level. This system takes advantage
of nodes close to the edge to build an architecture that can o↵er causality from
the cloud to the edge. These nodes, which provide resources and are outside the
data centers, closer to the edge devices, are called cloudlets, conceptually similar
to fog nodes.

Gesto has a significantly di↵erent architecture from previous systems. It uses
a star topology, where we can find in the middle a single broker and all the
cloudlets in one region are connected to the broker of that specific region. Clients
then connect to cloudlets and perform updates. The metadata generated to these
updates is composed of two timestamps, known as multipart timestamp, one for
the regional broker and another for the local replica (cloudlet). This metadata
only has meaning within the region where it was generated.
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Tomigrate from one replica to another, a client uses his multipart timestamp.
When arriving at a new replica, the client issues an attach request and sends
his multipart timestamp. A replica keeps track of the last update that it has
received for each regional replica and the highest regional timestamp. Thus, a
replica can accept the attachment request when the following conditions are
verified: having a highest regional timestamp than the client, and when it has
seen a higher timestamp from the previous replica of the client.

To write an object, a client generates a unique identifier and forwards the
update along with his current multipart timestamp to the local replica. The
replica then increments the local timestamp, applies the update and propagates
the metadata to the regional broker. When metadata arrives at the broker,
“merges” the metadata consistent with causality, using the regional timestamp
and propagates to the replicas that cache the associated data.

A read operation expects the client to have already attached to the local
replica. Therefore, the replica can simply return the requested data and corre-
spondent metadata.

This system has small metadata and an e�cient migration between replicas
to tackle the high dynamism of the network, o↵ering an interesting solution to
guarantee causal consistency on the edge. A consequence of small metadata is
that the system can have high false dependencies between regions.

4.2 Providing Security in Fog

The existing systems that o↵er causality in data stores (Section 4.1) are
mostly focused on performance, and thus disregard the need for enforcing secu-
rity guarantees. However, providing that the implementation of such systems is
moved to the fog, new security challenges arise [5,6,14]. To find an answer to
such challenges, we survey existing literature which dwells on securing multiple
layers of the fog infrastructure, including the cloud, fog, and edge. It is notice-
able that, although there is excellent research in this area, there are very few
solutions available which provide security, particularly in communications. In
this section, we present some ideas and works that are relevant for our solution.

In Section 4.2.1, we start by introducing three schemes that can help au-
thenticate entities in the edge-fog. Then, Section 4.2.2 presents two di↵erent
techniques that establish secure communication between entities in the network
with integrity, confidentiality, and non-repudiation. Finally, in Section 4.2.3, we
take a close look at previous work which mitigates the e↵ect of compromised fog
nodes on a system’s infrastructure.

4.2.1 Authentication

As observed in Section 3.4.1, authentication is an important property in fog
computing. However, due to the heterogeneity of edge devices and low latency
requirements, specific techniques are required to o↵er authentication at edge-fog
layers. The remainder of this section is devoted to presenting three schemes that
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try to hold this property in such an environment. We first present a lightweight
authentication scheme based on hardware, then an architecture that allows de-
vices to use resources from a cloudlet in an o✏ine environment, finally a mutual
authentication scheme that uses symmetric keys.

Lightweight Hardware Based Secure Authentication Scheme for Fog
Computing [23] This scheme o↵ers a unique way for devices to authenticate
themselves towards a fog node without cryptographic keys. This is possible by
taking advantage of the heterogeneity of edge devices. Since chip manufacturing
is an unpredictable and uncontrollable process, it is possible to have physically
unclonable functions (PUF) in a device. These functions guarantee that, given
a set of inputs, the output will be unique for each device. When a manufac-
turer builds a device runs a series of challenges on this device and stores the
responses to these challenges. With this pair of challenges and responses, he
builds a model using machine learning techniques. This model can be created
using methods such as neural network or logistic regression; the training phase
uses the challenges as input and the responses from the PUF as output.

Once the device is online it will authenticate towards a server; the server will
require to have access to the extracted model. Then the server will issue a set of
challenges to the device and run the same challenges in the local model. When
the device responds, the server compares the responses, and he can authenticate
the device.

This technique avoids the use of cryptographic keys to authenticate devices
and requires little memory to store a model. However, the distribution of these
models is a problem equal to the distribution of cryptographic keys. Also, it does
not o↵er non-repudiation since the server can steal the device identity using the
extracted model.

