
Omega: a Secure Event Ordering Service for the Edge
(extended abstract of the MSc dissertation)

Cláudio José Pereira Correia
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues and Professor Miguel Correia

Abstract—Edge computing is a paradigm that extends cloud
computing with storage and processing capacity close to the
edge of the network, with the aim of supporting latency
sensitive applications such as augmented reality or mobile
gaming. Edge computing is often materialized by using many
fog servers placed in multiple geographic locations. Fog nodes
are likely to be more vulnerable to tampering than nodes placed
in large central data centers and, therefore, it is important to
secure the functions they provide from malicious faults.

A key building block of many distributed applications is
an ordering service, that is able to keep track of cause-
effect dependencies among events and that allows events to
be processed in an order that respects causality. In this thesis
we present the design and implementation of a secure event
ordering service for fog nodes. Our service, named Omega,
leverages the availability of a Trusted Execution Environment
(TEE), namely of the Intel SGX enclave, to offer to fog clients
guarantees regarding the order by which events are applied
and served, even when the fog nodes become compromised.
To assess the performance of our techniques, we have built a
key-value store that offers causal consistency for the edge that
makes extensive use of Omega. Experimental results show that,
despite the overhead associated with the use of the TEE, the
ordering service can be secured without violating the latency
constraints of time-sensistive edge applications.

I. INTRODUCTION

Cloud computing is a model for deploying Internet appli-
cations that allows companies to execute services in shared
infrastructures, typically large data centers, that are managed
by cloud providers. The economies of scale that result from
using large shared infrastructures reduce the deployment
costs and make it easier to scale the number of resources
associated with each application in response to changes
in demand. Cloud computing has been, therefore, widely
adopted both by private and public services.

Despite its benefits, cloud computing has some limita-
tions. The number of data centers that offer cloud services
is relatively small, and they are typically located in a few
central locations. For instance, Google currently maintains
16 data centers; and only 3 of these data centers are not
located in North America or Europe. Thus, clients that
operate far from these data centers may experience long
latencies [1]. Also, many applications require data to be
sent to a data center to be processed. For applications that
produce large amounts of data, this model may require the
consumption of significant network resources.

Many applications deployed in the cloud provide a range
of services to clients that reside in the edge of the network:
desktops, laptops, but also smartphones or even smart de-
vices such as cameras or home appliances, also known as
the Internet of Things (IoT). The number and capacity of
these devices have been growing at a fast pace in recent
years. Many of these devices can run real time applications,
such as augmented reality or online games, that require low
latencies when accessing the cloud. In fact, it is known that
a response time below 5ms–30ms is typically required for
many of these applications to be usable [2]. Also, most of
these devices have sensors that produce enormous quantities
of information that need to be collected and processed.

One solution to address the latency requirements of new
edge applications is to process data at the edge of the
network, close to the devices, a paradigm called edge
computing. To support edge computing, one can comple-
ment the services provided by central data centers with the
service of smaller data centers, or even individual servers,
located closer to the edge. This concept is often named fog
computing [3]. It assumes the existence of fog nodes that
are located close to the edge. The number of fog nodes is
expected to be several orders of magnitude larger than the
number of data centers in the cloud.

Cloud nodes are physically located in secure premises,
administered by a single provider. Fog nodes, instead, are
most likely managed by several different local providers
and installed in physical locations that are more exposed
to tampering. Therefore, fog nodes are substantially more
vulnerable to being compromised [4], and developers of
applications and middleware for edge computing need to
take security as a primary concern in the design.

In this paper, we address the problem of securing a
middleware service for edge computing. Specifically, we
focus on securing an event ordering service that is able to
keep track of cause-effect dependencies among events and
that allows events to be processed in an order that respects
causality. The ability to keep track of causal relations among
events is at the heart of distributed computing and, as such,
an ordering service is a fundamental building block for
many applications such as storage services [5], graph stores,
social networks, online games, among others. The idea of
providing an event ordering service is not new (a notable
example of such a service is Kronos [6]) but, to the best

1



of our knowledge, we are the first to address the problem
of providing secure implementations that may be safely
executed in fog nodes.

Our service, named Omega, leverages the wide availabil-
ity of support for Trusted Execution Environments (TEE),
namely of Intel SGX enclaves, to offer fog clients guar-
antees regarding the order by which events are applied and
served, even when fog nodes become compromised. We take
particular care to use lightweight cryptographic techniques
to ensure data integrity while keeping a reasonable tradeoff
with availability. A key goal is to secure the ordering
service without violating the latency constraints imposed by
time-sensitive edge applications. We achieve this by using
enclaves only for a few important operations. In particular,
applications run outside the TEE and use the enclave to
selectively request proofs over the order of operations. Also,
the interface of Omega is, as it will be discussed later, richer
than that of services such as Kronos.

To illustrate the use of Omega, and also to assess its per-
formance in practice, we have built a key-value store, named
OmegaKV, that offers causal consistency[7]. OmegaKV is
a secure extension of causal-consistent key-value stores that
have been designed for the web, such as [5], [8]. We are par-
ticularly interested in extending key-value stores that offer
causal consistency, since this is the strongest consistency
model that can be enforced without risking blocking the
system when network partitions or failures occur. Clients
of OmegaKV can perform write and read operations on
data replicated by fog nodes, and are provided with the
guarantees that writes are applied in causal order and that
reads are also served in an order that respects causality.