Establishing Trusted Identities in Disconnected Edge Environments
Computing [24] This work presents an architecture that provides authentica-
tion of entities to a cloudlet in a disconnected environment; it addresses a special
type of cloudlets, named tactical cloudlets, that are built to operate mostly of-
fline. Their main goal is to give support for first responders, search and rescue
teams, military personnel, and others operating in crisis environments. In this
architecture, a cloudlet is separated into two components: a server and a radius
server. The server is responsible for all the computation while the radius server
is responsible for authenticating devices so that these can use server resources.

The trust is established by the following steps:

1) Bootstrapping Process- Every deployment of a tactical cloudlet starts with
a clean state, generates a new pair of private and public keys for the cloudlet
and sets a deployment duration.

2) Pairing Process- Where the cloudlet generates the device credentials. First,
the cloudlet administrator connects the device via USB or Bluetooth to the
server. Then the server uses IBE to generate a private and public key for the
device, using the device ID (android device ID) and a BLS certificate (BLS
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certificate is the device public key signed by the server’s public and private
keys). Afterwards, the server sends these three elements plus the radius server
certificate to the device and deletes the device’s private key locally.

3) WiFi Authentication Process- The client establishes a TLS connection
with the server. This connection requires the authentication of the radius server.
The device can verify if the radius server has the correspondent private key from
the certificated received during pairing. Then, through the encrypted channel,
the device sends its credentials Public key and BLS certificate as username:
password. The radius server checks these credentials and if it succeeds allows
the device to use the server’s WiFi network.

4) API Request Process- The service is provided using http request/response
protocol. To encrypt the communication the device can use any of the previous
cryptographic elements or generate a new one and share it with the server.

5)Automatic and Manual Device Credential Revocation- The cloudlet will
refuse connections after the deployment duration, and a cloudlet administrator
can manually delete a device from the cloudlet revoking his credentials.

To authenticate devices in an o✏ine environment, this architecture assumes
that a single cloudlet is fully trusted which is something that is not practical in
our model. The BLS [25] certificate uses short signatures that are half the size
of a DSA (Digital Signature Algorithm) signature for a similar level of security.
This is something that we can use in our solution since devices can be resource
constrained. It is particularly a good security idea to separate the authentication
from the system.

Octopus: An Edge-Fog Mutual Authentication Scheme [26] This system
allows any edge device and any fog node to authenticate each other mutually.
In Octopus, the network model has three layers: first, a Registration Authority
(RA) located at the cloud; second, a layer composed of multiple fog regions, each
fog region is composed of multiple fog nodes; third, an edge layer where users
are located.

This scheme is based on the RA generating a symmetric key for each pair
of user fog node and distributing these keys among the fog nodes of the region
where the user is located. This symmetric key can easily be generated by the
user, using only a hash function. To establish a connection, both user and fog
node need to prove they possess the shared secret by exchanging nonces and
then establish a session key using this shared secret.

Registration Phase: The first time a user connects, he must register his iden-
tity in the RA. Since the RA is in the cloud, it is assumed that the user can es-
tablish a secure connection (example using PKI). Then RA generates and stores
a long-lived random master secret key for the user and sends him this secret.
Then, the RA computes a key for each fog nodes: kUFN = H(IDF , IDFN , SU ),
where H is a hash function, IDF is the fog region identifier, IDFN the fog node
identifier and SU is the user master secret. After it, the RA sends each key to
the corresponding fog node in the region encrypted with the fog node public
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key. Each fog node upon receiving, stores hIDU , k
U
FN i, where IDU is the user

identifier and k
U
FN the correspondent key.

Authentication Phase: When a user connects to a fog node it sends the fol-
lowing message hHelloFog, IDU , rU i, where rU is a random nonce. Then the
fog node also generates a random nonce rFN and encrypts both nonces using
the symmetric key correspondent to the users, received in the previous phase,
E(kUFN , (rU , rFN )), where E is a symmetric key encryption function that receives
a key and a text as parameters. This ciphertext is sent to the user, then the user
computes kUFN , decrypts and checks validity of rU . Since only an authorized fog
node can have k

U
FN to generate such a message, the fog node is authenticated.

Next, the user generates a session key ks and sends E(kUFN , (rFN , ks)) to the fog
node. Finally the fog node decrypts and checks validity of rFN , if the rFN is
correct the fog node accepts ks as a session key.