We experimentally assessed the performance of Omega
using a combination of micro-benchmarks and its use to
secure the metadata required by the OmegaKV key-value
store. Our experimental results show that Omega introduces
an additional latency of approximately 4ms, which is much
smaller than the latency required to access central cloud data
centers, and that, contrary to cloud based solutions, allows
latency values in the 5ms-30ms range, as required by time-
sensitive edge applications.

II. BACKGROUND AND RELATED WORK

A. Edge Computing and Fog Nodes

The emergence of IoT and the stress it places on services
that operate in the cloud motivates the use of computing
resources close to the edge. Edge computing is a model
of computation that aims at leveraging the capacity of
edge nodes to save network bandwidth and provide results
with low latency. However, many edge devices are resource
constrained (in particular, those that run on batteries) and
may benefit from the availability of small servers placed in
the edge vicinity, a concept known as fog computing. Fog
nodes provide computing and storage services to edge nodes
with low latency, setting the ground deploying resource-
eager latency-constrained applications, such as augmented
reality.

B. Securing Fog Services

The fact that fog nodes are dispersed among multiple
geographic locations, close to the edge, increases the risk of
being attacked and becoming malicious [4]. A compromised
fog node may delete, copy, or alter operations requested
by edge devices, causing information to be lost, leaked, or
changed in such a way that it can lead the application to a
faulty state. To address this challenge, one needs to resort
to a combination of techniques, from which we highlight
replication and hardening.

Replication consists in relying on multiple fog nodes
instead of a single node. If enough fog nodes are used, it
may be possible to mask arbitrary faults (often designated
Byzantine faults) and, in some cases, to detect compromised
nodes. Techniques such as Byzantine quorums [1] can be
used for this purpose. Although they require contacting
multiple fog nodes, this is the only way to ensure that critical
information is not lost due to a compromised fog node, as
such a node may become silent. Unfortunately, contacting
and voting on the output of multiple fog nodes increases the
latency of operations and may defeat the very purpose of fog
computing. Therefore, we assume that many applications
will be able to make progress while contacting a single
fog node, specially is the fog node can execute quorum
validations in the background and is hardened.

Hardening consists in using software and/or hardware
mechanisms to reduce the ability of the adversary to com-
promise a device. Using the appropriate techniques it may be
possible to prevent a compromised fog node from altering
information unnoticed, effectively reducing the amount of
damage an infected fog node can cause. A relevant mecha-
nisms in this context is the use of a TEE, a secured execution
environment with guarantees provided by the processor. The
code that executes inside a TEE is logically isolated from
the operating system (OS) and other processes, providing
integrity and confidentiality, even if the OS is compromised.
Therefore, the use of a TEE is a natural choice to secure
computation and sensitive data in fog nodes.

Intel Software Guard Extensions (SGX) is a set of
functionalities introduced in sixth generation Intel Core
microprocessors that implement a form of TEEs named
enclaves [9]. The potential benefits of this technology for
the fog have already been recognized by Intel and it has
already been used in practice. Applications designed to use
SGX have two parts: an untrusted part and a trusted part.
The trusted part runs inside the enclave, where the code and
data have integrity and confidentiality; the untrusted part
runs as a normal application. The untrusted part can make
an Enclave Call (ECALL) to switch into the enclave and start
the trusted execution. The opposite is also possible using an
Outside call (OCALL). The SGX architecture implements a
number of mechanisms to ensure the integrity of the code,
including an attestation procedure that allows a client to get
a proof that it is communicating with the specific code in a
real SGX enclave, and not an impostor [10]. A limitation of
current SGX implementations is that the protected memory

2



region, named enclave page cache, is limited to 128 MB.

C. Event Ordering
Most distributed applications need to keep track of the

order of events. Different techniques can be used for this
purpose, from synchronized physical clocks, logical Lamport
clocks [7], vector clocks, hybrid clocks, and others. In
most cases, the event ordering service is a core component
of the application and if this service is compromised the
correctness of the application can no longer be ensured.

In many cases, applications use their own technique to
order events, so the implementation of the ordering service
is intertwined with the application logic. This approach has
two important drawbacks: first, it is hard to keep track of
chains of related events across multiple applications. Second,
it causes developers to maintain potentially complex code,
that is duplicated in many slightly different variations, at
different applications.

Kronos [6] was recently proposed as an alternative ap-
proach that consists in offering event ordering as a service
and can be used by multiple applications, although it was
designed for the cloud and does not implement security
measures. In the context of edge computing, implementing
the event ordering as a separate service that is provided by
fog nodes makes it easier to harden the implementation,
increasing the robustness of the applications that use such
secured version of the service. In this paper we follow this
path and describe the design and implementation of Omega,
a secure event ordering service to be executed at fog nodes.

D. Edge Storage
To unleash their full potential, fog nodes should not only

provide processing capacity, but also cache data that may be
frequently used; otherwise, the advantages of processing on
the edge may be impaired by frequent remote data accesses.
By using cached data, requests rarely need to be served by
data centers. Consequently, a fundamental service of edge-
assisted cloud computing is a storage service that extends
the one offered by the cloud in a way that relevant data
is replicated closer to the edge. Therefore, in this paper
we also describe the implementation of a storage service to
be provided by fog nodes, that we have named OmegaKV.
This storage service extends key-value stores designed for
the cloud that offer causal consistency [5]. This consistency
criteria is particularly meaningful for edge computing, given
that it was shown to be the strongest consistency criteria that
can be offered without compromising availability.