Octopus is e�cient in the user’s side since the user only uses symmetric
keys and stores a single master secret key. The user only needs to communicate
with the cloud if he moves to a di↵erent fog region. Otherwise, he can locally
generate the key to communicate with a fog node, o↵ering a low latency when
migrating in a single region. However, in this scheme fog nodes are required to
compute a cryptographic function at the beginning of the Authentication Phase,
which allows the fog node to su↵er from Denial of Service from authenticated
devices. Also, fog nodes store a key for each user in a region even if they never
communicate with that user.

4.2.2 Secure Communication

After an edge device and a fog node establish mutual authentication, they re-
quire secure communication with integrity, confidentiality and non-repudiation,
for a device using the fog node resources. In the fowling paragraphs we describe
multiple research e↵orts aimed at allowing a remote entity to process informa-
tion from edge devices in a secure way. First, we present a system that shares
symmetric keys with middleboxes allowing them to perform specific operations.
Then we present a protocol to propagate messages using IBE.

Multi-Context TLS (mcTLS) [27] In today’s Internet, HTTPS is widely
used to protect communications between two entities. HTTPS is based on TLS
handshake; this scheme allows the server to authenticate himself to the client
through his certificate and establish a symmetric key between them. Companies
and business are implementing middleboxes that are located in between the
client and the server. These middleboxes have the job for Cache, Compression,
IDS, Parental Filter, among others. A middlebox is seen as a fog node because
it can, for example, aggregate and process information from a sensor and only
pass the message to the cloud if a piece of relevant information appears.

As communication is encrypted it makes it harder for middleboxes to do their
job and mcTLS has developed a solution that allows middleboxes to read and
change messages while keeping confidentiality between endpoints.
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Fig. 2. Message in mcTLS.

This solution is based on using multiple cryptographic keys; each key o↵ers
a capability over a message. One key for reading a message, a second to change
the content of the message, and a third to verify if a message was modified.
A message comes along with 3 MACs, signed with each key. The data comes
encrypted using the readers key, as shown in Figure 2.

A reader only owns the readers key. He can decipher and read the data of
a message and verify the MAC correspondent to his key. A writer owns the
readers and writers key; he can read and modify the data. If he alters the data,
he must compute and replace two MAC s, the reader’s and the writer’s MAC s.
The endpoints are the client and the server; they share the endpoint key and own
all other keys and they have an extra MAC to detect if any middlebox changes
the message.

These keys are distributed by the endpoints. A middlebox only has access to
a specific key if both endpoints agree on it. Then they send the key back to that
middlebox, allowing it to do its job. This allows a more fine-grained access control
over a message. However, this scheme still requires that all communications pass
through the cloud having high latency, something that we want to avoid by
processing data in the edge. If the client establishes multiple connections, he
has to store many keys for each of them, which makes it di�cult to manage
the keys. In this system, integrity is ensured by using MACs, confidentiality is
o↵ered by the readers key, and non-repudiation does not exist, since multiple
parties possess the same key.

Privacy and Confidentiality in Context-Based and Epidemic Forward-
ing [28] Normally protocols that disseminate information through nodes in a
network require these nodes to know the exact identity of the destination and,
in most cases, they must exchange public keys. In Context-based forwarding [28]
a node can send a message by only knowing partial information of the destina-
tion, its context, and without any key exchange. Additionally, the message has
privacy and confidentiality.

The destination can be a single entity or a group. Thus destination is defined
as a set of attributes such as location, workplace, name, organization. For each
of these attributes, an entity receives a private key from a trusted third party.
In this design, a message is separated in header and content.
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The content is encrypted with the destination‘s public key using Identity-
Based Encryption, however, the string used to generate the public key is a con-
catenation of the destination attributes.

The header is composed of all the destination attributes, to identify the
destiny of a message. These attributes are encrypted using Public Encryption
with Keyword Search (PEKS) to ensure privacy. PEKS allows a node to verify
if some keyword exists in a ciphertext, without reading its content. This way,
nodes can compare their attributes against the PEKS in the header maintaining
the destiny privacy. When a node shares all attributes of a header, then he can
decipher the content.