Very recently, two key-value stores that leverages SGX
have been proposed: ShieldStore [11] and Speicher [12].
Both were designed for the cloud, and they ensure data
integrity outside the enclave by calculating a Merkle tree.
However, both systems only implement a flat Merkel tree,
ie with one level only. This implies that they do not take
advantage of the logarithmic growth property it offers.
Moreover, in both cases, the leaves of the Merkel trees
have considerable size, which is not efficient as shown in
Section VII-C. Pesos [12] is another secure object store

that also takes advantage of SGX. Pesos was also built for
the cloud and assumes a secure third party to persistently
store the data, while OmegaKV stores the data locally in
the untrusted part.

Needless to say, any storage service that offers causal
consistency needs to keep track of the causal order relations
among read and write operations. Instead of embedding such
operations in the code of OmegaKV, our implementation
makes extensive use of Omega. As a result, OmegaKV
illustrates the benefits than can be achieved by having an
event ordering service implemented at the fog level, and also
shows how applications can leverage the fact that Omega is
secured to harden their own behaviour.

III. VIOLATIONS OF THE EVENT ORDERING

Before we describe the design and implementation of
Omega, it is worth enumerating the problems that might
occur if the event ordering service is compromised. In
our solution, we assume that the event ordering service is
executed in a single fog node and that the clients of the
service are: edge nodes, servers in clouds, or other fog nodes.
We also assume that clients are always non-faulty and we
only address the implications of a faulty implementation of
the event ordering service.

The detailed API of the Omega service will be described
later in the text. For now, just assume that clients can:
i) register events with the event ordering service in an
order that respects causality and, ii) query the service to
obtain a history of the events that have been registered.
Typically, clients that query the event ordering service will
be interested in obtaining a subset of the event history that
matches the complete registered history (i.e., it has no gaps),
and that is fresh (i.e., includes events up to the last registered
event).

Informally, a faulty event ordering service can: i) Expose
an event history that is incomplete (omitting one or multiple
events from the history); ii) Expose an event history that
depicts events in the wrong order, in particular, in an order
that does not respect the cause-effect relations among those
events; iii) Expose a history that is stale, by omitting all
events subsequent to a given event in the past (that is falsely
presented as the last event to have occurred); iv) Add false
events, that have never been registered, at arbitrary points
in the event history. These behaviours break the causal
consistency and may leave applications in an unpredictable
state.

Omega is able to prevent these attacks, ensuring data
consistency at the edge despite fog nodes vulnerabilities.
An important fact to note is that the Omega system does
not prevent a fog node from refusing to communicate, i.e.
a fog node can omit messages from a client. However, the
Omega system allows a client to check if the node is omitting
messages, allowing the client to migrate to another fog node
and inform Omega about this malicious node. In the next
paragraphs, we describe the Omega API that clients can use
to avoid the attacks described above.

3



Figure 1. predecessorEvent and predecessorWithTag functions.

IV. OMEGA SERVICE

Omega is a secure event ordering service that runs in a fog
node and that assigns logical timestamps to events in a way
that these cannot be tampered with, even if the fog node
has been compromised. Clients can ask Omega to assign
logical timestamps to events they produce, and can use these
logical timestamps to extract information regarding potential
cause-effect relations among events. Furthermore, Omega
keeps track of the last events that have been registered in
the system and also keeps track of the predecessor of each
event. These last features are relevant as they allow a client
to check if the information provided by a fog node is fresh
and complete (i.e, if a compromised fog node omits some
events in the causal past of a client, the client can flag
the fog node as faulty). More precisely, Omega establishes
a linearization [13] of all timestamp requests it receives,
defining a total order consistent with causality for all events
occurring in the fog node.

A. Omega API

The interface of the Omega service is depicted in Ta-
ble I. Omega assigns, upon request, logical timestamps to
application level events. Each event is assumed to have a
unique identifier that is assigned by the client of the Omega
service, so Omega is oblivious to the process of assigning
identifiers to events, which is application-specific. Omega
also allows the application to associate a given tag to each
event. Again, Omega is oblivious to the way the application
uses tags (tags can be associated to users, to keys in a key-
value store, to event sources, etc.), but requires all tags
to be registered before they are used (registerTag). The
createEvent operation assigns a timestamp to a user event
and returns an object of type Event that securely binds a
logical timestamp to an event and a tag.

Clients are not required to know the internal format
used by Omega to encode logical timestamps, which is
encapsulated in an object of type Event. Instead, the client
can use the remaining primitives in Omega to query the order
of events and to explore the event linearization that has been
defined by Omega. The primitive orderEvents receives two
events and returns the oldest according to the linearization
order. The client can also ask Omega for the last event that
has been timestamped (lastEvent), or by the most recent
event associated with a given tag (lastEventWithTag). Given
a target event, the client can also obtain the event that is
the immediate predecessor of the target in the linearization
order (predecessorEvent), or the most recent predecessor that
shares the same tag with the target (predecessorWithTag),
as shown in Figure 1. Finally getId and getTag extract the

Register a tag with Omega
void registerTag (EventTag tag)
Create a timestamped event with a given identifier and a given tag
Event createEvent (EventId id, EventTag tag)
Order two events and return the first
Event orderEvents (Event e1, Event e2)
Return the last event timestamped by Omega
Event lastEvent ()
Return the last timestamped event with a given tag
Event lastEventWithTag (EventTag tag)
Return immediate predecessor of a given event
Event predecessorEvent (Event e)
Return the most recent predecessor with the same tag
Event predecessorWithTag (Event e)
Return the application level identifier of an event
EventId getId (Event e)
Return the tag associated with an event
EventTag getTag (Event e)

Table I
THE OMEGA API.

application level event identifier and tag that have been
securely bound with the target event.