This architecture o↵ers an accessible manner to manage the system keys
taking advantage of IBE. It is also interesting the idea that a message can be
sent through the network without the need to know the destination, only that
it has a set of attributes. At the edge due to a large number of fog nodes, it is
interesting to be able to send a message to another fog node without knowing its
entity. Thus avoiding having to identify all the nodes that replicate a particular
content.

In this system, confidentiality is provided by using a key which is the con-
catenations of the destination attributes. Integrity and non-repudiation are not
guaranteed since multiple entities can generate the same messages if they pos-
sess the same attributes. But if the IBE public key is generated using a unique
identifier, we can send the message with a hash encrypted with the private key
of the origin, o↵ering integrity and non-repudiation.

4.2.3 Untrusted Nodes

Fog nodes or cloudlets are devices in the fog layer that have significant com-
puting resources, low latency to the (local) edge devices, and are well connected
to the network. These fog nodes are in physical locations that make them more
vulnerable to tampering. Thus, to achieve the goals in Section 2 we must consider
that these nodes may become malicious. In our work clients will perform updates
in a fog node and it will be responsible for generating metadata to ensure causal
consistency in the system. If a fog node becomes rogue, he could swap the order
of the updates or generate wrong metadata, subsequently, breaking the causal
consistency.

Here, we introduce two di↵erent ideas to avoid malicious fog nodes:

1) Using a quorum protocol to maintain availability in the occurrence of a
malicious node, thus we present a system that uses quorums to deal with Byzan-
tine faults. One possible behavior of a byzantine node is dropping messages, a
quorum protocol allows to hide this kind of behavior.

2) Using Trusted Execution Environments (TEE). Due to the recent focus
on fog computing applying these TEEs on the fog would be a natural choice
to secure computation and sensitive data [21]. Therefore, we present a specific
example of a system using Intel SGX.
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Minimal Byzantine Storage [29] Malicious fog nodes can be seen as servers
in the presence of a Byzantine fault. A Byzantine fault is the loss of the correct
behaviour of the system and can result in an arbitrary behavior, even one that
can be considered malicious. In the topic of storage systems research can be
found on designing systems that can tolerate f byzantine faults. Usually, these
systems rely on a quorum, which is a subset of servers in a system that has a
shared variable. Clients perform read and write operations only on one quorum
of servers. The number of servers is a crucial metric since, in the presence of a
failure in a quorum, the rest of correct servers must ensure availability for the
clients.

An example of such system is Minimal Byzantine Storage [29], they present
Small Byzantine Quorums with Listeners (SBQ-L). This protocol requires 3f + 1
servers to tolerate up to f byzantine faults. They o↵er atomic semantics, a guar-
antee that the sequence values read by any given client are consistent with the
global serialization. This is possible by using the “Listeners” pattern that detects
and resolves ordering ambiguities created by concurrent accesses to the system.
Next, we show the size of the write quorum Qw and the read quorum Qr, where
n is the number of servers.

Qw =
n+ f + 1

2
,Qr =

n+ 3f + 1

2

When a client performs a write, first he queries a quorum of serves Qw to
determine the new timestamp and this timestamp must be higher than all pre-
viously seen by the quorum. Then he sends the data and the new timestamp to
all servers and waits for acknowledgments from the Qw.

To perform a read, the client queries a quorum of servers Qr and waits for
replies. He may receive more than one message from a server if writes are in
progress. The client will maintain the replies until Qw servers agree on the same
data and timestamp.

A strong aspect of this work is that it relies on asynchronous communication
and o↵ers a protocol that maintains system availability in the case of a server
losing his correct behavior. In particular if a server drops messages instead of
propagating updates. A client has visibility when a server is misbehaving; he
could inform the system if that is the case. However, this requires a few messages
to be exchanged at every operation penalizing the system latency.

Harpocrates: Giving Out Your Secrets and Keeping Them Too [30]
Content Distribution Networks (CDNs) is a geographically distributed network
of proxy servers, which is located close to the users at the edge, and host static
content. The CDNs o↵er low latency and high scalability like fog computing and
are already used for applications that provide static content, such as images and
videos to users. However, providers of such CDNs are trying to evolve to fog
computing and are implementing computation inside the CDN servers and one
example of it is “Cloudflare CDN”.
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Many CDNs work as a proxy for the origin web server, working as “man in
the middle.” When a client does a DNS lookup for some server, the result may
be the IP of a CDN server instead of the intended server. This technique hides
the origin server IP and is reliable protection against DoS. However, for a CDN
server to authenticate towards a user, it requires keys or other types of sensi-
tive information, and the owners of applications may not fully trust the CDNs
providers. To tackle this issue, Harpocrates uses trusted execution environment,
Intel, Software Guard Extensions (Intel SGX).