Note that, although Omega is inspired by services such
as Kronos [6], it offers an interface that makes different
tradeoffs. First, it allows clients to associate events with spe-
cific objects / tags and to fetch all previous events that have
updated that specific object; Kronos instead requires clients
to crawl the event history to get the previous version of a
particular object. Second, Kronos requires the application to
explicitly declare the cause-effect relations among objects.
This is more versatile but more complex to use than Omega,
that automatically defines a causal dependency among the
last operation of a client and all operations that this client
has performed or observed in its past. Finally, unlike Kronos,
Omega automatically establishes a linearization of all opera-
tions, which simplifies the design of applications that need to
fully order concurrent operations consistent with causality.

V. OMEGA IMPLEMENTATION

In this section, we describe the design and implementation
of the Omega service. We start by presenting the system
architecture, the system model and the threats the system
face. Then, we describe in detail the most important aspects
of the implementatio.

A. System Architecture

The Omega service is executed on fog nodes and is used
by processes that run in the edge or in cloud data centers,
as shown in Figure 2. Both the edge devices and the cloud
can use Omega to create and read events on the fog node
in a secure manner. For instance, edge devices can make
updates to data stored on the fog node that are later shipped
to the cloud (in this case, edge devices create events and
the cloud reads them). Moreover, the cloud can receive
updates from other locations and update the content of the
fog node with new data that is subsequently read by the
edge devices. For the operation of Omega, we do not need

4



Figure 2. Omega architecture. CA is certification authority, AS is
attestation server, ΩC is Omega client, ΩV is Omega Vault and ΩL is
Omega event log.

to distinguish processes running on the edge devices from
processes running on the cloud, we simply denote them as
clients. The method used by clients to obtain the address of
fog nodes is orthogonal to the contribution of this document.
We can simply assume that cloud nodes are aware of all
fog nodes (via some registration procedure) and the edge
devices can find fog nodes using a request to the Domain
Name System (DNS), e.g., using a name associated with the
application, or to the cloud, e.g., using an URL associated
with the application.

The implementation of Omega assumes the existence of
two external components, that are executed in the cloud
and are assumed to be secure. These components are a
Certification Authority (CA), that is used to generate public
key certificates, and an Attestation Server (AS) , which is
used when a fog node binds to the Omega implementation
via a binding procedure (described in Section V-C). The
techniques used to ensure the correctness of these two
external components are orthogonal to this work (e.g. using
standard Byzantine fault-tolerance techniques).

An important aspect of Omega is how to maintain the
functionality of the system in case a fog node is compro-
mised. To tackle this issue, Omega takes advantage of Intel
SGX, as show in Figure 2; Omega generates all events inside
the enclave, i.e., it executes createEvent operations inside
the enclave. Moreover, all events take a digital signature
obtained inside the enclave using the private key of the fog
node, also stored inside the enclave. Omega includes the
following modules: i) a protocol used by clients to ensure
that they are interacting with the correct implementation of
Omega running on the enclave and not with a compromised
version of the same service (Section V-C); ii) two sub-
components named vault and event log that are used to
preserve the Omega state (Section V-D);

B. Threat Model and Security Assumptions

The cloud and its services (AS, CA) are considered trust-
worthy, i.e., are assumed to fail only by crashing (essentially,
we make the same assumptions as the related work [6], [5],
[8]). Clients running on edge devices are also considered
trustworthy and may also fail only by crashing.

Due to their exposed location, fog nodes can suffer
numerous attacks and be compromised (an attacker might
even gain physical access to a fog node). We assume that
fog nodes may fail arbitrarily. They receive operations from
clients and communicate with the cloud, so we assume that
a faulty fog node can: modify the order of messages in the
system; modify the content of messages; repeat messages
(replay attack); tamper with stored data; and generate in-
correct events. All these actions, if not addressed carefully,
may lead the system to a faulty state, cause Omega to break
the causal consistency of the events, and therefore affect the
correctness of applications that use Omega.

We do not make assumptions about the security and
timeliness of the communication, except that messages are
eventually received by their recipient.

We also assume that each fog node has a processor with
Intel SGX, which allows running a TEE designated enclave,
as depicted in Figure 2. Both clients and fog nodes have
asymmetric key pairs (Ku,Kr). The private key of the
fog node KF

r never leaves the enclave. For public key
distribution, we consider the existence of a Public Key
Infrastructure (PKI). We do the usual assumptions about
the security of TEEs/enclaves (data executed/stored inside
the enclave has integrity and confidentiality ensured) and
cryptographic schemes (e.g., private keys are not disclosed,
signatures cannot be created without the private key, and
the hash function is collision-resistant). For obtaining digital
signatures efficiently we use Elliptic Curve Cryptography
(ECC), specifically the ECDSA algorithm with 256-bit keys,
which is recommended by NIST. We assume the existence of
a collision-resistant hash function. In practice we use SHA-
256, also recommended by NIST. We use the implementa-
tions provided by the SGX SDK (inside the enclave) and
Java (outside). Interestingly, this involves converting public
keys from little endian (enclave) to big endian (Java).

C. Client Binding

Before a client invokes any method of the Omega API,it
has to execute a client binding procedure. The purpose
of this procedure is to ensure that the client has the
following guarantees: i) it has a secure connection to a
software component; ii) this software component is running
on an enclave in an Intel processor with SGX; iii) the
software version is the same version as the one registered
in Intel’s attestation servers (which is assumed to be the
correct version of the software component). This is also
known as the attestation procedure. One limitation of the
attestation procedure defined by Intel is that it involves
multiple communication steps, including a connection to
Intel servers (to ensure that the enclave is created on an

5



Figure 3. Merkle tree stored in the Omega vault in the untrusted zone of
the fog node (with N = 4).

Intel CPU). This is a cumbersome process which conflicts
with our goal of improving the overall event-ordering service
latency. Therefore, we have resorted to a different scheme to
perform client binding. The Omega client binding protocol
relies on the Attestation Server (AS) that runs in the cloud.
The AS runs Intel’s attestation protocol with each fog node.
It performs this attestation periodically, with a period that
can be configured. If the fog node passes the attestation, the
AS obtains from the Certificate Authority (CA) a certificate
with an expiration date lower than the period, digitally
signed with its private key KCA

r . The attestation performed
by the AS allows to establish a secure connection with
the enclave. The AS uses this connection to acquire the
public key of the fog node, which is added to the previously
mentioned certificate. This certificate is sent to the Omega
instance running on the enclave of the fog node and stored in
the untrusted part. Instead of running the Intel’s attestation
procedure Clients of the Omega service just ask the Omega
implementation to return the certificate that has been issued
by the AS.

D. The Omega Vault and the Event Log
Omega is required to safely store different pieces of

information, such as the private key associated with the
certificate signed by the AS, the last event generated by
Omega, and also the last event associated with each tag.
However, the enclave memory is limited to a few tens of
megabytes and Omega must keep an arbitrary number of
tags. Therefore, Omega requires a way to securely store the
above information (in particular the last event for an arbitrary
number of tags). Also, Omega must have access to events
it has generated in the past, given that clients can use the
predecessorEvent method to crawl the event history.

To satisfy these requirements, Omega uses two storage
services with different properties, the vault and the event
log. In both cases, Omega stores events in the untrusted
zone. These events can be in plain text but we still need
integrity, i.e., to ensure that the untrusted zone cannot modify
these values in case the fog node is compromised. Given
that events are signed by Omega, the untrusted zone cannot
modify individual events; however it can delete events or
replace new events by older events. We now describe the
implementation of these two services.

The event log is just a record of all events generated,
so we opted to implement this component as a key-value
store where events are stored using their unique identifier
(assigned by the application) as key. Everytime Omega
makes a look-up for a specific event (for instance, when a
client crawls the event history) it simply checks the integrity
of the event before the value is returned to the client. If an
event cannot be found in the key-value store, this is a sign
that the untrusted components of the fog node have been
compromised.

The vault is harder to implement, because it needs to
maintain the last event generated for each tag and to ensure
that the untrusted components cannot replace the last event
by an older event. Therefore, checking the integrity of the
event returned is not enough: the Omega vault implementa-
tion must ensure that the values were not tampered. At the
logical level, this is achieved by requiring the enclave to hash
the vault every time it updates its content and to store the
hash in the enclave itself. However, a naive implementation
that would actually keep a single hash for the entire vault
would not perform well because, as we have noted, the
application may use a large number of tags and computing
a hash of all these tags may take a long time. Also, it is
not straightforward to ensure that the hash function yields
the intended value if the values being hashed are to many to
fit inside the enclave and may be changed by the adversary
while the hash is being computed.

To address the problems above, the implementation of the
Omega vault uses the following techniques. First, the content
of the vault is stored as a Merkle tree. While conceptually
the vault is just a table, maintained in the untrusted zone,
where each line is a tag (index) and a column for the event
(see Figure 3); in the implementation this table is splited
into N parts, and for each part, the enclave computes a hash
to ensure integrity. Since the enclave may not have enough
memory to store all these hashes, we use a Merkle tree such
that the enclave only needs to store the top hash. All the
hashes are calculated inside the enclave. In particular, SGX
exhibits an attribute user check that allows passing a pointer
of the untrusted zone memory space as an argument in an
ECALL, so that the enclave can access data that is in the
untrusted part. This way, the enclave can verify and generate
the Merkle tree hashes when needed in the untrusted zone
requiring only to store the top hash.

When the enclave has to modify one part of the table
it needs to: compute the Merkle tree to verify the data,
then change the data and, finally, recalculate a few of the
Merkle tree hashes (as many as the depth of the tree).
These operations must be performed in an atomic manner,
otherwise an attacker could change the table between the
two Merkle tree calculations and the enclave would not be
able to detect it. To ensure the atomicity of the combined
operations, the enclave calculates the hashes in parallel, i.e.,
it calculates the old hash and the new hash of the table
simultaneously so that in the end it can simply replace the
old one.

6



Figure 4. OmegaKV service components.

Besides, it should be noted that both the Merkle tree and
the leaves are in memory. The enclave access this data in
memory and modifies it in memory, the untrusted part is
responsible for asynchronously write to disk all changes
made by the enclave. This, unlike other systems prevents
the enclave from having to access the disk, which has a
latency penalty.

At the event that a fog node becomes malicious, the
untrusted part can modify these values in memory and/or
block the communication of the enclave with the outside.
In this event, if a client tries to use the Omega service they
will not receive any response as the enclave will not respond
without having integrity from the data store in the untrusted
part. This way the client can alert to the CA entity that is
running in the cloud about a possible malicious fog node.