Fig. 3. An Application in Intel SGX.

Intel SGX is an extension of the processor architecture and enables applica-
tions to use a TEE, known as enclave. Applications must be built in two parts:
an untrusted part and a trusted part, Figure 3. The trusted part will run inside
the enclave, where the code and data have integrity and confidentiality. The
untrusted part can make an Enclave Call (ECALL) to switch into the enclave
and start the trusted execution. The CPU verifies the integrity of the code and
data of the trusted part and executes. The code inside the enclave makes an Out
Call (OCALL) and returns to the untrusted part. When leaving the enclave, the
CPU encrypts the data and stores a hash of the data. Another important feature
of the SGX is the attestation that allows a client to execute a remote call over
the CPU to have a proof that he is communicating with the specific code in a
real SGX enclave, and not an impostor.

In Harpocrates the main goal is to serve client requests at the edge, while
keeping secure the origin master secret. This secret is needed to authenticate
the server. The solution is to store the master secret inside the enclave. Each
enclave has an initialization function that will contact the origin server. The
origin server will use remote attestation to authenticate the code, and the SGX
then will send the master secret through this secure channel. This allows the
CDN proxy to verify cookies and read messages content, without direct access
to the master secret.

The protected memory size in an enclave can contain tens of megabytes,
typically 64 MB or 128 MB [31]. Therefore, it is essential to minimize the memory
usage inside the enclave. In particular, the use of more memory also increases the
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swap time from enclave and out. While attacks against SGX like Foreshadow [32]
exist, Intel continues to investigate how to mitigate these issues. However, SGX
could be implemented inside fog nodes, o↵ering a trust base for the edge devices.
In our work, such guarantees could help to secure cryptographic keys or execute
secure functions.

4.3 Discussion

In this section, we discuss the previously presented work, especially the ideas
presented in the related work that can help us to reach a solution. We start by
looking at four tables (Table 1, 2, 3, and 4) that summarize this information,
then we focus on answering the questions presented at the beginning of Section 4.

In order to apply security to a data store on the edge first we need to define
what type of data store makes sense at the edge. In Table 1 we can see what
type of features are essential for this kind of data store. It should be noted
that although Gesto is designed to support edge computing its topology is not
scalable as the tree topology in Saturn.

Tables 2, 3, and 4 provide an overview of the problems the surveyed systems
try to solve, the technologies they use, and how these technologies can help
us achieve our goals. Looking at Table 2 we have an overview of what kind of
challenges each system is able to solve in their own context. In Table 3 it is
visible which technologies are used by these systems to achieve their solutions.
Finally, Table 4 compares which of these technologies may be useful to reach our
objectives in the context of a data store on the edge.

Systems
Server

Topology

Edge

Support

Client Controls

his Causal Past
Operations Metadata

Saturn Tree — — W,R,M
Scalar
O(1)

COPS — — yes W,R
Graph
O(K)

Gesto Star yes — W,R,M
two Scalars

O(1)
Table 1. Comparison of the di↵erent data store solutions. K is the number of
all data objects in the system. W, R and M represent write operation, read
operation, and migration operation, respectively.

– Architecture An important factor in our work is to identify which com-
munication channel may exist in such systems. COPS [10] do not have a
particular architecture to propagate messages. Gesto [7] uses a star topology
in a region. If a region has many cloudlets, then the broker can become a
bottleneck. In Saturn [9], messages are propagated in a tree topology, which
is a scalable and e�cient way to propagate metadata.
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Systems Authentication Integrity Confidentiality NR

Tolerant to

Malicious

Nodes

E�cient

for the

Client

PUF yes — — — — yes
Tactical
Cloudlet

yes yes yes yes — —

Octopus yes — yes — — yes
mcTLS yes yes yes — — —

Context-Based
Forwarding

yes — yes — — —

MinByz — — — — yes —
Harpocrates yes — — — yes yes

Table 2. Concerns address by the surveyed systems. NR is non-repudiation of
the message origin.