VI. OMEGA KEY-VALUE STORE

OmegaKV is an extension to key-values stores that have
been designed for the cloud. It makes it possible to maintain
a cache of some key-value pairs in the untrusted space of
a fog node while still ensuring that clients observe up-to-
date values of the cached objects, in an order that respects
causality. This is achieved by resorting to the services of
Omega. OmegaKV also ensures that all updates performed
by edge clients on the fog node, if they are propagated to
the cloud, they are propagated to the cloud in an order that
respects causality. As discussed in Section IV, Omega cannot
ensure availability in case the adversary compromises the fog
node. For availability, clients of OmegaKV should write on
multiple fog nodes eagerly or cache the updates they have
made and replay them later, if and only if they discover
that the fog node has failed to propagate those updates to
the cloud. We omit those details in this document, given
that here we use OmegaKV mainly to illustrate the use of
Omega and as a means to assess the overhead introduced by
this service.

OmegaKV is implemented by combining an untrusted
local key-value store and Omega. The key-value store resides
in the untrusted region of the fog node, and it is used to store
the values persistently. Omega is used to keep track of the
relative order of update operations that have been performed
locally. Figure 4 illustrates the architecture of OmegaKV. As
with the Omega service, the implementation of OmegaKV
has components that run on a client library and components
that run of the fog node.

OmegaKV uses Omega as follows. Every update per-
formed on the local replica is associated with an event

generated by Omega. The keys used in the OmegaKV are
associated to EventTags in Omega; thus Omega will store
securely each update performed on each key. Also, for each
update operation, an EventId is generated as a function of
the content of the update; more precisely, if a client writes
value v on some key k, that update will be identified by
hash (k ⊕ v). The algorithms pseudocode of the OmegaKV
is only available in the full thesis.

To put a value on the OmegaKV, the client starts by
creating an identifier for the put operation by hashing the
concatenation of the key and the value. Then it contacts
Omega to serialize the update operation with regard to other
update operations (in a serialization that respects causality).
Finally, the server replaces the old value of the key with the
new one. The event generated by Omega is stored locally
with the update value. This can be used subsequently to
ensure that clients see updates in the right order.

To perform the get operation, the client reads the value
and the associated event from the local key-value store and
queries Omega for the last event to be associated with the
target key. Then it uses the hash of the value that has been
safely stored by Omega and compares it with the hash of
the value returned by the untrusted code running on the fog
node. This allows the client to check that the untrusted zone
has not been compromised and that the value returned is, in
fact, the last value written on that key.

Finally, when the fog node ships the updates to the cloud,
these are shipped together with events generated by Omega.
This allows the cloud to apply the updates in the correct
order in the master replica (and in other fog nodes, if
needed).

VII. EVALUATION

The evaluation section is divided in two parts. In the first
part we evaluate Omega in isolation. The goal is to offer
a better understanding of the relative cost of the different
components of the Omega implementation. In the second
part we show the impact of using Omega to secure a concrete
service, namely OmegaKV. The goal is to provide insights
on the tradeoffs involved when executing services securely
on the cloud, insecurely on fog nodes, or securely on fog
nodes leveraging the services of Omega.

A. Experimental Setup

In our experiments, the fog node is a dedicated computer
with a 3.6GHz Intel i9-9900K CPU which has 16GB RAM
(this processor supports SGX). The fog node OS is Ubuntu
18.04.2 LTS 64bit with Linux kernel 5.0.8. We run the
Intel SGX SDK Linux 2.4 Release. The client machines are
computers with 2.5GHz Intel i7-4710HQ CPU and 16GB
RAM. Both the clients and the fog node are deployed in our
laboratory, in the same network, emulating a 5G station com-
municating with a terminal (i.e., a 1-hop communication).
Cloud services are executed on Amazon Elastic Compute
Cloud (Amazon EC2), using the London data center, in
t2.micro virtual machines.

7



The Intel SGX SDK and the code for the enclave are in
C/C++. For simplifying the application implementation on
Omega, we created a layer in Java over the part of Omega
that operates in the enclave. For this we used Java 11 and
the Java Native Interface (JNI) was used as a bridge between
Java and C++. For persistent storage we used the key-value
store Redis[14]. Redis is a typical key-value storage system,
providing value storage indexed by keys. Redis is an in-
memory system but offers a snapshot mechanism for data
persistence. As a result of Omega abstraction, any key-value
system could be used, we chose Redis because it is simple
and lightweight to use. In the experiments we executed 5000
operations and discarded the first 500 and the last 500 for
warming up and to remove potential outliers

B. Omega Configuration and Performance
We first discuss how to configure the Merkle tree used by

Omega since the performance of the service is highly depen-
dent on this configuration. Then we provide an overview for
the performance of Omega using the selected configuration
for the Merkle tree.