Systems
Symmetric

Keys
Model IBE PKI TLS BLS Quorums Intel SGX

PUF — yes — — — — — —
Tactical
Cloudlet

— — yes — yes yes — —

Octopus yes — — yes — — — —
mcTLS yes — — — yes — — —

Context-Based
Forwarding

— — yes — — — — —

MinByz — — — — — — yes —
Harpocrates — — — — — — — yes

Table 3. Techniques used by the surveyed systems.

Techniques Authentication Integrity Confidentiality
Device

NR

Cloudlet

NR

Updates

Availability

Order

Integrity

E�cient

for the

Client

Symmetric
Keys

yes yes yes — — — — yes

Model yes — — — — — — yes
IBE yes yes — yes yes — — —
PKI yes — — yes yes — — —
TLS yes — yes yes yes — — —
BLS yes yes — — — — — yes

Quorums — — — — — yes yes —
Intel SGX yes — — — yes — yes yes

Table 4. Concerns of our system that can be solved using the previously pre-
sented techniques. NR is non-repudiation of the message origin.
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– Operations Like in Saturn, COPS, and Gesto, clients can execute read and
write over data in a server. Clients are also able to migrate between replicas.

– Messages All these systems have in common the decoupling of metadata
from data, associated with an update. Also, metadata is the most relevant
part of the system, and for this reason, we look for ways to secure these
metadata. Metadata size is an important factor to reach better performance
in a data store. Saturn and Gesto o↵er relatively small size metadata, due
to only propagating scalars as timestamp and unique identifiers. However,
COPS send a dependency graph in every metadata, increasing the size con-
siderably. As a result of this trade-o↵, COPS has less false dependencies than
Saturn and Gesto.

– AuthenticationOur solution requires mutual authentication from the client
and the cloudlet. Clients need to be authenticated to check if such entity has
the authorization to operate over some data. Cloudlets must authenticate as
well, avoiding a client sending confidential data to an untrusted party imper-
sonating a cloudlet. Octopus [26] and the PUF scheme [23] are lightweight
schemes, but they do not o↵er non-repudiation over cloudlet messages. In
the concept of tactical cloudlet [24], they assume the cloudlet is trusted and
clients have physical access to establish a key exchange, something not prac-
tical for our solution. On the other hand, they use BLS certificates. We could
use BLS signatures to generate MACs. In tactical cloudlet [24] they also use
IBE to generate a key pair for a client. We can use IBE to generate a key
pair for every client and cloudlet. However, a PKG is necessary and it can be
placed in the cloud. The clients must interact with the cloud, but only once.
So they can receive their private key, then they can authenticate directly to
the cloudlet.

– Integrity In mcTLS [27] there are several MACs however in our systems
the fog nodes must propagate messages and not modify them. So, we just
need a MAC signed by the origin fog node.

– Confidentiality Using a symmetric key like in mcTLS is impractical be-
cause it requires huge management to distribute so many keys. Using some-
thing like context-based forwarding [28] implied that all the fog nodes shared
the same attributes, so it would be easier to share a symmetric key between
all the fog nodes.

– Non-Repudiation In mcTLS [27] the keys are always shared by more than
one entity, so it is impossible to have Non-Repudiation. In context-based
forwarding [28] we can generate private keys for each entity based on a
unique identifier instead of attributes, and MACs can be signed using this
key o↵ering non-repudiation.

– Availability Our system must maintain a similar level of availability as the
data stores in Section 4.1.

– Untrusted Nodes Another important part of our work is how to detect
and avoid malicious nodes from generating harmful metadata that can leave
the system in a faulty state. We mention two ways to do this: the first
were quorums [29], requiring a device to contact multiple cloudlets for each
update. If a cloudlet replies/sends an incorrect message, the client could
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Fig. 4. Communication channels.

notify the cloud for such cloudlet. This solution requires multiple connections
that can be a problem for devices with limited resources; the second solution
was using TEE, such as Intel SGX [30], a solution where clients can have a
base of trust in cloudlets. However, enclaves possess small memory size and
using this in our solution requires techniques to avoid this low memory issue.

As discussed, none of the previous work can fully address our challenges, and
therefore we choose the best of each system to build one that can fulfill our goals.
In the next section we present the architecture that a data store should have at
the edge. Then we present our solution based on our discussion.