C. Merkle Tree Configuration
The Merkle tree used to store events is used on most of

the Omega operations. Therefore, its correct configuration is
key to the performance of the service. To understand how to
configure the Merkle tree it is important to notice that any
operation that involves checking/changing the content of the
Omega vault requires to perform a number of computations
that is a function of the size of the vault but also on the
size selected for the Merkle tree leafs. More precisely, let x
be the size of each tree leaf and VaultSize be the maximum
number of entries that the vault can store. Any operation
on the vault must compute the hash of the affected leaf
node and then the hashes of all inner nodes of the tree.
Computing the hash of the leaf node has a cost that is
linear with the leaf size. We denote this cost leafHash(x).
Since we have implemented the Merkle tree as a binary
tree, updating/checking an inner node involves hashing two
values. We denote the cost of computing the hash of an inner
node innerHash. The number of inner nodes that need to be
computed grows logarithmically with the size of the vault
and its exact value is log2(

VaultSize
x ). Therefore, the formula

that captures the cost of performing operation on the vault
is leafHash(x) + innerHash ∗ log2(VaultSize

x ).
The formula above suggest that the optimal size of the leaf

nodes of the Merkle should be very close to 1, given that the
cost of hashing the leaf node grows linearly, while the cost
of hashing the inner nodes grows logarithmically. However,
it should be noted that there is a different cost of calculating
a very large hash (leafHash) versus calculating many small
hashes (innerHash). Figure 5 depicts the estimated cost of
vault operation, on a vault of size 512 when the size of leaf
nodes is varied from 1 to 512 entries. Note that when the leaf
size is 1, the height of the Merkle tree is 9 and when the size
of the leaf is 512 the entire vault is stored in a single leaf.
The values in this figure were obtaining using the formula

0 1632 64 128 256 512
x is the number of tags per leaf

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
te

nc
y 

 (m
s)

leafHash(x)
innerHash * log2(VaultSize

x )
Total latency

Figure 5. Estimated optimal leaf size of the Merkle tree for a vault of
size 512.

2 4 8 16 32 64 128 256 512 2048 8192 32768 131072 524288
Total number of tags

1400

1600

1800

2000

2200

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 / 
s)

2 tags per leaf
4 tags per leaf

8 tags per leaf
16 tags per leaf

32 tags per leaf
64 tags per leaf

128 tags per leaf

Figure 6. Actual performance of the Merkle tree as a function of the vault
size and leaf size.

above, that was fed with results obtained experimentally
for the parameters leafHash(x) and innerHash. The values
suggest that leafs should not be large; in this case, for a
vault size of 512, the formula suggests that 8 is the best leaf
size.

Based on this observation, we decided to run multiple
experiments on the real system, where we measured the
performance of the Omega vault implementation with dif-
ferent leaf sizes and different vault sizes. The results are
depicted in Figure 6. As it can be observed, the best results
are obtained for leaf sizes of 2 and 4 (in fact, the differences
in performance for these two values is not significant) but
quickly drops if larger leaves are used. Therefore, in all other
experiments, we have used a leaf size of 2.

D. Executing Omega Operations
We now present the results of a set of experiments that

are aimed at assessing the performance of Omega when
used in isolation. For this experiment we have measured
the latency observed by a client when performing the most
costing requests of the Omega interface. The createEvent
operations involves modifying the Omega vault, which has
a major latency penalty. We have measured how each
software component that is executed in the client critical
path contributes to the latency. The results are depicted in
Figure 7.

Since the fog node is located one-hop away from the
clients, the time spent in the network is not the main
contributor to the latency observed by clients. The time
lost from the Java layer to enclave is also small (from
1ms to 2ms). The time lost doing context switch is also

8



createEvent
0

1

2

3

4

5

La
te

nc
y 

(m
s)

Java Client
Network
Java Server
JNI
C++
Enclave switch
Enclave

Figure 7. Operation latency for createEvent.

20/80 30/70 40/60 50/50 60/40 70/30 80/20
Access pattern (write/reads )

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

 / 
s)

OmegaKV_NoSGX
OmegaKV
CloudKV

Figure 8. Access pattern throughput (writes/reads).

considerably short, mainly because the enclave keeps very
little state (taking advantage of the Omega Vault) and there
is a small number of parameters passing in and out of the
enclave. Thus, the main contributor to the latency are the
cryptographic functions executed in the client and in the
enclave. In the client, 2ms–2.5 ms are required to compute
and verify digital signatures. On the server side, most of the
time is also spent in the process of computing and verifying
digital signatures.

E. Performance of the OmegaKV
We now measure the impact of using Omega to make

other services secure. For this purpose we compare the per-
formance of OmegaKV, our Omega-based key-value store
for the fog, with a similar non-secured service also running
in the fog node (denoted OmegaKV NoSGX), and with a
version where security is achieved by running the service
on the cloud (denoted CloudKV). All implementations of
the key-value store have been developed in Java and use
Redis [14] to keep their state persistent. Also, all system
use messages that are cryptographically signed. The major
difference among the implementations are that CloudKV and
OmegaKV NoSGX do not use the enclave (nor the Merkle
tree used to implement the Omega Vault), they make no
effort to verify date integrity, and they do not use JNI for
interaction between Java layer and C++.

Figure 8 presents the maximum throughput that a client
can achieve using the three systems. In the CloudKV imple-
mentation, the latency to the data center severely affects the
throughput of the client; in our experiments the throughput
of a cloud-based implementation is roughly 25% of the fog-
based implementations. This was expected as one of the

0 5 10 15 20 25 30 35 40
Client write operation latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

HealthTest
OmegaKV_NoSGX

OmegaKV
CloudHealthTest

CloudKV

Figure 9. Write operation latency of a fog node and cloud.