5 Architecture

In our scheme clients are edge devices and execute read and write operations
on a cloudlet, as illustrated in Figure 4. Cloudlets communicate between each
other and with the cloud, in order to synchronize updates. Each cloudlet main-
tains replicas of data objects, the distribution and managing of such data is a
responsibility of the data store.

Our goal is to maintain the functionality of the system in the eventuality the
cloudlet becomes rogue. We assume clients are trusted. We also assume that each
cloudlet has a processor with the Intel SGX extensions, as depicted in Figure 5.
For the cryptographic scheme we chose IBE which implies that both clients and
cloudlets have private keys, in particular, the private key of the cloudlet is inside
the enclave.
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Fig. 5. Cloudlet architecture using the Intel SGX extension.

5.1 System Threats

In a data storage system located on the edge, the data is replicated by several
cloudlets, subsequently clients read and write over the data stored in a cloudlet.
If the data store ensures causality, cloudlets are responsible for generating meta-
data for each update. This metadata allows remote cloudlets to apply these
updates in causal order. As mentioned before these cloudlets can be attacked,
therefore they stop working correctly. Our work will focus on avoiding malicious
cloudlets that can generate metadata in a way that causes the system to fail.

Our system has three entities: clients that are on the edge, cloudlets in the
fog, and the cloud, shown in Figure 4. The cloudlet is the only untrusted entity.
Clients and cloud are assumed to be reliable and will always behave correctly.

The causal consistency guarantee of a data store is highly dependent on the
correct generation of metadata. On systems like Saturn [9], updates are seri-
alized locally, and a server generates metadata representing that order. So, we
can assume that a cloudlet has the responsibility of generating metadata that
respects the order in which it applies the updates. These updates must be ap-
plied respecting causality. If the cloudlet is compromised, it could simply change
the order of two updates that are causally dependent, to break the causality
guarantee of the data store.

Metadata is also propagated through multiple cloudlets. It is necessary to
prevent a cloudlet from modifying metadata without being detected. Addition-
ally, it is essential to guarantee that the metadata generation for each update
is correct and respects the causal order. However, a client that is connected to
a single cloudlet cannot verify if the cloudlet is generating and propagating the
correct metadata. Cloudlets that are receiving this metadata also do not know
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the order in which the source cloudlet received them, so they can not verify too
if the order is correct. This problem is directly related to the fact that the only
entity that knows the correct order by which the updates were applied is the
origin cloudlet itself. Additionally, a cloudlet is also responsible for checking a
client’s past before accepting an operation to ensure that their data respects the
client’s causal past.

5.2 Solution

In our solution, we use Identity-Based Encryption scheme to generate cryp-
tography keys, and cloudlets possess Intel SGX extension to o↵er a base of trust.
In this section, we describe how we will achieve the goals defined in Section 2.

We first describe how to guarantee the properties in Section 3, such as Au-
thentication, Data integrity, Non-Repudiation, and Availability. Then, we ex-
plain how our solution can deal with untrusted cloudlets.

Authentication Entities authenticate using private key that they acquire in
the PKG. PKG is security located in the cloud. For a cloudlet to acquire his
its private key, it has to o↵er an attestation proof to the PKG. On the other
hand, a client can connect via HTTPS and authenticate to the PKG, like in
the cloud computing model. After verifying the credentials, the PKG generates
and sends the respective private keys. We need to send the private key through
the network because, before booting, the Intel SGX contains all data in plain
text, including the enclave data, making it impossible to place a private key in
cloudlet bootstrap.

Data Integrity All messages in the system are accompanied by a MAC, which
is signed using the entity’s private key. Therefore, no entity outside the system
can change a message without being detected. When a message is propagated
between cloudlets an intermediate cannot modified it, because the enclave con-
tains the private key, and only generates metadata from updates that come from
clients.

Confidentiality Metadata must be visible to all entities in the system, so con-
fidentiality is not an important property to ensure the correct operation of the
system. However, it is possible to o↵er confidentiality of the messages. If the
cloudlets are organized in a tree like the servers in Saturn, we can use Tree-
based group key agreement [33] to establish a key between all the cloudlets and
encrypt the metadata with this key.

Non-Repudiation Since every message has a MAC signed with the source
private key, it is ensured that no other entity is responsible for generating such
a message and the system only accepts messages that are correctly signed by a
private key generated in the PKG.