0.5 1 2 4 8 16 32 64 128 256 512
Object value size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y 

(s
)

OmegaKV_NoSGX
OmegaKV

Figure 10. Write operation latencies w/ and w/o SGX.

main motivations for using fog-nodes is to reduce the latency
observed by clients. Interestingly, although the security
mechanisms that are used in the Omega implementation
introduced some amount of overhead (see the discussion
in Section VII-B), this overhead is partially diluted when
Omega is just a part of a larger system, that has many other
sources of latency. In our experiments, OmegaKV offers a
throughput that is approximately 18% smaller than the non-
secured version of the same service but that is, nevertheless,
much higher than the throughput supported by CloudKV.

Figure 9 compares the latency that a client experiences
when using the services OmegaKV, OmegaKV NoSGX,
and CloudKV. For a better understanding of the graph, we
use the ping operation to measure the round-trip time from
the client to the fog node and to the cloud. This is shown as
the HealthTest line for the fog node and the CloudHealthTest
for the cloud. As expected the client can perform operations
with much lower latency by using the fog node rather than
using the CloudKV services that are in a data center, a
reduction from 36ms to 12ms, close to 67%. OmegaKV
has higher latency than OmegaKV NoSGX, due to the use
of the enclave. In absolute value we observe an increase
in latency in the order of 4ms, which is non-negligible
but still significantly smaller than the latency introduced
by wide-area links. This allows OmegaKV to offer latency
values in the 5ms–30ms range required by time-sensitive
edge applications[2].

We also tested the performance of OmegaKV with differ-
ent data sizes up to 512 MB (this is the maximum object size
supported by Redis, our underlying persistent store). Results

9



are shown in Figure 10. For this experiment we compared
OmegaKV against OmegaKV NoSGX. It is visible that our
system follows the same latency as the traditional key-value
store. This happens because, with large files, the overhead of
the enclave and cryptographic operations becomes negligible
when compared with the data transfer costs. It should be
noted that OmegaKV transfers only one hash of the object
to Omega; the object with tens of megabytes is stored in
Redis.

VIII. CONCLUSIONS

Fog computing can pave the way for the deployment of
novel latency-sensitive applications for the edge, such as
augmented reality. However, in order to fulfill its potential,
we need to address the vulnerabilities that emerge when
deploying a large set of servers on many different locations
that cannot be physically secured with the same level of
trust than cloud premises. This paper makes a step in this
direction by describing the design and implementation of
a middleware service that can be executed on fog nodes
in a secure manner leveraging on the properties of trusted
executions environments such as Intel SGX. In particular, we
have proposed Omega, an event ordering service that can be
used as a building block to build higher level abstractions.
With the dual purpose of illustrating the use of Omega
and of assessing its performance when used in practice, we
have also designed and implemented OmegaKV, a causally
consistent key-value store for the edge. Our evaluation shows
that, despite the costs incurred with the use of the enclave
mode to secure the Omega implementation, the use of
Omega based applications can still provide much smaller
latency and higher throughput than current cloud based
solutions.

ACKNOWLEDGMENTS

This work was partially supported by Fundação para a
Ciência e Tecnologia (FCT) and Feder through the projects
with references PTDC/EEI-COM/29271/2017 (Cosmos) and
UID/ CEC/ 50021/ 2019.

REFERENCES

[1] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa,
“Depsky: Dependable and secure storage in a cloud-of-
clouds,” ACM Transactions on Storage, vol. 9, no. 4, 2013.

[2] G. Ricart, “A city edge cloud with its economic and technical
considerations,” in Proceedings of the International Workshop
on Smart Edge Computing and Networking, Kona, HI, USA,
Jun. 2017.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog comput-
ing and its role in the internet of things,” in Proceedings of
the Workshop on Mobile Cloud Computing, Helsinki, Finland,
Aug. 2012.

[4] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag,
N. Choudhury, and V. Kumar, “Security and privacy in fog
computing: Challenges,” IEEE Access, vol. 5, no. 6, 2017.

[5] M. Bravo, L. Rodrigues, and P. Van Roy, “Saturn: A dis-
tributed metadata service for causal consistency,” in Proceed-
ings of the ACM European Conference on Computer Systems,
Belgrade, Serbia, Apr. 2017.

[6] R. Escriva, A. Dubey, B. Wong, and E. G. Sirer, “Kronos: The
design and implementation of an event ordering service,” in
Proceedings of the ACM European Conference on Computer
Systems, Amsterdam, The Netherlands, Apr. 2014.

[7] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, 1978.

[8] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen, “Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops,” in Proceedings of the
ACM Symposium on Operating Systems Principles, Cascais,
Portugal, Oct. 2011.

[9] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “Innovative
instructions and software model for isolated execution.” in
Proceedings of the International Workshop on Hardware and
Architectural Support for Security and Privacy, Tel-Aviv,
Israel, Jun. 2013.

[10] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi, “Founda-
tions of hardware-based attested computation and application
to SGX,” in Proceedings of the IEEE European Symposium
on Security and Privacy, Saarbrücken, Germany, Mar. 2016.

[11] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore:
Shielded in-memory key-value storage with SGX,” in Pro-
ceedings of the ACM European Conference on Computer
Systems, Dresden, Germany, Mar. 2019.

[12] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani, “Speicher: Securing LSM-based key-value stores
using shielded execution,” in Proceedings of the USENIX
Conference on File and Storage Technologies), Boston, MA,
USA, Feb. 2019.

[13] M. P. Herlihy and J. M. Wing, “Linearizability: A correct-
ness condition for concurrent objects,” ACM Transactions on
Programming Languages and Systems, vol. 12, no. 3, 1990.

[14] Redis, “Key-value store,” http://redis.io, accessed: 2019-10-
04.

10