Availability A cloudlet will accept requests from every authenticated and au-
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thorized client, meaning every client with a private key generated from the PKG
can execute requests.

To guarantee that a cloudlet will always generate the correct metadata for
each update, we use the Intel SGX extension. We take advantage of the enclave,
every time a client makes a read or write operation. Clients will only accept a
reply if it is signed with the private key of the cloudlet. This private key is stored
inside the enclave. So, even if the untrusted zone is compromised it can never
access this private key, therefore cannot generate wrong metadata. The enclave
is responsible for knowing the most recent data value, and for generating the
metadata.

However, the untrusted zone of the enclave can drop messages, it can reply
correctly to a client and not propagate the respective metadata. If such an event
occurs, the enclave will still be able to guarantee causal consistency, but the client
updates will not be available elsewhere. To answer this issue it is required that
the client contacts a second cloudlet and confirms that it has received updates.
This solution is similar to the Minimal Byzantine Storage [29]; a client must
contact a quorum of cloudlets to ensure that his updates are being propagated.

5.3 Optimizations

The Intel SGX enclave memory is limited, just a few hundred megabytes and
a data store can hold thousands of objects. In addition, the clients can be devices
that have few resources and the use of asymmetric keys can be costly. To deal
with it, we consider additional measures for the two scenarios.

Enclave Memory So that the enclave can know the most recent value from a
data object, it must store information for each object. This data must be stored
in the untrusted zone. To avoid replay attacks, the enclave must store some
information to guarantee the integrity of this data in the untrusted zone. Note
that confidentiality is not necessary, only integrity.

Symmetric Key To avoid always performing operations with asymmetric met-
ric keys, a client and an enclave can establish a secured channel based on a
negotiated symmetric key. However, a private key is still needed for authentica-
tion towards the enclave and it will only be used to establish a symmetric key.
Afterward, the client’s MACs could be signed using this symmetric key.

6 Evaluation

Our main goal is to evaluate the overhead imposed by our solution, thus
we will use similar metrics as in the previous system, such as Saturn [9] and
Gesto [7]. We will evaluate our system in three di↵erent topics: 1) performance
on the process of updates; 2) adaptability when new devices connect; 3) tolerance
to malicious nodes.
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6.1 Performance

As in many of the systems that o↵er causality on storage services, these
systems use visibility, latency and throughput of remote updates as the main
performance metrics. Thus, we will also measure this metric in this way, and
discuss if the overhead is still accepted in a storage service in the edge.

Visibility latency can be defined as the di↵erence between the update cre-
ation clock and the time this update becomes visible in a remote replica, while
throughput is the number of updates that become visible in a replica over an
amount of time.

6.2 Adaptability

Since the authentication phase usually has a significant computation penalty,
we will measure the overhead that our system imposes when clients migrate
between replicas. This is important due to the dynamism of the network at the
fog and edge layer. We will measure the time it takes for a device to start using
a fog node. It is important that after the authentication the entities no longer
require the use of the cloud, a significant feature for services in the edge.

6.3 Tolerance to malicious nodes

To check the system’s behavior in the presence of a malicious node, we sim-
ulate malicious nodes and measure the time the system takes to identify such
node and revoke his identity. This malicious node can change the content of
messages, try to break the causality of the storage service or drop messages.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

8 Conclusions

With the growth of resource constrained devices in the network periphery,
known as edge devices, the need for cloud services also grows. With this number
of devices, the amount of data being sent to the cloud will be too much for the
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current network bandwidth. Thus, arises a need for cloud resources closer to the
edge, emerging the fog computing model.

Applications that take advantage of fog computing will require data consis-
tency such as in the cloud model. However, the techniques used to maintain
data consistency in the cloud are not easily transported to the fog computing.
Currently, there is work on this type of systems such as the Gesto [7].

However, these systems are built on the basis that the data centers in the
cloud are secure, focusing on performance and low latency requirements. In the
fog model, we can no longer rely on secure servers, due to the exposed location
of servers such as fog nodes, thus rising a need for edge security assurances.

In this work, we o↵er some security techniques to ensure the correct operation
of storage applications with causal consistency at the edge. We focus mainly
on the generation and propagation of network metadata in the occurrence of
malicious fog nodes.

We leave for future work evaluating the overhead that the proposed solution
brings to existing systems, and whether this overhead is acceptable for the low
latency requirement that the fog computing model has.
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